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We study the QCD phase diagram at finite temperature and baryon chemical potential by relating

the behavior of the light-quark condensate to the threshold energy for the onset of perturbative QCD.

These parameters are connected to the chiral symmetry restoration and the deconfinement phase

transition, respectively. This relation is obtained in the framework of finite energy QCD sum rules at

finite temperature and density, with input from Schwinger-Dyson methods to determine the light-quark

condensate. Results indicate that both critical temperatures are basically the same within some 3%

accuracy. We also obtain bounds for the position of the critical end point, �Bc * 300 MeV and

Tc & 185 MeV.

DOI: 10.1103/PhysRevD.84.056004 PACS numbers: 25.75.Nq, 11.15.Tk, 11.30.Rd, 11.55.Hx

I. INTRODUCTION

In quantum chromodynamics (QCD), the strong inter-
action among quarks depends on their color charge. When
quarks are placed in a medium, this color charge is
screened with increasing density. The density can increase
either by raising the temperature, so that collisions between
quarks produce more quarks and gluons, or by compressing
the system, thereby increasing the baryon density. If the
density increases beyond a certain critical value, one ex-
pects that the interactions between quarks no longer con-
fine them inside a hadron, so that they are free to travel
longer distances and deconfine. This transition from a
confined to a deconfined phase is usually referred to as
the deconfinement phase transition.

A separate phase transition takes place when the real-
ization of chiral symmetry shifts from a Nambu-Goldstone
phase to a Wigner-Weyl phase. In the massless quark limit,
this is achieved by the vanishing of the quark condensate,
or alternatively the pion decay constant. Qualitatively,
one expects these two phase transitions to take place at
approximately the same temperature. An outstanding issue
is whether this conclusion also holds quantitatively. To
address this, it has been customary to study the behavior
of the order parameters of these transitions as functions of
the temperature T and the baryon chemical potential �B,
namely, the Polyakov loop L [1] and quark antiquark
condensate h �c c i in the chiral limit, respectively. In the
confined phase, the former parameter either vanishes in the
limit of massless quarks, or else it is exponentially
suppressed for finite quark masses, while it is finite
in the deconfined phase. The quark condensate is finite in
the broken chiral-symmetry phase, while it vanishes in the
chirally symmetric phase at high enough temperature, and

in the limit of massless quarks. For finite quark masses
chiral symmetry is explicitly broken at the Lagrangian
level and therefore the phase transition is suppressed.
This is similar to what happens to a ferromagnet in the
presence of an external magnetic field. In this situation one
might need to specify to what extent one is still dealing
with a phase transition.
At finite T, and �B ¼ 0, lattice QCD calculations pro-

vide a consistent quantitative picture of the above behavior,
resulting in similar critical temperatures Tc for both tran-
sitions in the range 170 MeV & Tc & 200 MeV, for finite
quark masses [2–4]. The situation is much less clear cut
when both T and �B are simultaneously nonzero. Lattice
QCD simulations cannot be used for �B � 0 because the
fermion determinant becomes complex and thus standard
Monte Carlo methods fail, as the integrand is no longer real
and positive definite. However, these techniques can still
be adapted to extract some, though not exact, information
on the QCD phase diagram for �B � 0 [5]. Therefore, one
needs to resort either to mathematical constructions to
overcome the above limitation [6], or to model calculations
[7]. Of particular recent interest is the search for a possible
critical end point [8] that signals the strengthening of the
order of the transition with increasing �B, indicating the
beginning of a true chiral symmetry restoring/deconfining
phase transition. The results fromMonte Carlo simulations
and model calculations, with and without Polyakov loop,
or its variants, seem to be in conflict. In fact, the former
give smaller (larger) values for the end point baryon
chemical potential (temperature) than the latter. Things
become worse if one uses the imaginary chemical potential
method, a well established technique for not too
large values of �B. Indeed, this leads to a shrinking and
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weakening region of chiral phase transitions with increas-
ing �B, thus suggesting that there is no critical end point
for �B & 500 MeV [9]. It has also been pointed out that
even if the transition weakens with increasing �B, the
existence of the critical end point would not be ruled out,
although it would require a nonmonotonic behavior [10].
In view of this situation, alternative ways of examining
the QCD phase diagram are required.

