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ABSTRACT 

 

Fruit spirits are alcoholic beverages that are produced and consumed all over the world. Their 

variety depends mainly on raw material available in a given region, and they are characterized 

by a distinctive aroma. The aroma of spirits is defined by hundreds of low compounds called 

congeners. The concentration of these congeners depends on many variables such as growing 

conditions, fermentation variables, yeast strain, distillation equipment, distillation variables, 

as well as maturation and aging conditions. Distillation plays a key role in preserving the 

distinctive aroma of young spirits. In spirits distillation, Charentais stills operating in batch 

mode are most often used in small-scale production. During distillation, three cuts are 

recovered (head, heart and tail) to obtain highly aromatic spirits with low levels of toxic 

components and off-flavors. Since the operation of this process is apparently simple, it is 

usually carried out manually. However, spirits distillation is subjected to many disturbances 

that generate variability in the composition of the final product. In addition, it is hard and 

time consuming to adapt the distillation recipe to the market demand for new products. The 

challenge of this productive sector is to keep up with and to follow developing initiatives and 

strategies that allow improvements in the production quality, to diversify their products in an 

increasingly competitive market. Therefore, the application of modern engineering tools such 

as mathematical modeling, optimization and automatic control would be a fundamental 
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support to produce consistently spirits which are rich in specific aromas, and free from off-

flavors and toxic compounds. The hypothesis that guides this work is that the aromatic 

characteristic of fruit spirits obtained in Charentais stills can be shaped by proper handling 

of the boiler´s heat as well as the volumes of the head and heart cuts. The methodology of 

this thesis involves the following steps. First, the development of a dynamic process model 

derived from mass and energy balances. Second, the application of various model-based 

optimization techniques to establish a heat addition policy and volume cuts. Third, the 

development of automatic control systems able to follow closely a given heat addition policy, 

despite unmeasured disturbances. Finally, experimental validation with artificial fruit wines. 

The results of this thesis will allow the design of distillation recipes for Charentais stills to 

produce any spirit with enhanced specific aromatic characteristic and with minimum levels 

of toxic compounds and aromatic defects. 
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RESUMEN 

 

Los destilados de frutas son bebidas alcohólicas producidas y consumidas en todo el mundo. 

La variedad de éstas depende principalmente de la materia prima disponible en una región 

en particular, que caracteriza un aroma distintivo. El aroma de las bebidas destiladas se define 

por cientos de compuestos en bajas concentraciones llamados congéneres. La concentración 

de estos congéneres depende de muchas variables como las condiciones de crecimiento de la 

fruta, las variables de fermentación, la cepa de levadura, el equipo de destilación, las 

variables de destilación, así como las condiciones de maduración y envejecimiento del 

destilado. La destilación juega un papel clave en la preservación del aroma distintivo de los 

destilados jóvenes. En la destilación de licores, los alambiques Charentais operados por lote 

son utilizados con mayor frecuencia en la producción a pequeña escala. Durante la destilación 

se recuperan tres cortes (cabeza, corazón y cola) para obtener destilados altamente aromáticos 

con bajos niveles de componentes tóxicos y sabores desagradables. Dado que la operación 

de este proceso es aparentemente simple, generalmente se lleva a cabo manualmente. Sin 

embargo, la destilación está sujeta a muchas perturbaciones que generan variabilidad en la 

composición del producto final. Además, es difícil y lento adaptar recetas de destilación a la 

demanda de nuevos productos por el mercado. El reto en este sector productivo es mantener 

y seguir desarrollando iniciativas y estrategias que permitan mejorar la calidad del producto, 
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además de diversificar y ofrecer productos a un mercado cada vez más competitivo. Por lo 

tanto, la aplicación de herramientas de ingeniería modernas como el modelamiento 

matemático, la optimización y el control automático sería un soporte fundamental para 

producir consistentemente destilados ricos en aromas específicos y libres de sabores 

desagradables y compuestos tóxicos. La hipótesis que guía este trabajo es que la característica 

aromática de los destilados de fruta obtenidos en alambiques Charentais se puede adaptar 

manejando adecuadamente la adición de calor en la caldera y los cortes de volumen de la 

cabeza y el cuerpo. La metodología de esta tesis implica los siguientes pasos; primero, el 

desarrollo de un modelo dinámico del proceso derivado de los balances de masa y energía. 

Segundo, la aplicación de técnicas de optimización dinámica basadas en modelos para 

establecer una estrategia óptima de adición de calor y volúmenes de corte en la destilación. 

Tercero, el desarrollo de un sistema de control automático capaz de seguir de cerca una 

determinada política de adición de calor, a pesar de las perturbaciones no medidas. 

Finalmente, la validación experimental de las estrategias óptimas de destilación con vinos de 

frutas artificiales y reales. Los resultados de esta tesis permitirán diseñar recetas de 

destilación para alambiques Charentais para producir cualquier tipo de destilado de fruta con 

características aromáticas específicas mejoradas y con niveles mínimos de compuestos 

tóxicos y defectos aromáticos. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 

Pisco is a young fruit spirit traditional of Chile and Peru, made from Muscat wine distillation. 

In Chile, pisco is protected by origin denomination in the law N° 18445. This origin 

denomination recognizes the special characteristics of pisco, reflecting the factors of climate, 

people and traditions of the Chilean valleys of Regions III and IV.  

The pisco market has had changes and dynamism, in the decade of the ‘90s and the beginning 

of the new millennium; the demand for pisco has decreased in the internal market, being 

replaced by other distillates like rum, vodka and gin, and by beer. Nevertheless, in recent 

years, this situation began to revert and the demand of pisco has begun to improve, indicating 

that the national consumption would reach 2.1 liters per capita in 2016 (Odepa, 2017). The 

Chilean pisco production is mainly consumed by national market (98.9%) obtaining US$ 250 

million of annual sales. In turn, the international market has had an increase both in price and 

volume in the last years. This is mainly due to a better quality, variety and presentation of 

the product. However, the international sales are still much smaller than national sales, 

representing only 1.1% of the total production. Therefore, the challenge of this productive 

sector is to keep up with and to follow developing initiatives and strategies that allow the 

industry to improve the production quality, diversify their products and consolidate their 

presence in the international markets. In this context, the application of modern engineering 

tools such as mathematical modeling, optimization and automatic control would be a 

fundamental support to attain these goals. 

1.2 Pisco 

Pisco is an aromatic spirit produced from Muscat grapes. According to origin denomination, 

pisco corresponds to a brandy produced in the regions of Atacama (III) and Coquimbo (IV). 

These regions have an ideal ecosystem (warm and dry weather) for Muscat grapes production 

and they are formed by Copiapó, Huasco, Elqui, Limarí and Choapa valleys. In 2015, the 

surface planted with pisco vines was more than 8,500 hectares mainly in the Coquimbo 

region (95 %). The grapes also are regulated to include only some Vitis Vinifera varieties: 

Moscatel de Alejandría o Italia, Moscatel Rosada o Pastilla, Torontel, Moscatel de Austria, 
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Pedro Jiménez, Moscatel Blanca o Temprana, Chaselas Musque Vrai, Moscatel Amarilla, 

Moscato de Canelli, Moscatel de Frontignan, Moscatel de Hamburgo, Moscatel Negra and 

Muscat Orange (the first five are the main varieties). The grapes provide the typical aromatic 

quality of pisco, mainly from terpenes (Muscat aroma). Moscatel Amarilla contains the 

highest terpenes concentration followed by Moscatel de Alejandría and Moscatel Rosada 

(Agosin et al., 2000). Pedro Jimenez is a non-aromatic grape and is preferred by the farmers 

since it has a higher productivity and it improves the cost effectiveness of their fields (Odepa, 

2017). Therefore, the grape variety used results in obtaining wines and distillates with 

different aromatic qualities. Four types of pisco are commercialized in Chile: Pisco corriente 

(30°), Pisco especial (35°), Pisco reservado (40°) and gran Pisco (43°). In addition, 

sometimes pisco is aged in oak barrels for more than six months and up to ten years, using a 

mixture of non-aromatic grape varieties, to increase flavors and aromas coming from oak, 

yielding a distillate color between light and dark amber. White pisco is a young distillate with 

less than six months of aging, most of the times using Muscat varieties with high terpenes 

concentration. 

1.3 Pisco production 

Pisco elaboration consists of many stages (Figure 1-1). The first stage is a vintage of grapes 

in sunny valleys. Then, the grapes are ground to extract the Muscat must. The second stage 

is the alcoholic fermentation. Here, yeasts transform the glucose and fructose from Muscat 

must into ethanol, and the fruity aromas of grapes are complemented with fermentation 

aromas to produce a wine with a complex Muscat aroma. The third stage is a distillation of 

Muscat wine, to produce a spirit where the volatile components are concentrated. In Chile, 

the pisco is usually distilled around 70° alcoholic strength. Later, the distillate is diluted with 

demineralized water to adjust the ethanol concentration to commercial alcoholic grades (30°, 

35°, 40° and 45°). Finally, in some cases, the distilled alcohol is stored in oak barrels for a 

short aging process. 

Young distillates like white pisco are characterized by a delicate aroma that resembles the 

original fruit. Thus, in young spirits’ production process, distillation plays a key role to ensure 

the quality standards of the distillate, i.e., rich in ethanol, fruity and floral aromas (esters and 
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terpenes) and low in off-flavors (fatty acids) and toxic compounds (methanol, acetaldehyde 

and furfural). 

 

Figure 1-1. Stages of pisco manufacture. 

 

1.4 Alcoholic Beverages distillation 

Distillation is a technique used to carry out the separation of a liquid mixture by evaporation 

and condensation, based on the differences in boiling temperature (relative volatile) by the 

application of heat. Distillation was already used by ancient cultures (2000 BC) in China, 

Egypt, and Mesopotamia for medicinal purposes as well as to create balms, essences, and 

perfumes. Some historians state that during the eighth or ninth century, Arab alchemists 

devised the alembic to obtain finer essences for perfumes while other Arab alchemists used 

the alembic to convert base metal into gold (copper-alembic.com) (Figure 1-2). The 

"alembics" derived from the Arabic term “al ambic,” which in turn can be traced back to the 

Greek “Ambix”, describing a container with a small hole (Sacher, García-Llobodanin, López, 

Segura, & Pérez-Correa, 2017). 
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Figure 1-2. Distillation description using an alembic by Arab alchemists in the 8th century. 

 

Nowadays, distillation of alcoholic beverages must be carried out in batch copper Charentais 

alembics (French style) and in batch distillation columns (German style) (Figure 1-3). In fact, 

there are many research papers that study the impact of the distillation system on the aromatic 

and chemical characteristic in several kinds of distillates; melon fruit distillate using copper 

alembic and glass packed column (Hernández-Gómez et al., 2003), grappa distillation using 

tray and packed columns (Da Porto & Decorti, 2008), Cachaça distillation using copper 

alembic and stainless steel columns (Reche et al., 2007), copper Charentais alembic and 

packed column to obtain pear spirits (Arrieta-Garay et al., 2013; García-Llobodanin et al., 

2011), kiwi spirits (Arrieta-Garay et al., 2014) and grape pomace spirits (Arrieta-Garay et 

al., 2014). Charentais alembics are widely used in small scale facilities since the operation is 

much simpler than batch columns and it better preserves the original fruit aroma (Arrieta-

Garay et al., 2013). Nevertheless, traditional distillations with Charentais alembics allow 

limited control of the distillation process to improve the product. In this case, the heating 

power in the boiler is the only input variable that can be manipulated to modify the aromatic 



5 

 

 

 

composition of the distillate. Instead, are more flexible since they include two manipulated 

variables: heating power in the boiler and cooling flow rate in the partial condenser. In 

particular, batch distillations with packed columns allow fast and flexible control of the 

internal reflux rate, and this can be varied in a wide range (Matias-Guiu et al., 2016). 

Therefore, batch distillations with packed columns yield higher ethanol recovery (principal 

product) and productivity (Spaho, 2017). However, the process is less reproducible than 

traditional distillations in Charentais alembics. In both cases, the operation is subjected to 

many uncontrolled and unmeasured disturbances that generate variability in the distillate 

composition. For example, the environmental temperature influences the heat loss in the 

Charentais alembic swan neck (Sacher et al., 2013). This phenomenon is important since it 

defines the natural internal reflux rate that modifies the ethanol and congeners recoveries. 

Finally, the choice of distillation equipment depends mainly on the consumers’ preferences 

for the typical flavor and aroma from the fruit that is distilled. 

 

Figure 1-3. Schematic representation of distillation equipment. (A) Charentais alembic and 

(B) packed column from Arrieta-Garay et al. (2014). 
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1.5 Description of pisco distillation 

Wine to distill is composed mainly of ethanol and water (97-99 %). However, the distinctive 

aroma is defined by over 300 compounds of low concentration called congeners. These 

compounds will distill differently depending on their boiling point, solubility in ethanol and 

water, and ethanol content in the vapor during distillation (Léauté, 1990). Some congeners 

are desirable like floral and fruity aromas; others should be removed as much as possible 

during distillation like fatty acids, methanol, acetaldehyde and furfural. Therefore, spirits 

distillations aim to concentrate ethanol and desirable aroma compounds like terpenes, esters 

and aromatic alcohols, while minimizing the recovery of negative compounds (off-flavors). 

During the distillation process, the ethanol content in the vapor phase will define which 

volatile compounds will be more concentrated in the distillate (Figure 1-4). 

 

 

Figure 1-4. Distillation run of ethanol and congeners, distinguish by volatility (Spaho, 

2017).   
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The first part of the distillate is rich in ethanol and in highly volatile compounds. Later, 

ethanol concentration decreases, and low volatile compounds increase. To separate the 

different congeners, the distillate is collected in three fractions: head, heart and tail. The head 

fraction is rich in congeners that present low boiling temperatures or are highly soluble in 

ethanol. Most of the times, head compounds are off-flavors like acetaldehyde, acetal and 

ethyl acetate. This fraction also includes fruity esters like ethyl butyrate, ethyl hexanoate, 

ethyl octanoate and ethyl decanoate. The head fraction is discarded to reduce in the final 

product the content of negative aromas and toxic compounds such as acetaldehyde (Christoph 

& Bauer-Christoph, 2007). The heart fraction should have a clean taste, corresponding to the 

alcohol base to make pisco. This fraction is rich in higher alcohols such as 1-propanol, 1-

hexanol, 2-methyl-1-butanol and 3-methyl-1-butanol and in terpenes such as linalool and α-

terpineol. At high concentrations, higher alcohols are known for their negative impact on the 

spirit’s aroma (fusel-like flavors) (Matias-Guiu et al., 2018). In turn, terpenes are known for 

their high positive impact, providing the typical flowery notes from Muscat wines (Christoph 

& Bauer-Christoph, 2007). Finally, the tail fraction is rich in high boiling temperature or 

highly water soluble compounds. Most tail compounds are considered a defect in distilled 

spirits, especially fatty acids like octanoic and hexanoic acids. Usually, in the Chilean pisco 

industry, the head and tail fractions are collected and redistilled, since they contain significant 

amounts of alcohol and of some valuable congeners. 

The art of spirits distillation is to balance productivity and distinctive flavor, ensuring a 

product free from off-flavors and toxic compounds. There are some different criteria to make 

the cut from heart to tail, e.g., a target ethanol recovery, a given alcoholic strength or a 

specified temperature of the vapor entering the total condenser (Spaho, 2017; Spaho et al., 

2013). In many distilleries, experienced distillers do this very well by taste and smell. This 

method remains the most reliable method to define cuts. Alternatively, other methods like 

mathematical models have been developed for decision making and exploring new strategies. 
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1.6 Pisco flavor chemistry 

Pisco flavor results from a unique mixture of volatile compounds originating mainly from 

the raw material (Muscat grape varieties) such as linalool, geraniol, nerol, among other. C13 

norisoprenoids also contribute significantly to the fruity aroma of the distillate (Bordeu, 

Agosín, and Casaubon 2012). However, several secondary compounds are formed during the 

alcoholic fermentation by yeast (Saccharomyces cerevisiae) called fermentative aromas. 

These volatile compounds include higher alcohols, medium and long chain volatile acids, 

acetate esters, ethyl esters, and aldehydes, among others (Bordeu et al., 2012; Delfini et al., 

2001; Lambrechts and Pretorius 2000). Moreover, some compounds are formed from a short 

aging process (Lambrechts & Pretorius, 2000; Swiegers et al., 2005) to add caramel flavor. 

Finally, during distillation, several aroma compounds are also released or decomposed, due 

to the acidic hot environment with pH between 2.8 and 4.0 (Bordeu et al., 2012; Ribéreau-

Gayon et al. 2006) and temperatures between 78 and 100 °C. There are several complex 

reactions occurring in this extreme environment, e.g., terpenic compounds such as geraniol 

and nerol transform into linalool and alpha terpineol (Ohta et al., 1991). Matias-Guiu et al. 

(2018) reported that low pH (acidic media) favors the decomposition of linalool and 

acetaldehyde to form α-terpineol and acetal, respectively. In addition, low pH favors the 

formation of ethyl esters such as ethyl acetate and fruity esters (ethyl hexanoate, ethyl 

octanoate, among others) by esterification. 

Several congeners have a significant olfactory impact at low concentrations. The aromatic 

impact of these compounds is expressed in terms of odor activity values (OAV), defined as 

the ratio between the concentration of the compound in a given mixture and its detection 

threshold. Table 1-1 shows the most relevant congeners found in Chilean commercial piscos, 

their aromatic characteristics and their odor thresholds. The most important odorants in pisco 

are linalool (terpene), β-damascenone (C13 norisoprenoids), ethyl hexanoate, ethyl heptanoate 

and octanoate, isoamyl acetate (Bordeu, Agosín, and Casaubon 2012). To explain the 

aromatic differences between commercial distillates, principal component analysis (PCA) 

was applied to the composition of ten Chilean commercial piscos considering fifteen 

congeners (Figure 1-5). The first two principal components covered 63.6% of the total 

variance. Commercial samples were separated into three main groups: (i) piscos rich in fruity 

aromas (mostly singly distilled); (ii) piscos rich in floral and terpenic aromas (one tripled 
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distilled and one singly distilled); and (iii) piscos characterized by floral and burnt aromas 

(one lightly aged, one singly distilled and one doubly distilled). Therefore, aging and the 

number of distillation processes yield significant differences between the distillates. The 

variety of Muscat grape used to produce the wine is also a relevant factor affecting the 

distillate composition, since each grape variety contains different concentrations of free and 

bound aromatic compounds (Agosin et al., 2000). The distillation equipment also plays a 

relevant role, although in Chile almost all piscos are distilled with the same technology. In 

Perú, some commercial piscos are distilled in Charentais alembics and others in batch 

distillation columns.

 

Figure 1-5. Principal component analysis of 10 commercial pisco considering 15 chemical 

markers. 
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Table 1-1. Concentration range and odor activity value of the most relevant aroma 

compound in Chilean commercial piscos. 

Compounds Odor description Concentration 

(g/hL.a.a)a 

Odor threshold 

(g/hL.a.a) 

OAVg 

Head compounds 

Acetaldehyde Pungent 0-26 20.25b 0-1.3 

2.3-butadione Butter-like 0.07-0.3 4.7e-04c 149-638 

β-damascenone Cooked apple-like 0-0.11 6.6e-05c 0-1667 

Fruity esters 

Ethyl acetate Glue 12-20 25d 0.5-0.8 

Ethyl hexanoate Fruity 0.2-2 0.45b 0.4-4.4 

Ethyl octanoate Fruity 0.2-5 3b 0.1-1.7 

Isoamyl acetate Banana 0.3-3.2 0.02e 15-160 

Terpenic compounds 

Linalool Muscat, floral 0.08-1.4 0.25f 0.3-5.6 

Geraniol Citric, floral 0-0.1 0.75f 0-0.13 

Nerol Sweet, floral 0-0.18 10f 0-0.02 

Alpha-Terpineol Sweet, floral 0.12-2 75f 0.002-0.03 

Higher alcohols 

2-methyl-1-butanol Malty 14-35 91b 0.2-0.4 

3-methyl-1-butanol Malty 95-140 150.5b 0.6-0.9 

Isoamyl alcohol Whiskey, malt 55-80 20e 2.8-4 

1-Hexanol Green, flowery 1.8-8 6.8c 0.3-1.2 

 

 

 



11 

 

 

 

Table 1-1. Continued 

Compounds Odor description Concentration 

(g/hL.a.a)a 

Odor threshold 

(g/hL.a.a) 

OAVg 

Tail compounds 

Acetic acid Vinegar 0-75 150f 0-0.5 

Hexanoic acid Rancid 0-0.9 2.5b 0-0.4 

Octanoic acid Fatty acid 0-3.8 0.625b 0-6.08 

-Phenylethanol Roses, floral 0.03-15 5f 0.006-3 

Methanol Alcoholic, toxic 17-83 127.5b 0.1-0.7 

Furfural Smoky, burned 0-8 10.2d 0-0.8 

a Commercial piscos analyzed: Gobernador, Fundo los nichos 40°, Alto del Carmen 40°, 

Artesanos del Cochiguaz, Capel 40°, Capel 35°, Capel DD 35°, Alto del Carmen 35°, 

Control, La serena, Valle del Limarí, Ruta Norte, Bauza 40°, Campanario, Mal paso. 
b Mean values determined in 40% v/v ethanol reported in (Christoph and Bauer-Christoph 

2007)  
c Values determined in 60% v/v ethanol reported in (Willner, Granvogl, & Schieberle, 2013) 
d Values determined in 20% v/v ethanol reported in (Clutton & Evans, 1978) 
e Values determined in 10-15% v/v ethanol reported in (E Bordeu et al., 2012) 
f Values determined in 40% v/v ethanol reported in (Cacho, Moncayo, Palma, Ferreira, & 

Culleré, 2012) 
g Odor activity value expressed in units of aroma (u.a) were calculated by dividing the 

congeners concentrations by the respective odor threshold. 

 

To analyze the sensory properties of different pisco distillates, Bordeu et al. (2004) developed 

the “pisco wheel” (Figure 1-6). This wheel is organized into three concentric levels, going 

from general to more specific descriptors in the outer ring. A total of 48 terms are proposed 

in this outer ring, far less than those proposed in other wheels. Several of the terms proposed 

are similar to those proposed for other spirits; however, some terms are specific for young 

spirits with Muscat aroma, like geraniol, linalool, raisin and honey (Bordeu, Agosín, and 

Casaubon 2012; Bordeu, Formas, and Agosin 2004). Descriptors like vanilla, oak and toasted 

are important even for lightly aged piscos. Vanilla, raisins, linalool, charcoal and prunes were 
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the most frequently used descriptors during the development of the pisco wheel (Bordeu et 

al. 2004). 

 

 

Figure 1-6. Pisco and mouth-feel Wheel, displaying its 48 outer-ring descriptors from Bordeu 

et al. (2004). 
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1.7 Modeling and simulation 

Batch distillation is probably the oldest operation for separating liquid mixtures and became 

widely used for the production of fine chemicals and specialized products such as essential 

oils, perfume, pharmaceutical, petroleum products and alcoholic beverages. The main 

advantages of batch distillation over continuous distillation lie in the use of a single column 

as opposed to multiple columns and its flexible operation (Mujtaba, 2004). 

Mathematical models have been used to design and better understand the operation of certain 

processes. To optimize batch distillation, a dynamic model should predict the behavior of the 

operation. Thus, key process variables (model outputs) such as chemical composition, 

productivity and energy consumption, should be predicted according to the specified 

manipulated and design variables (input variables). In the distillation of alcoholic beverages, 

much effort has been devoted to study the impact of operating strategies on the aromatic 

composition of the distillate. Experimental studies in a packed batch distillation column 

reported that low reflux rates at the beginning of the heart cut could produce distillates with 

an enhanced floral aroma (Matias-Guiu et al., 2016; Rodríguez-Bencomo et al., 2016). 

Nevertheless, these strategies were defined by trial and error, which is expensive and time 

consuming. Suitable operating strategies can be developed much faster and reliably using 

model-based design (Sacher et al., 2017). Mathematical models can be derived directly from 

experimental data (empirical models) or from fundamental relationships that rely on 

knowledge of the process (first principles, physics-based, phenomenological models). 

Sometimes, a combination of these two approaches (hybrid models) yields excellent results. 

Phenomenological models are preferred when few experimental data are available and when 

we need to predict in a wide range of operating conditions. In spirits distillation, first 

principles models include mass and energy balances, hydraulic model, physical properties 

and thermodynamic equilibrium relationships. For dynamic operation and batch distillations, 

these models are described by a set of differential and algebraic equations (DAEs). Several 

phenomenological models have been developed to explore new operating strategies for wine 

batch distillations in tray columns (Osorio et al., 2004), in packed rectification column 

(Carvallo et al., 2011), in alembics (Scanavini et al., 2012; Scanavini et al., 2010) and in 

copper Charentais alembics (Sacher et al., 2013). In Chapters III and IV of this thesis, a 

Charentais alembic model has been developed and validated with ternary (ethanol-water-
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methanol) (Luna et al., 2018) and multi-component experimental data (ethanol-water plus 

six congeners) (Luna et al., 2019). 

1.7.1 Thermodynamic modeling of congeners in wine 

Thermodynamically, wine is a highly non-ideal solution that contains several hundred 

minority volatile components. These compounds are affected by their solubility in water and 

ethanol during distillation, as well as by their relative volatility and their chemical 

interactions. To estimate the relative volatility of each congener, several non-ideal 

thermodynamic approaches have been applied to model the vapor liquid equilibrium (VLE) 

properties of the mixtures. Most of these are either correlating models or semi-predictive 

models. NTRL, Wilson and UNIQUAC are correlating models widely used in the literature 

(Prausnitz, Lichtenthaler, & de Azevedo, 1998), where model parameters are calibrated using 

experimental data from binary systems (Valderrama et al., 2001; Valderrama et al., 2000). 

Semi-predictive models such as SAFT (Statistical Associating Fluid Theory), PSRK 

(Predictive Soave Redlich Kwong) and UNIFAC (Universal Functional Activity 

Coefficient), can be used to predict the behavior of new compounds, but these should belong 

to the same family of previously studied compounds or at least contain the same functional 

groups of previously studied molecules. Still, model parameters (applicable to a broader 

range of molecules) should be calibrated with experimental data. Purely empirical models, 

like artificial neural networks (ANN), have been also used to model VLE properties 

(Faúndez, Quiero, & Valderrama, 2010, 2011). 

According to  Valderrama et al. (2012), most of the times the NTRL model gives the best 

result and it is the one recommended for modeling and simulation of alcoholic beverage 

distillation. Nevertheless, in several cases no experimental data is available to obtain the 

binary or ternary interactions parameters required by the NTRL model. A good alternative is 

the UNIFAC model which corresponds to the group contribution version of the UNIQUAC 

model (Fredenslund, 1977). This model only needs to identify the functional subgroups 

present in each molecule by means of the UNIFAC group. Then, the activity coefficient for 

each species is calculated as the sum of a combinatorial part and residual part, both evaluated 

by the group contribution method. Using UNIFAC in predictions of Muscat wine distillations 

have been accurate for some congeners, such as methanol, ethyl hexanoate, octanoic acid and 



15 

 

 

 

linalool (Osorio et al., 2004). Sacher et al. (2013) developed a quasi-binary model of ethanol-

water plus congeners, using a UNIFAC model to calculate the activity coefficients. The 

quasi-binary model assumed infinite dilution of each congener in the water-ethanol mixture 

(given the extremely low concentrations of the congeners); hence, these congeners do not 

influence the equilibrium temperature, enthalpy or physical properties of the mixture. This 

model obtained accurate predictions for seven compounds (acetaldehyde, ethyl acetate, ethyl 

hexanoate, methanol, 2-methyl-1-propanol, 2-methyl-1-butanol and 3-methyl-1-butanol) 

during an alembic distillation of pear wine (Sacher et al., 2017). 

In our research, we applied Sacher approach to predict the behavior in Muscat wine 

distillations of six congeners: acetaldehyde, ethyl acetate, methanol, linalool, β-

Phenylethanol and hexanoic acid (Luna et al., 2019). Table 1-2 shows the functional 

subgroups of each congener included in this study. Accurate predictions were obtained, and 

this model supports the multi-objective optimization method we developed to improve the 

aromatic quality of Muscat wine distillates (Chapter IV of this thesis).  
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Table 1-2. Thermodynamic properties of congeners used in Luna et al. (2018). 

