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ABSTRACT

UNDERSAMPLED Q-SPACE RECONSTRUCTION METHODS

FOR DIFFUSION SPECTRUM IMAGING

Thesis submitted to the Office of Research and Graduate Studies in partial fulfillment

of the requirements for the Degree of Doctor in Engineering Sciences by

GABRIEL ENRIQUE VARELA MATTATALL

Abstract

Diffusion magnetic resonance imaging is a technique that makes the signal sensitive to

water diffusion at the microstructural level. It provides an indirect mean to describe the

microstructure that restricts water diffusion. One important goal of diffusion magnetic

resonance imaging is to obtain the ensemble average of water spins’ displacements: the

so-called diffusion propagator. The diffusion propagator contains the information from the

diffusion signal and it provides biomarkers which could be used for clinical applications.

Nonetheless, its full acquisition is infeasible in a routine clinical acquisition. Hence, its

acceleration by means of advanced acquisition and reconstruction methods based on signal

modeling is a key procedure to make the diffusion propagator attainable in time-restricted

scans. The complete reconstruction of the diffusion propagator has been already accel-

erated by means of compressed sensing and by more sophisticated signal models. How-

ever, the main hypothesis of this thesis is that the acceleration can go even further. This

thesis studies and proposes different reconstruction methods to improve the trade-off be-

tween signal reconstruction and the required number of samples. Reconstruction quality

and propagator-based indices are used to evaluate the reconstruction performance applied

to simulated and in vivo data. Additionally, we visually inspected reconstructions from

anatomical regions that are known for their highly complex microstructure.
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This thesis contains three main chapters describing three different works around the recon-

struction problem. The first chapter is a proposal about combining both signal modeling

and compressed sensing. In the proposed method, the multi-Gaussian model provides a

“low-frequency” version of the diffusion propagator; and then compressed sensing recon-

structs the differences, or the “high-frequency” components, between the model and the

complete diffusion data. The proposed method improves the independent results of either

the multi-Gaussian model or compressed sensing at low noise levels. The second chapter

is a comparison of different reconstruction methods from the state-of-the-art. The meth-

ods are tested under different reconstruction settings in terms of under-sampling, noise

level and microstructure orientation. Although the most efficient reconstruction method is

based on adaptive dictionaries, the reconstruction method ”mean apparent propagator” is

less data-dependant and is more accurate for obtaining diffusion-based indices. Finally, the

third chapter is the application of a compressed sensing to the mean apparent propagator.

Results indicate that the combination of mean apparent propagator and compressed sens-

ing provides a mean to obtain the complete diffusion propagator in clinical time-restricted

scans.

Members of the Doctoral Thesis Committee:

PABLO IRARRÁZAVAL

CRISTIÁN TEJOS

MARCELO ANDÍA

STÉREN CHABERT

TONY STÖCKER

JORGE VÁSQUEZ

Santiago, July, 2019

Keywords: diffusion propagator, q-space, compressed sensing, mean apparent prop-

agator
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RESUMEN

UNDERSAMPLED Q-SPACE RECONSTRUCTION METHODS

FOR DIFFUSION SPECTRUM IMAGING

Tesis enviada a la Dirección de Investigación y Postgrado en cumplimiento parcial de

los requisitos para el grado de Doctor en Ciencias de la Ingenierı́a

GABRIEL ENRIQUE VARELA MATTATALL

Abstract

La imagen de resonancia magnética de difusión es una técnica que hace la señal sensible

a la difusión del agua a nivel microestructural. Esto proporciona un medio indirecto para

describir la microestructura que restringe la difusión del agua. Un objetivo importante de

las imágenes de resonancia magnética de difusión es obtener el conjunto promedio de los

desplazamientos de los espins de agua: el llamado propagador de difusión. El propagador

de difusión contiene la información de la señal de difusión y proporciona biomarcadores

que podrı́an utilizarse en aplicaciones clı́nicas. No obstante, el tiempo de adquisición es

inviable en una adquisición clı́nica rutinaria. Por lo tanto, su aceleración por medio de

métodos avanzados de adquisición y reconstrucción en base a modelamiento de señales es

un procedimiento clave para hacer que la adquisición del propagador de difusión sea al-

canzable en tiempos adecuados. La reconstrucción completa del propagador de difusión ya

ha sido acelerada por medio de sensado comprimido y por modelos más sofisticados. Sin

embargo, la principal hipótesis de esta tesis es que se pueden alcanzar aceleraciones aún

mayores. Esta tesis estudia y propone diferentes métodos de reconstrucción para mejorar

el compromiso entre la reconstrucción de la señal y el número requerido de muestras. Los

ı́ndices sobre calidad de reconstrucción y basados en el propagador son usados para evaluar

el rendimiento de la reconstrucción aplicados a simulaciones y datos in vivo. Además, in-

speccionamos visualmente las reconstruciones de regiones anatómicas que son conocidas

por su microestructura altamente compleja.
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Esta tesis contiene tres capı́tulos principales que describen tres trabajos sobre el problema

de reconstrucción, tanto para la reconstrucción de la totalidad del propagador de difusión

como de la totalidad del espacio-q. El primer capı́tulo es una propuesta con el propósito

de combinar tanto el modelamiento de señales, como la teorı́a de sensado comprimido. En

el método propuesto, el modelo multi-gaussiano proporciona una versión de “baja frecuen-

cia” del propagador de difusión y luego, sensado comprimido reconstruye las diferencias ,

o los componentes de “alta frecuencia”, entre el modelo y los datos completos de difusión.

El método propuesto mejora los resultados independientes del modelo multi-Gaussiano o

de sensado comprimido a niveles bajos de ruido. El segundo capı́tulo es una comparación

de diferentes métodos de reconstrucción del estado del arte. Estos métodos son proba-

dos en diferentes configuraciones de reconstrucción en términos de nivel de submuestreo

y ruido y orientación de la microestructura. Si bien el método de reconstrucción más efi-

ciente se basa en diccionarios adaptativos, el método de reconstrucción ”propagador medio

aparente” depende menos de los datos y es más preciso para obtener ı́ndices basados en la

difusión. Finalmente, el tercer capı́tulo es la aplicación de sensado comprimido al propa-

gador medio aparente. Los resultados indican que la combinación de ambos provee un

medio para obtener el propagador de difusión en adquisiciones clı́nicas acotadas en tiempo.

Miembros de la Comisión de Tesis Doctoral:

PABLO IRARRÁZAVAL

CRISTIÁN TEJOS

MARCELO ANDÍA

STÉREN CHABERT

TONY STÖCKER

JORGE VÁSQUEZ

Santiago, Julio, 2019

Palabras Claves: propagador de difusión, espacio-q, sensado comprimido, propa-

gador medio aparente
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1. INTRODUCTION

Magnetic resonance imaging (MRI) is a sophisticated technique that provides the op-

portunity to improve the diagnosis of human diseases and the follow-up of treatments in

comparison to other imaging methods. The MR signal is sensitive to different physical

properties such as density, susceptibility, flow, diffusion, etc. Therefore, it can generate

several kinds of images; being a very unique imaging tool when compared to the single-

contrast images from ultrasound and computational axial tomography. Its imaging richness

may complement and even replace other imaging methods for medical decisions. Addi-

tionally, MRI is non-invasive and radiation-free. Hence, although MRI has challenges that

need to be solved for the future, it offers much more opportunities for development that

must be investigated.

One particular MRI technique is diffusion MRI (dMRI) in which the signal is sensitive to

water diffusion at a microstructural level. Under this regime, unreachable for other imag-

ing methods, the data from dMRI is used to infer about the state of the microstructure in

healthy and in pathological stages. In particular, the state of neurons and axons that may be

dying due to neurodegenerative diseases. Neurodegenerative diseases act at a microstruc-

tural level but they are only detectable at the macrostructural level. Therefore, dMRI may

be the key to develop clinical strategies to detect, diagnose and monitor the treatment of

these diseases.

A complete dMRI requires an infeasible acquisition time in order to sample the complete

diffusion signal and it also requires very complex models to explain the microstructure be-

hind the acquired signal. The clinically applicable dMRI is based on a Gaussian model

for the diffusion in order to obtain a coarse characterisation of the signal in time-restricted

scans. Although the value from Gaussian diffusion is undeniable, given its clinical utility,

a more specific and accurate characterisation of the diffusion signal could provide new and

valuable information to improve medical decisions. Finally, the challenge is to wisely re-

duce the acquisition time and preserve the quality of the complete diffusion signal.

This thesis focuses on the process of recovering the missing samples from the diffusion
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signal due to under-sampling: the reconstruction process. By means of an improved re-

construction, the complete characterisation of the diffusion propagator may be attainable

in reduced time scans. For that purpose, this thesis uses under-sampling strategies and

completes the missing data through different reconstruction methods that exploit a-priori

knowledge of the diffusion signal. Together with proposing new reconstruction techniques,

this thesis also compares existing dMRI reconstruction methods and it analyses which one

provides the highest reconstruction quality from minimum sampling. This thesis consists

of three chapters. Each chapter corresponds to an investigation about reconstruction perfor-

mance, either by proposing a new method or by comparing different reconstruction meth-

ods.

The first chapter corresponds to the proposal of reconstructing the complete diffusion prop-

agator by combining multiple Gaussians and compressed sensing theory. Compressed sens-

ing is used to recover the differences between the fit from multiple Gaussians and the com-

plete diffusion data. The proposed method performs well under certain conditions, but it

is, in general, outperformed by other reconstruction methods. Although the proposal could

have been improved by including recent advances or by a better tuning of the optimisation

parameters, its philosophy, which is the description of Gaussian and non-Gaussian dif-

fusion, is represented by the reconstruction method known as mean apparent propagator,

which is described in the second chapter and improved in the third chapter.

The second chapter corresponds to the comparison of three representative dMRI recon-

struction methods based on compressed sensing theory, signal modeling and machine learn-

ing, respectively. The work in this chapter analysed the payoffs and drawbacks from the

following representative methods: diffusion spectrum imaging accelerated by compressed

sensing using either 1) the identity as sparsifying transform or 2) adaptative dictionaries

for sparse representation; and 3) the mean apparent propagator, a physical model based on

continuous basis-functions for an efficient representation of the diffusion signal. Although

the most efficient reconstruction method turned out to be adaptive dictionaries, the mean

apparent propagator is less data-dependant and is more accurate for obtaining diffusion-

based indices.

2



The third and last chapter corresponds to an improved mean apparent propagator recon-

struction using compressed sensing theory. Due to the fact that this physical model goes

in agreement with compressed sensing fundamental requirements, this research shows that

the proposed reconstruction method obtains higher reconstruction quality and obtains a bet-

ter approximation of the complete diffusion signal than its previous version. Furthermore,

with the application of compressed sensing it may operate in an acquisition time similar to

the acquisition time used for more simplistic models such as the diffusion tensor model.

In what remains of this chapter we present a brief description of diffusion MRI and a review

of the analysed reconstruction methods.

1.1. diffusion MRI: q-space imaging and the diffusion propagator

Diffusion MRI is a technique which has the ability to make the MR signal sensitive

to water diffusion. By including a diffusion encoding after excitation, the MR signal is

attenuated proportionally to the diffusion phenomenon occurring in each voxel. The image

from the attenuated signal due to diffusion is a diffusion-weighted image. Since the attenu-

ation depends on the time given to the diffusion process, and on the orientation and strength

of the gradient, each diffusion-weighted image provides information about the microstruc-

tural setting that attenuates the signal. A significant number of diffusion-weighted images

in all directions is required in order to obtain information about the microstructure. The

complete set of diffusion-weighted images provides a mean to obtain the ensemble average

of displacements from a population of water molecules and for different diffusion times.

This is the so-called the diffusion propagator (Callaghan, 1991, 338 p.).

The diffusion encoding provides a way to label spins’ positions and then observe the dis-

tance travelled during a period of time. Any gradient waveform after excitation and before

the actual acquisition may be considered as diffusion enconding, as long as the net area for

that encoding is zero (Bernstein, 2004). Overall, the diffusion encoding diminishes the MR

signal from a T2-weighted image, E0, to generate a diffusion-weighted image, Ei, as,

Ei = E0e
iφ(x,t), (1.1)
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where φ(x, t) is the phase from a spin located at position x over time t,

φ(x, t) = γ

∫ t

0

G(ξ)x(ξ)dξ; (1.2)

and where γ is the gyromagnetic ratio and G is the strength of the gradient. In particular,

the standard diffusion encoding from Stejskal and Tanner, known as the pulsed gradient

spin echo (PGSE) (Stejskal & Tanner, 1965) sequence, allows to do such tracking of wa-

ter spins’ displacements between two instances of time in a very convenient manner. This

PGSE sequence provides a clear distinction between the encoding time from the gradient

and the diffusion time ∆ (Johansen-Berg, 2009). The encoding time is used to label the po-

sition of spins whereas the diffusion time is used to track the displacement between labels.

Furthermore, thanks to the principles used in the PGSE sequence, the Fourier relation-

ship between the diffusion propagator and the complete set of diffusion-weighted images,

known as q-space, results explicit. The PGSE diffusion encoding sequence is the only dif-

fusion encoding used across this thesis because the objective in here is to reconstruct the

diffusion propagator.

The PGSE sequence is modeled by two impulses whose amplitudes are G and −G; and

separated by a period of time ∆. Hence, the phase from a single spin results in:

φ(x, t) = γG

∫ t

0

[δ(ξ)− δ(ξ −∆)]x(ξ)dξ. (1.3)

Given the sifting property of the impulse function, δ(ξ), the integral turns into a evaluation

of the position of the spin at the starting time, x(0), and its position at x(∆) as,

φ(x, t) = γG[x(0)− x(∆)]; (1.4)

and the complete expression so far is,

Ei = E0e
iγG[x(0)−x(∆)]. (1.5)

The use of impulse functions to characterise the displacement of the spin is known as the

narrow pulse approximation (Callaghan, 1991, 338 p.); however, it is not given in a real

experiment. The existence of a finite diffusion encoding time, historically known as δ, turns
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the labels into the evaluation of centre-of-mass rather than the evaluation of position for a

single spin (Mitra & Halperin, 1995; Lori, Conturo, & Le Bihan, 2003). If δ << ∆, the

diffusion process during the encoding time may be neglected. The net phase ∆φ, results

strictly dependant to x(0) and x(∆). If x(0) = x(∆), the net phase vanishes. Nonetheless,

in most cases x(0) 6= x(∆) and it generates an incomplete cancellation of the net phase.

