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A B S T R A C T

A major challenge when coupling soil loss models with precipitation forecasts from Global Circulation Models
(GCMs) is that their time resolutions do not generally agree. Precipitation forecasts from GCM must be scaled
down; however, the distribution of the rainfall intensity, which can affect soil loss as much as precipitation
amounts, is usually not considered in this process. Therefore, the objective of this study was to develop a sta-
tistical equation for computing event-based rainfall erosivity under changing precipitation patterns using the
least amount of information possible. For this purpose, an empirical equation for predicting event-based rainfall
erosivity was developed using the product of the total precipitation P and the maximum 0.5-h rainfall intensity,
I0.5. This equation was calibrated using measured precipitation data from 28 sites in Central Chile and then
tested with simulated data with different rainfall patterns from the CLIGEN (CLImate GENerator) weather
generator. More than 53,000 rainfall events were analyzed, where the equation consistently provided R2 values
of 0.99 for every dataset used, revealing its robustness when used in potential climate change scenarios in the
study site. However, because computing I0.5 requires estimating precipitation at a high time resolution, the
relationship was recalibrated and tested using 1 through 24-h maximum rainfall intensities. Using these in-
tensities, the equation provided erosivity estimates with R2 ranging from 0.78 to 0.99, where better results were
obtained as the resolution of the data increased. This study provides the methodology for building and testing
the proposed equation and discusses its advantages and limitations.

1. Introduction

Soil erosion caused by rainfall is likely to change as a consequence
of climate change for a number of reasons, including altered plant
biomass production, precipitation patterns, microbial activity and
evapotranspiration rates, among others (Boardman and Favis-Mortlock,
1993; Nearing, 2001; Asselman et al., 2003). Global circulation models
(GCMs) are currently the most widely used tools for quantifying the
impacts of climate change, as they provide long-term forecasts for
precipitation and temperatures, among other variables (Samadi et al.,
2010). GCMs may be coupled with soil loss models to estimate soil loss
under different climate change scenarios; however, doing so is chal-
lenging because these models operate at different time scales (Morrison
et al., 2002). While GCMs provide monthly forecasts, soil loss models
usually require daily or instant precipitation data (Samadi et al., 2010),
thus, GCM forecasts are usually downscaled when integrating climate
change scenarios into soil loss models (Xu, 1999).

Several strategies have been used to downscale GCM data to make
them compatible with soil loss models. One strategy is to use stochastic
climate generators, such as the Climate Generator (CLIGEN) (Nicks
et al., 1995), to downscale the GCM forecasts into individual rainfall
events (von Storch, 1999; Nearing et al., 2004; Samadi et al., 2010;
Hoomehr et al., 2016). By altering parameters that affect precipitation
amounts, occurrence and rainfall intensity, these weather generators
can be adjusted to provide monthly precipitation amounts that agree
with GCM forecasts (Yu, 2005; Burton et al., 2009). However, choosing
the right parameters to adjust is challenging, as there are infinite pos-
sible combinations of rainfall intensity, duration and occurrence that
can add up to a monthly climate change scenario. All of these variables
affect the erosive power of rainfall (Lobo and Bonilla, 2015) and hence
the soil loss process. Thus, choosing which parameters to alter is an
important aspect to consider when using climate generators to down-
scale monthly GCM forecasts, which adds a great degree of uncertainty
when using this method.
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Another widely used alternative for integrating GCM forecasts to
soil loss models is to use statistical methods that relate GCM data with
rainfall erosivity, a commonly used parameter when estimating soil loss
(Nearing et al., 2005; Klik and Eitzinger, 2010; Mondal et al., 2016).
Rainfall erosivity provides a measure of the kinetic energy of the
raindrops and hence the capacity of rainfall to detach soil particles, and
it is used in the Revised Universal Soil Loss Equation (RUSLE) (Renard
et al., 1991) and the 2nd version of RUSLE (RUSLE2) (Foster, 2008). To
compute rainfall erosivity based on GCM data, Nearing (2001) used
monthly precipitation forecasts and statistical relationships between
monthly rainfall and annual rainfall erosivity to compute soil loss using
the RUSLE. This allowed obtaining long-term annual erosion estimates
for different climate change scenarios. However, the main limitation of
this method is that it does not provide a tool for simulating individual
soil loss events, which is paramount when designing effective soil and
water conservation practices (Erol and Randhir, 2013). Moreover, there
is no guarantee that the statistical relationships between monthly
rainfall and annual erosivity will hold if rainfall patterns change due to
climate change.

Panagos et al. (2017) developed another statistical method, in
which they computed daily rainfall erosivity based on correlations be-
tween recorded rainfall patterns and climate data using a Gaussian
Process Regression model. By using a long-term, high-resolution cli-
mate dataset from Europe, and correlating precipitation patterns to
other climate variables and erosivity, they obtained accurate erosivity
estimates for different climate change scenarios. However, methods
such as this one, although effective, are only viable in locations where
detailed climate information is available, limiting its use.

