
Charmonium in the vector channel at finite temperature from QCD sum rules

C.A. Dominguez,1,2 M. Loewe,3 J. C. Rojas,4 and Y. Zhang1

1Centre for Theoretical Physics and Astrophysics, University of Cape Town, Rondebosch 7700, South Africa
2Department of Physics, Stellenbosch University, Stellenbosch 7600, South Africa

3Facultad de Fı́sica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile
4Departamento de Fı́sica, Universidad Católica del Norte, Casilla 1280, Antofagasta, Chile

(Received 25 August 2009; revised manuscript received 12 December 2009; published 13 January 2010)

Thermal Hilbert moment QCD sum rules are used to obtain the temperature dependence of the hadronic

parameters of charmonium in the vector channel, i.e. the J=c resonance mass, coupling (leptonic decay

constant), total width, and continuum threshold. The continuum threshold s0, which signals the end of the

resonance region and the onset of perturbative QCD, behaves as in all other hadronic channels, i.e. it

decreases with increasing temperature until it reaches the perturbative QCD threshold s0 ¼ 4m2
Q, withmQ

the charm quark mass, at T ’ 1:22Tc. The rest of the hadronic parameters behave very differently from

those of light-light and heavy-light quark systems. The J=c mass is essentially constant in a wide range of

temperatures, while the total width grows with temperature up to T ’ 1:04Tc beyond which it decreases

sharply with increasing T. The resonance coupling is also initially constant and then begins to increase

monotonically around T ’ Tc. This behavior of the total width and of the leptonic decay constant provides

a strong indication that the J=c resonance might survive beyond the critical temperature for

deconfinement.
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I. INTRODUCTION

A successful quantum field theory framework to extract
hadronic information from QCD analytically is that of
QCD sum rules [1]. This technique is based on the operator
product expansion (OPE) of current correlators beyond
perturbation theory, and on Cauchy’s theorem in the com-
plex energy plane (quark-hadron duality). This program
was first extended to finite temperature in [2]. It is based on
two basic assumptions, (a) that the OPE continues to be
valid, with the vacuum condensates developing a tempera-
ture dependence, and (b) that no thermal singularities
appear in the complex energy plane, other than on the
real axis, i.e. the notion of quark-hadron duality also
remains valid. Field theory evidence in support of these
assumptions was provided later in [3]. Numerous applica-
tions of QCD sum rules at finite temperature have been
made over the years [4–6], leading to the following sce-
nario for light-light and heavy-light quark hadrons. (i) As
the temperature increases, hadronically stable particles
develop a non-zero width, and resonances become broader,
diverging at a critical temperature interpreted as the de-
confinement temperature (Tc). This width is a result of
particle absorption in the thermal bath, and resonance
broadening at finite temperature was first proposed in [7].
(ii) Above the resonance region the continuum threshold in
hadronic spectral functions, i.e. the onset of perturbative
QCD (PQCD), decreases monotonically with increasing
temperature. In other words, as T ! Tc hadrons melt dis-
appearing from the spectrum, which then becomes smooth.
(iii) Additional support for this picture is provided by the
behavior of hadronic couplings, or leptonic decay con-
stants, which approach zero as T ! Tc. Also, hadronic

and electromagnetic mean-squared radii diverge at Tc [8]
indicating deconfinement. On a separate issue, QCD sum
rules in the axial-vector channel have provided (analytical)
evidence for the (almost) equality of the critical tempera-
tures for deconfinement and chiral-symmetry restoration
[9]. Contrary to this revealing behavior of widths and
couplings, the mass does not appear to offer any relevant
information about deconfinement. In fact, in most cases it
increases or decreases, sometimes slightly, with increasing
T. Conceptually, given either the emergence or the broad-
ening of an existing width, together with its divergence at
Tc, the concept of mass looses most of its meaning.
At this stage it must be pointed out that in the framework

of QCD sum rules the critical temperature for deconfine-
ment, referred to above, is only a phenomenological pa-
rameter. It is the temperature at which the resonance
couplings and the continuum threshold approach zero,
and the widths increase sharply, for light-light and heavy-
light quark correlators. Hence, it need not coincide numeri-
cally with e.g. the critical temperature obtained in lattice
QCD [10], which is defined differently. In fact, results from
QCD sum rules lead to values of Tc somewhat lower than
those from lattice QCD. Hence, comparisons between
different frameworks should be made in terms of the
dependence of parameters on the ratio T=Tc.
Turning to heavy-heavy quark hadrons at finite T, in