Now, because a voxel contains a population of spins, the phase dispersion and/or spreading

of phases among the randomly moving population of spins, that started at x(0) and ended

up in x(∆) for a diffusion time ∆, produces an attenuated signal due to the incoherence in

the orientations of individual magnetic moments (Johansen-Berg, 2009). Let us replace E0

with the ensemble average of spins:

Ei =

∫ ∞
−∞

p(x(∆)|x(0),∆)eiγG[x(0)−x(∆)]dx. (1.6)

Now, if we replace in eq. (1.6) the travelled distance with r = x(∆)− x(0), and if we add

the definition of a wave-vector q = γ
2π
δG, then,

E(q,∆) =

∫ ∞
−∞

p(r|∆)e−i2πqrdr, (1.7)

the Fourier relationship between the diffusion-weighted signal, E(q,∆), and the proba-

bility density function of displacements from the ensemble average of water molecules,

p(r|∆) (or diffusion propagator), becomes explicit. Hence, both domains are connected by

the Fourier transform. Finally, because the diffusion propagator is expected to be positive

and symmetric, it is possible to obtain it from q-space data as:

p(r|∆) =

∫ ∞
−∞
|E(q)|ei2πqrdq, (1.8)

and this is known as diffusion spectrum imaging (DSI) (Wedeen et al., 2000, 2005).

Each sample of q-space corresponds to the magnitude of a diffusion-weighted image.

Therefore, a complete q-space acquisition becomes infeasible for clinical protocols. Given

the fact that the diffusion propagator could reveal relevant biomarkers for early detection,

diagnosis and follow-up treatments for diseases that alter the tissue microstructure, there is
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a need to accelerate the acquisition of the fully-sampled diffusion propagator. Furthermore,

the acquisition needs to be inside time-restricted clinical scans.

1.2. Sampling and reconstruction of q-space

The first idea to accelerate the acquisition is to reduce the number of q-space sam-

ples below the Nyquist sampling rate. Obviously, this option generates a trade-off between

signal quality and acquisition time that needs to be analysed from a signal processing per-

spective. In particular, random sampling is used in compressed sensing theory for signal

acquisition and reconstruction.

The continuous signal is sampled such that the measured signal corresponds to the product

between the original signal and a train of impulses as,

p[r] = p(r) T (r) with T (r) =
∞∑

n=−∞

δ(r − nT ), (1.9)

where T is a train of impulses with a sampling period T . By Fourier properties, the

product of functions in the image or Fourier domain corresponds to a convolution in the

opposite domain (Irarrazaval, 2000). Furthermore, the Fourier transform of the T func-

tion is another function of the same style, f , but with a “sampling” period f = T−1.

Therefore, if we are sampling in q-space, the diffusion propagator is convolving its signal

with a train of impulses which have a separation between impulses defined by f = T−1.

If the sampling period T increases as we try to under-sample the q-space, f decreases and

the excessive under-sampling reaches a point where the convolutions between the diffusion

propagator and the infinite impulses from f start to overlap. The overlap between convo-

lutions is known as the aliasing artifact. This artifact is very troublesome because you can

not distinguish between the overlapped convolutions. This is why a minimum sampling

frequency is demanded to assure enough separation between convolutions and it is known

as the Nyquist Sampling Criterion. It states that a signal needs to be acquired with at least

twice the greatest frequency observed in the signal. Otherwise, aliasing appears and which

is impossible to resolve, unless the acquisition system has enough acquisition devices to
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disentangle the spatial origin of overlapped signals, as in parallel MRI (Lipton., 2008). In

order to avoid the Nyquist Sampling Criterion, two main approaches are analysed in this

thesis: 1) the application of a model to exploit directly the a-priori knowledge about the

diffusion signal; and 2) the application of compressed sensing to exploit the sparse repre-

sentation of the diffusion signal.

1.2.1. Models for q-space reconstruction

This section gives a brief explanation about the most relevant reconstruction meth-

ods that are analysed across the different chapters of this thesis. They are separated in

two groups depending on whether the reconstruction method characterises diffusion as a

Gaussian process (diffusion tensor imaging) or as a non-Gaussian process (mean apparent

propagator and compressed sensing).

Diffusion Tensor Imaging (DTI)

The Gaussian model significantly speeds up the acquisition and the reconstruction pro-

cess; and it is possible to obtain the diffusion tensor that provides tensor-based indices

for clinical applications. Finally, the Fourier transform of a Gaussian function is another

Gaussian function; hence, it is possible to analyse a “low-frequency” version of the diffu-

sion propagator through Gaussian diffusion.

Diffusion Tensor Imaging (DTI) (Le Bihan et al., 2001) is probably the most common and

standarised procedure to characterise the diffusion signal. In it,

E(q,∆) = E(q||q|=0,∆) exp
(
−4π2qDqT) , (1.10)

the diffusion signal is based on the diffusion tensor, D. This tensor is a 3 × 3 covariance

matrix; therefore, it is square and symmetric with six unknowns to estimate:

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 . (1.11)
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The diffusion tensor is commonly decomposed with the eigendecomposition to obtain the

eigenvalues and eigenvectors:

D = RΛRT =


e1x e2x e3x

e1y e2y e3y

e1z e2z e3z



λ1 0 0

0 λ2 0

0 0 λ3



e1x e2x e3x

e1y e2y e3y

e1z e2z e3z


T

; (1.12)

that are used to obtain tensor-based indices for clinical applications. For example, the

eigenvalues obtained from DTI may be used to compute the mean diffusivity (MD) and the

fractional anisotropy (FA).

Mean Apparent Propagator (MAP)

The non-Gaussian diffusion component cannot be approximated by the Gaussian model.

This non-Gaussian component appears: 1) at high q-space values; and 2) with complex mi-

crostructures such as crossing-fibres in the human brain. Consequently, the most difficult

and challenging area in dMRI is the correct estimation of non-Gaussian diffusion.

Mean apparent propagator (MAP) (Ozarslan et al., 2013; Avram et al., 2016) corresponds

to a physical model based on continuous basis-functions. The 1D basis-function, φn(µ, q),

is defined as,

φn(µ, q) =
1

in
√

2nn!
exp

(
−(2πµq)2

2

)
Hn(2πµq), (1.13)

where µ is an scaling parameter and Hn corresponds to the nth-order Hermite polynomial

which is modulated by a Gaussian term. What is really interesting about this set of basis-

functions, is that the first basis-function (n = 0) is the Gaussian diffusion whereas the

rest of the basis-functions (n > 0) are the non-Gaussian diffusion. A second interesting

property of φn(µ, q) is that its Fourier transform also results in a Gauss-Hermite function,

ψn(µ, r),

ψn(µ, r) =
1

µ
√

2n+1πn!
exp

(
−0.5

(
r

µ

)2
)
Hn

(
r

µ

)
; (1.14)

and this is the 1D basis-function that characterises the diffusion propagator. The recon-

struction process for this method is the estimation of the coefficients, c, that weight the

set of basis-functions. Furthermore, both sets of basis-functions, Φ and Ψ, share the same
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coefficients, so it is possible to optimise data consistency from q-space samples, E, while

imposing properties of the diffusion propagator like non-negativity as:

ĉ = argminc||ΦTc− E||22 s.t ΨTc ≥ 0. (1.15)

Reconstruction by means of compressed sensing theory

Compressed sensing (CS) (Candes & Romberg, 2007) is an efficient sampling and

reconstruction strategy. Before CS, the Nyquist sampling criterion was a fundamental re-

quirement for sampling technology and it could only be avoided under certain circum-

stances. Thanks to CS, now signals can be under-sampled below the Nyquist criterion and

obtain an almost exact version of the fully-sampled signal.

If the three principles of randomness, sparsity and incoherence are fulfilled the under-

sampled signal can be completely reconstructed with CS. Let us start with the principle of

Randomness. As stated in the previous section, the conventional uniform under-sampling

makes those infinite convolutions to overlap and make the aliasing artifact almost impos-

sible to disentangle. Now, if random under-sampling is applied, it would not stop the

overlapping between these convolutions; however, the overlapping will be completely dis-

organised and aliasing turns into a noise-like artifact. Now, the reconstruction problem

from random under-sampling turns into a denoising problem, where this noise-like artifact

is just energy that we need to re-distribute along the field-of-view of the original signal.

From the infinite set of solutions to solve the ill-posed problem, we will pursue the solution

that provides the sparsest representation of the signal in a certain domain. For example, if

our time-dependant signal corresponds to a single cosine waveform with frequency f1: we

would have maximum sparsity of the signal in the Fourier domain because it results in only

two coefficients different from zero; and correspond to f1 and−f1. Under this concept, we

do not need to acquire all samples from the sampling space (time) if in the representation

domain (Fourier) the information is already compressed in just a few coefficients (in this

case two coefficients only). However, we need to wisely select the correct samples that

compress the information and that allows to discard “irrelevant” samples. Finally, we need

9



a strategy to find that sparse solution for our problem and that is through the incoherence

principle. Let us take for example the definition of the Fourier Transform from eq. (1.7).

By definition, incoherence is the pattern-free effect of one sample in the other space; there-

fore, the image and Fourier domains show maximum incoherence between them because

a single sample contributes to the complete signal in the other domain and vice versa. By

means of incoherence, the optimisation pursues a sparse representation of the signal in the

sparsifying domain whereas incoherence penalises incorrect results in the data consistency

term. Therefore, the compressed sensing optimisation may be expressed as:

argminp ‖SFp− E‖2
2 + λ‖Ωp‖1, (1.16)

where Ω stands for the sparsifying domain and F stands for the Fourier operator (given the

acquisition domain that is fixed to Fourier/q-space). S is the under-sampling operator, p

is the diffusion propagator and E are the q-space samples. Finally, this two terms are bal-

anced by the λ parameter. This optimisation may be written as a basis-pursuit optimisation,

or as a lasso optimisation.

From the three principles, the most relevant principle is sparsity; and therefore, the most

practical and common way to work with CS is by the selection of the most appropiate spar-

sifying basis for the application of CS. Diffusion Spectrum Imaging (DSI), eq. (1.8), is

generally improved by means of compressed sensing as in (Menzel, Tan, Sperl, & King,

2011). The main idea in this line of research is to find the most sparsifiyng basis for the

sparse representation of the diffusion propagator. This sparsifying basis may come from

traditional sparsifying transforms like the identity-basis (S. L. Merlet & Deriche, 2013),

Total Variation (Menzel et al., 2011), wavelets (Paquette, Merlet, Gilbert, Deriche, & De-

scoteaux, 2015), or from pre-defined dictionaries as sparsifying bases (Bilgic et al., 2012).

This could be done by creating a sparse dictionary, from the information of thousands of

diffusion propagators; or by creating an sparsifying basis that takes into account the a-priori

knowledge from the diffusion signal. Thanks to CS, the diffusion propagator can be recov-

ered with approximately one-fourth of the complete data set and it reduces the acquisition
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time from tenths of minutes to a couple of them.

1.2.2. Summary of the research

Problem

The direct reconstruction of the diffusion propagator is, most of the time, infeasible for

routinely clinical applications. Hence, the main problem tackled in this work is how to pre-

serve high quality reconstruction of the complete diffusion propagator while the sampling

protocol is modified to reduce the scan time.

Hypothesis

The hypothesis is that, by means of compressed sensing theory and the selection of

the best sparsifying basis, it is possible to obtain a better reconstruction of the complete

diffusion propagator from minimum sampling.

Objectives

The objectives are:

(i) To analyse different reconstruction methods from the state-of-the-art.

(ii) To propose strategies to improve the reconstruction methods from the state-of-

the-art by means of compressed sensing theory.

(iii) To search for the best sparsifying basis for the application of compressed sensing.

Methods

Experiments are performed on simulations and in-vivo data. The simulations are done

using Monte-Carlo simulations from the Camino software (Cook, Bai, Nedjati-Gilani, Se-

unarine, & Hall, 2006); and the in-vivo data comes from a collaboration with the German

Center for Neurodegenerative Diseases (DZNE), in Bonn, Germany. In simulations, exper-

iments are modified in terms of under-sampling, noise level and microstructure orientation

in order to provide a thoroughly analysis from a known ground truth. In vivo data are used

to show the direct applicability of results from simulations in real acquisitions.
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The reconstructed diffusion propagators are evaluated in terms of reconstruction perfor-

mance and in the extraction of propagator-based diffusion indices. The normalised mean

squared error and Pearson’s correlation coefficient indices are used for the quantitative

evaluation of reconstruction performance; and the mean squared displacement and the re-

turn to zero probability indices are used for the quantitative evaluation of the extraction

of propagator-based indices. Additionally, visual inspection from anatomical regions are

used to observe the behaviour of the reconstructed diffusion propagators. The anatomical

region of preference is the centrum semiovale because it contains many fibre-bundles with

different orientations; therefore, it is a complex microstructure suitable for testing more

sophisticated reconstruction methods.

Scientific Contribution

First, this thesis tries to obtain an original procedure to reconstruct the diffusion prop-

agator from the minimum sampling possible. For that purpose, a thorough analysis from

state-of-the-art reconstruction methods is performed in order to detect and improve these

methods by means of compressed sensing theory. Finally, the improved method, at the end,

resulted in the application of compressed sensing for the sparse fit of continuous basis-

functions to q-space data.

This thesis generated two articles: one was accepted and another under revision. In this

thesis nine scientific abstracts were accepted at annual meetings of the international so-

ciety of magnetic resonance in medicine (ISMRM), at the international students congress

from the IEEE-EMBS and at the biomedical engineering congress from the University of

Concepcion.
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2. COMBINED MODEL AND COMPRESSED SENSING RECONSTRUCTION

FOR DIFFUSION SPECTRUM IMAGING
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This Manuscript was rejected, but invited to re-submit a revised version of it by the

journal Magnetic Resonance in Medicine (Magn Reson Med) in May, 2017.