Currently, there are no simple empirical equations for estimating
daily rainfall erosivity, which would allow identifying the key climate
variables needed to model soil loss. Identifying such variables is im-
portant for reducing the uncertainty associated with current GCM
downscaling methods, as it would reduce the number of variables

needed to model erosivity and soil loss. Predicting rainfall erosivity
requires knowledge of several variables, including storm duration,
mean and maximum intensity and rainfall amounts, among others, all
of which are currently predicted with a great degree of uncertainty.
Therefore, the objective of this study was to develop a statistical
equation for computing event-based rainfall erosivity under changing
precipitation patterns using the least amount of information possible.
By correlating erosivity with several commonly used storm parameters
from measured rainfall data of 28 sites in Central Chile, a statistical
relationship was developed. This relationship was then tested for si-
mulated rainfall events using CLIGEN with modified rainfall intensities,
storm durations, and precipitation amounts and patterns, all of which
represented different hypothetical climate change scenarios. The results
of this study are meant to help identify the minimum number of vari-
ables required for forecasting soil loss using GCMs, while discussing the
advantages and limitations of commonly used GCM precipitation fore-
cast downscaling methods.

2. Materials and methods

2.1. Study area

The data used in this study were obtained from the 28 meteor-
ological stations shown in Table 1, which are located in Central Chile
and distributed between latitudes 32°04'S and 39°47'S and longitudes
70°35'W and 73°14'W (Fig. 1). The stations provide hourly rainfall
measurements and are part of a national rain gauge network managed
by the General Water Directorate (DGA). As shown in Table 1, the
amount of data per station ranged from 3 to 28 years, adding up to a
total of 418 years and 17,803 storms. Depending on the station, the
rainfall data were recorded between year 1970 and 2013, with annual
data missing in some stations. Missing and incomplete years were re-
moved from the analysis to make the data used as reliable and

Table 1
Location and rainfall characteristics of the 28 climate stations in the study area.

Station Latitude Longitude Elevation
(m.a.s.l.)

Measurement
period

Years of hourly
rainfall records

Years of
missing rainfall
data

Total number
of events

Annual
rainfall depth
(mm)

Average rainfall
intensity (mm
h−1)

I1 I0.5
(mm h−1)

Pedernal 32°05' S 70°48' W 1100 1972–1992 21 0 226 40 0.3 2.5 2.8
Sobrante 32°14' S 70°47' W 810 1972–1992 21 0 271 46 0.3 2.0 2.3
Quillota 32°54' S 71°13' W 130 2004–2013 10 0 141 35 0.3 2.6 3.0
Lliu Lliu 33°06' S 71°13' W 260 1979–1992 14 0 324 139 0.5 3.5 4.0
Pirque 33°40' S 70°35' W 670 1979–1980 2 0 67 183 0.5 2.3 2.6
Melipilla 33°41' S 71°12' W 170 1975–1992 18 0 485 136 0.4 2.7 3.1
Rengo 34°25' S 70°52' W 310 1970–1992 23 0 771 169 0.5 2.5 2.9
Popeta 34°26' S 70°47' W 400 1970–1974 6 1 158 152 0.5 3.1 3.5
Central Las

