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1. Introduction

The electromagnetic excitations and ensuing dynamics of nanoparticles, molecules

and atoms in the presence of an electric field has been widely studied both the-

oretically and experimentally.1–5 The particles may initially be unpolarized, but

due to the external field and their mutual interaction they may acquire induced

dipole and higher electric moments. As a consequence electric forces and torques

are produced, resulting in particle motion and the formation of equilibrium configu-

rations. An important case is optical trapping and binding, which, if many particles

are involved may lead to self-assembly of ordered structures.6 Structures are also

formed in electro-rheological fluids, where a static or slowly varying field induces

the formation of linear arrays and columns in a medium containing polarizable

spheres in suspension.7 Examples where an understanding of forces and torques is

also crucial are the dielectrophoresis and electrorotation effects, related to motion

in a nonuniform field8 and a rotating AC field,9 respectively. Other applications

include the control of agglomeration, and the separation of proteins or living cells

in suspension.10 Nanorotors driven by a light force have also been studied.11,12

Several methods have been used to obtain forces13–16 and torques17–20 in the

past, some involving the use of an interaction potential energy whose gradient is

taken to obtain the force.13,21–23 In this work we prove that if the particles are

absorptive the system is nonconservative and the net force experienced by each

member of the ensemble may not be derived from an interaction potential. In fact,

we show explicitly that structure in the interaction energy arising from absorption

resonances in a pair of gold nanospheres exhibits energy minima leading to unphys-

ical equilibrium configurations that are not present if the force is calculated directly

from Coulomb’s law.23,24 Away from such resonances when absorption is negligible

either method may be used leading to similar results.

In order to obtain explicit expressions for the force and torque we assume the

particles to be spherical, thus allowing a multipolar analysis and a comparison with

results obtained in the dipole approximation. For an AC external excitation we find

the dipole approximation to give accurate results if the center to center separation

between neighbors is not smaller than three particle radii, while at closer interpar-

ticle distance the inclusion of all multipoles gives rise to several resonances in the

force and torque strength, shifted to lower frequencies owing to particle–particle

couplings. This is in accordance with previous results on the electric excitation of

dielectric particles arrays showing a similar distance dependent behavior.25–28 Lo-

cation of such resonances in the frequency spectrum may be useful in applications

when the force or torque strength becomes important. Within the same model we

find that the appearance of a torque causing particle rotation requires that the

particle be dissipative.

The paper is organized as follows. In Sec. 2 we present compact expressions for

the time-averaged force and torque acting over a particle in an arbitrary array of

nanoparticles in a uniform AC electric field. The very structure of the resulting
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expressions reveals the need for dissipation in order for a torque to arise. The cases

of linear and circular polarizations are discussed. In order to assess the relevance of

higher multipoles in both forces and torque, in Sec. 3 we apply our model to two gold

nanospheres in an electric field parallel or perpendicular to the interparticle axis. In

Sec. 4 we prove that the presence of dissipation makes the system nonconservative

and in Sec. 5 we present our conclusions. Finally, two appendices are added to

provide details of the calculations.

2. Forces and Torques on Interacting Particles in an AC Field

We consider a system of nanoparticles embedded in a non-absorptive dielectric

medium, excited by an external AC electric field of angular frequency ω. The par-

ticles are uncharged and their material response to a local electric field may in

general be characterized by a complex response function ǫ(ω). The external field

induces a dipole moment on each particle, which in turn excites multipoles on every

other member of the ensemble owing to the nonuniformity of the electric field it

produces at each particle site. For simplicity we shall assume in what follows that

the particles are of spherical shape.

As known, for a dilute system with average center-to-center separation of the

order of three times the particle radii or more, the accuracy of the dipole approx-

imation is acceptable and the effect of higher multipoles may be neglected.25 In

such a case and if only two particles are present, the electric force between them

may be simply obtained by direct application of the discrete form of Coulombs law,

as described in Ref. 24. When separations less than three particle radii become

involved however, the effect of higher multipoles must be included.26,27 The general

form of Coulomb’s law to be used is then,

〈Fi〉 =
1

2
Re

∫

ρ∗i (r)E(r)d3r , (1)

where 〈Fi〉 is the time-averaged force on particle i, ρ∗i (r) is its charge density and

E(r) is the local electric field due to the external sources and other particles in the

ensemble. A rather lengthy calculation then yields the force Cartesian components

(see Appendix A),

〈Fix〉 = Re
∑

l

CliReTli , (2)

〈Fiy〉 = Re
∑

l

CliImTli , (3)

〈Fiz〉 = Re
∑

l

Cli

l
∑

m=−l

√

(l −m)(l +m)qlmiq
∗
l−1,m,i , (4)

where the pole order index l here and in what follows covers the range of integers
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1,∞. In the above expressions the coefficient

Cli =
2π

√

(2l+ 1)(2l − 1)αli

, (5)

weights the strength with which the multipole of order l contributes, with αli the

corresponding particle polarizability, a complex quantity if absorption is present.

