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ABSTRACT

The need for sustainable power systems is driving the adoption of large shares of vari-

able renewable energy. Due to this, there is an increasing necessity for new long-term

planning models that can correctly assess the reserve capacity and flexibility requirements

to manage significant levels of short-term operational uncertainty. Motivated by this key

challenge, this work proposes an adaptive robust optimization model for the Generation

and Transmission Expansion Planning Problem. The proposed model has a two-stage

structure that separates investment and operational decisions, over a planning horizon with

multiple periods. The key attribute of this model is the representation of daily operational

uncertainty through the concept of representative days and an uncertainty set for demand

and the availability of wind and solar power built over such days. Also, the model em-

ploys a DC-power flow representation for the transmission network. This modelling setup

allows an effective representation of the reserve capacity and flexibility requirements of a

system with large shares of renewable energy. To efficiently solve the problem, the col-

umn and constraint generation method is employed. Extensive computational experiments

on a 20-bus representation of the Chilean power system over a 20-year horizon show the

advantages of the proposed robust expansion planning model, compared to an approach

based on deterministic representative days, due to an effective spatial placement of both

variable resources and flexible resources.

Keywords: Generation Expansion Planning, Renewable Energy, Robust Optimization,

Transmission Expansion Planning.
ix



RESUMEN

La necesidad por sistemas sustentables de energı́a está impulsando la adopción de

grandes cuotas de energı́a renovable variable en todo el mundo. Debido a esto, existe una

creciente necesidad de nuevos modelos de planificación a largo plazo que puedan eval-

uar correctamente la capacidad de reserva y los requisitos de flexibilidad para gestionar

niveles significativos de incertidumbre operativa a corto plazo. Motivado por este desafı́o

clave, este trabajo propone un modelo de optimización adaptable robusto para el Problema

de Planificación de la Expansión de la Generación y la Transmisión. El modelo propuesto

tiene una estructura de dos etapas que separa las decisiones de inversión y operación, sobre

un horizonte de planificación con múltiples perı́odos. El atributo clave de este modelo es la

representación de la incertidumbre operativa diaria a través del concepto de dı́as represen-

tativos y un conjunto de incertidumbre para la demanda y la disponibilidad de la energı́a

eólica y solar, construido sobre esos dı́as. Además, el modelo emplea una representación

lineal del flujo de potencia para la red de transmisión. Este modelamiento permite una rep-

resentación efectiva de la capacidad de reserva y de la flexibilidad operacional requeridas

para la operación de un sistema de potencia con grandes cuotas de energı́a renovable. Para

resolver eficientemente el problema de optimización, se emplea un método de generación

de columnas. Extensos experimentos computacionales en una representación de 20 nodos

del sistema eléctrico chileno en un horizonte de 20 años muestran las ventajas del modelo

de planificación de expansión robusto propuesto, en comparación con un enfoque basado

en dı́as representativos deterministas, debido a una colocación espacial efectiva tanto de

recursos variables como de recursos flexibles.

Palabras Clave: Energı́a Renovable, Planificación de la Expansión de la Generación,

Planificación de la Expansión de la Transmisión, Optimización Robusta.
x
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1. INTRODUCTION

1.1. Context

In the recent years, there has been a global need for transitioning to more sustain-

able systems. In this context, power systems play a major role due to their large impact in

greenhouse gas emissions and the fast growth in energy demand due to population growth,

fast developing countries and novel technologies advances, such as the block chain tech-

nology or the electric vehicles industry.

Due to this, several countries have endorsed the adoption of large shares of variable

renewable energy such as wind and solar generation. Also, the investment cost of these

generation technologies has greatly decreased in the last few years. This has further in-

creased their expected penetration in power systems, due to larger private investments.

In spite of the benefits of variable renewable energy, this imposes several challenges for

traditional power systems. First, there is an increased need for flexibility due to increased

ramp requirements, which are a consequence of the variable nature of these energy sources

in addition to the variations in the systems load. Also, the uncertain nature of wind and

solar power, may impose the need for reserve capacity, which can become critical in

days with complicated realizations of the uncertain parameters related to these resources

availability.

Because of the above mentioned reasons, planning power systems in the long term

has become a critical task for ensuring a reliable, sustainable, and cost-effective electricity

supply. This task has become particularly challenging in recent years, due to the significant

levels of uncertainty introduced by large shares of variable renewable energy.
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1.2. Generation and Transmission Expansion Planning

In this context, the Generation and Transmission Expansion Planning (EP) problem

provides a key support for this process. This problem consists on the joint optimization

of investments on generation and transmission infrastructure of a power system over a

given planning horizon to ensure a reliable and cost effective energy supply (Conejo et

al., 2016). The objective function typically consists on minimizing the total costs of the

system, considering both investment and operational costs for the investment decisions.

Thus, in order to correctly asses such decisions, an effective representation of the system’s

operation is required to properly account for the short-term uncertainty and variability

introduced by renewable resources.

The rest of this section presents a review on the scientific literature regarding existing

methodologies to represent the power systems operation and uncertainty within the EP

problem.

1.2.1. Representation of the Operation

The representation of the power system’s operation within the Generation and Trans-

mission EP problem has been extensively studied and several methodologies have been

proposed to address this issue. This task is complex due to the fact that planning hori-

zons usually span over several years (typically 10-20 years). Thus, the representation of

short-term operation in a highly detailed way may cause the EP problem to become com-

putationally untractable.

In this context, early EP models used the concept of the load duration curve and load

blocks, which overlooked the chronology of demand and variable generation profiles in

order to reduce the complexity of the planning problem (Oree et al., 2017).
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Figure 1.1. Load blocks methodology

The idea of the load blocks concept is to simplify the operational conditions through

a discrete set of blocks. This is done by reordering the chronological profile into a de-

creasing function, namely, the duration curve. Then, this duration curve is approximated

by a discrete number of load blocks. Figure 1.1 shows a graphical representation of this

methodology.

As previously mentioned, the load blocks concept disregards the chronology of the

operation. It has been showned that this simplification becomes less useful as the pene-

tration of variable renewable energy increases, where a low level of temporal detail may

have a great impact in the resulting expansion plan (Poncelet et al., 2016). Also, the use

of load blocks is not compatible with generator ramps or commitment constraints within

the EP problem, which may result in the underestimation of the flexibility requirements of

a given power system.

Due to this challenge, recent models have developed new methods for an appropriate

representation of the system’s flexibility requirements, such as system states, representa-

tive blocks or representative days. In specific, the use of a representative set of chronolog-

ically ordered time points has allowed the inclusion of ramp constraints and in some cases

the inclusion of commitment constraints and reserve requirements in long term planning

problems (Belderbos & Delarue 2015, van Stiphout et al. 2017, Jin et al. 2014).
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Figure 1.2. Representative intervals methodology

The idea behind the concept of representative intervals or representative days is to sim-

plify a large number of chronological profiles into a smaller set of data, selected in such a

way that it provides an effective representation of the different operating conditions within

an EP problem. Figure 1.2 provides a graphical representation of this methodology. The

selection of the representative intervals is typically done through a clustering technique.

Note that this approach allows to preserve the operation’s chronology.

1.2.2. Representation of the Uncertainty

Another complex task in EP models is the representation of uncertainty. Due to the

recent concern regarding the operational challenges imposed by large shares of variable

renewable energy, this task has become specially critical for the EP process. Also, due to

the fact that the EP problem usually spans over large planning horizons, forecast errors

in load growth or other relevant parameters are very likely to occur. Thus, the decision

process must take into account the related uncertainty to these parameters.

In the scientific literature regarding the EP problem, the treatment of uncertainty has

been extensively studied. It is possible to classify uncertainties by means of their time

horizon into short-term and long-term uncertainties (Zhang & Conejo, 2018). Short-term

uncertainties may include operational parameters such as renewable resource availability,

hourly load variations, and operational contingencies, among others, while long term un-

certain parameters may include investment costs for different technologies, fuel prices,
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load growth, or even hydro inflows. In particular, large shares of variable renewable en-

ergy greatly increase short-term or operational uncertainty, and neglecting this uncertainty

may lead to significant estimation errors in the system’s costs and unprepared expansion

plans (Nagl et al. 2013; Seljom & Tomasgard 2015).