Congener Structure 
UNIFAC 

groups 

Antoine parameters 

A 

(mmHg) 

B 

 (mmHg K) 

C  

(K) 

Acetaldehyde 

 

1 CH3 

1 CHO 

16.248 2465.148 -37.150a 

Methanol 

 

1 CH3OH 18.533 3600.017 -35.171a 

Ethyl acetate 

 

1 CH3 

1 CH2 

1 CH3COO 

16.182 2763.631 -60.926a 

Linalool 

 

3 CH3 

3 CH2 

2 CH 

2 C 

1 OH 

19.705 6110.099 -2.32b 

Hexanoic 

acid 
 

1 CH3 

4 CH2 

1 COOH 

23.662 7825.227 -9.0018b 

β-

Phenylethanol 

 

5 ACH 

1 AC 

2 CH2 

1 OH 

21.753 7273.03 0a 

a Data from Sacher et al. (2013). 
b Chemical ecology database (Byers, 1997). 
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1.8 Dynamic optimization 

In the batch distillation process, usually the optimization problem considers different goals 

for solving the problem such as to minimize distillation time, maximize the amount of 

distillate, maximize a key component that defines the quality in a fixed time and maximize 

economic profit or minimize energy consumption along the distillation (Diwekar, 1995; 

Mujtaba, 2004). In the distillation of spirits, the aim is to obtain a distillate rich in fruity and 

floral aromas and free of off-flavors and toxic compounds. Additionally, distillers look for 

higher yields and less energy consumption. The reflux rate and the heating power rate in the 

boiler are the most common optimization variables in batch distillations. 

To solve numerically optimization problems, a reliable model of the process is required. In 

particular, dynamic optimization requires process models that are usually described by 

differential and algebraic equations (DAE). A dynamic optimization problem involving 

lumped parameter models can be formulated as follows:  

  

min
𝑢(𝑡)

𝐽 (
𝑑𝑧

𝑑𝑡
, 𝑧(𝑡), 𝑢(𝑡))   (1-1) 

 

𝑦 (
𝑑𝑧

𝑑𝑡
, 𝑧(𝑡), 𝑢(𝑡)) = 0   

(1-2) 

 

𝑔 (
𝑑𝑧

𝑑𝑡
, 𝑧(𝑡), 𝑢(𝑡)) ≥ 0   

(1-3) 

 

where 𝐽 is the cost function, 𝑧(𝑡) is the state variables, 𝑦 is the algebraic variables, 𝑔 is the 

inequality constraints and 𝑢(𝑡) is the decision variables (manipulated variable of the 

process). The optimization of DAE systems can be solved by different discretization 

approaches such as sequential and simultaneous. The sequential approach solves the 

objective function (Eq. 1-1) and model equations (Eq. 1-2) in successive evaluations 
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(Safdarnejad et al., 2015). This means that the differential equations are solved independently 

from the optimization routine. Each optimization iteration is solved sequentially, until the 

optimization routine converges to given tolerances for the objective function and constraints 

(Beal et al., 2018; Hedengren et al., 2014) (Figure 1-7). The sequential approach is relatively 

easy to code and is most useful when a reliable process model is already available or when 

the solution of the DAE system is extremely difficult (Beal et al., 2018; Luna et al., 2018). 

 

Figure 1-7. Scheme of the sequential dynamic optimization approach. Adapted from 

Biegler (2010). 

 

In the simultaneous approach or direct transcription method, the objective function and all 

the equations (equality and inequality constraints) are solved simultaneously (Eqs. 1-1, 1-2 

and 1-3). The differential equations are discretized and translated into algebraic equations 

through orthogonal collocation on finite elements to solve the objective function and the 

model equations simultaneously (Kameswaran & Biegler, 2006). In orthogonal collocations 

the state and control variables inside each finite element are described with polynomials 

(Figure 1-8). To perform well, simultaneous methods require efficient large-scale NLP 

solvers and accurate problem information, such as exact second derivatives (Beal et al., 

2018). Nonlinear solvers such as IPOPT (Interior Point OPTimizer) (A. Waechter & Biegler, 

2006) and APOPT/BPOPT (for Advanced Process OPTimizer) (APMonitor, 2018) are well 

suited for this task. In addition, there are software packages particularly suitable to solve 

dynamic optimization problems using the simultaneous approach, such as AMPL (Fourer et 
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al., 1990), GAMS (Bisschop & Meeraus, 1982) and GEKKO (Beal et al., 2018) where exact 

first and second derivatives can be obtained. 

 

 

Figure 1-8. Collocation on finite elements. The diamonds represent 𝑢 and 𝑦 at collocation 

points. The triangles represent 
𝑑𝑧

𝑑𝑡
 at collocation points and the circles represent 𝑧 at element 

boundaries (Biegler, 2007). 

In this thesis, sequential and simultaneous approaches for multi-objective dynamic 

optimization in Charentais copper alembic batch distillations were applied (Chapter III and 

IV). In Chapter III, both approaches were used and compared for distillation of a ternary 

mixture of water-ethanol-methanol. Here, the sequential approach was applied using 

MATLAB with a metaheuristic algorithm for global optimization called scatter search (Egea 

et al., 2007). Whereas, the simultaneous approach was applied using AMPL with IPOPT 

solver. Both methods generated the same Pareto front despite different techniques and 

algorithms of optimization. In Chapter IV, the sequential method was applied using 

MATLAB and scatter search for a multi-component mixture using two multi-objective 

functions based on the weighting approach and PCA decomposition. 

1.9 Automatic control 

Automatic control in the process industries helps to improve productivity, economic profit, 

security and quality, among others. Most of the times, these objectives must be attained 

simultaneously. Developing process control strategies may be challenging, depending on the 
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process specification, for example the control accuracy needed, the kind of the process and 

their mode of operation. 

In batch mode, the process has no steady states and usually presents time-varying and 

nonlinear dynamics. In batch distillation of alcoholic beverages, the operation of the process 

is subjected to several uncontrolled and unmeasured disturbances, such as raw material 

composition and environmental temperature (Luna, Duarte-Mermoud et al., 2018). Hence, 

automatic control is fundamental to ensure reproducible product quality and high 

productivities (Valenzuela, 2002). Usual controlled variables are boiler temperature, partial 

condenser temperature, and ethanol concentration in the distillate. Reflux rate in the partial 

condenser and heating power in the boiler are the most used manipulated variables. 

Feedback control is a widely applied strategy in all engineering areas (Bennett, 1996) (Figure 

1-9). In this strategy, the control effort 𝑢(𝑡) works to compensate the differences between 

the controlled variable 𝑦(𝑡) and the set-point 𝑠𝑝(𝑡) caused by process disturbances 𝑑(𝑡). 

 

Figure 1-9. Classical feedback control strategy. 

 

There are several control algorithms to design the controller. The PID (proportional-integral-

derivative) controller is the most widely used in the industry since it is simple to code and 

apply, and there are many useful tuning methods (Ang, Chong, & Li, 2007; Li, Ang, & 

Chong, 2006). In the process industries, model based controllers such as internal model 

control (IMC) (Brosilow & Joseph, 2002), model predictive control (MPC) and nonlinear 

model predictive control (NMPC) (Camacho & Alba, 2013) are applied in special cases 

where PID yields unsatisfactory results. Nonlinear, interactive and time-varying dynamics 
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are particularly difficult to handle effectively with PID controllers. However, in many cases 

model-based controllers are difficult to design, code and tune.  

Fractional order proportional-integral-derivative control (FOPID) and fractional order 

proportional-integral control (FOPI) have been widely investigated in the last decade since 

they usually provide good performance. These controllers are an extension of the classical 

PID and PI controllers plus two parameters that corresponds to the order of integration and 

order of differentiator. These extra tuning parameters add more flexibility that explain the 

improve performance (Shah & Agashe, 2016). Figure 1-10 shows that FOPID moves in the 

tuning plane continuously, instead of jumping between four fixed points like a standard PID 

(Hamamci, 2007; Shah & Agashe, 2016). Many applications have shown  improved control 

with FOPID in the presence of disturbances, noisy environments and time-varying dynamics 

(Aguila-Camacho & Duarte-Mermoud, 2013). 

 

Figure 1-10. Convergence plane of fractional PID controller. Adapted from Shah et al. (2016) 

 

Alembics in spirits distillations are normally operated manually in medium and small-scale 

distilleries. This operation is subjected to many uncontrolled and unmeasured disturbances 

that generate variability in the aromatic composition of the spirits (Luna et al., 2018; Luna et 
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al., 2019). In this study, an automatic distillation process control system was applied in a lab-

scale alembic. Chapter 2 of this thesis reports the application of several controllers such as 

PI, PID, IMC and FOPID. These were designed, tuned, compared and simulated in several 

disturbance scenarios in (Luna, Duarte-Mermoud, et al., 2018). IMC control was validated 

and implemented in a Charentais alembic lab-scale, obtaining a reproducible operation 

despite disturbances in the environmental temperature and in the heating power (Chapter 3 

and 4 of this thesis).  

1.10 Hypothesis and objectives 

Using a model-based optimal operation strategy in spirits distillations, it is possible to obtain 

reproducibly distillates with a predefined aromatic composition. 

General objective 

Develop and implement experimentally optimal operating strategies using a Charentais 

alembic that yield distillates rich in fruity and floral aromas and low in off-flavors and toxic 

compounds. 

The specific objectives are: 

• Develop, simulate and calibrate dynamic models to describe spirits distillations in a 

Charentais alembic. 

• Develop a robust automatic control strategy for distillations in a Charentais alembic. 

• Design optimal operating strategies for spirits distillations in Charentais alembics. 

 

1.11 Approach of the thesis 

Details regarding the specific objectives above are given in the different chapters of this 

doctoral thesis; each chapter is associated with a journal manuscript that have been submitted 

or already published (Figure 1-11). 

Chapter II describes in detail the binary distillation model developed. This chapter focuses 

on the development and application of different control algorithms in a simulated Charentais 

copper alembic. Traditional controllers such as PI, PID and IMC are compared with FOPI 
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and FOPID. The controllers were tuned with simple rules and evaluated under different 

disturbance scenarios of environmental temperature and heating power. An automatic control 

system is proposed to ensure a reproducible operation in a real plant. 

Chapter III describes in detail the ternary distillation model developed. This chapter focuses 

on the simultaneous optimization of ethanol recovery and methanol concentration in 

distillates produced in Charentais copper alembics. The sequential and the simultaneous 

dynamic optimization techniques were compared. The optimal strategy was validated 

experimentally using an automatic control system with an IMC controller. 

Chapter IV describes in detail the multicomponent distillation model developed. This chapter 

focuses on a model-based methodology to generate operating recipes for Muscat wine 

distillations in Charentais alembics. The recipes were obtained by dynamic multi-objective 

optimization. Two multi-objective functions were developed, one including three chemical 

markers characteristic of each distillation cut (head, heart and tail), and the other applied 

principal component analysis (PCA) to reduce the composition dimensionality.
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Figure 1-11. Thesis general overview 
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CHAPTER 2: FRACTIONAL ORDER CONTROL IN CHARENTAIS ALEMBIC 

DISTILLATION 

Ricardo Luna, Manuel A. Duarte-Mermound, José R. Pérez-Correa. 

Manuscript submitted for publication in ISA Transactions Journal  

2.1 Introduction  

Alembics have been used for many centuries in the production of several kinds of distilled 

alcoholic beverages, medicines and perfumes. In spirits distillation, alembics operating in 

batch mode are most commonly used in small-scale productions, where, compounds of 

different volatility need to be separated. Spirits mainly contain water and ethanol, but the 

distinctive aroma of these spirits is defined by minority compounds, called congeners. Spirits 

of high quality should be rich in fruit and floral aromas and low in off-flavours and toxic 

compounds. 

Alembics are normally operated manually, subjected to the experience of the operator and to 

many uncontrolled and unmeasured disturbances such as raw material composition, cuts 

criteria during distillation, room temperature and time-varying parameters. All these 

disturbance generate variability in the composition of the final product (Luna et al., 2018). 

Consumers look for new spirits that are safe and have distinctive aromas, although it is hard 

and time consuming to adapt the distillation recipe to these demands and obtain a new product 

consistently. Mathematical models have been developed for exploring new operating recipes 

in wine distillations to produce spirits with defined characteristics in plate columns (Osorio 

et al., 2004), packed columns (Carvallo et al., 2011) and copper Charentais alembics (Sacher 

et al., 2013). To yield a defined product with reproducible aromatic characteristics, automatic 

control systems for Charentais alembics have been developed and implemented. Control of 

alembic distillation systems is challenging since they are nonlinear and present time-varying 

dynamics (batch process). Few papers have been published on the control of alembic batch 

distillation systems. Fernandez et al. (2016) developed a novel strategy based on the Hill 

repressor equation (Goutelle et al., 2008) to operate automatically a copper Charentais 

alembic and its performance was compared with an internal model control (IMC) algorithm 

(Brosilow & Joseph, 2002). The control system aimed to track a predefined optimal path of 
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the alembic's head temperature (set-point), by manipulating the heating power of the boiler. 

Both, Hill and IMC controllers achieved good performance in tracking the set-point 

employing similar control efforts, although the Hill controller was much easier to tune. IMC 

needs a good process model, while the Hill controller (Pérez-Correa, Lefranc, & Fernández-

Fernández, 2015) does not require any model and good tuning can easily achieved by trial 

and error. Luna et al. (2018) assessed experimentally an automatic control system for a 

Charentais alembic using an IMC control algorithm. This control system tracked closely the 

predefined variable set-point in the alembic's head temperature despite disturbances like 

room temperature. Small variations in the manipulated variable compensated these 

disturbances efficiently.  

PID controllers have been commonly and widely used in several industries since they are 

simple and easy to tune, although they usually cannot handle adequately time-varying and 

non-linear dynamics (Aguila-Camacho et al., 2017). Since there are not many papers dealing 

with the control of Charentais alembics, which present time-varying and non-linear dynamics 

(Luna et al., 2018), it is worth exploring the suitability of PID controllers and compare its 

performance with more advanced algorithms. Fractional order proportional integral 

derivative control (FOPID) and fractional order proportional integral control (FOPI) based 

on derivative and integral fractional operators have shown to be a good option to achieve 

robust control in the presence of strong disturbances, noise and time-varying dynamics 

(Aguila-Camacho & Duarte-Mermoud, 2013). In the last two decades there has been much 

interest in applying fractional order operators (FOO) to model and control dynamical linear 

and nonlinear systems. By fractional order control (FOC) it is understood the used of integral 

or derivative operators whose order are not integer but real numbers, expanding the space 

where the controller parameters can be tuned to achieve better performance. Numerous 

applications of FOC have been reported in the technical literature informing some advantages 

of using FOC control schemes compared to the traditional integer order controllers (IOC). 

In Jauregui et al. (2016b) the experimental level control of a conical tank is addressed using 

IOPI and IOPID control strategies and compared with their FO counterparts (FOPI/FOPID). 

The results are compared with a PI control strategy whose parameters are tuned using the 

Root Locus (RL) method considering a linearized model of the tank around three different 
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operating points. The parameters of the IOPI/IOPID and the FOPI/FOPID were obtained 

using the Particle Swarm Optimization (PSO) method, considering as a performance index 

the integral of the absolute error (IAE), and taking into account the information provided by 

the nonlinear model without approximations around operating points. The same analysis but 

with simulations was reported in Jauregui et al. (2016a). Ortiz-Quisbert et al. (2018) 

extended the results obtained in Aguila-Camacho & Duarte-Mermoud (2013), where the 

control strategies for fractional order model reference adaptive control (FOMRAC) and 

FOPID control applied to an automatic voltage regulator (AVR). The gains and orders of the 

controllers FOPID and FOMRAC, were obtained using three different tuning methods; 

sequential quadratic programming (SQP), particle swarm optimization (PSO), and genetic 

algorithms (GA), considering IAE as performance index. The performance of the proposed 

controllers was compared with those obtained with PID and MRAC controllers optimized by 

GA. By means of suitable performance criteria it was concluded that FOC optimized by PSO 

improve the behaviour of the controlled system, specifically the robustness against model 

uncertainties and the speed of convergence.  

Other successful applications of FOC include simulations of level and pH control (Aguiar, 

Franco, Leonardi, & Lima, 2018), experimental pH control (Meenakshipriya, Prakash, & 

Maheswari, 2015), bioreactors control (Vali, Rezaei Estakhrouiyeh, & Gharaveisi, 2016; 

Vinopraba, Sivakumaran, Narayanan, & Radhakrishnan, 2013) and experimental and 

magnetic levitation plant (Gole, Barve, Kesarkar, & Selvaganesan, 2014; Swain, Sain, 

Mishra, & Ghosh, 2017). 

In this paper we present a comparison among IOPID, IOPI, FOPID and IMC controllers, in 

a simulated Charentais alembic distillation system. The control system aims to track the 

alembic head temperature, whose evolution has been predefined by dynamic optimization to 

ensure a standard quality of the distillate. IOPI, IOPID and FOPID controllers were tuned by 

a simple rule-based on the minimization of the integrated absolute error. IMC control was 

tuned using the IMCTUNE software (Brosilow & Joseph, 2002). Controllers performance 

was assessed using standard cost functions such as IAE, ITAE, ISE, IAI and ISI in six 

simulation scenarios with different kinds of disturbances. 
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The paper is organized as follows: Section 2.2 describes the distillation process of the 

Charentais alembic copper, the nonlinear model used for alembic's simulations, their 

conditions and operating variables. Section 2.3 introduces the design of controllers, tuning 

methods and their implementation. Whereas Section 2.4 describes the different simulation 

cases and their corresponding results. Finally, Section 2.5 presents the main conclusions of 

this work. 

2.2 Alembic distillations 

2.2.1 Model description 

The dynamic phenomenological nonlinear model validated by Luna et al. (2018) and Luna 

et al. Luna et al. (2019) is used to apply the proposed FOC algorithms. The model describes 

the laboratory scale distillation batch of an alembic copper Charentais. The model includes 

two inputs: electric heating power 𝑄̇𝐶𝑎𝑙 (manipulated variable) and room temperature 𝑇𝑒𝑛𝑣 

(disturbance). The model outputs are the head temperature of the alembic 𝑇𝑐 (controlled 

variable), the distilled volume 𝑉, the alcohol strength in the distillate and the congeners 

concentration in the distillate. The temperature in the alembic´s head 𝑇𝑐 is related to the 

liquid-vapor equilibrium that defines the ethanol recovery curve. In turn, the relative 

volatility of each congener (i.e., its tendency to evaporate) is defined by the ethanol 

concentration in the boiler. In this work, we consider only the binary model (ethanol-water 

mixture) to simulate the different controllers. To ensure the reproducibility of the process, 

the control objective is to track the head temperature of the alembic 𝑇𝑐 by manipulating the 

electric heating power 𝑄̇𝐶𝑎𝑙, considering disturbances in the room temperature 𝑇𝑒𝑛𝑣 and the 

heating power 𝑄̇𝐶𝑎𝑙 (Figure 2-1). The model includes two dynamic mass balances (total mass 

and ethanol) and a dynamic energy balance in the boiler, as well as two steady state mass 

balances (total mass and ethanol) and a stationary energy balance in the partial condenser. 

Several constitutive equations were included to describe the heat loss to the environment and 

empirical correlations to describe the vapor/liquid equilibrium of the ethanol-water mixture. 

The model is described in detail in what follows. The nomenclature of the variables and their 

units are presented in Table 2-1. 
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Table 2-1. Model nomenclature and variables description. 

Variable Units Description 

𝑀𝐵 mol s-1 Molar hold-up in the bottom 

𝐿 mol s-1 Liquid natural reflux flow 

𝑉𝐵 mol s-1 Vapor flow from the bottom 

𝑉𝐷 mol s-1 Distillate flow 

𝑥𝐵 mol mol-1 Ethanol molar fraction in the bottom 

𝑥𝐿 mol mol-1 Ethanol molar fraction in the liquid reflux 

𝑦𝐵 mol mol-1 Ethanol molar fraction in the vapor flow from the bottom 

𝑦𝐷 mol mol-1 Ethanol molar fraction in the distillate flow 

𝐻𝐵 J mol-1 Molar specific enthalpy in the vapor flow 

𝐻𝐷 J mol-1 Molar specific enthalpy in the distillate flow 

ℎ𝐵 J mol-1 Molar specific enthalpy in the bottom 

ℎ𝐿 J mol-1 Molar specific enthalpy in the liquid reflux 

𝑢𝐵 J mol-1 Molar specific internal energy in the bottom 

𝑇𝐵 K Boiler temperature 

𝑇𝐶 K Head temperature (controlled variable) 

𝑇𝑒𝑛𝑣 K Room temperature 

𝑄̇𝐵 W Net heat rate to the alembic bottom 

𝑄̇𝐶 W Heat loss to the environment from the neck 

𝑄̇𝐶𝑎𝑙 W Electric heating power (manipulated variable) 

𝜌 kg m-3 Density of the liquid mixture 

𝜌𝑊 kg m-3 Water density 

𝜌𝐸 kg m-3 Ethanol density 

𝑀𝑤𝑊 g mol-1 Water molar weight 

𝑀𝑤𝐸 g mol-1 Ethanol molar weight 

𝑀𝑤𝑚𝑖𝑥𝑡𝑢𝑟𝑒 g mol-1 Water-Ethanol weight 

𝜙 mL mol-1 Apparent molal volume 

𝐹 mL min-1 Distillate flow rate 

𝑉 mL Distillate volume 
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Figure 2-1. General diagram of automatic alembic distillation system. 

a) Dynamic balances in the boiler, 

 

𝑑(𝑀𝐵)

𝑑𝑡
= 𝐿 − 𝑉𝐵 

(2-1) 

 

𝑑(𝑀𝐵 ∙ 𝑥𝐵)

𝑑𝑡
= 𝐿 ∙ 𝑥𝐿 − 𝑉𝐵 ∙ 𝑦𝐵 

(2-2) 

 

𝑑(𝑀𝐵 ∙ 𝑢𝐵)

𝑑𝑡
= 𝐿 ∙ ℎ𝐿 − 𝑉𝐵 ∙ 𝐻𝐵 +𝑄𝐵̇ 

(2-3) 

b)Steady state balances in the partial conderser, 

 

𝑉𝐵 − 𝐿 − 𝑉𝐷 = 0 (2-4) 
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𝑉𝐵 ∙ 𝑦𝐵 − 𝐿 ∙ 𝑥𝐿 − 𝑉𝐷 ∙ 𝑦𝐷 = 0 (2-5) 

 

𝑉𝐵 ∙ 𝐻𝐵 − 𝐿 ∙ ℎ𝐿 − 𝑉𝐷 ∙ 𝐻𝐷 − 𝑄𝐶̇ = 0 (2-6) 

c) Heat transfer model 

𝑄̇𝐵 = 𝑄̇𝑐𝑎𝑙 − 𝑈𝐴𝑏 ∙ (𝑇𝐵 − 𝑇𝑒𝑛𝑣) (2-7) 

 

𝑄̇𝐶 = 𝑈𝐴𝑐 ∙ (𝑇𝐶 − 𝑇𝑒𝑛𝑣) (2-8) 

𝑄̇𝑐𝑎𝑙 is the heat input in the boiler, 𝑇𝑒𝑛𝑣 is the room temperature, 𝑈𝐴𝑏 is the global heat 

transfer coefficient multiplied by the heat transfer area in the boiler, and 𝑈𝐴𝑐 is the global 

heat transfer coefficient multiplied by the heat transfer area in the partial condenser. After 

fitting with experimental distillations,  the following correlations were obtained,  

 

𝑈𝐴𝑏 =
(0.349 − 0.840) (𝑄̇𝑐𝑎𝑙 − 230)

(400 − 230)
+ 0.840 

(2-9) 

 

𝑈𝐴𝑐 =
(1.49 − 0.804) (𝑄̇𝑐𝑎𝑙 − 230)

(400 − 230)
+ 0.804 

(2-10) 

 

d) Thermodynamic equilibrium L-V for ethanol-water 

 

𝑦𝐵,𝐷 = −59.6868501 − 89.4037240 ⋅ 𝑥𝐵,𝐿 − 

39.8552042 ⋅ 𝑥𝐵,𝐿
1.5 + 81.47664393 ⋅ 𝑒𝑥𝐵,𝐿 

−21.7897938 ⋅ 𝑒−𝑥𝐵,𝐿 , 𝑥𝐵,𝐿 ≤ 0.1161 

(2-11) 

 

𝑇𝐵,𝐶 =

{
 
 

 
 273.15 + (

−0.02214517 − 0.05785120 ⋅ 𝑥𝐵,𝐿
1.5 +

0.032146591 ⋅ 𝑒𝑥𝐵,𝐿
)
−1

, 𝑥𝐵,𝐿 ≤ 0.1661  

273.15 + (

278.3854921 − 141.465178 ⋅ 𝑥𝐵,𝐿 +

49.67113604 ⋅ 𝑥𝐵,𝐿 ⋅ ln(𝑥𝐵,𝐿) +

9.159930587 ⋅ 𝑥𝐵,𝐿 − 184.225674 ⋅ 𝑒
−𝑥𝐵,𝐿

) , 𝑥𝐵,𝐿  ≥ 0.1661

 (2-12) 
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ℎ𝐵,𝐿 = (55.678 ⋅ 𝑥𝐵,𝐿 + 75.425) ⋅ 𝑇𝐵,𝐶 − 15208.44 ⋅ 𝑥𝐵,𝐿 − 20602.34 (2-13) 

 

𝐻𝐵,𝐷 = 36172.03 − 2919.83 ⋅ 𝑦𝐵,𝐷 + 

(31.461 − 11.976 ⋅ 𝑦𝐵,𝐷) ⋅ 𝑇𝐵,𝐶 + (4.063 ⋅ 10
−4 + 0.0734 ⋅ 𝑦𝐵,𝐷) ⋅ 𝑇𝐵,𝐶

2  
(2-14) 

 

e) Model simulation 

 

The steady state balances in the partial condenser are reordered, 

 

𝑉𝐵 =
𝑄𝐶̇

(𝐻𝐵 − 𝐻𝐷) +
(𝑦𝐵 − 𝑦𝐷)
(𝑥𝐿 − 𝑦𝐷)

∙ (𝐻𝐷 − ℎ𝐿)
 (2-15) 

 

𝐿 = −
−𝑄𝐶̇

(ℎ𝐿 − 𝐻𝐷) +
(𝑥𝐿 − 𝑦𝐷)
(𝑦𝐵 − 𝑦𝐷)

∙ (𝐻𝐷 −𝐻𝐵)
 (2-16) 

 

𝑉𝐷 = 𝑉𝐵 − 𝐿 (2-17) 

The volume of the distillate is obtained from an empirical density correlation (Neuburg & 

Perez-Correa, 1994), 

 

𝜌 =
𝑀𝑤𝑚𝑖𝑥𝑡𝑢𝑟𝑒

𝜙 ∙ 𝑦𝐷 + (1 − 𝑦𝐷) ∙ 𝑀𝑤𝑊/𝜌𝑊
 (2-18) 

 

𝑀𝑤𝑚𝑖𝑥𝑡𝑢𝑟𝑒 = 𝑦𝐷 ∙ 𝑀𝑤𝐸 + (1 − 𝑦𝐷) ∙ 𝑀𝑤𝑊 (2-19) 

 

𝜙 = 103 ∙ (5.1214 ∙ 10−2 + 6.549 ∙ 10−3 ∙ 𝑦𝐷 + 7.406 ∙ 10
−5 ∙ (𝑇 − 273.15)) (2-20) 

 

The distilled volume, 𝑉, and the accumulated ethanol, 𝑀𝐷, are given by, 
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𝐹 =
𝑉𝐷 ∙ 𝑀𝑤𝑚𝑖𝑥𝑡𝑢𝑟𝑒

𝜌
 (2-21) 

 

𝑑𝑉

𝑑𝑡
= 𝐹 

(2-22) 

 

𝑑𝑀𝐷

𝑑𝑡
= 𝑦𝐷 ⋅ 𝑉𝐷 

(2-23) 

 

𝑉 and 𝑀𝐷 are the distilled volume and the ethanol moles in the accumulated distillate, 

respectively. 

Dynamic balances in the boiler are rearranged, 

 

(𝐿(𝑥𝐿 − 𝑥𝐵) − 𝑉𝐵(𝑦𝐵 − 𝑥𝐵)) (
𝜕ℎ𝐵
𝜕𝑥𝐵

+
𝜕ℎ𝐵
𝜕𝑇𝐵

𝑑𝑇𝐵
𝑑𝑥𝐵

) = 𝐿(ℎ𝐿 − ℎ𝐵) − 𝑉𝐵(𝐻𝐵 − ℎ𝐵) + 𝑄̇𝐵 (2-24) 

 

This implicit function in 𝑥𝐿 is solved iteratively at each integration step using MATLAB’s 

fsolve routine. 

 

2.2.2 Optimal operating condition 

The defined operating conditions of the alembic were derived using a multi-objective 

dynamic optimization procedure Luna et al. (2019). The dynamic optimization problem 

looked for decision variables, such as heating power path and volume cuts in the distillate, 

that satisfied three objectives simultaneously. These correspond to chemical markers, 

characteristics of each cut in wine distillations. The heating power varied between 230 and 

400 W and the final time of distillation was 59.1 min. However, dynamic optimization 

problem does not consider disturbances in the distillation system such as room temperature 

variations and noise in the heating power signal. Therefore, as shown in Figure 2-2, we 

designed a control system to track the optimal temperature (servo control), despite room 

temperature and heating power disturbances. 
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Figure 2-2. Optimal operating scheme and automatic control of Charentais alembic 

distillation. 