Also

qlmi =

∫

ρi(r)r
lY ∗

lm(θ, φ)d3r (6)

is the induced multipole of indices l,m on particle i and

Tli =
∑

m

√

(l −m)(l −m− 1)qlmiq
∗
l−1,m+1,i . (7)

Ylm is the usual complex spherical harmonic function. Methods to obtain the mul-

tipoles qlmi for arbitrary configurations are described in Refs. 26 and 27. Notice

that since the force involves products of multipoles of different order, if there is a

single spherical particle and the external field is uniform only the dipole moment

is excited and the force is zero.

Spinning of coupled particles in an external field has been observed in the

past.20,29 In order to capture this effect we consider next the time-averaged torque

on sphere i due to the local field, as given by

〈τ i〉 =
1

2
Re

∫

ρ∗i (r)r ×E(r)d3r , (8)

where the origin is taken at the particle center. Work similar to that done above

for the forces (see Appendix B) leads to the time-averaged torque Cartesian com-

ponents

〈τix〉 = Im

∞
∑

l=1

DliReSli , (9)

〈τiy〉 = Im

∞
∑

l=1

DliImSli , (10)

〈τiz〉 = Im

∞
∑

l=1

Dli

l
∑

m=−l

m|qlmi|2 , (11)

where the coefficients

Dli =
2π

(2l + 1)αli
(12)

are complex if αli is, and

Sli =

l−1
∑

m=−l

√

(l −m)(l +m+ 1)qlmiq
∗
l,m+1,i . (13)
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It is clear from Eqs. (9)–(13) that if the system has no dissipation, i.e., if αli is real,

the torque is zero. We conclude that in general a torque arises in such systems from

dissipative electromagnetic interactions.

Even if there is dissipation however, the torque may be suppressed by special

symmetries. Such is the case for a linear array subject to a uniform electric field

parallel to the line joining their centers. By choosing the z-axis to be aligned with

this line, only modes with m = 0 are excited leading to zero torque, as may be easily

verified from the structure of the above equations. A similar situation occurs if the

applied electric field lies on the xy plane since in this case only modes with m = ±1

are excited symmetrically and the torque is again zero. Nevertheless, it is worth

noting that if the linear array is under a uniform electric field with components

along the z-axis and the xy plane, modes with m = ±1 and m = 0 become excited.

So, according to Eqs. (9)–(11) a torque is produced provided that electromagnetic

dissipation is not negligible. A similar situation has been analyzed in Ref. 20 in the

dipolar approach.

A torque does arise in such arrays also if they are subject to a rotating electric

field on the xy plane. The field may be written as E = E0(±x̂−iŷ)eiωt and the corre-

sponding coefficients of expansion of the potential are either V1,+1 =
√

2π/3E0(1−i)

or V1,−1 =
√

2π/3E0(−1− i) depending of the sense of rotation of the electric field

vector given by the sign of the x-component.30 Correspondingly the excited modes

are either m = 1 or m = −1 and from Eq. (11) it follows that a torque may ap-

pear. In fact, from Eqs. (A.35) and (11) it can be shown that for this case the

time-average of the z-component of the torque is given by

〈τiz〉 =
2πm

a2l+1

∑

l

l Im ǫ

[l(Re ǫ− 1)]2 + [l Im ǫ]2
|qlmi|2 . (14)

For the special case of a single sphere in a rotating external field the torque is

finite, in agreement with Refs. 31 and 32. The physical origin of such a torque is

conservation of angular momentum. The rotating field carries angular momentum,

which is transferred to the particles when absorption takes place causing them to

experience a spinning torque. Also, as noted in Ref. 20 when a linearly polarized

field is not aligned with a symmetry axis of a linear array such as a pair, the local

field at each particle site has a rotating component, and the same argument applies.

3. Special Case: Two Particles

We shall apply our general results to the simplest case, that of two identical spheres

of radii a subject to a uniform oscillating electric field, both parallel and perpen-

dicular to a line joining the spheres centers, that we choose to be the z-axis. These

conditions will be referred to as parallel and perpendicular excitation, respectively.

