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Abstract. We use a doubling scheme to derive a bound for the ratio of the

2*th eigenvalue to the first for the Dirichlet Laplacian on a bounded domain

iî C R" . The explicit bounds we obtain derive from the optimal bound

(h/h)a < (¿2Mi)n-dimensionaibaii (the Payne-Pólya-Weinberger conjecture) re-

cently proved by us.

Consider the Dirichlet problem on a bounded domain fiel":

-Au=Xu    inQ,

( ' u=0      on <90.

Let its eigenvalues (known to be positive) be denoted by

(2) Xx < X2 < X3 < ■ ■ ■

with a corresponding orthonormal set of eigenfunctions denoted by w, for i =

1,2,3,.... We prove

Theorem. Let k bean integer larger than 1. Then

<3> if < (Í
k     /  a

I    Jn/2,X

n-dimensional ball7 \ Jn/2—X, X

Remarks. We follow Abramowitz and Stegun [1] in denoting the kth positive
zero of the Bessel function Jp(x) by jp,k ■ Our result is much better than the

bound

<4> xfsHr
which follows from the bound

(5) %! < i + 1
Xm n

of Payne-Pólya-Weinberger [15, 16] and Thompson [18] for ratios of consecu-

tive eigenvalues. First, our constant j2,2 x/jh2_x x is less than 1+4/w (in two
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dimensions, for example, we have approximately 2.539 as opposed to 3) and,

second and more importantly, our bound for Xm/Xx grows as a constant to the

power log2 m rather than as a constant to something linear in m . (We should

mention, to be fair, that the approach we present below could be used in con-

junction with the PPW bound X2/Xx <l+4/n to obtain X2k/Xx < (l+4/n)k .)
On the other hand, for large m our bound for Xm/Xx still falls well short of the

behavior cm2/" , the known asymptotic form for Xm/Xx (Weyl [19, 20]). This

is not surprising given that our bound is based only on the (best) bound for

X2/Xx : one can construct examples where Xm+X/Xm is as near as one wants to

the value j\,2 x/j\¡2_x x but such large ratios of consecutive eigenvalues cannot

be maintained in the long term. To put our result in its best light one should

view it not as an asymptotic result but as a rather stringent enforcement of the
fact that no domain can have strings of consecutive eigenvalues such that each

individual ratio Xm+X/Xm is close to what it could be if that ratio alone were

being maximized. Our result, though, is almost certainly not optimal even in

this sense (e.g., the best bound for X*/Xx is probably somewhat less than our

value (j2,2 xlj\n_x x)2 ', cf. our discussion of this point in [7]).

Proof of the Theorem. First we introduce some notation. Since in our proof

we shall use many subdomains of Q, we adopt the notation X¡(D), u¡(D)

to denote the zth eigenvalue and corresponding eigenfunction of D, where as

above the «,'s are taken as an orthonormal set. Only for Q itself do we leave

off this indication of domain-dependence.

Our doubling scheme goes as follows. Start with Í2 and use the two nodal

domains of u2 as new subdomains fí^, Q2K (That u2 has two nodal do-

mains is a direct consequence of Courant's nodal domain theorem, see [12, 10]

for details.) Then in £2,    and £l2   we use the nodal domains of u2(Q,\1') and

u2(Cl2) to arrrve at f°ur new subdomains Q, , Cr2 , Cl[ ', £l['. In general,

after k such subdivisions one arrives at 2k subdomains

(6) af\a2k\...,n<$,

where we agree to arrange them so that

(7) Qf-^flg^uQg*.

Since our domains Qyfc) are disjoint for j = 1, 2, ... , 2k and Q is the union

of their closures we have

Hx(Q[h))®--.®Hx(Slfk))cHx(Q),

where H¿ (D) is used to denote the indicated Sobolev space of functions on the

domain D. For each j = 1, ... , 2k we can use the function ux(Cl^) as a

trial function in H¿ (Q) if we agree to consider it as a function on Q which is

supported in Çtff' and is 0 elsewhere. Then from the 2k linearly independent

functions ux(&P) e H0X(Q) for j = 1, ... , 2k we can construct a nontrivial

linear combination

2*

(8) f = X)c/«i(Û?))
j=x
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which is orthogonal to the first 2k - 1 eigenfunctions of -A on Q, i.e., to

ux, ... ,u2k_x. This makes <p an appropriate trial function for bounding X2k
via the Rayleigh-Ritz inequality

(9) X    <W'f
(9) ¿2,<_^_.

Now by the fact that QJfc) n Q.f] = 0 for i ¿ j it is clear that the ux(Q.f]ys

form an orthonormal set in H0X(Q.) for j = 1, ... , 2k and, moreover, that

(io) [<p2=hcJ
J j=X

and

r 2k

(H) \V<p\2 = ^Xx(^)c2.
J j=X

It is then immediate that

(12) /W < max Xx(Çl^])
X<j<2k '

and then, by the way we generated the Q^'s, that

(13) X2,<(sxxp^\    max   Ai(Of_1)).
\0'CK»^1/ i<;<2*-' J

This follows because we have

(14) A2(rif-1)) = A,(fíg)_1) = A1(flg)).