principle one would expect them to behave differently
from the light-light and heavy-light quark systems for the
following reasons. The T dependence of the latter in the
PQCD sector is dominated by the spectral function in the
timelike region, the so-called annihilation term, which is
anyway relatively unimportant in relation to the light quark
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condensate contribution. The PQCD spectral function in
the spacelike region (scattering term) is highly suppressed.
For heavy-heavy quark systems this is not the case; the
scattering term becomes increasingly important with in-
creasing temperature while the annihilation term only con-
tributes near threshold. In the nonperturbative QCD sector
of light-light and heavy-light quark correlators, the driving
term in the OPE is the light quark condensate. This term is
responsible for the behavior of the continuum threshold, as
it follows that s0ðTÞ=s0ð0Þ ’ hh �qqii=h �qqi [5–8]. This scal-
ing relation is rather important as the thermal light quark
condensate is the order parameter for chiral-symmetry
restoration. In contrast, for heavy-heavy quark correlators
the leading power correction in the OPE is that of the gluon
condensate, which has a very different temperature behav-
ior. This expectation about a different temperature behav-
ior of heavy-heavy quark systems is shown here to hold for
the case of the J=c . Using Hilbert moment QCD sum rules
we obtain the J=c hadronic parameters at finite tempera-
ture. With the exception of the continuum threshold, we
find a very different behavior from that of light-light and
heavy-light quark systems. The continuum threshold,
s0ðTÞ, does decrease with increasing T, being driven by
the gluon condensate and the PQCD spectral function in
the spacelike region, until it reaches the PQCD threshold
s0 ¼ 4m2

Q, where mQ is the charm quark mass, at T ’
1:22Tc. The J=c mass remains basically constant. The
width and the coupling are almost independent of T up to
T ’ 0:8Tc where the width begins to increase substantially,
but then above T ’ 1:04Tc it starts to decrease sharply, and
the coupling increases also sharply. This behavior, which
can mostly be traced to that of the PQCD spectral function
in the spacelike region, points to the survival of the J=c
resonance above the deconfinement temperature. However,
the QCD sum rules have no longer solutions for the had-
ronic parameters once the continuum threshold reaches the
value s0jmin ¼ M2

J=c , as there is no longer any support for

the integrals. Hence, the temperature range explored with
this technique does not extend beyond T ’ 1:22Tc. Given
the importance of the PQCD spectral function in the space-
like region, it should be realized that nonrelativistic ap-
proaches to charmonium at finite temperature will most
probably miss this contribution. In fact, the complex en-
ergy plane in the nonrelativistic case would only have one
cut along the positive real axis, which would correspond to
the timelike (annihilation) region of PQCD. The spacelike
contribution [q2 ¼ ð!2 � jqj2Þ � 0] in the form of a cut in
the energy plane centered at the origin for �jqj � ! �
jqj, would not be present in the nonrelativistic case.

II. HILBERT MOMENT QCD SUM RULES

We consider the correlator of the heavy-heavy quark
vector current at finite temperature

���ðq2; TÞ ¼ i
Z

d4xeiqx�ðx0Þhhj½V�ðxÞ; Vy
� ð0Þ�jii

¼ �ðg��q
2 � q�q�Þ�ðq2; TÞ; (1)

where V�ðxÞ ¼ : �QðxÞ��QðxÞ:, and QðxÞ is the heavy

(charm) quark field. The vacuum to vacuum matrix ele-
ment above is the Gibbs average

hhA � Bii ¼ X
n

expð�En=TÞhnjA � Bjni=Trðexpð�H=TÞÞ;

(2)

where jni is any complete set of eigenstates of the (QCD)
Hamiltonian. We shall adopt the quark-gluon basis, as this
allows for the standard QCD sum rule program to be
smoothly extended to finite temperature [3].
The imaginary part of the vector correlator in perturba-

tive QCD (PQCD) at finite temperature, Im�ðq2; TÞ, in-
volves two pieces, one in the timelike region (q2 � 4m2

Q),

Im�aðq2; TÞ, which survives at T ¼ 0, and one in the
spacelike region (q2 � 0), Im�sðq2; TÞ, which vanishes
at T ¼ 0. A straightforward calculation in the timelike
region, to leading order in PQCD, gives

1

�
Im�aðq2;TÞ ¼ 3

16�2

Z v

�v
dxð1� x2Þ

�
1�nF

�jqjxþ!