 

2.3 Design, tuning and implementation of controllers 

2.3.1 Integer and fractional PID controllers  

A Standard FOPID controller in ideal (noninteracting) form is defined as (Padula & Visioli, 

2015) 

𝐶𝐹𝑂𝑃𝐼𝐷(𝑠) = 𝐾𝑝 (1 +
1

T𝑖𝑠𝜆
+ 𝑇𝑑𝑠

𝜇)
1

𝑇𝑓𝑠 + 1
   (2-25) 

𝐾𝑝, 𝑇𝑖 and 𝑇𝑑 are the standard PID tuning parameters, while 𝜆 and 𝜇 are the non-integer 

orders of the integral and derivative terms, respectively. In the case of IOPID controllers, 𝜆 

and 𝜇 are equal to one (Shah & Agashe, 2016). To make the controller proper and filter high 

frequency noise, a first-order filter is used. A good choice for the time constant, 𝑇𝑓, is (Padula 

& Visioli, 2015) 
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𝑇𝑓 = 𝑚𝑖𝑛 {
𝑇
𝑖

1
𝜆

10
,
𝑇𝑑

1
𝜇

10
}  (2-26) 

2.3.2 IMC controller for an FOPDT process 

Following Brosilow & Joseph (2002), the imc controller for a first order plus time delay plant 

(FOPDT) is given by, 

𝐶𝐼𝑀𝐶(𝑠) =
Τ𝑠 + 1

𝐾 ∙ (𝜀 ∙ 𝑠 + 1)𝛼
  (2-27) 

𝜀 is the tuning parameter and 𝛼 is the relative order of the inverse of the plant (in this case 𝛼 

= 1). 

2.3.3 Controller tuning 

For tuning the controllers, the dynamics of the process plus sensor were fitted to a FOPTD 

transfer function as in Åström & Hägglund (2006),  

𝑃(𝑠) =
𝐾

Τ𝑠 + 1 
𝑒−𝐿𝑠  (2-28) 

This transfer function is defined as a representative nominal plant by linearizing the plant 

model around a wide range of operating points between 89 and 95°C at different times. Table 

2-2 shows the fitted parameters and their ranges of variation. 

 

Table 2-2. Transfer function parameters of the process model 

Parameters Minimum Maximum Average units 

𝐾 0.006 0.015 0.010 K/W 

𝐿 8.00 8.53 8.13 s 

Τ 40.8 49.5 45.0 s 

𝜏 0.16 0.15 0.15 - 
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2.3.3.1 Tuning rules for IO/FO and PI and PID controllers 

We used a tuning rule for optimal IOPID and FOPID controllers based on a first order plus 

dead time process. The tuning rules have been derived in order to minimize the integral of 

the absolute error (IAE) with a constraint on the maximum sensitivity. For IOPID controllers, 

we compared the tuning rules proposed by Murril and Smith (Smith & Corripio, 1985), 

Madhuranthakam et al. (2008) and Padula & Visioli (2011) in servo control. For FOPID 

controller the tuning rules proposed by Padula & Visioli (2011) were used, where the 

dynamic of the process is characterized by a normalized dead time defined as 

𝜏 =
𝐿

𝐿 + 𝑇
 

(2-29) 

which represents a measure of the difficulty in controlling the process. The rules were 

validated between 0.05 ≤ 𝜏 ≤ 0.8. The FOPID controller parameters were obtained by tuning 

rules designed in ideal form structure. Tuning rules for IOPID controller parameters were 

obtained from Padula & Visioli (2015) in series form structure. The values of the parameters 

for IOPID controller in ideal form (Eq. 2-25 with λ and μ equal one) can be obtained from a 

conversion proposed in Åström & Hägglund (2006). In this work, we used the setpoint 

following tuning and the maximum sensitivity value was 𝑀𝑠= 2.0 (aggressive control) for 

IOPID and FOPID controllers. The values of 𝑎, 𝑏, 𝑐 and 𝑑 are given in Padula & Visioli 

(2015) for each control parameter in FOPID ideal form and IOPID series form. Thus, the 

following expressions for the controller parameters are used (the proportional gain has the 

same expression for FOPID in ideal form and IOPID in series form), 

 

proportional constant 

𝐾𝑝 =
1

𝐾
(𝑎𝜏𝑏 + 𝑐) 

(2-30) 

integral and derivative time constants for FOPID in ideal form 

𝑇𝑖 = Τλ (𝑎𝜏3 + 𝑏𝜏2 + 𝑐𝜏 + 𝑑) (2-31) 

 



37 

 

 

 

𝑇𝑑 = Τ
𝜇(𝑎 ⋅ 𝑒𝑏𝜏 + 𝑐 ⋅ 𝑒𝑑𝜏) (2-32) 

 

𝜆 = 1 (2-33) 

 

𝜇 = 𝑎𝜏3 + 𝑏𝜏2 + 𝑐𝜏 + 𝑑 (2-34) 

integral and derivative time constants for IOPID in series form 

𝑇𝑖 = Τ(𝑎 (
𝐿

Τ
)
𝑏

+ 𝑐) 
(2-35) 

 

𝑇𝐷 = Τ(𝑎 (
𝐿

Τ
)
𝑏

+ 𝑐) 
(2-36) 

 

2.3.3.2 Tuning IMC controller 

IMC controller was tuned using the IMCTUNE MATLAB toolbox (Brosilow & Joseph, 

2002). The process model considered uncertain parameters for the gain, time constant and 

dead time between the minimum and maximum values given in Table 2-2. The IMC 

controller was designed with the average FOPTD model parameter values given in Table 2-2 

and the order of the filter was defined equal to 1. The IMCTUNE results gave a filter constant 

equals to 2.5 seconds. 

2.3.4 Performance indices 

Five different performance criteria were used to assess the alembic control system; Integral 

of the absolute error (IAE), Integral of the squared error (ISE), Integral of the absolute input 

(IAI), Integral of the squared input (ISI) and Integral of the time weighted absolute error 

(ITAE) (Smith & Corripio, 1985). In addition, the error of the temperature and the control 

effort were standardized according to the maximum values of the temperature set-point and 

the heating power, respectively, 
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𝑒̂(𝑡) =
𝑦(𝑡) − 𝑦𝑆𝑃(𝑡)

max (𝑦𝑆𝑃(𝑡))
 (2-37) 

 

Δ𝑢̂(𝑡) =
𝑢(𝑡) − 𝑢𝑜
max (𝑢(𝑡))

 (2-38) 

IAE: Integral of the absolute error  

𝐼𝐴𝐸 = ∫|𝑒̂(𝑡)|

𝑇

0

⋅ 𝑑𝑡 (2-39) 

ISE: Integral of the square error 

𝐼𝐴𝐸 = ∫ 𝑒̂(𝑡)2
𝑇

0

⋅ 𝑑𝑡 (2-40) 

IAI: Integral of the absolute input 

𝐼𝐴𝐼 = ∫|Δ𝑢̂(𝑡)|

𝑇

0

⋅ 𝑑𝑡 (2-41) 

ISI: Integral of the square input 

𝐼𝑆𝐼 = ∫Δ𝑢̂(𝑡)2
𝑇

0

⋅ 𝑑𝑡 (2-42) 

ITAE: Integral of the time weighted absolute error 

𝐼𝑇𝐴𝐸 = ∫|𝑒̂(𝑡)|

𝑇

0

⋅ 𝑡 ⋅ 𝑑𝑡 (2-43) 

 

2.3.5 Implementation of controllers 

IOPI, IOPID, FOPID and IMC controllers were implemented in MATLAB/Simulink. For the 

FO controllers the Ninteger Toolbox for Matlab/Simulink (Valerio & Da Costa, 2004) was 

used. Figure 2-3 shows the block diagram used to implement IMC and FOPID controllers 

where the NID block simulates a fractional derivate in the case of FOPID. The specifications 

of NID block were chosen as N=8 and frequency interval [0.001, 1000], according to tuning 
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rules in Padula & Visioli (2015), and Crone approximation (Oustaloup, 1991). Parameters 𝑇𝑖 

and 𝑇𝑑 for IO and FO controllers were changed to 𝐾𝑖 and 𝐾𝑑 as follows 

𝐾𝑖 =
𝐾𝑝

𝑇𝑖
 (2-44) 

 

𝐾𝑑 = 𝐾𝑝 ⋅ 𝑇𝑑 (2-45) 

 

Figure 2-3. Blocks diagram for implementation of FOPID (a) and IMC (b) controllers. 

2.4 Simulation results 

2.4.1 Simulation environment 

As mentioned in Section 2.2.2, we evaluated the controllers under several disturbance cases. 

The main disturbances are the room temperature and the heating power. We added white 

noise to the temperature and the heating power signals, where the noise power (𝑁𝑃) is defined 

as follows 

𝑁𝑃 = 𝑠𝑡𝑑2 ⋅ 𝑇0 (2-46) 
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where 𝑠𝑡𝑑 is the standard deviation and 𝑇0 is the sample time. The standard deviation of the 

white noise in the room temperature 𝑤𝑇𝑒𝑛𝑣(𝑡) and the heating power 𝑤𝐻𝑃(𝑡) was set at 0.1°C 

and 15 W respectively, and the sample time was set at 10 seconds for both noises. The room 

temperature variations were constant, sinusoidal and colored noise (white noise passed 

through a first-order transfer function). The latter intended to simulate a non-periodic 

evolution of the room temperature. Six disturbance cases were simulated with a distillation 

time of 59.1 min,  

i) Constant room temperature at 30°C plus white noise (case DT1). 

ii) Sinusoidal round temperature around 30°C with amplitude of 2°C, plus white noise 

𝑤𝑇𝑒𝑛𝑣(𝑡) (case DT2). 

iii) Sinusoidal room temperature around 30°C with amplitude of 4°C, plus white noise 

𝑤𝑇𝑒𝑛𝑣(𝑡) (case DT3). 

iv) Sinusoidal room temperature around 30°C with amplitude at 4°C, plus white noise 

𝑤𝑇𝑒𝑛𝑣(𝑡) and heating power plus white noise 𝑤𝐻𝑃(𝑡) (case DT4). 

v) Colored noise room temperature plus white noise 𝑤𝑇𝑒𝑛𝑣(𝑡) (case DT5). 

vi) Colored noise room temperature plus white noise and heating power plus white noise 

𝑤𝐻𝑃(𝑡) (DT6). 

 

2.4.2 Comparison of integer-order PID tuning rules 

Table 2-3 shows the comparison of control parameters of IOPID controllers using rule-based 

on minimization the IAE proposed by Murril & Smith (1985), Madhuranthakam et al. (2008), 

and Padula & Visioli (2011). These tunings were evaluated in four disturbances cases; DT1, 

DT2, DT3, and DT4. Padula tuning obtained the best performance for IAE and ITAE indices 

in all cases. The relative indices of IAE and ITAE were calculated dividing the indices of 

Murril-Smith and Madhuranthakam by the indices of Padula to facilitate the comparison. 

When the room temperature disturbance changed from purely white noise (DT1) to 

sinusoidal of moderate amplitude plus white noise (DT2), Padula tuning improved its relative 
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performance. For DT1, Padula tuning reduced the IAE and ITAE relative values in 15% and 

13.5%, respectively, compared with Murril-Smith and Madhuranthakam tuning. In turn, for 

disturbance DT2, Padula tuning reduced the IAE and ITAE relative values by 17% and 19%, 

respectively. If the room temperature disturbance gets more aggressive (DT3), Padula tuning 

relative performance drops significantly (8% better in IAE and 5% better in ITAE). Finally, 

when noise was added to the heating power (DT4), the relative performance of Padula tuning 

decreased a little (6.5% better in IAE and 4.5% better in ITAE). 

Figure 2-4 shows the simulations of IOPID controllers with the three tuning rules for the DT2 

disturbance case. The control effort obtained with the Murril-Smith tuning was smoother and 

presented fewer peaks than the Padula and Madhuranthakam tunings. Similar behavior was 

observed in the DT3 case (Figure 2-5), although here the control effort was saturated for long 

periods. This explains why the Padula tuning was less effective under these strong 

disturbances. 

Since Padula tuning presented better overall control performance, it was chosen to compare 

IOPID controller with FOPID and IMC controllers. 
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Table 2-3. IOPID parameters for tuning rules based on minimization of IAE and their control performance in different disturbances 

scenarios. 

* Relative ITAE and IAE values in parentheses were calculated dividing by ITAE and IAE obtained from Padula respectively in each 

disturbance scenarios.

Tuning rules  Parameters DT1 DT2 DT3 DT4 

𝐾𝑝 𝐾𝑖 𝐾𝑑 ITAE* IAE* ITAE IAE ITAE IAE ITAE  IAE 

Murril-Smith 480 7.65 1575 244 (1.16) 0.501 (1.18) 729 (1.24) 0.723 (1.21) 3445 (1.06) 1.99 (1.09) 3680 (1.05) 2.11 (1.07) 

Madhuranthakam 500 7.70 1285 242 (1.15) 0.495 (1.17) 721 (1.22) 0.719 (1.20) 3401 (1.05) 1.97 (1.08) 3647 (1.04) 2.10 (1.07) 

Padula 454 9.50 1507 210 (1.00) 0.423 (1.00) 587 (1.00) 0.596 (1.00) 3245 (1.00) 1.82 (1.00) 3496 (1.00) 1.97 (1.00) 
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Figure 2-4. Behavior of the controlled variable and manipulated variable in the presence of 

sinusoidal disturbance (amplitude 2°C) in room temperature (DT2) for three tuning rules of 

IOPID controllers.

 

Figure 2-5. Behavior of the controlled variable and manipulated variable in the presence of 

sinusoidal disturbance (amplitude 4°C) in room temperature (DT3) for three tuning rules of 

IOPID controllers. 
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2.4.3 Comparison of integer/fractional order controllers 

Table 2-4 shows the control parameters for IOPI, IOPID, FOPID and IMC controllers 

obtained for each tuning rule-based method (see Section 2.3.3). In all disturbance cases, 

FOPID obtained the best performance according to IAE and ITAE; hence, relative indices 

were calculated dividing the respective indices with those of the FOPID controller. Table 2-5 

shows the absolute and relative IAE and ITAE values obtained by IOPI, IOPID, FOPID and 

IMC controllers for the six disturbance cases. 

In DT1 and DT2 cases, FOPID controller improved the IAE and ITAE values in 8%, 10% 

and 24% as compared with IOPID, IMC and IOPI, respectively. Instead, for DT3 and DT4 

disturbance cases, the FOPID controller improvement was smaller (5%, 6% and 14%, 

respectively) because the control effort saturated for long periods.Figure 2-6 shows that under 

disturbance DT3, IOPI, IMC and FOPID controllers presented a control effort with no peaks 

and smoother than that of IOPID. 
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Table 2-4. Parameters fitted for IOPI, IOPID, FOPID and IMC controllers. 

Controller 𝐾𝑝 𝐾𝑖 𝐾𝑑 𝜆 𝜇  𝑇𝑓 𝜀 

IOPI 366.3 7.9 0 1 - - - 

IOPID 453.8 9.5 1507.4 1 1 0.33 - 

FOPID 510.4 10.3 2432.8 1 1.14 0.39 - 

IMC - - - - - - 2.5 

 

Table 2-5. Performance indices values for all controllers with different room temperature and heating power noise disturbances. 

Disturbance 

type 

IOPI IOPID FOPID IMC 

ITAE* IAE* ITAE IAE ITAE IAE ITAE IAE 

DT1 256 (1.32) 0.509 (1.31) 210 (1.08) 0.423 (1.09) 194 (1.00) 0.389 (1.00) 216 (1.11) 0.435 (1.12) 

DT2 721 (1.34) 0.720 (1.32) 587 (1.10) 0.596 (1.09) 536 (1.00) 0.548 (1.00) 605 (1.12) 0.613 (1.12) 

DT3 3592 (1.16) 2.04 (1.18) 3245 (1.05) 1.82 (1.05) 3093 (1.00) 1.73 (1.00) 3290 (1.06) 1.85 (1.07) 

DT4 3892 (1.16) 2.22 (1.18) 3496 (1.05) 1.97 (1.04) 3344 (1.00) 1.89 (1.00) 3550 (1.06) 2.01 (1.06) 

DT5 671 (1.30) 0.704 (1.28) 562 (1.09) 0.596 (1.08) 516 (1.00) 0.550 (1.00) 576 (1.12) 0.610 (1.11) 

DT6 1293 (1.26) 1.08 (1.27)  1076 (1.05) 0.899 (1.06) 1025 (1.00) 0.851 (1.00) 1098 (1.07) 0.920 (1.08) 

* Relative ITAE and IAE values in parentheses were calculated dividing by ITAE and IAE obtained from FOPID controller respectively 

in each disturbance scenarios. 
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Figure 2-6. Behavior of the controlled variable and manipulated variable in the presence of 

sinusoidal disturbance (amplitude 4°C) in room temperature (DT3) for IOPI, IOPID, 

FOPID and IMC controllers. 

 

Under a more realistic room temperature disturbance simulation (DT5), no control saturation 

was observed Figure 2-7 and the FOPID controller reduced the relative IAE and ITAE values 

in 8%, 11% and 23% compared to IOPID, IMC and IOPI controllers, respectively. In this 

case, the FOPID controller presented a control effort without peaks and smoother than the 

IOPID. When noise was added to the heating power (DT6), the relative improvement of the 

FOPID controller decreased a little (6%, 7% and 21%, respectively), since, as shown in 

Figure 2-8, the control effort became saturated between 44 and 48 min. 

The improvement in control performance of the FOPID with respect to IOPID observed here 

(between 5 and 8%) agrees with that observed in other nonlinear plants. For example, in a 

conical tank level control, the FOPID controller reduced the relative IAE compared to the 

IOPID controller in 1.4% in simulations (Jauregui et al., 2016a) and in 1.05% in an 

experimental implementation (Jauregui et al., 2016b). 
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Figure 2-7. Behavior of the controlled variable and manipulated variable in the presence of 

colored noise disturbance in room temperature (DT5) for IOPI, IOPID, FOPID and IMC 

controllers.

 

Figure 2-8. Behavior of the controlled variable and manipulated variable in the presence of 

colored noise disturbance in room temperature plus heating power white noise (DT6) for 

IOPI, IOPID, FOPID and IMC controllers. 
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2.5 Conclusions 

Simple tuning rules based on the minimization of the IAE index were applied to compare IO 

and FO controllers in a nonlinear model of a Charentais alembic distillation system. Using 

an IOPID controller, Padula tuning rules provided better performance than classical tuning 

rules such as Murril-Smith and Madhuranthakam. The FOPID controller performed better 

than IOPI, IOPID and IMC controllers in all the disturbance scenarios simulated, showing 

lower IAE and ITAE indices and a smoother control effort without peaks. Even though the 

FOPID controller has two more tuning parameters (λ, μ) than the IOPID controller, this work 

shows how a simple tuning rule like Padula, yields effective and robust control for a time-

varying and nonlinear process. 
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CHAPTER 3: MINIMIZING METHANOL CONTENT IN EXPERIMENTAL 

CHARENTAIS ALEMBIC DISTILLATIONS 

Ricardo Luna, Francisco López, José R. Pérez-Correa. 

Manuscript published in Journal of Industrial and Engineering Chemistry (2018), Volume 

57, 160-170. 

3.1 Introduction 

Distilled alcoholic beverages are produced worldwide from local raw materials. For example, 

whisky (UK, Ireland) is produced from cereals, cachaça from cane juice (Brazil), tequila from 

agave (Mexico), cognac/brandy (France, Spain) and pisco (Peru, Chile) from grapes (Small 

et al., 2011). Young distillates are characterized by a delicate aroma that resembles the 

original fruit. In addition, high quality spirits should be free from off-flavors and toxic 

compounds. In spirits production processes, distillation plays a key role to ensure that the 

standards of quality of the product are met. This is an operation already used by ancient 

cultures to produce medicines and perfumes, and nowadays are used in almost every 

chemical processing plant. Distillation is a method for separating substances of different 

volatility. Most spirits production processes use either batch distillation columns or 

Charentais alembics. The latter are most frequently used in small-scale production facilities. 

In this system, three cuts (head, heart and tail) are collected sequentially; high quality spirits 

are produced from the heart cut. Even though the operation of alembics is relatively simple 

compared to batch distillation columns, it is subjected to many uncontrolled and unmeasured 

disturbances that generate variability in the composition of the final product. Hence, it is still 

difficult to ensure that the produced spirit consistently meets a defined quality criterion. It is 

even more difficult to adapt the production process to meet changing market trends.  

There are many published studies dealing with the production of fruit distillates in Charentais 

alembics and distillation columns (Arrieta-Garay, et al., 2014; Arrieta-Garay et al., 2014b; 

Arrieta-Garay et al., 2013; Claus & Berglund, 2005; Da Porto & Decorti, 2008; García-

Llobodanin et al., 2011; Hernández-Gómez et al., 2003; Reche et al., 2007). Many of these 

studies were concerned with the impact of the fruit variety or the distillation equipment on 

the aroma composition of the spirit. In addition, in these studies distillation strategies were 
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not changed and were defined heuristically. Recent studies have explored the impact of 

different operating strategies on the composition of Muscat wine distillates obtained in a 

packed batch distillation column (Matias-Guiu et al. 2016; Rodríguez-Bencomo et al. 2016). 

It was found by trial and error that low reflux rates at the beginning of the heart cut could 

produce distillates with an enhanced floral aroma. Although establishing suitable alembic 

distillation strategies by trial and error is a valid option that has been used for centuries in the 

production of spirits, medicines and perfumes, these strategies can be developed much faster 

and reliably using model based optimization (Osorio et al., 2005; Sacher et al., 2017). 

Several techniques have long been applied to design optimal operating strategies for batch 

distillation processes relevant in chemical engineering. Most of these methods transform the 

strategy design into an optimal control problem, where the usual goals are to minimize time, 

maximize distillate, maximize concentration of a key component or maximize profit 

(Diwekar, 1995; Mujtaba, 2004). As a result, most of the time, difficult nonlinear programing 

problems (NLP) should be solved numerically, either by the sequential approach (partial 

discretization) or the simultaneous approach (full discretization) (Kameswaran & Biegler, 

2006). The sequential approach is relatively easy to code and apply, especially if a reliable 

process model is already available. In this formulation, the control variables are discretized 

as piecewise polynomials and optimization is performed with respect to the polynomials’ 

coefficients (Barton et al., 1998; Vassiliadis et al., 1994a, 1994b). Alternatively, the 

simultaneous approach is faster and can handle many more decision variables and constraints 

than the sequential approach. This method does nevertheless require sophisticated 

optimization routines for handling large-scale problems as well as additional techniques to 

avoid numerical difficulties and to guarantee convergence. In this formulation, the control 

and state variables are discretized in time, using for example collocation on finite elements. 

Although the sequential approach (Kim, 1999; Jain, Kim, & Smith, 2012; Mujtaba & 

Macchietto, 1993; Mujtaba & Macchietto, 1997) and the simultaneous approach (Biegler, 

2007; Biegler et al., 2002; Logsdon et al., 1990; Mujtaba & Macchietto, 1996; Zavala & 

Coronado, 2008) have been widely used to solve batch distillation optimization problems, 

few of these studies include experimental validation. Previous studies with experimental 

validation involve distillation of binary mixtures (Elgue et al., 2004; Li et al., 1998; 
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Safdarnejad et al., 2016), distillation of ternary mixtures (Bonsfills & Puigjaner, 2004) and 

reactive distillation (Noeres et al., 2004). Nevertheless, studies involving optimization with 

experimental validation in the distillation of alcoholic beverages are scarce. Fruit wines are 

complex mixtures where water and ethanol represent around 96% of the total mass, and the 

delicate aroma of the spirit is defined by the remaining 4% made up of hundreds of volatile 

compounds (Osorio et al., 2004). Osorio et al. (2005) solved a multi-objective optimal control 

problem for the distillation of a spirit in a tray column, finding a suboptimal path for the 

cooling flow rate in the partial condenser that simultaneously maximized the recovery of 

terpenes (floral aroma in Muscat wines) and minimized the recovery of fatty acids (off-

flavors). The process model was complex, with many differential and implicit algebraic 

equations; therefore, the formulation and solution of a full optimization problem was 

difficult. To simplify the numerical solution of the optimization problem, the control path 

was parametrized using a smooth time-varying function with variable coefficients. With their 

method, Osorio et al. (2005) were able to experimentally obtain a distillate with three times 

more linalool (floral aroma) than commercial piscos (Muscat grape brandies) and six times 

more linalool than a distillate obtained by applying a standard distillation policy to the same 

batch distillation column. In addition, the optimum distillate contained on average four times 

less octanoic acid (off-flavor) than commercial and standard distilled piscos. More recently, 

De Lucca et al. (2013) explored by simulation several operating policies to minimize the 

methanol content in the distillate obtained in a batch packed bed column (Carvallo et al., 

2011). These authors used the same predefined function with variable coefficients of Osorio 

et al. (2005) to find an optimal cooling flow rate path. Simulations showed that the best 

operating strategy could not reduce the relative methanol concentration in the distillate more 

than 23% compared with the relative methanol concentration in the wine. 

Our long-term aim is to apply model-based techniques to design and implement batch 

distillation strategies to produce young fruit distillates that consistently meet a given standard 

of quality, i.e., rich in fruity and floral aromas and low in off-flavors and toxic compounds. 

Specifically, in this paper we focus on designing a distillation strategy that minimizes the 

methanol content in a distillate obtained in a Charentais alembic, without sacrificing ethanol 

recovery. Methanol metabolizes slowly in the human body, producing formaldehyde and 

formic acid, which are extremely toxic in high concentrations. Excessive intake of methanol 
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generates various ailments such as fatigue, thirst, headache, stomachache, nausea, vomiting, 

sensitivity to light and noise, lack of concentration and attention, tremors, excessive sweating 

and hypertension (Swift & Davidson, 1998). Hence, in many countries, methanol content in 

alcoholic beverages is regulated. 

First the calibration procedure of a dynamic alembic model adapted from Sacher et al. (2013) 

is described. Then, a suitable multi-objective dynamic optimization problem is formulated 

and solved using both the sequential and simultaneous approaches. Finally, the obtained 

experimental results are shown and discussed. 

3.2 Materials and Methods 

3.2.1 Distillation system 

The automatic Charentais copper alembic (Figure 3-1) used in our experiments consists of a 

4.8 L capacity boiler, a natural convection partial condenser (head), a swan neck and a total 

condenser. PT100 sensors measured the boiler, head and room temperatures. The heating 

power (1200 W) applied to the boiler was manipulated using a PAC2 regulator module that 

controls the phase angle of the AC supply. A S7-200 Siemens PLC (Programmable Logic 

Controller) received the temperature data from the PT100 sensors and sent the controller 

output to the PAC2 module to adjust the heating power. The human-machine interface (HMI) 

and the control algorithms were coded in MATLAB®/Simulink™ using the OPC Toolbox in 

a PC (Intel® Core™ 2 Hewlett-Packard). A cascade control system was applied: the primary 

controller (outer loop) read the head temperature and provided the heating power set point 

for the secondary controller; the secondary controller (inner loop) adjusted the applied 

heating power to follow the set point provided by the primary controller. Both controllers 

used an internal model control (IMC) algorithm (Brosilow & Joseph, 2002). 
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Figure 3-1. P&ID of the distillation system. 

3.2.2 Experiments 

In this study, a synthetic ternary mixture was prepared with a composition usually found in 

wine, i.e., 13% v/v of ethanol and 1.37 g/L.a.a. of methanol (grams of methanol per liter of 

absolute alcohol). The solution was prepared once and in sufficient amount before all the 

experimental distillations. The Alembic was initially loaded with 1.8 L of synthetic wine in 

each experiment. Distillation strategies were defined in terms of the heating power applied 

to the boiler. Three strategies (performed in triplicate) were assessed: i) slow distillation at 

constant low heating power (230 W); ii) fast distillation at constant high heating power (400 

W); and iii) optimal distillation applying a variable heating power. The first two strategies 

are common practice in small-scale spirits production facilities: slow distillations tend to 

increase spirits quality while fast distillations tend to increase ethanol recovery. The third 

strategy was defined to balance two objectives; low methanol content and high ethanol 

recovery (see section 3.2.7). In all distillation runs, three fractions were collected according 

to predefined volumes: 85 mL of head, 375 mL of heart and 115 mL of tail. The 

corresponding total distillation times were 168, 67 and 87 min for the slow, fast and optimal 

distillations respectively. 
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3.2.3 Chemical analysis 

Ethanol content was determined (in triplicate) with a pycnometer, correcting the density to 

20°C. Methanol content was determined (in duplicate) using the method proposed by the 

International Organization of Vine and Wine (OIV) (Wine, 2009). Distillate samples were 

diluted up to an ethanol content of 5% v/v and the methanol in the diluted samples was 

oxidized to formaldehyde with a solution of 3% w/v potassium permanganate and 15% v/v 

phosphoric acid. Then, the diluted oxidized samples were bleached with dry sodium bisulfite. 

The amount of formaldehyde was defined by the intensity of the violet color followed by the 

reaction of 5% w/w chromotropic acid in a sulfuric medium. This intensity was determined 

by spectrophotometry UV-VIS (T70 UV/VIS spectrometer PG Instruments) at 575 nm. All 

reagents were analytical grade. We used these low cost analytical techniques instead of gas 

chromatography (GC) or high-pressure liquid chromatography (HPLC), since these are too 

expensive to be implemented in small-scale distilleries. 