In computing the force we found convenient to use Eq. (A.33) in Appendix A with

the replacement Vlmi = blmi, since the uniform external field produces no direct
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force. Using relation (A.7) then leads to,

〈Fiz〉 = −1

2
Re

∑

lm

∑

l′m′

∑

j 6=i

(−1)l
′

Al′m′j
lmi

√

(2l + 1)

(2l − 1)
(l −m)(l +m)ql′m′jq

∗
l−1,m,i ,

(15)

where the coefficient Al′m′j
lmi that couples multipoles in different particles is given

by Eq. (A.8) in Appendix A.

3.1. Parallel excitation

In this geometry E = E0e
iωtẑ and modes with m = 0 become excited only, yielding

a force along the z-axis. From Eqs. (2), (3) and (7) it is seen that the time-averaged

value of the components x and y of the force is zero, as expected from symmetry

considerations. Using Eq. (15) we find after some algebra the force component on

sphere 1 centered at the origin

〈F1z〉 = −2πRe
∑

ll′

(−1)l
′ (l + l′ + 1)!

l!l′!
√

(2l + 1)(2l′ + 1)Rl+l′+2
q∗l,0,1ql′,0,2 , (16)

where the multipole moments may be obtained using the formalism of Ref. 27. Here

R is the center to center distance between the two spheres. The dipole approxima-

tion applies keeping the first term in this series, (l = l′ = 1) and the result agrees

with that in Ref. 24 as it should.

3.2. Perpendicular excitation

In this case the external field is in the xy plane, and the external poten-

tial in Eq. (A.10) of Appendix A is expressed as V ext = V1,1,irY1,1(θ, φ) +

V1,−1,irY1,−1(θ, φ) with V1,±1 =
√

2π/3(±Ex − iEy). The coupling coefficients in

Eq. (A.8) are null unless m = m′ = ±1. From Eq. (15) we get this time,

〈F1z〉 = 2πRe
∑

ll′

(−1)l
′ (l + l′ + 1)!

l!l′!Rl+l′+2

×
√

ll′

(2l+ 1)(2l′ + 1)(l + 1)(l′ + 1)
[q∗l,1,1ql′,1,2 + q∗l,−1,1ql′,−1,2] . (17)

Keeping just the l = l′ = 1 term in the series the dipole approximation is obtained,

which agrees with the corresponding expression in Ref. 24.

3.3. Numerical results

We next show some numerical results for our test case of two particles. We use a

Drude dielectric function with parameters ǫb = 9.9, ~ωp = 8.2 eV, Γ = 0.053 eV,

appropriate for gold nanospheres.33 Figure 1 shows the average force for parallel
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Fig. 1. Electric force between two identical gold nanospheres as a function of frequency of the
applied field, with separation 2.005a between their centers. The solid (dashed) curve corresponds
to parallel (perpendicular) excitation calculated including multipoles up to L = 40. The dash-
dotted curve corresponds to the average force calculated for parallel excitation and separation 3a,
with an amplification factor 1000.

(solid line) as well as perpendicular (dashed line) excitation. One particle is at

the origin, while the other is at z = R. The separation is R = 2.005a and we

have included multipoles up to order L = 40 in the computation, following the

convergence criterion given in Ref. 26. The force acting on the particle at the

origin is attractive (positive) in the parallel configuration and repulsive (negative)

in the perpendicular geometry, as expected. Three multipolar resonances are clearly

resolved at this separation, with force peaks greatly enhanced, about three orders

of magnitude above the background value. As the separation between the particles

is increased the resonances move to higher frequencies, decrease in size and fewer

of them become resolved.27 At a center to center separation of about three particle

radii and larger, only one resonance is seen. This dipolar peak, at separation R = 3a

and parallel excitation, has been included in the figure for comparison with an

amplification factor of one thousand (dash–dotted curve).

In Figure 2 we show the z-component of the average torque acting on each

nanoparticle as given by Eq. (14). Separations are R = 2.005a (solid curve) and

R = 3a (dashed curve). The pair is subject to an electric field whose direction

rotates in the plane xy. As for the force, several resonances are resolved at small

separation, while beyond about separation R = 3a only one peak is observed. It

can be seen that as the spheres become closer other resonances occur at frequencies

below the single sphere dipole resonance value ω = ωp/
√
ǫb + 2. These additional

resonance frequencies correspond to resonant modes associated with the multipole

moments qlmi.
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Fig. 2. Time averaged torque acting on a particle for a system of two gold nanospheres subjected
to a rotating electric field, as a function of frequency. Separation between their centers are 2.005a
(solid curve) and 3a (dashed curve). Results were obtained including multipoles up to L = 40 and
L = 10, respectively.