2T

�

�nF

�jqjx�!

2T

��
; (3)

where v2 ¼ 1� 4m2
Q=q

2, mQ is the heavy quark mass,

q2 ¼ !2 � q2 � 4m2
Q, and nFðzÞ ¼ ð1þ ezÞ�1 is the

Fermi thermal function. In the rest frame of the thermal
bath, jqj ! 0, the above result reduces to

1

�
Im�að!; TÞ ¼ 1

8�2
vð3� v2Þ½1� 2nFð!=2TÞ�

� �ð!� 2mQÞ: (4)

The quark mass is assumed independent of T, which is a
good approximation for temperatures below 200 MeV
[11]. As is customary in all QCD sum rule analyses at
finite temperature, only the leading order in the strong
coupling will be considered here. One reason is that the
temperature introduces an additional scale, and this prob-
lem is not yet fully understood. More importantly, though,
results in this framework are not intended to be of high
precision, as the T dependence of hadronic parameters will
probably never be measured with great accuracy (some,
like e.g. the leptonic decay couplings, may not even be
measured at all at finite T). For this reason one normally
determines in this framework the ratio of hadronic parame-
ters at finite and at zero T as a function of T=Tc.
The calculation of the PQCD piece in the spacelike

region, the so-called scattering term, is more involved as
the limit jqj ! 0 must be taken with extreme care. In fact,
in the complex energy plane, and in the spacelike region
the correlator �ðq2Þ, Eq. (1), has a cut centered at the
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origin and extending between ! ¼ �jqj and ! ¼ jqj. In
the rest frame of the thermal bath this cut shrinks to zero
and produces a delta function �ð!2Þ in the imaginary part
of �ðq2Þ. Details of this calculation are left for the
Appendix; the result is

1

�
Im�sð!; TÞ ¼ 2

�2
m2

Q�ð!2Þ
�
nF

�
mQ

T

�
þ 2T2

m2
Q

�
Z 1

mQ=T
ynFðyÞdy

�
: (5)

To complete the evaluation of the vector correlator in QCD,
we will add later the leading power correction in the OPE,
which in this case is given in terms of the gluon condensate
hh0j�sG

2j0ii.
Turning to the hadronic representation of the vector

correlator we shall, as usual, parametrize it in terms of
the ground state resonance, i.e. the J=c , followed by a
continuum given by PQCD after a threshold s0 >M2

V . This
ansatz is even a better approximation at finite temperature,
as s0ðTÞ decreases monotonically with increasing T.
Considering first the zero-width approximation, the had-
ronic spectral function is given by

1

�
Im�ðs; TÞjHAD ¼ 1

�
Im�ðs; TÞjRES�ðs0 � sÞ

þ 1

�
Im�ðs; TÞjPQCD�ðs� s0Þ

¼ 2f2VðTÞ�ðs�M2
VðTÞÞ

þ 1

�
Im�ðs; TÞa�ðs� s0Þ; (6)

where the subscripts HAD and RES stand for the hadronic
and the resonance contributions to the spectral function,
respectively, and where s � q2 ¼ !2 � q2, and the lep-
tonic decay constant is defined as

h0jV�ð0ÞjVðkÞi ¼
ffiffiffi
2

p
MVfV��: (7)

Next, considering a finite (total) width the following re-
placement will be understood:

�ðs�M2
VðTÞÞ ) const

1

ðs�M2
VðTÞÞ2 þM2

VðTÞ�2
VðTÞ

;

(8)

where the constant is fixed by requiring equality of areas,
e.g. if the integration is in the interval (0�1) then
const ¼ MVðTÞ�VðTÞ=�. To complete the hadronic pa-
rametrization one needs to consider the hadronic scattering
term due to the current scattering off heavy-light quark
pseudoscalar mesons (D mesons). This contribution is
given by [2]