3.2.4 Data reconciliation 

Total mass, alcoholic strength and methanol concentrations were measured in the synthetic 

wine initially charged in the boiler, in all the distillate samples and in the residue left in the 

boiler after distillation. Discrepancies were found in the global mass balances due to 

measurement errors. Therefore, measurements were corrected with a standard data 

reconciliation procedure normally applied in the process industries (Narasimhan & Jordache, 

2000). Hence, reconciled values closed the global mass balances (total mass, ethanol and 

methanol). 

3.2.5 Modelling 

A simplified version of the model presented in Sacher et al. (2013) is used here, which 

considers a mixture of water, methanol and ethanol. The model comprises total mass, ethanol 

and energy dynamic balances in the boiler, as well as total mass, ethanol and energy 

stationary balances in the partial condenser. Several constitutive equations were included to 

describe the heat loss to the environment and the vapor/liquid equilibrium. The complete 

model is given in the appendix and further details and specific assumptions can be found in  

Sacher et al. (2013). 
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3.2.6 Model calibration 

The data obtained in the constant heat rate distillations (see section 3.2.2) were used to 

calibrate the dynamic alembic model. The fitting parameters were: 

𝜃 = [𝑈𝐴𝑏 , 𝑈𝐴𝑐 , 𝑀0, 𝑥0
𝑒 , 𝑥0

𝑚]  (3-1) 

where 𝑈𝐴𝑏 and 𝑈𝐴𝑐 represent the global heat transfer coefficient multiplied by the 

corresponding heat transfer area in the boiler and head respectively. 𝑀0, 𝑥0
𝑒 and 𝑥0

𝑚 are the 

initial total moles, ethanol molar fraction and methanol molar fraction in the boiler just at the 

moment when the first drop of distillate is recovered. These unmeasured values were 

different from those of the initial mixture. For the optimal strategy, the heat transfer 

parameters (UA) were not fitted; instead, they were modeled as linear functions of the heat 

transfer parameters fitted with the constant heating experiments. 

The calibration cost function was: 

𝐽(𝜃) = ∑ ∑ (
𝑦̂𝑖𝑗(𝑢, 𝜃, 𝑡) − 𝑦𝑖𝑗(𝑢, 𝑡)

max(𝑦𝑖𝑗)
)

2𝑛𝑜𝑏𝑠

𝑖=1

𝑛𝑣𝑎𝑟

𝑗

 (3-2) 

 

where index 𝑗 represents the measured variables and index 𝑖 the sample times. The measured 

variables were: alcoholic strength 𝐺𝐴, methanol concentration 𝑀𝑒𝑡ℎ, distilled volume 𝑉 and 

head temperature 𝑇𝑐. max(𝑦𝑖𝑗) corresponds to the maximum measured value of variable 𝑗 

during the distillation run. The optimization problem was solved within MATLAB® R2015a 

with the scatter search metaheuristic code (SSM) (Egea et al., 2007). 

Equations A.3-20, A.3-21 and A.3-22 in the appendix, that represent the instant concentration 

of ethanol, methanol and relative methanol respectively, were modified. Hence, eqs. 3-3, 3-

4 and 3-5 represent the average concentration of the distillate stream leaving the system at 

the corresponding time interval where the sample was collected: 

 

𝐺𝐴𝑖 =
Δ𝐺𝐴

Δ𝑉
= (

𝑀𝐷
𝑒(𝑡𝑒𝑥𝑝,𝑖) − 𝑀𝐷

𝑒(𝑡𝑒𝑥𝑝,𝑖−1) 

𝑉(𝑡𝑒𝑥𝑝,𝑖) − 𝑉(𝑡𝑒𝑥𝑝,𝑖−1)
) ⋅ 𝑃𝑀𝐸 ⋅

1

𝜌
𝑒

⋅ 100 (3-3) 
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𝑀𝑒𝑡,𝑖 =
Δ𝑀𝑒𝑡

Δ𝑉
= (

𝑀𝐷
𝑚(𝑡𝑒𝑥𝑝,𝑖) − 𝑀𝐷

𝑚(𝑡𝑒𝑥𝑝,𝑖−1) 

𝑉(𝑡𝑒𝑥𝑝,𝑖) − 𝑉(𝑡𝑒𝑥𝑝,𝑖−1)
) ⋅ 𝑃𝑀𝑀 ⋅ 1 ⋅ 10

−6 (3-4) 

 

𝐶𝑚𝑒𝑡ℎ,𝑖 =
ΔC𝑚𝑒𝑡ℎ
Δ𝑉

= (
𝑀𝐷
𝑚(𝑡𝑒𝑥𝑝,𝑖) − 𝑀𝐷

𝑚(𝑡𝑒𝑥𝑝,𝑖−1) 

(𝑉(𝑡𝑒𝑥𝑝,𝑖) − 𝑉(𝑡𝑒𝑥𝑝,𝑖−1)) ⋅ (𝐺𝐴𝑖/100)
) ⋅ 𝑃𝑀𝑀 ⋅ 1000 (3-5) 

 

Finally, the heart cut of the three distillation strategies were compared. In model calibrations, 

the cut times of head/heart and heart/tail for each strategy were defined by the volumes 

collected, i.e., 85 mL of head and 375 mL of heart (see section 3.2.2). 

3.2.7 Dynamic optimization 

A multi-objective cost function, 𝐽(𝑢), was defined to get a good compromise between low 

relative methanol concentration in the distillate and high ethanol recovery.  

 

min
𝑢
𝐽(𝑢) = 𝛼 ∙

𝐶𝑚𝑒𝑡ℎ(𝑡𝑓)

1.5
− (1 − 𝛼) ∙

𝑅𝑒𝑐𝑒𝑡ℎ(𝑡𝑓)

100
 

(3-6) 

 

here, α is an arbitrary positive scalar (≤ 1) that defines the relative weight of each objective 

(Bhaskar, Gupta, & Ray, 2000; Miettinen & Hakanen, 2009) and 𝐶𝑚𝑒𝑡ℎ is the relative 

methanol concentration. Ethanol recovery was defined by: 

 

𝑅𝑒𝑐𝑒𝑡ℎ =
∫ (𝑉𝐷(𝑡) ∙ 𝑥𝑒𝑡ℎ(𝑡))𝑑𝑡
𝑡𝑓

𝑡0

𝑀0 ∙ 𝑥𝑒𝑡ℎ(𝑡0)
 

(3-7) 

 

where 𝑉𝐷 is the molar flow rate of distillate, 𝑥𝑒𝑡ℎ is the ethanol mole fraction, 𝑀0 is the initial 

mass, and finally, 𝑡0 and 𝑡𝑓 are the initial and final distillation times respectively. Both 

objectives were scaled by their maximum values: the maximum methanol concentration in 

spirits allowed in the Chilean law (Biblioteca del Congreso Nacional de Chile & Ministerio 

de Agricultura, 2012) is 1.5 g/L.a.a, while the maximum ethanol recovery is 100%. 
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The only input variable that could be manipulated in the alembic was the heating power. 

Hence, the optimization problem looked for a heating path that minimized the relative 

methanol concentration in the distillate and simultaneously maximized ethanol recovery.  

Only the heart cut was considered in computing the cost function (Eq. 3-6). Based on 

experience, the head/heart cut was fixed at 5.5 min and the heart/tail cut was set at 120 min. 

Additional optimization constraints were: (i) the heating power varied between 230 and 400 

W; (ii) the minimum distillate flow rate was 2 mL/min. 

Two numerical methods were applied to solve the optimization problem (Srinivasan, Bonvin, 

Visser, & Palanki, 2003): the sequential solution/optimization method (SEM) and the 

simultaneous solution/optimization method (SIM). In SEM, the control variable was 

discretized into 18 equally spaced time steps where the control value was kept constant: 

 

𝑢(∆𝑡𝑖) = 𝑎𝑖 (3-8) 

where index 𝑖 represents the 18 time intervals and 𝑎𝑖 represents the value of the control 𝑢 in 

the i-th time interval. The scatter search code mentioned above was used to solve the resulting 

optimization problem within MATLAB® R2015a. The dynamic model of the alembic was 

solved with MATLAB’s solver ode15s (Shampine & Reichelt, 1997). In turn, in SIM, the 

control and state variables were discretized in time using 3 Radau collocation points on 18 

finite elements (Biegler, 2007; Kameswaran & Biegler, 2006). The resulting optimal control 

problem was: 

 

min
𝑢
𝐽(𝑢) (3-9) 

Subject to, 

∀ 𝑖 = 1…𝑛𝑒, 𝑗 = 1…𝑛𝑐𝑝 

 

𝑥𝑖,𝑗 = 𝑥𝑖−1 + ℎ𝑖∑𝑗(𝜏𝑗) ∙
𝑑𝑥

𝑑𝑡𝑖,𝑗

𝑛𝑐𝑝

𝑗=1

 (3-10) 

 

𝑔(𝑥𝑖,𝑗, 𝑦𝑖,𝑗, 𝑢𝑖,𝑗, 𝜃) = 0 (3-11) 



58 

 

 

 

𝑢𝐿 ≤ 𝑢𝑖,𝑗 ≤ 𝑢𝑈;  𝑥𝐿 ≤ 𝑥𝑖,𝑗 ≤ 𝑥𝑈;  𝑦𝐿 ≤ 𝑦𝑖,𝑗 ≤ 𝑦𝑈; 𝜃𝐿 ≤ 𝜃 ≤ 𝜃𝑈 (3-12) 

 

𝑑𝑥

𝑑𝑡𝑖,𝑗
= 𝑓(𝑥𝑖,𝑗, 𝑦𝑖,𝑗, 𝑢𝑖,𝑗, 𝜃) 

(3-13) 

 

where 𝑛𝑒 represents the number of finite elements (18), 𝑛𝑐𝑝 the number of collocation points 

(3), 𝑥 the state variables, 𝑦 the algebraic variables, 𝑢 the control variables, 𝜃 the model 

parameters vector, ℎ𝑖 the length of the finite elements (total process time divided by the 

number of finite elements), and finally,  the interpolation polynomial functions in each 

finite element. The optimization problem was coded in AMPL (R. Fourer, Gay, & Kernighan, 

2003) and solved with the IPOPT code (A. Waechter & Biegler, 2006). 

 

3.3 Results 

3.3.1 Model calibration 

Figures 3-2 and 3-3 show measured values and model outputs of the head temperature, 

alcoholic strength, methanol concentration, distillate volume and distillate flow rate of the 

three replicates of the constant high heating rate distillation. The 95% confidence intervals 

shown in the figures were obtained by simulation, considering the standard deviation in the 

estimated parameter set (𝜃 ± 2𝜎𝜃). Table 3-1 shows the fitted parameters for the two constant 

heating distillations (230 W and 400 W); for the optimal strategy, the initial concentrations 

were fitted only, since heat transfer parameters were defined by linear functions (see section 

3.2.6).  
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Figure 3-2. Head temperature, alcoholic strength and relative methanol concentration for a 

constant heating power rate of 400 W. Experimental data: run 1 (×), run 2 (□) and run 3 

(Δ). Simulation (solid line) and confidence interval (dashed line). 

 

 

Figure 3-3. Distillate volume and distillate flow rate for a constant heating power rate of 

400 W. Experimental data: run 1 (×), run 2 (□) and run 3 (Δ). Simulation (solid line) and 

confidence interval (dashed line). 
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Model fitting was better for the high heating rate distillation (Figs. 3-2 and 3-3) than for the 

low heating rate distillation (Figs. 3-4 and 3-5). At low heating, distillate flow rates were 

extremely low (less than 6 mL-1) and distillation times were high (180 min); consequently, 

measurements were more sensitive to disturbances. The alcoholic strength and the distilled 

volume were the best-fitted variables in both distillation experiments. Simulated values did 

not represent well the measurements of relative methanol concentrations at the end of the 

distillation, especially for low heating operation. In this case, low concentration and flow rate 

values were observed. Absolute errors of these measurements were approximately constant; 

hence, relative errors were higher at low concentration and flow rate values. 

 

 

Figure 3-4. Head temperature, alcoholic strength and methanol concentration curves for 

constant heating power rate 230 W. Experimental data: run 1 (×), run 2 (□) and run 3 (Δ). 

Simulation (solid line: −) and confidence interval (dashed line: - - -). 

 

 



61 

 

 

 

 

Figure 3-5. Distillate volume and distillate flow rate curves for constant heating power rate 

230 W. Experimental data: run 1 (×), run 2 (□) and run 3 (Δ). Simulation (solid line: −) 

and confidence interval (dashed line: - - -). 

Table 3-1 shows that under low heating, the heat transfer parameters (𝑈𝐴) were practically 

the same for the boiler and the partial condenser. In turn, under high heating, the heat transfer 

parameter of the head was higher than that of the boiler. Sacher et al. (2013) found the same 

behavior in a similar system; however, our heat transfer parameters were higher due to 

differences in the heating methods used. Sacher et al. (2013) applied a hot plate to heat the 

boiler; hence, they could not measure the effective heat supplied, which was estimated 

instead. They argue also that low heating powers induced low convective air streams, 

reducing the heat transfer in the head. This explains why we observed a low heat transfer 

parameter of the head at low heating powers. The heat transfer parameter of the boiler was 

less dependent on the heating power in our case, since the heating element is inside the boiler. 
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Table 3-1. Fitted parameters for distillation strategies. 

Strategy 𝑈𝐴𝑏 

(W/°C) 

𝑈𝐴𝑐 

(W/°C) 

𝑀0 

(mol) 

𝑥0
𝑒  

(mol/mol) 

𝑥0
𝑚  

(mol/mol) 

230 W 0.82 ± 0.06 0.81 ± 0.10 90.4 ± 1.2 37.1e-3 ± 0.7e-3 10.12e-5 ± 0.13e-5 

400 W 0.37 ± 0.10 1.48 ± 0.13 90.4 ± 0.9 38.5e-3 ± 2.0e-3 10.41e-5 ± 0.16e-5 

Optimal a b 89.5 ± 1.7 36.6e-3 ± 1.4e-3 9.40e-5 ± 0.53e-5 

a Linear function between 𝑈𝐴𝑏 values obtained from 230 and 400 W. 

b Linear function between 𝑈𝐴𝑐 values obtained from 230 and 400 W. 

 

3.3.2 Optimal operation 

Tables 3-2 and 3-3 show the optimization results with the SEM and SIM methods 

respectively, including the optimal values of relative methanol concentration (𝐶𝑚𝑒𝑡ℎ), ethanol 

and methanol recoveries (𝑅𝑒𝑐𝑒𝑡ℎ, 𝑅𝑒𝑐𝑚𝑒𝑡ℎ), as well as alcohol strength (𝐺𝐴𝑑) for different 

values of the weight of the cost function (0 ≤ α ≤ 0.5). For values of α  0.5, the same results 

were obtained, where the heating power was the lower limit. In the case of SIM, the 

optimization routine did not converge for some 𝛼 values. Figure 3-6 shows the optimum 

trajectories of the heating power, the head temperature and alcoholic strength variation for α 

= 0.05 and α = 0.06 obtained by SEM and SIM respectively. Figure 3-7 shows the optimum 

trajectories of the heating power, the head temperature and alcoholic strength variation for α 

= 0.2 obtained by SEM and SIM. Figure 3-8 shows the Pareto front yielded by both dynamic 

optimization methods. 
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Table 3-2. Results obtained with the sequential solution/optimization method (SEM) for 

head/heart cut at 5 min and heart/tail cut at 120 min. 

adjustable 

weight  

(𝛼) 

objective 

function 

( 𝐽) 

relative methanol 

concentration  

(𝐶𝑚𝑒𝑡ℎ) 

ethanol 

recovery 

(𝑅𝑒𝑐𝑒𝑡ℎ) 

methanol 

recovery 

(𝑅𝑒𝑐𝑚𝑒𝑡ℎ) 

alcohol 

strength 

(𝐺𝐴) 

0 -0.915 1.40 91.5 94.3 24.8 

0.05 -0.823 1.40 91.5 94.1 26.7 

0.10 -0.730 1.39 91.4 93.5 29.9 

0.15 -0.638 1.38 91.4 92.8 32.0 

0.20 -0.547 1.37 91.2 91.9 34.2 

0.25 -0.456 1.36 91.0 90.9 36.1 

0.30 -0.365 1.35 90.6 89.5 38.2 

0.35 -0.276 1.33 90.2 88.2 40.0 

0.40 -0.186 1.31 89.5 86.3 42.0 

0.45 -0.0985 1.30 88.5 84.2 44.1 

0.50 -0.0116 1.27 86.7 80.5 47.1 

 

Table 3-3. Results obtained with the simultaneous solution/optimization method (SIM) for 

head/heart cut at 5 min and heart/tail cut at 120 min. 

adjustable 

weight  

(𝛼) 

objective 

function 

( 𝐽) 

relative methanol 

concentration  

(𝐶𝑚𝑒𝑡ℎ) 

ethanol 

recovery 

(𝑅𝑒𝑐𝑒𝑡ℎ) 

methanol 

recovery 

(𝑅𝑒𝑐𝑚𝑒𝑡ℎ) 

alcohol 

strength 

(𝐺𝐴) 

0.06 -0.805 1.40 91.5 94.0 27.6 

0.10 -0.731 1.39 91.5 93.5 29.9 

0.15 -0.639 1.38 91.4 92.8 32.4 

0.20 -0.547 1.37 91.2 91.9 34.5 

0.25 -0.456 1.36 91.0 90.8 36.6 

0.30 -0.366 1.35 90.7 89.6 38.5 

0.36 -0.258 1.33 90.1 87.8 40.8 

0.40 -0.187 1.31 89.5 86.3 42.4 

0.43 -0.134 1.30 89.0 85.1 43.6 

0.45 -0.0987 1.29 88.6 84.2 44.4 

0.48 -0.0465 1.28 87.8 82.7 45.6 

0.50 -0.0120 1.27 87.2 81.5 46.5 
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Both optimization methods provided different heating trajectories, where the SIM heating 

trajectories were easier to implement in real time experiments since they were much 

smoother. Even though different evolutions of head temperature and distillate alcoholic 

strengths were obtained for the same values of 𝛼, both methods yielded practically the same 

values of relative methanol concentration and ethanol recovery (Figure 3-8, and Tables 3-2 

and 3-3). Therefore, the optimal solutions found were reliable, since both methods, using 

different discretization techniques and optimization solvers, reached the same objective 

values. In addition, SEM was easier to apply than SIM, since the model was already coded 

in MATLAB® and the DAE system was efficiently solved with the ode15s routine. Therefore, 

we only had to add the optimization routine, code the multi-objective cost function and 

discretize the control variable. For the SIM approach, the code was adapted to AMPL 

language (which was rather difficult) and the model was fully discretized, generating many 

equations, variables and inequality constraints in the state variables and the control variable. 

SEM solved the optimization problem much slower than SIM (5 to 10 h for SEM and 1 to 5 

s for SIM). The SEM approach solved the numerical integration of the DAE system at each 

iteration step. Instead, SIM solved the optimization problem once at the optimal point. 

However, in many cases the SIM method could not solve the optimization problem since the 

model did not converge due to numerical limitations. 
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Figure 3-6. Heating power, head temperature and instant alcoholic strength optimal curves 

obtained by SEM (𝛼 = 0.05, dotted line) and SIM (𝛼 = 0.06, dash-dot line). 

 

Figure 3-7. Heating power, head temperature and instant alcoholic strength optimal curves 

obtained by 𝛼 = 0.2. SEM (dotted line) and SIM (dash-dot line). 
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For 𝛼 = 0.06 for SEM and 0.05 for SIM, the high-limit heating rate (400 W) was obtained, 

resulting in the highest ethanol recovery (objective 1) at the expense of the highest methanol 

concentration (objective 2). In turn, for 𝛼  0.5, the low-limit heating rate (230 W) was 

obtained, yielding the lowest ethanol recovery and lowest methanol concentration. In this 

case, it was possible to reduce the relative methanol concentration 7.3% compared to the 

concentration in the initial mixture (1.37 g/L.a.a.), recovering 87.2% of the ethanol (Table 3-

3). De Lucca et al. (2013) were able to reduce the relative methanol concentration in the 

distillate by 22.7% in relation to the initial mixture, recovering 75% of the ethanol in a 

simulated packed column. In addition, these authors observed that smaller head/heart and 

heart/tail cut times yielded lower methanol concentrations, independently of the distillation 

strategy. Thus, to compare both distillation methods (Charentais alembic and packed 

distillation column) in their ability to reduce the distillate methanol content, we solved the 

optimization problem with 𝛼 = 1, reducing the head/heart cut time and fixing the ethanol 

recovery at 75%. We were able to reduce the methanol content in the distillate by 16.8% 

(1.14 g/L.a.a) in relation to the initial mixture. A batch packed column distillation system has 

a much higher rectification capacity than a Charentais alembic; therefore, it can reduce the 

methanol concentration in the distillate 35% more than the Charentais alembic. 

 

Figure 3-8. Relative methanol concentration (objective 1) vs ethanol recovery (objective 2). 

Sequential method (Δ) and simultaneous method (+). 
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3.3.3 Experimental validation 

A good compromise between both optimization objectives was achieved with α = 0.2, where 

the methanol concentration was below the legal limit without sacrificing ethanol recovery. 

Hence, we performed the validation experiments (in triplicate) with this solution, using the 

SIM head temperature as a variable set point to be tracked by the control system. Figure 3-9 

shows the temperature set point (optimal path), the measured head temperature, the room 

temperature (disturbance) and the heating power (manipulated variable). 

 

 

Figure 3-9. Experimental optimal strategy in triplicate. Top figure: head temperature set 

point (solid line) and measured temperatures (dotted lines). Bottom figures: room 

temperature (thin lines) and heating power (thick lines). 

The measured head temperature evolutions were the same in the three experimental runs, 

closely tracking the optimal path despite the different evolutions of the room temperature. 

Small variations in the manipulated variable efficiently compensated these disturbances. It is 

worth noticing that the optimal experiment finished earlier than predicted by the model. In 

the experiments, the cuts were defined by the recovered volumes, in order to simplify the 

comparison with the constant heating strategies (see section 3.2.2). Moreover, the final 

distillate corresponds to the tail fraction cut which was not part of the optimization objective. 
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Figures 3-10 and 3-11 show a good agreement between simulations and measured values, 

where most of them lie within the confidence interval. Like in the model calibration 

experiments, alcoholic strength and distilled volume were the best-fitted variables. 

 

Figure 3-10. Experimental optimal strategy: head temperature, alcoholic strength and 

methanol concentration. Experimental data: run 1 (×), run 2 (□) and run 3 (Δ). Simulation 

(solid line) and confidence interval (dashed line). 
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Figure 3-11. Experimental Optimal strategy: distillate volume and distillate flow rate. 

Experimental data: run 1 (×), run 2 (□) and run 3 (Δ). Simulation (solid line) and 

confidence interval (dashed line). 

We compared the heart cut ethanol recovery and relative methanol concentration obtained in 

the three distillation strategies. Simulations of all strategies considered 85 mL of head and 

375 mL of heart (see section 3.2.2), and these were compared with experimental values 

(Figure 3-12). Experiments confirmed that the optimal strategy achieved the lowest methanol 

concentration in the heart cut (1.23 g/L.a.a.). 
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Figure 3-12. Relative methanol concentration and ethanol recovery in the heart cut for each 

distillation strategy: predicted values (∎) and experimental data (□).  

The experimental relative methanol concentrations were practically the same for high and 

low heating power strategies, while simulated values (based on cut times) were significantly 

different (see Tables 3-2 and 3-3). In the experiments, for simplicity, the fractions were 

defined by volume, while in the simulations the fractions were defined by fixed cut times. 

Nevertheless, simulations of methanol concentrations in the heart fractions based on volumes 

were quite accurate in all experiments (see Figure 3-12). Simulations of ethanol recovery 

were inaccurate only for the optimal heating strategy, which was overestimated by 9%. This 

overestimation can be due to differences between simulated and experimental heating, where 

the latter covered a wider range of values (0-500 W) to provide the control system more 

flexibility to cope with unmeasured disturbances. In addition, our model included several 

approximations regarding the energy balances: (i) the heat transfer parameters in the optimal 

strategy (UA) were a linear function of the heating power applied in the boiler between 230-

400 W; (ii) the energy balances did not consider the thermal inertia contribution of the 2.5 

kg of copper of the alembic; and (iii) the accumulation term in the energy balance in the head 

of the alembic (partial condenser) was neglected. Since ethanol content in the distillate 

depends strongly on the equilibrium temperature and varied widely in all distillation runs 

(between 5 and 65%), simulations of the heart cut ethanol recovery were quite sensitive to 
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the small errors in the simulated instantaneous values due to the assumptions above. In turn, 

relative methanol concentrations were less dependent on the equilibrium temperature and 

varied in a much narrower range (between 1.23 and 1.45); hence, those small errors due to 

the energy balance assumptions had much less impact on the predictions of the relative 

methanol concentration in the heart cut. Nevertheless, by applying the methodology 

described above, we were able to reproducibly obtain in experimental runs a distillate with 

12% less methanol than standard strategy distillates, with a moderate reduction (2.4%) in the 

ethanol recovery. 

3.4 Conclusions 

A reliable method was presented to develop optimal operating strategies for Charentais 

alembics that simultaneously achieved high ethanol recoveries and low methanol 

concentrations in the distillate. The developed model accurately reproduced the 

experimentally observed methanol concentrations in the optimal strategy. Experimental 

ethanol recoveries were 9% lower than simulated for the optimal strategy, due to model 

approximations and the wider operating range of the control variable of the experimental 

system. With the optimal strategy tested experimentally, we were able to reduce the methanol 

concentration in the distillate by 12% compared with standard operating strategies (constant 

heating rates), without a significant reduction in the ethanol recovery. In particular, our 

results showed that a volatile impurity such as methanol could be reduced in the spirit by 

applying a low heating power during the head cut. In addition, increasing the heating power 

at the beginning of the heart cut will favor the recovery of ethanol. Much better distilled 

spirits can be obtained by applying model-based engineering tools than those achieved by 

trial and error experimentation or intuitively. In addition, the methodology proposed in this 

study could be easily applied to tackle objectives that are more challenging. For example, to 

produce spirits with enhanced floral aroma and reduced off-flavors. This technology can be 

applied in small and medium distilleries since the system implementation is relatively simple 

and low cost. 

 

3.5 Appendix A. Alembic model 

Mass (total, ethanol, methanol) and energy balances in the boiler, 
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𝑑(𝑀𝐵)

𝑑𝑡
= 𝐿 − 𝑉𝐵 

(A.3-1) 

 

𝑑(𝑀𝐵 ∙ 𝑥𝐵
𝑒)

𝑑𝑡
= 𝐿 ∙ 𝑥𝐿

𝑒 − 𝑉𝐵 ∙ 𝑦𝐵
𝑒  

(A.3-2) 

 

𝑑(𝑀𝐵 ∙ 𝑥𝐵
𝑚)

𝑑𝑡
= 𝐿 ∙ 𝑥𝐿

𝑚 − 𝑉𝐵 ∙ 𝑦𝐵
𝑚 

(A.3-3) 

 

𝑑(𝑀𝐵 ∙ 𝑢𝐵)

𝑑𝑡
= 𝐿 ∙ ℎ𝐿 − 𝑉𝐵 ∙ 𝐻𝐵 + 𝑄𝐵̇ 

(A.3-4) 

 

Mass (total, ethanol, methanol) and energy balances in the partial condenser (negligible 

liquid holdup), 

 

𝑉𝐵 − 𝐿 − 𝑉𝐷 = 0 (A.3-5) 

 

𝑉𝐵 ∙ 𝑦𝐵
𝑒 − 𝐿 ∙ 𝑥𝐿

𝑒 − 𝑉𝐷 ∙ 𝑦𝐷
𝑒 = 0 (A.3-6) 

 

𝑉𝐵 ∙ 𝑦𝐵
𝑚 − 𝐿 ∙ 𝑥𝐿

𝑚 − 𝑉𝐷 ∙ 𝑦𝐷
𝑚 = 0 (A.3-7) 

 

𝑉𝐵 ∙ 𝐻𝐵 − 𝐿 ∙ ℎ𝐿 − 𝑉𝐷 ∙ 𝐻𝐷 − 𝑄𝐶̇ = 0 (A.3-8) 

 

Thermodynamic equilibrium relationships for methanol, 

 

𝑦𝐷
𝑚 = 𝐾𝐶

𝑚 ∙ 𝑥𝐿
𝑚 (A.3-9) 

 

𝑦𝐵
𝑚 = 𝐾𝐵

𝑚 ∙ 𝑥𝐵
𝑚 (A.3-10) 
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𝐾𝐵,𝐶
𝑚 (𝑥𝐵

𝑒 , 𝑥𝐿
𝑒) =

𝑦𝐵,𝐷
𝑚

𝑥𝐵,𝐿
𝑚 =

𝑃𝑚(𝑥𝐵
𝑒 , 𝑥𝐿

𝑒) ∙ 𝛾𝑚(𝑥𝐵
𝑒 , 𝑥𝐿

𝑒)

𝑃
 (A.3-11) 

 

The activity coefficient for methanol 𝛾𝑚 is estimated using the UNIFAC contribution groups 

method. Given the assumption of a quasi-binary mixture, the activity coefficient only 

depends on the ethanol concentration since an infinite dilution of methanol in a mixture of 

water-ethanol is assumed. 