One possibility is to look at variables that describe
deconfinement other than the Polyakov loop. A phenome-
nological QCD parameter associated with deconfinement
was first proposed long ago in [11], and it is the square
energy (s0) beyond which the hadronic resonance spectral
function becomes smooth and well described by perturba-
tive QCD (PQCD). At T ¼ 0 this continuum threshold lies
in the range s0 ’ 1–3 GeV2, depending on the channel. At
finite temperature one expects s0 to decrease with increas-
ing T and approach the kinematical threshold at some
critical value T ¼ Tc, to be identified with the deconfine-
ment temperature. In this scenario one expects stable par-
ticles (poles on the real axis in the complex squared energy
s-plane) to develop a width as a result of absorption in the
thermal bath. At the same time, resonances (poles in the
second Riemann sheet in the complex s-plane) should
develop T-dependent widths, increasing with increasing
temperature. Such a resonance broadening mechanism
was first proposed in detail in connection with dimuon
production in heavy ion collisions [12].

The natural framework to determine s0 has been that of
QCD sum rules [13]. This quantum field theory framework
is based on the operator product expansion (OPE) of current
correlators at short distances, extended beyond perturbation
theory, and on Cauchy’s theorem in the complex s-plane.
The latter is usually referred to as quark-hadron duality.
Vacuum expectation values of quark and gluon field opera-
tors effectively parametrize the effects of confinement. An
extension of this method to finite temperature was first
outlined in [11]. Further evidence supporting the validity
of this program was provided in [14], followed by a large
number of applications [15,16]. Of particular interest to the
present work are the results obtained for s0ðTÞ in [15] using
QCD finite energy sum rules (FESR) for the (light-quark)
axial-vector current correlator. The leading dimension
FESR relates s0ðTÞ to the pion decay constant f�ðTÞ, and
this in turn to the light-quark condensate (using the Gell-
Mann-Oakes-Renner relation [17]). In the chiral limit it
was found that s0ðTÞ=s0ð0Þ ’ f�ðTÞ=f�ð0Þ ’ h �c c i�
ðTÞ=h �c c ið0Þ, which holds to a very good approximation.
This relation hints towards the possible coincidence of the
critical temperatures for deconfinement and chiral symme-
try restoration. In this paper, we extend this analysis to finite
density, thus obtaining s0ðT;�BÞ from FESR using as input
the light-quark condensate at finite temperature and density
determined in the Schwinger-Dyson equations (SDE)
framework.

The paper is organized as follows: In Sec. II, we find the
relation between the quark condensate and the PQCD
threshold s0 using FESR for the axial-vector current cor-
relator. In Sec. III, we compute the quark condensate at
finite T and �B from a convenient parametrization of the
quark propagator in the SDE framework. In Sec. IV, we
present our analysis of the QCD phase diagram and show
that the deconfinement and chiral symmetry restoration
transitions take place at basically the same temperature
to some 3% accuracy, i.e. within the numerical precision
of the method. We finally summarize and discuss our
results in Sec. V.

II. FINITE ENERGY QCD SUM RULES

We begin by considering the (charged) axial-vector
current correlator at T ¼ 0

���ðq2Þ ¼ i
Z

d4xeiq�xh0jTðA�ðxÞA�ð0ÞÞj0i;
¼ �g���1ðq2Þ þ q�q��0ðq2Þ; (1)

where A�ðxÞ ¼: �uðxÞ���5dðxÞ: is the axial-vector current,
q� ¼ ð!; ~qÞ is the four-momentum transfer, and the

functions �0;1ðq2Þ are free of kinematical singularities.