4. Limits in the Use of an Interaction Energy to Obtain the Force

The existence of dissipation makes a system nonconservative. To see this, recall that

for ideal electromagnetic arrays where dissipation is absent, the force acting on a

particle may be obtained as the gradient with respect to the particle coordinates

of the configuration energy W . If the particle makes a virtual displacement δξ the

corresponding electric force it is subject to is Fe = ∂We/∂ξ, an expression obtained

by the energy balance equation,

δWsource = Feδξ + δWe , (18)

where δWsource is the energy supplied by the sources to maintain the potentials of

the electrodes fixed and δWe is the variation in the energy stored in the field. It can

be shown that for this case δWsource = 2δWe so that the expression Fe = ∂We/∂ξ

is obtained.30,34 Nevertheless, for real systems dissipation effects must be taken

into account and that is done adding a term δWloss in the right side of Eq. (18).

This term depends on the path followed during the virtual displacement since the

polarization in the particle does and the energy loss is determined by its imaginary

part. If the particle is brought from point A to point B, to the mechanical work

done one must add the energy loss term
∫ τ

0 P̄absdt, where P̄abs is the time averaged

power absorbed by the system and τ the time taken during the displacement. Both

the integrand and the upper limit of this integral depend on the path making the

mechanical system nonconservative.

Based on the above argument we state that in a dissipative system it is incorrect

to obtain the force as the gradient of a potential. To illustrate the difference between

a direct application of Coulomb’s law and the use of a potential we consider two
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polarizable spheres of radius a, a distance R apart in an electric field of frequency

ω and amplitude E0 which for simplicity we choose to be parallel to the line joining

the centers. In the dipole approximation the interaction energy is of the form23

Wint(R) = U0 −
1

2
Re[β1(R)− β)]a3E2

0 , (19)

where U0 is the free-field interaction energy, β = (ǫ − 1)/(ǫ + 2) with ǫ being the

frequency dependent dielectric function of the spheres, β1(R) = β/(1− β/4σ3) and

σ = R/2a. Differentiating the second term in Eq. (19) to get the force induced by

the external field we obtain

Fw(R) = −a2E2
0

48σ4
Re

1

(n− u)2
, (20)

where n = (1− 1/4σ3)/3 and the complex spectral variable u = 1/(ǫ− 1) has been

used. By contrast, if the direct Coulomb’s method is used one gets24

Fc(R) = −a2E2
0

48σ4

1

|n− u|2 . (21)

The two forms (20) and (21) agree only when the dielectric function is real, and

dissipation is absent. In Fig. 3 we compare the force obtained using these two

expressions for a pair of gold nanospheres with a dielectric function as described in

Sec. 3. As can be observed while the direct Coulomb’s method gives an attractive

force at all frequencies, the model based on the gradient of the interaction energy

presents two peaks and an unphysical change of sign in the force.
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Fig. 3. Force between two identical gold nanospheres in the parallel configuration as a function
of frequency, with separation 3a between their centers. Solid and dashed curves correspond to
the force calculated from Coulomb’s law and using the derivative of an interaction potential,
respectively.
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5. Conclusions

We have shown that in an ensemble of polarizable spheres in an oscillat-

ing electric field, the presence of a rotation torque requires the particle ma-

terial to be dissipative. We also show that energy loss due to dissipation

makes the system nonconservative so that it is improper to use an interac-

tion energy to derive the force, an approach that has been employed erro-

neously in the past.21 Our results are an extension of previous work done

for the case of an isolated pair using the dipolar model.24 When interpar-

ticle distances are shorter than three particle radii it is known that the

dipole approximation is not adequate, and higher multipoles must be consid-

ered.25,27 Electromagnetic resonances associated with such multipoles are known

to appear, that should have a mirror spectrum in the forces and torques as

well. We have explicitly shown this to be the case in the simple case of a

pair.
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Appendix A. Time-Averaged Force

We consider en ensemble of N spheres in the presence of an external electric field.

Choosing a coordinate system with origin at the center of particle i, the electric

potential at a point in the medium due to the polarized spheres is given by30

V (r) =

∞
∑

l=1

+l
∑

m=−l

4π

2l + 1
qlmi

Ylm(θ, φ)

rl+1

+
∞
∑

l=1

+l
∑

m=−l

N
∑

j=1

4π

2l + 1
qlmj

Ylm(θ̄j , φ̄j)

R̄j
l+1

, (A.1)

where the multipole moment of order l, m in particle j has been defined in Eq. (6).

The center of sphere j is at Rj and r −Rj = (R̄j , θ̄j , φ̄j) is the position vector of

the observation point with respect to the center of sphere j. To uncouple vectors r

and Rj we use the identities,35

Ylm(θ̄j , φ̄j)

R̄l+1
j

= (−1)l+m

[

2l+ 1

4π(l +m)!(l −m)!