There are two main approaches to tackle uncertainty in expansion planning problems,

namely, Stochastic Programming (SP) and Robust Optimization (RO). On the one hand,

most SP models use a given set of scenarios to represent the probability distribution of

the uncertain parameters in the EP problem (Gorenstin et al. 1993, Maluenda et al. 2018,

Ahmed et al. 2003). SP is applied mainly to long term uncertainties, due to the fact that

including the required number of operational scenarios to represent short-term uncertainty

may cause the problem to become computationally intractable, specially under long plan-

ning horizons.

On the other hand, RO methods rely on the construction of uncertainty sets to ex-

plicitly represent potential uncertainty realizations, while preparing the system for every

realization in such set by considering complicated scenarios within the uncertainty set.

The combination of load blocks with RO concepts has been used to model uncertainty in

Generation EP (Dehghan et al., 2014), and also in Transmission EP (Jabr 2013, Chen et

al. 2014, Ruiz & Conejo 2015,Chen & Wang 2016). Further, other authors have employed

a set of operational time points in RO models for the Transmission EP (Dehghan et al.

2017, Chatthaworn & Chaitusaney 2017, Zhang & Conejo 2018), and for the Generation

and Transmission EP (Baringo & Baringo 2018, Roldán et al. 2018). Moreover, some

works consider contingency and reliability constraints through the combination of system

states and RO concepts in Transmission EP (Moreira et al. 2015, Wu et al. 2018), and in

Generation and Transmission EP (Moreira et al. 2017, Dehghan et al. 2016).

As mentioned above, the adoption of large shares of variable renewable energy greatly

increase the short-term or operational uncertainty. In this context, modern RO approaches
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are very promising, due to the fact that they allow an explicit consideration of the opera-

tional uncertainty over long planning horizons while maintaining computational tractabil-

ity.

1.2.3. Literature Gap

Despite recent progress, some important gaps remain in the EP literature. In fact, EP

models usually consider various operational simplifications, such as the consideration of a

single future target year as opposed to multi-period models, or the separate consideration

of generation and transmission investment decisions, as opposed to their joint considera-

tion. Further, none of the mentioned RO works in this area consider a daily chronologically

linked operation. This precludes the inclusion of various key operational aspects, includ-

ing generator ramp constraints, which are an essential element of power system flexibility.

Due to this, the main focus of this work is to fill the presented gap through the de-

velopment of an adaptive robust optimization model for the Generation and Transmission

EP problem, considering the use of uncertain representative days to represent short-term

uncertainty and variability, allowing a chronological representation of the system’s opera-

tion, and thus enabling the inclusion of key operational aspects.

The developed model allows an effective balance between the flexibility requirements

motivated by variability, and the reserve capacity requirements motivated by uncertainty

of variable renewable energy sources, thus providing an expansion plan that is able to

effectively accommodate large shares of renewable energy without comprising reliability

standards of the power systems operation. Extensive computational experiments on a

20-bus representation of the Chilean power system show the advantages of the proposed

model as compared to a deterministic representative days approach, due to an effective

spatial placement of variable and flexible resources, and the consideration of key statistical

elements through the constructed uncertainty sets.



7

1.3. Contributions

Finally, the main contributions of this work can be summarized as follows:

(i) We propose a novel two-stage adaptive robust optimization model for the Gen-

eration and Transmission Expansion Planning problem considering an explicit

representation of short-term operational uncertainty and capturing the chronol-

ogy in load and renewable profiles, resulting in a valuable support for the strate-

gic placement of flexible and variable resources.

(ii) We propose a new approach for building uncertainty sets in planning models

based on the concept of representative days, as an effective representation of

load and renewable uncertainty. This is a key element of the proposed planning

model and it can also be employed separately to provide useful insight about

the future operation of days with complicated realizations in load and renewable

resources.

(iii) We provide experimental evidence of the advantages of the proposed model as

compared to an approach based on a given set of deterministic representative

days by studying the performance of these models under 365 days of operation

over multiple planning periods, and under a “complicated day” in the final plan-

ning period. In particular, the results show the effectiveness of the resulting ex-

pansion plan in handling operational uncertainty reliably and in a cost-effective

way.

The remainder of the work is organized as follows. Chapter 2 presents the nomencla-

ture used in the present document. The proposed and studied mathematical models are

presented in Chapter 3. Chapter 4 describes the solution methods and algorithms for the

proposed model. Chapter 5 presents computational experiments on a case study. Final

conclusions and future research topics are presented in Chapter 6.
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2. NOMENCLATURE

This Chapter presents the nomenclature used for the EP models presented in this work.

2.1. Sets and Indexes

e ∈ E: Index and set of planning periods.

d ∈ D: Index and set of representative days.

t ∈ T : Index and set of time points.

b ∈ B: Index and set of buses.

i ∈ G: Index and set of generators.

j ∈ L: Index and set of transmission lines.

ξ ∈ Ξ: Index and set of uncertainty realizations.

GE ⊂ G: Set of existing generators.

GC ⊂ G: Set of candidate generators.

GV ⊂ G: Set of variable generators.

GWind ⊂ G: Set of wind generators.

GSolar ⊂ G: Set of solar generators.

LE ⊂ L: Set of existing transmission lines.

LC ⊂ L: Set of candidate transmission lines.

G(b) ⊂ G: Set of generators at bus b.

U ⊂ Ξ: Uncertainty set for power demand.

A ⊂ Ξ: Uncertainty set renewable capacity factors

2.2. Parameters

CI
ei, C

I
ej: Investment cost for installing candidate generator i and candidate trans-

mission line j in planning period e, respectively (US$/MW).

CE
ei , C

E
ej: Investment cost for expanding existing generator i and existing transmis-

sion line j in planning period e, respectively (US$/MW).
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wd: Relative weight of representative day d. It represents the number of days

which are represented by d in any planning period.

Cg
ei: Variable generation cost for generator i in planning period e (US$/MWh).

CLS
eb : Variable load shedding cost in bus b in planning period e (US$/MWh).

xgi ,xlj: Maximum expansion capacity for generator i and existing line j over the

planning horizon (MW).

IGe ,ILe : Maximum investment budgets for investment in generation and transmis-

sion for planning period e, respectively (US$).

pgei: Base maximum generation capacity for generator i in planning period e

(MW).

αdti: Renewable capacity factor in time point t of representative day d for vari-

able generator i.

rui , r
d
i : Maximum ramp up and ramp down for two consecutive timepoints, re-

spectively, for generator i (MW).

fej: Base power flow limit for transmission line j in planning period e (MW).

M : Big-M parameter.

bj: Susceptance of transmission line j (UNIT).

pDedtb: Load at bus b, for planning period e, representative day d, and time point

t.

Fi: Factor between 0 and 1, indicating the firm capacity fraction of generator

i.

PRM : Planning Reserve Margin.

p̃Dedtb, p̂
D
edtb: Nominal and variability parameters for power demand in bus b in time

point t of representative day d for planning period e

α̃dti, α̂dti: Nominal and variability parameters for renewable capacity factor of gen-

erator i in time point t of representative day d for planning period e.

ΓD,Γv: Uncertainty budget for power demand and capacity factors of variable

generation technology v.
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2.3. Decision Variables

xgei: Investment in generation capacity of generator i in planning period e

(MW)

xlej: Investment in transmission capacity of existiing transmission line j in

planning period e (MW)

zlej: Binary decision for installing a new transmission line j in planning period

e.

pgedti: Power output of generator i in time point t of representative day d in

planning period e (MWh).

pLSedtb: Load shedding in bus b in time point t of representative day d in planning

period e (MWh).

f ledtj: Power flow through transmission line j in time point t of representative

day d in planning period e (MWh).

