
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

FORMAL SPECIFICATION, EXPRESSIVENESS

AND COMPLEXITY ANALYSIS FOR JSON

SCHEMA

FERNANDO SUÁREZ BARRÍA

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

JUAN L. REUTTER.

Santiago de Chile, September 2016

c©MMXIV, FERNANDO SUÁREZ BARRÍA



c©MMXIV, FERNANDO SUÁREZ BARRÍA

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier medio

o procedimiento, incluyendo la cita bibliográfica que acredita al trabajo y a su autor.



PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

FORMAL SPECIFICATION, EXPRESSIVENESS

AND COMPLEXITY ANALYSIS FOR JSON

SCHEMA

FERNANDO SUÁREZ BARRÍA

Members of the Committee:

JUAN L. REUTTER.

CRISTIAN RIVEROS J.

AIDAN HOGAN.

RODRIGO PASCUAL J.

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, September 2016

c©MMXIV, FERNANDO SUÁREZ BARRÍA



To my grandparents.



ACKNOWLEDGEMENTS

First of all I would like to thank my parents Vilma and Rodrigo for always being there,

since elementary school until the end of my Master’s period. Without their personal (and

financial) support the result of this work would not have been possible.

I also want to give my gratitude to my advisor Juan, for placing his trust in me and

for giving me the opportunity to be his coworker in this process. His ideas and advices

were crucial for me in both research and personal aspects. Additionally, I would like to

thank Cristian for his unconditional support and for trusting me with the opportunity to

give lectures at university. Besides I would like to thank the following people:

• Martı́n Ugarte for giving me his help and mentoring every time I asked for it.

• Domagoj for all his help and ideas for my research problems.

• Adrián for always providing me moral support during my office hours.

Finally I would like to thank Catalina as well as all my college and high school friends for

the good times, and for taking my college experience to a whole new level.

My postgraduate studies were partially funded by The Millennium Nucleus Center for Semantic Web Re-
search under Grant NC120004, and Fondecyt Iniciación grant 11130648.

v



TABLE OF CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Resumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3. Thesis outline and structure . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Devising a Formal Specification for JSON Schema . . . . . . . . . . . . . . . 8

2.1. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2. Formal Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3. Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4. Well Formedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3. Expressiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2. From Automata Theory to JSON Schema . . . . . . . . . . . . . . . . . 23

3.3. From JSON Schema to MSO . . . . . . . . . . . . . . . . . . . . . . . . 27

4. Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1. The Validation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2. The Satisfiability Problem . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1. The full case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2. The non-recursive case . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



4.2.3. The non-regular non-recursive case . . . . . . . . . . . . . . . . . . 45

5. Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

APPENDIX A. Additional tests and code . . . . . . . . . . . . . . . . . . . . . 55

A.1. Four documents and four schemas used for testing . . . . . . . . . . . . . 55

A.2. Script used to test border cases . . . . . . . . . . . . . . . . . . . . . . . 56

A.3. Reduction from A to JSON Schema . . . . . . . . . . . . . . . . . . . . 61

A.4. JSON Schema validation algorithm . . . . . . . . . . . . . . . . . . . . 62

APPENDIX B. Formal Specification . . . . . . . . . . . . . . . . . . . . . . . 65

B.1. Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.1.1. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.1.2. Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.2. Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.2.1. JSON Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.2.2. Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

APPENDIX C. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

C.1. Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

C.2. Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

C.3. Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C.4. Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

C.5. Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

C.6. Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

vii



LIST OF TABLES

2.1 Testing five validators against 4 tests. . . . . . . . . . . . . . . . . . . . . . 8

2.2 Grammar for JSON Schema documents . . . . . . . . . . . . . . . . . . . . 12

2.3 Grammar for string schemas . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Grammar for numeric schemas . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Grammar for object schemas . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Grammar for array schemas . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 The complexity of JSCHSATISFIABILITY for each subset of keywords. . . . . 37

viii



LIST OF FIGURES

1.1 Example of an API input in JSON format . . . . . . . . . . . . . . . . . . . 1

1.2 Example of an API output in JSON format . . . . . . . . . . . . . . . . . . 1

1.3 Example of a JSON Schema document . . . . . . . . . . . . . . . . . . . . 3

2.1 Example of an ill-designed schema . . . . . . . . . . . . . . . . . . . . . . 19

3.1 JSON Schema document that captures complete binary trees. . . . . . . . . . 27

3.2 Binary tree coded as a JSON document. . . . . . . . . . . . . . . . . . . . . 27

3.3 A JSON J and its tree representation T (J). . . . . . . . . . . . . . . . . . . 28

4.1 Schema for the circuit C with input values τ(x1) = τ(x2) = false and

τ(x3) = true. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 A run of a quantified alternating tree automaton . . . . . . . . . . . . . . . . 40

4.3 A JSON document and its coding as a tree. . . . . . . . . . . . . . . . . . . 41

4.4 An accepting run of AS over the document from Figure 4.3. . . . . . . . . . 42

4.5 Twitter API response example. . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.1 JSON Schema document for automaton A. . . . . . . . . . . . . . . . . . . 61

ix



ABSTRACT

JSON – the most popular data format for sending API requests and responses – is still

lacking a standardised schema or meta-data definition that allows developers to specify the

structure of JSON documents. JSON Schema is an attempt to provide a general purpose

schema language for JSON, but it is still work in progress, and the formal specification has

not yet been agreed upon. Why this could be a problem becomes evident when examining

the behaviour of numerous tools for validating JSON documents against this initial schema

proposal: although they agree on most general cases, when presented with the greyer areas

of the specification they tend to differ significantly.

In this thesis we conduct a first theoretical analysis for JSON Schema documents.

We start by providing the first formal definition of syntax and semantics for the whole

JSON Schema specification. Then, we use our definition to capture the expressive power

of JSON Schema in terms of two well established formalisms, automata theory and logic.

First, we show that even when using a very restricted set of keywords, we can simulate

nondeterministic tree automata. On the other hand, we also show that monadic second

order logic captures a core fragment of the JSON Schema specification.

Finally, we attempt to establish tight complexity bounds for the most important ques-

tions in the context of schema definitions, the validation and satisfiability problems. These

problems are crucial for the development of efficient algorithms for data transfer over the

web. Here we show that the validation problem can be efficiently solved when the schema

is fixed, but inherently sequential in terms of combined complexity. On the other side, we

provide an exponential algorithm for solving satisfiability and also show that it cannot be

sorted out in a better upper bound.

Keywords: JSON, API, JSON Schema, Syntax, Semantics, Complexity, Ex-

pressive power, Tree automata, Monadic second order logic

x



RESUMEN

JSON es hoy en dı́a el formato más popular para el traspaso de datos en la web.

Sin embargo, todavı́a carece de un esquema estandarizado que permita a desarrolladores

especificar la estructura estos documentos. JSON Schema es una propuesta para definir

metadata a través de esquemas para documentos JSON. Sin embargo, todavı́a está en

una etapa de madurez muy temprana, y no existe una especificación formal que capture

al lenguaje en su totalidad. En esta tesis se lleva a cabo el primer análisis formal de

documentos JSON Schema.

En primer lugar, se propone una definición formal tanto de la sintaxis como de la

semántica para la validación de estos documentos. Luego, en base a esta definición, se

procede a capturar el poder expresivo del lenguaje. Por un lado, se demuestra que JSON

Schema puede simular autómatas de árbol, con el sólo uso de un subconjunto muy re-

stringido de la especificación. Por otro lado, se muestra que JSON Schema puede ser

capturado por lógica monádica de segundo orden sobre árboles.

Finalmente, se analiza la complejidad computacional de los principales problemas de

decisión presentes en el contexto esquemas para lenguajes formales, el problema de vali-

dación y el problema de satisfacibilidad para documentos JSON Schema. Estos problemas

resultan de gran importancia en el desarrollo de algoritmos eficientes para el traspaso de

datos en la web. Por un lado, se muestra que el problema de validación puede ser resuelto

de manera eficiente para esquemas fijos. Sin embargo, en términos de complejidad com-

binada el problema resulta ser inherentemente secuencial. Por otro lado, se propone un

algoritmo exponencial para resolver el problema de satisfacibilidad. Además, se demues-

tra que este problema no puede ser computado con una mejor cota que la obtenida.

Palabras Claves: JSON, JSON Schema, Complejidad computacional, Validación,

Satisfacibilidad, Poder expresivo, Autómata, Lógica

xi



1. INTRODUCTION

1.1. Background

JSON (JavaScript Object Notation) (Bray, 2014; Internet Engineering Task Force

(IETF), 2014) is a structured data format based on the data types of the JavaScript pro-

gramming language. In the last few years JSON has gained tremendous popularity among

web developers, and has become the main format for exchanging information between

servers over the web.

Nowadays, JSON plays a key role in web applications. Indeed, software executing

functions ordered by remote machines must establish a precise protocol for receiving and

answering requests, a problem that for all intents and purposes, has been solved by Appli-

cation Programming Interfaces (API). Given that JSON is a language which can be eas-

ily understood by both developers and machines, it has become the most popular format

for sending API requests and responses over the HTTP protocol. As an example, con-

sider an application containing information about the estimated time of arrival for public

transportation. The application provides an API to allow other software to access this

information. A hypothetical call to this API could be a request containing this JSON file:

{"street_name": "Broadway", "street_number": 4304}

FIGURE 1.1. Example of an API input in JSON format

by which a client is requesting the estimated time of arrival of a bus in the address Broad-

way 4304. Given this call, the API would reply with an HTTP response containing the

following JSON file:

{"bus_code": "C01",

"minutes_before_arrival": 15,

"seconds_before_arrival": 40}

FIGURE 1.2. Example of an API output in JSON format

1



indicating that the bus C01 is going to arrive in 15 minutes and 40 seconds. This ex-

ample illustrates the simplicity and readability of JSON, which partially explains its fast

adoption.

With the popularity of JSON, it was soon noted that in many scenarios one can benefit

from a declarative way of specifying a schema for JSON documents.

For instance, in the public API scenario one could use a schema to avoid receiving

malformed API calls that may affect the inner engine of the application. Coming back to

the public transport application, note that the API calls consist of JSON objects mentioning

a string (the street name) and a number (the street number) . What happens if a user

does not specify one of these properties, or if he or she specifies more properties in the

JSON object? Similar issues arise when we use a number or a boolean value instead

of a string or vice versa. Without an integrity layer, all of these questions need to be

taken into consideration when coding the API, and could be avoided if we use a schema

definition to filter out documents that are not of the correct form. A declarative schema

specification would also give developers a standardised language to specify what types of

JSON documents are accepted as inputs and outputs by their API.

JSON Schema (json-schema.org: The home of JSON schema, 2016) is a simple

schema language that allows users to constrain the structure of JSON documents and pro-

vides a framework for verifying the integrity of the requests and their compliance to the

API. If we consider again the public transport API, by simply adding the JSON Schema

documento from Firure 1.3 we can assure the correct form of each API call.

This schema asserts that the received JSON document must be of type object (a collec-

tion of key-value pairs), besides, it must contain keys “street name” and “street number”,

and there cannot be any more keys. Moreover, the schema forces the“street name” to be a

string and “street number” to be an integer. For example, the JSON file requesting the es-

timated time of arrival in Broadway 4304 would comply to this schema, but the JSON file

2



{
"type": "object",
"required": ["street_name", "street_number"],
"additionalProperties": false,
"properties": {
"street_name": {"type": "string"}
"street_number": {"type": "integer"}

}
}

FIGURE 1.3. Example of a JSON Schema document

{"street name": "Wall st", "street number": "fifty three"}would not,

as the value of the street number is not an integer.

To the best of our knowledge, JSON Schema is the only general attempt to define a

schema language for JSON documents, and it is slowly being established as the default

schema specification for JSON. The definition is not yet a standard (the specification is

currently in its fourth draft (Galiegue & Zyp, 2013)), but there is already a growing body

of applications that support JSON schema definitions, and a great amount of tools and

packages that enable the validation of documents against JSON Schema. There have been

other alternatives for defining schemas for JSON documents, but these are either based

on JSON Schema itself or have been designed with a particular set of use cases in mind.

To name a few of them, Orderly (Hilaiel, 2015) is an attempt to improve the readability

of a subset of JSON Schema, Swagger (Swagger: The World’s Most Popular Framework

for APIs., 2015), RAML (The RAML Workgroup, 2015) and Google discovery (Google,

2015) are proposals for standardising API definition that use JSON Schema, and JSON-

LD (Sporny, Kellogg, & Lanthaler, 2014) is a context specific definition to specify RDF

as JSON.

Despite all the advantages of a schema definition, the adoption of JSON Schema has

been rather slow and there are not many studies about this topic. To the best of our knowl-

edge, the only rigorous analysis related with JSON Schema is the one done by Reutter,

Ugarte, and Vrgoc (2015), but it was quite general and brief. In this context, one of the

3



issues that has prevented the widespread recognition of JSON Schema as a standard for

JSON meta-data is the ambiguity of its specification. The current draft addresses most

typical problems that would show up when using JSON Schema, but the definitions lack

the detail needed to qualify as a guideline for practical use. As a result we end up hav-

ing huge differences in the validators that are currently available: most of them work for

general cases, but their semantics differ significantly when analysing border cases.

The lack of a formal definition has also discouraged the scientific community to get

involved: to the best of our knowledge, there has been no formal study of general schema

specifications for JSON, nor has there been any formal discussion regarding the design

choices taken by the JSON Schema specification. A formal specification would also help

the development of automation tools for APIs. There is already software for automatically

generating documentation (GitHub, 2013b) and API clients (GitHub, 2013a, 2013c), but

all of them suffer from the same problems as validators.

Another consequence of this problem, is that there is no real knowledge about the

expressiveness nor the computational complexity for these schema definitions for JSON

documents. A formal analysis could be beneficial in terms of delimiting the real potential

of the language in the context of data storage and transfer. For example, there is no real

knowledge about how hard it is to validate a JSON document against a JSON Schema, in

terms of time and memory. This is a crucial point, given the growing amount of requests

APIs receive each day. For example, Twitter’s API receives more than three billion request

each day, all of them in JSON format (Rao, n.d.). Moreover, with the passage of time,

these APIs get more complex in terms of features and diversity of inputs and/or outputs.

In this context, a formal analysis would serve as the starting point for developing efficient

algorithms for generating automatic documentation of these services. Furthermore, an

expressiveness analysis could serve to finally devise the main differences between JSON

and its most representative comparisson: XML.

In this thesis, we provide both a formal specification and a theoretical analysis for

the most significant problems related with JSON Schema documents. Our specification

4



include both a clear syntax and semantics for each of the features of the current specifi-

cation. As mentioned, this is very important, since it can serve as a basis to standardize

the construction of JSON Schema documents and the way they are validated. Afterwards,

we use our specification to conduct a theoretical analysis of JSON Schema documents.

We begin by delimiting the expressive power of JSON Schema, in comparison to tree au-

tomata and monadic second order logic. Then, we conduct a computational complexity

study for the main problems in the context of schema languages. We start by analysing the

computational cost of verifying if a JSON document conforms to a schema, also known as

the validation problem. As mentioned before, this problem has a key role in the adoption

of JSON Schema as a standard for specifying the protocol we use to communicate with

web services. Finally, we analyse the problem of checking the existence of documents

that comply to a given schema, a problem we call the satisfiability problem. This prob-

lem holds a strong relation with the problems related with the documentation of APIs.

For example, in order to design an algorithm to provide a fixed amount of examples for

the input of an API (given the schema), it is necessary to solve the satisfiability problem

before. Moreover, the problem is also necessary to provide algorithms to automate the

construction of schemas given a set of JSON documents as input, a problem that is very

interesting in the topics of machine learning. Furthermore, it can be useful for optimizing

document-oriented database management systems. For example, one could check if the

restrictions above certain database are consistent before the insertion of tuples into the

dataset.

1.2. Summary of contributions

In the first chapter, we propose a solution for the lack of a formal specification of

JSON Schema. Specifically, we provide a context-free grammar that captures the whole

syntax of JSON Schema documents. Moreover, we give a formal definition of well-formed

schemas and how they are constructed. Here we also give a full definition of the semantics

for each restriction present in the current specification.

5



In chapters 2–3, we conduct a formal study of several aspects of the JSON Schema

specification. We start by studying the expressive power of JSON Schema as a language

for defining classes of JSON documents. Since JSON Schema is the only native schema

definition for JSON we cannot compare to other standards; instead we provide comparison

with respect to automata models and logic, the two most important theoretical yardsticks

for expressive power. Here we prove the following results:

• JSON Schema can simulate non deterministic tree automata on ranked trees,

even if we allow a very restricted set of keywords.

• The family of non-array schemas is captured by monadic second order logic.

We continue with a complexity analysis on the main problems related with JSON

Schema. First, we study the problem of validating a JSON document against a schema,

providing tight bounds for the computational complexity of this problem. Here we have

the following results:

• The validation problem is PTIME-complete in combined complexity for the

whole class of JSON Schema documents.

• If we we don’t allow array restrictions, the validation problem can be computed

in linear time in terms of data complexity.

Finally we analyse the problem of checking whether or not there exists a document that

conforms to a fixed schema, also known as the satisfiability problem. Regarding this

problem, we have the following results in combined complexity:

• The satisfiability problem is EXPTIME-complete for the whole family of JSON

Schema documents.

• The satisfiability problem is PSPACE-complete for non-recursive schemas.

• The satisfiability problem is NP-complete for non-recursive non-regular schemas.

6



1.3. Thesis outline and structure

Chapter 2 shows the problems we run into because of the lack of a formal specifi-

cation, and defines the syntax and semantics of JSON Schema. In Chapter 3 we give a

formal analysis of the expressive power of JSON Schema. Next, in Chapter 4 we provide

a full complexity analysis for the validation and satisfiability problems. Finally, Chapter 5

presents concluding remarks and some possible future lines of research.

7



2. DEVISING A FORMAL SPECIFICATION FOR JSON SCHEMA

As we mentioned in the previous section, one of the main problems of JSON Schema

is the lack of a formal specification. To illustrate why this is an issue we created four

border-case schemas, and validated them using five different validators. These tests use

schemas that are allowed by the current JSON Schema draft (Galiegue & Zyp, 2013), but

the valuation of their features is not fully specified by the draft. The first test (T1) evaluates

whether or not a collection of key-value pairs is considered to be ordered. The second test

(T2) checks the behaviour of validators for a schema specifying both that the document is

an integer and a string. Next, the test (T3) states that the document is an object, but also

adds an integer constraint to it. Lastly, (T4) uses definitions and references to force an

infinite loop, while also allowing the object to be a simple string. For space reasons the

full code of the tests and their details are left out from the body of this thesis, but can be

found in Appendix A.1 and A.2 .

V1 V2 V3 V4 V5
T1: N Y Y N Y
T2: Y N Y N Y
T3: N Y N N N
T4: – – N – –

Y valid
N invalid
– unsupported

TABLE 2.1. Testing five validators against 4 tests.

Table 2.1 shows the outcome of this process. It is important to mention that all valida-

tors successfully validate the JSON Schema test-suite (Berman, 2015). As we can see, no

two validators behave the same on all inputs, which is clearly not the desired behaviour.