]1/2 [
∂

∂x
+ i

∂

∂y

]m
∂l−m

∂zl−m

1

|r−Rj |
,

(A.2)

1

|r−Rj |
=

∞
∑

l=0

rl<

rl+1
>

4π

2l + 1

+l
∑

m=−l

(−1)mYlm(θ, φ)Yl,−m(θj , φj) , (A.3)
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∂n

∂zn
Ylm(θ, φ)rl =

[

2l+ 1

(2l− 2n+ 1)

(l +m)!

(l +m− n)!

(l −m)!

(l −m− n)!

]

Yl−n,m(θ, φ)rl−n ,

(A.4)

[

∂

∂x
+ i

∂

∂y

]p

Ylm(θ, φ)rl =

[

2l+ 1

(2l − 2p+ 1)

(l −m)!

(l −m− 2p)!

]

Yl−p,m+p(θ, φ)r
l−p .

(A.5)

In Eq. (A.3) r<(r>) is the lower (higher) value between r = |r| and Rj = |Rj|;
Eq. (A.4) is valid for l ≥ n and |m| ≤ l − n while Eq. (A.5) is valid for l ≥ p and

−l ≤ m ≤ l − 2p. From Eqs. (A.2)–(A.5) and adding the potential V ext due to the

external field, Eq. (A.1) becomes

V (r) =
∑

l,m

4π

2l+ 1
qlmi

Ylm(θ, φ)

rl+1
+
∑

l,m

blmiYlm(θ, φ)rl + V ext , (A.6)

where

blmi =
∑

l′m′

∑

j 6=i

Al′m′j
lmi ql′m′j . (A.7)

Here Al′m′j
lmi is the coupling coefficient between qlmi and ql′m′j (with i 6= j)27

Al′m′j
lmi = (−1)m

′ Y ∗
l+l′,m−m′(θij , φij)

|Rij |l+l′+1

×
[

(4π)3(l + l′ +m−m′)!(l + l′ −m+m′)!

(2l+ 1)(2l′ + 1)(2l + 2l′ + 1)(l +m)!(l −m)!(l′ +m′)!(l′ −m′)!

]1/2

,

(A.8)

and Ri −Rj = (Rij , θij , φij). Equations (A.6)–(A.8) are general and valid for any

array of spherical particles and arbitrary direction of the applied electric field. All

expressions here and below are given in Gaussian units.

In order to obtain the average force we use Eq. (1) making the replacement

E(r) = −∇Vi(r) for the local electric field due to the polarized system. Here

Vi(r) =
∑

lm

blmir
lYlm(θ, φ) + V ext(r) . (A.9)

If we expand the external potential as

V ext(r) =
∑

lm

V ext
lmir

lYlm(θ, φ) , (A.10)

the above equation may be written in the form

Vi(r) =
∑

lm

Vlmir
lYlm(θ, φ) , (A.11)

where Vlmi = V ext
lmi + blmi.
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In order to obtain explicit expressions for the components of the force we first

write the spherical harmonics in the above equation in terms of Legendre functions

using the relation

Ylm(θ, φ) =

√

(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ . (A.12)

Then Eq. (A.11) may be recast as

Vi(r) =
∑

lm

Dlmir
lPm

l (cos θ)eimφ , (A.13)

where

Dlmi = Vlmi

√

(2l + 1)

4π

(l −m)!

(l +m)!
. (A.14)

Therefore the spherical components of the electric field are

Er = −∂Vi(r)

∂r
= −

∑

lm

Dlmilr
l−1Pm

l (ξ)eimφ , (A.15)

Eθ = −1

r

∂Vi(r)

∂θ
= −

∑

lm

Dlmir
l−1 ∂

∂θ
Pm
l (ξ)eimφ

=
∑

lm

Dlmir
l−1

√

1− ξ2
∂

∂ξ
Pm
l (ξ)eimφ , (A.16)

Eφ = − 1

r sin θ

∂Vi(r)

∂φ
= −

∑

lm

Dlmir
l−1 1

√

1− ξ2
Pm
l (ξ)imeimφ . (A.17)

In Eqs. (A.15)–(A.17) we have defined ξ = cos θ. The corresponding Cartesian

components of the electric field are given by

Ex = Er sin θ cosφ+ Eθ cos θ sinφ− Eφ sinφ , (A.18)

Ey = Er sin θ sinφ+ Eθ cos θ cosφ+ Eφ cosφ , (A.19)

Ez = Er cos θ − Eθ sin θ . (A.20)

It is useful to calculate linear combinations of Ex and Ey defined as

E+ = Ex + iEy , (A.21)

E− = Ex − iEy . (A.22)

Introducing relations (A.15)–(A.19) into Eq. (A.21) one obtains

E+ = −
∑

lm

Dlmir
l−1

×
[

l
√

1− ξ2Pm
l (ξ)− ξ

√

1− ξ2
∂

∂ξ
Pm
l (ξ) − m

√

1− ξ2
Pm
l (ξ)

]

ei(m+1)φ .