Concentrating on the function �0ðq2Þ and writing the
OPE beyond perturbation theory in QCD [13], one of the
two pillars of the sum rule method, one has

�0ðq2ÞjQCD ¼ C0Î þ
X
N¼1

C2Nðq2; �2ÞhÔ2Nð�2Þi; (2)

where �2 is a renormalization scale, the Wilson coeffi-
cients CN depend on the Lorentz indices and quantum
numbers of the currents and on the local gauge invariant

operators ÔN built from the quark and gluon fields in the
QCD Lagrangian. These operators are ordered by increas-
ing dimensionality and the Wilson coefficients, calculable
in PQCD, fall off by corresponding powers of �q2. The

unit operator above has dimension d ¼ 0 and C0Î stands
for the purely perturbative contribution. Hence, this OPE
factorizes short distance physics, encapsulated in the
Wilson coefficients, and long distance effects parametrized
by the vacuum condensates. The second pillar of the QCD
sum rule technique is Cauchy’s theorem in the complex
squared energy s-plane

1

�

Z s0

0
dsfðsÞIm�0ðsÞ ¼ � 1

2�i

I
Cðjs0jÞ

dsfðsÞ�0ðsÞ;
(3)

where fðsÞ is an arbitrary analytic function, and the radius
of the circle s0 is large enough for QCD and the OPE to be
used on the circle (see Fig. 1). The integral along the real
s-axis involves the hadronic spectral function. This equa-
tion is the mathematical statement of what is usually
referred to as quark-hadron duality. Using the OPE,
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Eq. (2), and an integration kernel fðsÞ ¼ sNðN ¼ 1; 2; � � �Þ
one obtains the FESR

ð�ÞN�1C2NhÔ2Ni¼4�2
Z s0

0
dssN�1 1

�
Im�0ðsÞ

�sN0
N
½1þOð�sÞ�ðN¼1;2;���Þ: (4)

For N ¼ 1 the dimension d ¼ 2 term in the OPE does not
involve any condensate, as it is not possible to construct a
gauge invariant operator of such a dimension from the quark
and gluon fields. Nevertheless, it is a priori conceivable to
generate a d ¼ 2 term in some dynamical fashion, e.g. in
PQCD at very high order (renormalons). However, there is
no evidence for such a term (at T ¼ 0) from FESR analyses
of experimental data on eþe� annihilation and � decays into
hadrons [18].At very high temperatures, though, there seems
to be evidence for some d ¼ 2 term [19]. However, the
analysis to be reported here is performed at much lower
values of T, so that we can safely ignore this contribution
in the sequel.

The extension of this program to finite temperature is
fairly straightforward [11,14], with the Wilson coefficients
in the OPE, Eq. (2), remaining independent of T at leading
order in �s, and the condensates developing a temperature
dependence. Radiative corrections in QCD involve now
an additional scale, i.e. the temperature, so that �s �
�sð�2; TÞ. This problem has not yet been solved success-
fully. Nevertheless, from the size of radiative corrections at
T ¼ 0 one does not expect any major loss of accuracy in
results from thermal FESR to leading order in PQCD, as
long as the temperature is not too high, say T & 200 MeV.
Essentially, all applications of FESR at T � 0 have been
done at leading order in PQCD, thus implying a systematic
uncertainty at the level of 10%. One new feature at T � 0
is the appearance of a new cut in the complex energy

!-plane [11], and centered at the origin with extension
�j ~qj � ! � j ~qj. This is due to a contribution to the cur-
rent correlator in the spacelike region (q2 < 0) which
vanishes at T ¼ 0. Conceptually, this originates in the
scattering of the current by either quarks (antiquarks) or
by hadrons in the medium, in the case of QCD or the
hadronic representation, respectively. When considering
the rest-frame ( ~q ! 0), this scattering term either becomes
a delta function of the energy or it vanishes identically,
depending on the channel. For instance, in the case of the
axial-vector current correlator, Eq. (1), the QCD scattering
term is proportional to �ð!2Þ. The corresponding term in
the hadronic representation is nonzero, but it is suppressed
relative to the tree-level pion contribution, as the axial-
vector current can only couple to an odd number of pions.
Another new feature at finite temperature is the possible
existence of nonscalar (Lorentz noninvariant) vacuum
condensates. This does not affect the present analysis, as
we shall only consider dimension d ¼ 2 FESR.
In the static limit ( ~q ! 0), to leading order in PQCD,