Nieves
34°30' S 70°43' W 700 1971–1992 22 0 716 287 0.5 3.1 3.5

Potrero
Grande

35°11' S 71°06' W 460 1972–1992 21 0 758 316 0.7 3.7 4.1

Fundo Peral 35°24' S 71°47' W 110 1974–1986 13 0 532 353 0.5 2.7 3.1
Colorado 35°38' S 71°16' W 420 1969–1992 24 0 1065 532 0.8 4.0 4.5
Melozal 35°46' S 71°47' W 110 1971–1992 22 0 825 227 0.5 2.6 3.0
Ancoa 35°54' S 71°17' W 430 1971–1992 22 0 881 532 0.9 4.0 4.5
Bullileo 36°17' S 71°25' W 600 1971–1992 22 0 1298 1236 1.1 5.0 5.5
Chillan Viejo 36°38' S 72°06' W 125 1984–1992 9 0 634 511 0.7 3.0 3.6
Coihueco 36°39' S 71°48' W 300 1984–1992 8 1 616 709 0.9 3.1 3.5
Caracol 36°39' S 71°23' W 620 1987–1992 6 0 326 972 1.0 4.2 4.6
Diguillin 36°52' S 71°39' W 670 1965–1992 28 0 1413 770 0.9 3.9 4.3
Quilaco 37°41' S 71°60' W 225 1965–1992 28 0 1752 786 0.8 3.6 4.2
Cerro el Padre 37°47' S 71°52' W 400 1976–1992 17 0 1226 1067 0.9 3.8 4.3
El Vergel 37°49' S 72°39' W 75 1976–1981 5 1 268 307 0.5 2.4 2.8
Contulmo 38°01' S 73°14' W 25 1987–1992 4 2 157 236 0.4 3.2 3.8
Traiguén 38°15' S 72°40' W 170 1988–1992 5 0 373 506 0.5 2.4 2.8
Manzanar 38°28' S 71°42' W 790 1972–1988 17 0 1135 831 0.8 3.3 3.8
Pueblo Nuevo 38°44' S 72°34' W 100 1989–1992 4 0 396 444 0.5 2.2 2.6
Freire Sendos 38°58' S 72°37' W 100 1985–1987 3 0 166 316 0.5 2.8 3.3
Pucón 39°17' S 71°57' W 230 2005–2013 9 0 823 1042 0.7 2.9 3.3
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homogenous as possible. The climate in this portion of Chile is mainly
semi-arid and Mediterranean, with annual precipitations range from 35
to 1236mm/year. Also, the rainfall in the study area is usually of a
frontal nature (Escobar and Aceituno, 1998; Bonilla and Vidal, 2011),
with intensities that rarely exceed 5.5 mmh−1 (Table 1). Additionally,
the rainfall is highly erosive in some areas, and precipitation amounts
increase with latitude. It must be noted that not all the records corre-
spond to the same time period; however the quality of the data is not a
limitation because this study seeks to quantify how changes in pre-
cipitation patterns alter rainfall erosivity, making these changes more
important than the precipitation values observed for each station.

2.2. Estimating rainfall erosivity

The following equation was used to compute rainfall erosivity
(Renard et al., 1997):

∑= ⎡

⎣
⎢ − − ⎤

⎦
⎥

=

EI exp i ΔV I0.29[1 0.72 ( 0.082 )]
k

m

k k0.5
1

0.5
(1)

where EI0.5 is the rainfall erosivity of the event (MJ mm ha−1 h−1), ik is
the rainfall intensity for the kth period (mm h−1), and ΔVk is the rainfall
amount (mm) for the kth increment of the storm hyetograph, which is
divided into m intervals and I0.5 is the maximum 0.5-h rainfall intensity
(mm h−1). This equation was used because it is incorporated into the
RUSLE2 model (Renard et al., 1997), making it a widely used equation
for estimating rainfall erosivity, and because it provides the best fit in
the study area (Lobo and Bonilla, 2015)

2.3. Climate data

2.3.1. Measured precipitation dataset
A measured rainfall dataset corresponding to hourly pluviograph

records of the 28 sites described in Section 2.1 was used to develop the
proposed statistical equation for estimating event-based rainfall ero-
sivities. Using this dataset (called dataset 1), rainfall erosivity, storm
duration, total precipitation, mean intensity and 0.5-h and 1-h max-
imum rainfall intensities were computed for every event. Because 0.5-h
rainfall data are not typically recorded in Chile, these values were es-
timated from hourly data by fitting the following intensity-duration-
frequency (IDF) curve developed by Wenzel (1982):

=
+

I K
D bn (2)

where I is the storm's mean intensity (mm h−1) for duration D (h), and
K, n and b are dimensionless parameters that are fitted for every storm.
The intensities for durations of 1–6 h were computed and a non-linear
regression technique was used to fit the data (Lobo et al., 2015). Then,
the 0.5-h maximum precipitation amount was calculated for each
storm, which was then used to compute I0.5 and the rainfall erosivity of
every event.

2.3.2. Simulated precipitation datasets
The statistical equation developed in this study was validated using

simulated data from the stochastic weather generator CLIGEN version
5.3. CLIGEN generates daily precipitation occurrence and amount and
internal storm variables, such as peak storm intensity, duration and
time to peak, as well as other climate variables (Nicks et al., 1995).

Fig. 1. Spatial distribution of the study sites.
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Thus, this weather generator provides instant rainfall intensities for
every simulated storm, which allows computing I0.5 and rainfall ero-
sivity without any assumption or IDF curve. CLIGEN generates rainfall
events of up to 24 h; however, when an event of 24 h was immediately
followed by another event, it was assumed that both correspond to the
same rainfall event when computing erosivity. Two datasets were si-
mulated using CLIGEN, one with the current rainfall conditions of
Central Chile, and another with changes in precipitation amounts and/
or rainfall intensities. The first simulated dataset (called dataset 2) was
constructed by implementing CLIGEN with measured daily precipita-
tion data and the procedures described in the study of Lobo et al.
(2015). This dataset was meant to reflect the current conditions of
precipitation in Central Chile. The second simulated dataset corre-
sponds to a series of modifications of the simulated current conditions
dataset, where rainfall intensities and amounts were modified (called
dataset 3). Adjustments were made to the input data and CLIGEN files
so that the weather generator provided data with changes in rainfall
intensities alone, precipitation alone and both variables. These changes
were meant to reflect potential climate change scenarios where pre-
cipitation amounts per event and/or intensities tend to increase, but the
specific augments were randomly chosen. This was done to prove that
the developed equation holds for any change in the rainfall patterns and
not those described by a specific model. Table 2 shows a summary of
the main rainfall characteristics of the 3 datasets.