This illustrates the need for a formal definition of JSON Schema which will either disallow

ambiguous schemas, or formally specify how these should be evaluated.

8



2.1. Notation

We start by fixing some notation regarding JSON documents and introducing JSON

Pointer, a simple query language for JSON that is heavily used in the JSON Schema spec-

ification. For readability we skip most of the encoding details with respect to these spec-

ifications; their formal definition can be found in (Bray, 2014; Internet Engineering Task

Force (IETF), 2013).

2.1.1. JSON Values

The JSON format defines the following types of values. First, true, false and

null are JSON values. Any decimal number (e.g. 3.14, 23) is also JSON value, called

a number. Furthermore, if s is a string of unicode characters then "s" is a JSON value,

called a string value. Next, if v1, . . . , vn are JSON values and s1, . . . , sn are pairwise

distinct string values, then o = {s1 : v1, . . . , sn : vn} is a JSON value, called an object. In

this case, each si : vi is called a key-value pair of o. Finally, if v1, . . . , vn are JSON values

then a = [v1, . . . , vn] is a JSON value called an array. In this case v1, . . . , vn are called

the elements of a.

We sometimes use the term JSON document (or just document) to refer to JSON

values. The following syntax is normally used to navigate through JSON documents. If

J is an object, then J [“key”] is the value of J whose key is the string “key”. In the case

that “key” is not in J , we denote J [“key”] = ∅. Likewise, if J is an array, then J [n], for

a natural number n, contains the (n − 1)-th element of J . Similarly as for objects, in the

case that an element is not present we say that J [n] = ∅.

9



2.1.2. JSON Pointer

JSON Pointers are intended to retrieve values from JSON documents. Formally, a

JSON pointer is a string of the form p = /w1/ · · · /wn, for w1, . . . , wn valid strings using

any unicode character.

The evaluation Eval(p, J) of a pointer p over a document J is a JSON value that is

recursively defined as follows. Assume that p = /w/p′. Then Eval(p, J) is:

• the value Eval(p′, J [n]), if J is an array, w is the base 10 representation of the

number n and J has at least n+ 1 elements; or

• the value Eval(p′, J [w]), if J is an object that has a key-pair with key "w" (note

that we have to put the value of w between quotes to make it a JSON string); or

• the value null otherwise.

Example 1. Consider now an array storing names

J = [{"name": "Josefine"}, {"name": "Michael"}]

To extract the value of the key "name" for the second object in the array, we can use

the JSON pointer p = /1/name which first navigates to the second item of the array

(thus obtaining the object {"name": "Michael"}) and retrieves the value of the key

"name" from here. Therefore Eval(p, J) ="Michael".

2.2. Formal Grammar

JSON Schema can specify any of the six types of valid JSON documents: objects,

arrays, strings, numbers, boolean values and null; and for each of these types there are

several keywords that help shaping and restricting the set of documents that a schema

specifies. For the sake of space, we have identified a core fragment that is equivalent to

the full JSON Schema specification, and present now its formal grammar and semantics.

All of the remaining functionalities in the official JSON Schema draft can be expressed

using the functionalities included in this section. The complete grammar definition can be

found in Appendix B.1 . It is important to note that this work was done in conjunction

10



with the community (json-schema.org: The home of JSON schema, 2016; Galiegue &

Zyp, 2013).

The compacted grammar is presented in Tables 2.2–2.6. It is specified in a visual-

based extended Backus-Naur form (The International Organization for Standardization

(ISO), 1996), where all non-terminals are written in bold (and thus everything not in bold

is a terminal). Also, for readability, we use string to represent any JSON string, n to

represent any positive integer, r to represent any decimal number, Jval to represent any

possible JSON document and regExp to represent any regular expression. Note that when

these values get instantiated they behave as terminals.

Remark. Since every JSON Schema document is also a JSON document, we assume that

duplicate keywords cannot occur at the same nesting level.

2.2.1. Overall Structure

Table 2.2 defines the overall structure of JSON Schema document (JSDoc). It consists

of two parts: an optional definitions section (defs), that is intended to store other schema

definitions to be reused later on, and a mandatory schema section (JSch) where the ac-

tual schema is specified. In turn, each schema can be either a string schema (strSch), a

number schema (numSch), an integer schema (intSch), an object schema (objSch), an

array schema (arrSch), a reference schema (refSch), a boolean combination of schemas

using not, allOf or anyOf, or simply the enumeration of a set of values (enum). Note

how reference schemas make use of JSON pointer (JPointer).

2.2.2. Strings

String schemas are formed according to Table 2.3. We first state that we wish to

represent a string using the "type":"string" pair, and then we may add an additional

11



JSDoc := { (defs , )? JSch }
defs := "definitions": { string : { JSch } (, string : { JSch })∗}
JSch := strSch | numSch | intSch | objSch |

arrSch | refSch | not | allOf | anyOf | enum
not := "not": { JSch }
allOf := "allOf": [ { JSch } (, { JSch })∗ ]
anyOf := "anyOf": [ { JSch } (, { JSch })∗ ]
enum := "enum": [ Jval (, Jval )∗ ]
refSch := "$ref": "# JPointer"

TABLE 2.2. Grammar for JSON Schema documents

restrictions to state that they satisfy a certain regular expression regExp. We illustrate

some of these concepts in Example 2.

strSch := "type": "string" (, strRes )∗

strRes := pattern
pattern := "pattern": "regExp"

TABLE 2.3. Grammar for string schemas

Example 2. The following schema S1 specifies strings according to an email pattern.

It has no definitions section.

{

"type": "string",

"pattern": "[A-z]*@uc.cl"

}
The next schema, S2, includes schema S1 as a definition, under the "email" key.

{

"definitions": {

"email": {

"type": "string",

"pattern": "[A-z]*@uc.cl"

}

},

12



"not": {"$ref": "#/definitions/email"}

}

Note that evaluating the pointer /definitions/email on S2 yields precisely S1.

Intuitively, this schema is intended to specify all objects that do not conform to S1.

2.2.3. Numeric Values

Integer and number schemas have the same structure, shown in Table 2.4. The pair

"type":"number" specifies any number, while "type":"integer" specifies in-

tegers only. We can specify maximum and/or minimum values for numbers and integers

(these values are not exclusive unless explicitly stated), and also that numbers and integers

should be multiples of another number.

numSch := "type": "number" (, numRes )∗

intSch := "type": "integer" (, numRes )∗

numRes := min | exMin | max | exMax | mult
min := "minimum": r
exMin := "exclusiveMinimum": true
max := "maximum": r
exMax := "exclusiveMaximum": true
mult := "multipleOf": r (r ≥ 0)

TABLE 2.4. Grammar for numeric schemas

2.2.4. Objects

We specify object schemas with the "type":"object" pair, and according to Ta-

ble 2.5. Within objects schemas we may use additional restrictions to control the key-value

pairs inside objects. The keyword required specifies that a certain string needs to be a

key of one of the pairs inside an object, and properties is used to state that the value

of a key needs itself to satisfy a certain schema. The keyword patternProperties

JSON Schema treats integers as a different type.

13



works like properties, except we bound all key-value pairs whose key satisfies a reg-

ular expression, and finally additionalProperties controls whether we allow any

additional key-value pair not defined in properties or patternProperties.

objSch := "type": "object" (, objRes )∗

objRes := prop | addPr | patPr | req
prop := "properties": { kSch (, kSch )∗}
kSch := string : { JSch }
addPr := "additionalProperties": (false | { JSch })
req := "required": [ string (, string)∗ ]
patPr := "patternProperties": { patSch (, patSch )∗}
patSch := "regExp" : { JSch }

TABLE 2.5. Grammar for object schemas

Example 3. Recall the schema describing an API call to the public transport app

defined in Figure 1.3. As the API is expecting a JSON containing a street name and

a street number, but nothing else. Moreover, our schema specifies that the street name

must be a string and the street number must be an integer. We also use required and

additionalProperties to specify that the JSON we are sending to the app will

contain precisely those two keys and nothing else.

2.2.5. Arrays

Finally, array schemas are specified with the "type":"array" pair, and according

to Table 2.6. There are two ways of specifying what kind of documents we find in arrays.

If a single schema follows the "items" keyword, then every document in the array needs

to satisfy this schema. On the other hand, if an array follows the "items" keyword, then

it is one-by-one: the i-th document in the specified array needs to satisfy the i-th schema

that comes after the "items" keyword. We can also set a minimum and/or a maximum

14



number of items, and finally we can use uniqueItems to specify that all documents

inside an array need to be different.

arrSch := "type": "array" (, arrRes )∗

arrRes := itemo | itema | minIt | maxIt | unique
itemo := "items": { JSch}
itema := "items": [{ JSch} (, {JSch})∗]
minIt := "minItems": n
maxIt := "maxItems": n
unique := "uniqueItems": true

TABLE 2.6. Grammar for array schemas

Example 4. To illustrate how array schemas work, consider again the API described

in the Introduction. Imagine now that our API also allows us to ask information about

the estimated time of arrival for several places simultaneously. An obvious way to model

such requests is by using JSON arrays, where each item of the array is a single call as

in Example 3. To check that the requests we send are using the correct format we could

validate them against the following schema (The reference is assumed to return the schema

of Example 3):

{

"type": "array",

"items": {"$ref": "#/definitions/schema_example_3"}

}

2.3. Semantics

The idea is that a JSON document satisfies a schema if and only if it satisfies all the

keywords of this schema. Formally, given a schema S and a document J , we write J |= S

to denote that J satisfies S. We separately define |= for string, object and array schemas, as

well as for their combinations or enumerations. Again, for readability reasons, we present

15



the semantics for the compacted version of the JSON Schema Draft definition. However,

the remaining functionalities are defined in Appendix B.2.

2.3.1. Combinations and References

Let S be a boolean combination of schemas, an enumeration or a reference schema.

We say that J |= S, if one of the following holds.

• S is "enum": [J1, . . . , Jm] and J = J`, for some 1 ≤ ` ≤ m.

• S is "allOf": [S1, . . . , Sm] and J |= S`, for all 1 ≤ ` ≤ m.

• S is "anyOf": [S1, . . . , Sm] and J |= S`, for some 1 ≤ ` ≤ m.

• S is "not": S ′ and J 6|= S ′.

• S is "$ref": "#p" for a JSON pointer p; Eval(p,D) is a schema and J |=

Eval(p,D), with D the JSON document containing S.

Note that if Eval(p,D) returns null then "$ref":"#p" is not satisfiable, and

likewise if Eval(p,D) returns a JSON value that is not a schema.

2.3.2. Strings

Let S be a string schema. Then J |= S if J is a string, and for each key-value pair p

in S that is not "type": "string" one of the following holds:

• p is "pattern": e and J is a string that belongs to the language of the ex-

pression e.

Example 5. Consider again schemas S1 and S2 from Example 2. Furthermore, let

J be “crj@uc.cl”. We then have that J |= S1, because J is a string that belongs to the

regular expression in S1. On the other hand, since the pointer /definitions/email

retrieves once again S1, schema S2 is actually equivalent to

16



{

"not": {

"type": "string",

"pattern": "[A-z]*@uc.cl"

}

}

and thus J 6|= S2.

2.3.3. Numeric values

Let S be a number (respectively, integer) schema. Then J |= S if J is a number (resp.

integer), and for each key-value pair p in S whose key is not "type", "exclusiveMinimum"

nor "exclusiveMaximum" one of the following holds:

• p is "minimum":r and J is strictly greater than r.

• p is "minimum":r, J is equal to r and the pair "exclusiveMinimum":"true"

is not in S.

• p is "maximum":r and J is strictly lower than r

• p is "maximum":r, J is equal to r and S the pair "exclusiveMaximum":"true"

is not in S.

• p is "multipleOf":r and J is a multiple of r.

2.3.4. Objects

Let S be an object schema. Then J |= S if J is an object, and for each key-value pair

p in S that is not "type": "object" one of the following holds:

• p is "properties": {k1 : S1, . . . , km : Sm} and for every key-value pair

k : v in J such that k = kj for some 1 ≤ j ≤ m we have that v |= Sj .

17



• p is "patternProperties": {"e1" : S1, . . . ,"em" : Sm} and for every

key-value pair k : v in J and every ej , with 1 ≤ j ≤ m, such that k is in the

language of ej we have that v |= Sj .

Remark. If the keyword matches more than one pattern property then it has to

satisfy all the schemas involved.

• p is "required": [k1, . . . , km] and for each 1 ≤ j ≤ m we have that J has a

pair of the form kj : v.

• p is "additionalProperties": false and for each pair k : v in J , ei-

ther S contains "properties": {k1 : S1, . . . , km : Sm} and k = kj for some

1 ≤ j ≤ m, or S contains "patternProperties": {"e1": S1, . . . ,"em":

Sm} and k belongs to the language of ej , for some 1 ≤ j ≤ m.

• p is "additionalProperties":S ′ and for each key-value pair k′ : j′ in

J , with k′ not in S[properties] and k′ not matching any of the expressions in

S[patternProperties], we have that j′ validates against S ′

2.3.5. Arrays

Let S be an array schema. Then J |= S if J is an array, and for each key-value pair p

in S that is not "type": "array" one of the following holds:

• p is "items": {S ′} and for each item J ′ ∈ J we have that J ′ |= S ′.

• p is "items": [S1, . . . , Sm], J = [J1, . . . , J`] and Ji |= Si for each 1 ≤ i ≤

min(m, `).

• p is "minItems": n and J has at least n items.

• p is "maxItems": n and J has at most n items.

• p is "uniqueItems": true and all of J’s items are pairwise distinct.

Example 6. Consider the document J = [7,−3, 2,−4] and the schema S as follows

{

18



"type": "array",

"uniqueItems": true,

"items":{"type": "integer"}

}

The schema S is asking for array documents whose elements must be different from

each other. Moreover, the schema forces those elements to be integers. It is clear that J

comply to these restrictions, then we obtain that J |= S.

2.4. Well Formedness

Up to this point, we have defined both a proper syntax and semantics for JSON

Schema documents. But before we can conduct a formal analysis for the specification,

we have to deal with some border case schemas that may be problematic. For example,

the formal grammar still allows some enigmatic schemas, such as the one in Figure 2.1.

{

"definitions": {

"S": {"not": {"$ref": "#/definitions/S"}}

},

"$ref": "#/definitions/S"

}

FIGURE 2.1. Example of an ill-designed schema

The example above defines a schema that is both S and the negation of S, and is

therefore ill-designed. What is worse, the majority of the validators we tested run into an

infinite loop when trying to resolve the references of this schema. In fact, one of the tests

in Table 2.1 used a schema similar to this one.

To avoid these problematic cases we introduce the notion of a well-formed schema.

Intuitively, what’s going on behind the structure of the schema is that we have a non-valid

self reference. In order to avoid these references, we can check the ”reachability” between

19



the schemas named under the "definitions" part. This idea motivates the following

definition:

Definition 1 (Reference graphs). Given a JSON Schema document S, the reference

graph of S is a graph that has a node for each schema defined under the "definitions"

section of S. Let Si, Sj be schemas under the definitions section, the reference graph has

an edge from Si to Sj if and only if Si is a boolean combination of schemas and Sj is one

of those schemas.

Example 7. Consider the following JSON Schema document S.

{

"definitions":{

"S_1":{"$ref":"#/definitions/S_2"},

"S_2":{

"allOf":[

{ "$ref":"#/definitions/S_3"},

{ "not":{ "$ref":"#/definitions/S_4"}}

]

},

"S_3": {"type": "string"},

"S_4": {"type": "object"}

},

"$ref":"#/definitions/S_1"

}

Now we can build the following reference graph from S.

20



S1 S2

S3

s4

Finally, we can use this definition to establish well formedness in JSON Schema doc-

uments.

Definition 2 (Well-formed schema). Given a JSON Schema document S, we say that

S is well formed if its reference graph is acyclic.

For instance, the graph of Example 7 is a well formed schema, but the one in Figure

2.1 is not, since it has a self loop on S. For the rest of the paper we consider only well

formed schemas, and we propose to add this condition to the standard as well. Note

also that well formedness can be checked in linear time by performing DFS over the tree

(Cormen, Stein, Rivest, & Leiserson, 2001).

21



3. EXPRESSIVENESS

So far we have seen many examples of how JSON Schema can be used in practice, but

we still do not know much about the classes of JSON documents that the JSON Schema

specification can express, and which ones it cannot. These questions were also asked

when XML Schema was being studied and were solved by checking the expressive power

in comparison to established formalisms. For JSON Schema we provide two such com-

parisons: with respect to automata and with respect to logic.

Remark. For the sake of simplicity, in this part of the work we just focus on well-formed

schemas constructed according to the compacted grammar (Section 2.2). However, all the

results presented in this section can be adapted to apply to the whole specification.

3.1. Preliminaries

We assume familiarity with tree automata theory (Comon et al., 2007), computational

complexity (Papadimitriou, 1994) and logic (Libkin, 2004, 2006). Now we revise some

concepts of tree codification and automata theory.

3.1.1. Σ-Trees

We start by defining one of the most common abstractions for tree encoding: Σ-trees.

These definitions are the same used in (Neven, 2002) and we need them to code JSON as

tree structures. The set of Σ-trees, denoted by TΣ, is inductively defined as follows:

• every σ ∈ Σ is a Σ-tree,

• if σ ∈ Σ and t1, ..., tn ∈ TΣ, n ≥ 1 then σ(t1, ..., tn) is a Σ-tree.

Note that there is no a priori bound on the number of children of a node in a Σ-tree; such

trees are therefore unranked. Denote by N∗, the set of strings over the alphabet consisting

of the natural numbers. For every tree t ∈ TΣ, the set of nodes of t, denoted by Dom(t), is

the subset of N∗ defined as follows: if σ(t1, ..., tn) with σ ∈ Σ, n ≥ 0, and t1, ..., tn ∈ TΣ,

22



then Dom(t)= {ε} ∪ {ui | i ∈ {1, ...., n}, u ∈ Dom(ti)}. Thus, ε represents the root thile

ui represents the i-th child of u. This definition is also known as tree domain (Libkin,

2006). From now on we will refer to Σ-trees just as trees.

3.1.2. Non-deterministic Top Down Tree Automata

The most common model that we use throughout our analysis is Non-deterministic

Finite Tree Automata (NFTA). Here we provide the top-down definition from (Comon et

al., 2007) that is used in the proofs along this thesis.

A nondeterministic top-down finite Tree Automaton (top-down NFTA) over F is a

tuple A = (Q,F , I,∆) where Q is a set of states (states are unary symbols), I ⊆ Q is a

set of initial states, and ∆ is a set of rewrite rules of the following type:

q(f(x1, ..., xn))→ f(q1(x1), ..., qn(xn))

where n ≥ 0, f ∈ Fn, q, q1, ..., qn ∈ Q, x1, ..., xn ∈ X .

When n = 0, i.e. when the symbol is a constant symbol a, a transition rule of top-

down NFTA is of the form q(a)→ a. A top-down automaton starts at the root and moves

downward, associating along the run a state with each subterm inductively. We do not

formally define the move relation →A because the definition is easily deduced from the

corresponding definition for bottom-up NFTA which can be found at (Comon et al., 2007).