1

�
Im�sð!; TÞjHAD ¼ 2

3�2
M2

D�ð!2Þ
�
nB

�
MD

T

�
þ 2T2

M2
D

�
Z 1

mD=T
ynBðyÞdy

�
; (9)

where nBðzÞ ¼ ð1� ezÞ�1 is the Bose thermal function. As
shown in [6] heavy-light pseudoscalar mesons deconfine at
the critical temperature, which in that application was Tc ’
100–110 MeV. Since, a posteriori, the critical temperature
for the J=c is much higher, this scattering term should not
contribute. More importantly, though, it is easy to see by
comparing Eq. (9) with Eq. (5) that this hadronic scattering
term is exponentially suppressed; it is, in fact, 2 to 3 orders
of magnitude smaller than the QCD counterpart in the wide
range of temperatures explored here, to wit. The ratio R of
this hadronic scattering term, Eq. (9), and its QCD counter-
part, Eq. (5), is R ’ 10�3 at T ¼ 100 MeV, and R ’ 10�2

at T ¼ 160 MeV.
The correlation function �ðq2; TÞ, Eq. (1), satisfies a

once subtracted dispersion relation. To eliminate the sub-
traction one can use Hilbert moments, i.e.

’NðQ2; TÞ � ð�ÞN
ðNÞ!

�
d

dQ2

�
N
�ðQ2; TÞ

¼ 1

�

Z 1

0

ds

ðsþQ2ÞNþ1
Im�ðs; TÞ; (10)

where N ¼ 1; 2; . . . , and Q2 � 0 is an external four-
momentum squared, to be considered as a free parameter
as discussed below. Using Cauchy’s theorem in the com-
plex s plane, which is equivalent to invoking quark-hadron
duality, the Hilbert moments become finite energy QCD
sum rules, i.e.

’NðQ2; TÞjRES ¼ ’NðQ2; TÞjQCD; (11)

where

’NðQ2; TÞjRES � 1

�

Z s0ðTÞ

0

ds

ðsþQ2ÞNþ1
Im�ðs; TÞjRES;

(12)

’NðQ2; TÞjQCD � 1

�

Z s0ðTÞ

4m2
Q

ds

ðsþQ2ÞNþ1
Im�aðs; TÞ

þ 1

�

Z 1

0

ds

ðsþQ2ÞNþ1
Im�sðs; TÞ

þ ’NðQ2; TÞjNP; (13)

and Im�ðs; TÞjRES is given by the first term in Eq. (6)
modified in finite width according to Eq. (8), and the
PQCD spectral functions are given by Eqs. (4) and (5).
The nonperturbative term corresponding to the dimension
d ¼ 4 in the OPE is given by [1]
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’NðQ2;TÞjNP¼� 3

4�2

1

ð4m2
QÞN

1

ð1þ	ÞNþ2

�F

�
Nþ2;�1

2
;Nþ7

2
;


�

�2NNðNþ1Þ2ðNþ2ÞðNþ3ÞðN�1Þ!
ð2Nþ5Þð2Nþ3Þ!! �;

(14)

where Fða; b; c; zÞ is the hypergeometric function, 	 �
Q2

4m2
Q

, 
 � 	
1þ	 , and

� � 4�2

9

1

ð4m2
QÞ2

��
�s

�
G2

��
: (15)

The gluon condensate hh�s

� G2ii at low temperatures has

been calculated in chiral perturbation theory [12] with the
following result:��

�s

12�
G2

��
¼

�
�s

12�
G2

�
� �s

�

�4

405

N2
FðN2

F � 1Þ
33� 2NF

�
�
ln
�p

T
� 1

�
T8

f4�
; (16)

where NF is the number of quark flavors, and �p �
200–400 MeV. To a good approximation this can be writ-
ten as ��

�s

12�
G2

��
¼

�
�s

12�
G2

��
1�

�
T

Tc

�
8
�
: (17)

Because of this thermal behavior the gluon condensate, in
this framework, remains essentially constant up to tem-
peratures close to Tc ’ 100 MeV, after which it decreases
very sharply. In order to go beyond the low temperature
regime of chiral perturbation theory, lattice QCD provides
the right tool. A good approximation to results in this
framework [13] is given by the expression

��
�s

�
G2

��
¼

�
�s

�
G2

��
�ðT	 � TÞ þ

1� T
T	
C

1� T	
T	
C

�ðT � T	Þ
�
;

(18)

where T	 � 150 MeV is the breakpoint temperature where
the condensate begins to decrease appreciably, and T	

C �
250 MeV is the temperature at which hh�s

� G2iiTC
¼ 0.