2.1. Introduction

Diffusion, at a microscopic level, consists of the permanent and random displace-

ments of water molecules. The set of possible displacements, r, has a probability density

function (pdf) which changes with time and with respect to the surrounding microstructure.

The pdf of displacements for an average group of molecules given a diffusion time ∆, is the

so-called diffusion propagator p(r|∆) (Callaghan, 1991, 338 p.). If the environment is free

of constraints, then p(r|∆) is a Gaussian pdf. The pdf deviates from Gaussian when water

molecules encounter physical constraints. Therefore, characterizing the deviation from a

Gaussian pdf may provide valuable information about the underlying microstructure that

restricts diffusion.

Diffusion MRI is a technique used to acquire the diffusion propagator for each voxel. It

makes T2-weighted images sensitive to diffusion by including diffusion encoding gradi-

ents, with amplitude |G| and duration δ, separated by the previously mentioned diffusion

time ∆. Thus, these images contain the effect of diffusion over ∆ in the direction of G

(Stejskal & Tanner, 1965). The data are acquired in the so-called q-space, q = δGγ/2π,

which corresponds to the Fourier transform of the diffusion propagator. The direct recon-

struction of the diffusion propagator from the magnitude of q-space data is called Diffusion

Spectrum Imaging (DSI) (Wedeen et al., 2000, 2005). The diffusion propagator is defined

as:

p(r|∆) =

∫ ∞
−∞

P (q,∆)ei2πqrdq (2.1)

where P (q,∆) are the q-space samples. When q-space data are acquired under the

Narrow Pulse Approximation (δ → 0) (Callaghan, 1991, 338 p.), the diffusion propagator

is the direct representation of water molecule displacements. When the gradients duration

are longer, (δ >> 0), the diffusion propagator has information from the spins’ centers of
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mass (Mitra & Halperin, 1995; Lori et al., 2003). To fulfill the Nyquist sampling require-

ment, many q-space samples are needed and since each of them is an image, DSI becomes

a time-expensive technique.

Undersampling methods like Compressed Sensing (CS) (Candes & Romberg, 2007) have

been used to reduce the acquisition time in DSI below the Nyquist sampling rate. To do

this, CS exploits the fact that data can be compressed in some domain. The first publication

of CS in DSI (Menzel et al., 2011) proposed the use of Total Variation and Haar Wavelets

as sparse domains. Soon after, other authors (Bilgic et al., 2012) proposed a sparse domain

based on adaptive dictionaries. The pdf in its own space (the identity) has shown to be

sparse enough for CS reconstruction (S. L. Merlet & Deriche, 2013). Recently, (Paquette

et al., 2015) proposed a joint improvement by selecting the Cohen-Daubechies-Feauveau

9/7 Wavelet as sparse domain, and a sparse undersampling pattern with uniform angular

distribution and randomly allocated samples in the radial profile. Research in this area is

focused on the selection of both, the sampling pattern and the sparse domain.

When the full diffusion propagator is not needed, model-based estimations are enough

to compute its most relevant properties. Generally, the propagator is approximated by a

Gaussian model. Although the diffusion signal has a close connection with the Gauss-

ian model because of the Brownian motion, a diffusion propagator based on it may not

describe correctly, or completely, the underlying microstructure. For example, Diffusion

Tensor Imaging (DTI) (Le Bihan et al., 2001) will fail when the voxel contains two or more

non-parallel fibers. The multi-tensor model is an extension of DTI (Tuch et al., 2002),

but it increases the number of parameters depending on the number of tensors used in the

analysis. Another model technique is Diffusion Kurtosis Imaging (DKI) (Jensen, Helpern,

& Ramani, 2005) which incorporates the non-Gaussian information of the diffusion signal

as the kurtosis parameter. Finding the kurtosis increases the precision of the fit, but it is

sensitive to noise; hence, DKI can only be used in high SNR conditions. Model fitting in

diffusion MRI is normally used with a reduced number of parameters due to limitations in

acquisition time and signal-to-noise ratio.

In this work, we propose to fit a model to DSI data with the use of CS to reconstruct the
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complete diffusion propagator. The model represents the Gaussian part of the signal, whilst

CS reconstructs the differences between the model and the DSI data. To do this, we firstly

fit a model to randomly acquired samples in q-space, then we apply CS to complete the

estimated diffusion propagator. Our hypothesis is that the combination of a model-based

and CS will improve the reconstruction quality when compared to a strictly model-based

method or compared to the conventional DSI using CS for a given undersampling rate.

Methods

Our proposed method is a two-step procedure. First, a model estimates the coarse part

of the diffusion propagator from randomly distributed samples in q-space. Second, com-

pressed sensing estimates the differences between the model and the data. In this work, the

chosen model is the multi-tensor model in combination with compressed sensing to recon-

struct the deviation from multiple Gaussians.

The combined model compressed sensing (MCS) method is compared to the multi-tensor

model (M) and to compressed sensing (CS) alone. The three reconstruction methods (M,

CS and MCS) are tested with retrospectively undersampled measurements which were ob-

tained from simulated data (Monte Carlo simulations) and from actual data acquired from

a diffusion phantom and an in-vivo brain. Results from the reconstructions were evaluated

using the fully sampled data as ground truth. In section 3.1, the implementation of the three

reconstruction methods is explained. In 3.2, the different data sets are described. And in

3.3, the quality indexes are defined.

Reconstruction

In what follows, we describe in more detail the multi-tensor model, compressed

sensing and combined model compressed sensing:

1) Multi-Tensor Model (M):

We denote M as the method that obtains the diffusion propagator m̂(r|∆) from the inverse
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Fourier transform of the model defined in q-space:

m̂(r|∆) = F −1{Ma(q,∆)} (2.2)

whereMa(q,∆) =
∑f

i=1 αiexp(−4π2(∆− δ/3)qTDiq) is the model fitted to the data

with:

â = argmina‖Ma(q,∆)− P (q,∆)‖2
2

where f is the number of tensors and a is a vector with parameters. For each tensor Di,

a has entries [αi, λ
1
i , λ

2
i , λ

3
i , θ

x
i , θ

y
i , θ

z
i ], where αi is the fraction asociated to that tensor,

λ
{1, 2, 3}
i are the eigenvalues and θ{x, y, z}i are the directions of the eigenvectors such that

Di = Q(θxi , θ
y
i , θ

z
i ) Λ(λ1

i , λ
2
i , λ

3
i ) Q(θxi , θ

y
i , θ

z
i )

T.

In order to estimate these parameters, we used a non-linear least-squares optimization algo-

rithm with constrained values for λx,y,zi ∈ [0,∞], θxi ∈ [0, π] and θy,zi ∈ [−π, π]. The best

fit of the multi-tensor model it is not necessarily a good estimation when the underlying

distribution is not Gaussian-based; hovewer, we are only interested in an approximation

such that the differences with the actual data will become sparser. A discussion on models

and their validity in diffusion MRI can be found in (Hagmann, Jonasson, & Maeder, 2006;

Ferizi et al., 2014).

2) Compressed Sensing (CS):

We denote CS as the method that estimates the diffusion propagator using compressed

sensing:

p̂(r|∆) = argminp(r|∆)

1

2
||SFp(r|∆)− P (q,∆)||22 + γ||Ψp(r|∆)||1 (2.3)

where the estimated diffusion propagator p̂(r|∆) is obtained by minimizing the com-

bination of a data consistency term, 0.5||SFp(r|∆) − P (q,∆)||22 , and a regularizer term,

||Ψp(r|∆)||1. Here SF is the undersampled Fourier operator. Data consistency assures

the similarity between the estimation and the acquired data. The regularization constrains

p(r|∆) to be represented as a sparse signal in the domain Ψ. The optimization balances by

a weighting parameter γ.
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For Ψ we used the Identity, Total Variation, the Cohen-Daubechies-Feauveau (CDF) 9/7

Wavelet and the Daubechies D8 Wavelet. The CDF 9/7 Wavelet toolbox of (Getreur, 2006)

was modified to be used in 3D data. The Daubechies D8 Wavelet was implemented with

the toolbox provided in (Baraniuk, Choi, Neelamani, & Ribeiro, 1993). The optimization

was done using a homemade non-linear conjugate gradient algorithm. The weight γ was

experimentally fixed and the undersampling pattern was randomly generated.

3) Combined Model and Compressed Sensing Reconstruction (MCS):

We denote MCS as the combination that uses the method in Eq.[2.2] to obtain the coarse

structure of the pdf, m̂(r|∆), and uses CS to estimate the differences, d̂(r|∆), not captured

by the model.

p̂(r|∆) = m̂(r|∆) + d̂(r|∆) (2.4)

Since we can fit the model to arbitrarily located samples, we used randomly dis-

tributed positions in q-space so we could apply CS as the second step:

d̂(r|∆) = argmind(r|∆) ‖SFd(r|∆)−D(q,∆)‖2
2 + γ‖Ψd(r|∆)‖1 (2.5)

whereD(q,∆) are the differences between the data and the multi-tensor model. The sparse

domains for Ψ are the same as in 2).

Data Sets

The simulated data were generated from Monte Carlo simulations using Camino soft-

ware (Cook et al., 2006; Hall & Alexander, 2009). Simulations of one and two 60-degree

crossing fibers were done with 103 time steps for 105 spins to diffuse in their respective

substrates. We added Gaussian noise to each channel of the simulated measurements to

obtain the magnitude of the diffusion signal as P (q)i =
√

(Psimulation(q) + ε1i )
2 + (ε2i )

2,

where ε1i , ε
2
i ∼ N(0, σ) and standard deviation σ = 1/ SNR (Paquette et al., 2015). For

our simulations, we used σ ∈ [0, 1, 2, 3, 4, 5, 6]%. Each noisy experiment was repeated one

hundred times.

Phantom and in-vivo data were acquired in a 3T Siemens Prisma scanner with Gmax =

80 mT/m and SRmax = 200 T/ms. For the 60-degree diffusion phantom (Moussavi-Biugui,
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Stieltjes, & Fritzsche, 2011), manufactured by HQ Imaging, we acquired the images using

a diffusion encoding with δ = 31 ms, and ∆ = 39 ms, where either qmax = 73.64 mm−1

or bmax = 8350 s/mm2, in a sequence with TE = 139 ms, TR = 2 s and resolution of

2.0x2.0x3.0 mm3. From the diffusion phantom data, we selected two regions of interest in

the phantom: One region with crossing fibers, and the other with a set of one fiber bundle

(as shown on the left of Figure 2.1). For each region, we manually selected 20 voxels that

shared structural similarity.

For the in-vivo acquisition, we used a diffusion encoding with δ = 31 ms and ∆ = 43.2 ms,

where either qmax = 62.21 mm−1 or bmax = 6600 s/mm2, in a sequence with TE = 88 ms,

TR = 4.5 s and isotropic resolution of 8.0 mm3. We selected a region of interest from cor-

pus callosum (as shown on the right of Figure 2.1 to test the three reconstruction methods.

The acquisition was done after written informed consent approved by the Ethics Commit-

tee.

Simulations, phantom and in-vivo data acquisitions were done in an 11x11x11 q-space

Cartesian grid. Each complete data set has 257 q-space measurements contained in a dis-

crete half-sphere with a radius of 5 samples. The other half was obtained by symmetry

since the q-space data come from the magnitude of the signal. To reduce the ringing ar-

tifacts due to insufficient acquisition, in all data sets, we multiplied the q-space data by

a cosine window W (q) = cos (0.5π
√

(qx/‖q‖)2 + (qy/‖q‖)2 + (qz/‖q‖)2). We noticed

that this window offers a better trade-off between artifacts and resolution than the Hanning

window (cos2 window) used in the original work of DSI (Wedeen et al., 2005). It preserves

more of the higher frequencies, reducing the blurring from the Hanning window without

noticing ringing artifacts. This issue was also tackled in (Lacerda et al., 2016; Paquette,

Gilbert, & Descoteaux, 2016), but we changed the window instead of removing the win-

dowing. The ground truth for each data set corresponds to the inverse Fourier transform of

the q-space data multiplied by the cosine window. In simulations, the q-space data are the

noise-free measurements, Psimulation(q), for one and two fibers.

From the fully sampled data, we used retrospective UnderSampling factors (US factors)
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FIGURE 2.1. Visualization of the phantom and in-vivo data. Left side: Field of
Oriented Distribution Functions (ODF) from two regions of interest in the diffusion
phantom. Right side: Brain image depicting the position of the chosen region of
interest from a slice of corpus callosum and their ODF.

from 2x to 8x for the reconstruction process of the different methods. The sampling pattern

is a 3D Cartesian q-space grid where the central 3x3x3 measurements were always sam-

pled and the rest of the measurements, depending on the US factor, were picked randomly

with a linearly decreasing density distribution. This sampling pattern was used in the three

reconstruction methods.

Additionally, we used a second sampling pattern which contains all the samples in a single-

shell (located as in (24)) at Rshell = 3/2 qmax, with the same number of measurements for

each US factor as the Cartesian sampling pattern. We used a tri-linear interpolation from

the Cartesian data to obtain the measurements for the spherical sampling pattern. This sam-

pling pattern allowed us to compare the model fit from a random sampling pattern with a

high angular resolution sampling pattern.
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Quality Indexes

We treated the reconstruction and the ground truth as a probability density function

(pdf). Hence, negative values were clipped (23) and later it was enforced that
∫
p(r|∆) = 1

.

To quantitatively evaluate the reconstruction p̂(r|∆) against the ground truth p(r|∆), we

mainly used the Normalized-Root-Mean-Square-Error (NRMSE). Although, we also com-

puted other indexes: Mean-Squared-Displacement (MSD) (Wu, Field, & Alexander, 2008),

return-to-zero-probability (p0) (Assaf, Mayk, & Cohen, 2000) and Pearson’s Correlation

coefficient (PC). These indexes were chosen because they make sense as a way for com-

paring pdfs.