(A.23)
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The relations

(1− ξ2)
∂Pm

l (ξ)

∂ξ
= (l +m)Pm

l−1(ξ)− lξPm
l (ξ) , (A.24)

(l −m)Pm
l (ξ)− ξ(l +m)Pm

l−1(ξ) =
√

1− ξ2 Pm+1
l−1 (ξ) , (A.25)

then lead to

E+ = −
∑

lm

Dlmir
l−1Pm+1

l−1 (ξ)ei(m+1)φ . (A.26)

Using Eq. (A.14) and (A.12) one obtains

E+ = −
∑

lm

Vlmir
l−1

√

2l+ 1

2l− 1
(l −m)(l −m− 1)Yl−1,m+1(θ, φ) . (A.27)

Similarly, from Eqs. (A.22) and (A.15)–(A.19) follows

E− = −
∑

lm

Dlmir
l−1

×
[

l
√

1− ξ2 Pm
l (ξ)− ξ

√

1− ξ2
∂

∂ξ
Pm
l (ξ) +

m
√

1− ξ2
Pm
l (ξ)

]

ei(m+1)φ .

(A.28)

The recurrence relation ξPm
l−1(ξ) − Pm

l (ξ) = (l + m − 1)
√

1− ξ2Pm−1
l−1 (ξ) and

Eq. (A.24) can be used to find that

E− =
∑

lm

Vlmir
l−1

√

2l+ 1

2l− 1
(l −m)(l +m− 1)Yl−1,m−1(θ, φ) . (A.29)

To obtain Ez we use the relation (1− ξ2)(∂Pm
l (ξ)/∂ξ) = (l+m)Pm

l−1(ξ)− lξPm
l (ξ),

and Eqs. (A.15), (A.16) and (A.20) to give

Ez = −
∑

lm

Vlmir
l−1

√

2l+ 1

2l− 1
(l −m)(l +m)Yl−1,m(θ, φ) . (A.30)

The Cartesian components of the time-averaged force acting upon sphere i are then

given by

〈Fix〉 =
1

2
Re

∫

ρ∗i (r)Exd
3r =

1

2
Re

∫

ρ∗i (r)
1

2
(E+ + E−)d

3r

= −1

4
Re

∫

ρ∗i (r)
∑

lm

Vlmir
l−1

√

2l + 1

2l − 1
×
[

√

(l −m)(l −m− 1)Yl−1,m+1(θ, φ)

−
√

(l +m)(l +m− 1)Yl−1,m−1(θ, φ)
]

d3r

= −1

4
Re

∑

lm

Vlmi

√

2l + 1

2l − 1
×
[

√

(l −m)(l −m− 1)q∗l−1,m+1,i

−
√

(l +m)(l +m− 1)q∗l−1,m−1,i

]

, (A.31)
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〈Fiy〉 =
1

2
Re

∫

ρ∗i (r)Eyd
3r =

1

2
Re

∫

ρ∗i (r)
i

2
(−E+ + E−)d

3r

=
1

2
Re

∫

ρ∗i (r)
i

2

∑

lm

Vlmir
l−1

√

2l+ 1

2l− 1

×
[

√

(l −m)(l −m− 1)Yl−1,m+1(θ, φ)

+
√

(l +m)(l +m− 1)Yl−1,m−1(θ, φ)
]

d3r

=
1

4
Rei

∑

lm

Vlmi

√

2l + 1

2l − 1
×
[

√

(l −m)(l −m− 1)q∗l−1,m+1,i

+
√

(l +m)(l +m− 1)q∗l−1,m−1,i

]

, (A.32)

〈Fiz〉 =
1

2
Re

∫

ρ∗i (r)Ezd
3r

= −1

2
Re

∫

ρ∗i (r)
∑

lm

Vlmir
l−1

√

2l+ 1

2l− 1
(l −m)(l +m)Yl−1,m(θ, φ)d3r

= −1

2
Re

∑

lm

Vlmi

√

2l+ 1

2l− 1
(l −m)(l +m)q∗l−1,m,i . (A.33)