The tree language L(A) recognised byA is the set of all ground terms t for which there is

an initial state q in I such that

q(t)
∗→
A
t

3.2. From Automata Theory to JSON Schema

Most schema definitions for other semistructured data paradigms are heavily based

on automata. In the case of XML, Martens, Neven, Schwentick, and Bex (2006) linked

23



schema definitions with different versions of tree automata. It is therefore useful to com-

pare with automata formalisms, so we can understand how much does JSON Schema

depart from XML Schema formalisms.

We begin by showing that JSON schema can define any standard non-deterministic

finite tree automaton (NFTA). For the proof we just focus on automata for binary trees,

since the expressive power of these automata is independent of their arity, as mentioned in

(Neven, 2002) . To formally state this, we encode every tree T ∈ T into a JSON document

J(T ). This encoding is inductively defined as follows:

(1) if T is of the form σ(t1, t2), then J(T ) = {σ:{lChild:{J(t1)}, rChild:{J(t2)}}

(2) if T is of the form σ then J(T ) = σ:null

To illustrate this mapping, consider the following example:

Example 8. A tree T and its encoding into a JSON document J(T ):

and

or

0 1

1

{ "and": {

"lChild": {

"or": {

"lChild": {"0": null },

"rChild": {"1": null}}},

"rChild": {"1": null}

} }

The idea of the proof is to show that for every NFTA A one can construct a schema

S(A) such that a tree T belongs to the language of A if and only if J(T ) |= S(A).

To illustrate this claim consider the automaton A = (Q,F , I,∆) defined by: F =

{and(·, ·), or(·, ·), 0, 1}, Q = {q0, q1}, I = {q1} and ∆ =

{ q1(and)→ (q1, q1), q0(or)→ (q0, q0),

q1(or)→ (q1, q1), q0(and)→ (q0, q0),

q1(or)→ (q1, q0), q0(and)→ (q1, q0),

q1(or)→ (q0, q1), q0(and)→ (q0, q1),

q1 → 1, q0 → 0 }

24



The automaton above is intended to accept the tree encoding of positive output cir-
cuits. For instance, the tree from example 8 belongs to the language of A. The full
transformation is given in Figure A.1 (Appendix A.4). To obtain a schema that accepts
(up to our coding) only the trees in the language of A we proceed as follows. First, in the
"definitions" section of our schema we define each state of the automaton. Figure
A.1 illustrates how is this done for the automaton above. Namely, we have a schema for
q0 and q1. Each of these schemas is intended to code the transition from the state it de-
scribes. This is achieved by declaring that each state is an object whose properties code
the transitions leaving the state. For instance, in order to simulate that we can move from
the state q1 to the pair of states (q0, q1) reading the symbol or, we add

"or": {

"type": "object",

"properties": {

"lChild": {"$ref": "#/definitions/q0"},

"rChild": {"$ref": "#/definitions/q1" }

},

"additionalProperties": false,

"required": ["lChild", "rChild" ]

}

to the properties of the schema for q1. Note that here we use $ref to switch to the

schema of q1 and follow the transition. Likewise, to reflect that a non deterministic choice

is available, we use the anyOf keyword. For instance, this is reflected in Figure A.1 when

describing the transitions of q1. Additionally, in order to signal that a state is accepting,

we allow it to be of type null, such as e.g. for q0 and q1. Finally, we add an anyOf

keyword in the body of the schema, containing reference to all the initial states (e.g. q1).

It is now straightforward to see that a tree T belongs to the language of the automaton

A if and only if J(T ) validates against the schema from Figure A.1. For example, if we

take the tree T from example 8, it is easy to check both T ∈ L(A) and J(T ) |= S, where

S is the schema from Figure A.1.

25



Although the procedure described above gives a mapping from one particular automa-

ton in linear time, we provide the complete construction in Appendix C.1. We therefore

obtain the following:

PROPOSITION 1. JSON Schema can simulate non deterministic tree automata even

when it only uses definitions, references, single enumeration and boolean combinations of

schemas.

The result above is important for several reasons. First of all, it shows us that even

when using a very restricted set of keywords, we can simulate tree automata. This means

that the core operators of JSON Schema already allow the representation of a large class

of problems.

The other consequence, as we mentioned in the introduction, is that we now know

with certainty that the logic behind JSON Schema is, at least, comparable to that of XSDs

and other XML Schema specifications. This follows from the fact that the logic of these

formalisms is captured by tree automata, as shown in (Martens et al., 2006).

But is the converse true? Can we use automata to somehow simulate the validation

process of JSON Schema? Unfortunately, this is not the case; consider the schema pre-

sented in Figure 3.1.

This schema defines a nesting of arrays where each element is itself a JSON document

that conforms to S: either the null value or an array with exactly two elements that

again must conform to S. We can look at these objects as complete binary trees, where

arrays represent inner nodes and null elements represent leafs. For example, a tree

representation of a JSON document that conforms to this schema is presented in Figure

3.2.

It is easy to note that the conflictive restriction here is the uniqueItems keyword,

since when it is negated it could force child nodes to have the same value. As conse-

quence, just with this schema we can simulate the whole family of complete binary trees,

a language that cannot be captured by NFTA (Comon et al., 2007).

26



{ "definitions": {
"S": {

"anyOf": [
{"enum": [null]},
{"allOf": [

{"type": "array",
"minItems": 2,
"maxItems": 2,
"items": [

{"$ref": "#/definitions/S"},
{"$ref": "#/definitions/S"}]},

{"not": {"type": "array", "uniqueItems": true}}
]}

]}},
"$ref": "#/definitions/S" }

FIGURE 3.1. JSON Schema document that captures complete binary trees.

[
[null, null],
[null, null]

]
null null null null

FIGURE 3.2. Binary tree coded as a JSON document.

3.3. From JSON Schema to MSO

When studying basic properties of formal specifications such as the one of JSON

Schema, one is often interested in whether they can be expressed in well studied for-

malisms such as first or second order logic. Not only will this allow us to apply known

results on the expressiveness of our specification, but it can also give us some insight

into how difficult certain problems are computationally. As we know that JSON Schema

documents can simulate finite state automata, we next show that these documents can be

expressed in monadic second order logic (MSO), a powerful logical formalism often used

to cover languages containing some form of regular expressions (Libkin, 2004). For ease

of exposition, we would like to avoid to have tree structures with an ordered partition and

an unordered one. Because of this and given the fact that ordered trees have been already

well studied (classic tree automata runs over ordered trees), we just focus on non-array

27



schemas. However, one can show that our results continue to hold for any fragment of the

full JSON Schema specification (json-schema.org: The home of JSON schema, 2016) that

does not use the uniqueItems keyword (which we show not to be definable in MSO).

To understand the connection with logic it is best to consider every JSON instance J

as an unranked unordered tree T (J) (recall that we do not consider arrays here), whose

leafs are either empty object instances or strings. For example, Figure 3.3 shows a simple

JSON document and its representation as a tree structure.

{
"player": "Vidal",
"club": {

"name": "Bayern",
"league": "Bundesliga"
}

}

ε

1 "player" 2 "club"

21 "name" 22 "league"
12 "Vidal"

211 "Bayern" 211 "Bundesliga"

FIGURE 3.3. A JSON J and its tree representation T (J).

The structures that we use to code trees conform to the following scheme:

T = 〈TD,Σ∗,≺ch, Proot, λ, (RL)L⊆Σ∗〉

where TD ⊆ N∗ is an appropriate tree domain such as the one described in section 3.1

together with the set of all strings appearing in the JSON document Σ∗. Besides, the child

relation is defined over N∗ as follows:

v ≺ch v′ if and only if s′ = s · i for some i ∈ N

We also use the root relation Proot over N∗ just for the convenience of placing a label

at the root of the document. Additionally, we need the labeling mapping λ : TD → Σ∗ to

assign either a keyword or a string value to each node. Finally, we have a predicate for each

possible regular expression (RL)L⊆Σ∗; this is intended to model the pattern restrictions

Note that the empty object {} does not have a string assigned by λ (i.e it is a partial function).

28



we have in the specification. This is done by constructing a formula for each regular

expression such that the formula is satisfied by a string if and only if the string belongs

to the language of the expression. In this context, we should mention that even if we

are working over a tree domain, we could easily adapt these structures to support another

sorting that simulate these predicates. Regardless of this, we use the predicate notation to

keep the model clean and understandable. Note that we have the faculty to do this since

we are working around monadic second order logic.

The key observation is that each schema can be described using an MSO formula over

T (J). Let us start with an example, consider the schema S below.

{

"type": "object",

"properties": {"player": {"type": "string"}}

}

This schema specifies all objects that have a player attribute whose value is a string. In

particular, the document from Figure 3.3 validates against this schema. An MSO formula

equivalent to this schema would be:

∃x∀y(Proot(x) ∧ (x ≺ch y ∧ λ(y) ="player"→

∃z∃s∀v(y ≺ch z ∧ λ(z) = s ∧ z ⊀ch v))

Intuitively, this formula checks that every time that the root has a child labeled “player”,

that child must have another child labeled with a string. Using the codification from Figure

3.3 this is equivalent to saying that the JSON document could have a key-value pair with

the key being "player" and in that case, the value must be a string, as desired. Other

JSON Schema constructs can be simulated by MSO operators in a similar way. Note that

we need to use second order properties only to deal with definitions and references, and to

simulate regular expressions; all other keywords are expressible in first order logic.

Generalising this construction in a similar way as done in (Libkin, 2006), we obtain

the following.

29



THEOREM 1. For any non-array schema S there exists an MSO formula FS such that

for every JSON document J we have that J |= S if and only if T (J) |= FS .

The proof comes by encoding each possible JSON Schema document into an MSO

formula, the full demonstration for non-array schemas can be found at Appendix C.2.

Regardless of this, we conjecture that it is possible to extend this result to apply for every

JSON schema not using the uniqueItems keyword. On the other hand, for the case of

schemas using uniqueItems we can also show that these schemas are not definable in

MSO. To illustrate this, recall Figure 3.1 that expresses documents representing complete

binary trees. It is not difficult to show that this property cannot be accepted by a non-

deterministic tree automata, and thus it cannot be expressed in MSO, as tree automata and

MSO are equivalent in expressive power (Comon et al., 2007).

30



4. COMPLEXITY ANALYSIS

Now that we have delimited the expressive power of JSON Schema, we can use these

results as the basis for a complexity analysis over the most common problems related to

these documents. We begin by measuring the computational cost of checking if a docu-

ment conforms to a schema, where we obtain results in both combined and data complex-

ity. After this, we study the complexity of checking the existence of a JSON document that

conforms to a given schema, providing tight complexity bounds and showing its inherent

connection with tree automata theory.

4.1. The Validation Problem

In the basic API scenario, one could think of a verification layer composed by two

schemas. The first schema could validate the incoming data and the second one could

check the integrity of the output document. In this context, the most important question is

to determine whether a JSON document J conforms to a schema S. We call this problem

JSON Schema validation and it is formally defined as follows:

Problem: JSCHVALIDATION(J, S)

Input: JSON document J and schema S.

Question: Does J |= S?

Since most JSON documents are used to transfer data between web applications, devel-

oping efficient algorithms for JSON Schema validation is of critical importance. It is thus

important to understand the computational complexity of the schema validation problem,

as this gives us a good starting point for the design of efficient validation algorithms.

At this point, one could devise a simple procedure that works as follows: we process

the document restriction by restriction, while checking conformance to the corresponding

subschema in S. Based on this, we obtain our first result:

31



PROPOSITION 2. The problem JSCHVALIDATION(J, S) is in PTIME.

The details of the algorithm can be found at Appendix A.4. The running time is linear,

because the correspondence to each keyword in JSON Schema can be checked in linear

time (except for uniqueItems). If we keep uniqueItems, by simple inspection we

obtain that our algorithm runs in O(|J |2 · |S|).

Based on this result, we look towards establishing a tight bound for the validation

problem. In fact, given the set of boolean operators that JSON Schema offers, one could

perform a reduction from Monotone Circuit Value problem, which is known to be PTIME-

complete (Goldschlager, 1977). Unfortunately, it is well-known that these problems are

inherently sequential. In other words, the use of parallelism is not always going to be

helpful to validate a document against a schema. The idea of the reduction is to show

that for every circuit C and valuation τ one can construct a schema S(C, τ) and a JSON

document J(C, τ) such that τ(C) = true if and only if, J |= S. We illustrate this

procedure in Figure 4.1.

∧

∨ ∨

x1 x2 x3

{"allOf":[
{"anyOf":[

{"enum":[false]},
{"enum":[false]}]},

{"anyOf":[
{"enum":[false]},
{"enum":[true]}]}

]}

FIGURE 4.1. Schema for the circuit C with input values τ(x1) = τ(x2) =
false and τ(x3) = true.

In Figure 4.1 the allOf construct corresponds to the AND gate of the circuit, while

the two anyOf subschemas simulate the OR gates. The input values are coded using enum

in order to equal constants true and false. In addition, the document J just need to

contain the value true. It is easy to devise that J � S ⇐⇒ τ(C) = true, from which

we obtain the following result:

32



PROPOSITION 3. The problem JSCHVALIDATION(J, S) is PTIME-complete for the

whole JSON Schema specification.

The reduction and the detailed proof of Proposition 3 can be found at Appendix C.3.

Now we turn our study to the context of data complexity. This analysis gives us better

understanding of how the problem behaves in the context of web services, where most of

the time we want to keep the schema fixed (recall the API example). The following result

gives us a much better computing time for a practical use case.

PROPOSITION 4. The problem JSCHVALIDATION(J, S) can be solved in O(|J |) for

any schema S not using the uniqueItems restriction.

PROOF. Let J be a JSON document and S be a schema not using the uniqueItems

restriction. We know that the validation problem can be described using an MSO formula

ϕS and a tree structure T (J). Now recall Courcelle’s theorem (Courcelle, 1990), which

states that every problem definable in Monadic Second Order logic can be solved in linear

time on structures of bounded treewidth. Since the encoding of J has bounded tree width

(as it is essentially a tree), Courcelle’s theorem (Courcelle, 1990) applies, and we get the

desired result. �

Note that the encoding of both the schema and the document can be computed in linear time.

33



4.2. The Satisfiability Problem

So far we have studied the most classic lineaments in the context of a semi structured

data language. As we shown in Chapter 3, JSON Schema shares common features with

both tree automata and logic. In general, a problem that is always present in these for-

malisms is the satisfiability problem. In its logic version the problem asks if it is possible

to find a model for a propositional formula (George S. Boolos, 2007). In this section, we

attempt to determine tight complexity bounds for this problem applied in the context of

JSON Schema. Intuitively, given a schema S we want to check whether or not there exists

a JSON document that conforms to it. If the answer is positive we say that S is satisfiable,

in other case we say that it is unsatisfiable.

The importance of this problem becomes evident when developers try to design effi-

cient algorithms for the generation of API documentation. For example, one could think

of a program that given a schema, returns a fixed amount of JSON documents according

to the schema. It is well known that these kinds of procedures always need to check the

satisfiability of the input in order to provide the corresponding output.

Moreover, the problem is also necessary in topics of machine learning linked to JSON

Schema. For instance, given a set of JSON documents, one could try to develop a proce-

dure whose output corresponds to a schema that defines the initial set. Again, a satisfia-

bility routine is needed to give a proper solution for this problem. Formally, we call this

problem JSON Schema satisfiability and is defined as follows:

Problem: JSCHSATISFIABILITY

Input: A JSON Schema document S.

Question: Is S satisfiable?

Some instances of this problem are shown in Example 9.

Example 9. Consider the following schemas:

34



S1 = {"type" : "integer", "minimum": 3, "maximum": 7}

S2 = {"type" : "integer", "minimum": 7, "maximum": 3}

In the first case S1 is clearly satisfiable by any number between 3 and 7. On the

contrary, S2 cannot be satisfiable since there is no integer larger than 7 and smaller than 3.

The first question one could ask is how hard is this problem compared to its XML

Schema version, which has been shown to be undecidable by Arenas, Fan, and Libkin

(2002). However, since JSON Schema does not have some sort of key functionality, one

would expect the problem to stay decidable. In fact, as we know that JSON Schema is

captured by MSO, one can translate the satisfiability problem to its logic variant to get our

first upper bound result.

PROPOSITION 5. The problem JSCHSATISFIABILITY is decidable for schemas not

using the uniqueItems restriction.

PROOF. Let S be a JSON Schema document, from Theorem 1 we can build a formula

ϕS in MSO such that S is satisfiable if and only if ϕS is satisfiable. Now we can adapt

Büchi’s theorem (Büchi, 1960) to construct a deterministic finite state automaton AS for

ϕS such that ϕS is satisfiable if and only if L(AS) 6= ∅. As we know that checking the

emptiness for the language of a deterministic automaton can be computed in linear time,

we get the desired result. �

The main problem of this result becomes evident when we take a closer look to the

proof. In the demonstration we can devise that there could be a non elementary blow-up

when we go from MSO to DFA. If we consider that ϕS is of the following form:

ϕS = (∃ . . . ∃)(∀ . . . ∀)(∃ . . . ∃)ϕ

Büchi’s theorem works over labeled trees, which is not the case for our MSO translation from JSON Schema.
However, it is not hard to adapt Büchi’s construction to our tree encoding.

35



our Büchi construction states that for each quantifier alternation we have to perform a

determinization of our automaton AS , which implies an non elementary blow-up. Let

A(ϕ) be the automaton for ϕ, the size of our automaton AS will be bounded by

22.
..
|A(ϕ)|

In fact, it is known that converting MSO formulae into automata is inherently non ele-

mentary and the complexity cannot be lowered unless NP collapses to PTIME (Libkin,

2004).

The last result motivates a more exhaustive study for the satisfiability problem, always

trying to chase a more tractable upper bound for it. In order to achieve this, we restrict the

expressive power of JSON Schema by dividing it in different categories of schemas. We

now define these expressiveness restrictions of the full specification. The first one encodes

the sufficiency to express regular languages.

Definition 3 (Regular schema). Given a JSON Schema document S, we say that S is

regular if it makes use of either the pattern or patternProperties keyword.

However, definition 3 does not brace the capacity of JSON Schema to simulate tree

automata. Intuitively, we can code these class of automata by the use of recursive calls;

this fact motivates the following definition.

Definition 4 (Recursive schema). Given a JSON Schema document S, we say that S

is recursive if it makes use of the definitions section of the document.

Based on these definitions, we divide our analysis of the satisfiability problem by de-

limiting the study to three categories of schemas, each one of them with its own set of

keywords. The categories, the sets of keywords and the reference to the proof of each

result are summarized in table 4.1.

36



category keywords allowed lower bound upper bound

recursive
definitions, anyOf, allOf, not,

pattern, required,
properties, patternProperties,
additionalProperties

EXPTIME-hard
Proposition 6

EXPTIME
Theorem 3

non-recursive
anyOf, allOf, not,
pattern, required,

properties, patternProperties,
additionalProperties

PSPACE-hard
Proposition 7

PSPACE
Proposition 8

non-regular
non-recursive

anyOf, allOf, not, enum,
minLenght, maxLength,

minimum, maximum, multipleOf,
required, properties,
additionalProperties

NP-hard
Proposition 9

NP
Proposition 10

TABLE 4.1. The complexity of JSCHSATISFIABILITY for each subset of keywords.