2.4. Statistical analysis

To develop the statistical equation for estimating the event-based
rainfall erosivity, several variables, including storm duration, total
precipitation, mean intensity and 0.5-h and 1-h maximum rainfall in-
tensities, were related to erosivity. These variables were chosen as they
are commonly used to describe rainfall patterns (Wischmeier and
Smith, 1978) and were extracted from the measured dataset described
in the measured precipitation dataset section (dataset 1). All the ex-
tracted variables and their combinations were correlated to erosivity,
which allowed identifying the main variables controlling it. A regres-
sion curve between the variables showing the highest correlation with
rainfall erosivity was then fitted, and the obtained relationship was
tested with the simulated precipitation datasets (dataset 2 and 3). This
allowed evaluating the robustness of the developed relationship to
changes in precipitation patterns, which is necessary to assess its pre-
dictive power under different climate change scenarios.

It should be noted that the meteorological stations used to calibrate
the statistical equation have different number of recorded rainfall
events, meaning that some stations had a larger impact on the regres-
sion constants than others. However, the stations with large number of
events are scattered throughout the entire study area, reducing the bias
that results from the overrepresentation of certain stations.
Nevertheless, this is a limitation of the proposed equation that should
be considered in its interpretation.

3. Results and discussion

3.1. Proposed rainfall erosivity equation

Table 3 shows the R2 values between rainfall erosivity and different
rainfall variables. As shown, each variable by itself does not explain
more than 75% of the variability of rainfall erosivity, where the highest
R2 value is observed for the maximum 0.5-h rainfall intensity I0.5 (R2 =
0.75). Storm duration, D, shows no relation with rainfall erosivity (R2

=0), which is likely because of the frontal nature of the rainfall in
Chile, where storm duration is not generally related to rainfall intensity,
unlike convective systems (Escobar and Aceituno, 1998). Because ero-
sivity is dominated by rainfall intensity, this result was expected;
however, it is probably not the case for convective storms. As shown in
Table 4, when multiplying the variables among each other, high R2

values are observed, especially when combining total precipitation
amounts with I0.5, where the product P·I0.5 explains almost all the
variability of rainfall erosivity (R2 =0.97). High R2 values are also
observed for the product of P and the other rainfall intensities, I1 and
Imean, showing that the product of P and a measure of maximum rainfall
intensity are enough to predict rainfall erosivity at the event level. No
other combinations of variables were tested because of the high R2

values obtained with the product of P and rainfall intensity.
The strong relationship found between erosivity and P·I0.5 is ex-

plained by Eq. (1), in which erosivity is the product of the rainfall ki-
netic energy E and I0.5. E is a function of the storm hyetograph and
therefore depends on the different rainfall intensities throughout the
storm (Rosewell, 1986; van Dijk et al., 2002; Salles et al., 2002; Lobo
and Bonilla, 2015). However, as shown in Fig. 2, E correlates highly
with P, showing that the shape of the hyetograph is irrelevant when
estimating erosivity in the study area. Therefore, the product of I0.5 and
P can be used to accurately estimate rainfall erosivity in the study area
rather than the product of I0.5 and E.

Fig. 3 compares the rainfall erosivity to P·I0.5, where a strong cor-
relation between the variables is evident. The variables were related

Table 2
Rainfall characteristics for each precipitation dataset. Dataset 1 corresponds to
the measured data, dataset 2 to the current-conditions simulated data and da-
taset 3 to the climate change scenarios. Here, μ and σ are the mean and standard
deviations of the samples, respectively.

Dataset 1 Dataset 2 Dataset 3

μ σ μ σ μ σ

Annual rainfall (mm) 435.9 344.7 435.9 344.7 489.9 396.5
Precipitation per event (mm) 13.0 14.6 13.0 14.6 15.8 19.6
I0.5 (mm h−1) 3.9 3.8 3.5 4.2 4.5 5.3
I1 (mm h−1) 3.4 3.3 3.2 3.7 4.1 4.7
Imean (mm h−1) 1.1 1.0 1.1 1.5 1.4 1.8
Storm duration (h) 14.6 16.6 14.1 5.7 11.8 5.7

Table 3
Coefficient of determination R2 between dif-
ferent rainfall properties and rainfall erosivity
for the measured rainfall data. The variables are
the event's precipitation (P), duration (D), mean
intensity (Imean) and maximum 0.5 and 1-h
rainfall intensity (I0.5 and I1, respectively).