We defined the NRMSE as the RMSE between the reconstruction and the ground truth nor-

malized by the maximum value in the pdf. So NRMSE = RMSE(p̂(r|∆), p(r|∆))/max(p(r|∆)).

The MSD, second moment of the pdf, was defined as:

MSD(p(r|∆)) =

∫ ∞
−∞

p(r|∆)r2dr (2.6)

The relative MSD is ∆MSD = (MSD(p̂(r|∆)−MSD(p(r|∆)) )/MSD(p(r|∆)). Positive

∆MSD indicates that the reconstruction overestimates the Mean-Squared-Displacement.

The return-to-zero-probability (p0) was defined as:

p0 ≡ p(r = 0 | ∆) =

∫ ∞
−∞

P (q,∆)dq (2.7)

The relative return-to-zero-probability is ∆p0 = (p̂0 − p0)/p0, where p̂0 is the return-to-

zero-probability from the reconstruction. A positive difference indicates an overestimation

of p0.

The Pearson’s correlation coefficient was defined as

PC(p(r|∆), p̂(r|∆)) =
1

N − 1
Zp(r|∆) ZT

p̂(r|∆) (2.8)

where Zp(r|∆) = p(r|∆)−mean(p(r|∆))
std(p(r|∆))

and N is the number of samples. We used the difference

with 1, (1− PC(p(r|∆), p̂(r|∆))), such that this index was zero for a perfect match.
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Additionally, we visually inspected the results comparing the reconstructed pdfs and ODFs

with those from the ground truth. The visualization of the ODFs and the ODF field (like in

Figure 2.1) was done in the DSI Studio software (http://dsi-studio.labsolver.org).

Results

In this section we present the results from the M, CS and MCS reconstruction meth-

ods applied to simulations, diffusion phantom and in-vivo data. For M, we show the results

using the random sampling pattern, and we show the fit when the sampling is spherical

(denoted as Ms). For CS, we show the results of CS-I (Ψ = I or Identity), and for MCS,

we show the results of MCS-I. For both reconstruction methods, we used the same random

sampling pattern.

We start by explaining why we chose Ψ = I over other domains. Second, we show the

results from simulations: for the correct model; for an incorrect model; and for different

levels of noise. Third, we show the results from the diffusion phantom data. And fourth,

we show the results from the in-vivo acquisition.

Sparsifying Transform

Figure 2.2 shows the quality indexes for CS and the MCS reconstructions with the

different sparse domains used for the reconstruction of two-crossing fibers with noise stan-

dard deviation σ = 6% (SNR = 16.66) and undersampling (US) factor 8x. We chose

Ψ = I for CS because it produced the best results for the four quality indexes as shown in

(A). For MCS (B), Ψ = I was selected because it produced results very similar to the other

domains, and it is significantly simpler. This behavior of CS and MCS with Ψ = I were

observed for all US factors and noise standard deviations.

22



FIGURE 2.2. CS and MCS reconstructions using all sparse domains at 8x. These
plots show in each axis one index, where a smaller index means a better approx-
imation to the ground truth. A) CS-Ψ. B) MCS-Ψ. From this it was possible to
conclude that Ψ = I is a good sparse domain for both reconstruction methods.

Simulations

We used simulations to test the reconstruction methods. The ground truth is the

noise-free fully sampled simulation. We simulated one and two fibers and for the recon-

struction we used the model with one and two tensors.

Figure 2.3 shows the NRMSE for one fiber and two fibers (column (A) and (B)). When

the model had the correct number of fibers, the proposed fitting with random samples (M)

worked very well, outperforming the fitting to spherical samples (Ms). Here MCS per-

formed equally or slightly better. Similar behaviors were witnessed using other indexes

of comparison. For instance, at 8x undersampling for one fiber the ∆MSD measurement

ranked first for both M and MCS with−7.47%; followed by, Ms with−17.53%; and finally,

CS with −31.56%. PC indicated that all reconstructions had correlations above 99%. The

∆p0 measurement ranked first for both M and MCS with −1.4%; followed by, Ms with

2%; and finally, CS with −3.5%. At 8x undersampling for two fibers, the ∆MSD ranked

first MCS with −0.001%; followed by, M with −3.4%; CS with −14.46%; and finally, Ms
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with −17.7%. PC indicated that all reconstruction methods had correlations above 98%.

The ∆p0 ranked first Ms with 3%; followed by, M with −4.48%; MCS with −4.84%; and

finally, CS with −10.70%.

FIGURE 2.3. Results from simulations with the correct model. Column (A) is
the NRMSE obtained from the noise-free reconstructions of one fiber at different
undersampling factors. Column (B) is the result from the noise-free reconstructions
of two-crossing fibers at different undersampling factors.

The following results show the behavior of the methods when the number of fibers

in the model do not match the object. Figure 2.4 shows in column (A) the reconstruction

of one fiber using f = 2 in the multi-tensor model, and in column (B) the reconstruction of

two-crossing fibers using f = 1. From (B), it can be appreciated that the MCS method had

the best NRMSE for all undersampling factors and, as expected, M did not perform well.

Furthermore, the second stage in MCS was capable of correcting the reconstruction from

the badly fitted model. As for the other indexes, at 8x undersampling, the ∆MSD ranked

first MCS with 1.05%; followed by, CS with −14.46%; M with −23.58%; and finally, Ms

with −40.18%. PC indicated that all reconstruction methods had correlations above 97%.

The ∆p0 ranked first Ms with 9.64%; closely followed by, CS with −10.70%; M with

−11.32%; and finally, MCS with −13.79%.
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FIGURE 2.4. Results from simulations with an incorrect model. A) NRMSE ob-
tained from noise-free reconstructions of one fiber, but using f = 2 in the multi-
tensor model, at different undersampling factors. B) NRMSE obtained from noise-
free reconstructions of two-crossing fibers, but using f = 1 in the multi-tensor
model, at different undersampling factors.

In figures 2.3 and 2.4, it is possible to observe some cases with a non-monotonic

behavior in the NRMSE measurement of some methods as the US factor was increased.

This was explained by a random match between the sampling pattern and the data. To test

this, we rotated the fiber orientation by different angles at 15-degree intervals. From figure

2.5, the reconstruction quality is dependent on the sampling pattern; however, the ranking

of the methods was preserved.

Finally, we investigated how the quality of the reconstruction changes in the presence

of noise. Figure 2.6 shows the NRMSE as a function of the standard deviation of the noise.

Column (A) correspond to one fiber with f = 1, (B) is for two crossing-fibers with f = 2

and (C) to two-crossing fibers with f = 1. As expected, the NRMSE increased with the

noise. In all cases, MCS performed very well, and similar to M when the model was cor-

rect. As also expected, for higher noise levels M performed better, since it does not suffer

from over-fitting to noise. The other indexes showed a similar behavior. For example, in

(A) at σ = 6%, the ∆MSD measurement ranked first MCS with −6.01%; followed by,

25



FIGURE 2.5. Evaluation of the reconstruction process according to the angle of
the fiber bundle. A) Reconstruction with US factor 4x. B) Reconstruction with US
factor 8x.

M with −8.39%; CS with −20.07%; and finally, Ms with −24.61%. PC indicated that all

reconstruction methods had correlations above 98%.

FIGURE 2.6. Quality indexes as a function of noise. Column (A) shows the
NRMSE for reconstructions of one fiber for different noise level. Column (B) is
for two-crossing fibers. And column (C) is for two-crossing fibers, but using f = 1
in M and Ms. Results were consistent with the noise-free experiments and the
reconstruction quality was dependent of the correctness of the model.

Diffusion Phantom

Figure 2.7 shows the mean and standard deviation of the NRMSE of the recon-

structions of the diffusion phantom for two regions, one containing one fiber, and the other
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containing two fibers. For each group, we used 20 voxels to compute the mean and standard

deviation. The reconstruction was done with f = 1 or f = 2 depending on the group. The

ground truth is the inverse Fourier transform of the complete acquisition multiplied by the

cosine window. As can be seen in figure 2.7, the MCS method had the best NRMSE for all

the US factors regardless of the number of fibers. At 8x undersampling in column (A), the

∆MSD measurement ranked first MCS with −16.66%; followed by, CS with −25.93%; M

with −34.66%; and finally, Ms with −50.08%. PC indicated that all reconstruction meth-

ods had correlations above 98%. For two fibers (column B), the indexes were very similar,

preserving the ranking.

FIGURE 2.7. Results from the diffusion phantom. Column (A): mean and standard
deviation of the NRMSE from 20 voxels with one fiber. Column (B): mean and
standard deviation of the NRMSE from 20 voxels with two-crossing fibers.

Human Brain

Figure 2.8 shows the mean and standard deviation of the NRMSE for the region of

interest in the corpus callosum (133 voxels with different number of fibers) of a human

brain acquisition. For model fitting, we used two tensors for all voxels. The behavior was

similar to the previous results. The proposed methods M and MCS had the lowest NRMSE
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when compared to the other reconstruction methods. At 8x undersampling, the ∆MSD

measurement ranked first MCS with −19.53%; followed by, CS with −29.36%; M with

−36.34%; and finally, Ms with−48.04%. PC indicated that all reconstruction methods had

correlations above 97%. The ∆p0 ranked first MCS with −2.83%; followed by, M with

−2.91%; Ms with 4.69%; and finally, CS with −10.41%.

FIGURE 2.8. Results from the in-vivo data. Mean and standard deviation of the
NRMSE measurement for 133 voxels inside the region of interest from corpus cal-
losum for different US factors.

Finally, figure 2.9 shows the ODF field from the region of interest in corpus callo-

sum at 4x. It is possible to observe that the ODFs from MCS are similar to the ground truth.

Discussion

The hypothesis of this work was that it could be possible to obtain higher accelera-

tion factors and/or higher reconstruction quality by combining a model-based method and

compressed sensing (CS) to reconstruct the diffusion propagator. While the model recon-

structs the bulk of the data, CS completes the information not obtained by the model. In

this way, both methods work together for a better solution and improve the estimation of
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FIGURE 2.9. ODF field from a region of interest from corpus callosum. (A)
Ground truth. (B) MCS at 4x undersampling.

the diffusion propagator.

To verify our hypothesis, we tested our proposed methods, M (multi-tensor model with

random sampling) and MCS, against the multi-tensor model with spherical sampling and

CS under different undersampling factors, sparse domains, noise standard deviations and

number of fiber bundles. In order to apply CS after the model fit, we had to estimate the

model using randomly distributed samples in q-space. This is an innovative approach since

model-based methods like Diffusion Tensor Imaging are commonly used with uniformly

distributed samples in a single-shell.
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The results from simulations of one fiber bundle and two-crossing fibers showed that the

model fit using randomly distributed samples gives a better NRMSE than using distributed

samples in a single-shell. Acquiring random samples in q-space may be thought as a multi-

shell acquisition. It is not the purpose of this work to compare with DTI since we are

interested in the full pdf. Additionally, the acquisition parameters are quite different in

terms of the diffusion encoding; which, may invalidate any conclusion. The MSD, p0 and

PC also support an increased quality while reconstructing the data with sparse sampling

patterns. We did not use other indexes, such as Fractional Anisotropy, Difference in the

Number of fiber Compartments, and Angular Error because these measurements are useful

in a model-based context, but not for model-free pdf comparison.

In simulations, where the ground truth was the noise-free data, model-based methods per-

formed better than CS when the model was appropriately representing the microstructure of

interest. MCS was able to only marginally improve M. Even though Camino simulations

are not Gaussian-based, averaging center-of-masses and windowing makes the diffusion

propagator resemble a Gaussian pdf. The multi-tensor fitting is a relatively good model un-

der this scenario. However, when the model is incorrect and fails, MCS improved the final

result. We observed that whenever the number of tensors f exceeded the real number of

fibers in the object, it was possible to obtain a better estimation of the diffusion propagator.

However, increasing excessively f may generate multiple answers. In this work we used

the multi-tensor model with only one and two fibers. Although it is known that in cerebral

regions it is possible to find three or even more fiber bundles per voxel, the purpose of this

work was to show the feasibility of combining model-based with model-free methods. Our

method, which is a combination of the multi-tensor model and CS, was capable to achieve

similar results with the best reconstruction methods depending on the correctness of the

model.

In phantom and in-vivo acquisitions, where the ground truth was fully sampled, despite

noisy acquisition, our proposed methods showed better quantification of the pdf when

measured with the NRMSE, the Pearson correlation coefficient and the Mean-Squared-

Displacement. The key difference in the results between simulations and actual data come
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from the presence of noise in the ground truth.

In general, model fitting performs relatively well in presence of noise, in which case the

improvement of the second stage in MCS is only moderate. In any case it is appealing

that the worst case scenario for MCS results in the model fit. The improvements obtained

for a more correct estimation of the pdf, may lead to valuable information to describe the

underlying microstructure. In this work, we chose the multi-tensor model, but in general

other models can be used.
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3. COMPARISON OF Q-SPACE RECONSTRUCTION METHODS FROM UN-

DERSAMPLED DIFFUSION SPECTRUM IMAGING DATA
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3.1. Introduction

Diffusion, at a microscopic level, consists of molecules’ random displacements given

a diffusion time ∆. This set of possible displacements, r, has associated a probability den-

sity function (pdf), p(r|∆), which is the so-called diffusion propagator (Callaghan, 1991,

338 p.). The reconstruction of the diffusion propagator is relevant to describe the complete

diffusion process and to extract biomarkers without any assumption of the microstructure.

Diffusion MRI is a technique that estimates the diffusion propagator for each imaging

voxel. Usually, T2-weighted images are made sensitive to diffusion by including diffusion

encoding gradients, with amplitude |G| and duration δ, that are separated by the diffusion

time ∆. Thus, these images contain the effect of diffusion in the direction of G over ∆

(Stejskal & Tanner, 1965). The data acquired in q-space, q = δGγ/2π, correspond to the

Fourier transform of the diffusion propagator. The direct reconstruction of the center-of-

mass (Mitra & Halperin, 1995) diffusion propagator from the magnitude of the complete

q-space data is called Diffusion Spectrum Imaging (DSI) (Wedeen et al., 2000, 2005). Fur-

ther details and recent improvements for DSI acquisition and reconstruction can be found

in (Lacerda et al., 2016; Paquette et al., 2016; Tian et al., 2016).