As mentioned before, each set of keywords encodes common features such as the

sufficiency to express regular expressions or to perform recursive calls in the schema. In

the next chapters we prove these results taking in count that the keywords allowed are the

ones expressed in our compacted grammar (Section 2.2).

4.2.1. The full case

As our starting point, we deal with the satisfiability problem in the context of the full

specification of JSON Schema.

Since we can make use of the definitions section, it is possible combine self references

to perform recursive calls to different schema definitions. Moreover, as we know that these

recursive features are the basis to simulate tree automata we can get our first lower bound

for the full case.

PROPOSITION 6. The problem JSCHSATISFIABILITY is EXPTIME-hard for the class

of recursive schemas, even if the schema just uses references, single enumeration and

boolean combinations of schemas.

37



PROOF. The reduction comes directly from Proposition 1. ConsiderA1, . . . ,An arbi-

trary tree automatons, we can construct S(A1), . . . , S(An) schemas associated toA1, . . . ,An
respectively. Now we can construct the following schema :

S = {"allOf":[ S(A1) ,..., S(An) ]}

Clearly S is satisfiable if and only if L(A1 ∩ . . . ∩ An) 6= ∅. Finally, as we know

that intersection emptiness for non-deterministic tree automata is an EXPTIME-complete

problem, we get the desired lower bound for the satisfiability problem. �

In terms of combined complexity, the result above gives us an approach of how hard

is to determine the consistency of a given schema. Regardless of this, the reduction gives

us a clue of how we could chase the upper bound for the problem.

From Proposition 5 we already know that the satisfiability must be decidable but as-

suming the cost of a non elementary blow-up. The issue lays in the inherently expensive

cost of going from MSO to tree automata.

In order to chase a better upper bound, one could try to give a direct mapping from

JSON Schema to some form of automata. In this context, the main problem is that the

boolean operators can not be easily adapted to the classic definition of tree automata.

Regardless of this, one could give a different approach using another model of automaton

commonly used to deal with these complementations and intersections, alternating tree

automata (Comon et al., 2007). Moreover, there is already a plenty of work related with

automata running over ordered tree structures, which is not the case when we deal with

JSON objects. Because of this, we remit our study for non array documents, by proposing

a new model of tree automata over unordered trees, constructed specially to capture JSON

Schema.

It is important to note that in this class of schemas, we do not consider the multipleOf

and length restrictions, since they can be easy simulated by the use of a regular expression

Both string and numeric length restrictions.

38



(Sakarovitch, 2009). Similarly, the enum keyword can be simulated for both strings and

objects. In the case of strings, we just need to force the string value by the use of a regular

expression. For objects, we can always provide a schema that define a single object, just by

combining the required, properties and additionalProperties keywords.

Now we provide the definition of our automata model for JSON Schema, recalling the

tree structures defined in Chapter 3

T = 〈TD,Σ∗,≺ch, λ, (RL)L⊆Σ∗〉

The next definition formalises an automaton model that runs over these structures.

Definition 5 (Quantified alternating tree automata). A nondeterministic top-down

quantified alternating tree automata (QATA) A over Σ is a tuple (Q,Σ, I,∆) where

Q is a set of states, I ⊆ Q is the set of initial states and ∆ is a finite set of transition rules

of the following type:

q(RΣ)→ ϕ

where RΣ ⊆ Σ∗ is a regular language over Σ and ϕ ∈ B+
∃∀(Q). Here B+

∃∀(Q) is the set of

propositional formulas over Q, where each state q ∈ Q is preceded by a quantifier.

Example 10. Let Σ = {a, b}. Consider the automaton A = (Q,Σ, I,∆) defined by

Q = {q0, q1, q2}, I = {q0}, and ∆=

q0((ab)∗)→ ∀q1 ∧ ∃q2

q1((aa)∗)→ true

q2((aaa)∗)→ true

Note that we also use the true and false symbols also as valid formulas for the

automaton. It is important to mention that the regular language in the left side of the rule

is encoded as an alternating automaton. However, for ease of the exposition, the notation

we use is the same as regular expressions.

39



Let v be a node labeled s with n children. A run of A over a tree structure T is a

mapping ρ : TD → 2Q such that if ρ(v) = S, then for each state qS in S it must be true

that:

if qS(s)→ ψ then {ρ(u1), ..., ρ(un)} � ψ where s ≺ch ui for every 1 ≤ i ≤ n.

Here the notion of satisfaction is defined inductively as follows. Let ψ ∈ B+(Q) and

S ⊆ 2Q such that |S| = n we say that S � ψ if and only if:

• ψ = true

• if ψ = ∀q then it must be true that q ∈ Si with Si ∈ S for every 1 ≤ i ≤ n.

• if ψ = ∃q then it must be true that q ∈ Si with Si ∈ S for some 1 ≤ i ≤ n.

• if ψ = ϕ1∧ϕ2 then it must be true that S � ϕ1 and S � ϕ2, for ϕ1, ϕ2 ∈ B+(Q).

• if ψ = ϕ1 ∨ ϕ2 then it must be true that S � ϕ1 or S � ϕ2, for ϕ1, ϕ2 ∈ B+(Q).

A run ρ is successful if q ∈ ρ(ε) for some initial state q ∈ I. Note that our definition

corresponds to a nondeterministic model, where one string can match several rules from

the left side of the relation.

For example, a run ofA over the tree T = abab(aa, aaaa, aaaaaa) is shown in Figure

4.2.

abab

aa aaaa aaaaaa

{q0}

{q1} {q1} {q1, q2}

FIGURE 4.2. A run of a quantified alternating tree automaton

As promised, now we provide the translation between JSON Schema and quantified

alternating tree automata. Recall our tree representation of JSON documents used in the

translation to MSO. An example of this encoding is shown in Figure 4.3.

The main idea is to construct an quantified alternating tree automaton based on a
JSON Schema document. To illustrate how this construction works consider the following
schema S:

40



{
"name": "Claudio Bravo",
"mail": "cbravo@barcelona.com"
}

ε

"name"

"Claudio Bravo"

"mail"

"cbravo@barcelona.com"

FIGURE 4.3. A JSON document and its coding as a tree.

{

"type": "object",

"required": ["name"]

"properties": {

"name": {"type": "string"},

"mail": {"type": "string",

"pattern": "[A-z]*@barca.com"},

}

}

The schema above is accepting soccer players from Barcelona FC, and the only re-

quired property is the name that must be a string. Moreover, if the document contains the

keyword "mail", then the value must comply to the regular expression described above.

In particular, the document from Figure 4.3 validates against this schema, now we give a

translation of S to QATA. Let AS = (Q,Σ, I,∆) defined by :

I := {q0} Q := {q0, qname, qmail, qΣ∗ , q[A−z]∗@barca.com, q>, q⊥}

∆ := { q0(ε)→ ∃qname ∧ ∀qmail qΣ∗(Σ
∗)→ true

qname(name)→ ∃qΣ∗ q>(Σ∗)→ ∀q>
qname(name

c)→ ∃q⊥ q>(Σ∗)→ true

qmail(mail)→ ∃q[A−z]∗@barca.com q⊥(Σ∗)→ ∃q⊥
qmail(mail

c)→ ∀q> q⊥(Σ∗)→ false)

q[A−z]∗@barca.com([A− z] ∗@barca.com)→ true }

In the construction we use auxiliary states q>, q⊥ to spread the accepting and rejecting

states to the leafs of the run. Additionally, we use the universal quantifiers to handle the

properties keyword where it is used as an implication (i.e. the mail property). Also,

we use existential states to force the appearance of a keyword such as the case of the

41



"required" keyword. An example of an accepting run over the tree from Figure 4.3 of

the automaton is shown in Figure 4.4.

ε

"name"

"Claudio Bravo"

"mail"

"cbravo@barcelona.com"

{q0}

{qname, qmail}

{q>, qΣ∗}

{qmail}

{q[A−z]∗@barcelona.com}

FIGURE 4.4. An accepting run of AS over the document from Figure 4.3.

Although the procedure described above gives a mapping from one particular au-

tomaton , we provide the complete translation in Appendix C.5. We therefore obtain the

following:

THEOREM 2. For any non-array schema S there exists an QATA AS such that for

every JSON document J we have that J |= S if and only if T (J) ∈ L(AS).

It is important to mention that the mapping can be performed in polynomial time,

giving us a much better transition than the one from MSO to automata. Based on Theo-

rem 2 we can easily deduce that a schema is satisfiable if and only if the language of its

associated automaton is nonempty. This gives us the final step we need in order to get our

EXPTIME upper bound. In fact, as we don’t need to pass through MSO, we can avoid

the non elementary blow-up. However, since we already proved hardness, EXPTIME is

the best we dan do. Regardless of this, we obtain our desired result:

THEOREM 3. The problem JSCHSATISFIABILITY is in EXPTIME for the class of

recursive schemas.

PROOF. The complete proof of Theorem 3 can be found on Appendix C.6. �

42



4.2.2. The non-recursive case

We continue our analysis by restricting the keywords allowed to be used in the schemas

we are dealing with. In this case, our schemas cannot perform reference calls to the

definitions section of the document. This implies that the height of our trees is alway

bounded by the height of our schema. However, the horizontal language is still de-

pendant on the pattern restrictions present in the schema. In fact, we can use the

boolean operators the specification provides together with either the either the pattern

or patternProperties restriction to simulate intersection emptiness of finite state

automata, a problem known to be PSPACE-complete (Kozen, 1977). Based on this, we

obtain our lower bound for the satisfiability problem for non-recursive schemas:

PROPOSITION 7. The problem JSCHSATISFIABILITY is PSPACE-hard for the class

of non-recursive schemas, even if the schema contains just the restrictions allOf, pattern,

patternProperties, minProperties and additionalProperties.

PROOF. Consider automatons A1, . . . ,An; it is well known that every finite state au-
tomaton can be encoded into a regular expression, conserving the language of the au-
tomaton. Let R(A1), . . . , R(An) be the regular expression associated with A1, . . . ,An
respectively. Now we can construct the following schema :

S = {"allOf":[

{"type": "string", "pattern":R(A1)}

,...,

{"type": "string", "pattern":R(An)}

]}

Clearly S is satisfiable if and only if L(A1 ∩ . . . ∩ An) 6= ∅. Additionally, one can
construct S with the use of the patternProperties constraint and obtain the same
result:

S = {"allOf":[

{"type": "object",

"additionaProperties": false,

43



"minProperties": 1,

"patternProperties":{"R(A1)":{}}}

,...,

{"type": "object",

"additionaProperties": false,

"minProperties": 1,

"patternProperties":{"R(An)":{}}}

]}

Finally, as we know that finite automata intersection emptiness is known to be a

PSPACE-complete problem, we conclude that JSCHSATISFIABILITY is PSPACE-hard.

�

Let us continue with the corresponding upper bound. Since JSON schema definitions

are not recursive, they are satisfied by JSON documents with a bounded number of nested

objects, namely the maximum nesting of objects in the definition of the JSON schema.

Thus, for each non-recursive JSON Schema S, if n is the maximum nesting of objects

in this Schema, then we know that all JSON documents conforming to S have at most

n nested objects. Using this property, we can derive a coding scheme similar to that of

(Benedikt, Fan, & Geerts, 2008) to transform JSON trees into strings, in a level-by-level

fashion, taking into account the current depth of nesting within these objects.

As shown in (Benedikt et al., 2008) , the language of strings that represent a valid

encoding of a JSON tree of depth at most n is a regular language. Thus, we can construct

an automaton AS that accepts all strings that represent encodings for JSON documents,

and modify our QATA to work only over these types of strings. Note that because we

allow boolean combinations we must keep the alternation in QATAs. However, it is well

known that the emptiness problem for alternating string automata drops to PSPACE, and

the same happens for the emptiness problem for QATAs restricted over strings. Thus, we

obtain the upper bound for the class of non-recursive schemas:

44



PROPOSITION 8. The problem JSCHSATISFIABILITY is in PSPACE for the class of

non-recursive schemas.

4.2.3. The non-regular non-recursive case

We conclude our analysis with the family of non-regular non-recursive schemas.

These schemas are really important, since some of the most demanded web services

communicate through these kind of documents. For example, Twitter API responses are

formed according to the schema in Figure 4.5

{
"type": "array",
"items": {

"type": "object",
"required": ["favorited", "retweet_count", "text"],
"properties": {

"favorited": {"type": "boolean"},
"retweet_count": {"type": "integer", "minimum": 0},
"text": {"type": "string", "maxLength": 140}

}
}

}

FIGURE 4.5. Twitter API response example.

In the example, the API gives as an output a list of the tweets posted by a Twitter

account. The schema also defines information about the tweet that is contained in the

response, such as the number of retweets and the “favorite” status. Note that this schema

belongs to the non-regular non-recursive family, since it does not have neither pattern

restrictions nor recursive calls.

For the analysis, as we don’t have the pattern restriction, we decided to relax

our grammar and include numeric types and length restrictions for strings that were not

considered in the previous section.

Similarly as for the validation case, we start by providing the upper bound for the

problem. Intuitively, as these schemas do not have any sort of recursion, the positives

Recall that numeric restrictions and length restrictions for strings can be simulated by NFA.

45



answers for the question should have a bounded size. As we know that the validation

problem can be computed in PTIME, we can therefore obtain the NP upper bound for the

problem, by providing the JSON document as a polynomial witness. However, if we have

boolean combinations of schemas, it is not clear that these JSON documents are bounded

by a polynomial. The Lemma below helps us to state this result:

LEMMA 1. For each satisfiable schema S, there is a polynomial size JSON document

J such that J |= S.

The proof of Lemma 1 can be found at Appendix C.4. This result enable us to establish

our desired upper bound for the satisfiability problem on the family of non-regular non-

recursive schemas.

PROPOSITION 9. The problem JSCHSATISFIABILITY is in NP for the class of non-

regular non-recursive schemas.

PROOF. Let S be a satisfiable JSON Schema document. From Lemma 1 we know

that we could take a JSON document J as a polynomial witness for the problem. Finally,

as we know that we can check the validation of J against S in polynomial time, we get

that the satisfiability problem can be computed in NP. �

The above result gives us a much more tractable upper bound for the satisfiability

problem. Besides, we confirm the intuition that the exclusion of regular expressions re-

strictions simplifies the problem in terms of computational complexity. However, the NP

upperbound is not tractable and unfortunately, it is not avoidable. In fact, we could use

JSON Schema boolean operators and perform a reduction from the classical SAT problem

for propositional logic, which is known to be NP-complete (Cook, 1971).

PROPOSITION 10. The problem JSCHSATISFIABILITY is NP-hard for the class of

non-regular non-recursive schemas, even if the schema contains just the restrictions anyOf,

allOF, not and required.

46



PROOF. We now prove NP-hardness by reduction from SAT(ϕ). Let P = {p1, . . . , pn}

and ϕ be a propositional formula over P . The central idea of the proof, is to construct a

schema S(ϕ) such that ϕ is satisfiable if and only if S(ϕ) is satisfiable. The way this is

done is by combining the boolean operators of JSON Schema with the required re-

striction for object schemas. Let us proceed inductively over the syntax of propositional

logic:

• If ϕ = pi, then S(ϕ) = {"type":"object","required" : [pi]} for i ≤ n

• If ϕ = ψ1 ∧ ψ2, then S(ϕ) = {"allOf" : [S(ψ1), S(ψ2)]}

• If ϕ = ψ1 ∨ ψ2, then S(ϕ) = {"anyOf" : [S(ψ1), S(ψ2)]}

• If ϕ = ¬ψ, then S(ϕ) = {"not" : S(ψ)}

To illustrate how the reduction works, consider ϕ = (p ∨ q) ∧ ¬r, now we can construct
S(ϕ) as follows

{ "allOf": [

{

"anyOf":[

{"type": "object", "required":["p"]},

{"type": "object", "required":["q"]}

]

},

{

"not": {"type": "object", "required":["r"]}

}

] }

Note that the valuation for the formulas are coded as JSON objects such that the object

has the keyword pi if pi is assigned to true in the valuation, for i ≤ n. Also, it is important

to mention that the reduction can be computed in linear time, since we have to iterate only

once over the formula.

By simple construction, it is easy to devise that ϕ is satisfiable⇔ S(ϕ) is satisfiable.

�

47



5. CONCLUDING REMARKS

We provided a complete definition and formal analysis for the actual JSON Schema

specification. The results we presented follow the guidelines established by Reutter et al.

(2015) and give a much deeper analysis in both practical and theoretical aspects.

In terms of the specification, this work contributed by proposing a formal grammar for

JSON Schema. This gives an unambiguous form for establishing the structure of such doc-

uments, a problem that was previously open. Moreover, we established formal semantics

for the whole specification, defining how each restriction is validated in rigorous terms. It

is important to mention that the work on the specification was done in collaboration with

the IETF (Internet Engineering Task Force (IETF), 2014) and the online community of

JSON Schema. Given the specification, we also conducted a formal analysis of both the

expressiveness and computational complexity for JSON Schema.

In the analysis of expressiveness, we provided some results regarding to comparisons

with classic formalisms. First, we proved that using a very restricted subset of the specifi-

cation, we can simulate tree automata. Moreover, looking to bound the expressive power

of JSON Schema, we proved that the complete specification can be captured by a very

common formalism used in these structured data languages: monadic second order logic.

This last result tells us that JSON Schema is not of equivalent expressivity as with XML

Schema.

In terms of computational complexity, we focused our analysis on two problems:

validation and satisfiability. In the validation case, we provided tight complexity bounds

and proved that the problem remains PTIME-complete in terms of combined complexity.

Moreover, if we take out array types, our translation to MSO gives us that the problem

can be solved in linear time in terms of data complexity. Moreover, the mapping to MSO

also give us some insight on the complexity for the satisfiability problem, showing that the

problem stays decidable, in contrast to its XML variant (Arenas et al., 2002). However, we

48



also showed that this decidability is only reached by obtaining a non elementary blow-up

in the size of the schema. Motivated by this, we provided a more complex analysis for

the satisfiability problem of JSON Schema, looking to fill this gap with a tractable tight

bound. The analysis was done by gradually decreasing the expressive power of JSON

Schema.

We started by proving that in the most general case the problem is EXPTIME-

complete. This last result gives us a much better upper bound than the one obtained

directly from the translation to logic, and it is done by introducing a new computational

model: quantified alternating tree automata. Then, if we restrict the expressiveness of

our schemas by taking out the recursive operators, the problem proves to be PSPACE-

complete. Finally, if we also take out the regular expressions, the problem becomes much

easier and turns out to be NP-complete.

In practical terms, our complexity results give us some important consequences in the

adoption of JSON Schema as a standard.

On one side, the linear upper bound for the validation problem shows that it is feasible

to implement JSON Schema in the top layer of an API. This point is crucial, given the

popularity this protocol has gained in the last few years. However, the fact that the problem

is PTIME-complete tells us in a way that it is not always helpful to us parallelism for the

validation of a single document.