 

Heat transfer model 

 

𝑄̇𝐵 = 𝑄̇𝑐𝑎𝑙 − 𝑈𝐴𝑏 ∙ (𝑇𝐵 − 𝑇𝑒𝑛𝑣) (A.3-12) 

 

𝑄̇𝐶 = 𝑈𝐴𝑐 ∙ (𝑇𝐶 − 𝑇𝑒𝑛𝑣) (A.3-13) 

 

Where 𝑄̇𝑐𝑎𝑙 and 𝑇𝑒𝑛𝑣 are input variables corresponding to the control variable and 

disturbance of the system respectively. This model has only one empirical parameter, 𝑈 ∙ 𝐴, 

which can be easily fitted with data normally available in commercial distillation facilities 

(J.R. Pérez-Correa et al., 2013). 

 

Simulation 

 

To simulate the model, a reordering of equations is convenient. The distillate molar flow rate 

is obtained from mass and energy balances in the partial condenser (Eqs. A.3-5, A.3-6 and 

A.3-8) 

𝑉𝐷 =
𝑄𝐶̇

(𝐻𝐵 −𝐻𝐷) +
(𝑦𝐵

𝑒 − 𝑦𝐷
𝑒)

(𝑥𝐿
𝑒 − 𝑦𝐷

𝑒)
∙ (𝐻𝐷 − ℎ𝐿)

−
−𝑄𝐶̇

(ℎ𝐿 −𝐻𝐷) +
(𝑥𝐿

𝑒 − 𝑦𝐷
𝑒)

(𝑦𝐵
𝑒 − 𝑦𝐷

𝑒)
∙ (𝐻𝐷 −𝐻𝐵)

 (A.3-14) 

 

To calculate the volume of distillate, an empirical correlation which calculates the density of 

the mixture from ethanol composition is used (Neuburg & Perez-Correa, 1994), 
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𝜌𝐿(𝑦𝐷
𝑒) =

𝑦𝐷
𝑒 ∙ 𝑃𝑀𝐸 + (1 − 𝑦𝐷

𝑒) ∙ 𝑃𝑀𝑊

𝜙 ∙ 𝑦𝐷
𝑒 + (1 − 𝑦𝐷

𝑒) ∙ 𝑃𝑀𝑊/𝜌𝑊
 (A.3-15) 

 

𝜙 = 𝑓(𝑦𝐷
𝑒 , 𝑇𝐷) (A.3-16) 

 

To simulate the model outputs, the distilled volume (𝑉), as well as the accumulated ethanol 

and methanol, must be calculated by three differential equations. 

 

𝑑𝑉

𝑑𝑡
=
𝑉𝐷 ⋅ (𝑦𝐷

𝑒 ∙ 𝑃𝑀𝐸 + (1 − 𝑦𝐷
𝑒) ∙ 𝑃𝑀𝑊)

𝜌𝐿(𝑦𝐷
𝑒)

 (A.3-17) 

 

𝑑𝑀𝐷
𝑒

𝑑𝑡
= 𝑦𝐷

𝑒 ⋅ 𝑉𝐷 
(A.3-18) 

 

𝑑𝑀𝐷
𝑚

𝑑𝑡
= 𝑦𝐷

𝑚 ⋅ 𝑉𝐷 
(A.3-19) 

 

where 𝑀𝐷
𝑒  and 𝑀𝐷

𝑚  are the ethanol and methanol moles in the accumulated distillate, 

respectively. However, the ethanol concentration was measured in alcoholic strength (𝐺𝐴), 

the methanol concentration in mg/L (𝑀𝑒𝑡ℎ) and relative methanol concentration in g/L.a.a 

(𝐶𝑚𝑒𝑡ℎ). 

 

𝐺𝐴 =
𝑀𝐷
𝑒 ⋅ 𝑃𝑀𝐸 ⋅ (1/𝜌𝐸)

𝑉
⋅ 100 

(A.3-20) 

 

𝑀𝑒𝑡ℎ =
𝑀𝐷
𝑚 ⋅ 𝑃𝑀𝑀

𝑉
⋅ 1 ⋅ 10−6 

(A.3-21) 

 

𝐶𝑚𝑒𝑡ℎ =
𝑀𝐷
𝑚 ⋅ 𝑃𝑀𝑀

𝑉 ⋅ (𝐺𝐴/100)
⋅ 1000 (A.3-22) 
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Finally, to calculate the composition of ethanol in the partial condenser, a rearrangement of 

the energy balance (Eq. A.3-4) from mass balances in the boiler (Eqs. A.3-1 and A.3-2) is 

required, 

 

(𝐿(𝑥𝐿
𝑒 − 𝑥𝐵

𝑒) − 𝑉𝐵(𝑦𝐵
𝑒 − 𝑥𝐵

𝑒)) (
𝜕ℎ𝐵
𝜕𝑥𝐵

+
𝜕ℎ𝐵
𝜕𝑇𝐵

𝑑𝑇𝐵
𝑑𝑥𝐵

) = 𝐿(ℎ𝐿 − ℎ𝐵) − 𝑉𝐵(𝐻𝐵 − ℎ𝐵) + 𝑄̇𝐵 (A.3-23) 

 

This equation is an implicit function that depends on the value of 𝑥𝐿
𝑒. This equation was 

solved iteratively using MATLAB’s fsolve routine (in the sequential method) and in the 

AMPL code was included as an additional constraint in the optimization problem (in the 

simultaneous method). 
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CHAPTER 4: MODELING AND MULTI-OBJECTIVE DYNAMIC 

OPTIMIZATION OF MUSCAT WINE BATCH DISTILLATIONS 

Ricardo Luna, Pau Matias-Guiu, Francisco López, José R. Pérez-Correa 

Manuscript submitted for publication in Journal of Industrial and Engineering Chemistry 

4.1 Introduction 

Distilled spirits, normally produced from the surplus of cereals and fruits available in a given 

region, are characterized by a distinctive aroma. Barley is used in both Scotch Whisky and 

Irish Whiskey. Barley, corn and rye are used to produce bourbon in USA. Cane juice is used 

to produce rum in the Caribbean and cachaça in Brazil, while agave is used to produce tequila 

in Mexico. Grapes are used to produce several kinds of distillates, like brandy in Spain, 

cognac in France, as well as pisco in Chile and Peru (Small et al., 2011). These beverages 

are mainly composed of water and ethanol, representing 97-99 % of the total content of the 

spirits. However, the distinctive aroma of these spirits is defined by hundreds of low 

concentration compounds called congeners. These compounds explain the difference in 

flavor and aroma between 2 spirits, such as whisky and pisco. The concentration of these 

congeners depends on many variables such as growing conditions, fermentation variables, 

yeast strain, distillation equipment, distillation variables, as well as maturation and aging 

conditions. Distillation plays a key role in preserving the distinctive aroma of young spirits 

(López, Rodríguez-Bencomo, Orriols, & Pérez-Correa, 2017).  

Traditional systems, like copper Charentais alembics (French style) and batch distillation 

tray-columns (German style), are normally used to produce young spirits like pisco and 

cachaça. Charentais alembics are widely used in small scale facilities since its operation is 

much simpler than batch columns and are more suitable to preserve the original fruit aroma 

(Arrieta-Garay et al., 2013). It has been observed that batch distillation packed-columns 

allow fast and flexible control of the internal reflux rate (Matias-Guiu et al., 2016, 2018), 

although the process is much less reproducible than distillations with Charentais alembics 

(García-Llobodanin et al., 2011). Nonetheless, alembics are subjected to many uncontrolled 

and unmeasured disturbances that also generate variability in the composition of the final 

product (Luna et al., 2018). In these systems, three cuts are collected sequentially: head, heart 



77 

 

 

 

and tail. There are different criteria to define the cuts during the distillation, such as ethanol 

recovery, alcoholic strength (Spaho et al., 2013) or the temperature of the vapor before it 

enters the condenser (Spaho, 2017). Distillers, based on experience and on-line tasting and 

smelling, define the cut-times to balance the congeners to attain spirits with good aroma and 

no off-flavors. This remains the most reliable method to determine cut-times. Alternatively, 

distillation mathematical models have been developed for decision making and exploring 

new strategies. Wine distillation models have been developed for batch distillations in plate 

columns (Osorio et al., 2004), packed columns (Carvallo et al., 2011) and copper Charentais 

alembics (Sacher et al., 2013). These models are constituted by a set of differential and 

algebraic equations (DAEs) and have been applied to define cut-times and to find optimal 

operating strategies (De Lucca, Munizaga-Miranda, Jopia-Castillo, Gelmi, & Pérez-Correa, 

2013b; Luna et al., 2018; Osorio, Pérez-Correa, Biegler, & Agosin, 2005).  

Model based design have many advantages such as being much faster and cheaper than 

experimental trial and error. To design optimal operating strategies for batch distillations, 

dynamic optimization techniques, using the sequential or the simultaneous approach 

(Srinivasan et al., 2003), can be applied. In the sequential method, the model equations and 

the objective function are calculated in successive evaluations, i.e., the DAEs are solved 

independently of the objective function (Safdarnejad et al., 2015). In this case, only the 

manipulated variable is discretized as a piecewise polynomial and the decision variables of 

the optimization problem are the polynomial coefficients (Barton et al., 1998; Vassiliadis et 

al., 1994a, 1994b). In the simultaneous approach, the model equations and the optimization 

problem are solved together (Hedengren et al., 2014). In this formulation, manipulated 

variables and state variables are both discretized, therefore differential equations are 

transformed into algebraic equations, for example using orthogonal collocation on finite 

elements (Kameswaran & Biegler, 2006). For problems with a moderate number of state 

variables, the simultaneous approach is faster and can handle more decision variables and 

constraints than the sequential approach (Hedengren et al., 2014). However, for problems 

with a small number of decision variables and a large-scale model with many state variables, 

sequential methods perform better.  
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Dynamic optimization problems in batch distillation usually consider goals, such as minimize 

process time, maximize the amount of distillate or of a key component, and maximize 

economic profit (Diwekar, 1995; Mujtaba, 2004). In batch distillation of alcoholic beverages, 

dynamic optimization problems have been formulated through multi-objective functions 

since there are some objectives that should be minimized (off-flavors and toxic compounds) 

and other maximized (terpenes and fruity esters). Osorio et al. (2005) used a multi-objective 

dynamic optimization weighting method to maximize ethanol and linalool recoveries and 

minimize the octanoic acid recovery of wine spirit in a tray column. Luna et al. (2018) used 

a weighting method in the dynamic optimization of an alembic distillation to maximize the 

ethanol recovery and minimize the methanol concentration. Matias-Guiu et al. (2018) used a 

multi-objective optimization based on the desirability approach, using a response surface 

model to improve the aroma of a Muscat spirits distilled in a batch packed column. In the 

desirability approach, the conflicting objectives are transformed into a range of acceptability 

values between 0 and 1, ranging from an undesirable to a desirable objective respectively. 

When the number of objectives is high, solving the multi-objective problem is difficult, since 

many conflicting objectives appear that complicates the visualization and interpretation of 

the solution space, hampering the decision-making process (Pozo, Ruíz-Femenia, Caballero, 

Guillén-Gosálbez, & Jiménez, 2012). An alternative approach is to use dimension reduction 

methods that allow omitting redundant metrics from the problem to keep it at a manageable 

size.  

In this study, we used Principal component analysis (PCA) to reduce the dimensionality of a 

multi-objective dynamic distillation optimization problem. We focused on a model-based 

design and assessed experimentally the optimal distillation strategies for young Muscat 

spirits in a Charentais alembic. The aim was to obtain a distillate rich in fruit and floral 

aromas and low in off-flavors and toxic compounds. A dynamic model (DAEs) of a 

Charentais alembic developed by Luna et al. (2018) was extended to include six congeners 

representing reliable markers of each distillate cut. In addition, principal component analysis 

(PCA) was applied to analyze Chilean commercial piscos. Two dynamic optimization 

problems with two objectives each were formulated and solved using the sequential 

approach. To reduce the problem’s dimensionality, the objectives were a weighting function 

based on chemical markers and a weighting function based on PCA decomposition. 
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Experimental computer-controlled distillations were carried out to calibrate the model and to 

compare standard distillation strategies with optimum operation. The decision variables were 

the heating power path, the head volume cut, and the heart volume cut. 

4.2 Materials and methods 

4.2.1 Distillation system 

The Charentais copper alembic with automatic control used in our experiments consists of a 

4.8 L capacity boiler, a natural convection partial condenser (head), a swan neck and a total 

condenser. PT100 sensors measured the boiler, head and room temperatures. The heating 

power (750 W) applied to the boiler was manipulated using an RG solid state controller 

(Carlo Gavazzi, RGC1P series, Italy). A Programmable Logic Controller (PLC) (S7-1200 

Siemens, Germany) received the temperature data from the PT100 sensors and sent the 

controller output to the RG solid state. A human-machine interface (HMI) and an internal 

model control (IMC) algorithm were coded in MATLAB®/Simulink™ using the TCP/IP 

communication protocol with TIA Portal V14 SP1 in a PC (Intel® Core™ i5 7th Gen Hewlett-

Packard ProDesk 400MT, USA). In the main control loop, the measured variable was the 

alembic´s head temperature and the manipulating variables was the heating power in the 

alembic´s boiler. 

4.2.2 Synthetic Muscat wine and experiments 

Wines 

Model calibration and validation were carried out using data from distillations with a 

synthetic wine consisting of a mixture of water-ethanol (11.4 % of alcoholic strength, pH 

3.2) and six congeners that were adjusted to obtain a composition similar to a Muscat wine 

(2016 vintage year) (Matias-Guiu et al., 2018). This mixture was prepared once and enough 

for all the experimental distillations. In each distillation run, the alembic was initially loaded 

with 1.8 kg of synthetic wine, equivalent to 95 moles (𝑀0) and 0.038 ethanol molar fraction 

(𝑥0). Table 4-1 shows the congener composition of both the synthetic and Muscat wines. 
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Table 4-1. Congeners concentration and their properties in synthetic and Muscat wines. 1 

𝑁𝑐𝑜𝑛𝑔 Congener Molar Weight 

(g/mol) 

Synthetic wine Muscat wine Odor Odor threshold 

(g/hL.a.a.) 
Concentration 

(mg/L) 

Molar fraction 

(mol/mol) 

Concentration 

(mg/L) 

Molar fraction 

(mol/mol) 

Head compounds 

1 Acetaldehyde 44.1 162 7.16e-05 179 7.87e-05 Pungent 25a 

2 Methanol 32.0 88.9 5.39e-05 82.7 5.01e-05 Toxic 167a 

3 Ethyl acetate 88.1 70.4 1.55e-05 81.3 1.79e-05 Glue 12.5b 

Terpenic compound 

4 Linalool 154 1.01 1.27e-07 1.11 1.39e-07 Muscat 0.25c 

Tail compounds 

5 Hexanoic acid 116 8.01 1.34e-06 6.57 1.10e-06 Rancid 2a 

6 𝛽-Phenylethanol 122 31.5 5.00e-06 26.8 4.26e-06 Roses, floral 5c 

a Referenced in (Christoph & Bauer-Christoph, 2007).  2 

b Referenced in (Clutton & Evans, 1978). 3 

c Referenced in (Cacho et al., 2012). 4 
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Model fitting experiments 

Two distillation strategies were performed in triplicate, applying different heating powers in 

the boiler: (i) slow distillation at constant low heating power (250W) and (ii) fast distillation 

at constant high heating power (450 W). In all distillation runs, three fractions were collected 

according to predefined volumes: 85 mL of head (sub-fractions 1-2), 375 mL of heart (sub-

fractions 3-11) and 115 mL of tail (sub-fractions 12-15). The total amount collected was 640 

mL. The corresponding total distillation times were 170 and 68 min for the slow and fast 

distillations respectively. 

Optimization experiments 

Two optimal strategies, obtained by multi-objective dynamic optimization, were carried out 

in triplicate. The first strategy, called w13, was obtained by a weighting function based on 

chemical markers (MO1) (see section 4.2.9.1). The second strategy, called PCh6, was 

obtained by a weighting function based on PCA decomposition (MO2) (see section 4.2.9.2). 

Optimal distillation runs finished when the heart fraction was collected. The head and heart 

fractions were collected according to the corresponding multi-objective dynamic 

optimization strategy. For w13, the head and heart fractions were 81.6 and 245.4 mL 

respectively (see section 4.3.3). For PCh6, the head and heart fractions were 157.3 and 460.1 

mL respectively (see section 4.3.4). 

4.2.3 Chemical analysis 

The ethanol content of wine and distillation residues were determined by ebulliometry 

(electronic ebulliometer, GAB instruments, Moja-Olèrdola, Spain), wine pH was measured 

with a pH-meter (Crison Basic 20, L’Hospitalet de Llobregat, Spain) and ethanol content of 

distilled samples was measured with an electronic density meter (Anton Paar DSA 5000M, 

Graz, Austria).  

Volatile compounds of wines and distillation residues were extracted in duplicate with 

dichloromethane for further chromatographic analysis, using a methodology adapted from 

Ferreira et al. (Ferreira, López, Escudero, & Cacho, 1998). Thus, 10 mL of wine were added 

to a 12-mL glass tube with 50 µL of the internal standard solution (400 mg/L of 2-octanol, 

Sigma-Aldrich, Saint Louis, USA), 2.5 g of ammonium sulfate (PanReac Química, S.A.U. 
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Castellar del Vallès, Spain) and 0.5 mL of dichloromethane (PanReac Química, S.A.U. 

Castellar del Vallès, Spain). Liquid-liquid extractions were carried out for 1 h in an orbital 

shaker at 110 rpm.  

To perform the analysis of distilled samples, 50 µL of the internal standard solution (400 

mg/L of 2-octanol, Sigma-Aldrich, Saint Louis, USA) were added to 1 mL of distilled sample 

(previously adjusted to an alcoholic strength by volume of 40 % v/v to avoid matrix effects 

during chromatographic analysis). All analyses were performed 21 days after each 

distillation. 

4.2.4 Chromatographic analysis 

Chromatographic analyses were performed using a gas chromatograph equipped with a flame 

ionization detector (GC-FID) (Agilent 6890, Agilent Technologies, Waldbronn, Germany), 

an autosampler (Agilent 7683, Agilent Technologies, Waldbronn, Germany) and a capillary 

polar column (MetaWAX, 60 m length, 0.25 mm ID and 0.5 µm phase thickness) from 

Teknokroma (Barcelona, Spain). Injection (2 µL) was done in split mode (1:5). Injector and 

detector temperatures were 250 °C and 260 °C, respectively. Oven temperature program was: 

40 °C (5 min), 7 °C/min up to 100 °C (15 min), 3 °C/min up to 140 °C and 2 °C/min up to 

200 °C (16 min). Column-head flow was initially set at 0.5 mL/min (28 min) and increased 

with a rate of 5 mL/min2 up to 1.1 mL/min using helium as carrier gas. Quantifications were 

carried out by interpolation of calibration curves built with a synthetic hydro-alcoholic 

solution (40% v/v of ethanol) spiked with the selected compounds at different levels. 

Reagents’ CAS, supplier companies, purity and Kovats retention indices are shown in Table 

S4-1. Detection and quantification limits were determined by signal-to-noise ratios (S/N) of 

3 and 10, respectively. 

4.2.5 Principal component analysis 

Principal component analysis (PCA) (Jolliffe, 2002) was performed with nine Chilean 

commercial piscos (number of observations) and six congeners (number of variables) 

selected for the phenomenological model in section 2.6. The Chilean piscos were analyzed 

using GC-FID (see section 4.2.4). Table S4-2 shows the congener concentrations of the 

commercial piscos. Each variable was standardized according to the maximum concentration 
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observed, and then normalized considering that the measured data follows a normal 

distribution, 

𝑍 =
𝑋 − 𝜇

𝜎
 (4-1) 

where 𝑋 corresponds to the PCA standardized variables, 𝜇 is the mean of the sample of the 

respective variable and 𝜎 is the corresponding standard deviation. The PCA method was 

coded in MATLAB® R2015a using the statistics toolbox. Figure S4-1 shows the PCA results, 

where the congeners were distributed in three quadrants; (i) acetaldehyde and hexanoic acid, 

(ii) ethyl acetate, methanol and 𝛽-phenylethanol, and (iii) linalool. 

4.2.6 Modeling 

The original ternary model of the alembic, developed by Luna et al. (2018), was expanded 

to include five new congeners characteristic of the different distillation cuts: 

i) Head cut: acetaldehyde and ethyl acetate provide negative impact aromas in the final 

product; to reduce the content of these compounds in the heart cut, they should be recovered 

as much as possible in the head cut (Christoph & Bauer-Christoph, 2007). 

ii) Heart cut: linalool is a terpenic compound characteristic of young Muscat wine distillates; 

it provides a desirable flowery note (Christoph & Bauer-Christoph, 2007). 

iii) Tail cut: hexanoic acid provides a rancid aroma and is considered a defect in young spirits; 

𝛽-phenylethanol, although provides a positive rose aroma, it is a an odor marker of tail 

compounds (Christoph & Bauer-Christoph, 2007). 

In addition, PCA equations of these congeners in Chilean commercial piscos were added to 

the DAE system (see section 4.2.5). Then, the two principal components where compared 

between the congener simulations from the heart cut and the commercial Chilean pisco´s 

data. 

4.2.7 Model calibration 

The data obtained in the constant heat rate distillations with synthetic wine (see Section 4.2.2) 

were used to calibrate the dynamic alembic model. The fitting parameters were: 
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𝜃 = [𝑈𝐴𝑏 , 𝑈𝐴𝑐, 𝑀0, 𝑥0, 𝑥0,𝑐𝑜𝑛𝑔] (4-2) 

 

Where 𝑈𝐴𝑏 and 𝑈𝐴𝑐 represent the global heat transfer coefficient multiplied by the 

corresponding heat transfer area in the boiler and head, respectively. 𝑀0, 𝑥0 and 𝑥0,𝑐𝑜𝑛𝑔 are 

the initial total moles, ethanol molar fraction and congeners molar fraction in the boiler just 

when the first drop of distillate is recovered. The calibration cost function was: 

𝐽(𝜃) = ∑ ∑ (
𝑦̂𝑖𝑗(𝑢, 𝜃, 𝑡) − 𝑦𝑖𝑗(𝑢, 𝑡)

max(𝑦𝑖𝑗)
)

2𝑛𝑜𝑏𝑠

𝑖=1

𝑛𝑣𝑎𝑟

𝑗

 (4-3) 

 

where index 𝑗 represents the measured variables and index 𝑖 the samples times. The measured 

variables were: distilled volume 𝑉, head temperature 𝑇𝑐, alcoholic strength 𝐺𝐴 and relative 

congener concentration (𝑁𝑐𝑜𝑛𝑔 = 1 … 6). max(𝑦𝑖𝑗) corresponds to the maximum measured 

value of variable 𝑗 during the distillation run. The optimization problem was solved within 

MATLAB® R2015a with a scatter search metaheuristic code (SSM) (Egea et al., 2007). 

The average concentration of the distillate stream leaving the system at the corresponding 

time interval where the sample was collected is given by: 

𝐺𝐴𝑖 =
Δ𝐺𝐴

Δ𝑉
= (

𝑀𝐷
𝑒(𝑡𝑒𝑥𝑝,𝑖) − 𝑀𝐷

𝑒(𝑡𝑒𝑥𝑝,𝑖−1) 

𝑉(𝑡𝑒𝑥𝑝,𝑖) − 𝑉(𝑡𝑒𝑥𝑝,𝑖−1)
) ⋅ 𝑃𝑀𝐸 ⋅

1

𝜌
𝑒

⋅ 100 (4-4) 

 

𝐶𝑐𝑜𝑛𝑔,𝑖 =
ΔC𝑐𝑜𝑛𝑔

Δ𝑉
= (

𝑀𝐷,𝑐𝑜𝑛𝑔(𝑡𝑒𝑥𝑝,𝑖) −𝑀𝐷,𝑐𝑜𝑛𝑔 (𝑡𝑒𝑥𝑝,𝑖−1) 

(𝑉(𝑡𝑒𝑥𝑝,𝑖) − 𝑉(𝑡𝑒𝑥𝑝,𝑖−1)) ⋅ (𝐺𝐴𝑖/100)
) ⋅ 𝑀𝑊𝑐𝑜𝑛𝑔 ⋅ 1000 (4-5) 

 

where 𝐺𝐴𝑖 and 𝐶𝑐𝑜𝑛𝑔,𝑖 are the average alcoholic strength and average relative congener 

concentration in each collected sample, respectively. 

4.2.8 Random simulation design 

To explore the model reachable space, several simulations were carried out varying input 

variables (heat input and cut volumes) with uniformly distributed random values. 
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Specifically, we searched for operating conditions that yield distillates (in the PCA map) like 

Chilean commercial piscos. Three cases were assessed: (i) random heating power path and 

fixed head and heart cuts, (ii) fixed heating power path and random head and heart cuts, (iii) 

random heating power path and random head and heart cuts. The heating power path was 

discretized in 19 time steps in both the head cut and heart cut. In each case, one hundred 

simulations were carried out; the heating power path values varied between 250 and 450 W, 

𝑈𝐴𝑏 and 𝑈𝐴𝑐 parameters were assumed like a linear function between the heating power 

(250W and 450W) and their estimate values (see section 4.3.1), the head volume varied 

between 75 and 230 mL, and the heart volume varied between 270 and 630 mL. Simulated 

congener composition in the heart cut (model output) defined the two principal components 

and these were compared with the commercial distillate in the PCA map. 

4.2.9 Multi-objective dynamic optimization  

In chemical engineering, multi-objective optimization problems are commonly encountered 

when several conflicting objectives should be simultaneously satisfied (Bonilla-Petriciolet & 

Rangaiah, 2013; Sharma & Rangaiah, 2013). Thus, a set of several optimal solutions can be 

obtained; this is called the Pareto set (Bhaskar et al., 2000). Even though there are many 

efficient methods to obtain the Pareto set, in our work we used the simple weighting method 

(Miettinen & Hakanen, 2009). We defined two cost functions: one based on three chemical 

markers (one for each distillation cut) and another based on PCA decomposition. 

4.2.9.1 Multi-objective weighting function based on chemical markers 

A multi-objective cost function was defined to get a heart composition that compromise 

conflicting criteria, i.e., low head compounds, high heart compounds and low tail 

compounds. Three chemical markers define the distillation cuts: acetaldehyde for head cut, 

linalool for heart cut and 𝛽-phenylethanol for tail cut. Hence, the multi-objective cost 

function was specified in terms of these chemical markers, i.e., minimize acetaldehyde, 

maximize linalool and minimize 𝛽-phenylethanol: 

 

𝑀𝑖𝑛 𝐽1 = 𝛼 ⋅
𝐶𝑎𝑐𝑒𝑡(𝑡𝑓)

150
− 𝛽

𝐶𝑙𝑖𝑛(𝑡𝑓)

2
+ 𝛾

𝐶𝛽−𝑓𝑒𝑂𝐻(𝑡𝑓)

20
 (4-6) 
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𝛼 + 𝛽 + 𝛾 = 1 

0 < 𝛼 < 1 

0 < 𝛽 < 1 

0 < 𝛾 < 1 

where, 𝛼 (positive to minimize acetaldehyde), −𝛽 (negative to maximize linalool) and 𝛾 

(positive to minimize 𝛽-phenylethanol) are the relative weights of each objective. 𝐶𝑎𝑐𝑒𝑡, 𝐶𝑙𝑖𝑛 

and 𝐶𝛽−𝑓𝑒𝑂𝐻 are the relative congener concentration in g/hL.a.a. for acetaldehyde, linalool 

and 𝛽-phenylethanol respectively. All objectives were scaled by their maximum values: 

acetaldehyde maximum concentration in spirits allowed in the Chilean law (Biblioteca del 

Congreso Nacional de Chile & Ministerio de Agricultura, 2012), linalool mean maximum 

concentration observed by Matias-Guiu et al. (2018) in Muscat wine distillations and 𝛽-

phenylethanol mean maximum concentration observed by Bordiga et al. (2013) in Muscat 

wines. Six levels for each weight were defined (𝛼, 𝛽, 𝛾 = [0, 0.2, 0.4, 0.6, 0.8, 1]); all 

combinations where the sum of the weights was one were tried, resulting in 21 optimization 

problems. Each of them was run at least twice to ensure we find the global minimum. 