θedtb: Voltage angle of bus b in time point t of representative day d in planning

period e.



11

3. MATHEMATICAL MODELS

This Chapter presents the studied EP models and their mathematical formulation.

3.1. Modeling Approach

EP models consist of selecting generation and transmission investments over a given

planning horizon in order to minimize total system costs and satisfy various requirements.

Several approaches have been developed for this purpose. The rest of this Chapter presents

a deterministic expansion planning (DEP) model based on the representative days ap-

proach, which then is further extended to consider explicit operational uncertainty in the

robust expansion planning (REP) model. Finally, a novel way of building an uncertainty

set based on the representative days approach is presented. This uncertainty set, consid-

ered on its own, may provide valuable support to the EP process by explicitly finding

complicated realizations of the daily uncertainty.

3.2. Deterministic Expansion Planning

In order to compare the proposed model, we will begin presenting a DEP model, that

employs the concept of representative days. For this, a planning horizon composed of

several planning periods is considered, where the systems operation in each period is rep-

resented through the operation under a representative set of days (namely, representative

days), each of which has a set of chronological time points in it.

3.2.1. Objective Function

min
xg ,xl,zl,pg ,pLS ,θb,f l

,
∑
e∈E

( ∑
i∈GC

CI
ei x

g
eg +

∑
j∈LC

CI
ej z

l
ej+
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∑
i∈GE

CE
ei x

g
eg +

∑
j∈LE

CE
ej x

l
ej+

∑
d∈D

wd
∑
t∈T

(
∑
i∈G

Cg
ei p

g
edti +

∑
b∈B

CLS
eb p

LS
edtb)

)
(3.1a)

The objective function (3.1a) considers investment costs for candidate units and lines,

expansion costs for existing units and lines, and generation and load shedding costs for

every time point in every representative day. Parameter wd represents the weight of rep-

resentative day d, and it corresponds to the number of days in a planning period that such

day represents.

Recall that E ,D, T ,B,G,L are the sets of planning periods, representative days, time

points, buses, generators and transmission lines respectively. Sets GE , GC , LE and LC

correspond to existing generators, candidate generators, existing lines and candidate lines,

hence GE ∪ GC = G and LE ∪ LC = L.

Also, recall that decisions xgei, x
l
ej and zles represent investments in the generation ca-

pacity of generator i, the transmission capacity of transmission line j, and the installation

of a new candidate line s, for planning period e, respectively. The other decisions corre-

spond to operational decisions for every time point t within every representative day d, in

every planning period e, namely generation at each unit (pgedti), power flow through each

line (fedt,l), voltage at each bus (θedtb), and load shedding (pLSedtb).

3.2.2. Investment Constraints

Constraints can be divided into investment-related or operational. This Section presents

the investment constraints of the DEP model. First, (3.1b)-(3.1e) bound the total capacity

over the planning horizon for new investments.

0 ≤
∑
e∈E

xgei ≤ xgi ∀ i ∈ G (3.1b)

0 ≤
∑
e∈E

xlej ≤ xlj ∀ j ∈ LE (3.1c)
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0 ≤
∑
e∈E

zlej ≤ 1 ∀ j ∈ LC (3.1d)

zlej ∈ [0, 1] ∀ j ∈ LC ,∀ e ∈ E . (3.1e)

(3.1f)

Here, (3.1b) limits new capacity for both existing and candidate generation units,

(3.1c) limits new capacity for existing lines, (3.1d) ensures that a candidate line is only

installed once during the planning horizon, and (3.1e) restricts possible values for binary

variable zl. Note that, in contrast with investment in generation units, investment decisions

for transmission lines define different variables for existing and candidate lines (xl and zl,

respectively). This is due to the fact that the voltage angle at both ends of a candidate line

must only be related when such line is built, hence a constraint with a binary behaviour

is needed. For the sake of simplicity no further variables are defined, but expanding an

installed candidate line is a simple extension of the presented model.

Constraints (3.1g)-(3.1h) set investment budgets for generation units and transmission

lines in each planning period, as follows:

0 ≤
∑
j∈LE

CE
ej x

l
ej +

∑
j∈LC

CI
ej z

l
ej ≤ ILe ∀ e ∈ E (3.1g)

0 ≤
∑
i∈GE

CE
ei x

g
eg +

∑
i∈GC

CI
ei x

g
eg ≤ IGe ∀ e ∈ E . (3.1h)

Here (3.1g) sets the investment budget for transmission lines and (3.1h) set the invest-

ment budgets for generation units.



14

3.2.3. Operational Constraints

This section presents the operational constraints considered for the DEP model ( (3.1i)-

(3.1p)). Note that this are formulated for every time point t of every representative day d

in every planning period e.

First, (3.1i) limits the power output of conventional generators to the sum of their

initial capacity and new capacity. For candidate units, the initial capacity is set to zero.

Also, (3.1j) limits the power output of variable renewable generators to their resource

availability, which is given by the product of the maximum capacity and the capacity

factor αdti. Note that αdti is indexed by time point t in representative day d, and represents

the renewable resource profile. Also, recall that GV ⊂ G is the set of variable generators

such as solar or wind generators.

{
0 ≤ pgedti ≤ pgei +

∑
ē≤e

xgē,i ∀ i ∈ G\GV , (3.1i)

0 ≤ pgedti ≤ (pgei +
∑
ē≤e

xgēi)αdti ∀ i ∈ GV ,
}
, (3.1j)

∀e ∈ E , ∀d ∈ D, ∀t ∈ T

Constraint (3.1k) limits the power output changes between two consecutive time points

due to technical ramp limits. This is a key constraint for the consideration of flexibility,

and it is allowed by the consideration of a chronologically ordered operation through the

concept of representative days,

rdi ≤ pgedti − p
g
ed,t−1,i ≤ rui ∀ i ∈ G, t > 0, (3.1k)

∀e ∈ E , ∀d ∈ D, ∀t ∈ T
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Constraint (3.1l) limits the power flow through candidate lines, and (3.1m) limits the

power flow through previously existing lines. Eq. (3.1n) relates voltage angle variables to

power flow variables through a DC power flow model for candidate lines, when such lines

have been installed, using a Big-M model. As mentioned above, this particular constraint

motivates the definition of binary investment variable zl, due to the fact that the voltage

angle at both ends of a candidate line must only be related when such line is installed. In

comparison, (3.1o) determines a DC power flow model for existing lines through a much

more simple equation.

{
−
∑
ē≤e

zlejfej ≤ fedtj ≤
∑
ē≤e

zlejfej ∀ j ∈ LC (3.1l)

− fej −
∑
ē≤e

xlej ≤ fedtj ≤ fej +
∑
ē≤e

xlej ∀ j ∈ LE (3.1m)

−M (1−
∑
ē≤e

zlej) ≤ bj (θedt,j(s) − θedt,j(r)) − fedtj

≤M (1−
∑
ē≤e

zlej) ∀ j ∈ LC (3.1n)

bj (θedt,j(s) − θedt,j(r)) = fedtj ∀ j ∈ LE
}
, (3.1o)

∀e ∈ E , ∀d ∈ D, ∀t ∈ T

Finally, (3.1p) ensures the load balance in every time point.{ ∑
i∈G(b)

pgedti +
∑

j|j(s)=b

fedt,j −
∑

j|j(r)=b

fedt,j

= pDedtb − pLSedtb ∀ b ∈ B
}
, (3.1p)

∀e ∈ E , ∀d ∈ D, ∀t ∈ T

As mentioned above, the operational constraints are formulated in every planning pe-

riod, for every time point of every representative day. The goal of using representative
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days is to provide a chronological, more detailed representation of the operation than

other early EP approaches (such as those based on a load duration curve and load blocks),

while allowing the consideration of different operating conditions, including load or re-

newable profiles, throughout a specific planning period. It has been shown that for power

systems with large shares of renewable energy, the representative days approach is more

adequate for an accurate representation of the system’s requirements and operating con-

ditions, hence providing more efficient expansion plans in comparison with load-block

models (Maluenda et al. 2018, Poncelet et al. 2016, Poncelet et al. 2017).