On the other side, our satisfiability results have potential application in the context

of documentation automation, where SAT algorithms have been shown to be the base

for these purposes. The importance of this problem becomes evident when examining

the documentation of the most complex APIs available on the web. Most of these APIs

describe their protocol based on a list of examples for the user. The main idea is that

this list could be generated automatically by an algorithm that runs over the input (output)

schemas of the web service. In this context, our EXPTIME algorithm could serve as the

basis for this purpose. Even if the upper bound is exponential, we also showed that it

49



could be reduced to NP for more restricted classes of schemas, which are in fact, the most

common cases we find in the web.

In future work, we would like to point out the potential use of JSON Schema in

the context of document oriented databases such as (MongoDB, 2015; CouchDB, 2015;

RethingDB, 2015) among others. Most of these DBMS work over JSON documents as

storage units. An interesting problem here would be the implementation of integrity con-

straints in the specification of JSON Schema, to serve as the schema basis for these non-

relational database models.

50



References

Arenas, M., Fan, W., & Libkin, L. (2002). What’s hard about xml schema con-
straints? In 13th international conference on database and expert systems appli-
cations.

Benedikt, M., Fan, W., & Geerts, F. (2008). XPath satisfiability in the presence of
DTDs. Journal of the ACM (JACM), 55(2), 8.

Berman, J. (2015). JSON Schema Test Suite. https://github.com/json
-schema/JSON-Schema-Test-Suite.

Berners-Lee, T. (2005, January). Uniform resource identifier (uri): Generic syntax.
https://tools.ietf.org/html/rfc3986.

Bray, T. (2014). The JavaScript Object Notation (JSON) Data Interchange Format.

Büchi, J. R. (1960). Weak second-order arithmetic and finite automata (Tech. Rep.).
The University of Michigan.

Comon, H., Dauchet, M., Gilleron, R., Loding, C., Jacquemard, F., Lugiez, D., . . .
Tommasi, M. (2007). Tree automata techniques and applications.

Cook, S. A. (1971). The complexity of theorem-proving procedures.

Cormen, T. H., Stein, C., Rivest, R. L., & Leiserson, C. E. (2001). Introduction to
algorithms (2nd ed.). McGraw-Hill Higher Education.

Courcelle, B. (1990). The monadic second-order logic of graphs. i. recognizable sets
of finite graphs. Information and Computation.

Galiegue, F., & Zyp, K. (2013). Json schema: Core definitions and terminology.
http://json-schema.org/latest/json-schema-core.html.

51

https://github.com/json-schema/JSON-Schema-Test-Suite
https://github.com/json-schema/JSON-Schema-Test-Suite
http://json-schema.org/latest/json-schema-core.html


George S. Boolos, R. C. J., John P. Burgess. (2007). Computability and logic. Cam-
bridge.

GitHub, I. (2013a). Heroics: Ruby HTTP client for APIs represented with JSON
schema. https://github.com/interagent/heroics.

GitHub, I. (2013b). Prmd: JSON Schema tools and documentation generation for
HTTP APIs. https://github.com/interagent/prmd.

GitHub, I. (2013c). Schematics: A Go point of view on JSON Schema. https://
github.com/interagent/schematic.

Goldschlager, L. M. (1977, July). The Monotone and Planar Circuit Value Prob-
lems Are Log Space Complete for P. SIGACT News, 9(2), 25–29. Retrieved
from http://doi.acm.org/10.1145/1008354.1008356 doi: 10.1145/
1008354.1008356

Google. (2015). Google API Discovery Service. https://developers

.google.com/discovery/.

Hilaiel, L. (2015). Orderly. http://orderly-json.org/.

Internet Engineering Task Force (IETF). (2013, April). JavaScript Object Notation
(JSON) Pointer. https://tools.ietf.org/html/rfc6901.

Internet Engineering Task Force (IETF). (2014, March). The JavaScript Object No-
tation (JSON) Data Interchange Format. https://tools.ietf.org/html/
rfc7159.

json-schema.org: The home of json schema. (2016). http://json-schema
.org/. Retrieved from http://json-schema.org/

Kozen, D. (1977). Lower bounds for natural proof systems. SFCS ’77 Proceedings
of the 18th Annual Symposium on Foundations of Computer Science, 254-266.

52

https://github.com/interagent/heroics
https://github.com/interagent/prmd
https://github.com/interagent/schematic
https://github.com/interagent/schematic
http://doi.acm.org/10.1145/1008354.1008356
https://developers.google.com/discovery/
https://developers.google.com/discovery/
http://orderly-json.org/
https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159
http://json-schema.org/
http://json-schema.org/
http://json-schema.org/


Libkin, L. (2004). Elements of finite model theory. Springer.

Libkin, L. (2006). Logics for unranked trees: An overview. Logical Methods in Com-
puter Science, 2(3).

Martens, W., Neven, F., Schwentick, T., & Bex, G. J. (2006). Expressiveness and
complexity of xml schema. ACM Transactions on Database Systems (TODS), 31(3),
770–813.

MongoDB Inc. (2015). The MongoDB3.0 Manual. https://docs.mongodb
.org/manual/.

Neven, F. (2002). Automata theory for xml researchers. SIGMOD Record Database
Principles Column.

Papadimitriou, C. H. (1994). Computational complexity. Addison-Wesley.

Rao, L. (n.d.). Twitter seeing 6 billion api calls per day, 70k per second.

RethinkDB: The open-source database for the realtime web. (2015). https://www
.rethinkdb.com/.

Reutter, J. L., Ugarte, M., & Vrgoc, D. (2015, May). Satisfiability of json schema
and instance validation. Alberto Mendelzon International Workshop on Foundations
of Data Management(AMW).

Sakarovitch, J. (2009). Elements of automata theory. Cambridge.

Sporny, M., Kellogg, G., & Lanthaler, M. (2014, January). JSON-LD 1.0: A JSON-
based Serialization for Linked Data. http://www.w3.org/TR/json-ld/.

Swagger: The World’s Most Popular Framework for APIs. (2015). http://
swagger.io/.

53

https://docs.mongodb.org/manual/
https://docs.mongodb.org/manual/
https://www.rethinkdb.com/
https://www.rethinkdb.com/
http://www.w3.org/TR/json-ld/
http://swagger.io/
http://swagger.io/


The Apache Software Foundation. (2015). Apache CouchDB. http://couchdb
.apache.org/.

The International Organization for Standardization (ISO). (1996). ISO/IEC
14977:1996 - Extended BNF. http://www.iso.org/iso/catalogue

detail?csnumber=26153.

The RAML Workgroup. (2015). RAML: RESTful API Modeling Language.
http://raml.org/.

54

http://couchdb.apache.org/
http://couchdb.apache.org/
http://www.iso.org/iso/catalogue_detail?csnumber=26153
http://www.iso.org/iso/catalogue_detail?csnumber=26153
http://raml.org/


APPENDIX A. ADDITIONAL TESTS AND CODE

A.1. Four documents and four schemas used for testing

{

"tests":[

{

"schema":{"uniqueItems":true},

"document":[{"a":3,"b":4},{"b":4,"a":3}]

},

{

"schema":{"definitions":{"a":{"type":"string"}},

"$ref":"#/definitions/a","type":"integer"},

"document":"hola"

},

{

"schema":{"required":["a","b"],"multipleOf":3},

"document":4},

{

"schema":{"type":"object","properties":{"a":{"type":"string"}},

"required":["a"],"dependencies":{"a":{"additionalProperties":false}}},

"document":{"a":"asdf"}

},

{

"schema":{"definitions":{"a":{"$ref":"#/definitions/a"}},

"anyOf":[{"$ref":"#/definitions/a"},{"type":"string"}]},

"document":"hola"}]

}

55



A.2. Script used to test border cases

A.2.1. Tester
from jsonschema import validate, exceptions

from subprocess import check_output

from jsonspec.validators import load

from jsonspec.validators.exceptions import ValidationError

import requests

import urllib

import json

_JAVA_URL = ’http://json-schema-validator.herokuapp.com/process/index’

_MARK_DICT = {1: ’\\CheckmarkBold’,

0: ’\\XSolidBrush’,

-1: ’\\Cross’}

def python_validate(schema, document):

try:

validate(document, schema)

return True

except exceptions.ValidationError:

return False

def is_my_json_valid(schema, document):

command = ["node",

"is-my-json-valid.js",

json.dumps(schema),

json.dumps(document)]

result = str(check_output(command))[2:-3]

if result == ’true’:

return True

elif result == ’false’:

return False

def java_json_schema_validator(schema, document):

schema_input = urllib.parse.quote_plus(json.dumps(schema))

56



document_input = urllib.parse.quote_plus(json.dumps(document))

data = ’input=\%s&input2=\%s’ \% (schema_input, document_input)

result = requests.post(_JAVA_URL,

data=data)

return json.loads(result.text)[’valid’]

def python_validate_2(schema, document):

validator = load(schema)

try:

validator.validate(document)

return True

except ValidationError:

return False

def ruby_json_schema(schema, document):

command = ["ruby",

"json-schema.rb",

json.dumps(schema),

json.dumps(document)]

result = str(check_output(command))[2:-3]

if result == ’true’:

return True

elif result == ’false’:

return False

def ruby_json_schema_2(schema, document):

command = ["ruby",

"ruby_json_schema.rb",

json.dumps(schema),

json.dumps(document)]

result = str(check_output(command))[2:-3]

if result == ’true’:

return True

elif result == ’false’:

return False

57



def validate_tests(validators, filepath):

tests = json.loads(open(filepath).read())["tests"]

counter = 1

results = []

for test in tests:

schema = test["schema"]

document = test["document"]

print(’\n--------Test \%d:--------’ \% counter)

print(’# Schema:’)

print_json(schema)

print(’# Document:’)

print_json(document)

test_results = {}

for name, function in validators.items():

try:

test_results[name] =1 if function(schema, document) else 0

except:

test_results[name] = -1

# print(’\%s: \%r’ \% (name, test_results[name]))

results.append(test_results)

counter += 1

print(’\n\n---------- RESULTS ----------’)

print(’\nValidators:\n’)

counter = 0

for validator in validators:

print(’V\%d: \%s’ \% (counter, validator))

counter += 1

first_row = ’\\hline & ’

for i in range(counter):

first_row += ’V\%d & ’ \% i

print(first_row[:-3] + ’\\\\’)

counter = 0

58



for result in results:

result_str = "\\hline test \%d: & " \% counter

for name in result:

result_str += ’ \%s &’ \% _MARK_DICT[result[name]]

print(result_str[:-2] + ’\\\\’)

counter += 1

def print_json(parsed_json):

print(json.dumps(parsed_json, indent=4))

if __name__ == ’__main__’:

validators = {

"jsonschema (python)": python_validate,

"is-my-json-valid (javascript)": is_my_json_valid,

"json-schema-validator (java)": java_json_schema_validator,

"json-schema-validator (python)": python_validate_2,

"json-schema (ruby)": ruby_json_schema,

# "ruby: json-schema_2": ruby_json_schema_2,

}

filepath = ’tests.json’

validate_tests(validators, filepath)

A.2.2. is-my-json-valid.js
var validator = require(’is-my-json-valid’)

var validate = validator(JSON.parse(process.argv[2]))

console.log(validate(JSON.parse(process.argv[3])))

A.2.3. json-schema.rb
require "json-schema"

require ’"json"

result = JSON::Validator.validate(JSON.parse(ARGV[0]), ARGV[1])

puts(result)

A.2.4. ruby json schema.rb
require "json"

require "json_schema"

schema_data = JSON.parse(ARGV[0])

59



schema = JsonSchema.parse!(schema_data)

data = JSON.parse(ARGV[1])

begin

schema.validate!(data)

puts(’true’)

rescue

puts(’false’)

end

60



A.3. Reduction from A to JSON Schema

{
"definitions": {

"q1": {
"type": "object",
"properties": {

"and": {
"anyOf": [{

"type": "object",
"properties": {

"lChild": {"$ref": "#/definitions/q1"},
"rChild": {"$ref": "#/definitions/q1"}},

"additionalProperties": false,
"required": ["lChild","rChild"]}
] },

"or": {
"anyOf": [

{"type": "object",
"properties": {

"lChild": {"$ref": "#/definitions/q1" },
"rChild": {"$ref": "#/definitions/q1"}},

"additionalProperties": false,
"required": ["lChild","rChild"]},

{"type": "object",
"properties":{

"lChild": {"$ref": "#/definitions/q1" },
"rChild": {"$ref": "#/definitions/q0"}},

"additionalProperties": false,
"required": ["lChild","rChild"]},

{"type": "object",
"properties": {

"lChild": {"$ref": "#/definitions/q0" },
"rChild": {"$ref": "#/definitions/q1"}},

"additionalProperties": false,
"required": ["lChild","rChild"]}
]},

"1": {"enum": [null]}
},
"additionalProperties": false,
"minProperties": 1

},
"q0": {

"type": "object",
"properties": {

"or": {
"anyOf": [{

"type": "object",
"properties": {

"lChild": {"$ref": "#/definitions/q0"},
"rChild": {"$ref": "#/definitions/q0"}},

"additionalProperties": false,
"required": ["lChild","rChild"]}
] },

"and": {
"anyOf": [

{"type": "object",
"properties": {

"lChild": {"$ref": "#/definitions/q0" },
"rChild": {"$ref": "#/definitions/q0"}},

"additionalProperties": false,
"required": ["lChild","rChild"]},

{"type": "object",
"properties":{

"lChild": {"$ref": "#/definitions/q1" },
"rChild": {"$ref": "#/definitions/q0"}},

"additionalProperties": false,
"required": ["lChild","rChild"]},

{"type": "object",
"properties": {

"lChild": {"$ref": "#/definitions/q0" },
"rChild": {"$ref": "#/definitions/q1"}},

"additionalProperties": false,
"required": ["lChild","rChild"]}
]},

"0": {"enum": [null]}
},
"additionalProperties": false,
"minProperties": 1

}
},
"anyOf": [

{
"$ref": "#/definitions/q1"

}
]

}

FIGURE A.1. JSON Schema document for automaton A.

61



A.4. JSON Schema validation algorithm

Algorithm 1 Validation algorithm for JSON Schema.

1: procedure VALIDATE(S, J)
2: if S["type"] == "string" then
3: if VALIDATESTRING(S, J) then
4: return TRUE
5: else
6: return FALSE
7: end if
8: end if
9: if S["type"] == "object" then

10: if VALIDATEOBJECT(S, J) then
11: return TRUE
12: else
13: return FALSE
14: end if
15: end if
16: if S["type"] == "array" then
17: if VALIDATEARRAY(S, J) then
18: return TRUE
19: else
20: return FALSE
21: end if
22: end if
23: if S["allOf"] == [S1, ..., Sn] then
24: for Si in [S1, ..., Sn] do
25: if !VALIDATE(Si, J) then
26: return FALSE

27: end if
28: end for
29: return TRUE
30: end if
31: if S["anyOf"] == [S1, ..., Sn] then
32: for Si in [S1, ..., Sn] do
33: if VALIDATE(Si, J) then
34: return TRUE
35: end if
36: end for
37: return FALSE
38: end if
39: if S["not"] == S′ then
40: if !VALIDATE(S′, J) then
41: return TRUE
42: else
43: return FALSE
44: end if
45: end if
46: if S["enum"] == [J1, ..., Jn] then
47: if J ∈ [J1, ..., Jn] then
48: return TRUE
49: else
50: return FALSE
51: end if
52: end if

Algorithm 2 Subroutine for validating string documents.
1: procedure VALIDATESTRING(S, J)
2: if J is not string then
3: return FALSE
4: end if
5: if S["pattern"] == regex then
6: if J /∈ L(regex) then
7: return FALSE
8: end if
9: end if

10: return TRUE

62



Algorithm 3 Subroutine for validating object documents.
1: procedure VALIDATEOBJECT(S, J)
2: if J is not object then
3: return FALSE
4: end if
5: if S["required"] == [k1, ..., kn] then
6: for key in [k1, ..., kn] do
7: if J [key] == ∅ then
8: return FALSE
9: end if

10: end for
11: end if
12: for key in J do . Validate each keyword in J
13: for string ∈ S["properties"] do
14: if string == key then
15: if !VALIDATE(S[”properties”][key], J [key]) then
16: return FALSE
17: end if
18: end if
19: end for
20: for regex in S["patternProperties"] do
21: if key ∈ L(regex) then
22: if !VALIDATE(S[”patternProperties”][regex], J [key]) then
23: return FALSE
24: end if
25: else
26: if key /∈ S["properties"] then
27: if !VALIDATE(S[”additionalProperties”][key], J [key]) then
28: return FALSE
29: end if
30: end if
31: end if
32: end for
33: end for
34: return TRUE

63



Algorithm 4 Subroutine for validating array documents.

1: procedure VALIDATEARRAY(S, J)
2: if J is not array then
3: return FALSE
4: end if
5: if S["minItems"] == n then
6: if |J | < n then
7: return FALSE
8: end if
9: end if

10: if S["maxItems"] == n then
11: if |J | > n then
12: return FALSE
13: end if
14: end if
15: if S["Items"] == S′ then
16: for Ji in J do
17: if !VALIDATE(S′, Ji) then
18: return FALSE
19: end if

20: end for
21: end if
22: if S["Items"] == [S1, ..., Sn] then
23: for i ≤ min(|J |, n) do
24: if !VALIDATE(Si, Ji) then
25: return FALSE
26: end if
27: end for
28: end if
29: if S["uniqueItems"] == true then
30: for Ji in J do
31: for Jk in J do
32: if i 6= k & Ji == Jk then
33: return FALSE
34: end if
35: end for
36: end for
37: end if
38: return TRUE

64



APPENDIX B. FORMAL SPECIFICATION

B.1. Syntax

B.1.1. Notation

The Formal Grammar in this specification is given using a simple, visual-based Ex-

tended Backus-Naur Form notation(The International Organization for Standardization

(ISO), 1996), that we define below. Each rule in the grammar defines one symbol, in the

form:

symbol := expression

For readability we always write non-terminal symbols in blackened font, such as JSchor

strRes. The expression on the right hand side of these rules may match more than one

string, and is constructed according to the following operators:

• string: any non-blackened string that does not use ), (, | or ? matches precisely

against the string.

We also use brackets, as in (expression), to specify that the expression inside them

is a unit. We can combine units using the following operators:

• E?: Optional E, matches E or nothing.

• A|B: A or B, matches A or B.

• AB: A concatenated with B, matches A followed by B. This operator has higher

precedence over |.

• E∗: Matches zero or more occurrences of E. Also has a higher precedence over

|.

65



B.1.2. Grammar

Formally we define a JSON Schema Document as a set of definitions and a schema.

Each schema is treated as a set of restrictions that may apply to one or more types. To

keep a clean and tidy grammar we divide each restriction in different sections, but as

every grammar, the document is defined by the union of all these nested variables.