R2

P (mm) 0.54
D (h) 0.00
Imean (mm h−1) 0.55
I1 (mm h−1) 0.73
I0.5 (mm h−1) 0.75

Table 4
Coefficient of determination R2 between the product of different rainfall
properties and rainfall erosivity for the measured rainfall data (for example, the
product of P and D has a R2 with erosivity of 0.36). The variables are the event's
precipitation (P), duration (D), mean intensity (Imean) and maximum 0.5 and 1-h
rainfall intensity (I0.5 and I1, respectively).

D (h) Imean (mm h−1) I1 (mm h−1) I0.5 (mm h−1)

P (mm) 0.36 0.79 0.92 0.97
D (h) 0.54 0.53 0.54
Imean (mm h−1) 0.61 0.61
I1 (mm h−1) 0.83
I0.5 (mm h−1) 0.75
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using the following equation:

= ∙EI a P I( )b
0.5 0.5 (3)

where a and b are dimensionless parameters with values of 0.051 and
1.184, respectively, for dataset 1. This equation was used because a
nonlinear relationship provided a better fit between erosivity and P·I0.5,
with a R2 of 0.99, compared to 0.97 of that of a linear regression
(Fig. 3). The value of amay be interpreted as the average kinetic energy
provided by a rainfall event of magnitude P, while b accounts for de-
viations from linearity. This nonlinear relationship allows for accurate
estimations of high erosivity values, which is not the case with the
linear regression, as shown in Fig. 3.

To test the predictive power of the calibrated Eq. (3) under different
potential climate change scenarios, the simulated datasets were used to
test whether Eq. (3) provided accurate erosivity estimates. Eq. (3) was
first tested with the CLIGEN simulated data for the current conditions
(dataset 2). This was done to test whether the equation is robust enough
to predict changes in rainfall patterns, as CLIGEN simulates storms that
are very different to those existing in Central Chile (Lobo et al., 2015).
CLIGEN simulates storms with convective patterns, where intensities
increase exponentially to a peak value and then decrease in the same

way (Nicks et al., 1995). On the other hand, the rainfall intensities of
the frontal storms in Central Chile are usually constant, where the peak
intensity is not very different to the mean rainfall intensity (Escobar and
Aceituno, 1998). As shown in Fig. 4, Eq. (3) provided accurate erosivity
values for the CLIGEN-simulated storms, regardless of this difference in
storm patterns. The Nash-Sutcliffe efficiency (N-S) of Eq. (3) for the
CLIGEN simulations is identical to that of the measured data (N-
S= 0.99), showing that the developed relationship is robust when
changing rainfall patterns are observed. This demonstrates that Eq. (3)
can be used to compute rainfall erosivity in changing rainfall patterns
due to climate change in the study area.

Eq. (3) was also tested for changes in rainfall intensities and
amounts by implementing it with dataset 3, in which different climate
change scenarios were simulated (Table 2). As shown in Fig. 4, the
equation provides the same fit as for the measured data (dataset 1) and
dataset 2, with an N-S efficiency of 0.99. This shows that Eq. (3) is
robust for changes in precipitation amounts and intensities in the study
sites and can be used for effectively estimating rainfall erosivity at the
storm level in the study area. Moreover, the performance of the equa-
tion in every simulation shows that it is not necessary to predict rainfall
patterns at all when estimating erosivity at the storm level. Only ac-
curate estimations of rainfall precipitation and maximum 0.5-h rainfall
intensities are needed, which simplifies the number of variables re-
quired when estimating rainfall erosivity in climate change scenarios.

3.2. Expanding the proposed equation to other measures of maximum
rainfall intensity

Despite the strong relationship found between P·I0.5 and rainfall
erosivity, its usefulness for predicting erosivity under climate change
scenarios is limited by the time resolution of the precipitation forecasts
of GCMs. Currently, most long-term forecasts are downscaled to provide
daily precipitation estimates, where I0.5 cannot be obtained for im-
plementing Eq. (3) (Minville et al., 2008; Nearing et al., 2005; Yang
et al., 2003). Short-term forecasts usually have a higher time resolution,
where precipitation is estimated in fixed time intervals, such as every 3,
1 or 0.5 h. However, these time intervals are not always suitable for
estimating I0.5, which also limits the applicability of Eq. (3). Therefore,
Eq. (3) was redefined to estimate rainfall erosivity at different resolu-
tions of precipitation data, where erosivity was estimated as follows:

= ∙EI a P I( )X
b

0.5 (4)

Fig. 2. Relationship between precipitation per event and rainfall kinetic energy.
As shown, a strong relationship was found between the variables (R2 = 0.98).

Fig. 3. Relationship between the product of the rainfall event's maximum 0.5-h
rainfall intensity (I0.5) and total precipitation (P) with rainfall erosivity. The
relationship between the variables is best described as nonlinear, as the linear
regression is not effective for erosivity values over 300 MJ mm h−1 ha−1 per
event.