3.2.4. Planning Reserve Margin

The formulation in (3.1), as presented, considers no explicit uncertainty. It is expected

that the use of representative days, typically selected by a clustering algorithm, will pro-

vide enough information for the model to consider different possible operational situa-

tions. However, for large shares of variable renewable energy, this deterministic approach

may result insufficient.

Due to this reason, it is a common industry practice to consider a deterministic plan-

ning reserve margin (PRM) to prepare the system for errors in peak load forecasting or

other unexpected events (Seventh Northwest Power Plan, 2016). PRM consists on a per-

centage capacity requirement above the system’s peak load (“Reliability Metrics Spec-

ifications Sheet” 2009, Estimating the Economically Optimal Planning Reserve Margin

2015, Long range Energy Alternatives Planning System LEAP n.d.). In this work we will

consider the following equation for the inclusion of such margin:

∑
i∈G

Fi (p
g
ei +

∑
ē≤e

xgē,i) ≥ pDe (1 + PRM) (3.1q)

In (3.1q), pDe corresponds to the system’s net peak load in planning period e. Net load

is calculated as total load minus variable or non-dispatchable generation. The factor Fi is
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included to indicate whether the generation unit i may or may not contribute with reserve

capacity (0 ≤ Fi ≤ 1). A usual approach is to consider that non-dispatchable generators

may not provide reserve capacity (Fi = 0).

3.3. Robust Expansion Planning

As previously stated, an important challenge in EP models is the consideration of op-

erational uncertainty and different operating conditions throughout every planning period.

The presented DEP model considers a planning reserve capacity margin to prepare against

unexpected realizations of short-term uncertainty, and a set of deterministic representa-

tive days to prepare for the different conditions of load and renewable availability. When

finding an optimal expansion plan in DEP, it becomes ideal to consider a large number of

representative days, however, this may cause the problem to lose computational tractabil-

ity. On the other hand, the PRM presented in (3.1q) may be insufficient to capture key

geographical and statistical aspects when planning for excess load or renewable scarcity.

An alternative approach to face these issues is the use of RO techniques.

Motivated by this, the REP model proposed in this work is presented as follows,

min
x∈X

(
c>x+ max

ξ∈Ξ
min

y∈Y (x,ξ)
b>y

)
. (3.2)

In this problem, x = (xg,xl, zl) and X represents DEP investment constraints (3.1b)-

(3.1h). Vector ξ represents a realization of the short-term uncertainty in the operational

constraints of the problem, and Ξ is the uncertainty set for such realizations. In this work,

we consider uncertainty in load and renewable capacity factors, hence ξ = (pD,α). Also,

we take Ξ = U×A, where U is an uncertainty set for load (pD) andA is an uncertainty set

for the capacity factors of the variable renewable units (α). Finally, y = (pg,pLS,f l,θ)

and Y (x, ξ) represents DEP operational constraints (3.1i)-(3.1p) under given investment

decisions (x) as well as given loads and capacity factors of renewable units (ξ).
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The formulation in (3.2) consists of a two-stage robust optimization problem (Zhang

& Conejo 2018, Zeng & Zhao 2013, Lorca et al. 2016, Bertsimas et al. 2013), where the

first stage considers investment decisions and the second stage is an operational problem

where uncertainty is realized in a way that maximizes operational costs. The goal of

this formulation is to immunize the system towards any possible realization within the

uncertainty set Ξ, in other words, it explicitly protects the system against the worst-case

realization of uncertain parameters in such set.

3.4. Uncertainty Sets

Uncertainty sets are a key concept in RO. The idea is that the decisions selected by the

model will be prepared to any realization of uncertainty within such set. In this work, we

consider the following uncertainty set for power demands:

U =
{
pD :

∑
b∈B

∣∣pDedtb − p̃Dedtb∣∣
p̂Dedtb

≤ ΓD
√
|B| (3.3a)

pDedtb ∈ [p̃Dedtb − ΓD p̂
D
edtb, p̃

D
edtb + ΓD p̂

D
edtb] (3.3b)

∀e ∈ E , d ∈ D, t ∈ T
}
,

where ΓD is the uncertainty budget. This parameter allows the control of the level

of conservatism of the solution. Also, p̃Dedtb and p̂Dedtb are, respectively, a nominal value

and a variability parameter for power load in period e, day d, time t and bus b. As an

example, these parameters can be selected using the historical mean and historical standard

deviation.

On the other hand, the uncertainty set for variable generation technologies is defined

as A. In this work, we consider both wind and solar generation as uncertain generation

technologies, and A = AWind ×ASolar, where each individual uncertainty set is described

as follows:
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Av =
{
α :

∑
i∈Gv

|αdti − α̃dti|
α̂dti

≤ Γv

√
|Gv| (3.4a)

αdti ∈ [α̃dti − Γv α̂dti, α̃dti + Γv α̂dti] (3.4b)

∀e ∈ E , d ∈ D, t ∈ T
}
.

Here, i ∈ {Wind,Solar}, and G i ⊂ G is the set of generators corresponding to technol-

ogy i. The structure of the uncertainty set mirrors that of (3.3), with Γi as the uncertainty

budget that determines the size of each set.

Note that these equations consider every time point in every representative day during

the planning period, hence, a realization of the uncertain vector ξ consists of |E| × |D|

daily load profiles for each bus, and daily profiles for the capacity factors of each variable

generator.

This may provide valuable insights on critical conditions for power systems with a

large share of variable renewable energy, by identifying troublesome days and their spe-

cific characteristics in terms of spatial resource availability and the dynamics that cause

the maximization of operational costs.
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4. SOLUTION ALGORITHMS

This Chapter presents an approach for solving an EP problem using the proposed

REP model via a Column and Constraint Generation method and an Alternating Direc-

tion Method.

4.1. Overall Solution Approach

Due to the structure of the REP model, a convenient reformulation is introduced using

the auxiliary variable η:

min
x∈X,η

(
c>x+ η

)
(4.1a)

s.t. η ≥ min
y∈Y (x,ξ)

b>y ∀ ξ ∈ Ξ. (4.1b)

Here, η represents the worst-case operational cost in the objective function (4.1a). The

inclusion of constraint (4.1b) ensures that this cost is that of the worst possible uncertainty

realization within the set Ξ.

Note that given the continuous uncertainty set presented in Section 3.4, the reformu-

lation in (4.1) considers an infinite number of constraints, since there are infinite possible

uncertainty realizations. Fortunately, an effective solution method has been developed for

problems with this structure, namely, the column constraint and generation (CCG) method

(Bertsimas et al. 2013, Zeng & Zhao 2013).

4.2. Column and Constraint Generation

Let S ⊂ Ξ, represent a subset containing a finite number of uncertainty realizations.

Now, consider the following relaxation of the reformulation of REP (4.1):
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min
x∈X,η

(
c>x+ η

)
(4.2a)

s.t. η ≥ min
y∈Y (x,ξ)

b>y ∀ ξ ∈ S. (4.2b)

Here, (4.2b) consists of a finite subset of the infinite number of constraints in (4.1b).

This problem yields a first stage solution, x∗, which consists of an expansion plan prepared

to deal with the worst realization of uncertainty within the subset S.

The CCG method consists of the sequential addition of uncertainty realizations, ξ∗,

to the subset S, until the optimal solution of the relaxation presented in (4.2) remains

invariant. Here, ξ∗ corresponds to the uncertainty realization within Ξ which maximizes

operational costs under a given first stage solution, x∗, and it can be found solving the

following optimization subproblem:

max
ξ∈Ξ

min
y∈Y (x,ξ)

b>y. (4.3)

where y represents operational decisions for every time point of every day during the

expansion horizon.

Let f(x) be the objective value of problem (4.3), or in other words, the operational

cost for the worst realization of uncertainty for fixed first stage investment decisions x).