B.1.2.1. Top layer structure

Let JSDoc be an arbitrary JSON Schema Document. We can define its syntax using

the following grammar:

JSDoc := { (id,)? (defs,)? JSch }

id := "id": "uri"

defs := "definitions": { kSch(, kSch)∗ }

kSch := texttt string: { JSch }

JSch := strSch | numSch | intSch | boolSch | nullSch | objSch

| arrSch | combSch | refSch

Here each string is representing a keyword that must be unique in the nest level that is

occurs. Next we specify the remaining schema types: strSch, numSch, intSch, boolSch,

nullSch, objSch, arrSch, combSch and refSch.

B.1.2.2. String schemas

strSch := "type": "string" (, strRes)∗

strRes := minLength | maxLength | pattern

minLength := "minLength": n

maxLength := "maxLength": n

pattern := "pattern": "regExp"

Here each strRes must be different from each other. Besides, n is a natural number

and RegExp is a regular expression.

66



B.1.2.3. Numeric schemas

intSch := "type": "integer" (, numRes)∗

numSch := "type": "number" (, numRes)∗

numRes := min | exMin | max | exMax | mult

min := "minimum": r

exMin := "exclusiveMinimum": bool

max := "maximum": r

exMax := "exclusiveMaximum": bool

mult := "multipleOf": r (r ≥ 0)

Here each numRes must be different from each other. Besides, r is a decimal number

and bool is either true or false.

B.1.2.4. Boolean schemas

boolSch := "type": "boolean"

B.1.2.5. Null schemas

nullSch := "type": "null"

B.1.2.6. Object schemas

objSch := "type": "object" (, objRes)∗

objRes := prop | addPr | req | minPr | maxPr | deps | patPr

prop := "properties": { kSch(, kSch)∗ }

kSch := string: { JSch }

addPr := "additionalProperties": ( bool| { JSch })

req := "required": [ string (, string)∗ ]

minPr := "minProperties": n

maxPr := "maxProperties": n

deps := "dependencies": ( depSch | depArr )

depSch := { kSch (, kSch)∗ }

depArr := { kArr (, kArr)∗ }

67



kArr := string: [ string (, string)∗ ]

patPr := "patternProperties": { patSch(, patSch)∗ }

patSch := RegExp: { JSch }

Here each objRes must be different from each other. Besides, n is a natural number,

bool is either true or false and RegExp is a regular expression. As above, each string is

representing a keyword that must be unique in the nest level that is occurs.

B.1.2.7. Array schemas

arrSch := "type": "array" (, arrRes)∗

arrRes := items | addItems | minIt | maxIt | unique

items := ( itemo | itema )

itemo := "items": { JSch }

itema := "items": [ {JSch} (, {JSch})∗ ]

minIt := "minItems": n

maxIt := "maxItems": n

unique := "uniqueItems": bool

Here each arrRes must be different from each other. Besides, n is a natural number

and bool is either true or false.

B.1.2.8. Boolean combination schemas

combSch := not | allOf | anyOf| oneOf | enum

not := "not": { JSch }

allOf := "allOf": [ {JSch} (, {JSch})∗ ]

anyOf := "anyOf": [ {JSch} (, {JSch})∗ ]

oneOf := "oneOf": [ {JSch} (, {JSch})∗ ]

enum := "enum": [ Jval (, Jval)∗ ]

Here Jval is either a string, number, array, object, bool or a null value. Moreover each

Jval must be different from each other(otherwise they would be superfluous).

68



B.1.2.9. Reference schemas

refSch := "$ref": "uriRef"

uriRef := ( address )? ( #/ JPointer )?

JPointer := ( / path )

path := ( escaped | unescaped )

escaped := ∼0 | ∼1

Where unescaped can be any character except for / and ∼. Also, address corresponds to any

URI that does not use the # symbol, or more precisely to any URI-reference constructed using the

following grammar, as defined in the official standard(Berners-Lee, 2005):

address := ( scheme )? hier-part ( ? query )

69



B.2. Semantics

In this section we present a formal specification of how JSON Schema restrictions are vali-

dated against an arbitrary JSON Document. But before specifying the semantics for these valida-

tion instances we must define a couple of structures first.

B.2.1. JSON Reference

If path is a JSON pointer, we say that rep(path) is the string resulting of replacing first each

character ∼1 by / and then each character ∼0 by ∼.

Given a JSON document J that is an object, we use J [k] (for a string k ) to represent the

value of the key value pair in J whose key is k . Likewise, if J is an array, then J [n] (for a natural

number n ) corresponds to the n-th element of J .

Let J be a JSON document. JSON Pointers are intended to extract a part of J that is specifi-

cally indexed by the pointer. Formally, we define the function EVAL that takes a JSON Document

J and a JSON Pointer JPointer and delivers a subset of J :

EVAL(J, JPointer) returns:

• J , if JPointer is the empty string, or

• EVAL(J [rep(key)], JP ), if J is an object, rep(key) appears in J and JPointer is of

the form JP/key, or

• EVAL(J [n], JP ), if JPointer is an array with at least n+ 1 objects and JPointer is

of the form JP/n, where n is the base-10 representation of a natural number, or

• an error in any other case (for example when the pointer asks for a key that is not in J).

Let R be a JSON Reference of the form "$ref": uriRef . We extend the function EVAL

to work with arbitrary JSON references. We do it as follows.

EVAL(J,R) returns:

• EVAL(J, JPointer), if uriRef is of the form #/JPointer, or

• S, if uriRef does not contains the symbol # and the address in uriRefsuccesfully

retrieves the schema S, or

70



• EVAL(S, JPointer), if uriRef is of the form address #/JPointer and the address in

uriRefsuccesfully retrieves the schema S, or

• an error in any other case (for example when the address retrieves something that is not

a schema).

Let R be again a JSON Reference and J a JSON document. Assume that the JSON schema

document that contains R is S. Then we say that J validates against R under S if EVAL(S,R)

returns a schema (not an error) and J validates against EVAL(S,R).

B.2.2. Validation

The idea is that a JSON document satisfies a schema if it satisfies all the keywords of this

schema. Formally, given a schema S and a document J , we write J |= S to denote that J satisfies

S. We separately define |= for string, numeric, boolean, null, object and array schemas, as well as

for their combinations or enumerations.

B.2.2.1. References and boolean combination of schemas

Let S be a boolean combination of schemas, an enumeration or a reference schema. We say

that J |= S, if one of the following holds.

• S is "enum": [J1, . . . , Jm] and J = J`, for some 1 ≤ ` ≤ m.

• S is "allOf": [S1, . . . , Sm] and J |= S`, for all 1 ≤ ` ≤ m.

• S is "anyOf": [S1, . . . , Sm] and J |= S`, for some 1 ≤ ` ≤ m.

• S is "ineOf": [S1, . . . , Sm] and J |= S`, for exactly one ` in 1 ≤ ` ≤ m.

• S is "not": S′ and J 6|= S′.

• S is "$ref": "#p" for a JSON pointer p; Eval(p,D) is a schema and J |= Eval(p,D),

with D the JSON document containing S.

B.2.2.2. Strings schemas

Let S be a string schema. Then J |= S if J is a string, and for each key-value pair p in S that

is not "type": "string" one of the following holds:

• p is "minLength":n and J is a string with at least n characters.

• p is "maxLength":n and J is a string with at most n characters.

71



• p is "pattern": e and J is a string that belongs to the language of the expression e.

B.2.2.3. Numeric schemas

Let S be a number (respectively, integer) schema. Then J |= S if J is a number (resp.

integer), and for each key-value pair p in S whose key is not "type", "exclusiveMinimum"

or "exclusiveMaximum" one of the following holds:

• p is "minimum":r and J is strictly greater than r.

• p is "minimum":r, J is equal to r and the pair "exclusiveMinimum": "true"

is not in S.

• p is "maximum":r and J is strictly lower than r

• p is "maximum":r, J is equal to r and S the pair "exclusiveMaximum": "true"

is not in S.

• p is "multipleOf":r and J is a multiple of r.

B.2.2.4. Boolean schemas

Let S be a boolean schema. Then J |= S if J is either true or false.

B.2.2.5. Null schemas

Let S be a null schema. Then J |= S if J is the null value.

B.2.2.6. Objects schemas

Let S be an object schema. Then J |= S if J is an object, and for each key-value pair p in S

that is not "type": "object" one of the following holds:

• p is "properties": {k1 : S1, . . . , km : Sm} and for every key-value pair k : v in J

such that k = kj for some 1 ≤ j ≤ m we have that v |= Sj .

• p is "patternProperties": {"e1": S1, . . . ,"em": Sm} and for every key-value

pair k : v in J and every ej , with 1 ≤ j ≤ m, such that k is in the language of ej we

have that v |= Sj .

Remark. If the keyword matches more than one pattern property then it has to satisfy all

the schemas involved.

72



• p is "required": [k1, . . . , km] and for each 1 ≤ j ≤ m we have that J has a pair of

the form kj : v.

• p is "additionalProperties": false and for each pair k : v in J , either S

contains "properties": {k1 : S1, . . . , km : Sm} and k = kj for some 1 ≤ j ≤ m,

or S contains "patternProperties": {"e1": S1, . . . ,"em": Sm} and k belongs

to the language of ej , for some 1 ≤ j ≤ m.

• p is "additionalProperties":S′ and for each key-value pair k′ : j′ in J , with k′

not in S[properties] and k′ not matching any of the expressions in S[patternProperties],

we have that j′ validates against S′ "properties": {k1 : S1, . . . , km : Sm} and

k = kj for some 1 ≤ j ≤ m, or S contains "patternProperties": {"e1" :

S1, . . . ,"em": Sm} and k belongs to the language of ej , for some 1 ≤ j ≤ m.

• p is "minProperties":n and J has at least n key-value pairs.

• p is "maxProperties":n and J has at most n key-value pairs.

• p is of the form "dependencies": {k1 : [l1,1, . . . , l1,m1 ], . . . , kn : [ln,1, . . . , ln,mn ]}

and if ki appears in J then every keyword in [li,1, . . . , li,mi ] appears in J .

• p is of the form "dependencies": {k1 : S1, . . . , km : Sm} and if ki appears in J

then it must be true that J |= Si.

B.2.2.7. Arrays schemas

Let S be an array schema. Then J |= S if J is an array, and for each key-value pair p in S

that is not "type": "array" one of the following holds:

• p is "items": {S′} and for each item J ′ ∈ J we have that J ′ |= S′.

• p is "items": [S1, . . . , Sm], J = [J1, . . . , J`] and Ji |= Si for each 1 ≤ i ≤

min(m, `).

• p is "additionalItems": {S′}, S has a pair of the form "items": [S1, . . . , Sn],

and J is an array [J1, . . . , J`] such that each Ji |= S′, for i > n.

• p is "minItems": n and J has at least n items.

• p is "maxItems": n and J has at most n items.

• P is "uniqueItems": true and all of J’s items are pairwise distinct.

73



APPENDIX C. PROOFS

C.1. Proof of Proposition 1

PROOF. We proceed to construct procedure to encode each NFTA into a JSON Schema doc-

ument. Let A = (Q,F , I,∆) be a top-down NFTA over binary trees where Q is a set of states,

I ⊆ Q is a set of initial states and ∆ ⊆ Q× Σ×Q×Q is the transition relation(i.e. set of rules).

Consider the following encoding of A into S(A) :

(1) For each state q ∈ Q append to S a new schema definition of the form:

"q": {

"type": "object",

"additionalProperties": false,

"minProperties": 1,

"properties": {Pq}

}

Here Pq represents the set of symbols for outgoing transitions of q.

(2) For each symbol σ ∈ F if there is a rule of the form q → σ in ∆, then add the following

property to Pq:

"σ": { "enum": [null] }

(3) For each symbol σ ∈ F if there is a rule of the form q(σ)→ (q1, q2) in ∆, then add the

following property to Pq:

"σ": { "anyOf": [Aq(σ)] }

Here Aq(σ) is an array representing the possible states reachable from q reading σ.

(4) For each pair (q1, q2) ∈ Q × Q if there is a rule q(σ) → (q1, q2) in ∆, then add the

following schema to Aq(σ):

{

"type": "object",

"additionalProperties": false,

"required": ["lChild", "rChild"],

"properties": {

"lChild": "ref": "#/definitions/q1"

"rChild": "ref": "#/definitions/q2"

}

}

74



(5) Finally add the following schema to the body of the schema

"anyOf": [

{"ref": "#/definitions/q1"},

.

.

.

{"ref": "#/definitions/qn"}

]

Where q1, ..., qn are the initial states of A.

Let T be a binary tree andA a NFTA, by simple construction we obtain that T ∈ L(A) if and only

if, J(T ) |= S(A). �

75



C.2. Proof of Theorem 1

PROOF. Let J be a JSON document and JS a JSON Schema document, now we prove that

there exists a formula in monadic second order logic ϕJS such that

J |= JS if and only if T (J) |= ϕJS

where T (J) is the tree representation of J described in section 3.3.

First of all, let us define the structures and the interpretation we use to model the theory of

JSON documents. Let L be the following vocabulary:

L = 〈≺ch, Proot, λ, (RL)L⊆Σ∗〉

As we know that we are working with trees we can consider the following interpretation of L:

• ≺ch⊆ N∗ × N∗ is the child relation over the tree domain

v ≺ch v′ if and only if s′ = s · i for some i ∈ N.

• Proot ⊆ N∗ is the root predicate, let v be a node

Proot(v) if and only if v is the root of the tree.

• λ : N∗ → Σ∗ is the labeling of the tree, we use it to assing keywords and values to the

document. Let v be a node and s be a string

λ(v) = s if and only if the label s is assigned to the node v.

• (RL)L⊆Σ∗ is a predicate to represent the pertinence of a string in a regular language L.

Let s be a string, we define this formally as

RL(s) is true if and only if s is in the language L.

Finally, we represent the L-structures that model each JSON document as :

T = 〈TD ∪ Σ∗,≺ch, Proot, λ, (RL)L⊆Σ∗〉

As mentioned, we first need to define the theory of JSON documents. Formally, this is done by

constructing a formula ϕJSON such that every JSON document satisfies it. We construct this by

parts, let us start with the root, consider the following formula to define a parentless node:

We do this for the reason that we are working over tree structures.

76



ϕno child = ∀y(y ⊀ch x)

Now we can define the uniqueness of the root as follows:

ϕunique root = ∃x(ϕno child(x) ∧ ∀y(ϕno child(y)→ y = x))

Another condition that a JSON document must satisfy is the uniqueness of the keywords, in other

words, if a node has more than one child, those children must have different labels. The following

formula captures this property:

ϕunique keywords = ∀x∀y∀z(x ≺ch y ∧ x ≺ch z ∧ y 6= z → λ(y) 6= λ(z))

Additionally, we need to force every non-root property to have a keyword(i.e.λ cannot be a partial

function on keywords). This can be done by checking the conformance to the following formula:

ϕnonempty keywords = ∀x(¬Proot(x) ∧ ∃y(x ≺ch y)→ ∃s(λ(x) = s))

Moreover, if we look carefully at our encoding of JSON documents, it is easy to note that leaf

nodes don’t have siblings. Consider the following formula to encode leafs:

ϕleaf (x) = ∀y(x ⊀ch y)

We encode the property described above as follows

ϕno sibling = ∀x∀y∀z(x ≺ch y ∧ x ≺ch z ∧ (ϕleaf (y) ∨ ϕleaf (z))→ y = z)

Finally we give a formula ϕJSON that every JSON document must satisfy

ϕJSON = ϕunique root ∧ ϕunique keywords ∧ ϕnonempty keywords ∧ ϕno sibling

Now we proceed to construct a formula for each schema, we do this inductively on the syntax

of JSON Schema. It is important to mention that we provide a translation from the core frag-

ment of JSON Schema. The remaining keywords can be simulated by combining the core opera-

tors. For example, we do not consider numeric restrictions, since multipleOf, minimum and

Note that if we threat ϕunique root as a free variable formula it defines Proot.

77



maximum can be easy simulated by the use of a regular expression (Sakarovitch, 2009). More-

over, the enum keyword can be simulated for both strings and objects. In the case of strings,

we just need to force the string value by the use a expression. For objects, we can always pro-

vide a schema that define a single object, just by combining the required, properties and

additionalProperties keywords.

Let us start out construction with string schemas, consider a string schema S

{

"type": "string",

"pattern": "L"

}

where L is a regular expression over Σ. At this point, one can devise a very simple formula in

MSO, let ϕS be this formula

ϕS(x) := ∃y∀z(x ≺ch y ∧ y ⊀ch z ∧ ∃s(λ(y) = s ∧RL(s))

Here the first part of the formula is asserting that x has a child y that must be a leaf node and

the second one forces it to have a string value in L. Note that in the case that we don’t have the

presence of pattern we just have to remove the last restriction. It is important to mention that

x must be a free variable since we are working inductively in the syntax of JSON Schema(i.e. S is

not necessary at the topmost level of the document).

In the case of objects, the formula becomes more complicated, consider the following object

schema S

{

"type": "object",

"required": ["s1",...,"sn"],

"properties": {

"k1": S1,

...

"km": Sm

},

"patternProperties": {

"r1": D1,

78



...

"rl": Dl

},

"additionalProperties": A

}

Intuitively we have to use our inductive step to assign a formula for each subschema present

in the definition of S. Let ϕS1 , ...., ϕSm , ϕD1 , ..., ϕDl , ϕA be those formulas, we can construct ϕS

as follows

ϕS(x) :=

∃y1 . . . ∃yn((x ≺ch y1 ∧ λ(y1) = s1) ∧ . . . ∧ (x ≺ch yn ∧ λ(yn) = sn))

∧ ∀z1(x ≺ch z1 ∧ λ(z1) = k1 → ϕS1(z1)) ∧ . . . ∧ ∀zm(x ≺ch zm ∧ λ(zm) = km → ϕSm(zm))

∧ ∀u1(x ≺ch u1 ∧Rr1(λ(u1))→ ϕD1(u1)) ∧ . . . ∧ ∀ul(x ≺ch ul ∧Rrl(λ(ul))→ ϕDl(ul))

∧ ∀v(x ≺ch v ∧ λ(v) 6= k1 ∧ . . . ∧ λ(v) 6= km ∧ ¬Rr1(λ(v)) ∧ . . . ∧ ¬Rrl(λ(v))→ ϕA(v))

The first line asserts that the keywords in the required section must be present in the children

of x. The second and third line code the properties and patternProperties restrictions

respectively. Finally, the last line translates the additionalProperties restriction. Similarly

as the string case, if any of the restrictions is not present in the schema, we just remove one of the

lines of the formula. In the case that S contains additionalProperties:false, we can

simply permute the last line by

∀v(λ(v) 6= k1 ∧ . . . ∧ λ(v) 6= km ∧ ¬Rr1(λ(v)) ∧ . . . ∧ ¬Rrl(λ(v))→ x ⊀ch v)

We continue by showing how to construct the formula in the presence of single enumeration

and boolean combinations. To illustrate this step consider the following schemas:

SallOf = {"allOf": [S1,...,Sn]} SanyOf = {"anyOf": [S1,...,Sn]}

Snot = {"not": S′} Senum = {"enum": [J1,...,Jn]}

79



We can easily deduce a formula for each of these schemas by taking advantage advantage of

the essence of boolean logic. Let ϕallOf , ϕanyOf , ϕnot, ϕenum be the formulas for the schemas

above, from the inductive step we obtain the following construction:

ϕallOf (x) := ϕS1(x) ∧ . . . ∧ ϕSn(x)

ϕanyOf (x) := ϕS1(x) ∨ . . . ∨ ϕSn(x)

ϕnot(x) := ¬ϕ′S(x)

where ϕ′S , ϕS1 , . . . , ϕSn are the formulas assigned to the corresponding subschemas.