Fig. 4. Comparison between the measured and modeled erosivity values when
using Eq. (3) for the measured data (dataset 1), the current-conditions simu-
lated data (dataset 2) and the climate change scenarios (dataset 3). Even if the
equation was calibrated using dataset 1, it proved to provide accurate estimates
for datasets 2 and 3.
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where IX is the maximum rainfall intensity for rainfall data with a time
resolution of X h. This was done because, as shown in Table 4, the
product of the total rainfall and the mean rainfall intensity are corre-
lated to erosivity in the study site (R2 = 0.79). Just like Eqs. (3) and (4)
was calibrated using the measured dataset (dataset 1) and then tested
for simulated datasets 2 and 3. However, 24 different calibrations were
performed, one for each hour between time resolutions of 1 h and 24 h.
This was done by aggregating the hourly data and obtaining the values
of IX for each time resolution. The values of the regression constants a
and b are shown in Fig. 5 for the various time resolutions, which were
used with Eq. (4) for computing the erosivity for the CLIGEN-simulation
datasets.

Fig. 6 shows the performance of Eq. (4) for time resolutions of 1
through 24-h for all datasets 1, 2 and 3, while Table 5 shows its per-
formance for the 1-h and 24-h time resolutions (I0.5 event and I24 event,
respectively). As shown in the figure, the equation provides consistent
results in every dataset, showing almost no difference among them for
every time resolution. This demonstrates the robustness of the equation
in the study area, as it was calibrated using dataset 1 and provided

consistent results for datasets 2 and 3. Additionally, as shown in the
figure, Eq. (4) provides accurate erosivity estimates for a 1-h time re-
solution (N-S=0.99 for every dataset), with decreasing efficiencies as
the time resolution decreases. The lowest N-S efficiency value is ob-
served for the 24-h time resolution in dataset 3, with an N-S efficiency
of 0.75 (Table 5), proving that Eq. (4) may be used to predict erosivity
for every time resolution between 1 and 24 h. Therefore, Eq. (4) is a
robust alternative for computing rainfall erosivity when changes in
precipitation patterns and amounts are observed, as it indirectly es-
tablishes a conversion factor between IX and I0.5, which is reflected in
the variables a and b. Moreover, because a 24-h time resolution can be
computed directly from daily rainfall, Eq. (4) may be used to predict
daily rainfall erosivity with data available from most GCM forecast
downscaling methods. However, if these methods were to provide
higher resolution data, better erosivity predictions could be obtained,
as shown in Fig. 6. This equation is thus a simple alternative to other
statistical downscaling methods, such as the one described by Panagos
et al. (2017), as it provides accurate estimates using only measured
precipitation pattern information.

The good performance of Eq. (4) demonstrates that a measure of
maximum rainfall intensity and total precipitation are enough to pre-
dict daily rainfall erosivity when changes in precipitation patterns and/
or amounts are observed. This finding is of importance when down-
scaling the output of GCMs into soil loss models, as it provides two
critical variables that need to be carefully considered when using cur-
rent downscaling techniques. When climate simulators are used for this
purpose, the user must consider whether to modify the rainfall patterns,
the precipitation amounts or both, because, as demonstrated in Eq. (4),
both affect erosivity in different measures. Rainfall patterns affect IX,
while precipitation amounts control P, so deciding which to modify will
affect erosivity in different ways. Therefore, when using climate gen-
erators to downscale daily GCM forecasts, a sensibility analysis should
be performed for the variables controlling precipitation patterns and
amounts, as monthly or daily forecasts alone do not provide informa-
tion on the rainfall patterns, which affect IX. This is particularly im-
portant for the method described by Nearing et al. (2004), in which
CLIGEN is used to downscale GCM forecasts.

On the other hand, when using empirical methods to convert GCM
forecasts into daily or annual rainfall erosivity values, care should be
taken when choosing the appropriate empirical equation. Most em-
pirical relationships, such as those using the modified Fournier index
(Arnoldus, 1980) have not been tested under potential climate change

Fig. 5. Values of the constants a and b used in Eq. (4) for estimating rainfall
erosivity with rainfall data at different time resolutions. Each of the 24 points
per variable represents the value of the variables for a specific time resolution
between 1 and 24 h, with one point per hour. The values of a and b were ca-
librated using the measured data (dataset 1).

Fig. 6. Nash-Sutcliffe (N-S) efficiency between the measured and modeled
rainfall erosivity per event when using Eq. (4) with data at different time re-
solutions. The N-S efficiency values are shown for the measured data (dataset
1), the current-conditions simulated data (dataset 2) and the climate change
scenarios (dataset 3). Even if the equation was calibrated using dataset 1 for
each time resolution, it provided accurate estimates for datasets 2 and 3.