The DSI reconstruction for each voxel is defined as

p(r) =

∫
R3

|E(q)|ei2πqrdq, (3.1)

where p(r) is the diffusion propagator given the fixed diffusion time for a traditional q-

space acquisition and E(q) are the values of the q-space samples. The Fourier transform

for DSI requires a minimum q-space sampling to fulfill the Nyquist criterion. Since each

q-space sample is a diffusion-weighted scan, the DSI acquisition becomes time-expensive

for clinical settings.

When the full diffusion propagator is not needed, model-based methods are suitable to
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compute specific diffusion indices. Typically, the propagator is approximated by the dif-

fusion tensor model. Even though diffusion tensor imaging (DTI) (Basser, Mattiello, &

LeBihan, 1994) has shown relevance in clinical applications (Le Bihan et al., 2001; Dong

et al., 2004), this approximation may not describe correctly, or completely, the tissue mi-

crostructure. For example, DTI provides a biased result, if the voxel contains two or more

non-parallel fibers (Landman et al., 2012). Another model technique is diffusion kurtosis

imaging (DKI) (Jensen et al., 2005) that incorporates the non-Gaussian diffusion using the

kurtosis parameter. Unfortunately, DKI cannot be used in a complete q-space regime due

to high signal to noise ratio requirements. A discussion on models in diffusion MRI and

their assumptions can be found in (Hagmann et al., 2006; Assemlal, Tschumperl, Brun, &

Siddiqi, 2011; Ferizi et al., 2014).

On the other hand, compressed sensing (CS) (Candes & Romberg, 2007) has been used to

fully reconstruct the diffusion propagator from undersampled q-space data. CS uses as prior

knowledge that the data should be represented sparsely in some domain. The first publica-

tion of CS in DSI (Menzel et al., 2011) proposed to use Total Variation and Haar wavelets

as sparse domains. Soon after, (Bilgic et al., 2012) proposed to use a data-driven dictionary

as sparse domain. This method had around 1.6-fold improvement in reconstruction quality,

measured as the normalized mean squared error (NMSE) when compared to (Menzel et

al., 2011); however, that work lacked simulations to describe in a more controlled environ-

ment the performance and limitations of both methods. Recently, (Paquette et al., 2015)

proposed a joint improvement by selecting the Cohen-Daubechies-Feauveau 9/7 wavelet

as sparse domain; and a sparse undersampling pattern using a uniform angular distribution

with randomly allocated samples along radial profiles. That work analyzed most of the

commonly used sparsifying transfoms like wavelets, Total Variation and the identity basis

from (Menzel et al., 2011; Bilgic et al., 2012; S. Merlet, 2013); and different undersam-

pling patterns as in (Menzel et al., 2011). However, a comprehensive comparison between

CS-based reconstruction methods with reconstruction methods that fit the q-space signal

to a highly efficient set of continuous basis functions is yet to be done. A representative

method using continuous basis functions is the mean apparent propagator (MAP) (Ozarslan
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et al., 2013; Avram et al., 2016), a method which approximates the diffusion propagator

using Hermite functions. The first basis function corresponds to the diffusion tensor as in

DTI; and the rest characterize any deviation from DTI. Up to some extent, MAP has a better

characterization of q-space than other continuous basis functions because it takes advan-

tage of the anisotropic nature of its scaling tensor, whereas other methods that use isotropic

scaling would require more basis functions to obtain the same reconstruction quality (Fick,

Wassermann, Caruyer, & Deriche, 2016).

In this work we compared the methods of MAP, compressed sensing using the identity as

sparsifying transform (CSI) and compressed sensing using data-driven dictionaries (CSD).

The novelty of this comparison is that we included MAP in addition to CSI and CSD meth-

ods, which were previously analyzed in (Bilgic et al., 2012; Paquette et al., 2015).

3.2. Methods

The three reconstruction methods were tested using retrospectively undersampled q-

space data from Monte Carlo simulations and from an in vivo brain acquisition. The re-

constructions were compared with the fully sampled data as ground truth to evaluate re-

construction quality and retrieval of propagator-based diffusion indices. Finally, the in vivo

reconstructions were used for a visual analysis of the centrum semiovale.

3.2.1. Data sets

Simulations and in vivo data were done in an 11x11x11 q-space Cartesian grid. Each

complete data set had 257 q-space samples contained in a discrete half-sphere with a radius

of 5 samples. The other half was obtained by symmetry.

For the Monte Carlo simulations we used the crossing substrate from the Camino software

(Cook et al., 2006; Hall & Alexander, 2009). The substrate corresponds to two fiber popula-

tions in interleaved planes; and one population was rotated with respect to the other popula-

tion in order to resemble two crossing fiber bundles with a certain crossing angle. The fiber

populations were done with a cylinder radius of 2 µm and a cylinder separation of 5.1 µm.
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We used 103 time steps for 105 spins, initially uniform-distributed, to diffuse in the crossing

substrates. We simulated two crossing fibers with crossing angles in [0, 15, 30, ..., 90]◦. The

diffusion encoding parameters for the simulations were with δ = 31 ms and ∆ = 43.2 ms,

where qmax = 62.21 mm−1 (or bmax = 6600 s/mm2); and TE = 88 ms. Gaussian noise was

added to the real and imaginary part of the simulated measurements to obtain Rician noise

in the magnitude of the diffusion signal as E(q)i =
√

(Esimulation(q) + ηi,1)2 + η2
i,2, where

ηi,1, ηi,2 ∼ N(0, σ) and standard deviation σ = 1/SNR (Paquette et al., 2015). For simu-

lations, σ was chosen as [0, 1, 2, ..., 10] % of the peak value. Each noisy experiment was

repeated fifty times. The ground truth for simulations were the inverse Fourier transform

of the noise-free and fully sampled measurements, F−1{Esimulation(q)}.

For the in vivo acquisition, we used fully sampled DSI acquisitions collected as in (Tobisch

et al., 2018). Data were acquired in a 3T Prisma scanner at 1.5mm isotropic resolution

(TE/TR = 105/6100 ms, bmax = 6800 s/mm 2, ∆ = 51.3 ms, δ = 20.1 ms) using a 64-

channel head-neck coil. 257 diffusion weighted and 8 interleaved, non-weighted images

were acquired with both anterior-to-posterior and posterior-to-anterior phase encoding. Fi-

nally, the acquired data were processed in FSL to estimate and correct for susceptibility

geometric distortions, eddy currents and subject motion (Andersson, Skare, & Ashburner,

2003; Andersson & Sotiropoulos, 2015). The total scan time was 55 minutes. The ground

truth for in vivo data were the inverse Fourier transform of the fully sampled q-space from

each voxel.

The fully sampled data from simulations and acquisitions were retrospectively undersam-

pled from 2x to 8x to test reconstruction performance. The sampling pattern was a 3D

Cartesian q-space grid where the central 3x3x3 samples were always sampled and the rest,

depending on the undersampling factor (USF), were picked randomly with a variable de-

creasing density distribution (Menzel et al., 2011; Bilgic et al., 2012). We repeated the

reconstructions with ten different sampling patterns using the previously mentioned strat-

egy in order to establish if the reconstruction quality was invariant to both, the microstruc-

ture orientation and the particular sampling pattern. To test dependency on the angle be-

tween undersampling pattern and fiber orientation, we also reconstructed simulations (as
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described above) of a single fiber with USF = 4, and noise = 5% rotated in a plane using

[0, 15, ..., 165]◦.

3.2.2. Reconstruction

The reconstruction methods are as follows.

Mean apparent propagator (MAP)

Mean apparent propagator (MAP) (Ozarslan et al., 2013; Avram et al., 2016) is a least-

squares optimization that finds the best fit to q-space data as,

ĉ = argminc||Φ(A,q)Tc− E(q)||22 s.t Ψ(A, r)Tc ≥ 0, (3.2)

where c are the coefficients to estimate, Φ(A,q)T is the basis in q-space and Ψ(A, r)T is

the corresponding basis in pdf-space. Each basis function from Φ and Ψ are scaled by A =

diag(µ2
1, µ

2
2, µ

2
3), where µ{1,2,3} =

√
2λ{,2,3}τ is the square root of the mean displacement

for each eigenvalue of the diffusion tensor, which was fitted to all q-space measurements.

Because of the eigen decomposition of the diffusion tensor, each 3D basis function in Φ is

the combination of three 1D orthogonal basis functions, φn(µ, q), where each one of them

corresponds to the th-order Hermite polynomial, , modulated by a Gaussian-like term. The

1D basis function is defined as

φn(µ, q) =
1

in
√

2nn!
exp

(
−(2πµq)2

2

)
Hn(2πµq). (3.3)

An interesting property of φn(µ, q) is that its Fourier transform also results in a Gauss-

Hermite function, ψn(µ, r), as

ψn(µ, r) =
1

µ
√

2n+1πn!
exp

(
−0.5

(
r

µ

)2
)
Hn

(
r

µ

)
; (3.4)

and this is the 1D basis function that generates each 3D basis function for Ψ. Furthermore,

Φ and Ψ share the same coefficients, so it is possible to optimize data consistency while

imposing properties of the diffusion propagator like non-negativity. Therefore, the first
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basis function (n = 0) in Φ and Ψ correspond to Gaussian diffusion whereas the remaining

basis functions (n > 0) correspond to non-Gaussian diffusion. The bases Φ and Ψ were

constructed as in (Ozarslan et al., 2013) and according to recommendations from (Avram et

al., 2016). Hence, we used a maximum basis order of six, Nmax = 6, which corresponds to

the first 50 basis functions from the truncated infinite series. The number of basis functions

is defined by the following expression:

Φ(A,q) =
Nmax∑
N=0

∑
i,jk>0

i+j+k=N

φi (µ1, q1)φj (µ2, q2)φk (µ3, q3) , (3.5)

in order to ensure that all the possible combinations for the respective maximum basis or-

der are included to design both bases, Φ and Ψ. For symmetric signals, only even values

of N are non zero; therefore, the number of basis functions is defined by B (Nmax) =

(Nmax + 2) (Nmax + 4) (2Nmax + 3) /24. Finally, in this work the diffusion propagator

from MAP was obtained as p̂(r) = F−1{Φ(A,q)Tĉ}.

Compressed Sensing (CS)

Compressed sensing (CS) is a method that imposes sparsity in the representation of the

diffusion propagator while maintaining data consistency:

p̂(r) = argminp(r)

1

2
||SFp(r)− E(q)||22 + λ||Ωp(r)||1. (3.6)

Data consistency ensures the similarity between the estimation and the acquired data E(q),

where SF is the undersampled Fourier operator. The regularization constrains p(r) to

be represented sparsely in the domain Ω. For the data sets in this work we used Ω = I

since it is suitable and computationally efficient (Bilgic et al., 2012; Paquette et al., 2015).

Finally, the optimization was done using a non-linear conjugate gradient implementation.

The parameter λ was empirically fixed according to the procedure explained in Appendix

A.
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CS using data-driven dictionaries (CSD)

CSD is a CS reconstruction that obtains the diffusion propagator by fitting coefficients

to a trained dictionary (Bilgic et al., 2012). The method iteratively solves:

W t
j,j = diag

(∣∣xtj∣∣1/2)
st = arg mins ‖s‖2

2 such that SFDWts = E(q)

xt+1 = Wtst

(3.7)

where D is the dictionary obtained from a training set of diffusion propagators using the

ksvd algorithm (Aharon, Elad, & Bruckstein, 2006). The spirit of this dictionary is to

sparsely concentrate the variance between propagators in the first k-th atoms from the dic-

tionary. Wt is a diagonal weighting matrix whose jth diagonal entry is denoted W t
j,j and

this matrix multiplied with st equals xt+1, which are the corresponding coefficients after the

last iteration t. The focal underdetermined system solver (FOCUSS) promotes `1-sparsity

on the coefficients xt+1 through reweighted `2-optimizations on the auxiliary variable st.

For more information see (Ye, Tak, Han, & Park, 2007). Implementation was downloaded

from http://martinos.org/˜berkin/software.html.

For the simulation case, the training was done with simulated noise-free single fibers ro-

tated across the three axes in the pdf-space. For this purpose, we simulated in Camino

single fibers using a wide range of diameters and separation between cylinders. The ex-

periments were done using this dictionary, but with simulations of two crossing fibers (as

described above). For the in vivo case, the training was done with propagators from fully-

sampled q-space data of one axial slice. The in vivo training was done as in (Bilgic et al.,

2012). The reconstruction was done along a coronal slice to avoid any bias in favor of the

CSD method. The particular axial slice used for training the dictionary was removed from

the comparison. The diffusion propagator was obtained as p̂(r) = Dxt+1.

Finally, in all reconstruction methods the negative values found in each diffusion propa-

gator were clipped to zero (Paquette et al., 2016).
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3.2.3. Quality indices and visualization

To compare the reconstruction p̂ against the ground truth p, we used the normal-

ized mean squared error, NMSE{p̂, p} = ||p̂ − p||22/||p||22, and the Pearson’s correlation

coefficient (PC) (Paquette et al., 2015). We also compared two propagator-based diffu-

sion indices: the mean squared displacement (MSD) (Wu et al., 2008) and the return

to zero probability (p0) (Assaf et al., 2000; Ozarslan et al., 2013). The MSD is the

second moment of the pdf and the relative MSD error was defined as ∆MSD{p̂, p} =

(MSD(p̂)−MSD(p))2/MSD(p)2. The relative return to zero probability error was defined

as ∆p0{p̂, p} = (p0(p̂)− p0(p))2/p0(p)2.

The in vivo reconstructions were loaded into DSI Studio (http://dsi-studio.labsolver

.org) to visually analyze their performance around the centrum semiovale. This region

contains the intersection of multiple white matter bundles; therefore, it is a complex area

in the brain suitable to evaluate multiple crossing angles (Tian et al., 2016).