Finally, in order to provide a full mapping from JSON Schema to MSO we must give a con-

struction of both the root of the document and the definitions section. Consider the following JSON

Schema document JS:

{

"definitions": {

"d1": S1,

...

"dn": Sn

},

S

}

Here we take advantage of MSO by assigning a predicate variable Di for each definition di

for 1 ≤ i ≤ n. Let ϕJS be the formula for the entire document, we can build it as follows:

ϕJS := ϕJSON ∧ ∃x∃D1 . . . ∃Dn(Proot(x) ∧ ϕS(x) ∧ ∀y((D1(y)→ ϕS1(y)) ∧ . . . ∧ (Dn(y)→ ϕSn(y)))

80



Furthermore, we can derive the construction of the formula for reference schemas directly

from above. Let S = {"$ref":"#/definitions/di"}, we can construct ϕS as follows

ϕS(x) := Di(x)

Note that we don’t need free variables in the definition of ϕJS , since it constrains the whole docu-

ment. Finally, for each JSON document J and JSON Schema document JS by simple construction

we obtain that there is a formula ϕJS such that

J |= JS if and only if T (J) |= ϕJS

where T (J) is the encoding of J as a MSO structure. �

81



C.3. Proof of Proposition 3

PROOF. As we already got the upper bound for JSCHVALIDATION(J, S) from Proposition 2,

we proceed to establish a proper lower bound for the problem. In order to achieve this, we perform

a LOGSPACE reduction from Monotone Circuit Value problem, which is known to be PTIME-

complete (Goldschlager, 1977). Let C be a monotone circuit circuit with its input coded as xi for

some i ≥ 0 and τ its corresponding valuation. We can generate a schema S by executing a simple

procedure over (C, τ ).

We start by adding one definition for each input xi, the definition forces the value to be exactly

the one assigned by τ . Then, we traverse the circuit in a depth-first fashion, starting from the root.

If we encounter an AND gate, we add an allOf restriction to the schema, with a number of

subschemas equal to the number of inputs the gate has. If the gate is an OR we add an anyOf

restriction. In both cases we repeat the process until we reach the leafs of C. At this point, we

simply add a reference to the definition assigned to the input. The detailed procedure is shown at

Algorithm 5.

Algorithm 5 Reduction from Monotone Circuit.
1: procedure CIRCUITTOSCHEMA(C, τ )
2: Let S be an empty JSON Schema document
3: for xi in Inputs(C) do
4: if τ(xi) == TRUE then
5: S["definitions"].append("xi":{"enum":[true]})
6: else if τ(xi) == TRUE then
7: S["definitions"].append("xi":{"enum":[false]})
8: end if
9: end for

10: Let v be Root(C)
11: S.body.append(TRAVERSECIRCUIT(v))
12: return S

1: procedure TRAVERSECIRCUIT(v)
2: if v == ∧(v1, ..., vn) then
3: return {"allOf":[TRAVERSECIRCUIT(v1),...,TRAVERSECIRCUIT(vn)]}
4: else if v == ∨(v1, ..., vn) then
5: return {"anyOf":[TRAVERSECIRCUIT(v1),...,TRAVERSECIRCUIT(vn)]}
6: else if v == xi then
7: return {"$ref": "#/definitions/xi"}
8: end if

82



Finally, our JSON document J just contains the value true. It is straightforward to prove that

J |= S if and only if τ(C) = true. However, it is important to mention that the procedure works

on LOGSPACE, since we do not need to have the whole circuit in memory during the traversal

(DFA keeps a stack with logarithmic memory).

�

83



C.4. Proof of Lemma 1

PROOF. Given a schema S,we proceed by structural induction over the depth of the accepting

documents of S, let us consider the following predicate:

P (h) : For every satisfiable schema that just accepts documents of at least depth h, there exists a

polynomial size document that conforms to it.

Base Case

As our base case we start by showing that P (0) is true. Let S be a satisfiable schema of depth 0,

we can see S at its topmost level as a boolean combination of schemas. It is well known that every

boolean combination can be equivalently written as a formula in disjunctive normal form (DNF).

We now rewrite S in its equivalent DNF schema as follows:

S ≡
∨
i

Ci

Here each Ci is a conjunctive clause of schemas and negation of schemas. Since S is satisfiable, it

is easy to devise that at least one Ci must be satisfiable. Let C be this satisfiable clause, as C is a

conjunctive clause of schemas it must have the following structure:

C =
n∧
j=1

Lj (C.1)

Here each Lj is a schema or a negation of a schema that defines one or more JSON types, for

1 ≤ j ≤ n. As C is satisfiable we know that there is a document that conforms to it. Then, all Lj’s

must agree in at least one accepting type of document. Now we procede by showing that for each

type, C presents a polynomial size document that conforms to it.

Strings

Let us asume thatC is satisfiable by a string document and by consequence every Lj also conforms

to it. Now each Lj can only be one of the following type of schemas:

• string schema

According to our grammar we can asume there is a combination allOf, anyOf and not keywords in the
top layer of every schema.
Strings, numerics, booleans, null, arrays and objects.

84



• negation of a string schema

• negation of a numeric schema

• negation of a boolean schema

• negation of a null schema

• negation of an array schema

• negation of an object schema

It is clear that in the last five cases Lj accepts every string, so we just focus on both strings schemas

and negated string schemas:

Lj : {minLength:wj, maxLength:lj} | {not:{minLength:wj, maxLength:lj}}

We can see these restrictions as natural numbers inequalities, let |x| be the length of a string:

Lj : (|x| ≥ wj ∧ |x| ≤ |lj |) | (|x| ≤ wj ∨ |x| ≥ lj)

Combining with C.1 we can see C as boolean combination of inequalities: ∧
Lj is not negated

(|x| ≥ wj ∧ |x| ≤ lj)

 ∧
 ∧
Lj is negated

(|x| ≤ wj ∨ |x| ≥ lj)


It is well know that we can transform these boolean combinations of inequalities to DNF as follows:

C ≡
∨
k

Ik

Here each Ik is a conjunctive clause of inequialities. We can see each Ik as a (possibly) closed

interval of natural numbers. Furthermore, as C is satisfiable there must exists a non-empty interval

Ik′ :

Ik′ : (w′ ≤ |x| ≤ l′)

Here w′, l′ must appear in one of the restrictions of C. Finally, as we are looking for an upper

bound we can just take any string document J such that:

Ik′ : (w′ ≤ |J | ≤ l′)

Clearly |J | is bounded by l′, we conclude that |J | can be taken as a polynomial size witness for S.

85



Remark: It is possible that Ik′ cold be an open interval. In this case we can just take any string

of length w′ as our witness.

Numeric Types

In the case of numeric types, since integer values are more restrictive than rational numbers, we

just give a proof for the integer case. However, one can prove the same result relaxing the problem

for rational numbers.

Let us asume that C is satisfiable by an integer document and by consequence every Lj must

accept an integer document. Now each Lj can only be one of the following type of schemas:

• integer schema

• negation of an integer schema

• negation of a string schema

• negation of a boolean schema

• negation of a null schema

• negation of an array schema

• negation of an object schema

Similarly as the string case, we just focus on both integer schemas and negated integer schemas,

now Lj can be seen as:

{minimum:wj,maximum:lj,mutipleOf:rj}|{not:{minimum:wj,maximum:lj,mutipleOf:rj}}

First of all, note that we can avoid the exclusiveMinimum and exclusiveMaximum

keywords by simply adding and subtracting 1 from wj and lj respectively. Now we can handle this

inequalities using a similar procedure as the one used with string schemas. The only difference

arises in the fact that we can only choose numbers that satisfy the multipleOf restrictions.

Lj : (x ≥ wj ∧ x ≤ lj ∧ x = rjcj) | (x ≤ wj ∨ x ≥ lj ∨ x 6= rjcj) cj ∈ Z

Combining with C.1 we can see C as boolean combination of inequalities: ∧
Lj is not negated

(x ≥ wj ∧ x ≤ lj ∧ x = rjcj)

 ∧
 ∧
Lj is negated

(x ≤ wj ∨ x ≥ lj ∨ x 6= rjcj)


86



Now we rewrite C in its corresponding DNF:

C ≡
∨
k

Ik (C.2)

Here each Ik is a conjunctive clause of inequialities and multiplicities. In other words, we can see

each Ik as a (possibly) closed interval of common multiple numbers. Based on our hypothesis, as

C is satisfiable there must exists a non-empty interval Ik′ :

Ik′ : (w ≤ x ≤ l) ∧

 ∧
Lk′′k′′ is a positive schema

(x = rk′′ck′′)

 ∧
 ∧
Lk′′k′′ is a negative schema

(x 6= rk′′ck′′)


(C.3)

Let J be the integer document that satisfies all the restrictions above. Now we have two cases,

on one hand if the interval is closed it must be bounded by one of the restrictions in it, and by

consequence J is bounded. On the other hand, if Ik′ is not bounded we can choose the first number

that satisfies the multiplicity restrictions. The size of this number cannot be bigger than

w + LCMk′′(rk′′) (C.4)

Here LCMk′′(rk′′) is the least common multiple between every rk′′ . Clearly J is bounded by the

size of the multipleOf restrictions, and by consequence we can take it as a polynomial size

witness for S.

Remark 1: It is important to mention that the multipleOf restrictions that come from

negative schemas are not taken in account in the final step. There cannot be the case that they

match with the multiples presented in the non-negated schemas, since the schema would not be

satisfiable.

Remark 2: In the case that the interval is open to the negative infinity, we can do the analogous

step by taking l instead of w and substracting the LCM .

Null and Boolean Types

Since the only values that they can take are null, true and false, the size of the documents is

always constant independently of the boolean restrictions on the top layer of the schemas.

Here we asume that both the restriction and the witness are binary encoded.

87



Object and Array Types

As we know that C accepts a document of depth 0, the only possible object or array is the empty

instance of them. Now we can always take those instances as our polynomial size witnesses.

Inductive Hypothesis

As we mentioned before our inductive hypothesis is

P (h) : For every satisfiable schema that just accepts documents of at least depth h, there exists a

polynomial size document that conforms to it.

Let us assume that P (h) is true for all h greater than 0.

Inductive Thesis

Now we procede to prove that P (h + 1) is true. Let S be a satisfiable JSON Schema that accepts

a document of depth h+ 1. Similarly as in the base case we procede to rewrite S in its equivalent

DNF schema as follows:

S ≡
∨
i

Ci (C.5)

Here each Ci is a conjunctive clause of both schemas and negation of schemas. Since S is satisfi-

able it is easy to devise that at least one Ci must be satisfiable. Let C be this satisfiable clause, as

C is a conjunctive clause of schemas it must have the following structure:

C =
n∧
j=1

Lj (C.6)

Here each Lj is a schema or negated schema that defines one or more JSON types, for 1 ≤ j ≤ n.

As C is satisfiable we know that there is a document that conforms to it. Then, all Lj’s must agree

in at least one accepting type of document. As we know that the depth of this document must be at

least h + 1, then it can be either an object or an array. Now we procede by showing that for each

of these types that C presents a polynomial size document that conforms to it.

Objects

Let us asume that C is satisfiable by an object document and by consequence every Lj must accept

an object document. Now each Lj can only be one of the following type of schemas:

• object schema

88



• negation of an object schema

• negation of a string schema

• negation of a boolean schema

• negation of a null schema

• negation of an array schema

• negation of an integer schema

It is clear that in the last five cases Lj will accept every object, so we just focus on both object

schemas and negated object schemas:

{required:[key]j, properties:{key: Sj,key}j, additionalPropreties:Sj,adPr}

{not:{required:[key]j, properties:{key: Sj,key}j, additionalPropreties:Sj,adPr}}

Here [keyk]j is the list of required keywords of the Lj , {keyk : Sj,keyk}j is the list of proper-

ties of Lj with its respective schema and Sj,adPr is the additionalProperties schema for

Lj .

Now we look for an expression that formally describes the constraints that C must satisfy.

Based on our hypothesis, we know that C accepts an object document that satisfies every Lj . Let

J be this document, we start by checking the existence of the required keywords for each Lj , the

notation we use is the same defined in Section 2.1:

ϕreq(Lj) =
∧

key in Lj [required]

(J [key] 6= ∅)

Besides, we need to check that each keyword in J must conform to it’s corresponding schema in

the properties section of each Lj :

ϕprop(Lj) =
∧

key′ in J

 ∧
Lj [properties][key′]6=∅

J [key′] |= Lj [properties][key′]


Similarly we need to check the additional properties section:

ϕaddProp(Lj) =
∧

key′ in J

 ∧
Lj [additionalProperties][key′]=∅

J [key] |= Lj [additionalProperties]


89



In the case of negated schemas we can just negate the formulas above as follows:

ϕ¬req(Lj) =
∨

key in Lj [required]

(J [key] = ∅)

ϕ¬prop(Lj) =
∨

key′ in J

 ∨
Lj [properties][key′]6=∅

J [key′] |= ¬Lj [properties][key′]



ϕ¬addProp(Lj) =
∨

key′ in J

 ∨
Lj [additionalProperties][key′]=∅

J [key] |= ¬Lj [additionalProperties]


Note that when we negate a validation restriction in the form of J |= S, we just need to

complement the schema with the not keyword, here the notation used is J |= ¬S. Finally, we can

rewrite the restrictions in C as follows:

ψ :
∧

Lj is not negated

(ϕreq(Lj) ∧ ϕprop(Lj) ∧ ϕaddProp(Lj)) ∧
∧

Lj is negated

(ϕ¬req(Lj) ∨ ϕ¬prop(Lj) ∨ ϕ¬addProp(Lj))

It is clear that we can rewrite ψ in its equivalent DNF formula as follows:

ψ ≡
∨
i′

Ri′

Here each Ri′ is a conjunctive clause of required, not required and satisfiability restrictions:

Ri′ =
∧
J [key] 6= ∅ ∧

∧
J [key] = ∅ ∧

∧
J [key] |= S′

Finally as we know that ψ is satisfiable, we know that there is a Ri′′ that has a model that conforms

to it. Since we know that every S′ accepts a document of height h we can apply our inductive

hypothesis and conclude that C and therefore S has a number of polynomial documents equal to

the number of J [key] 6= ∅ restrictions in Ri′′ hanging from the root. We conclude by an inductive

argument that P (h+ 1) holds for object schemas.

Arrays

Let us asume that C is satisfiable by an array document and by consequence every Lj must accept

an array document. Now each Lj can only be one of the following type of schemas:

90



• array schema

• negation of an array schema

• negation of a string schema

• negation of a boolean schema

• negation of a null schema

• negation of an object schema

• negation of an integer schema

It is clear that in the last five cases Lj will accept every array, so we just focus on both array

schemas and negated array schemas:

{items: S′, minItems: wj, maxItems: lj, uniqueItems: true}

{not:{items: S′, minItems: wj, maxItems: lj, uniqueItems: true}}

For the sake of simplicity, we do not consider the items restriction in the form of items:

[S1, ..., Sn]. Moreover, we assume that the "minItems" and "maxItems" keyword values

are coded in unary. The reason of this is the fact that a decimal encoding could lead to a exponential

blow-up in the number of items. Regardless, the prove can be adapted to include these constrains.

Now we look for an expression that formally describes the restrictions that C must satisfy. Based

on our hypothesis, we know that C accepts an array document that satisfies every Lj . Let J be this

document and | · | be the length of the array, we start by defining the constrains for the non-negated

schemas:

ϕ1(Lj) = wj ≤ |J | ≤ lj ∧
|J |∧
k=1

(
J [k] |= S′

)
∧
|J |∧
i′=1

 |J |∧
j′=1∧j′ 6=i′

(
J [i′] 6= J [j′]

)
Again, we use the notation defined in Section 2.1 to retrieve the value of the elements of J .

Now we give a proper formula for the negated schemas:

ϕ2(Lj) = wj > |J | > lj ∨
|J |∨
k=1

(
J [k] |= ¬S′

)
∧
|J |∨
i′=1

 |J |∨
j′=1∧j′ 6=i′

(
J [i′] = J [j′]

)
91



Similarly as the object case, instead of negating the model constrain, we negate the schema by

nesting it into a not restriction. Finally, we can rewrite the restrictions in C as follows:

ψ :
∧

Lj is not negated

(ϕ1(Lj)) ∧
∧

Lj is negated

(ϕ2(Lj))

It is clear that we can rewrite ψ in its equivalent DNF formula as follows:

ψ ≡
∨
i′

Ri′

Here each Ri′ is a conjunctive clause of satisfiability, equality, inequality and length restrictions:

Ri′ =
∧

(J [k] |= S′) ∧
∧

(J [i′] = J [j′]) ∧
∧

(J [i′] 6= J [j′]) ∧
∧

(wj ≤ |J | ≤ lj)

Finally as we know that ψ is satisfiable, we know that there is a Ri′′ that has a model that conforms

to it. Since we know that every S′ accepts a document of height h we can apply our inductive

hypothesis and conclude that C and therefore S has a number of polynomial documents shorter

than lj hanging from the root. Moreover, the equality constrains do not affect the size of the

witness. In the case that there is no lj present in the schemas we can just give a document with the

minimum wj as witness. It is important to mention that we did not consider the single enumeration

case. The reason lays in the fact that we can easily take as witness the value that the enumeration

forces. We conclude by an inductive argument that P (h+ 1) holds for array schemas. �

92



C.5. Proof of Theorem 2

PROOF. We proceed inductively over the syntax of JSON Schema. Here assume that all trees

come from the encoding of a valid JSON document. Before providing the construction of the

QATA we define two states to deal with the acceptance of the schemas.

• q>: Used to spread an accepting state through the tree.

• q⊥: Used to spread a rejecting state through the tree.

Let S be an schema, the way we perform the induction is by generating a formula ϕ(S) for the

right side of the rule associated with S. Additionally, in each case we add a set of rules ∆(S) to

the rules of the automaton.

We start by showing how to construct a QATA from the string case. Let S be a string schema:

{

"type": "string",

"pattern": "La"

}

Here we can construct ϕ(S) as follows:

ϕ(S) = ∃qL

Additionally we add two rules to check the compliance to the regular expression:

qL(L)→ true

qL(Lc)→ false

Note that we use the Lc to represent every string that is not L (i.e. the complement). Besides, in the

case that the pattern restriction is missing we can just assume it appears with L = Σ∗. Finally, it is

important to mention that we translate every regular expression to an alternating word automaton.

In this way, we avoid an exponential blow up from the complementation. Regardless of this, for

the ease of the exposition we show them as regular expressions.

A valid JSON document is a document that satisfies the restrictions established in the demonstration of
Theorem 1.