Table 5
Performance of the event and annual-based equations for estimating rainfall
erosivity, where n is the number of events (or years in the case of the annual
data), and N-S is the Nash Sutcliffe efficiency between the measured and
modeled erosivity values.

n N-S R2 Slope

Dataset 1 I0.5 event 17803 0.99 0.97 1.00
I24 event 17803 0.78 0.79 1.03
I0.5 annual 404 0.99 0.99 1.00
I24 annual 404 0.92 0.93 1.03
Modified Fournier index 404 − 1.29 0.00 0.00
Precipitation index 404 0.84 0.84 0.97

Dataset 2 I0.5 event 17803 0.99 0.97 1.00
I24 event 17803 0.78 0.79 1.03
I0.5 annual 404 0.99 0.99 1.00
I24 annual 404 0.85 0.87 0.89
Modified Fournier index 404 0.01 0.00 0.00
Precipitation index 404 0.70 0.75 0.80

Dataset 3 I0.5 event 17803 0.99 0.99 1.01
I24 event 17803 0.75 0.77 1.14
I0.5 annual 404 0.99 0.99 0.99
I24 annual 404 0.89 0.91 0.92
Modified Fournier index 404 − 1.24 0.00 0.00
Precipitation index 404 0.72 0.81 0.78
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Fig. 7. Comparison between the measured and modeled annual erosivity estimates when using Eq. (4) for the 0.5 and 1-h time resolutions and the precipitation index
(Eq. (5)) for datasets 1, 2 and 3. As shown Eq. (4), with a time resolution of 0.5-h, provides highly accurate results regardless of dataset. Eq. (4) with the 24-h time
resolution and Eq. (5) provide similar results for datasets 1 and 2. However, for dataset 3, the dispersion of Eq. (5) increases, showing that it is not a robust equation
when precipitation amounts and intensities change.
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scenarios and could provide inaccurate erosivity values when GCM
forecasts are used. Therefore, when using such relationships to assess
soil loss under climate change scenarios, a prior study should be per-
formed to verify whether those equations hold when changes in pre-
cipitation and/or rainfall patterns are observed. Simulations such as the
ones performed in this study provide an alternative way to validate
these equations.

3.3. Estimating annual rainfall erosivity using the proposed equation

Thus far, Eq. (4) has been used to provide daily erosivity estimates,
which are useful when using empirical soil loss models working at a
daily scale, such as the RUSLE2. However, the most widely used soil
loss model is the RUSLE (Kinnell, 2010), which uses annual erosivity
values. Therefore, annual erosivity values were computed by adding the
daily outputs of Eq. (4) to assess whether the proposed equation yields
accurate annual soil loss estimates. These estimates were compared
against the measured annual erosivity values obtained using the yearly
summations of Eq. (1) for every rainfall event. Moreover, the perfor-
mance of two commonly used relationships, the modified Fournier
Index and the annual precipitation index (Renard et al., 1991), were
also evaluated. The models used are the following:

=R a P· annual
b (5)

=R c F· d (6)

=
∑ =F

P
P

r r

annual

1
12 2

(7)

Where R is the annual rainfall erosivity (MJ mm ha− 1 h−1 yr− 1),
Pannual is the annual precipitation amount (mm); F is the modified
Fournier Index; Pr is the total precipitation for month r (mm); and a, b, c
and d are regression constants. Eqs. (5) and (6) were calibrated using
the measured dataset and then tested for the simulated data.

Fig. 7 shows the performance of Eq. (4) for the 1 and 24-h time
resolution data when estimating annual erosivity, as well as the per-
formance of Eq. (5) for the measured and simulated datasets. The
performance of Eq. (6) was not shown because the modified Fournier
index showed no correlation with annual erosivity in the study area
(Table 5). As shown, Eq. (4) provides highly accurate annual erosivity
estimates, even at a 24-h time resolution, regardless of the dataset used.
The lowest observed N-S efficiency is 0.85 for dataset 2 (Table 5), de-
monstrating the robustness of the equation for computing both daily
and annual erosivity for current climates and potential climate change
scenarios. In the case of the empirical relationship using the annual
precipitation index, Eq. (5), a good performance was observed for da-
taset 1, as shown in Tables 5 (N-S=0.84). However, for datasets 2 and
3, the model's performance decreased, with an N-S efficiency of 0.70
and 0.72, respectively. This shows that the total annual precipitation is
a good index for estimating annual rainfall erosivity when total pre-
cipitation and intensities do not change drastically. However, when
changes are observed in precipitation patterns and amounts, the
equation is not as robust as Eq. (4). On the other hand, the modified
Fournier index did not show any correlation with annual erosivity re-
gardless of the dataset (Table 5). This is likely because the Fournier
index assumes that months with high rainfall will have a higher impact
on rainfall erosivity, as large rainfalls are usually associated with higher
rainfall intensities (Arnoldus, 1980). However, this is not the case of the
frontal storms observed in the study area, where rainfall intensity is not
related to storm duration.