3.3. Results

3.3.1. Simulations

Figure 3.1 shows the mean and standard deviation of the NMSE index for the recon-

structions of a single fiber rotated at [0, 15, ..., 165]◦ in a plane with USF = 4. Figure 3.1A

shows that the reconstructions were slightly biased for angles aligned with the Cartesian

grid (0◦ and 90◦), i.e. the reconstructions are not entirely independent of the microstructure

orientations. This result agrees with what was obtained in (Lacerda et al., 2016), where

it is stated that the orientation distribution function reconstruction depends on q-space ac-

quisition and resolution. Figure 3.1B shows a slice of the sampling pattern. To avoid this

orientational bias between the Cartesian grid and the orientation from simulations, we ro-

tated the noise-free simulations by π/4 in the three axes.

Figure 3.2 shows the mean and standard deviation of the NMSE and PC indices (50 re-

constructions) of two crossing fibers while varying noise level, undersampling factor and

crossing angle. Both reconstruction quality indices are consistent, ranking the methods in
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FIGURE 3.1. Effect of the fiber orientation in the reconstruction of a single fiber
rotated over in pdf-space. The NMSE as a function of the rotation angle in (A)
shows that the reconstructions were slightly biased for rotation angles aligned with
the Cartesian grid (0◦ and 90◦). The corresponding central plane of the 3D q-space
sampling pattern at 4x is shown in (B) as reference.

the order: CSD, MAP and CSI. Figure 3.2A depicts NMSE as a function of noise. At

σ = 5%, NMSE obtained with MAP and CSI were 1.1-fold and 1.5-fold higher than the

NMSE from CSD; which agrees with the results in (Bilgic et al., 2012). The same behavior

can be seen in figure 3.2D for the PC. Figure 3.2B depicts NMSE as a function of USF and

it shows that the CSD method performed better than the other methods for undersampling

factors above 4x; which again agrees with (Bilgic et al., 2012). Between 2x and 8x, the

mean NMSE from CSD increased around 2% while MAP and CSI mean NMSE increased

around 8% and 5% respectively. This is also shown for PC in figure 3.2E. Figure 3.2C

depicts NMSE as a function of the crossing angle. The ranking of reconstructions is pre-

served and it is worth mentioning the increased error from CSI at lower crossing angles.

More prominent Gibbs ringing were observed at small crossing angles, which may be an

explanation for the increased errors. Furthermore, resolving small crossing angles is gen-

erally known to be challenging, even with advanced diffusion MRI, which may as well

explain increased NMSE values.

The previous results were reproduced for 9 additional undersampling patterns in order to
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FIGURE 3.2. Reconstruction quality indices for different settings from simulations
of two crossing fibers. The first row corresponds to NMSE as a function of noise
level σ (panel A); as a function of undersampling factor USF (panel B); and as
a function of crossing angle (Panel C). The second row corresponds to PC as a
function of the same variables (panels D,E and F).

verify whether these results were influenced by the selection of the specific sampling pat-

tern. Although there is a natural variance from randomized patterns, the ranking of the

reconstruction methods was preserved and most of them agree quantitatively too, which

can be seen in Appendix B.

Finally, figure 3.3 shows the mean and standard deviation of the propagator-based relative

index errors as functions of noise, undersampling and crossing angle from the reconstruc-

tions of crossing fibers. Figures 3.3A,D show almost exact recovery (error below 2%) of

the index as a function of noise. Furthermore, figure 3.3A demostrates that CSI may pro-

vide the best relative MSD error even at a relatively high undersampling factor of 4, if the
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FIGURE 3.3. propagator-based diffusion indices for different settings from simu-
lations of two crossing fibers. The first row corresponds to relative MSD error as
a function of noise level σ (panel A); as a function of undersampling factor USF
(panel B); and as a function of crossing angle (Panel C). The second row corre-
sponds to relative p0 error as a function of the same variables (panels D,E and F).

noise level is relatively low (σ ≤ 4%). Figures 3.3B,E show that both indices suffer con-

siderably for undersampling factors above 4x in the cases of CSI and MAP. Figure 3.3C

depicts the relative MSD error as a function of the crossing angle and it shows that the

relative MSD obtained from CSI has around a 2% error with respect to the ground truth.

This may indicate that at USF= 4, CSI reconstruction is obtaining a close approximation

of the shape, but not an exact recovery of the ground truth which slightly influences the

retrieval of the MSD index. Finally, figure 3.3F shows an excellent estimation of p0 for all

crossing angles.
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3.3.2. In vivo data

Figure 3.4 shows spatial maps of NMSE, (1-PC), relative MSD error and relative p0

error for the reconstruction methods using USF = 4 along a coronal slice. For visual clar-

ity the Pearson’s correlation coefficient has been subtracted from one, i.e. lower values

indicate greater correlation to the ground truth. The axial slice used to train the dictionary

of the CSD method was removed from the comparison (red line). In general terms, the

three methods show reconstruction quality below five percent error; except in areas con-

taining cerebrospinal fluid or deep brain areas. On the other hand, the methods show high

reconstruction quality for the corticospinal tract, the corpus callosum and the corona radi-

ata in comparison with other regions. Additionally, reconstruction quality indices indicate

a correlation with the SNR which, for small parallel imaging factors and hence negligible

geometry factors, can be assumed to be linked to the receive coil sensititvity map (decreas-

ing towards the center of the brain). With regard to the estimation of the relative MSD and

relative p0 errors, the MAP reconstruction shows higher quality when compared with CSI

and CSD methods. We included the spatial maps of NMSE for the three reconstruction

methods using USF = 4, 5, 6 and 8 in Appendix C.

Finally, figure 3.5 shows the generalized fractional anisotropy maps from the ground truth

and the reconstruction methods under investigation. From each map, we zoomed the region

around the centrum semiovale for visual inspection of the directional information from the

propagators obtained for those voxels. All methods show high similarity with the ground

truth, but there are areas where directional information has errors (see for example the

upper left corner of the zoomed areas).

3.4. Discussion

In this work, three methods to reconstruct the diffusion propagator from undersampled

q-space data were compared. These methods were MAP, CSI (using the identity as spar-

sifying transform) and CSD (using data-driven dictionaries for sparse representation). The
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FIGURE 3.4. Index-based maps from in vivo reconstructions. The first row corre-
sponds to the NMSE maps; the second row to (1-PC) maps; the third row to relative
MSD error maps; the fourth row to relative p0 error maps. The columns are the re-
construction methods: CSI, MAP and CSD. From the NMSE and (1-PC) maps, all
methods are very similar and show reconstruction errors below five percent, ex-
cept in areas containing cerebrospinal fluid or areas deeper in the brain. The real
difference comes on the estimation of diffusion indices, where MAP shows more
accuracy in recovering the MSD and p0 indices. CSI reconstruction provides the
worst recovery, but its error is around five percent only.
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FIGURE 3.5. generalized fractional anisotropy maps from the ground truth and the
reconstruction methods under investigation. From each map, we zoomed the region
around the centrum semiovale for visual inspection of the directional information
from the propagators obtained for those voxels. All methods show high similarity
with the ground truth, but there are areas where directional information has errors
(see for example the upper left corner of the zoomed areas).

comparison was done in terms of the reconstruction quality (mean squared error and Pear-

son’s correlation coefficient) and in terms of propagator-based indices (MSD and p0). The

novelty of this comparison is that we included MAP in addition to CSD and CSI methods,

which were previously analyzed (Bilgic et al., 2012; Paquette et al., 2015). We included in

the simulations different reconstruction settings of noise, undersampling factor and cross-

ing angles. In this way, we provided a thorough analysis to determine the advantages and

limitations for the different methods; and complement the previous work. Our study has
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the same spirit as (Hutchinson et al., 2017), but applied to reconstruction methods using

Cartesian data with high q-space samples. Across the experiments, we observed that the

Cartesian nature of the acquisition could influence the reconstruction of the directional in-

formation from diffusion MRI, so sampling patterns should be designed as isotropic as

possible, taking this fact into consideration as in (Paquette et al., 2015; Tobisch et al.,

2014).

The three reconstruction methods are representative procedures for recovering q-space

from undersampled data. One method is based on fitting q-space signal to a highly effi-

cient set of continuous basis functions; and two CS-based methods that sparsely encode

q-space by means of a sparsifying transform or by a dictionary constructed from the same

measurements. MAP (Ozarslan et al., 2013) is a set of basis functions where the first basis

function corresponds to Gaussian diffusion (DTI) and the extra basis functions are used to

characterize non-Gaussian diffusion; however, there is a trade-off between additional ba-

sis functions and the required number of q-space samples for a robust optimization. This

work reports that MAP using 50 basis functions worked well in terms of reconstruction

quality and for recovering the propagator-based indices at low undersampling factors. CS

reconstruction using the identity as sparse domain worked very similar when compared to

MAP and CSD, but there was a consistently higher error at realistic noise levels. Although

results from CS reconstruction could change by the selection another sparsifying transform

or the value of the Lagrangian multiplier, in our experiments the identity was enough. This

is confirmed since our results were similar to the results obtained in (Bilgic et al., 2012)

where they used wavelets and Total Variation as sparsifying transforms. Furthermore, in

(Paquette et al., 2015) it is shown that it produces satisfactory reconstruction performance

in comparison to other sparsifying transforms. CSD, on the other hand, assures the spar-

sity requirement in CS theory by using an ideal sparse dictionary constructed from the

same measurements by means of the ksvd algorithm. Additionally, it provides an iterative

parameter-free reconstruction method.
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The effectiveness of CSD reconstruction is related to the quality of the data used for train-

ing. In simulations, the training was done with single fibers of different geometrical proper-

ties and rotated across the entire pdf-space. This is a complete training set for characterizing

multiple fibers as a lineal combination of single fibers. The CS reconstruction using data-

driven sparse dictionary provided better results for the different settings and data when

compared to MAP or CS using the identity. Quantitatively speaking, MAP and CSI ob-

tained 10 and 50% more NMSE as compared to CSD. The observed reconstruction quality

from the three reconstruction methods did not affect in a significant manner the estimation

of propagator-based diffusion indices. The extraction of MSD and p0 were quite stable for

different noise levels and crossing angles; nonetheless, MAP and CSI deviated from the

ground truth, in both reconstruction quality and extraction of the propagator-based diffu-

sion indices, at undersampling factors above 4x. (Hutchinson et al., 2017) justifies similar

behavior on its results due to sampling dependency mainly, but in these experiments it may

be more likely that the requirements for a robust optimization were not met for those un-

dersampling factors and the reconstruction error propagated to the diffusion indices. In the

in vivo data, it is difficult to assure how rich or representative the slice used for training

the dictionary was. The difference in results about the extraction of propagator-based dif-

fusion indices between simulations and in vivo data highlights the disadvantage of CSD

in terms of determining how rich was the data used for training. Because q-space explo-

ration is far from being defined, it is difficult to establish which dictionary should be used

if the specific parameters of the acquisition are not known. Furthermore, the dictionary

could change across healthy and patient populations, or across age groups (Bilgic et al.,

2012). One alternative is concatenating dictionaries from different acquisition schemes or

objective-designed dictionaries.

MAP reconstruction gave higher quality in the extraction of propagator-based diffusion in-

dices. The errors from the three methods were below five to eight percent, although MAP

was the best; followed by CSD reconstruction and then CSI. The superior extraction of

diffusion indices from MAP could be important if the objective of the study is related to

the characterization of microstructure. Future work could include further propagator-based
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quality measures, such as the angular error in crossing angle to complement NMSE, PC,

MSD and p0; in order to increase the characterization of the propagator reconstruction

quantitatively.

Finally, this comparison could be improved by using recent advances of the corresponding

methods, like the Laplacian regularized MAP (Fick et al., 2016), joint k-q reconstruction

(Ourselin, Alexander, Westin, & Cardoso, 2015), or the implementation of deep learning

for CSD like in (Rasmussen et al., 2018).
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4. MAPCS: Q-SPACE RECONSTRUCTION USING MEAN APPARENT PROPA-

GATOR AND COMPRESSED SENSING
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This Manuscript was submitted to the journal Magnetic Resonance in Medicine (Magn

Reson Med) in July, 2019.

4.1. Introduction

The diffusion propagator (Callaghan, 1991, 338 p.) is the complete characterisation of

the diffusion phenomenon for a given diffusion time. From the complete information, it is

possible to extract more sensitive diffusion-based indices that could be used as biomarkers

in order to improve early detection, diagnosis and follow-up treatments for neurodegener-

ative diseases. However, the acquisition and reconstruction of the diffusion propagator is,

most of the time, not easy. In Diffusion Spectrum Imaging (DSI) (Wedeen et al., 2000,

2005), the diffusion propagator is obtained by directly taking the Fourier transform to q-

space. However, this would require a long acquisition time to acquire all the q-space sam-

ples, which is unfeasible in a clinical setting. A first option to reduce the acquisition time

for a DSI protocol is by means of compressed sensing (CS) (Candes & Romberg, 2007).

CS is an efficient sampling and reconstruction protocol based on randomness and sparse

representation of information to recover a complete signal from a number of samples below

the Nyquist criterion. Since the appearance of DSI-CS (Menzel et al., 2011), the main idea

has been to identify the optimal sparsifying basis to compress the diffusion propagator and

reconstruct it from a reduced number of q-space samples for feasible clinical acquisitions

(Bilgic et al., 2012; Paquette et al., 2015).