Returning to the Q2 dependence of the Hilbert moments,
Eq. (10), it has been customary in many analyses of char-
monium at T ¼ 0 to take Q2 ¼ 0, but the case Q2 > 0 has
also been advocated [14]. At finite temperature, though,
due to the singular behavior of the spacelike PQCD term,
Eq. (5), one is compelled to takeQ2 > 0. Since all hadronic
parameters will be normalized to their values at T ¼ 0, and
we are only interested here in their temperature behavior,
we shall fix Q2 as well as s0ð0Þ from the experimental
values of the mass, the coupling, and the width at T ¼ 0. At

finite temperature there are additional contributions to the
OPE in the form of nondiagonal (Lorentz noninvariant)
condensates. In the case of nongluonic operators they are
highly suppressed [6,15] so that they can be safely ignored.
A gluonic twist-two term in the OPE has been considered
in [16], and computed on the lattice in [17]. Using this
information we find that the nonperturbative QCD mo-
ments, ’NðQ2; TÞjNP, change as follows:

’NðQ2; TÞjNP ! ’NðQ2; TÞjNP½1þ �NðQ2; TÞ�; (19)

where

�NðQ2; TÞ ¼
�
1þ 4

3

1

ðN þ 2ÞðN þ 3Þ
� FðN þ 2;�3=2; N þ 7=2;


FðN þ 2;�1=2; N þ 7=2;


��
3
G2ðTÞ
G0ðTÞ

�
;

(20)

with G0ðTÞ � hh�s

� G2ii, G0ð0Þ ¼ ð0:05
 0:02Þ GeV4

[18], G2ðTÞ ’ �10�3 GeV4 [17], in the range of tempera-
tures considered here, and the parameters 	 and 
 ¼
ð1=2� 1Þ have been defined after Eq. (14). For small
values of N (N ¼ 1–3) the second term in brackets above
is at the level of a couple of percent, while for larger values
of N it becomes negligible. The correction term is small
and essentially independent of Q2, i.e. �NðQ2; TÞ ’
ð2–6Þ% in the temperature range considered here, and
will play no appreciable role in the results, as will be
discussed later.

III. RESULTS

We begin by determining s0 and Q2 at T ¼ 0 from the
moments, Eq. (11), and using as input the experimental
values [19] MV ¼ 3:097 GeV, fV ¼ 196 MeV, and �V ¼
93:2 keV, as well as mQ ¼ 1:3 GeV, and [18]

h0j �s

12�G
2j0i ’ 5� 10�3 GeV4. In the zero-width approxi-

mation one finds from Eq. (12) that

’1ðQ2ÞjRES
’2ðQ2ÞjRES

¼ ’2ðQ2ÞjRES
’3ðQ2ÞjRES

: (21)

Given the extremely small total width of the J=c it turns
out that the above relation also holds with extreme accu-
racy in finite width. Using Eq. (11) this leads to

’1ðQ2ÞjQCD
’2ðQ2ÞjQCD

¼ ’2ðQ2ÞjQCD
’3ðQ2ÞjQCD

; (22)

which depends only on the two unknowns s0 and Q2, and
provides the first equation to determine this pair of pa-
rameters. The second equation can be e.g. Eq. (11) with
N ¼ 1. In this way we find that s0 ¼ 11:64 GeV2, and
Q2 ¼ 10 GeV2 reproduce the experimental values of the
mass, coupling, and width of J=c within less than 1%. We
have checked that an equally reasonable agreement for the
hadronic parameters at T ¼ 0 can be achieved using larger
values of Q2, up to Q2 ’ 20 GeV2, as well as larger values
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of N, up to say N ’ 10. These different choices do not
produce any qualitative change at finite T, other than some
10% shift of the critical temperature, upwards for larger
Q2, and downwards for larger N. This whole set of had-
ronic parameters will then be used to normalize the corre-
sponding parameters at finite temperature. The latter are
obtained as follows.