4.2.9.2 Multi-objective weighting function based on PCA decomposition 

In this case, the aim was to reproduce the chemical profile of different Chilean commercial 

piscos, using two principal components; hence, 

𝑀𝑖𝑛 𝐽2 = (𝑃𝐶𝐴1 − 𝑃𝐶𝐴1,𝑡𝑎𝑟𝑔𝑒𝑡)
2
+ (𝑃𝐶𝐴2 − 𝑃𝐶𝐴2,𝑡𝑎𝑟𝑔𝑒𝑡)

2
 (4-7) 

  

where 𝑃𝐶𝐴1 and 𝑃𝐶𝐴2 are the principal components of the chemical profiles obtained from 

the simulation of the distillation. 𝑃𝐶𝐴1,𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑃𝐶𝐴2,𝑡𝑎𝑟𝑔𝑒𝑡 are the principal components 

of the chemical profile of the target piscos. Five targets (Chilean commercial piscos) were 

arbitrarily defined: PCh3, PCh4, PCh5, PCh6 and PCh8. According to the exploratory 

simulations, some of them were within the reachable space of the simulated distillation 

system and others were unreachable. 
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4.2.9.3 Multi-objective dynamic optimization formulation 

The optimization variables were the heating power, the volume of the head cut and the 

volume of the heart cut. Additional optimization constraints were: (i) heating power varied 

between 250 and 450 W, (ii) volume head cut between 40 and 150 mL, (iii) volume heart cut 

between 200 and 500 mL and finally, (iv) ethanol recovery in the heart cut must be higher 

than 35%. Like random exploratory simulations (see section 4.2.8), 𝑈𝐴𝑏 and 𝑈𝐴𝑐 parameters 

were assumed a linear function with the heating power.   

The numerical method applied to solve the optimization problem was the sequential solution 

(Srinivasan et al., 2003). The heat input was discretized into equally spaced time intervals: 

𝑢(Δ𝑡𝑖) = 𝑎𝑖 (4-8) 

 

where index 𝑖 represents the n-th time intervals and 𝑎𝑖 represents the value of the heat input 

𝑢 in the i-th time interval. Random exploratory simulations were carried out discretizing the 

heating power path in 19, 9 and 4 time steps in the head and heart cuts. 

Figure S4-2 indicates that the number of time steps size does not have a significant impact in 

the aromatic composition of the heart cut. In each simulation case, the results showed similar 

dispersion and location in the PCA map. Therefore, the head cut was discretized into three 
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time steps, while the heart cut was discretized into six time steps. The optimization problem 

was solved within MATLAB® R2015a with a scatter search metaheuristic code (SSM) and 

the dynamic model of the alembic was solved with MATLAB’s solver ode15s. The 

simultaneous approach was not applied since we experienced convergence difficulties with 

our optimization problem. 

4.3 Results 

4.3.1 Model calibration 

Figure S4-3 and Figure S4-4 show measured values and model outputs of ethanol content, 

head temperature, distillate volume and congener composition in the distillate of the three 

replicates of the fast heating rate distillation (450 W). In turn, Figure S4-5 and Figure S4-6 

show the fitted variables for the slow heating rate distillation (250 W). The 95% confidence 

intervals shown in the figures were obtained by simulation, considering the standard 

deviation in the estimated parameters set (𝜃 ± 2𝜎𝜃). Table 4-2 shows the fitted parameters 

for the slow and fast heating power. 



89 

 

 

 

Table 4-2. Fitted parameters for distillation strategies. 

Parameters Strategies 

250W 450W PCh6 W13 

𝑈𝐴𝑏 0.82 ± 0.04 0.71 ± 0.10 b b 

𝑈𝐴𝑐 1.28 ± 0.05 1.73 ± 0.17 c c 

𝑀0 93.5 ± 0.3 93.6 ± 0.3 93.3 ± 0.4 93.3 ± 0.2 

𝑥0 0.033 ± 0.0002 0.033 ± 0.0003 0.033 ± 0.0001 0.030 ± 0.0004 

𝑥0,𝑐𝑜𝑛𝑔=1 2.37e-5 ± 0.30e-5 2.55e-5 ± 0.17e-5 3.04e-5 ± 0.33e-5 2.45e-5 ± 0.30e-5 

𝑥0,𝑐𝑜𝑛𝑔=2 3.18e-5 ± 0.10e-5 3.60e-5 ± 0.096e-5 4.91e-5 ± 0.14e-5 4.33e-5 ± 0.11e-5 

𝑥0,𝑐𝑜𝑛𝑔=3 2.95e-6 ± 0.37e-6 3.18e-06 ± 0.17e-6 3.83e-6 ± 0.54e-6 2.92e-6 ± 0.87e-6 

𝑥0,𝑐𝑜𝑛𝑔=4 5.78e-8 ± 0.24e-8 6.33e-08 ± 0.38e-8 4.10e-8 ± 0.50e-8 3.41e-8 ± 0.53e-8 

𝑥0,𝑐𝑜𝑛𝑔=5 1.33e-6 ± 0.001e-6 1.33e-06 ± 0.01e-6 1.33e-6 ± 0.003e-6 1.32e-6 ± 0.02e-6 

𝑥0,𝑐𝑜𝑛𝑔=6 2.43e-6 ± 0.021e-6 2.92e-06 ± 0.12e-6 3.17e-6 ± 0.10e-6 2.30e-6 ± 0.08e-6 

a Parameters unit: 𝑈𝐴𝑏 and 𝑈𝐴𝑐 in W/°C, 𝑀0 in mol, 𝑥0 and 𝑥0,𝑐𝑜𝑛𝑔 in mol/mol. 

b, c linear function between 𝑈𝐴𝑏 and 𝑈𝐴𝑐 values obtained from 250 and 450W respectively. 
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Both distillation strategies (250 W and 450 W) yielded similar shapes of the evolution curves 

over time for all compounds. Initial and final values were similar for ethanol, acetaldehyde, 

ethyl acetate and linalool. Distillations at 450 W evolved faster and were completed in a bit 

more than 60 minutes. Distillations at 250 W evolved slower and were completed in 160 min. 

In line with what was observed by Matias-Guiu et al. (2018), our experiments and 

simulations showed higher concentrations of tail compounds in the longer distillations (250 

W strategy); 300 vs 180 g/hLa.a. of methanol, 85 vs 25 g/hLa.a. of hexanoic acid and 400 vs 

140 g/hLa.a. of 𝛽-phenylethanol. Model fitting was in most cases better for the high heating 

rate distillation than for the low heating rate distillation. Luna et al. (2018) had reported 

similar behavior with the same system but with a simpler mixture, arguing that the higher 

process time required by the slow distillation made measurements more prone to 

disturbances. The alcoholic strength and the distilled volume were the best fitted variables in 

both distillation strategies, as observed by Luna et al. (2018).  

Head compounds like acetaldehyde and ethyl acetate were predicted well in the head and 

heart fraction, but in the tail fraction the predictions worsened. Model predictions of 

acetaldehyde and ethyl acetate were zero in the tail fraction, while measurements showed 

increasing values. By the end of the distillation, acetaldehyde and ethyl acetate 

concentrations showed a slower decline than ethanol. Therefore, its relative concentrations 

are extremely sensitive to ethanol and their measured values in the tail fraction increased. 

The heart compound linalool was predicted well in all cuts (head, heart and tail) in both fast 

and slow heating rate distillations. Methanol was predicted well in both strategies in all cuts, 

especially in the tail cut. Moreover, its predictions were even better than those observed by 

Luna et al. (2018), since in this work we used a better analytical method. Model predictions 

of hexanoic acid during the heart cut were below the experimental values in both distillations. 

Finally, in both strategies and all cuts, 𝛽-phenylethanol measurements were within the 

confidence interval of the model predictions. 

Congeners such as acetaldehyde, ethyl acetate and methanol were simulated and validated 

for Charentais alembic distillations of pear wine in Sacher et al. (2013) and Sacher et al. 

(2017). These compounds were predicted well and showed the same trend observed in our 

results. However, 𝛽-phenylethanol was not predicted well in their simulations. According to 
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the simulations of Sacher et al. (2017), this compound distilled mainly in the heart fraction, 

while in our simulations 𝛽-phenylethanol distilled mainly in the tail cut. Sacher et al. (2013) 

distilled a pear distillate with 17.9% v/v of ethanol obtained from a previous distillation, 

whereas our experiments distilled a synthetic wine with 11.4% v/v of ethanol. In addition, 

initial concentrations of 𝛽-phenyethanol in our experiments were 5 times higher than in 

Sacher et al. (2013). 

Table 4-2 shows that for both strategies the estimated heat transfer parameter of the boiler 

was practically the same. The heat transfer parameter of the boiler was less dependent on the 

heating power in our case, since the heating element is inside the boiler (Luna et al., 2018). 

In turn, the heat transfer parameter of the head increased with the heating power and was 

higher than the heat transfer parameter of the boiler. This behavior was also observed by 

Luna et al. (2018) and Sacher et al. (2013), arguing that high heating powers induce higher 

convective air streams, increasing the heat transfer in the head.  

4.3.2 Random exploratory conditions 

Figure 4-1 shows the results obtained for three simulation cases: (i) random heating power 

path and fixed cuts, (ii) fixed heating power path and random cuts, (iii) random heating power 

path and random cuts. These results indicate that cut volumes have a higher influence on the 

aromatic composition of the distillate (PCA map) than heating power policies. The model 

could not reproduce some distillates like PCh1, PCh2, PCh4, PCh7 and PCh9. This zone in 

the PCA map, which is rich in linalool and poor in acetaldehyde, is unreachable with our 

simulations since:  

i) The initial concentration of linalool of our synthetic wine is lower than that of some Muscat 

wines.  

ii) Our model did not consider chemical reactions, in particular the hydrolysis of bounded 

aromas that occurred during the distillation of Muscat wines (Agosin et al., 2000). 

iii) Commercial distillates were produced using plate column stills with higher rectification 

capacity than Charentais alembics. 

iv) Some of these commercial distillates were obtained by double or triple distillation and 

our simulations considered a single distillation. 
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Figure 4-1. PCA map in two principal components: Simulations with random heating power 

path and random head and heart cuts (▲). Simulations with random heating power path and 

fixed head and heart cuts (×). Simulations with fixed heating power path and random head 

and heart cuts (+). Blue points correspond to the commercial piscos. 

4.3.3 Multi-objective weighting function based on chemical markers (MO1) and 

experimental validation 

Table 4-3 shows the MO1 optimization results for all weight combinations, including head 

and heart volumes, ethanol recovery in the heart cut, relative concentrations (g/hLa.a.) of 

acetaldehyde, linalool and 𝛽-phenylethanol as well as 𝑃𝐶𝐴1 and 𝑃𝐶𝐴2 coordinates. During 

the distillation process, acetaldehyde and linalool are highly volatile and appear in the first 

fractions of the distillate. Nevertheless, acetaldehyde should be distilled as much as possible 

in first fraction and linalool should not be lost in the head cut but instead recovered in the 

heart cut. Our results in Table 4-3 indicate that acetaldehyde concentration (0.70 g/hLa.a.) is 

minimized when 𝛼 take on the highest value (run w1); the head and heart cuts were the largest 

(248.7 and 483.6 mL respectively).  Other objectives took on undesirable values; ethanol 

recovery in the heart fraction (35.2%) was the smallest, linalool concentration was minimum 

(0.061 g/hL.a.a.) and 𝛽-phenylethanol concentration was maximum (43.92 g/hLa.a.). 

Maximum linalool concentrations (0.930 g/hL.a.a.) were obtained for  = 0.
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Table 4-3. Results obtained of multi-objective weighting function base on chemical markers in heart cut. 

Run 𝛼 𝛽 𝛾 𝐽1 

Volume 

head 

(mL) 

Volume 

heart 

(mL) 

Ethanol 

recovery 

(%) 

𝐶𝑎𝑐𝑒𝑡 𝐶𝑙𝑖𝑛 𝐶𝛽−𝑓𝑒𝑂𝐻 𝑃𝐶𝐴1 𝑃𝐶𝐴2 

        g/hLa.a. OAVa g/hLa.a. OAVa g/hLa.a. OAVa   

w1 1 0 0 2.170 248.7 483.6 35.2 0.70 0.03 0.061 0.24 43.92 8.78 6.7149 -0.5228 

w2 0.8 0.2 0 2.094 249.7 456.9 35.2 0.74 0.03 0.063 0.25 42.41 8.48 6.1376 -0.5987 

w7 0.8 0 0.2 0.916 188.7 241.3 40.3 3.51 0.14 0.163 0.65 19.48 3.90 -0.7045 0.3436 

w3 0.6 0.4 0 0.788 168.6 241.4 44.4 6.64 0.27 0.232 0.93 17.21 3.44 -1.3241 0.7099 

w12 0.6 0 0.4 0.630 129.7 236.0 49.4 14.89 0.60 0.360 1.44 14.23 2.85 -1.9130 1.5723 

w8 0.6 0.2 0.2 0.634 131.6 237.8 49.3 15.08 0.60 0.363 1.45 14.29 2.86 -1.8765 1.5895 

w9 0.4 0.4 0.2 0.586 101.5 252.9 55.3 27.94 1.12 0.492 1.97 12.91 2.58 -1.5663 2.6575 

w16 0.4 0 0.6 0.525 99.3 217.5 50.6 28.21 1.13 0.514 2.05 11.88 2.38 -1.9286 2.7492 

w13 0.4 0.2 0.4 0.555 81.6 245.4 57.5 39.85 1.59 0.590 2.36 11.70 2.34 -1.0991 3.5516 

w4 0.4 0.6 0 0.545 80.8 239.2 56.4 41.14 1.65 0.605 2.42 11.47 2.29 -1.0835 3.6643 

w19 0.2 0 0.8 0.545 57.8 206.8 53.9 71.60 2.86 0.825 3.30 9.60 1.92 0.9272 5.6770 

w17 0.2 0.2 0.6 0.556 55.0 206.2 54.1 76.39 3.06 0.852 3.41 9.47 1.89 1.3679 5.9496 

w5 0.2 0.8 0 0.601 46.8 205.4 54.7 91.46 3.66 0.930 3.72 9.12 1.82 2.8929 6.7393 

w6 0 1 0 0.601 46.8 205.4 54.7 91.46 3.66 0.930 3.72 9.12 1.82 2.8929 6.7393 

w10 0.2 0.6 0.2 0.601 46.8 205.4 54.7 91.46 3.66 0.930 3.72 9.12 1.82 2.8929 6.7393 

w11 0 0.8 0.2 0.601 46.8 205.4 54.7 91.46 3.66 0.930 3.72 9.12 1.82 2.8929 6.7393 

w14 0.2 0.4 0.4 0.601 46.8 205.4 54.7 91.46 3.66 0.930 3.72 9.12 1.82 2.8929 6.7393 

w15 0 0.6 0.4 0.601 46.8 205.4 54.7 91.46 3.66 0.930 3.72 9.12 1.82 2.8929 6.7393 

w18 0 0.4 0.6 0.601 46.8 205.4 54.7 91.46 3.66 0.930 3.72 9.12 1.82 2.8929 6.7393 

w20 0 0.2 0.8 0.601 46.8 205.4 54.7 91.46 3.66 0.930 3.72 9.12 1.82 2.8929 6.7393 

w21 0 0 1 0.601 46.8 205.4 54.7 91.46 3.66 0.930 3.72 9.12 1.82 2.8929 6.7393 
a Odor activity value expressed in units of aroma (u.a.) were calculated by dividing the congeners concentrations in g/hLa.a. of this table 

by respective odor threshold in Table 4-1. 
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In these cases, the head and heart volume cuts were the smallest (205.4 and 46.8 mL 

respectively), ethanol recovery in the heart fraction was the largest (54.7%), acetaldehyde 

was maximized (91.46 g/hLa.a.) and 𝛽-phenylethanol was minimized (9.12 g/hLa.a.). Hence, 

maximum linalool concentrations in the heart coincide with maximum acetaldehyde 

concentrations, evidencing a clear trade off that must be solved. In turn, 𝛽-phenylethanol is 

less volatile and appears mainly in the last fraction of the distillate (Figure S4-4 and Figure 

S4-6) and should not be distilled in the heart fraction. Consequently, to minimize 𝛽-

phenylethanol in the heart, the head and heart cuts should be the shortest. Therefore, linalool 

and 𝛽-phenylethanol are harmonic objectives, i.e., achieving an improvement in one 

objective will also lead to an improvement in the other (Weise, 2008). Thus, it is convenient 

to define the multi-objective cost function with only two objectives (chemical markers): 

acetaldehyde and linalool or acetaldehyde and 𝛽-phenylethanol, i.e., the head marker with 

the heart marker or the head marker with the tail marker (see Table S4-3). 

Matias-Guiu et al. (2018) reported the same behavior in a packed column still. Large head 

volumes favored the extraction of ethanol, head compounds (like acetaldehyde) and linalool 

in the head-cut, consequently reducing their levels in the heart-cut, while increased tail 

compounds (like 𝛽-phenylethanol) in the heart-cut. They also observed that large heart 

volumes favored high levels of tail compounds in the heart-cut. 

The w13 optimal simulation was chosen to validate the alembic model. Figure S4-7 shows 

the tracking of the optimal set-point in the head temperature, the evolution of the heating 

power and the room temperature of these distillations. The measured head temperature had 

practically the same evolution in all runs despite different evolutions of the environmental 

temperature. Run 1 showed greater differences when compared to run 2 and 3. Small 

variations in the manipulated variable efficiently compensated these disturbances, like the 

alembic distillation system in Luna et al. (2018). Figure S4-8 and Figure S4-9 compare 

simulations with experimental values of the w13 strategy. This strategy was completed in 45 

min (including head and heart cuts). Alcoholic strength, head temperature and distillate 

volume were predicted well. Acetaldehyde, methanol, ethyl acetate, linalool and 𝛽-

phenylethanol predictions were inside the confidence intervals in the head and heart fractions. 
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Model predictions of hexanoic acid during the head and heart cuts were below the 

experimental values. The results of the calibration distillations showed a similar behavior. 

4.3.4 Multi-objective weighting function based PCA decomposition (MO2) and 

experimental validation 

Table 4-4 shows the MO2 optimization results, including 𝑃𝐶𝐴1 and 𝑃𝐶𝐴2 optimal 

coordinates, 𝑃𝐶𝐴1 and 𝑃𝐶𝐴2 target coordinates, as well as the head and heart cut volumes, 

ethanol recovery and relative concentrations of acetaldehyde, linalool and 𝛽-phenylethanol 

of the heart fraction. Figure 4-2 shows the optimal values of the congeners in the PCA map 

for each optimization case including both methods: the multi-objective weighting function 

based on PCA decomposition (see Table 4-4) and the multi-objective weighting function 

based on chemical markers (see Table 4-3). 

 

Figure 4-2. PCA map in two principal components: distillate target optimal points by MO2 

and weight optimal points by MO1 (black points), and Chilean commercial piscos (blue 

points).  
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Table 4-4. Results obtained of multi-objective weighting function base don PCA decomposition. 

Target of multi-

objective 

optimization 

Simulated Target 

Volume 

head 

(mL) 

Volume 

heart 

(mL) 

Ethanol 

recovery 

(%) 

𝐶𝑎𝑐𝑒𝑡 𝐶𝑙𝑖𝑛 𝐶𝛽−𝑓𝑒𝑂𝐻 𝑃𝐶𝐴1 𝑃𝐶𝐴2 𝑃𝐶𝐴1 𝑃𝐶𝐴2 

g/hLa.a. OAVa g/hLa.a. OAVa g/hLa.a. OAVa 

Optimal PCh3 143.2 449.8 58.9 9.66 0.39 0.260 1.04 25.1 5.02 1.0323 0.6233 0.9866 0.5643 

Optimal PCh4 200.0 220.8 38.2 3.22 0.13 0.157 0.63 19.1 3.82 -0.8552 0.2964 -1.0124 -0.1676 

Optimal PCh5 127.9 408.2 60.3 11.3 0.45 0.284 1.14 21.7 4.34 0.1665 0.9292 0.1375 0.9409 

Optimal PCh6 157.3 460.1 55.1 6.53 0.26 0.212 0.85 27.8 5.56 1.6856 0.2637 1.6299 0.1998 

Optimal PCh8 95.4 424.8 70.2 27.7 1.11 0.442 1.77 18.8 3.76 0.2802 2.2689 0.1664 2.2484 
a Odor activity value expressed in units of aroma (u.a.) were calculated by dividing the congeners concentrations in g/hLa.a. of this table 

by respective odor threshold in Table 4-1
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The MO2 strategy achieved good approximations to commercial distillates PCh3, PCh5, 

PCh6 and PCh8, which were shown previously to be in the reachable space of the alembic´s 

model (see Figure 4-1). However, the PCh4 distillate was the hardest to reproduce via 

simulations since this zone of the PCA map is rich in linalool and poor in acetaldehyde. In 

addition, as discussed above, when linalool is maximized (desirable value) acetaldehyde is 

also maximized (undesirable value), as they are competing objectives. Thus, our simulation 

of the PCh4 distillate required a high rectification, yielding a low productivity, with higher 

ethanol recovery in the head-cut (53.8%) than in the heart-cut (38.2%). 

The heating power paths were very different in each evaluated case. Figure 4-3 shows the 

optimum trajectories of the heating power, the head temperature and the alcoholic strength 

obtained for optimal cases PCh6 and PCh8. PCh4 strategy yielded the fastest distillation 

coinciding with the lowest amount of tail compounds (64.4 of methanol, 0.292 of hexanoic 

acid and 0.443 of 𝛽-phenylethanol in g/hLa.a.) as shown in Table S4-2. Conversely, strategy 

PCh6 yielded the largest heart volume (460.1 mL) and longest distillation, coinciding with a 

higher amount of tail compounds (82.8 of methanol, 0.774 of hexanoic acid and 1.91 𝛽-

phenylethanol in g/hLa.a.) as shown in Table S4-2. In addition, strategy PCh8 yielded the 

smallest head-cut (95.4 mL), the highest ethanol recovery in the heart-cut (70.2%) and the 

highest acetaldehyde concentration (25.5 g/hLa.a.), which is 65-80% more than PCh3, PCh5 

and PCh6 (Table S4-2). 

Finally, the optimal PCh6 strategy was carried out experimentally to validate the alembic 

model. Figure 4-4 shows how the heating power was adapted to track the optimal set-point 

despite the room temperature disturbances. This distillation lasted 80 min and was more 

reproducible than the w13 distillation. Figure 4-5 and Figure 4-6 show that alcohol strength, 

distillate volume, head temperature and most congeners were well predicted. Only hexanoic 

acid predictions were biased, like in the calibration experiments (250 W and 450 W 

strategies); in this case the thermodynamic model used is probably unsuitable. 
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Figure 4-3. Heating power, head temperature and alcoholic strength vs time. PCh6 strategy 

(a), PCh8 strategy (b), head fraction (HD) and heart fraction (HT). Heating power (−.), head 

temperature (−) and alcoholic strength (:). 

 

Figure 4-4. Experimental PCh6 optimal strategy in triplicate. Top figure: head temperature 

set point (sky blue solid line), measured temperatures; run 1 (black dotted lines), run 2 (gray 

dotted lines) and run 3 (red dotted lines). Bottom Figures: heating power path and room 

temperature; run 1 (black solid line), run 2 (gray solid line) and run 3 (red solid line). 
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Figure 4-5. Alcoholic strength (%v/v), head temperature and distillate volume vs time for an 

optimal PCh6 strategy. Experimental data; run 1 (×), run 2 (Δ) and run 3 (○). Simulation (−) 

and confidence interval (−−). 

 

Figure 4-6. Congeners concentrations (g/hL.a.a.) vs time for an optimal PCh6 strategy. 

Experimental data; run 1 (×), run 2 (Δ) and run 3 (○). Simulation (−) and confidence interval 

(−−). 



100 

 

 

 

4.3.5 Comparison of multi-objective function MO1 and MO2 

Figure 4-7 shows the Pareto front (acetaldehyde vs linalool) according to the MO1 results 

(see section 4.3.3). The upper part of the Pareto front corresponds to optimization runs with 

𝛽 and 𝛾 values higher than 𝛼. In these distillations, the heating power was kept constant at 

the lower limit (250 W). The lower part of the Pareto front corresponds to optimization runs 

with 𝛼 values higher than 𝛽 and 𝛾.  

 

Figure 4-7. Pareto front: relative acetaldehyde concentration vs relative linalool 

concentration; weight optimal points by MO1 (black triangles), distilled target optimal points 

by MO2 (red squares) and Chilean commercial distillates (blue circles). Note that the 

concentrations of linalool are plotted with negative values to preserve the usual shape of 

Pareto front figures. 

Figure 4-7 also includes the MO2 results, showing that many principal component 

optimization strategies (opt PCh3, opt PCh4, opt PCh5 and opt PCh6) lie close to the lower 

part of the Pareto front, defined by high values of 𝛼. Moreover, many of the commercial 

piscos analyzed (PCh2, PCh3, PCh5, PCh6, PCh7 and PCh8) lie in this zone. For example, 

commercial pisco PCh7 lies in the Pareto front and contains practically the same linalool and 

acetaldehyde concentrations as the w7 optimal solution from MO1 and PCh4 optimal 

solution of MO2. Contrarily, PCh1, PCh4 and PCh9 commercial piscos lie well below the 
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Pareto front. These results indicate that many commercial distillates coincided with optimal 

strategies in the Pareto front, meaning that the skills and years of experience of the pisco 

distillers were able to reach optimal distilling conditions. 

Validation experiments of w13 and PCh6 strategies confirmed that maximizing linalool 

concentrations implies minimizing 𝛽-phenylethanol concentrations (harmonic objectives) 

and minimizing acetaldehyde concentrations (competitive objectives) in the heart cut. A fast 

distillation strategy like w13 obtained high concentrations of linalool and head compounds 

like acetaldehyde and ethyl acetate, and low concentrations of tail compounds such as 

methanol and 𝛽-phenylethanol (see Table S4-3). Conversely, slow distillations like PCh6, 

yielded low concentrations of acetaldehyde and linalool, and high concentrations of tail 

compounds (see Table S4-4). 

Both validation experiments lie far from the Pareto front, while the corresponding 

simulations locate exactly in the Pareto front (Figure S4-10). In both experimental cases, 

more acetaldehyde and less linalool than predicted were obtained, although PCh6 simulations 

were closer to measured values than w13 predictions. Predictions of the rest of the congeners 

were also biased, safe for methanol predictions that were quite accurate.  Experiments w13 

and PCh6 were recalibrated to verify if the model could fit the observations better; calibrated 

parameters are shown in Table S4-5. 𝑈𝐴𝑏 and 𝑈𝐴𝑐 parameters showed the most significant 

differences with those calibrated in section 4.3.1. These new parameters were smaller than 

those calibrated originally, since environmental temperatures and distillation times were 

different than those of the calibration experiments. The new simulations (w13 cal and PCh6 

cal) lie in the Pareto front close to the original simulations and were not able to fit the 

measured values better (Figure S4-10). Therefore, a better model relating the heating power 

and the heat transfer parameters should be developed to improve the predictive ability of the 

alembic model under varying heating power operation. 

MO1 optimizations yielded a wider range of solutions than MO2, although the latter 

approach was more suitable to attain defined targets. In addition, MO2 contains more 

information regarding the aromatic composition of the distillates and this procedure can be 

expanded easily to many more components. 
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4.4 Conclusions 

Two multi-objective functions were applied in the dynamic optimization of batch distillations 

in alembics. Optimal strategies were found as a function of chemical markers. In Multi-

objective weighting functions based on chemical markers (MO1), minimization of head cut 

markers such as acetaldehyde or ethyl acetate (off flavors) conflict with maximization of 

heart cut makers such as linalool and with the minimization of tail cut markers such as 

hexanoic acid or 𝛽-phenylethanol.  Since the maximization of heart cut makers is harmonic 

with the minimization of tail cut markers, only two objectives were necessary to define the 

Pareto front of the MO1 optimization approach. This optimization approach allowed to 

explore the alembic reachable space better, although simulations were not able to predict well 

the measured values. Multi-objective optimization based on PCA decomposition (MO2) used 

all the chemical composition available and allows to attain a defined target easily if that target 

is reachable by the alembic. Moreover, MO2 simulations were closer to measured values. 

Some commercial distillates lied closed to the Pareto front; hence, distillers, by skill and 

experience, were able to produce near optimal distillates. 

4.5 Appendix A. Congeners Modeling 

This model is complementary to binary model of ethanol-water available in appendix of Luna 

et al. (2018). According to model in Sacher et al. (2013), given the pseudo binary assumption, 

i.e., very low concentrations of the congeners, it is assumed that they do not influence the 

equilibrium temperature, enthalpy and physical property of the mixture. Each congener is 

added to the model through the respective mass balance. 