93



Now we give the construction for object schemas. As the properties keyword is just a

particular case of patternProperties, we just provide the construction for pattern case. Let

S be an object schema

{

"type": "object",

"required": ["s1",...,"sn"],

"patternProperties": {

"r1": D1,

...

"rm": Dm

},

"additionalProperties": A

}

Here we can construct ϕ(S) as follows:

ϕ(S) = ∃qs1 ∧ . . . ∧ ∃qsn ∧ ∀qr1 ∧ . . . ∧ ∀qrm, ∧ ∀qA

Additionally, we have to add a set of rules ∆(S) to the automaton. The rules bellow allow us to

state that the required keywords must be present in the object:

qs1(s1)→ ∀q>

qs1(sc1)→ ∃q⊥

. . .

qsn(sn)→ ∀q>

qsn(scn)→ ∃q⊥

94



Now give the rules we need to satisfy the patternProperties section:

qr1(r1)→ ϕD1

qr1(rc1)→ ∀q>

. . .

qrm(rm)→ ϕDm

qrm(rcm)→ ∀q>

In this case we are treating with an universal quantifier just to deal with the implication that the

patternProperties is validated. In other words, if a keyword is in the language of one of

the regular expressions, then it must satisfy the formula assigned to that language. In other case,

the state checking that expression accepts the word and spread the accepting state to the leafs.

Again, every regular expression is previously encoded into an alternating word automaton to avoid

an exponential blow up.

Finally we add a rule for checking the additionalProperties section:

qA

(
m⋂
i=1

rci

)
→ ϕA

qA

(
m⋃
i=1

ri

)
→ ∀q>

We continue by showing how to construct the automaton in the presence of single enumeration and

boolean combinations. To illustrate this step consider the following schemas:

SallOf = {"allOf": [S1,...,Sn]}

SanyOf = {"anyOf": [S1,...,Sn]}

Snot = {"not": S′}

We can easily deduce a formula for each of these schemas by taking advantage advantage of

the essence of boolean logic. Let ϕ(SallOf ), ϕ(SanyOf ), ϕ(Snot) be the formulas for the schemas

above, from the inductive step we obtain the following construction:

95



ϕ(SallOf ) := ϕ(S1) ∧ . . . ∧ ϕ(Sn)

ϕ(SanyOf ) := ϕ(S1) ∨ . . . ∨ ϕ(Sn)

ϕ(Snot) := ϕ(S′)

where ϕ(S′), ϕ(S1), . . . , ϕ(Sn) are the formulas assigned to the corresponding subschemas. Be-

sides, in the "not" case we just complement the formula of the subschema. Note that this can be

easily done by exchanging the accepting and rejecting states and negating the quantifiers/boolean

operators.

Similar to the other cases we still need to add some rules to ∆. In the case of the "anyOf"

and the "allOf" schemas, we simply add ∆(Si) for i ≤ n to ∆(SallOf ) or ∆(SanyOf ). Despite

of this, in the case of the negation we need to recursively complement all the formulas in ∆(S′) in

a similar way as we complemented ϕ(S′).

It is important to mention that all the complementations can be performed in polinomial time,

similar as the alternating tree automaton models presented in (Comon et al., 2007). This is done

by performing a single iteration through the automaton complementing each rule. In each rule we

exchange the universal and existential quantifiers, and then apply the boolean complementation for

each logical connective. Besides, we need exchange the accepting and rejecting states.

Finally, in order to provide a full mapping from JSON Schema to QATA we must give a

construction of both the root of the document and the definitions section. Consider the following

JSON Schema document JS:

{

"definitions": {

"d1": S1,

...

"dn": Sn

},

S

96



}

Here we take advantage of the inductive definition and for each definition di we add ∆(Si)

to the rules of our automaton. Furthermore, we can derive the construction of the formula for

reference schemas directly from above. Let S = {"$ref":"#/definitions/di"}, we can

construct ϕ(S) as follows

ϕ(S) := ϕ(Si)

Finally, given a JSON Schema document JS with schema S in the body, we can construct an

automaton AJS(Q,Σ, I,∆) by taking ∆ = ∆(S) ∪ R0. Where the rules in R0 are defined as

follows:

q0(ε)→ ϕ(S)

q>(Σ∗)→ ∀q>

q>(Σ∗)→ true

q⊥(Σ∗)→ ∃q⊥

q⊥(Σ∗)→ false

In the first rule we define the initial state to start the run from the top, where q0 ∈ I. In the other

rules, we take advantage of the nondeterminism to spread the accepting and rejecting states across

the branches of the tree.

To conclude the proof, we appeal to the intuition to state that for every valid JSON document

J it must be true that

J |= JS if and only if T (J) ∈ L(AJS)

where T (J) is the tree codification of J . �

97



C.6. Proof of Theorem 3

PROOF. Recall we need to prove that given a recursive schema S, it is possible to check that

S it is satisfiable in O(2|S|). However, from Theorem 2 we know it is possible to give a translation

from JSON Schema to QATA in polynomial time. Because of this, we just need to provide an

algorithm to compute emptiness of QATA in exponential time to achieve our desired result. In

this context, an emptiness algorithm is much more intuitive when it is run bottom-up fashion, in

comparison to it’s top-down version. For this reason, we provide an algorithm designed to be run

over a bottom-up quantified alternating tree automata.

Definition 6 (Bottom up quantified alternating tree automata). A bottom-up quantified alter-

nating tree automata (QATA)A over Σ is a tuple (Q,Σ,F ,∆) where Q is a set of states, F ⊆ Q

is a set of final states and ∆ is a finite set of transition rules of the following type:

RΣ(ϕ)→ q

where RΣ ⊆ Σ∗ is a regular language over Σ and ϕ ∈ B+
∃∀(Q). Here B+

∃∀(Q) is the set of

propositional formulas over Q, where each state q ∈ Q is preceded by a quantifier. Again, the

regular languages are coded into alternating word automata and showed as regular expressions for

readability reasons.

Let v be a node labeled s with n children. A run of A over a tree structure T is a mapping

ρ : TD → 2Q such that if ρ(v) = S, then for each state qS in S it must be true that:

if s(ψ)→ qS then {ρ(u1), ..., ρ(un)} � ψ where s ≺ch ui for every 1 ≤ i ≤ n.

Here the notion of satisfaction is the same as the one define for the top-down version. A run

ρ is successful if q ∈ ρ(ε) for some final state q ∈ F . Again, the definition corresponds to a

nondeterministic model, where a string can match several rules in the left side of the transition

relation.

Similar to classic tree automata, nondeterministic QATA can be run in both directions without

loosing expressive power. The following proposition formalises this statement.

98



LEMMA 2. A language is accepted by a nondeterministic top-down QATA if and only if it is

accepted by a nondeterministic bottom-up QATA.

PROOF. The proof is left to the reader. Hint. Reverse the arrows and exchange the sets of

initial and final states. �

With this last result we can finally start to devise our emptiness algorithm. In general terms,

our algorithm attempts to perform a determinization of the automaton’s rules and then compute all

the reachable sets of states, until we reach a set containing a final state.

Let us start with the determinization, consider the following set of rules ∆=

R1(ϕ1)→ q1

. . .

Rn(ϕn)→ qn

The pseudocode of the determinization procedure for ∆ is shown in Algorithm 6.

Algorithm 6 Determinization algorithm for QATA.
1: procedure DETERMINIZE(∆)
2: ∆D = ∅
3: for C ⊆ ∆ do

4: ∆D ←
⋂

Ri∈C

Ri

( ∧
ϕi∈C

ϕi ∧
∧

ϕi /∈C

¬ϕi

)
→

⋃
q∈C

{q}

5: ∆D ←
⋂

Ri∈C

Ri ∩
⋂

Ri /∈C

Rc
i

( ∧
ϕi∈C

ϕi

)
→

⋃
q∈C

{q}

6: end for
7: return ∆D

The procedure described in Algorithm 6 checks every subset of rules and then construct a pair

of rules such that given a pair (w, S) ∈ Σ∗ × 2Q it must match at most one of the rules in ∆D.

Moreover, our algorithm also computes all the reachable states from (w, S) and sets them in the

right side of the rule. This is the key step that is going to help us when we perform the emptiness

algorithm. The following Lemma helps us to confirm the correctness of our determinization:

99



LEMMA 3. Let ∆ be a set of rules and ∆D = DETERMINIZE(∆), then ∆D is deterministic.

PROOF. By contradiction, suppose there is a pair (w, S) ∈ Σ∗ × 2Q and two rules D1, D2 ∈

∆D such that (w, S) |= D1 and (w, S) |= D2 . Now we proceed by cases depending on the form

of each rule.

(i)

D1 is of the form
⋂

Ri∈C1

Ri

( ∧
ϕi∈C1

ϕi ∧
∧

ϕi /∈C1

¬ϕi

)
→

⋃
q∈C1

{q}.

D2 is of the form
⋂

Ri∈C2

Ri

( ∧
ϕi∈C2

ϕi ∧
∧

ϕi /∈C2

¬ϕi

)
→

⋃
q∈C2

{q}.

As D1 has the same form of D2 it must be true that C1 6= C2. Without loss of generality, there

must be a rule (R,ϕ, q) such that (R,ϕ, q) ∈ C1 and (R,ϕ, q) /∈ C2. Then, by the form of D2 it

must be true that S |= ¬ϕ⇒ S 6|= ϕ. Finally, as D1 includes ϕ we have that (w, S) 6|= D1, which

contradicts our initial supposition.

(ii)

D1 is of the form
⋂

Ri∈C1

Ri ∩
⋂

Ri /∈C1

Rci

( ∧
ϕi∈C1

ϕi

)
→

⋃
q∈C1

{q}.

D2 is of the form
⋂

Ri∈C2

Ri ∩
⋂

Ri /∈C2

Rci

( ∧
ϕi∈C2

ϕi

)
→

⋃
q∈C2

{q}.

As D1 has the same form of D2 it must be true that C1 6= C2. Without loss of generality, there

must be a rule (R,ϕ, q) such that (R,ϕ, q) ∈ C1 and (R,ϕ, q) /∈ C2. Then, by the form of D2 it

must be true that w ∈ L(Rc)⇒ w /∈ L(R). Finally, as D1 includes R we have that (w, S) 6|= D1,

which contradicts our initial supposition.

(iii)

D1 is of the form
⋂

Ri∈C1

Ri

( ∧
ϕi∈C1

ϕi ∧
∧

ϕi /∈C1

¬ϕi

)
→

⋃
q∈C1

{q}.

D2 is of the form
⋂

Ri∈C2

Ri ∩
⋂

Ri /∈C2

Rci

( ∧
ϕi∈C2

ϕi

)
→

⋃
q∈C2

{q}.

Here we have two more cases depending on the sets of rules of the initial automaton C1 and C2.

We abuse from the notation to state the fact that a pair (string, set of states) matches the left side of a rule.

100



In the case that C1 = C2 we have that it could be true that (w, S) |= D1 and (w, S) |= D2.

However, the right side of the rule is the same for both rules and does not affect the the determinism

of the automaton.

In the case that C1 6= C2 we have two more cases.

(1) There is a pair (R,ϕ, q) such that (R,ϕ, q) ∈ C1 and (R,ϕ, q) /∈ C2. Then, by the form

of D2 it must be true that w ∈ L(Rc)⇒ w /∈ L(R). Finally, as D1 includes R we have

that (w, S) 6|= D1, which contradicts our initial supposition.

(2) There is a pair (R,ϕ, q) such that (R,ϕ, q) ∈ C2 and (R,ϕ, q) /∈ C1. Then, by the form

of D1 it must be true that S |= ¬ϕ ⇒ S 6|= ϕ. Finally, as D2 includes ϕ we have that

(w, S) 6|= D2, which contradicts our initial supposition.

As every case leads to a contradiction we conclude that ∆D must be deterministic. �

At this point we have our deterministic automaton, despite of this we still need to compute the

emptiness algorithm over it. The way our procedure works is by computing all the reachable sets

of states of the determinized transition relation and check if we reached a final state. The details of

the procedure are shown in Algorithm 7. Besides, as we already proved that the determinization is

correct, we provide a proof for correctness main loop of the algorithm (lines 11-40).

PROOF. By induction on the iterations, the pre and post conditions of the algorithm are defined

bellow:

Preconditions. The set of deterministic rules ∆D and a list Reachable States, con-

taining the sets of states reachable from the rules containing just a TRUE condition.

Moreover, for every rule A(ϕ) → S, the automaton A is deterministic and the the for-

mula ϕ is in disjunctive normal form.

Postconditions. The list Reachable States, containing the sets of all the reachable

states of the automaton.

Besides, let I(k) be the invariant of the procedure defined as follows:

I(k) : At the end of k iterations every state that is in a set of Reachable States is reachable.

We continue by induction on I(k).

101



Base case. Before the loop starts, we have that Reachable States contains all the states

reachable from the rules starting with just a TRUE condition. As every state in the set is reachable

I(0) holds.

Inductive step. Let us assume that I(k) holds and let A(ϕ)→ S be an arbitrary rule in ∆D

such that L(A) 6= ∅. In line 13 the algorithm starts calculating the possible models for ϕ. In order

to do this, the procedure iterates over the clauses of ϕ, let C be an arbitrary conjunctive clause.

C =

(
n∧
i=1
∃qi
)
∧

(
m∧
j=1
∀qj

)

In between lines 15 and 22, the algorithm starts the construction of the minimal satisfying set for

C. The construction of the minimal set is done as follows:

Minimal Set = {A = {qi, q1, . . . qj , . . . , qm}|1 ≤ i ≤ n}

We abuse from the notation to state that eachAi is built by packing exactly one existential state and

every single universal state. Regardless of this, by construction it is clear that Minimal Set |=

ϕ. From line 23 to 24, the algorithm checks if the sets in Reachable States suffice to build

each Ai in Minimal Set. By simple inspection the procedure is correct, it simply checks if

each Ai is a subset of some set in Reachable States. Then, if the set is buildable we add S to

Reachable States. By inductive hypothesis, every state in Reachable States must be reachable

and, as we just used reachable states to construct Minimal Set, then S must be reachable and

I(k + 1) holds.

Correctness. Let us suppose that k = N and we are out of the loop. Then, by the condition

of the loop it is not possible to add any more states toReachable States. Then, as every reachable

state is computed out by reachable states, and we exhausted all the possible states starting by the

initial ones, the set must contain all of them and the postcondition must be true.

Finally, the algorithm simply checks if F ∩ B 6= ∅ for every B ∈ Reachable Sets. Finally,

if a final state is reachable then the language must be nonempty. �

Last proof also give us insight about the complexity upper bound for the emptiness problem.

Since the main loop ends when there are no changes in the set of reachable states, in the worst case

We can compute the path of reachable states giving as witness any string of the horizontal language.

102



the algorithm performs |∆D|×|∆D| iterations. Besides, as we know that the determinization gives

our automaton a blow up of 2|∆|, we get our exponential blow up

O(|∆D| × |∆D|) = O(2|∆| × 2|∆|) = O(22|∆|) = O(2|∆|)

To conclude, as we know it is feasible to translate JSON Schema to QATA in polynomial time

and then check the emptiness problem in EXPTIME, therefore the satisfiability problem for JSON

Schema can be sorted out within the same upper bound.

�

103



Algorithm 7 Emptiness algorithm for QATA.
1: procedure CHECKEMPTINESS(Q,Σ,F ,∆)
2: ∆D := DETERMINIZE(∆) . Determinize the rules of the automaton
3: for (R,ϕ, S) ∈ ∆D do
4: A ← compute the DFA of R . We need this to check emptiness of the horizontal language
5: ϕ← compute the DNF of ϕ . We need this to build a minimal set for the formula
6: end for
7: Reachable Sets = ∅ . Here we store the reachable sets
8: for (A(TRUE)→ S) ∈ ∆D with L(A) 6= ∅ do
9: Reachable Sets = Reachable Sets ∪ {S} . We add the initial states

10: end for
11: repeat . Main loop, iterates exhaustively until no sets can be reached
12: for (A(ϕ)→ S) ∈ ∆D with L(A) 6= ∅ do
13: for C ∈ Clauses(ϕ) do
14: Minimal Set = ∅
15: for ∃q ∈ C do
16: A = ∅
17: A = A ∪ {q}
18: for ∀q ∈ C do
19: A = A ∪ {q}
20: end for
21: Minimal Set = Minimal Set ∪ {A} . We construct a set that satisfies the formula
22: end for
23: Buildable = TRUE
24: for A ∈Minimal Set do
25: Buildable Aux = FALSE
26: for B ∈ Reachable Sets do
27: if A ⊆ B then . Check if the sets can be constructed based on reachable states
28: Buildable Aux = TRUE
29: end if
30: end for
31: if !Buildable Aux then
32: Buildable = FALSE
33: end if
34: end for
35: if Buildable then
36: Reachable Sets = Reachable Sets ∪ {S} . If the set can be built, append it to the list
37: end if
38: end for
39: end for
40: until No states can be added to Reachable Sets
41: for B ∈ Reachable Sets do
42: if F ∩B 6= ∅ then . If a final state is reachable, we accept the automaton
43: return TRUE
44: end if
45: end for
46: return FALSE

104


	Acknowledgements
	LIST OF TABLES
	LIST OF FIGURES
	Abstract
	Resumen
	1. Introduction
	1.1. Background
	1.2. Summary of contributions
	1.3. Thesis outline and structure
	2. Devising a Formal Specification for JSON Schema
	2.1. Notation
	2.1.1. JSON Values
	2.1.2. JSON Pointer
	2.2. Formal Grammar
	2.2.1. Overall Structure
	2.2.2. Strings
	2.2.3. Numeric Values
	2.2.4. Objects
	2.2.5. Arrays
	2.3. Semantics
	2.3.1. Combinations and References
	2.3.2. Strings
	2.3.3. Numeric values
	2.3.4. Objects
	2.3.5. Arrays

	2.4. Well Formedness

	3. Expressiveness
	3.1. Preliminaries
	3.1.1. -Trees
	3.1.2. Non-deterministic Top Down Tree Automata

	3.2. From Automata Theory to JSON Schema
	3.3. From JSON Schema to MSO
	4. Complexity Analysis
	4.1. The Validation Problem
	4.2. The Satisfiability Problem
	4.2.1. The full case
	4.2.2. The non-recursive case
	4.2.3. The non-regular non-recursive case


	5. Concluding remarks
	References
	APPENDIX A. Additional tests and code
	A.1. Four documents and four schemas used for testing
	A.2. Script used to test border cases
	A.2.1. Tester
	A.2.2. is-my-json-valid.js
	A.2.3. json-schema.rb
	A.2.4. ruby_json_schema.rb

	A.3. Reduction from A to JSON Schema
	A.4. JSON Schema validation algorithm
	APPENDIX B. Formal Specification
	B.1. Syntax
	B.1.1. Notation
	B.1.2. Grammar
	B.2. Semantics
	B.2.1. JSON Reference
	B.2.2. Validation
	APPENDIX C. Proofs
	C.1. Proof of Proposition 1 
	C.2. Proof of Theorem 1 
	C.3. Proof of Proposition 3 

	C.4. Proof of Lemma 1 
	C.5. Proof of Theorem 2 
	C.6. Proof of Theorem 3 