The continuum threshold s0ðTÞ is obtained again using
Eq. (22), as Eq. (21) continues to hold to great accuracy in
finite width, even if the width were to increase with tem-
perature by 3 orders of magnitude, say from �Vð0Þ ’
0:1 MeV to �VðTÞ ’ 300 MeV. The result for s0ðTÞ nor-
malized to s0ð0Þ is shown in Fig. 1 as a function of T=Tc,
where Tc ’ 140 MeV is the temperature where s0ðTÞ be-
gins to deviate appreciably from s0ð0Þ. Above this tem-
perature s0ðTÞ decreases sharply until it approaches the
threshold sth ¼ 4m2

Q at a temperature T ’ 1:22Tc, with this

threshold being the minimum possible value for s0ðTÞ. It
must be stressed that the temperature dependence of the
continuum threshold is rather important in order to avoid
inconsistencies, and therefore it should not be ignored. In
the case of light-light and heavy-light quark systems s0ðTÞ
is related to the thermal light quark condensate. This is not
the case for heavy-heavy quark hadrons, so that s0ðTÞmust
be determined from the Hilbert moments together with the
other hadronic parameters. Next, the mass, in the zero-
width approximation, follows from the ratio:

’1ðQ2; TÞjRES
’2ðQ2; TÞjRES

¼ ’1ðQ2; TÞjQCD
’2ðQ2; TÞjQCD

: (23)

The result for MVðTÞ=MVð0Þ as a function of T=Tc is
shown in Fig. 2. The mass remains basically constant until
T ’ Tc where it decreases slightly by a few percent.
Beyond T ’ 1:1Tc the whole program of determining the
temperature behavior of the hadronic parameters breaks
down. The simple reason for this is that at this temperature
s0ðTÞ has left the resonance behind, i.e. sth <M2

V . Hence,
there is no longer a support for the Hilbert moments in the
hadronic sector. We have verified that this result for

MVðTÞ=MVð0Þ remains essentially the same in finite width.
Hence, in determining the coupling and the width we shall
keep the mass independent of the temperature. Next, the
width can be determined from the ratio

’1ðQ2; TÞjRES
’3ðQ2; TÞjRES

¼ ’1ðQ2; TÞjQCD
’3ðQ2; TÞjQCD

: (24)

The result for �VðTÞ=�Vð0Þ as a function of T=Tc is shown
in Fig. 3; the peak is reached at T ’ Tc. Finally, the
leptonic decay constant can be determined from any single
moment, e.g. from

’1ðQ2; TÞjRES ¼ ’1ðQ2; TÞjQCD: (25)

The ratio fVðTÞ=fVð0Þ as a function of T=Tc is shown in
Fig. 4. The rise of the coupling beyond Tc is the result of a
detailed balance between different contributions. With in-
creasing T the continuum threshold, s0ðTÞ, decreases and
so does the PQCD annihilation moment, while the QCD
scattering moment increases approaching the annihilation
moment at T ’ 160 MeV; all the while, the nonperturba-
tive moment remains approximately constant and negative,

FIG. 1. The ratio s0ðTÞ=s0ð0Þ as a function of T=Tc.

FIG. 2. The ratio MVðTÞ=MVð0Þ as a function of T=Tc. This
ratio is basically the same in zero-width as in finite width.

FIG. 3. The ratio �VðTÞ=�Vð0Þ as a function of T=Tc.
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and numerically comparable to the other two terms at that
temperature, thus mostly canceling the annihilation mo-
ment there. The hadronic moment dividing the QCD mo-
ment is mostly a decreasing function of the temperature
due to the decrease of s0ðTÞ and to the increase of the
width, leading finally to an increase in the coupling. This
behavior of the coupling and width of the J=c remains
qualitatively stable against changes in N and Q2 in the
moments, for Q2 ’ 10–20 GeV2, and N ’ 1–10.
Numerically, higher values of Q2 tend to increase slightly
the critical temperature, and higher values of N tend to
reduce it. We have explicitly verified that the hadronic
scattering moment can be safely ignored. Both the width
and the coupling can only be determined up to Tf ’ 1:1Tc