With this, the CCG method is formally presented in Algorithm 1.

Algorithm 1 CCG solution method for REP
1: k ← 0, S ← ∅
2: repeat
3: (x, η)← optimal solution of the master problem (4.2)
4: Evaluate f(x): ξ∗k+1 ← optimal solution of (4.3)
5: S ← S ∪ {ξ∗k+1}
6: k ← k + 1
7: until f(x) ≤ η
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It has been shown that the CCG algorithm has finite convergence for polyhedral Ξ and

Y (x, ξ) (Zeng & Zhao, 2013), which is the case in this work.

It remains to discuss how to solve the operational subproblem (4.3). Since Y (x, ξ)

is polyhedral, we can take the dual in the inner min problem to obtain an overall bilinear

problem, given that Ξ is also polyhedral. This bilinear problem can be approximately

solved using an alternating direction method.

4.3. Alternating Direction Method

To solve the operational subproblem in (4.3), it is useful to consider the following

reformulation using duality:

max
ξ∈Ξ

min
y

{
b>y : Ay ≥ f +Gx+Hξ

}
(4.4a)

= max
ξ∈Ξ

max
π

{
π> (f +Gx+Hξ) : π>A = b>,π ≥ 0

}
(4.4b)

= max
ξ,π

{
π> (f +Gx) + π>Hξ : ξ ∈ Ξ,π>A = b>,π ≥ 0

}
, (4.4c)

Here, π is the vector of dual variables from the inner minimzation problem in (4.3).

Strong duality of the the inner problem holds if Y (x, ξ) is bounded and non-empty (Ben-

Tal & Nemirovski, 2001). Given the polyhedral uncertainty set and the consideration of

DC power flow, the resulting problem is bilinear, and can be solved approximately using

the alternating direction method.

The alternating direction method consists of an iterative procedure, where two linear

problems are solved consecutively, fixing either the realization of uncertainty ξ or the dual

variables π. For a fixed realization of uncertainty, problem (4.4) becomes the following

linear problem:
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max
π

{
π> (f +Gx) + π>Hξ : π>A = b>,π ≥ 0

}
, (4.5)

and for fixed dual variables, problem (4.4) becomes the following linear problem:

max
ξ

{
π> (f +Gx) + π>Hξ : ξ ∈ Ξ

}
(4.6)

A formal description for the alternating direction method is presented in Algorithm 2.

Algorithm 2 Alternating direction method for (4.4)
1: Choose an initial ξ ∈ Ξ
2: repeat
3: π ← optimal solution of (4.5) with objective θ
4: ξ ← optimal solution of (4.6) with objective θ′

5: until θ′ = θ
6: Output: θ as estimate of f(x) with solution ξ∗

Note that this problem yields, for a given expansion plan x, a realization of the uncer-

tain operational parameters which maximizes the system’s operational cost.

Due to the employed modelling setup, this realization of the operational uncertainty

over the planning period is composed by daily profiles of load and renewable capacity

factors for each representative day in each planning period.

For power systems with large shares of renewable energy, this operational subproblem

may represent a valuable tool for assessing complicated and non-trivial realizations of un-

certainty. As mentioned above, the only necessary condition over the uncertainty set for

the presented solution methodology is that Ξ must be polyhedral. This allows to include,

if needed, various linear constraints in the uncertainty sets definition to model temporal

or spatial correlations, thus allowing an accurate representation of the operational uncer-

tainty. Then, if the representation is effective, the optimal solution of the operational

subproblem will provide valuable information on the loads and renewable sources which
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are more critical for the operation of a given power system. This could allow a better

preparation for facing and understanding such scenarios, thus providing a more reliable

and cost-effective energy supply.
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5. COMPUTATIONAL EXPERIMENTS

This Chapter presents extensive computational experiments comparing the DEP and

REP models with the purpose of understanding how the proposed model can provide sup-

port within the EP process, by finding expansion plans that are effectively prepared for

significant operational uncertainty.

5.1. Case Study

In all experiments we employ a test case that consists of a 20-bus representation of

the Chilean Power System, as presented in Figure 5.1. This test case has 24 transmission

corridors, 136 existing generation units and 178 candidate generation units, and is based

on The New Energy Platform: Analysis of Energy Policy and Technology Scenarios for

Chile (2018). Load and renewable capacity factor profiles for the 365 days of the base

year (2018), load growth for each planning period, and generation and investment costs

are also based on The New Energy Platform: Analysis of Energy Policy and Technology

Scenarios for Chile (2018). Hydraulic generation was considered to be deterministic.

Figure 5.1. 20-bus representation of the Chilean Power System
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5.2. Experimental Setup

A 20-year planning horizon was considered, divided into five planning periods of 4

years each, considering a yearly 6% discount rate in the objective function of DEP and

REP. In order to determine a set of representative days for both models, three clusters and

their respective weights for the 365 days of data for the base year were selected using a

hierarchical clustering technique (Ward Jr, 1963).

Hierarchical clustering consists on choosing a number of subsets within an initial set,

based on a distance measure and a linkage criterion. For this specific case study, the

canberra distance and the complete linkage criterion were considered. Then, the load and

renewable capacity factor profiles for 365 days of the base year were divided into three

separate clusters considering a different number of days in each cluster.

The goal of this process is to build representative days to serve as input for the DEP and

REP models, as an effective way of representing the operating conditions of the system,

thus providing an computationally efficient way of estimating the operational costs over

the planning horizon. The clusters provide a notion over the number of days over the base

year which have similar conditions in terms of load and renewable profiles.

For the DEP model, the medioid of each cluster was selected to to provide the load

and capacity factors for each representative day. This approach has the advantage of con-

sidering real data based days, which better represents the need for flexible resources. For

the REP model, on the other hand, uncertainty sets for each representative day were built

from each cluster considering the hourly average and standard deviation as nominal and

variation parameters for load and capacity factor profiles. This approach has the disad-

vantage of smoothing load and specially renewable resource nominal profiles. However,

through the consideration of a variation parameter, the impact of this simplification is re-

duced, due to the fact that the operational subproblem is able to generate highly variable

profiles within the defined variation parameters.
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Finally, it is important to note that a different number of clusters could be selected,

this will ultimately depend on the focus of the problem and the available computational

resources.

Regarding the generated clusters, Figure 5.2 presents the load profiles, mediod and

uncertainty set considered for each representative day of an example bus (Hualpen).

(a) Day 1 (b) Day 2 (c) Day 3

(d) Day 1 (e) Day 2 (f) Day 3

(g) Day 1 (h) Day 2 (i) Day 3

Figure 5.2. Clustering, medioids and uncertainty sets for load (Hualpen Bus)

Figures 5.2a-5.2c show the clusters and representative days profiles selected from the

365 days of the base year. Figures 5.2d-5.2f show the medioid for each cluster, which cor-

responds to the base load for each representative day in the DEP model. Finally, Figures
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5.2g-5.2i show the nominal and variation profiles for the uncertainty set of each represen-

tative day in the REP model. Recall that the size of the uncertainty set may be enlargened

or tightened through the Γ parameter. In this figure, a value of Γ = 1 was considered, this

is, one standard deviation above and below the nominal value.

(a) Day 1 (b) Day 2 (c) Day 3

(d) Day 1 (e) Day 2 (f) Day 3

(g) Day 1 (h) Day 2 (i) Day 3

Figure 5.3. Clustering, medioids and uncertainty sets for PV (Alto Jahuel)

Figure 5.3 presents the clusters and selected representative days profiles for the capac-

ity factor of an example solar generator (PV Alto Jahuel). Figures 5.3a-5.3c present the

clustered profiles. Figures 5.3d-5.3f present the medioid of each cluster. Finally, Figures
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5.3g-5.3i present the uncertainty set built based on each cluster. Note that the nominal re-

newable profiles are smoother curves than the selected medioids. This becomes specially

observable in 5.3h as compared to 5.3e.