Boiler component balance 

𝑑(𝑀𝐵 ⋅ 𝑥𝐵,𝑐𝑜𝑛𝑔)

𝑑𝑡
= 𝐿 ⋅ 𝑥𝐿,𝑐𝑜𝑛𝑔 − 𝑉𝐵 ⋅ 𝑦𝐵,𝑐𝑜𝑛𝑔 

(A.4-1) 

 

Partial condenser component balance 

𝑉𝐵 ∙ 𝑦𝐵,𝑐𝑜𝑛𝑔 − 𝐿 ∙ 𝑥𝐿,𝑐𝑜𝑛𝑔 − 𝑉𝐷 ∙ 𝑦𝐷,𝑐𝑜𝑛𝑔 = 0 (A.4-2) 
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Distillate component balance 

𝑑𝑀𝑐𝑜𝑛𝑔

𝑑𝑡
= 𝑦𝐷,𝑐𝑜𝑛𝑔 ⋅ 𝑉𝐷 

(A.4-3) 

 

Thermodynamic equilibrium relationships of congeners  

𝑦𝐷,𝑐𝑜𝑛𝑔 = 𝐾𝐶,𝑐𝑜𝑛𝑔 ⋅ 𝑥𝐿,𝑐𝑜𝑛𝑔 (A.4-4) 

 

𝑦𝐵,𝑐𝑜𝑛𝑔 = 𝐾𝐵,𝑐𝑜𝑛𝑔 ⋅ 𝑥𝐵,𝑐𝑜𝑛𝑔 (A.4-5) 

 

𝑥𝐿,𝑐𝑜𝑛𝑔 =
𝑉𝐵𝐾𝐵,𝑐𝑜𝑛𝑔𝑥𝐵,𝑐𝑜𝑛𝑔

𝐿 + 𝑉𝐷𝐾𝐶,𝑐𝑜𝑛𝑔
 (A.4-6) 

 

Congener equilibrium relationship 

The equilibrium constant is calculated by the extended Raoult’s law 

𝑦𝑐𝑜𝑛𝑔 ⋅ 𝑃 = 𝑥𝑐𝑜𝑛𝑔 ⋅ 𝑃𝑐𝑜𝑛𝑔
𝐿𝑉 ⋅ 𝛾𝑐𝑜𝑛𝑔 (A.4-7) 

 

The partition coefficient is 

𝐾𝑐𝑜𝑛𝑔 =
𝑦𝑐𝑜𝑛𝑔

𝑥𝑐𝑜𝑛𝑔
=
𝑃𝑐𝑜𝑛𝑔
𝐿𝑉 ⋅ 𝛾𝑐𝑜𝑛𝑔

𝑃
 (A.4-8) 

 

The activity coefficient for congeners 𝛾𝑐𝑜𝑛𝑔 were estimated using the UNIFAC contribution 

groups method. Table 1-2 Shows the UNIFAC groups of six congeners used in this work and 

their Antoine parameters to calculate the vapor pressure. Given the negligible congener 

concentrations according to the quasi-binary assumption, the activity coefficient, the vapor 

pressure and equilibrium temperatures is assumed dependent on the ethanol composition only 
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𝐾𝑐𝑜𝑛𝑔 =
𝑦𝑐𝑜𝑛𝑔

𝑥𝑐𝑜𝑛𝑔
=
𝑃𝑐𝑜𝑛𝑔
𝐿𝑉 (𝑥𝑒𝑡ℎ) ⋅ 𝛾𝑐𝑜𝑛𝑔(𝑥𝑒𝑡ℎ)

𝑃
= 𝐾𝑐𝑜𝑛𝑔(𝑥𝑒𝑡ℎ) 

(A.4-9) 

 

In order to accelerate the CPU time during the integration in the parameter’s estimation and 

dynamic optimization the function is approximated with a 6 order polynomial. 

 

𝐾𝑐𝑜𝑛𝑔 = 𝑝1,𝑐𝑜𝑛𝑔𝑥𝑒𝑡ℎ
6 + 𝑝2,𝑐𝑜𝑛𝑔𝑥𝑒𝑡ℎ

5 + 𝑝3,𝑐𝑜𝑛𝑔𝑥𝑒𝑡ℎ
4 + 𝑝4,𝑐𝑜𝑛𝑔𝑥𝑒𝑡ℎ

3  

+𝑝5,𝑐𝑜𝑛𝑔𝑥𝑒𝑡ℎ
2 + 𝑝6,𝑐𝑜𝑛𝑔𝑥𝑒𝑡ℎ + 𝑝7,𝑐𝑜𝑛𝑔 

(A.4-10) 
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4.6 Appendix B. Supplementary information 

 

Figure S4-1. Principal component analysis (PCA) applied to data of Chilean commercial 

piscos. 

Figure S4-2. PCA map of two principal components: Simulations with 19 time intervals 

(▲). Simulations with 9 time intervals (×). Simulations with 4 time intervals (+). Blue 

points correspond to the commercial Chilean piscos. 



106 

 

 

 

 

Figure S4-3. Alcoholic strength (%v/v), head temperature and distillate volume vs time for 

a constant heating power rate of 450W. Experimental data; run 1 (×), run 2 (Δ) and run 3 

(○). Simulation (−) and confidence interval (−−). 

 

Figure S4-4. Congeners concentrations (g/hL.a.a.) vs time for a constant heating power rate 

of 450W. Experimental data; run 1 (×), run 2 (Δ) and run 3 (○). Simulation (−) and 

confidence interval (−−). 
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Figure S4-5. Alcoholic strength (%v/v), head temperature and distillate volume vs time for 

a constant heating power rate of 250W. Experimental data; run 1 (×), run 2 (Δ) and run 3 

(○). Simulation (−) and confidence interval (−−). 

 

Figure S4-6. Congeners concentrations (g/hL.a.a.) vs time for a constant heating power rate 

of 250W. Experimental data; run 1 (×), run 2 (Δ) and run 3 (○). Simulation (−) and 

confidence interval (−−). 
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Figure S4-7. Experimental w13 optimal strategy in triplicate. Top figure: head temperature 

set point (sky blue solid line), measured temperatures; run 1 (black dotted lines), run 2 

(gray dotted lines) and run 3 (red dotted lines). Bottom Figures: heating power path and 

room temperature; run 1 (black solid line), run 2 (gray solid line) and run 3 (red solid line).

 

Figure S4-8. Alcoholic strength (%v/v), head temperature and distillate volume vs time for 

an optimal w13 strategy. Experimental data; run 1 (×), run 2 (Δ) and run 3 (○). Simulation 

(−) and confidence interval (−−). 
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Figure S4-9. Congeners concentrations (g/hL.a.a) vs time for an optimal w13 strategy. 

Experimental data; run 1 (×), run 2 (Δ) and run 3 (○). Simulation (−) and confidence 

interval (− −).

 

Figure S4-10. Pareto front: relative acetaldehyde concentration vs relative linalool 

concentration; weight optimal points by MO1 (black triangles), distilled target optimal 

points by MO2 (red squares), validation experiments (blue diamonds) and model 

recalibration (blue circles). 
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Table S4-1. Parameters of calibrated compounds for chemical analysis, ordered according to their chromatographic retention time 

Compounds CAS Supplier company 
Minimum 

assay (%) 
Calculated Kovats retention index 

Acetaldehyde 75-07-0 Sigma-Aldrich, Saint Louis, USA 99.5 730 

Ethyl acetate 141-78-6 Sigma-Aldrich, Saint Louis, USA 99.0 878 

Methanol 67-56-1 
PanReac Química, S.A.U. Castellar del 

Vallès, Spain 

99.9 
917 

2-octanol 123-96-6 Sigma-Aldrich, Saint Louis, USA 97.0 1408 

Linalool 78-70-6 Sigma-Aldrich, Saint Louis, USA 97.0 1540 

Hexanoic acid 142-62-1 Sigma-Aldrich, Saint Louis, USA 98.0 1905 

𝛽-phenylethanol 60-12-8 Sigma-Aldrich, Saint Louis, USA 99.0 1949 
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Table S4-2. Congeners concentration in Chilean commercial piscos in g/hL.a.a. 

Piscos 

code 
Acetaldehyde Methanol 

Ethyl 

acetate 
Linalool 

Hexanoic 

acid 

𝛽-

phenylethanol 

PCh1 9.06 65.1 11.9 0.789 0.0603 0.0958 

PCh2 11.9 83.0 19.3 0.158 0.890 15.0 

PCh3 15.3 74.8 16.2 0.0931 0.686 1.77 

PCh4 11.9 64.4 16.3 0.457 0.292 0.443 

PCh5 14.2 67.0 14.7 0.0874 0.648 1.94 

PCh6 15.4 82.8 16.6 0.134 0.774 1.91 

PCh7 4.93 65.1 15.0 0.163 0.165 0.392 

PCh8 25.5 64.8 14.6 0.121 0.590 1.36 

PCh9 3.64 71.5 15.8 0.396 0.136 0.450 
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Table S4-3. Congeners concentration of MO1. 

Run Acetaldehyde Methanol Ethyl acetate Linalool Hexanoic acid 𝛽-phenylethanol 

       

w1 0.70 103.3 0.0050 0.061 3.48 43.92 

w2 0.74 102.8 0.0054 0.063 3.22 42.41 

w7 3.51 80.35 0.084 0.163 1.04 19.48 

w3 6.64 77.39 0.264 0.232 0.867 17.21 

w12 14.89 72.86 1.08 0.360 0.677 14.23 

w8 15.08 72.92 1.10 0.363 0.690 14.29 

w9 27.94 70.63 3.25 0.492 0.613 12.91 

w16 28.21 69.08 3.11 0.514 0.534 11.88 

w13 39.85 68.74 5.91 0.590 0.525 11.70 

w13 exp 63.96 64.92 14.61 0.24 3.96 5.38 

w4 41.14 68.35 6.15 0.605 0.517 11.47 

w19 71.60 65.36 14.59 0.825 0.404 9.60 

w17 76.39 65.12 16.21 0.852 0.397 9.47 

w5 91.46 64.52 21.78 0.930 0.380 9.12 

w6 91.46 64.52 21.78 0.930 0.380 9.12 

w10 91.46 64.52 21.78 0.930 0.380 9.12 

w11 91.46 64.52 21.78 0.930 0.380 9.12 

w14 91.46 64.52 21.78 0.930 0.380 9.12 

w15 91.46 64.52 21.78 0.930 0.380 9.12 

w18 91.46 64.52 21.78 0.930 0.380 9.12 

w20 91.46 64.52 21.78 0.930 0.380 9.12 

w21 91.46 64.52 21.78 0.930 0.380 9.12 
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Table S4-4. Congeners concentration of MO2. 

Target Acetaldehyde Methanol Ethyl acetate Linalool Hexanoic acid 𝛽-phenylethanol 

       

Optimal PCh3 9.67 85.35 0.59 0.260 1.54 25.1 

Optimal PCh4 3.22 80.34 0.071 0.157 0.974 19.1 

Optimal PCh5 11.3 81.59 0.78 0.284 1.29 21.7 

Optimal PCh6 6.53 88.03 0.30 0.212 1.77 27.8 

Opt PCh6 exp 18.38 87.81 7.16 0.08 8.88 15.21 

Optimal PCh8 27.7 78.14 3.72 0.442 1.06 18.8 
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Table S4-5. Fitted parameters for optimal strategies 

Parametersa Optimal Strategies 

PCh6 w13 

𝑈𝐴𝑏  0.283 ± 0.006 0.422 ± 0.065 

𝑈𝐴𝑐 1.13 ± 0.03 1.04 ± 0.06 

𝑀0 93.32 ± 0.18 93.50 ± 0.08 

𝑥0 0.0335 ± 0.0009 0.0335 ± 0.0002 

𝑥0,𝑐𝑜𝑛𝑔=1 3.49e-5 ± 0.05e-5 3.54e-5 ± 0.27e-5 

𝑥0,𝑐𝑜𝑛𝑔=2 3.97e-5 ± 0.03e-5 4.57e-5 ± 0.4e-5 

𝑥0,𝑐𝑜𝑛𝑔=3 4.75e-6 ± 0.67e-6 4.63e-6 ± 0.58e-6 

𝑥0,𝑐𝑜𝑛𝑔=4 3.89e-8 ± 0.16e-8 3.99e-8 ± 0.29e-8 

𝑥0,𝑐𝑜𝑛𝑔=5 1.31e-6 ± 0.04e-6 1.31e-6 ± 0.03e-6 

𝑥0,𝑐𝑜𝑛𝑔=6 1.59e-6 ± 0.04e-6 2.01e-6 ± 0.08e-6 

a Parameters unit: 𝑈𝐴𝑏 and 𝑈𝐴𝑐 in W/°C, 𝑀0 in mol, 𝑥0 and 𝑥0,𝑐𝑜𝑛𝑔 in mol/mol. 
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4.7 Appendix C. Model code 

 

function alembic_simulation 

% This function contain the routine for simulating an experimental Charentais alembic. 

% The model includes ethanol-water plus six congeners. 

% This model is useful for any fruit distillate. 

% Each congener can be added to the model through the respective mass balance. 

% In this model, the equilibrium relationship was calculated using UNIFAC contribution 

% group for each congener. 

% Author: Ricardo Luna Hernández 

% Previous publication with this model: 

% Luna, R., López, F., Pérez-Correa, J.R (2018). 

% Minimizing methanol content in experimental charentais alembic distillation. 

% Journal of Industrial and Engineering Chemistry, 57, 160-170. 

% link: https://www.sciencedirect.com/science/article/pii/S1226086X17304379 

clear; clc; close all; 

% =============== CONGENER LIST AND INFORMATION =========================== 

% Head compounds 

    % Acetaldehyde 

    % Methanol 

    % Ethyl Acetate 

% Terpenic compounds (heart compound) 

    % Linalool 

% Tail compounds 

    % Hexanoic acid 

    % b-phenethyl alcohol 

% ========================================================================= 

% congeners name 

congener_list = {'Acetaldehyde','Methanol','Ethyl acetate',... 

    'Linalool','Hexanoic acid','Phenethyl alcohol'}'; 

% congeners molar weigth (g/mol) 

congener_PM = [44.0526 32.0419 88.1051 154.2493 116.1583 122.1644]'; 

% number of congeners 

Ncong = length(congener_list); 

% ========= INITIAL CONDITIONS: CONCENTRATION IN MUSCAT WINE ============= 

Mb_ini      = 94.9533;         % Molar hold-up in bottom (mol) 

xB_ini      = 0.0379;          % Ethanol molar fraction in bottom (mol/mol) 

Vd_ini      = 0;               % Distillate volume (mL) 

Etdes_ini   = 0;               % Ethanol moles in distillate (mol) 

% Congeners molar fraction in bottom (mol/mol) 

xB_cong_ini = [7.15699480813622e-05;5.38735319152059e-05; ... 

    1.55021174372479e-05;1.26766600263018e-07; ... 

    1.33861074704985e-06;5.00325445648047e-06]'; 

Md_cong_ini  = zeros(1,Ncong); % Congeners moles in distillate (mol) 

% initial condition vector 

x0    = [Mb_ini xB_ini Vd_ini Etdes_ini xB_cong_ini Md_cong_ini]; 

% initial concentration in wine 

x0_wine = x0; 

% ================== SIMULATION CONFIGURATION ============================= 

% ====================== ODE CONFIGURATION ================================ 

% flag_cut 

% 1: Normal integration with ODE function (without ODE event). 
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% 2: Integration with ODE event to make the head and heart cuts. 

flag_cut   = 1; 

% ODE options, tolerances of integration 

odeoptions=odeset('Reltol',1e-9,'Abstol',1e-9); 

% ============== UA parameter configuration =============================== 

% flag_UA 

% 1: linear fuction of heating power 

% 2: linear fuction of heating power + 2*sigma 

% 3: linear fuction of heating power - 2*sigma 

% 4: contant parameters p = [UAb UAc]. This option is usefull to parammeter 

% estimation 

flag_UA    = 1; 

p = [0.82 0.71]; 

% =========================== MODEL INPUTS ================================ 

% inputs to simulation without cuts (flag_cut = 1) 

if  flag_cut ==1 

    n = 15;                                          % Number of time step(n-1) 

    t_end = 120;                                     % Time of distillation (min) 

    tspan = linspace(0,t_end,n)'*60;                 % Integration time (s) 

    Qcal  = ones(length(tspan),1)*300;               % Heating power (W) 

    T_env     = ones(length(tspan),1)*(30+273.15);   % Room temperature (K) 

    u     = [tspan,Qcal,T_env];                      % input vector 

    V_head = 100; 

    V_heart = 400; 

% inputs to simulation with cuts, ode event (flag_cut = 2) 

elseif flag_cut ==2 

    % head cut simulation 

    n_head     = 4;                                  % Number of time step(n-1) 

    V_head     = 100;                                % Volume head (mL) 

    t_head     = 25;                                 % Time of head cut (min) 

    tspan1     = linspace(0,t_head,n_head)'*60;      % Integration time (s) 

    Qcal_head  = ones(length(tspan1),1)*300;         % Heating power (W) 

    T_env1     = ones(length(tspan1),1)*(30+273.15); % Room temperature (K) 

    u_head     = [tspan1,Qcal_head,T_env1];          % Input vector 

    % heart cut simulation 

    n_heart    = 7;                                  % number of time step(n-1) 

    V_heart    = 400;                                % Volume heart (mL) 

    t_heart    = 120;                                % Time of heart cut (min) 

    tspan2     = linspace(0,t_heart,n_heart)'*60;    % Integration time (s) 

    Qcal_heart = ones(length(tspan2),1)*400;         % Heating power (W) 

    T_env2     = ones(length(tspan2),1)*(30+273.15); % Room temperature (K) 

    u_heart    = [tspan2,Qcal_heart,T_env2];         % Input vector 

end 

% simulation without cuts 

% ======================== INTEGRATION =============================== 

if flag_cut == 1 

    [t,x,TB,TC,F,GAi,GAd,GAd_frac,rec,V,C_cong,C_cong_frac,C_rcong, ... 

        C_rcong_frac,rec_cong]= alembic_outputs(Ncong,congener_PM,x0,... 

        x0_wine,u,p,odeoptions,flag_UA,flag_cut,V_head,V_heart,'none'); 

    % simulation with cuts, ode event 

elseif flag_cut ==2 

    % ======================== HEAD INTEGRATION =============================== 

    [time_head,x_head,TB_head,TC_head,F_head,GAi_head,GAd_head, ... 

        GAd_head_frac,rec_head,V_head,C_cong_head,C_cong_head_frac, ... 
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        C_rcong_head,C_rcong_head_frac,rec_cong_head]= ... 

        alembic_outputs(Ncong,congener_PM,x0,... 

        x0_wine,u_head,p,odeoptions,flag_UA,flag_cut,... 

        V_head,V_heart,'head'); 

    % concatenation the Qcal vector with the time vector, when the simulation 

    % was stopped before the time of simulation to make the cut. 

    if length(time_head)==(length(tspan1)-1) 

        Qcal_head = Qcal_head(1:end-1); 

        Qcal_heart(1) = Qcal_head(end); 

    elseif length(time_head)==(length(tspan1)-2) 

        Qcal_head = Qcal_head(1:end-2); 

        Qcal_heart(1) = Qcal_head(end); 

    elseif length(time_head)==(length(tspan1)-3) 

        Qcal_head = Qcal_head(1:end-3); 

        Qcal_heart(1) = Qcal_head(end); 

    end 

    % initial concentration in heart cut 

    x0_heart = x_head(end,:); 

    x0_heart([3,4,11,12,13,14,15,16])=0; 

    % =========================== HEART INTEGRATION =========================== 

    [time_heart,x_heart,TB_heart,TC_heart,F_heart,GAi_heart,GAd_heart, ... 

        GAd_heart_frac,rec_heart,V_heart,C_cong_heart,C_cong_heart_frac, ... 

        C_rcong_heart,C_rcong_heart_frac,rec_cong_heart]= ... 

        alembic_outputs(Ncong,congener_PM,x0_heart,... 

        x0_wine,u_heart,p,odeoptions,flag_UA,flag_cut,V_head,V_heart,'heart'); 

    % concatenation the Qcal vector with the time vector, when the simulation 

    % was stopped before the time of simulation to make the cut. 

    if length(time_heart) == (length(tspan2)-1) 

        Qcal_heart = Qcal_heart(1:end-1); 

    elseif length(time_heart) == (length(tspan2)-2) 

        Qcal_heart = Qcal_heart(1:end-2); 

    elseif length(time_heart) == (length(tspan2)-3) 

        Qcal_heart = Qcal_heart(1:end-3); 

    end 

    %  ============= concatenate vector of head and heart cuts ================ 

    time_process=[time_head;time_heart(2:end)+time_head(end)]/60; % time (min) 

    Qcal_process = [Qcal_head;Qcal_heart(2:end)]; % heating power (w) 

    TC  = [TC_head;TC_heart(2:end)]-273.15; % head temeprature (°C) 

    GAi = [GAi_head;GAi_heart(2:end)]; % instantaneous alcoholic strength 

end 

% ===================== FIGURES AND RESULTS =============================== 

% Results for flag_cut = 1 

if flag_cut == 1 

    % =========================== FIGURE 1 ==================================== 

    figure() 

    for i =1:Ncong 

        subplot(2,3,i) 

        plot(t(2:end)/60,C_rcong_frac(:,i),'-sk') 

        hold on 

        plot(t/60,C_rcong(:,i),'-r') 

        xlabel('Time (min)','FontSize',14) 

        ylabel('Rel. conc (g/hL.a.a)','FontSize',14) 

        title([char(congener_list(i)),' in distillate'],'FontSize',12) 

        set(gca,'FontSize',11); 
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        legend('accumulated in samples collected','accumulated in one sample') 

    end 

    % ========================== FIGURE 2 ================================= 

    figure() 

    subplot(1,3,1) 

    plot(t(2:end)/60,GAd_frac,'-sk') 

    hold on 

    plot(t/60,GAd,'-r') 

    hold off 

    xlabel('Time (min)','FontSize',14) 

    ylabel('Alcoholic strength (%v/v)','FontSize',14) 

    set(gca,'FontSize',11); 

    legend('accumulated in samples collected','accumulated in one sample') 

    subplot(1,3,2) 

    plot(t/60,TC-273.15,'-k') 

    xlabel('Time (min)','FontSize',14); 

    ylabel('Head temperature (°C)','FontSize',14) 

    set(gca,'FontSize',11); 

    subplot(1,3,3) 

    plot(t/60,x(:,3),'-k') 

    xlabel('Time (min)','FontSize',14); 

    ylabel('Distillate (mL)','FontSize',14) 

    set(gca,'FontSize',11); 

elseif flag_cut == 2 

    % ========================== FIGURE 3 ================================= 

    subplot(1,2,1) 

    stairs(time_process,Qcal_process,'-.k','LineWidth',1.5) 

    hold on 

    plot([time_head(end)/60 time_head(end)/60],[250 450],'--r','LineWidth',2.0) 

    hold off 

    xlabel('Time (min)','FontSize',16) 

    ylabel('Heating power (W)','FontSize',16) 

    set(gca,'FontSize',14,'YTick',linspace(250,450,3)); 

    xlim([0 time_process(end)]) 

    ylim([250 450]) 

    subplot(1,2,2) 

    [hAx,hLine1,hLine2]=plotyy(time_process,TC,time_process,GAi); 

    hAx(1).YColor = 'k'; 

    hAx(2).YColor = 'k'; 

    ylabel(hAx(1),'Head temperature (°C)','FontSize',16) % left y-axis 

    ylabel(hAx(2),'Alcoholic strength (%v/v)','FontSize',16) % right y-axis 

    hLine1.LineStyle = '-'; 

    hLine2.LineStyle = ':'; 

    line(time_process,TC,'Parent',hAx(1),'LineWidth',1.5,'LineStyle', ... 

        '-','Color','k','Marker','none') 

    line(time_process,GAi,'Parent',hAx(2),'LineWidth',2.0,'LineStyle', ... 

        ':','Color','k','Marker','none') 

    xlabel('Time (min)','FontSize',16) 

    hold on 

    plot([time_head(end)/60 time_head(end)/60],[88 100],'--r','LineWidth',2.0) 

    hold off 

    set(hAx(1),'Xlim',[0 time_process(end)]); 

    set(hAx(1),'Ylim',[88 100]); 

    set(hAx(1),'FontSize',14) 
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    set(hAx(2),'Xlim',[0 time_process(end)]); 

    set(hAx(2),'Ylim',[0 75]); 

    set(hAx(2),'FontSize',14) 

    set(hAx(1),'YTick',linspace(88,100,4)); 

    set(hAx(2),'YTick',linspace(0,75,4)); 

end 

%========================================================================== 

function [t,x,TB,TC,F,GAi,GAd,GAd_frac,rec,V,C_cong,C_cong_frac, ... 

    C_rcong,C_rcong_frac,rec_cong] = alembic_outputs ... 

    (Ncong,congener_PM,x0,x0_wine,u,p,odeoptions,flag_UA,flag_cut, ... 

    V_head,V_heart,cut) 

% This function solve the model by numeric integration and give the all the 

% results. The ODE function can be excute by two configurations; 

% Normal integration with ODE function (wihout ODE event). flag_cut = 1 

% Integration with ODE event to make the head and heart cuts. flag_cut = 2 

% Then, it is call @congener_conc function to calculate the concentrations 

% of all components; alcoholic strength (GAd) and congeneres (C_cong or C_rcong). 

% In addition, @online_outputs function obtaining the boiler (TB) and 

% head temperatures (TC),distillate flow (F) rate and instantaneous 

% alcoholic strenght (GAi). 

% Inputs: 

% Ncong: number of congeners 

% congener_PM: congeners molar weigth 

% x0: initial concentration in head or head fraction 

% x0_wine: initial concentration in wine 

% u: input vector 

% p: parameters vector [UAb UAc] 

% odeoptions: options for odefunction 

% flag_UA: UA parameter configuration 

% flag_cut: ODE configuration with (2) or without (1) ode event. 

% V_head: volume head 

% V_heart: volume heart 

% cut: string with the words 'head' or 'heart' to define the distillation 

% fraction in the simulation. This option is on when flag_cut is 2 

% (integration with ODE event). 

% Outputs: 

% t:               Integrate time vector (s) 

% x:               Integrated vector from ODE function 

% TB:              Boiler Temperature (K) 

% TC:              Head Temperature (K) 

% F:               Distillate flow rate (mL/min) 

% GAi:             Instantaneous alcoholic strength (%v/v) 

% GAd:             Alcoholic strength accumulated (%v/v) 

% GAd_frac         Alcoholic strength in the samples collected 

% rec:             Ethanol recovery (%) 

% V:               Distillate volume (mL) 

% C_cong:          Absolute congener concentration (mg/L) 

% C_cong_frac:     Absolute congener concentration in the samples collected 

% C_rcong:         Relative congener concentration (g/hL.a.a.) 

% C_rcong_frac:    Relative congener concentration in the samples collected 

% rec_cong:        Congener recovy (%) 

% Ouputs 

 

% inputs variable declaration 
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tspan = u(:,1); 

Qcal  = u(:,2); 

Tamb  = u(:,3); 

% ======= selection of ODE event according the head or heart simulation === 

if strcmp(cut,'head') 

    % ODE event to stop the simulation in head cut 

    odeoptions.Events = @volume_head; 

elseif strcmp(cut,'heart') 

    % ODE event to stop the simulation in heart cut 

    odeoptions.Events = @volume_heart; 

elseif strcmp(cut,'none') 

end 

% ================ Normal integration with ODE function =================== 

if flag_cut == 1 

    [t,x]=ode15s(@alembic_model,tspan,x0,odeoptions,u,p,flag_UA,Ncong,V_head,V_heart); 

% ======== Integration with ODE event to make the head and heart cuts====== 

elseif flag_cut == 2 

    

[t,x,TE,YE,IE]=ode15s(@alembic_model,tspan,x0,odeoptions,u,p,flag_UA,Ncong,V_head,V_heart); 

end 

% calculations of alcoholic strength and congeners concentration 

[GAd, rec,C_cong,C_rcong,rec_cong,GAd_frac,C_cong_frac,C_rcong_frac] ... 

    = congener_conc(x,x0_wine,congener_PM,Ncong); 

xB = x(:,2); % xB declaration 

V=x(:,3); % distillate volume declaration 

% Obtaining of variables TB, TC, GAi, F 

[TB, TC, GAi, F] = online_outputs(xB,u,p,flag_UA); 

%========================================================================== 

function dxdt = alembic_model(t,x,u,p,flag_UA,Ncong,V_head,V_heart) 

 

% This function correspond to Charentais alembic model for ethanol-water 

% mixture plus congeners 

% Inputs: 

% t: Integration time 

% x: State variables (4 for ethanol-water + 2 per congener) 

% u: Input vector 

% p: parameters vector p = [UAb UAc] 

% Ouputs: 

% dxdt: state variables integrated 

 

% state variables declaration 

Mb=x(1);                     % Molar hold-up in bottom (mol) 

xB=x(2);                     % Ethanol molar fraction in bottom (mol/mol) 

Vd=x(3);                     % Distillate volume (mL) 

Et_d=x(4);                   % Ethanol moles in distillate (mol) 

xB_cong=x(4+1:4+Ncong);      % Congeners molar fraction in bottom (mol/mol) 

Md_cong=x(4+Ncong+1:end);    % Congeners moles in distillate (mol) 

% inputs variable declaration 

tspan  = u(:,1);             % integration time 

Qcal_t = u(:,2);             % heating power (W) 

Tamb_t = u(:,3);             % room temperature (K) 

% ==== execute each heating power element in their correspond time step === 

e=1; 

cond=true; 
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while cond 

    if (t >= tspan(e)) && (t <= tspan(e+1)) 

        cond = false; 

        Qcal = Qcal_t(e); 

        Tamb = Tamb_t(e); 

    else 

        cond=true; 

        e=1+e; 

    end 

end 

% ============== linear fuction of heating power ========================= 

if flag_UA == 1; 

    % Global coefficient and area of heat transfer: 

    % Boiler zone 

    UAb  = ((0.711-0.821)/(450-250))*(Qcal-250)+0.821; 

    % head of alembic zone 

    UAc  = ((1.730-1.277)/(450-250))*(Qcal-250)+1.277; 

% =========  linear function + 2*sigma (95% confidence interval) ======= 

elseif flag_UA == 2; 

    % Boiler zone 

    UAb  = (((0.711-0.821)/(450-250))*(Qcal-250)+0.821)+2*0.098; 

    % head of alembic zone 

    UAc  = (((1.730-1.277)/(450-250))*(Qcal-250)+1.277)+2*0.167; 

% =========  linear function - 2*sigma (95% confidence interval) ======= 

elseif flag_UA == 3; 

    % Boiler zone 

    UAb  = (((0.711-0.821)/(450-250))*(Qcal-250)+0.821)-2*0.098; 

    % head of alembic zone 

    UAc  = (((1.730-1.277)/(450-250))*(Qcal-250)+1.277)-2*0.167; 

% ====================== constant parameters ============================== 

elseif flag_UA == 4; 

    % Boiler zone 

    UAb = p(1); 

    % head of alembic zone 

    UAc = p(2); 

end 

% ======= THERMODYNAMIC EQUILIBRIUM ETHANOL-WATER IN THE BOILER =========== 

% All calculations of equilibrium are through empirical correlations 

% from Sacher et al. (2013). These equations are polynomic functions 

% that depend on the ethanol molar fraction (xB,xL). 