beyond which s0ðTÞ<M2
VðTÞ. The temperature behavior

of the width and the coupling thus obtained strongly sug-
gests the survival of the J=c above the critical temperature
for deconfinement.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have determined the temperature be-
havior of the hadronic parameters of the J=c resonance
using Hilbert moment QCD sum rules. The hadronic pa-
rameters are not only the mass, coupling (leptonic decay
constant), and total width, but also the continuum threshold
s0 which signals the onset of PQCD. This threshold at finite
temperature was first introduced in [2], where it was in-
terpreted as a phenomenological parameter signaling de-
confinement. Later, it was related to chiral-symmetry
restoration [9], and a scaling law was found associating
s0ðTÞ to the thermal (light) quark condensate [8]. Hence,
this parameter constitutes an essential part of any QCD
sum rule analysis at finite T, and ignoring the temperature
dependence of s0 would lead to inconsistencies. The results
of our analysis at low temperatures show that the J=c
behaves as other light-light and heavy-light quark reso-
nances, i.e. the continuum threshold and the coupling
decrease and the width increases with increasing T.
However, as T approaches Tc this behavior changes so

that the coupling increases and the width decreases. The
PQCD spectral function in the spacelike region (scattering
term), as well as the gluon condensate, are responsible for
this new scenario which strongly suggests the survival of
the J=c beyond deconfinement. This is a feature unique to
heavy-heavy quark systems, as this spacelike contribution
is negligible in light-light and even heavy-light quark
channels [6]. While this PQCD term increases monotoni-
cally in importance with increasing T, the QCD sum rule
framework necessarily breaks down at the temperature
where s0ðTÞ reaches the minimum value s0jmin ¼ M2

J=c .

In fact, since the hadronic mass is essentially independent
of T, once s0ðTÞ<M2

J=c there is no further support for the

Hilbert integrals. In spite of this, one could continue to
explore the hadronic parameter space by reducing arbi-
trarily the value of MJ=c at T ¼ 0. In this case, one would

find that the behavior of the coupling and width persists at
higher temperatures. Our results are not necessarily in
conflict with a recent QCD sum rule analysis [17], where
charmoniumwas found to survive beyond Tc. The reason is
that in [17] the scattering term was not taken into account,
and the temperature dependence of the continuum thresh-
old was not considered. Both these features are essential
for a consistent QCD sum rule analysis. Studies of char-
monium at finite T in nonrelativistic frameworks [20,21]
also lead to charmonium melting at some critical tempera-
ture. However, in the nonrelativistic regime the complex
energy plane has only a right-hand cut extending from zero
to infinity, which corresponds to the timelike case in the
relativistic domain. The spacelike cut at finite T centered at
the origin in the complex energy plane, and covering the
range �jqj � ! � þjqj, is a genuine relativistic effect.
The results and conclusions of the present analysis, though,
are in agreement with those obtained from QCD numerical
simulations on the lattice [10].
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APPENDIX

In this appendix we outline the calculation of the imagi-
nary part of the correlator, Eq. (1), in PQCD and in the
spacelike region, as there are some incorrect results in the
literature. To one-loop order in PQCD this is given by [2]

1

�
Im�sðq2; TÞ ¼ 3

8�2

Z 1

v
dxð1� x2Þ�nFðxÞ; (A1)

where

�nFðxÞ � nF

�jqjxþ!

2T

�
� nF

�jqjx�!j
2T

�
: (A2)

Performing the change of variable y ¼ jqjx
2T , the Fermi

FIG. 4. The ratio fVðTÞ=fVð0Þ as a function of T=Tc.
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factor �nF in Eq. (A1) becomes the total derivative

�nF ¼ !

T

d

dy
nFðyÞ: (A3)

After integration by parts, Eq. (A1) becomes

Im�sðq2; TÞ ¼ 3

4�

!

jqj
�
�nF

�jqjv
2T

�
ð1� v2Þ

þ 8T2

jqj2
Z 1

ðjqjvÞ=2T
ynFðyÞdy

�
: (A4)

Finally, taking the limit ! ! 0, followed by jqj ! 0, and
using the expression,

lim
jqj!0

lim
!!0

�
!

jqj3
�
¼ 2

3
�ð!2Þ (A5)

gives the final result for the PQCD spectral function in the
spacelike region, i.e.

1

�
Im�sð!; TÞ ¼ 2

�2
m2

Q�ð!2Þ
�
nF

�
mQ

T

�
þ 2T2

m2
Q

�
Z 1

mQ=T
ynFðyÞdy

�
: (A6)
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