Figure 5.4 presents the clusters and selected representative day profiles for the capacity

factor of an example wind generator (Wind Alto Jahuel).

(a) Day 1 (b) Day 2 (c) Day 3

(d) Day 1 (e) Day 2 (f) Day 3

(g) Day 1 (h) Day 2 (i) Day 3

Figure 5.4. Clustering, medioids and uncertainty sets for wind (Alto Jahuel)

Figures 5.4a-5.4c present the clustered profiles. Figures 5.4d-5.4f present the medioid

of each cluster and, Figures 5.4g-5.4i present the uncertainty set built based on each clus-

ter. Note the higher variability within each cluster of wind capacity factor as compared
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to solar capacity factors in Figure 5.3. This has a special impact on the variation profile

shown in figures 5.4g-5.4i, where considering a value of Γ = 1 allows the operational

subproblem to generate days with very scarse wind resource availability. Also, note that

the nominal curves are smoothened when compared to the selected medioids. As men-

tioned above, this is usually an undesired effect, causing the underestimation of flexibility

requirements. However, the inclusion of the variability parameter may greatly reduce the

impact of this simplification.

It is important to note that it is possible to consider other approach for selecting the

nominal and variability parameters of the uncertainty sets regarding each representative

day. For instance, it is possible to use the medioid profile as the nominal profile, and

build the variability parameter around such curve. In this work, for sake of simplicity

regarding the construction of uncertainty sets, the hourly average and standard deviations

were selected.

Regarding the reserve capacity requirements for the DEP model, the presented PRM

approach was employed. Mini-hydro technology and variable generators such as solar

and wind were not credited with firm capacity for reserve requirements, however, their

expected generation was considered as renewable generation in the calculation of net load.

All models were programmed on Pyomo, a Python-based, open-source optimization

modelling language (Hart et al., 2017), using Gurobi as solver (Gurobi Optimization,

2016). For all cases, we considered a convergence tolerance of 0.1%. All experiments

were implemented in a Dell PowerEdge R360 server with an Intel Xeon CPU E5-2630 v4

processor running at 2.20GHz, and 64 GB of RAM.

In what follows, Section 5.3.1 presents the optimal expansion plans for the proposed

models and their computational efficiency, Section 5.3.2 studies the operational perfor-

mance of the obtained expansion plans using 365 days , and finally Section 5.3.3 presents

a comparative analysis of the different expansion plans when facing a worst-case realiza-

tion of load and renewable sources.
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5.3. Experiment Results

This Section presents and discuss the obtained results using several instances of the

DEP and REP models for the presented Case Study.

5.3.1. Expansion Plans and Computational Performance

This part studies the solution of the proposed REP model, and its comparison to DEP.

To gain insight on each model’s characteristics, the EP problem was solved for various

levels of PRM in DEP, and various levels of Γ in REP.

First, Table 5.1 presents the running time and number of master iterations needed until

convergence of Algorithm 1 for the proposed REP model, under different values for the

uncertainty budget.

Table 5.1. Computational performance of the proposed model

REP Γ = 0.5 Γ = 0.75 Γ = 1.0 Γ = 1.25

Running time (h) 7.95 10.9 11.2 9.92

Master iterations 6 7 6 6

From this Table, it can be observed that solving time does not vary significantly with

the uncertainty budget, in spite of the fact that some values of Γ require larger computa-

tional efforts and a higher number of master iterations until convergence. Note that solv-

ing time for the DEP model is not presented due to scale, given the fact that it is solved

in minutes for all tested values of PRM. While maintaining tractability, the proposed REP

model requires a significant computational effort in comparison to the tested DEP model.

Possible approaches to reduce the computational time, such as relaxing the convergence

tolerance or decomposition techniques, may be implemented to improve this aspect, but

this is out of the focus of this work and will be subject of future work.
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Regarding the convergence of the CCG algorithm for the proposed REP model, Figure

5.5 presents the operational cost in the objective function against the operational cost con-

sidering the worst realization of uncertainty for every representative day over the planning

horizon.

(a) Γ = 0.5 (b) Γ = 0.75

(c) Γ = 1 (d) Γ = 1.25

Figure 5.5. Worst operational cost and operational cost in the objective
function for each master iteration of the CCG algorithm

In this Figure, note that the total cost under the worst scenario significantly decreases

for the first 3 iterations for every solved instance. Afterwards, the difference between the

objective value and the total cost under the worst scenario becomes smaller and it requires

3 or 4 additional iterations to converge for the predefined convergence tolerances of 0.1%.
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This shows how critical the first scenarios become as they are included in the planning

problem for REP. It also shows that for a more relaxed convergence criteria, running times

could significantly diminish, considering the fact that as the number of iteration increases,

more computational effort is required since the model grows in number of variables and

constraints.

(a) Γ = 0.5 (b) Γ = 0.75

(c) Γ = 1 (d) Γ = 1.25

Figure 5.6. Optimality gap for each master iteration of the CCG algorithm

This insight is further supported by Figure 5.6. This figure shows the optimality gap

through the master iterations for various levels of Γ. The optimality gap is estimated as

the percentual difference between the lower and upper bounds of the operational cost.
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These bounds are, respectively, the operational cost in the objective function of the master

problem and the worst operational cost for the current expansion plan estimated through

the operational subproblem. Note that these values were explicitly presented in Figure 5.5.

From Figure 5.6, it can be observed that after 4 iterations all instances of the EP

problem converge below a 5% optimality gap threshold. After 5 iterations, almost all

instances converged below a 1% optimality gap threshold, except for the instance consider-

ing Γ = 0.75, which needed one additional iteration until total convergence in comparison

to every other REP solution (7 vs. 6). These results show that relaxing the convergence

tolerance (set to 0.1% in this work) could greatly reduce the computational times pre-

sented in 5.1, due to the previously mentioned fact that the last iterations are the most

expensive from a computational perspective. Specifically, the first 4 iterations presented

total running times between 1.65 and 2.65 hours for all solved instances.

Regarding the objective function of the tested models, Table 5.2 presents the cost struc-

ture for the solutions obtained by the DEP and REP models.

From this table, it can be observed that investment cost and investment on generation

capacity increases for more conservative solutions (i.e. as PRM or Γ increase). However,

investment on transmission capacity does not follow this trend in the REP model, decreas-

ing when Γ shifts from 1.0 to 1.25. This is due to the fact that transmission investments get

postponed due to increased generation reserve capacities. Also, note that the operational

costs in the objective function are not comparable between DEP and REP models, since

this value is an estimation of real operation in DEP, whereas in REP it represents the worst

operational cost as determined by the uncertainty set. Thus, the operational costs increase

with Γ in the REP model, but decrease with PRM in the DEP model.

Regarding the obtained expansion plans, Figure 5.7 presents the final generation ca-

pacity mix for a conservative and non-conservative solution for both the DEP model (15%

and 45% PRM) and for the REP model (Γ = 0.50 and Γ = 1.25).
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Table 5.2. Cost decomposition for DEP and REP

DEP 15% PRM 25% PRM 35% PRM 45% PRM

Gen Inv. (MM $) 11,107 11,272 11,616 12,178

Line Inv. (MM $) 5.6443 5.8749 6.1317 6.4246

Inv. Cost (MM $) 11,112 11,278 11,622 12,184

Op. Cost (MM $) 17,132 17,073 16,852 16,517

Total Cost (MM $) 28,360 28,467 28,591 28,818

REP Γ = 0.5 Γ = 0.75 Γ = 1.0 Γ = 1.25

Gen Inv. (MM $) 11,546 11,970 12,343 12,927

Line Inv. (MM $) 5.2057 5.9421 6.0166 5.9851

Inv. Cost (MM $) 11,551 11,976 12,349 12,933

Op. Cost (WC) (MM $) 18,907 19,860 20,910 21,671

Total Cost (WC) (MM $) 30,487 31,860 33,286 34,629

Observe from this Figure that for the DEP model, a low PRM results in a highly re-

newable mix. When shifting towards a higher PRM, the investment in variable renewable

capacity increases (10.4 GW vs 11.5 GW in wind, 5.7 GW vs 6.0 GW in solar), together

with an increased investment in firm generation capacity, particularly in gas generation

technology (1.0 GW vs 3.3 GW). This is due to the fact that renewable generation reduces

net load, thus lowering reserve requirements, and also gas generation units present the

cheapest capacity investment, thus these units are the most cost-effective way of satisfy-

ing the PRM requirement. It is important to recall that flexibility and energy requirements

are equivalent for both DEP instances, so all the changes in investment between DEP with