A second option is by means of physical, signal-driven or biophysical models (Hutchinson

et al., 2017). Models approximate the diffusion propagator and provide diffusion-based in-

dices for specific clinical applications. By far the most common and useful approximation

is the Gaussian model used in diffusion tensor imaging (DTI) (Basser et al., 1994; Le Bi-

han et al., 2001). The Gaussian model greatly reduces the acquisition time and the required

number of q-space samples. However, in order to capture non-Gaussian diffusion, the

model has to be sophisticated at the cost of more q-space samples. We seek a model that

describes the complete q-space, using an efficient set of continuous basis-functions such

that the diffusion signal is well represented with only a few coefficients and provides an

51



appropriate sparsifying bases to be used in CS. Depending on the model, CS can improve

the trade-off between the fit to q-space data and the required number of the q-space sam-

ples for the proper reconstruction of the diffusion propagator. One such model is the simple

harmonic oscillator-based reconstruction and estimation (SHORE) model (Ozarslan et al.,

2013). Recently, we compared SHORE-CS (S. L. Merlet & Deriche, 2013) with DSI-CS;

and found that the DSI-CS reconstruction using the identity as sparsifying basis outper-

formed SHORE-CS (Tobisch et al., n.d.). However, in this work we explore another model

that can benefit from the CS formalism: Mean Apparent Propagator (MAP)(Ozarslan et al.,

2013; Avram et al., 2016; Fick et al., 2016; Benjamini, Komlosh, Williamson, & Basser,

2018).

MAP reconstructs the diffusion propagator from the q-space data using a set of contin-

uous basis-functions based on Hermite functions. Up to some extent, MAP has a better

characterisation of q-space than SHORE because of the anisotropic nature of the scaling

tensor that uses to generate the basis-functions, whereas the isotropic scaling of SHORE

would require more basis-functions to obtain the same reconstruction quality (Ozarslan et

al., 2013; Fick et al., 2015). The idea of using CS with MAP comes from the realisation

that its coefficients are sparse (Avram et al., 2016). Therefore, we propose to use an `1

regulariser in a CS setting for MAP. This allows to find a similar number of coefficients,

but in a much wider range of basis-functions which would not be present without CS.

Theory

Mean Apparent Propagator (MAP) (Ozarslan et al., 2013; Avram et al., 2016; Fick et

al., 2016; Benjamini et al., 2018) is a physical model whose basis-functions are Gauss-

Hermite functions. The first basis-function corresponds to Gaussian diffusion as in DTI,

and the following basis-functions correspond to non-Gaussian diffusion; hence, it can rep-

resent well the complete diffusion propagator.

An important property of the MAP basis-functions is that their Fourier transforms are also

Gauss-Hermite functions (Ozarslan et al., 2013), so there is an analytical representation for

either q-space, E(), or the diffusion propagator, p(r). Furthermore, the nth-basis-function
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in both spaces share the same coefficient cn. This is convenient, because it allows to refer

to both spaces in the same formulation. Therefore, we can write the Fourier relationship

as,
E() ↔ p(r)∑B(Nmax)

n=0 cnφn(A, ) ↔
∑B(Nmax)

n=0 cnψn(A, r),

where A corresponds to the scaling tensor to generate both sets of basis-functions; and

r correspond to each vector space; Nmax corresponds to the maximum order of the basis-

functions and B(α) is the total number of basis-functions from the maximum order. Since

in general q-space is considered to be an even function, only even numbers of Nmax are

needed and the total number of basis-functions isB(Nmax) = (Nmax+2)(Nmax+4)(2Nmax+

3)/24. Nevertheless, to consider flow and motion it would be necessary to include both odd

and even orders (Benjamini et al., 2018). Using matrix notation, the bases are ΦB,Q and

ΨB,R; where B is the number of basis-functions, Q is the number of acquired q-space

samples and R is an arbitrary number of r-space positions.

The MAP optimisation (Ozarslan et al., 2013; Avram et al., 2016) is:

min
c
‖SΦTc−‖2

2 s.t ΨTc ≥ 0, (4.1)

where S is the under-sampling operator so that the size of ΦT corresponds to the number

of acquired q-space samples . The constraint is to impose non-negativity in the diffusion

propagator. For non-Gaussian diffusion, such as in crossing-fibres, the maximum order

Nmax is commonly set to six, meaning that MAP uses B(6) = 50 basis-functions for the

optimisation (Ozarslan et al., 2013; Avram et al., 2016). The number of basis-functions

is a trade-off between the expected fit and the number of q-space samples for a robust

optimisation.

In (Fick et al., 2016) it is proposed to remove the non-negativity constraint and to add a

Laplacian regulariser. This formulation, MAPL, promotes smoothness:

min
c
‖SΦTc− ‖2

2 + λLcTUc, (4.2)
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FIGURE 4.1. Reconstruction error from MAP (panels (A)) and MAPL (panels (B))
in noise-free simulations of two crossing-fibres. They show the normalised mean
squared error (NMSE) as a function of the crossing-angle for different number of
maximum orders. Differences in reconstruction quality are reduced as the number
of the maximum order increases.

where U is the Laplacian matrix based on the scaling tensor A and the order from each

basis-function (Fick et al., 2016). This formulation provides a closed-form optimum such

that ĉ = (ΦΦT + λLU)−1Φy, where λL is a tuning parameter. This parameter is ob-

tained by the generalised cross validation algorithm (Fick et al., 2016). MAPL has shown

superior performance than MAP and the Laplacian-regularised modified Spherical Polar

Fourier basis (Fick et al., 2016). Additionally, the estimated coefficients from MAPL have

been successfully used to extrapolate the diffusion signal and provide some type of denois-

ing procedure as pre-processing step for microstructural modeling (Fick et al., 2016).

In Figure 4.1 we show how the quality of the reconstruction improves as the maximum

order of the basis increases, particularly for crossing angles close to 90. The NMSE was

computed with MAP and MAPL in noise-free simulations of two crossing-fibres using dif-

ferent number of orders. However, in order to use more basis-functions, more q-space

samples are required and the acquisition becomes longer. This is the motivation for using

CS as a way to increase the order without lengthening the scan.
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Given that MAP coefficients have a sparse representation for complex diffusion signals

(Avram et al., 2016), we propose to include an `1 regulariser in order to improve the recon-

struction quality by adding more basis-functions without increasing the number of q-space

samples. The `1-regularised MAP, called MAPCS, is:

min
c
‖SΦTc− ‖2

2 + λcs‖c‖1. (4.3)

The `1 regulariser allows a sparse selection of coefficients from a larger set of basis-

functions. The balance between the regulariser and the data consistency term is defined

by the Lagrange weighting λcs. In (Fick et al., 2018), compressed sensing was used to

make a time-sensitive MAPL with the first fifty basis-functions that jointly reconstructs

q-space for multiple diffusion times. However, in this work we use CS to improve the

trade-off between the fit to q-space data and the required number of q-space samples for

the proper reconstruction of the diffusion propagator.

4.2. Methods

Implementation

The implementation requires first to fit a diffusion tensor for scaling, then to compute

the basis-functions and finally to perform the specific optimisation for the three techniques.

First, from the available q-space samples we fit the diffusion tensor model:

Emodel(q, τ) = C + exp(−4π2τDT), (4.4)

where τ is the effective diffusion time from the diffusion encoding (τ = ∆ − δ/3 ms)

and D is the diffusion tensor. C is a positive constant to characterise the noise-floor from

the Rician-distributed magnitude of the diffusion signal at low SNR (usually the case for

in vivo acquisitions for diffusion spectrum imaging). The optimisation is done using a

non-linear least-squares optimisation in the eigen decomposition of the diffusion tensor,

D = R(θ)Λ(λ)R(θ)T, to enforce non-negative eigenvalues. We set λ{1,2,3} ∈ [0,∞]; and
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we constrain the angles as θ1 ∈ [0, π] and θ{2,3} ∈ [−π, π]. Second, we compute the scaling

tensor A,

A = 2Λτ =


µ2

1 0 0

0 µ2
2 0

0 0 µ2
3

 with µ{1,2,3} =
√

2λ{1,2,3}τ , (4.5)

in order to generate the basis-functions for MAP, MAPL and MAPCS. The techniques

share the same basis-functions but they differ in which and how many are used.

We implement MAP, MAPL and MAPCS techniques in Matlab 2017 using CVX (Grant &

Boyd, 2014, 2008). In particular, MAPCS (eq. (4.3)) is implemented as

min
c
‖c‖1 s.t ‖SΦTc− ‖2

2 < ε, (4.6)

or,

min
c
‖c‖1 s.t

 ‖SΦTc− ‖2
2 < ε

ΨTc ≥ 0
, (4.7)

where the optimisations pursuit a sparse representation of c. The selection between eq.

(4.6) and eq. (4.7) depends on the noise level. In other words, the selection of the optimisa-

tion comes from whether the constant C from eq. (4.4) is enabled to estimate the diffusion

tensor or not. The data consistency term is relaxed by the parameter ε according to noise

level, under-sampling, nature of the scaling tensor and number of basis-functions for the

optimisation.

Datasets and analysis

We use 600 simulations from high-contrast q-space data from two 90◦ crossing-fibres

as in (Tobisch et al., n.d.). These simulations have the same microstructure but different

orientations in 3D space. We choose the 90◦ angle since it is the more demanding con-

dition for the correct estimation of the scaling tensor. The simulations are made with 103

time steps for 105 spins to diffuse in the crossing substrate. We use the following param-

eters for the simulations: ∆ = 65.9 ms, δ = 57.4 ms and Gmax = 26.79 mT/m, where

56



qmax = 65.47 mm−1 (or bmax = 7912 s/mm2); and TE = 135.5 ms and SNR of 20. We use

these simulations to obtain the sample mean and the sample standard deviation from each

quality index for the MAP, MAPL and MAPCS techniques.

For the in vivo acquisition we use a fully-sampled diffusion spectrum imaging scan from

(Tobisch et al., 2018). Data are from a 3T Prisma scanner at 1.5 mm isotropic resolu-

tion (TE/TR = 105/6100 ms, bmax = 6800 s/mm 2, ∆ = 51.3 ms, δ = 20.1 ms) using a

64-channel head-neck coil. 257 diffusion weighted and 8 interleaved, non-weighted im-

ages are acquired with both anterior-to-posterior and posterior-to-anterior phase encoding.

The acquired data are processed in FSL to estimate and correct for susceptibility geomet-

ric distortions, eddy currents and subject motion (Andersson et al., 2003; Andersson &

Sotiropoulos, 2015). Finally, we also use a denoising procedure based on PCA decompo-

sition to further improve the data at high q-space samples (Veraart, Fieremans, & Novikov,

2016). The redundancy in multi-directional and multi-radial q-space samples can identify

and reduce the contribution of noise in the diffusion signal. We use the implementation

from MRtrix (http://www.mrtrix.org).

Simulations and in vivo datasets are acquired in an 11 × 11 × 11 q-space Cartesian grid.

These complete datasets have 258 q-space samples contained in a discrete half-sphere with

a radius of 5 samples and are the ground truth in our experiments. We use retrospective

under-sampling, isotropic sparse distributions as in (Tobisch et al., n.d.), in both datasets

to generate the corresponding basis-functions to evaluate the reconstruction performance

given a number of q-space samples and to evaluate the effect of the estimated coefficients in

the coefficient-based diffusion indices. In simulations we use [32, 48, 64, ..., 128] q-space

samples in an isotropic sparse pattern to measure the under-sampling effect. MAP and

MAPL optimisations are done with Nmax = 6 (50 basis-functions) as in (Ozarslan et al.,

2013; Fick et al., 2016); whereas our MAPCS optimisation is done with Nmax = 10 (161

basis-functions). For MAP and MAPL the number of basis-functions cannot be greater

than the number of q-space samples. The advantage of MAPCS is that the limit of required

samples is much lower. The constant C from eq. (4.4) is disabled because the high con-

strast q-space simulation reaches E(q, τ) = 0 in most directions. Finally, in eq. (4.6) we
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use directly the noise from the magnitude and subtract it from the ground truth to estimate

ε.

In the in vivo acquisition, we retrospectively choose 32 q-space samples with the isotropic

sparse distribution. This is similar to the number of samples frequently used in diffusion

tensor imaging. In the in vivo acquisition, the constant C from eq. (4.4) enables the charac-

terisation of the noise-floor (Farooq et al., 2016) which is equivalent to add a one-function,

1(q) = 1 ∀q, as an extra basis-function. In this realistic clinical acquisition, the number of

basis-functions needs to be reduced. For MAP and MAPL we use 8 basis-functions, cor-

responding to Nmax = 2 plus the one-function; whereas MAPCS uses 51 basis-functions,

corresponding to Nmax = 6 plus the one-function. The maximum orders are defined after

exhaustIve inspections for robust optimisations in most voxels along a coronal slice. In

eq. (4.7) we use the residual from MAP optimisation using 8 basis-functions to estimate

ε. Although we do not know the noise-free and artefact-free ground truth from the in vivo

acquisition, it is possible to analyse the similarity between the fully-sampled data and the

reconstruction from under-sampled data. Finally, from the known centrum semiovale it is

possible to discuss if the different optimisations are able to resolve crossing-fibres from the

intersection of the corpus callosum, the corticospinal tract and the corona radiata neural

networks (Tian et al., 2016). For that purpose, we use the coefficients from each optimi-

sation to analytically generate each oriented distribution function (Ozarslan et al., 2013;

Avram et al., 2016).

Quality indices

To quantitatively evaluate each q-space reconstruction we use the normalised mean

squared error (NMSE) and the Pearson’s correlation coefficient (PC) (Paquette et al., 2015).

The NMSE is defined as,

NMSE{ΦTĉ, } =
‖ΦTĉ− ‖2

2

‖‖2
2

,
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where ΦTĉ is the reconstructed q-space from the estimated coefficients and is the corre-

sponding dataset that we use as ground truth. The PC is defined as,

PC{ΦTĉ, } =
1

n− 1
ZΦTĉ · ZT , with Zx =

x−mean(x)

std(x)
,

where n is the number of discrete samples in q-space, Z is the vector of standard score of

each sample and std stands for standard deviation.

After each reconstruction, we compute coefficient-based diffusion indices: non-Gaussianity

(NG), return to zero probability (p0) and the mean squared displacement (MSD) (Ozarslan

et al., 2013; Avram et al., 2016; Fick et al., 2016) and calculate the NMSE of each in-

dex with respect to the same indices computed from the fully-sampled and noise-free 90◦

crossing-fibres. The properties from the microstructure are the same regardless of the ori-

entation.