 

% Ethanol molar fraction in the vapor flow from the bottom 

yb = -59.6868501+-89.4037240*xB+-39.8552042*xB.^1.5...       % (Eq. A.9) 

    +81.47664393*exp(xB)-21.7897938*exp(-xB); 

% Boiler temperature 

if xB <=0.1661                                              % (Eq. A.10) 

    Tb=273.15+(-0.02214517+-0.05785120*xB.^1.5+0.032146591*exp(xB)).^-1; 

else 

    Tb =273.15+278.3854921+-141.465178*xB+49.67113604.*xB.*log(xB)... 

        +9.159930587*xB.^3+-184.225674*exp(-xB); 

end 

% Molar specific enthalpy in the bottom 

hb = (55.678*xB+75.425)*Tb-15208.44*xB-20602.34; 

% Molar specific enthalpy in the vapor flow 
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Hb =  36172.03-2919.83*yb+(31.461-11.976*yb)*Tb... 

       +(4.063*10^-4+0.0734*yb)*Tb^2; 

% Partial derivative delta(hb)/delta(xb)=f(Tb(xb)) 

deltahbdeltaxb = 55.678*Tb-15208.44; 

% Partial derivative delta(hb)delta(Tb)=f(xb) 

deltahbdeltaTb = 55.678*xB+75.425; 

% Temperature derivate respecto to ethanol concentration (xB) 

if xB<=0.1661 

    dTbdxB=-(1.5*-0.05785120*xB.^0.5+0.032146591*exp(xB))./ ... 

        (-0.02214517+-0.05785120*xB.^1.5+0.032146591*exp(xB)).^2; 

else 

    dTbdxB=-141.465178+49.67113604.*log(xB)+49.67113604+ ... 

        3*9.159930587*xB.^2+184.225674*exp(-xB); 

end 

% total derivate dhb/dxb 

dhbdxb=deltahbdeltaxb+deltahbdeltaTb*dTbdxB; 

% ===== IMPLICIT EQUATION - ENEGERY BALANCE IN THE BOTTOM (Eq.A.23) ======= 

xLstart=1.1*xB; % initial iteration value of xL 

par=[xB Qcal UAb UAc Tamb yb hb Hb dhbdxb]; 

options=optimset('Display','off'); 

% solve implicit equation with fsolve to calculate xL 

[xL,fval,exitflag]=fsolve(@(x) xLsolve(x,par),xLstart,options); 

% ======= THERMODYNAMIC EQUILIBRIUM ETHANOL-WATER IN THE HEAD ZONE ======== 

% Empirical correlations are evaluate in xL 

% Head temperature 

if xL <=0.1661                                           %TL=f(xL) (K) 

     TL=273.15+(-0.02214517+-0.05785120*xL.^1.5+0.032146591*exp(xL)).^-1; 

 else 

     TL =273.15+278.3854921+-141.465178*xL+49.67113604.*xL.*log(xL)... 

         +9.159930587*xL.^3+-184.225674*exp(-xL); 

end 

% Ethanol molar fraction in the distillate flow 

yd = -59.6868501+-89.4037240*xL+-39.8552042*xL.^1.5... 

    +81.47664393*exp(xL)-21.7897938*exp(-xL); 

% Molar specific enthalpy in the liquid reflux 

hL = (55.678*xL+75.425)*TL-15208.44*xL-20602.34; 

% Molar specific enthalpy in the distillate flow 

Hd = 36172.03-2919.83*yd+(31.461-11.976*yd)*TL... 

       +(4.063*10^-4+0.0734*yd)*TL^2; 

% ============ Mass balances in the head (partial condenser) ============== 

% Vapor flow from the bottom 

Vb= UAc*(TL-Tamb) / ( (Hb-Hd)+(yb-yd)/(xL-yd)*(Hd-hL) ); 

% Liquid natural reflux flow 

L =-UAc*(TL-Tamb) / ( (hL-Hd)+(xL-yd)/(yb-yd)*(Hd-Hb) ); 

% Distilllate flow 

Vd = Vb-L; 

% =========== EMPIRICAL CORRELACIÓN DENSITY (NEURBURG 1994) =============== 

MW1=46.07;               % Weight molar Etanol 

MW2=18.0153;             % Weigth molar water 

MWp=MW1*yd+(1-yd)*MW2;   % Weigth molar mixture 

rhow=1;                  % g/mL density water pure 

% apparent molal volume of liquid mixtures [m3/kmol] (Eq. A.16) 

phi=5.1214e-2+... 

    6.549e-3*yd+7.406e-5*(TL-273.15); 
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% Mixture density (Eq. A.16) 

rhop=MWp/(phi*1000*yd+(1-yd)*(MW2/rhow)); 

% Distillate flow rate (mL/s) 

F=Vd*MWp*(1/rhop); 

% ===================== ODES ETHANOL-WATER ============================= 

dxdt=zeros(6,1); 

% Total mass balance in the boiler 

dxdt(1) = L-Vb; 

% Ethanol mass balance in the boiler 

dxdt(2) = 1/Mb*(L*(xL-xB)-Vb*(yb-xB)); 

% Toal mass balances in the distillate (distillate volume) 

dxdt(3) = F; 

% Ethanol mas balance in the distillate (ethanol moles) 

dxdt(4) = Vd*yd; 

% ====================== CONGENER CALCULATIONS ============================ 

Kcong_b     =   zeros(Ncong,1); 

Kcong_c     =   zeros(Ncong,1); 

yb_cong     =   zeros(Ncong,1); 

xL_cong     =   zeros(Ncong,1); 

yd_cong     =   zeros(Ncong,1); 

 

for i=1:Ncong 

%  parameters polynomial approximation for each congener (eq A.9) 

PolKcong = zeros(Ncong,7); 

% Acetaldehyde 

PolKcong(1,1:7)=[2132.48647470687 -7325.32158274884 9975.65026598049 ... 

    -6877.34768142094 2557.05908782731 -514.677851684226 59.8488158884235]; 

% Methanol 

PolKcong(2,1:7)=[344.843341522534 -1174.41754890585 1583.17398976036 ... 

    -1073.73582253337 388.389261160545 -73.6515297026980 7.47712492793083]; 

% Ethyl acetate 

PolKcong(3,1:7)=[6708.80545814955 -22825.1298638850 30638.8774877421 ... 

    -20622.5403332238 7323.26442993318 -1326.16274539085 108.370963453395]; 

% Linalool 

PolKcong(4,1:7)=[5903.54406919218 -19642.5313045736 25537.6690914762 ... 

    -16362.2715807274 5343.77291171908 -823.424096778676 45.8635924063960]; 

% Hexanoic acid 

PolKcong(5,1:7)=[79.3503646604582 -265.323418070129 347.411506679424 ... 

    -225.065622269698 74.9248170603414 -11.9950927956312 0.736427102093912]; 

% Phenethyl alcohol 

PolKcong(6,1:7)=[349.984114473148 -1168.19810837707 1525.76323298408 ... 

    -984.481408366268 325.376073822477 -51.3026635899384 3.01613099316598]; 

% Partition coefficient in bottom 

Kcong_b(i,1)=PolKcong(i,1)*xB^6+PolKcong(i,2)*xB^5+PolKcong(i,3)*xB^4+ ... 

    PolKcong(i,4)*xB^3+PolKcong(i,5)*xB^2+PolKcong(i,6)*xB^1+PolKcong(i,7); 

% Partition coefficient in head 

Kcong_c(i,1)=PolKcong(i,1)*xL^6+PolKcong(i,2)*xL^5+PolKcong(i,3)*xL^4+ ... 

    PolKcong(i,4)*xL^3+PolKcong(i,5)*xL^2+PolKcong(i,6)*xB^1+PolKcong(i,7); 

% Thermodynamic equilibrium L-V relationships of congeners in bottom 

yb_cong(i,1)=Kcong_b(i,1).*xB_cong(i); 

% Congener molar fraction in the liquid reflux 

xL_cong(i,1)=(Vb*yb_cong(i,1))./(L+Vd*Kcong_c(i,1)); 

% Thermodynamic equilibrium L-V relationship of congeners in head 

yd_cong(i,1)=xL_cong(i,1).*Kcong_c(i,1); 



124 

 

 

 

% ========================= ODES CONGENERS ================================ 

% Congener component balance in the boiler 

dxdt(4+i)= 1/Mb*(L*(xL_cong(i,1)-xB_cong(i))-Vb*(yb_cong(i,1)-xB_cong(i))); 

% Congener component balance in the distillate 

dxdt(4+Ncong+i)= Vd*yd_cong(i); 

end 

%========================================================================== 

function [value,isterminal,direction] = ... 

    volume_head(t,x,u,p,flag_UA,Ncong,V_head,V_heart) 

% This function correspond to ODE event. The function determine the time 

% to stop the simulation when comply a specific event. 

% The event is stop the simulation when the distillate volume of simulation 

% is equal to head volume. 

value = x(3)-V_head; 

isterminal = 1; 

direction  = 0; 

%========================================================================== 

function [value,isterminal,direction] =  ... 

    volume_heart(t,x,u,p,flag_UA,Ncong,V_head,V_heart) 

% This function correspond to ODE event. The function determine the time 

% to stop the simulation when comply a specific event. 

% The event is stop the simulation when the distillate volume of simulation 

% is equal to heart volume. 

value = x(3)-V_heart; 

isterminal = 1; 

direction  = 0; 

%========================================================================== 

function [GAd,rec,C_cong,C_rcong,rec_cong,GAd_frac,C_cong_frac, ... 

    C_rcong_frac] = congener_conc(x,x0_wine,MW,Ncong) 

% This function calculate the alcoholic strength, ethanol recovery, 

% absolute congener concentration, relative congener concentration 

% accumulated in the distillate. In addition, are calculate the alcoholic 

% strength, absolute and relative congener concentration where were 

% collected the samples or fractions, i.e, the accumulated in the each step 

% of integration time. 

% Inputs 

% x:               Integrated vector from ODE function 

% x0_wine:         Initial concentations in wine 

% MW:              congeners molar weigth (g/mol) 

% Ncong:           Number of congeners 

% Ouputs 

% GAd:             Alcoholic strength accumulated (%v/v) 

% rec:             Ethanol recovery (%) 

% C_cong:          Absolute congener concentration (mg/L) 

% C_rcong:         Relative congener concentration (g/hL.a.a.) 

% rec_cong:        Congener recoveries (%) 

% GAd_frac:        Alcoholic strength in the samples collected 

% C_cong_frac:     Absolute congener concentration in the samples collected 

% C_rcong_frac:    Relative congener concentration in the samples collected 

 

% Variables declaration 

Mb      = x(:,1);                      % Molar hold-up in bottom (mol) 

xb      = x(:,2);                      % Ethanol molar fraction in bottom (mol/mol) 

V       = x(:,3);                      % Distillate volume (mL) 
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Md      = x(:,4);                      % Ethanol moles in distillate (mol) 

xb_cong = x(:,4+1:4+Ncong);            % Congeners molar fraction in bottom (mol/mol) 

Md_cong = x(:,4+Ncong+1:end);          % Congeners moles in distillate (mol) 

Mb_wine      = x0_wine(1);             % Initial moles in bottom 

xb_wine      = x0_wine(2);             % Initial ethanol molar fration in bottom 

xb_cong_wine = x0_wine(4+1:4+Ncong);   % Initial congeners molar fraction in bottom 

GAd = Md.*46.07.*(1/0.7893).*100./V;   % Alcoholic strenght (%v/v) 

rec = (Md*100)./(Mb_wine*xb_wine);     % Ethanol recovery (%) 

[nrow,ncolumn] = size(Md_cong);        % variables dimension 

C_cong       = zeros(nrow,ncolumn);    % Absolute congeners concentration (mg/L) 

C_rcong      = zeros(nrow,ncolumn);    % Relative congeners concentration (g/hL.a.a.) 

rec_cong     = zeros(nrow,ncolumn);    % Congener recoveries (%) 

GAd_frac     = zeros(nrow-1,1);        % Alcoholic strength in the samples 

C_cong_frac  = zeros(nrow-1,ncolumn);  % Absolute congener concentration in the samples 

C_rcong_frac = zeros(nrow-1,ncolumn);  % Relative congener concentration in the samples 

 

for j=2:length(Md) 

    GAd_frac(j-1)     = (Md(j)-Md(j-1))*46.07*(1/0.7893)*100/(V(j)-V(j-1)); 

    for i=1:ncolumn 

        C_cong(:,i)   = (Md_cong(:,i)*MW(i)*1000)./(V/1000); 

        C_rcong(:,i)  = (Md_cong(:,i)*MW(i)*1000*100)./(V.*(GAd/100)); 

        rec_cong(:,i) = (Md_cong(:,i)*100)./(Mb_wine*xb_cong_wine(i)); 

        C_cong_frac (j-1,i)   = ((Md_cong(j,i)-Md_cong(j-1,i))*MW(i)*1000)./ ... 

            ((V(j)-V(j-1))/1000); 

        C_rcong_frac(j-1,i)   = ((Md_cong(j,i)-Md_cong(j-1,i))*MW(i)*1000*100)./ ... 

            ((V(j)-V(j-1)).*(GAd_frac(j-1)/100)); 

    end 

end 

%========================================================================== 

function [Tb TL yd F]=evalfun(xB,u,p,flag_UA) 

% This function eval the xB integrated obtained from Ode function. 

% The aim is obtaining the temperatures data, instantaneous ethanol moles 

% in the distillate and distillate flow rate. 

% Inputs: 

% xB:            Integrated vector of xB (x(:,2)) 

% u:             Input vector 

% p:             Parameter vector p = [UAb UAc] 

% Outputs: 

% Tb:            Boiler temperature (K). 

% TL:            Head temperature (K). 

% yd:            Ethanol molar fration in the vapor that become in distillate 

 

% Input variales declaration 

tspan = u(1); % Time 

Qcal  = u(2); % Heatig power 

Tamb  = u(3); % Room temperature 

% ============== linear fuction of heating power ========================= 

if flag_UA == 1; 

    % Global coefficient and area of heat transfer: 

    % Boiler zone 

    UAb  = ((0.711-0.821)/(450-250))*(Qcal-250)+0.821; 

    % head of alembic zone 

    UAc  = ((1.730-1.277)/(450-250))*(Qcal-250)+1.277; 

% =========  linear function + 2*sigma (95% confidence interval) ======= 
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elseif flag_UA == 2; 

    % Boiler zone 

    UAb  = (((0.711-0.821)/(450-250))*(Qcal-250)+0.821)+2*0.098; 

    % head of alembic zone 

    UAc  = (((1.730-1.277)/(450-250))*(Qcal-250)+1.277)+2*0.167; 

% =========  linear function - 2*sigma (95% confidence interval) ======= 

elseif flag_UA == 3; 

    % Boiler zone 

    UAb  = (((0.711-0.821)/(450-250))*(Qcal-250)+0.821)-2*0.098; 

    % head of alembic zone 

    UAc  = (((1.730-1.277)/(450-250))*(Qcal-250)+1.277)-2*0.167; 

% ====================== constant parameters ============================== 

elseif flag_UA == 4; 

    % Boiler zone 

    UAb = p(1); 

    % head of alembic zone 

    UAc = p(2); 

end 

% ======= THERMODYNAMIC EQUILIBRIUM ETHANOL-WATER IN THE BOILER =========== 

% All calculations of equilibrium are through empirical correlations 

% from Sacher et al. (2013). These equations are polynomic functions 

% that depend on the ethanol molar fraction (xB,xL). 

 

% Ethanol molar fraction in the vapor flow from the bottom 

yb = -59.6868501+-89.4037240*xB+-39.8552042*xB.^1.5...       % (Eq. A.9) 

    +81.47664393*exp(xB)-21.7897938*exp(-xB); 

% Boiler temperature 

if xB <=0.1661                                              % (Eq. A.10) 

    Tb=273.15+(-0.02214517+-0.05785120*xB.^1.5+0.032146591*exp(xB)).^-1; 

else 

    Tb =273.15+278.3854921+-141.465178*xB+49.67113604.*xB.*log(xB)... 

        +9.159930587*xB.^3+-184.225674*exp(-xB); 

end 

% Molar specific enthalpy in the bottom 

hb = (55.678*xB+75.425)*Tb-15208.44*xB-20602.34; 

% Molar specific enthalpy in the vapor flow 

Hb =  36172.03-2919.83*yb+(31.461-11.976*yb)*Tb... 

       +(4.063*10^-4+0.0734*yb)*Tb^2; 

% Partial derivative delta(hb)/delta(xb)=f(Tb(xb)) 

deltahbdeltaxb = 55.678*Tb-15208.44; 

% Partial derivative delta(hb)delta(Tb)=f(xb) 

deltahbdeltaTb = 55.678*xB+75.425; 

% Temperature derivate respecto to ethanol concentration (xB) 

if xB<=0.1661 

    dTbdxB=-(1.5*-0.05785120*xB.^0.5+0.032146591*exp(xB))./ ... 

        (-0.02214517+-0.05785120*xB.^1.5+0.032146591*exp(xB)).^2; 

else 

    dTbdxB=-141.465178+49.67113604.*log(xB)+49.67113604+ ... 

        3*9.159930587*xB.^2+184.225674*exp(-xB); 

end 

% total derivate dhb/dxb 

dhbdxb=deltahbdeltaxb+deltahbdeltaTb*dTbdxB; 

% ===== IMPLICIT EQUATION - ENEGERY BALANCE IN THE BOTTOM (Eq.A.23) ======= 

xLstart=1.1*xB; % initial iteration value of xL 
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par=[xB Qcal UAb UAc Tamb yb hb Hb dhbdxb]; 

options=optimset('Display','off'); 

% solve implicit equation with fsolve to calculate xL 

[xL,fval,exitflag]=fsolve(@(x) xLsolve(x,par),xLstart,options); 

% ======= THERMODYNAMIC EQUILIBRIUM ETHANOL-WATER IN THE HEAD ZONE ======== 

% Empirical correlations are evaluate in xL 

% Head temperature 

if xL <=0.1661                                           %TL=f(xL) (K) 

     TL=273.15+(-0.02214517+-0.05785120*xL.^1.5+0.032146591*exp(xL)).^-1; 

 else 

     TL =273.15+278.3854921+-141.465178*xL+49.67113604.*xL.*log(xL)... 

         +9.159930587*xL.^3+-184.225674*exp(-xL); 

end 

% Ethanol molar fraction in the distillate flow 

yd = -59.6868501+-89.4037240*xL+-39.8552042*xL.^1.5... 

    +81.47664393*exp(xL)-21.7897938*exp(-xL); 

% Molar specific enthalpy in the liquid reflux 

hL = (55.678*xL+75.425)*TL-15208.44*xL-20602.34; 

% Molar specific enthalpy in the distillate flow 

Hd = 36172.03-2919.83*yd+(31.461-11.976*yd)*TL... 

       +(4.063*10^-4+0.0734*yd)*TL^2; 

% ============ Mass balances in the head (partial condenser) ============== 

% Vapor flow from the bottom 

Vb= UAc*(TL-Tamb) / ( (Hb-Hd)+(yb-yd)/(xL-yd)*(Hd-hL) ); 

% Liquid natural reflux flow 

L =-UAc*(TL-Tamb) / ( (hL-Hd)+(xL-yd)/(yb-yd)*(Hd-Hb) ); 

% Distilllate flow 

Vd = Vb-L; 

% =========== EMPIRICAL CORRELACIÓN DENSITY (NEURBURG 1994) =============== 

MW1=46.07;               % Weight molar Etanol 

MW2=18.0153;             % Weigth molar water 

MWp=MW1*yd+(1-yd)*MW2;   % Weigth molar mixture 

rhow=1;                  % g/mL density water pure 

% apparent molal volume of liquid mixtures [m3/kmol] (Eq. A.16) 

phi=5.1214e-2+... 

    6.549e-3*yd+7.406e-5*(TL-273.15); 

% Mixture density (Eq. A.16) 

rhop=MWp/(phi*1000*yd+(1-yd)*(MW2/rhow)); 

% Distillate flow rate (mL/s) 

F=Vd*MWp*(1/rhop); 

%========================================================================== 

function [TB, TC, GAi, F] = online_outputs(xB,u,p,flag_UA) 

% This function concatenate the equilibrium temperatures, instantaneous 

% alcoholic strength and distillate flow rate. This variables correspond 

% to on-line measures variables in the experiments. 

% inputs: 

% xB:            Integrated vector of xB (x(:,2)) 

% u:             Input vector 

% p:             Parameter vector p = [UAb UAc] 

% flag_UA:       UA parameter configuration 

% outputs: 

% TB:            Boiler temperature (K). 

% TC:            Head temperature (K). 

% GAi:           Instantaneous alcoholic strength 
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% F:             Distillate flow rate (mL/min) 

 

% Input variales declaration 

tspan = u(:,1); 

Qcal  = u(:,2); 

Tamb  = u(:,3); 

% vector creation 

TB  = zeros(length(xB),1); % Boiler temperature (K) 

TC  = zeros(length(xB),1); % Head temperature (K) 

yD  = zeros(length(xB),1); % Ethanol molar fraction in the vapor (mol/mol) 

F   = zeros(length(xB),1); % Distillate flow rate (mL/s) 

% =========== EVALUATION OF EVALFUN FOR EACH ELEMENT OF xB ================ 

for i=1:length(xB) 

    xb=xB(i); 

    ui = [tspan(i) Qcal(i) Tamb(i)]; 

    [Tb, TL, yd, f] = evalfun(xb,ui,p,flag_UA); 

    TB(i) = Tb; 

    TC(i) = TL; 

    yD(i) = yd; 

    F(i)  = f*60; % here, distillate flow rate is multiplicate for 60 to obtain mL/min 

end 

% This polynomial function relationship the head temperature equilibrium 

% with the alcoholic strength of distillate. 

P=[-38.950116015168470 2.310609445800233e+02 -5.482530421230588e+02 ... 

    7.048795688586179e+02 -5.700321285089950e+02 3.213122048471700e+02 ... 

    0.001131244289002]; 

GAi = polyval(P,yD); % instantaneous alcoholic strength 

%========================================================================== 

function f=xLsolve(xL,par) 

% This function contains the routine that calculate xL by nonlinear equation 

% solver (fsolve). 

% Inputs: 

% xL: variable of iteration with fsolve 

% par: vector parameters that contain variables that are calculate previous 

% to enter to this function. 

% Outputs: 

% f: correspond to value of implicit equation (A.23) 

 

% Variable declaration 

xB      = par(1); 

Qcal    = par(2); 

UAb     = par(3); 

UAc     = par(4); 

Tamb    = par(5); 

yb      = par(6); 

hb      = par(7); 

Hb      = par(8); 

dhbdxb  = par(9); 

% Boiler temperature 

if xB <=0.1661 

     Tb=273.15+(-0.02214517+-0.05785120*xB.^1.5+0.032146591*exp(xB)).^-1; 

 else 

     Tb =273.15+278.3854921+-141.465178*xB+49.67113604.*xB.*log(xB)... 

         +9.159930587*xB.^3+-184.225674*exp(-xB); 
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end 

% Head temperature 

if xL <=0.1661 

     TL=273.15+(-0.02214517+-0.05785120*xL.^1.5+0.032146591*exp(xL)).^-1; 

 else 

     TL =273.15+278.3854921+-141.465178*xL+49.67113604.*xL.*log(xL)... 

         +9.159930587*xL.^3+-184.225674*exp(-xL); 

end 

% Ethanol molar fraction in the distillate flow 

yd = -59.6868501+-89.4037240*xL+-39.8552042*xL.^1.5... 

    +81.47664393*exp(xL)-21.7897938*exp(-xL); 

% Molar specific enthalpy in the liquid reflux 

hL = (55.678*xL+75.425)*TL-15208.44*xL-20602.34; 

% Molar specific enthalpy in the distillate flow 

Hd = 36172.03-2919.83*yd+(31.461-11.976*yd)*TL... 

       +(4.063*10^-4+0.0734*yd)*TL^2; 

% Vapor flow from the bottom 

Vb= UAc*(TL-Tamb)/((Hb-Hd)+(yb-yd)/(xL-yd)*(Hd-hL)); 

% Liquid natural reflux flow 

L =-UAc*(TL-Tamb)/((hL-Hd)+(xL-yd)/(yb-yd)*(Hd-Hb)); 

% Implicit equation that depend on xL, F(xL)=0. 

f=-(L*(xL-xB)-Vb*(yb-xB))*(dhbdxb)+L*(hL-hb)-Vb*(Hb-hb)+(Qcal-UAb*(Tb-Tamb)); 
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CONCLUSIONS 

In the present work was proposed a model-based design to obtain distillates rich in fruit and 

floral aromas and low in off-flavors and toxic compounds in batch distillation using 

Charentais copper alembic. 

In chapter II, was developed a robust automatic control strategy through a phenomenological 

model of Charentias copper alembic distillation. Control algorithms such as PI, PID, IMC 

and FOPID were tried in several disturbances scenarios during the distillation process like 

variations in the room temperature and noises in the manipulated variable. FOPID controller 

achieved better control efforts when increased the disturbances. This controller demonstrated 

be a good alternative as compared traditional controllers since was tried in a nonlinear and 

non-steady process like batch distillation using suitable simple ruled-based tuning 

techniques. 

In Chapter III, we focus on using modern engineering tools to consistently produce spirits 

with low methanol content in Charentais alembics. The method involved developing, 

simulation and calibration of a dynamic model. Then, a multi-objective function was 

formulated and solved the dynamic optimization problem. Optimization yielded a variable 

temperature in the partial condenser, which was tracked by an experimental automatic control 

system that manipulated the heat addition in the boiler. Here, the optimal operation obtained 

distillates with 12% less methanol than standard distillates, with a moderate reduction (2.4%) 

in the ethanol recovery. This means that much better distillates spirits can be obtained by 

applying model-based engineering tools than those achieved by trial and error 

experimentation or intuitively. 

In Chapter IV, we focus on model-based methodology to produce recipes for Muscat wine 

distillations in Charentais alembics. The recipes were obtained by dynamic multi-objective 

optimization of a multi-component phenomenological model (DAES). Two multi-objective 

functions were developed considering chemical markers that define the aromatic 

characteristic of the distillates. The first function included three chemical markers 

characteristic of each distillation cut (head, heart and tail). The second considered a Principal 

Component analysis (PCA) applied to the chemical profile of Chilean commercial distillates. 
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The optimal recipes were experimentally validated in an automatized Charentais alembic 

using a synthetic Muscat wine consisting of ethanol, water plus six congeners. The 

experimental results indicated that using model-based optimization techniques, it is possible 

to obtain spirits with a chemical composition like Chilean commercial distillates. In addition, 

the chemical composition of many commercial distillates lied close to a Pareto front defining 

a compromise between linalool, a characteristic Muscat floral aroma, and acetaldehyde, a 

head contaminant marker. 

FUTURE PERSPECTIVES 

The results of this project will allow to design distillation recipes for Charentais stills to 

produce any spirit with enhanced specific aromatic characteristic and with minimum levels 

of toxic compounds and aromatic defects. Even though our results were obtained in a lab-

scale alembic, the methodology can be easily extended at industrial scale since the system 

implementation is relatively simple and low cost. The application of this methodology could 

generate a robust technological package that can solve and help to distillers in the industry 

by engineering tools used in the present work. Thus, it will possible design distillation recipes 

in an optimal way, employing less experimental effort, cost and time. 

This study will be of interest to researches and practitioners working in the distillation of 

complex mixtures such as spirits, essential oils and the like. In addition, this approach will 

be interest and can be extended in the field of optimal design of food products using the 

multi-objective optimization techniques and analysis multi-variable methods. 
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