PRM 15% and DEP with PRM 45% are motivated by reserve capacity requirements. Re-

garding the REP model, Γ = 0.5 provides a highly renewable mix as well, but considering
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Figure 5.7. Generation capacity mix under DEP and REP in the last plan-
ning period

more investments on solar (7.1 GW) and less investments on wind (7.9 GW) than both

DEP models. This is due to the fact that wind generation gets penalized, even in the non-

conservative solution of the REP model, because it presents a higher variability through

the year than solar generation. This is also observed when comparing the conservative

REP solution (Γ = 1.25) with the non conservative REP solution (Γ = 0.5), where wind

is further penalized (4.3 GW vs 7.8 GW), in addition to increased investments in reserve

capacity through coal (5.7 GW vs 4.1 GW) and total gas (1.5 GW vs 0.8 GW) generation

capacity.

Further analyzing the obtained expansion plans, Figure 5.8 presents the spatial place-

ments of generation capacity investments, for the most conservative and non-conservative

solutions of DEP and REP. In this Figure, the x-axis spans the different buses of the

Chilean power system from north to south.

From Figs. 5.8a and 5.8b it can be observed that both the conservative and non con-

servative DEP solutions present an extremely similar placement of renewable resources.

The main difference between these expansion plans lies in an increased investment in gas

generation throughout the power system. As mentioned above, this investment is induced

by the fact that, for this case study, gas technology is the cheapest capacity investment
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(a) DEP (15% PRM)

(b) DEP (45% PRM)

(c) REP (Γ = 0.5)

(d) REP (Γ = 1.25)

Figure 5.8. Spatial distribution of generation capacity investments under
DEP and REP (from north to south)
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and thus it is the most cost-efficient way of meeting PRM requirements. In contrast, from

Figs. 5.8c and 5.8d it can be observed that for REP: i) There is fewer wind investments

under the conservative solution, due to its higher variability (as discussed above), and ii)

Under the conservative solution, the associated risk of uncertain generation is diversified

by spreading solar investments across several buses in the system. Also, the additional

firm generation capacity of the conserative REP solution is installed in a different form as

compared to the conservative DEP solution, in terms of both spatial location and type of

generation.

From the above results, we can observe a different approach towards understanding

flexibility and reserve requirements from the DEP and REP models. This is explained

by the fundamental difference in their representation of operational uncertainty. In par-

ticular, we observed a diversified spatial distribution of both variable renewable and firm

generation capacities under the conservative REP model. In what follows, we provide

experimental evidence of the impact of this modelling approach in the system’s future

operation.

5.3.2. Operational Performance over the Planning Horizon

This part studies the operational performance of the expansion plans obtained by DEP

and REP over the planning horizon under 365 days for each planning period. To perform

this analysis, real data for 365 days in the base year, in combination with a load growth

factor, were used to generate daily operational profiles for both load and renewable ca-

pacity factors for a total of 365 future days in each planning period. Using this data, an

economic dispatch problem was solved for every day over the whole planning horizon, for

a total of 1825 days of operation (365 days multiplied by 5 planning periods). The costs

are extrapolated to represent the fact that each planning period has a duration of 4 years.

Note that this experimental setup allows the evaluation of the operational performance and

the total costs of the expansion plans obtained by DEP and REP over the planning horizon,

for a particular realization of the uncertain parameters. In fact, it shows the operational
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outcomes of the planned systems if the future uncertain parameters were realized follow-

ing the true data from the base year (which was used to define the representative days in

DEP and REP).

Table 5.3 presents the total cost, the investment cost, the operational cost, the fre-

quency of load shedding (LS), the total LS, and the cost associated with LS, for DEP and

REP under various values of PRM and the uncertainty budget Γ, respectively. The total

cost is calculated as the sum of the investment cost and the operational cost. The invest-

ment cost is obtained directly from the solutions of DEP and REP, respectively, and the

operational cost and other operational metrics are based on the evaluation of the obtained

expansion plans over 365 days for every planning period, as explained above.

Note from this Table that the lowest total cost is achieved by the REP model consid-

ering Γ = 0.75. The DEP model achieves its lower total cost considering a 35% PRM,

but it incurs in higher LS frequency and total LS. Also, notice the decrease in operational

cost, LS frequency and total LS, and the increase in the investment cost, as the solutions

become more conservative in both DEP and REP models (as PRM and Γ increase, re-

spectively). Recall that these results are for the whole planning horizon. The rest of this

Section focus on the final planning period, which is of interest since it is where the power

system presents the largest shares of variable renewable energy.

Figure 5.9 presents a visual comparison of the daily cost histograms for the 365 days

of operation in the last planning period under DEP and REP, under different levels of

conservatism. The heights and colors of the bars represent the frequency for each bin in

the histogram. Note that the last bin includes outlier values for scale.

From Fig. 5.9a, it can be observed that as PRM increases, the DEP model manages to

eliminate the days with operational costs above 8 MM $ due to the increased investments

in additional generation capacity. However, the daily operational cost remains highly

variable throughout the year, specially in comparison to the REP model, as shown in Fig.
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Table 5.3. DEP and REP performance over the planning horizon under 365
days of operation in each planning period

DEP 15% PRM 25% PRM 35% PRM 45% PRM

Total Cost (MM$) 31,364 29,132 28,708 28,819

Inv. Cost (MM $) 11,112 11,278 11,622 12,184

Op. Cost (MM$) 20,251 17,854 17,086 16,634

LS Frequency (Days %) 12.1 4.77 1.59 0.05

Total LS (GWh) 1,532 321.1 44.54 0.467

LS Cost (MM$) 6,067 1,272 176.4 1.849

REP Γ = 0.5 Γ = 0.75 Γ = 1.0 Γ = 1.25

Total Cost (MM$) 28,621 28,571 28,822 28,920

Inv. Cost (MM $) 11,551 11,976 12,349 12,933

Op. Cost (MM$) 17,070 16,596 16,473 15,988

LS Frequency (Days %) 5.10 0.60 0.38 0.05

Total LS (GWh) 176.3 6.064 5.438 0.558

LS Cost (MM$) 698.1 24.02 21.54 2.209

5.9b. In fact, the proposed REP model presents a considerably more stable operational

cost throughout the year.

This insight is further supported by the results presented in Figure 5.10. This fig-

ure presents the LS histograms for the 365 analyzed days in the final planning period of

DEP and REP models for different levels of conservatism. The value of 0% LS has been

removed from these histograms. Note that the last bin includes outlier values for scale.
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(a) DEP

(b) REP

Figure 5.9. Histogram for the daily operational cost of DEP and REP under
365 days of operation in the last planning period

In this figure, it can be observed that for most of the tested DEP model solutions there

is a large number of days with LS. In contrast, most of the REP model solutions are able to

greatly reduce the number of days with LS. Notably, the comparison between the solutions
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(a) DEP

(b) REP

Figure 5.10. Histogram for the daily load shedding percentage of DEP and
REP under 365 days of operation in the last planning period (the value of
0% has been removed from these histograms)

with lower total cost for the whole planning period, (DEP considering 35% PRM and REP
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considering 0.75Γ ) shows the effectiveness of the proposed model to prepare for various

realizations of operational uncertainty without comprising operational standards.

To further understand the variability of the operational costs achieved by DEP and

REP, Table 5.4 presents the maximum daily operational cost and the average of the 36

days with the highest operational cost, over the 365 days of operation in the final planning

periods.