Continuing in this fashion we arrive at

(15) ^<(sup£)\

which is inequality (3) of our Theorem, by virtue of our proof [4, 5, 8] of the
Payne-Pólya-Weinberger conjecture.   □

Remarks. ( 1 ) One can stop one iteration short of the end in our proof above to

obtain

(16) *2.<t  Jnß'x   »

A2 V^/2-1,1/

and, more generally, if one first divides according to the nodal domains of um

and then uses our doubling scheme k times one arrives at

(17) XJ^<(^LhL.)k }

Am \Jn/2-X,xJ

where l(m) is the function giving the number of nodal domains of um . This

more general inequality is not universal since it contains the domain-dependent

function l(m); indeed, for m > 3 it can (possibly) improve upon (16) only
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if l(m) > 2, which is known to not hold in general (for example, for the n-

dimensional ball one has /(3) = • • • = l(n + 1) = 2 or see the example given

by Courant-Hilbert [12, pp. 455-456]). Note that the m = 1 case of (17) is
inequality (3), while the m = 2 case is (16) (with k + 1 replacing k).

(2) One can improve our bounds (3), (16), and (17) to strict inequalities in

the following cases:

inequality (3) is strict for k > 2,
inequality (16) is strict for k > 2,
inequality (17) is strict for m > 2 and k > 1.

These follow from the fact that if X2/Xx = j\nyXl }\n-X x for some domain in

n dimensions then that domain is an «-dimensional ball. Hence if the doubling

scheme is applied two or more times we can be sure that at least one of them

produces a strict inequality. In the latter two cases for the lowest values of k

allowed above one needs a slightly more involved argument (see [7] for one such

argument).

(3) As in [7], one could base an alternative proof of the Theorem on the

monotonicity property of eigenvalues with respect to added Dirichlet conditions,

in particular, restricting our functions to be 0 on the boundaries of all the £2*- ''s

for j = 1, ... ,2k . This approach yields immediately

X2k < max Ai(ö^),
X<j<2k '

i.e., inequality (12), but from this point of view one cannot obtain strict in-

equalities as done in Remark (2) above without getting into the more detailed

considerations mentioned there.

(4) One could obtain results analogous to those above by taking nodal do-

mains of um(D), where D is a subdomain and iterating the process (much as
was done above using u2(Dys). However, because l(m) can be less than m

(and is, except for finitely many choices of m ; see Pleijel [17] or, for example,

Bandle [10] or Kreith [13]) this procedure does not lead to a tripling, quadru-

pling, ... , scheme. Moreover, since suprjCRn Xm/Xx is not explicitly known for

m > 3, to get numerical values one would typically have to replace this quan-

tity, which will appear to the kth power if k iterations of the process are used,

by an upper bound for it. Aside from the case of X^/Xx (see Marcellini [14] for
the best constant to date for two dimensions and [9] for a discussion in higher

dimensions) little is known in this direction except for what one gets from our

approach above and in [7]. For these two reasons (the first of which is by far

the more compelling) we leave aside the presentation of these other results.

(5) Our ratio results above can also be read as giving lower bounds to the

counting function N(X), where N(X) denotes the number of eigenvalues less

than or equal to X. For X > Xx one has from inequality (3)

( 1 g) N(X) > 2 L^W^i )/ logOn2/2,11 ¡In-1. i )J

for n>2, and, similarly, from (16) one obtains

( 19) /v(¿) > 2 Liog(A/A2)/ xogU2n/2, i Hiß-1, i )J+>.

Here [•] denotes the greatest integer function, i.e., |xj denotes the largest

integer less than or equal to x . These bounds also apply if Xx (respectively X2)

on the righthand side is replaced by an upper bound.
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(6) All the results presented above can be carried over to the eigenvalues

of the Schrödinger operator H = -A + V(x) acting on a bounded domain

in R" with Dirichlet boundary conditions and a nonnegative potential V. In
addition, with suitable modification our results can be extended to more general

elliptic eigenvalue problems. Since these extensions are straightforward, we only

refer the reader to our papers [5, 6, 7] where background material and other

comments appear. For Schrödinger operators with nonnegative potentials the

one-dimensional case is also of interest. Indeed, this is the setting in which
we first studied eigenvalue ratios, and many of the ideas discussed above have

precursors in this setting. For example, the arguments mentioned in Remark (3)

are paralleled to some extent by an alternative approach for the one-dimensional

case that we presented earlier [3] (see also our remarks in the last section of [7])

which was based on a result of Barnsley [11]. Also, in connection with Remark

(4), it should be noted that in the one-dimensional setting doubling, tripling,

... , schemes all not only work but produce optimal bounds. This follows in part

from the fact that one always has l(m) = m in one dimension. In particular, the

doubling and tripling schemes in one dimension were mentioned in our papers

[2, 3] where it was noted that X2/Xx < 4 and X3/Xx < 9 lead to Xm/Xx < m2 for
all integers of the form m = 2a3h , where a and b are nonnegative integers.

In [3] we also gave a proof of Xm/Xx <m2 for m = 2, 3, ... which was based

on a Prüfer transformation and a differential comparison argument.

Note added in proof (10/4/93)

In connection with our reference (in Remark (4) above) to Marcellini's upper

bound for X3/Xx being the best to date, we note that recently we have obtained

a small improvement. Our improved bound and related results will appear in a

forthcoming paper entitled The range of values of X2/Xx and X^/Xx for the fixed
membrane problem.
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