The coefficients Vlmi and qlmi are related by26

qlmi = −2l+ 1

4π
αliVlmi , (A.34)

where αli is the multipole polarizability of the sphere i given by27

αli =
l(ǫ− 1)

l(ǫ+ 1) + 1
a2l+1
i . (A.35)

We next use relation (A.34) in Eqs. (A.31), (A.32) and (A.33) to get the force com-

ponents as a sum, bilinear in the induced multipole moments. Using the property

q∗l,−m = (−1)mqlm that arises from definition (6) and the properties of spherical

harmonics, one then gets

〈Fix〉 = Re
∑

l

CliReTli , (A.36)

〈Fiy〉 = Re
∑

CliImTli , (A.37)

〈Fiz〉 = Re
∑

l

Cli

∑

m

√

(l −m)(l +m) qlmiq
∗
l−1,m,i , (A.38)

where

Cli =
2π

√

(2l+ 1)(2l − 1)αli

(A.39)
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is in general a complex quantity involving the polarizability αli, and

Tli =
∑

m

√

(l −m)(l −m− 1) qlmiq
∗
l−1,m+1,i . (A.40)

The force components are thus given in compact form, convenient for numerical

computation.

Appendix B. Time-Averaged Torque

In this Appendix we derive general expressions for the time-averaged components

of the torque acting upon particle i in a set of N polarizable spherical nanoparticles

of radii a in the presence of a uniform AC electric field. The time averaged torque

over particle in the ensemble is given by

〈τ i〉 =
1

2
Re

∫

ρ∗i (r)r×E(r)d3r . (B.1)

The corresponding Cartesian components are

〈τix〉 =
1

2
Re

∫

ρ∗i (r)(yEz − zEy)d
3r , (B.2)

〈τiy〉 =
1

2
Re

∫

ρ∗i (r)(zEx − xEz)d
3r , (B.3)

〈τiz〉 =
1

2
Re

∫

ρ∗i (r)(xEy − yEx)d
3r . (B.4)

Using complex field and distance variables defined as E± = Ex ± iEy and r± =

x± iy, the x and y components of the torque can be expressed as

〈τix〉 =
1

4
Re

∫

ρ∗i (r)i(W+ −W−)d
3r , (B.5)

〈τiy〉 =
1

4
Re

∫

ρ∗i (r)(W+ +W−)d
3r , (B.6)

where W+ = zE+ − r+Ez and W− = zE− − r−Ez . From Eqs. (A.26) and (A.30)

for E+ and Ez , respectively, and introducing relation (A.12) we have

zE+ = −rξ
∑

lm

Dlmir
l−1Pm+1

l−1 (ξ)ei(m+1)φ , (B.7)

r+Ez = −r
√

1− ξ2eiφ
∑

lm

Dlmir
l−1Pm

l−1(ξ)e
i(m)φ . (B.8)

Equations (B.7), (B.8) and the identity −ξPm+1
l−1 (ξ) + (l + m)

√

1− ξ2Pm
l−1(ξ) =

−Pm+1
l (ξ) lead to

W+ =
∑

lm

Dlmir
l
[

− ξPm+1
l−1 (ξ) + (l +m)

√

1− ξ2 Pm
l−1(ξ)

]

ei(m+1)φ
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=
∑

lm

Vlmi

√

(2l+ 1)

4π

(l −m)!

(l +m)!
rl[−Pm+1

l (ξ)]ei(m+1)φ

= −
∑

lm

Vlmir
l
√

(l −m)(l +m+ 1)Yl,m+1(θ, φ) . (B.9)

Using Eqs. (A.29) and (A.30) for E− and Ez, respectively, and introducing relation

(A.12) we have

zE− = rξ
∑

lm

Dlmir
l−1(l +m)(l +m− 1)Pm−1

l−1 (ξ)ei(m−1)φ , (B.10)

r−Ez = −r
√

1− ξ2e−iφ
∑

lm

Dlmir
l−1(l +m)Pm

l−1(ξ)e
imφ . (B.11)

Equations (B.10), (B.11) and the identity ξ(l+m−1)Pm−1
l−1 (ξ)+

√

1− ξ2Pm+1
l−1 (ξ) =

(l −m+ 1)Pm−1
l (ξ) lead to

W− =
∑

lm

Dlmir
l(l +m)

[

ξ(l +m− 1)Pm−1
l−1 (ξ) +

√

1− ξ2Pm
l−1(ξ)

]

ei(m−1)φ ,

=
∑

lm

Vlmi

√

(2l+ 1)

4π

(l −m)!