Table 5.4. DEP and REP performance for the days with higher costs in the
final planning period

DEP 15% PRM 25% PRM 35% PRM 45% PRM

Max Daily Cost (MM$) 85.39 41.08 17.75 7.687

Max 36 Avg. Cost (MM $) 35.04 15.01 7.421 6.011

REP Γ = 0.5 Γ = 0.75 Γ = 1.0 Γ = 1.25

Max Daily Cost (MM$) 22.11 7.644 7.122 5.864

Max 36 Avg. Cost (MM $) 9.199 4.816 5.131 4.717

It can be observed that all the expansion plans obtained under DEP incur in very high

operational costs under such worst 36 days. Only the most conservative solution, with a

PRM of 45%, manages to reduce the max daily cost value below the 8 MM $ threshold,

but still maintaining a high average cost under the worst 36 days. When compared to the

proposed REP model, only the least conservative solution (Γ = 0.5) incurs in higher costs

than the most conservative DEP solution; in fact, every other REP solution performs better

under both metrics. These results further support the notion that the proposed REP model

is significantly better prepared for high levels of operational uncertainty.

Finally, if we compare the best DEP and REP solutions in terms of total cost (consid-

ering a 35% PRM and Γ = 0.75, respectively), we can observe that REP achieves a 0.86%
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lower total cost. Moreover, regarding metrics related with reliability (LS frequency, total

LS) and cost stability in the final planning period, a significant difference can be observed

in favour of the REP model, providing experimental evidence of its potential impact to

support the EP process.

As previously mentioned, the experimental setup considered in the present subsection

allows to gain insights on the tested models performance for an expected realization of the

operational uncertainty, this is, considering an accurate prediction of load growth factor

and facing the same uncertainty realizations as the data used for building the representative

days. The following Section provides experimental evidence of the advantages of using

the proposed REP as compared to a deterministic representative days approach, under a

complicated and unexpected realization of the operational uncertainty.

5.3.3. Operational Performance under a Worst-Case Day

In Section 5.3.2 we studied the operational performance of the expansion plans ob-

tained from the DEP and REP models under 365 days in every planning period, where the

load and capacity factor profiles of such days were directly extrapolated from actual data.

We are now interested in studying the operational performance of DEP and REP under a

“worst-case day”. To perform this analysis, an uncertainty set was built using the hourly

average and standard deviation through the 365 days of data, to select the nominal and

variability parameters in this set. Then, the min-max operational subproblem (4.3) was

solved under the various DEP and REP expansion plans, considering different levels of

conservatism. The uncertainty budget for this operational subproblem was set to Γ = 1.

Then, the operation of each plan under the obtained worst-case day was analyzed. Note

that this experimental setup allows to individually find the worst daily realization (in terms

of operational cost) of uncertain parameters for each tested expansion plan, and evaluate

the operational performance of these models under such realization. This provides a notion

of how much operational costs could vary under unexpected and complicated realizations

of operational uncertainty.
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Table 5.5 presents the cost decomposition and load shedding (LS) for the operation of

DEP and REP under the nominal day (based on the nominal parameters of the uncertainty

set) and under the worst-case day, in the final planning period.

Table 5.5. Operational performance of DEP and REP under a nominal and
a worst-case day in the last planning period

DEP 15% PRM 25% PRM 35% PRM 45% PRM

Nominal Op. Cost (MM $) 3.212 3.071 2.997 2.935

Worst Op. Cost (MM $) 114.9 58.95 18.17 8.848

Worst Gen Cost (MM $) 6.812 8.145 8.768 8.848

Worst LS Cost (MM $) 108.1 50.80 9.404 0.0

Worst LS (Load %) 5.6 2.6 0.5 0.0

REP Γ = 0.5 Γ = 0.75 Γ = 1.0 Γ = 1.25

Nominal Op. Cost (MM $) 2.938 3.308 3.769 3.560

Worst Op. Cost (MM $) 27.76 5.498 5.565 5.335

Worst Gen Cost (MM $) 5.657 5.498 5.565 5.335

Worst LS Cost (MM $) 22.11 0.0 0.0 0.0

Worst LS (Load %) 1.1 0.0 0.0 0.0

In this Table, it can be observed that under the nominal values of uncertain parameters,

the DEP model has a similar performance as compared to the proposed REP model. How-

ever, under the worst-case day, the difference between DEP and REP becomes critical.

Only the most conservative solution of DEP, considering a 45% PRM, manages to reduce

LS to zero, whereas the only expansion plan obtained through the REP model that incurs

in LS is the least conservative one (Γ = 0.5). Every other solution obtained through the
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proposed REP approach manages to avoid LS under a worst-case day. Further, for this

specific uncertainty set, the expansion plans provided by the REP model with Γ ≥ 0.75

are able to maintain operational costs under 6 MM $, whereas the best DEP model solu-

tion, even though managing to avoid LS, still incurs in a considerably higher generation

cost, over 8 MM $. This is due to the conceptual differences in the modelling approach,

specifically, the fact that the proposed REP model estimates reserve capacity requirements

by optimizing real operation under inconvenient realizations of uncertainty and adjusting

investment decisions for a reliable and cost-efficient operation under such scenarios.

Recall from subsection 5.3.2 that under 365 days of operation for each planning period

over the whole planning horizon, considering an expected realization of uncertain param-

eters, the proposed REP model achieved lower total costs and a more stable operation,

specially for the last planning period. In addition to this, the proposed REP model has a

more reliable and cost-efficient operation under unexpected worst-case daily realizations

of the operational uncertainty. Thus, it may be concluded that the proposed REP approach

provides expansion plans which are better prepared to deal with various realizations of

the operational uncertainty, especially for power systems with large shares of variable

renewable energy, at a lower total expected cost as compared to a deterministic represen-

tative days approach. As presented in subsection 5.3.1, this is due to a comprehensive

understanding of key statistical and spatial aspects regarding the specific flexibility and

reserve-capacity requirements for a given power system.
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6. CONCLUSIONS AND FINAL REMAKRS

This Chapter presents the main conclusions and discuss possible future research topics

related to this work.

6.1. Conclusions

We have developed an adaptive robust optimization model for the multi-period Gener-

ation and Transmission EP problem, considering the use of uncertain representative days

as an effective representation of the operational uncertainty and the flexibility and reserve

capacity requirements needed to provide a reliable energy supply in systems with large

shares of variable renewable energy.

This problem may be efficiently solved using the CCG method. Extensive compu-

tational experiments on a 20-bus representation of the Chilean Power System show the

effectiveness of the proposed REP model under different realizations of the short-term

uncertainty.

The modeling framework is innovative, specially regarding the joint consideration of

load and renewable profiles chronology and the uncertain nature of operational parame-

ters, which result on a endogenous comprehension of both flexibility and reserve capacity

requirements for a given power system.

Finally, through a comparative analysis of the operational performance under 365 days

of operation for each planning period over the whole planning horizon, and the operational

performance under a worst-case day, we provide experimental evidence of the advantages,

both in costs and security of energy supply, of the proposed REP model, as compared to

a deterministic representative days approach with a planning reserve margin, due to an

effective spatial placement of variable and flexible resources, and explicit penalization of

variability between different renewable resources.
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6.2. Future Work

Regarding future work, remaining challenges include further operational detail on un-

certain representative days, such as commitment constraints (through convex relaxations

or other computationally efficient approach) or alternate current power flow, the inclu-

sion of outages and extreme events in additional uncertainty sets, and the extension of

the model to consider long term uncertainties. Also, the reduction of computational times

may be studied via decomposition techniques or other approaches.

Real applications of interest, given the characteristics of the proposed model, could

regard optimal battery placement and the study of the interaction between the REP model

and renewable portfolio standards, where the effective consideration of spatial and sta-

tistical aspects of the system may become critical. Also, the presented operational sub

problem may be a useful tool for real power systems to identify complicated realizations

of the operational uncertainty.
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