4.3. Results

Simulations

Figure 4.2 shows the sample mean and the sample standard deviation of the recon-

struction quality indices. Panel (A) shows the normalised mean squared error (NMSE);

and panel (B) shows the Pearson’s correlation coefficient (PC), as a function of the number

of q-space samples from the reconstructions for the three techniques. MAP and MAPL use

a maximum order Nmax = 6 whilst MAPCS uses Nmax = 10. Means and standard devia-

tions above 10% are removed for a clearer visualisation. The results indicate that MAPCS

improves both the NMSE and the PC in up to 3% for the complete range of q-space samples

that we use in the simulations. Furthermore, the standard deviation of NMSE for MAPCS

reconstructions using less than 64 q-space samples is smaller than for MAP and MAPL.

Figure 4.3 shows the NMSE for the coefficient-based diffusion indices of the different
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FIGURE 4.2. Reconstruction quality indices of the different techniques as a func-
tion of the number of q-space samples at SNR of 20. MAP and MAPL consider a
maximum order Nmax = 6; and MAPCS considers a maximum order Nmax = 10.
The normalised mean squared error (NMSE) in panel (A) and the Pearson’s cor-
relation coefficient (PC) in panel (B) indicate that MAPCS produces better recon-
structions in comparison to MAP and MAPL.

optimisations. Means and standard deviations above 10% are removed for a clearer visu-

alisation. The results indicate that MAPCS performs well for these indices, keeping an

error no greater than 2% in comparison with MAP which is the one that performs better.

These results are expected, since using more basis-functions (MAPCS) improves the fit to

the data, but an unwanted effect is that it also reduces the quality of indices that depend on

the smoothness of the propagator.

In vivo acquisition

To show the in vivo results we compare them to the fully-sampled reconstruction in a

coronal slice that contains part of the centrum semiovale. Figure 4.4 shows the spatial maps

for reconstruction quality indices as for coefficient-based diffusion indices. Panels (A) and

(B) show the spatial maps of the NMSE and (1-PC) for MAP, MAPCS and MAPL from 32

q-space samples. For visual clarity the PC index has been subtracted from one, such that

lower values indicate greater correlation to the fully-sampled data. In general terms, the

three techniques show reconstruction quality below ten percent error; however, MAPCS
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FIGURE 4.3. Normalised mean squared error (NMSE) from coefficient-based
diffusion indices of the different optimisations as a function of the number of q-
space samples at SNR of 20. MAP and MAPL consider a maximum order Nmax =
6; and MAPCS considers a maximum order Nmax = 10. Panel (A) is the NMSE
of the non-Gaussianity (NG) index. Panel (B) is the NMSE of the return to zero
probability (p0) index; and panel (C) is the NMSE of mean squared displacement
(MSD) index.
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reduces the reconstruction error and has a more homogenous reconstruction quality along

the coronal slice (Panels (A) and (B)). MAP and MAPL show higher reconstruction errors

around the centrum semiovale. This may be explained because most of the energy from the

coefficients is concentrated in the basis-function which represents the Gaussian diffusion

and it is where the tensor model is known to be inaccurate due to the multiple crossing-

fibres. Panels (C), (D) and (E) show the spatial maps for the non-Gaussianity (NG), the

return to zero probability (p0) and the mean squared displacement (MSD) indices. In panel

(C), the NG spatial maps indirectly show how the optimisations distribute the energy from

the coefficients along their respective bases. In MAP and MAPL (Nmax = 2), the energy is

mostly concentrated in the Gaussian coefficient and it reduces its correspondence with the

anatomy in the coronal slice. MAPCS (Nmax = 6) shows a better visual correlation with

the expected anatomy. Additionally, the higher maximum order raises the NG index. In

panel (D), the p0 spatial maps show higher visual correlation between each method. Fi-

nally, panel (E) shows the MSD spatial maps. MAP and MAPCS MSD maps differ from

the MSD map obtained from MAPL estimated coefficients.

Finally, figure 4.5 shows a magnified area around the centrum semiovale to analyse the

field of oriented distribution functions (ODFs). Panel (A) shows the ODFs from MAP us-

ing Nmax = 2, panel (B) shows the ODFs from MAPCS using Nmax = 6, and panel (C)

shows the ODFs from MAPL using Nmax = 2. These results show how an increased num-

ber of basis-functions is relevant to resolve crossing-fibres (indicated with the red arrow),

which could not be done without CS for 32 q-space samples.
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FIGURE 4.4. Spatial maps of reconstruction quality indices and coefficient-based
diffusion indices from in vivo reconstructions. Panel A corresponds to the NMSE
of the data; Panel B is (1-PC); Panel C is the Non-Gaussianity (NG); Panel D is p0;
and Panel E is the MSD. The columns are the three techniques: MAP 2, MAPCS 6

and MAPL 2, in that order.

4.4. Discussion

In this work, we propose the use of the `1-regulariser for MAP optimisation, named

MAPCS, to improve the trade-off between the number of basis-functions and the required

63



MAP 2

(A)
MAPCS 6

(B)
MAPL 2

(C)

FIGURE 4.5. Visualisation of oriented distribution functions (ODFs) around the
centrum semiovale from MAP, MAPCS and MAPL optimisations using just 32 q-
space samples. Panel (A) shows the ODFs from MAP using a maximum order 2
(which results in 8 basis-functions) . Panel (C) shows the ODFs from MAPL with
the same number of basis-functions. Panel (B) shows the ODFs from MAPCS using
a maximum order 6 which results in 51 basis-functions. The red arrows highlight a
region where multiple fibres intersect.
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number of q-space samples for a robust optimisation. To evaluate our proposal, we com-

pare MAPCS to the existing MAP and MAPL optimisations. We test the three methods in

terms of reconstruction quality in simulated and in vivo data. In this work we use the Carte-

sian isotropic distribution from (Tobisch et al., n.d.) which has previously demonstrated to

improve CS reconstruction for diffusion spectrum imaging data. But, the technique is not

restricted to Cartesian sampling patterns, and it may be used with other patters such as

multi-shell.

The simulations correspond to high-contrast q-space data of two fibres with a 90◦ crossing-

angle, where the scaling tensor is isotropic and more basis-functions are required to pre-

serve reconstruction quality. Although 90◦ crossing-angles seldomly appear in in vivo

acquisitions, the main objective is to highlight how compressed sensing improves MAP

by improving this trade-off and makes the method less sensitive to the data-driven scal-

ing tensor found in (Fick et al., 2016; Hutchinson et al., 2017). In an in vivo acquisition

we use minimum sampling to demonstrate complete q-space reconstruction with a similar

number of samples as diffusion tensor imaging, but with the ability to correctly resolve

crossing-fibres. Hence, Gaussian and non-Gaussian information from the diffusion signal

are attainable in realistic clinical acquisition times.

MAP is a reconstruction that uses a least-squares optimisation subject to a non-negativity

constraint. We notice that the constraint prevents over-fitting to noise, which is very con-

venient for high q-space samples or under-sampled acquisitions where SNR is low. This

constraint implies a direct evaluation at the corresponding r positions; and for assuring it

in the complete r-space a high computational load is required. On the other hand, MAPL

removes the non-negativity constraint and includes a Laplacian regulariser which imposes

smoothness and it avoids over-fitting to noise as the non-negativity contraint. MAPL de-

mands more q-space samples to preserve reconstruction quality. MAPL also requires the

estimation of λL by means of the generalised cross validation method which may be time-

consuming voxelwise, but a fixed λL provides an optimisation as fast as a least-squares

optimisation (Fick et al., 2016). Finally, reconstruction quality is reduced when the scaling
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tensor is isotropic and more basis-functions are needed for both MAP and MAPL tech-

niques.

Given the sparse representation of the coefficients (Avram et al., 2016), we propose an `1-

regularised MAP optimisation based on compressed sensing (CS). By means of CS, it is

feasible to select a sparse set of coefficients from a larger basis without sampling penalisa-

tion; or in other words, we improve the trade-off between the number of basis-functions and

q-space samples. Our proposal requires the correct estimation of the Lagrange weighting

to relax the data consistency term and avoid over-fitting to noise. This parameter is possible

to estimate since it is related to SNR, under-sampling and the number of basis-functions.

Finally, even though is not shown in here, the `1 regulariser and its estimated coefficients

allow the correct extrapolation of q-space data. It can replace the Laplacian regulariser for

that purpose without imposing excessive smoothness in the q-space data.

In simulations, the experiments show that MAPCS achieves better reconstructions in terms

of the similarity of the propagators (data error and correlation) while maintaining a good

estimation of the coefficient-based diffusion indices, very similar to those obtained with

MAP. It is also clear that the excessive smoothing introduced by MAPL has a negative ef-

fect on the mean and standard deviation of these indices. The variance in the estimation of

the coefficient-based diffusion indices is related to the variance of the estimated coefficients

for each basis-functions, as reported in (Hutchinson et al., 2017).

In the in vivo reconstructions with just 32 q-space samples, we observe that MAPCS pro-

vides higher similarity to the fully-sampled data than MAP and MAPL. From the maps

for the coefficient-based diffusion indices, we observe that the NG reports higher values

and more contrast for MAPCS than MAP and MAPL. This es expected since the non-

gaussianity is associated with more complex fiber configurations. In terms of p0 the spatial

map do not differ significantly, which could be explained because p0 is associated to the

integral of the data in the Fourier domain, and with only a few basis-function a good esti-

mation of the integral can be obtained. The MSD spatial maps differ significantly between

all three methods, since this parameter is very sensitive to the regularization or smoothing

of the data. Finally, as can be seen in the ODFs, the region around the centrum semiovale

66



shows that a high number of basis-functions is relevant to properly describe crossing-fibres.

A maximum order of two (8 basis-functions) is not enough to capture them, and with 32

q-samples it is not possible to use more in MAP or MAPL. CS provides a mean to main-

tain the recommended 50 basis-functions to describe that kind of microstructures with 32

q-samples, an acquisition length similar to that used for diffusion tensor. In summary,

MAPCS may be used to describe Gaussian and non-Gaussian diffusion in realistic acquisi-

tion times.
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5. CONCLUSIONS AND FUTURE WORK

This thesis investigated different strategies to reconstruct the complete diffusion prop-

agator from minimum q-space sampling. The objective is to reduce the scan time while

still being able to obtain the complete diffusion propagator. The reconstruction of this

propagator would allow new biomarkers that could detect and distinguish neurodegenera-

tive diseases and their different pathological stages. With that purpose in mind, a thorough

analysis about reconstruction performance from the different methods used along this thesis

was done on simulations under different levels of under-sampling and noise and orientation

of the microstructure. Additionally, the reconstruction methods were tested on in vivo data.

We qualitatively evaluated the centrum semiovale, a region of the human brain known for

its complex anatomy. From the different evaluations, the application of compressed sens-

ing for the sparse fit of the set of continuous basis-functions, presented in here as MAPCS

in chapter 3, appears to be the most promising method given the results obtained across

the different works. Future work should analyse the reconstruction process whilst apply-

ing forward q-space under-sampling, because it decreases the signal-to-noise-ratio from

the acquisition and it may influence the lower bound for q-space sampling. Additionally,

tuning parameters and optimisation bounds have to be validated over different acquisition

schemes and different diffusion encoding parameters.
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M. M. B., & Stöcker, T. (2018). Compressed Sensing Diffusion Spectrum Imag-

ing for Accelerated Diffusion Microstructure MRI in Long-Term Population Imaging.

Frontiers in Neuroscience, 12.

Tobisch, A., Varela-Mattatall, G., Stirnberg, R., Knutsson, H., Schultz, T., Irarrazaval,
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APPENDIX A. SELECTION OF TUNING PARAMETER FOR COMPRESSED

SENSING

Compressed sensing is the only method from the comparison that needs to tune a pa-

rameter (λ); and which may vary depending on the acquired data. In order to use equation

A.1,

p̂(r) = argminp(r)

1

2
||SFp(r)− E(q)||22 + λ||Ωp(r)||1, (A.1)

we applied two different heuristics:

Simulations. First, we analyzed the `-curve to obtain the λ that had a good balance be-

tween data consistency and the sparsity regularization. Second, we defined a threshold

based on the NMSE in which the reconstruction error should be less than five percent error

with regard to the ground truth. λ was changed until this was satisfied or the maximum

number of iterations was exceeded. The maximum number of iterations was 6.

In vivo data. We repeated the heuristic from simulations on certain voxels along the coro-

nal slice. Because the λ parameter was similar across the slice, we took the mean value

from λs and applied it to the complete slice.
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APPENDIX B. EVALUATION OF THE SAMPLING PATTERN

We evaluated 10 different sampling patterns with variable density distribution to an-

alyze whether the behavior of the reconstruction quality was influenced by them. Figure

B.1 shows the results of the NMSE with respect to noise for the different patterns. The

8th pattern is not included here since it is the one used in the main document. Figure B.2

shows the differences in reconstruction errors between sampling patterns specified in the

rows and columns, (NMSEcolumn − NMSErow)2 / NMSE2
row. From the three methods, the

DictCS method shows more similar results across the different patterns (panel C).
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FIGURE B.1. NMSE as a function of noise level σ for 9 different sampling patterns.
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(A) (B) (C)

FIGURE B.2. NMSE difference matrix of the reconstruction methods. The colors
indicate how much was the difference in reconstruction quality between the sam-
pling patterns in the rows and columns of the matrix. Panel (A) corresponds to the
NMSE difference matrix from CS reconstruction; panel (B) from MAP reconstruc-
tion; and panel (C) from DictCS reconstruction.
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APPENDIX C. IN VIVO SPATIAL MAPS OF NMSE FOR CS, MAP AND DICTCS

RECONSTRUCTIONS AT DIFFERENT UNDERSAMPLING FAC-

TORS

Figure 8 shows the spatial maps of NMSE for the three reconstruction methods using

USF = 4, 5, 6 and 8; as a way to validate how is the behavior of the reconstruction process

in the in vivo data as the USF was increased.
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FIGURE C.1. NMSE spatial maps for CS, MAP and DictCS reconstruction meth-
ods at different undersampling factors factors
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