(l +m)!
rl(l +m)(l −m+ 1)Pm−1

l (ξ)ei(m−1)φ ,

=
∑

lm

Vlmir
l
√

(l +m)(l −m+ 1)Yl,m−1(θ, φ) . (B.12)

Using Eqs. (B.9), (B.12) and the definition qlmi =
∫

ρi(r)r
lY ∗

lm(θ, φ)d3r we get

〈τix〉 =
1

4
Re

∫

ρ∗i (r)i(W+ −W−)d
3r ,

= −1

4
Re

∑

lm

iVlmi

[
√

(l −m)(l +m+ 1) q∗l,m+1,i

+
√

(l +m)(l −m+ 1)q∗l,m−1,i

]

. (B.13)

From the relation qlmi = −(2l+ 1)/(4π)αlmiVlmi between the multipole moment

lm induced in particle i and the corresponding expansion coefficient Vlmi we obtain

〈τix〉 = Re
∑

l

iπ

(2l + 1)αli
[Sli + S∗

li] , (B.14)

where

Sli =
l−1
∑

m=−l

√

(l −m)(l +m+ 1) qlmiq
∗
l,m+1,i . (B.15)

A similar development for the y-component of the torque gives

〈τiy〉 = Re
∑

l

π

(2l + 1)αli
[Sli − S∗

li] . (B.16)
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The z-component of the torque may be rewritten as

〈τiz〉 =
1

4i
Re

∫

ρ∗i (r)[r−E+ − r+E−]d
3r . (B.17)

Using definitions of r+ and r− and relations (A.27) and (A.29) for E+ and E− we

get

r−E+ − r+E− = −
∑

lm

Dlmir
l
[

√

1− ξ2 Pm+1
l−1 (ξ)

+ (l+m)(l +m− 1)
√

1− ξ2Pm−1
l−1 (ξ)

]

eimφ . (B.18)

Using (l + m − 1)
√

1− ξ2 Pm−1
l−1 (ξ) = ξPm

l−1(ξ) − Pm
l (ξ), the expression between

square brackets in Eq. (B.18), which we denote by C becomes

C =
√

1− ξ2 Pm+1
l−1 (ξ) + (l +m)[ξPm

l−1(ξ)− Pm
l (ξ)] ,

= (l +m)ξPm
l−1(ξ) +

√

1− ξ2 Pm+1
l−1 (ξ)− (l +m)Pm

l (ξ) . (B.19)

Since (l +m)ξPm
l−1(ξ) +

√

1− ξ2 Pm+1
l−1 (ξ) = (l −m)Pm

l (ξ) we get

C = (l −m)Pm
l (ξ)− (l +m)Pm

l (ξ) ,

= −2mPm
l (ξ) . (B.20)

Using Eqs. (B.17), (B.18) and (B.20) we find

〈τiz〉 =
1

2
Re

∫

ρ∗i (r)
1

2i
(r−E+ − r+E−)d

3r

=
1

2
Re

∫

ρ∗i (r)
1

2i

∑

lm

Vlmir
l2mYlm(θ, φ)d3r . (B.21)

With the definition qlmi =
∫

ρi(r)r
lY ∗

lm(θ, φ)d3r and the relation qlmi =

−(2l+ 1)/(4π)αlmiVlmi for eliminating Vlmi we obtain our final result for the z-

component of the torque

〈τiz〉 =
1

2
Re

1

i

∑

lm

Vlmimq∗lmi

= Re
∑

lm

2πi

2l+ 1

m

αli
qlmiq

∗
lmi . (B.22)
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6. T. Čižmár et al., J. Phys. B: At. Mol. Opt. Phys. 43, 102001 (2010).
7. R. Tao (ed.), Electro-Rheological Fluids and Magneto-Rheological Suspensions (World

Scientific, Singapore, 2010).
8. W. Rechberger et al., Opt. Commun. 220, 137 (2003).
9. F. Claro, P. Robles and R. Rojas, J. Appl. Phys. 106, 084311 (2009).

10. T. L. Mahaworasilpa, H. G. L. Coster and E. P. George, Biochim. Biophys. Acta

1193, 118 (1994
11. M. Khan et al., Nanotechnology 17, S287 (2006).
12. T. Asavei et al., New J. Phys. 11, 093021 (2009).
13. R. Tao, Q. Jiang and H. K. Sim, Phys. Rev. E 52, 2727 (1995).
14. L. Gao et al., Phys. Rev. E 61, 6011 (2000).
15. B. J. Cox, N. Thamwattana and J. M. Hill, Appl. Phys. Lett. 88, 152903 (2006).
16. K. H. Kang and D. Li, Langmuir 22, 1602 (2006).
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