3.4. Model limitations

Like any other empirical relationship, Eq. (4) has limitations that
should be considered when using it to estimate daily and annual ero-
sivity. First, the relationship was tested only in the study area;

therefore, its effectiveness was demonstrated only for Central Chile.
However, because of the large rainfall gradient existing from north to
south in the study area (Table 1), Eq. (4) can be applied in a wide
variety of conditions, suggesting that it may be extrapolated to loca-
tions with a similar climate. Moreover, the equation provided robust
results in every simulation dataset, which included storms that are not
typical of the frontal systems existing in Central Chile (Table 2). This
shows that Eq. (4) could be applied to storms other than those of a
frontal nature. However, its performance in other types of storms
should be tested firsthand to verify its effectiveness, particularly under
convective storm patterns.

Another limitation of Eq. (4) is that its capability for predicting the
erosivity of potential climate change scenarios was only tested for
CLIGEN simulations, providing accurate results for storms with the
rainfall patterns described by Nicks et al. (1995). Other climate gen-
erators may use different rainfall patterns, which might affect the
performance of the proposed equation. However, because the equation
was always calibrated using the measured storm data and then tested
with the CLIGEN simulations, its applicability was demonstrated for
two completely different types of storms. This shows that the effec-
tiveness of the equation does not completely depend on the rainfall
patterns, but rather on the maximum rainfall intensity and total pre-
cipitation. Therefore, Eq. (4) should provide effective results when
using other climate simulators.

Even though Eq. (4) has limitations, its simplicity and good per-
formance in the study area demonstrate that it is an alternative for
effectively predicting rainfall erosivity under different climate change
scenarios. The equation depends exclusively on the total precipitation
and a measure of maximum rainfall intensity, where better results are
obtained when rainfall data with higher time resolutions are used.
Currently, most GCM downscaling methods do not usually provide
detailed storm forecasts and therefore maximum rainfall intensities
other than I24 cannot be obtained to use Eq. (4). The equation provided
good erosivity estimates when using I24, making it applicable with daily
precipitation data from current GCM downscaling methods. However,
its accuracy increases dramatically when finer rainfall intensity data are
used, which highlights the need of higher resolution data or novel
downscaling methods for estimating the maximum rainfall intensity.
This study demonstrates that if, for instance, I0.5 is obtained from GCM
forecasts, erosivity could be predicted with nearly 99% accuracy.
Therefore, for modeling soil loss under climate change scenarios, efforts
should be made for accurately estimating the maximum rainfall in-
tensity rather than the whole distribution of the rainfall. In addition,
Eq. (4) provides a tool that can be readily used with daily precipitation
from current GCM downscaling methods for accurately estimating
rainfall erosivity, but its limitations should always be considered.

4. Conclusions

A simple statistical equation for accurately estimating the rainfall
erosivity of individual storms under changing precipitation patterns
was developed. This equation uses the product of each storm's total
precipitation and a measure of its maximum rainfall intensity, which
are parameters that may be easily obtained from downscaled GCM data
to predict changes in rainfall erosivity. The equation was calibrated
using measured precipitation data from 28 sites in Central Chile and
then tested with simulated data from the CLIGEN weather generator,
which was meant to simulate potential climate change scenarios in the
study area.

This study demonstrates that the equation provides accurate ero-
sivity estimates in the study area, where better results were obtained
when the maximum rainfall intensity used approached the maximum
0.5-h rainfall intensity, I0.5. The equation provided erosivity estimates
with a R2 ranging from 0.78 to 0.99; the lowest value was obtained
when using I24, while the highest when using I0.5. This shows that ob-
taining a measure of the maximum rainfall intensity with climate
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change forecast tools is paramount when estimating rainfall erosivity
and soil loss in climate change scenarios.

The developed equation was calibrated and validated for Central
Chile; however, because of the different rainfall patterns analyzed, and
the large precipitation gradients that exist from north to south, the
methodology used in this study may be applied to a wide variety of
conditions. Nevertheless, its effectiveness was not demonstrated for
other locations, particularly those with highly different rainfall pat-
terns. Thus, the methodology needs to be tested further for applying it
at a larger scale. If successful, the methodology could be used to com-
pute regression factors for several regions worldwide, making it easy to
compute rainfall erosivity from downscaled GCM data.

The equation developed in this study is meant to be used as a simple
tool for predicting rainfall erosivity under climate change scenarios,
particularly in locations where climate data is scarce. However, it also
allowed the identification of critical variables for predicting erosivity,
highlighting the importance of obtaining a measure of maximum
rainfall intensity in GCM forecasts or downscaling methods rather than
the complete distribution of the rainfall. Models such as this one allows
the incorporation of GCM forecasts into simple soil loss models that use
daily rainfall erosivity so that better and more sustainable soil and
water conservation practices can be developed.
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