and for T � 0 and�q � 0, where�q ¼ �B=3 is the quark

chemical potential, the function�0ðq2Þ in Eq. (1) becomes
�0ð!2; T; �qÞ; to simplify the notation we shall omit the T

and �q dependence in the sequel. A straightforward cal-

culation of the spectral function in perturbative QCD gives

1

�
Im�0ðsÞjPQCD ¼ 1

4�2

2
41� ~nþ

� ffiffiffi
s

p
2

�
� ~n�

� ffiffiffi
s

p
2

�35

� 2

�2
T2�ðsÞ½Li2ð�e�q=TÞ

þ Li2ð�e��q=TÞ�; (5)

where Li2ðxÞ is the dilogarithm function, s ¼ !2, and

~n�ðxÞ ¼ 1

eðx��qÞ=T þ 1
(6)

are the Fermi-Dirac thermal distributions for particles
and antiparticles, respectively. We have assumed massless
quarks, as quark mass corrections are negligible.
In the limit where T and/or�q are large with respect to a

given mass scale such as the quark mass, Eq. (5) becomes

1

�
Im�0ðsÞjPQCD ¼ 1

4�2

2
41� ~nþ

� ffiffiffi
s

p
2

�
� ~n�

� ffiffiffi
s

p
2

�35

þ 1

�2
�ðsÞ

�
�2

q þ �2T2

3

�
: (7)

In the hadronic sector, we assume pion-pole dominance
of the hadronic spectral function, i.e. the continuum thresh-
old s0 to lie below the first radial excitation with mass
M�1

’ 1300 MeV. This is a very good approximation at

finite T, as we expect s0 to be monotonically decreasing
with increasing temperature. In this case,

FIG. 1. FESR integration contour Cðjs0jÞ in the complex
square energy s-plane. The QCD threshold s0 in the FESR is
the radius of the circle.

QCD PHASE DIAGRAM FROM FINITE ENERGY SUM RULES PHYSICAL REVIEW D 84, 056004 (2011)

056004-3



1

�
Im�ðsÞjHAD ¼ 2f2�ðT;�qÞ�ðsÞ; (8)

where f�ðT;�qÞ is the pion decay constant at finite T

and �q, with f�ð0; 0Þ ¼ 92:21� 0:14 MeV [20].

Turning to the FESR, Eq. (4), with N ¼ 1 and no
dimension d ¼ 2 condensate, and using Eqs. (5) and (8),
one finds

Z s0ðT;�qÞ

0
ds

�
1� ~nþ

� ffiffiffi
s

p
2

�
� ~n�

� ffiffiffi
s

p
2

��

¼ 8�2f2�ðT;�qÞ þ 8T2½Li2ð�e�q=TÞ þ Li2ð�e��q=TÞ�
(9)

This is a transcendental equation determining s0ðT;�qÞ
in terms of f�ðT;�qÞ. The latter is related to the light-

quark condensate through the Gell-Mann-Oakes-Renner
relation [17]

f2�ðT;�qÞ
f2�ð0; 0Þ

¼ h �c c iðT;�qÞ
h �c c ið0; 0Þ ; (10)

where the quark and pion masses have been assumed
independent of T and �q [21]. A good closed form

approximation to the FESR, Eq. (9), for large T and/or

�q is obtained using Eq. (7) with ~nþð
ffiffi
s

p
2 Þ ’ ~n�ð

ffiffi
s

p
2 Þ ’ 0,

in which case

s0ðT;�qÞ ’ 8�2f2�ðT;�qÞ � 4

3
�2T2 � 4�2

q: (11)

Using Eq. (10), this can be rewritten as

s0ðT;�qÞ
s0ð0; 0Þ

’ h �c c iðT;�qÞ
h �c c ið0; 0Þ � ðT2=3��2

q=�
2Þ

2f2�ð0; 0Þ
: (12)

The quark condensate can be computed from the in-
medium quark propagator, whose nonperturbative prop-
erties can be obtained e.g. from known solutions to the
Schwinger-Dyson equations (SDE) as discussed in the
next section.

III. QUARK PROPAGATOR AND CONDENSATE

The quark condensate can be computed from the quark

propagator Sðk0; ~kÞ in Euclidean space. At finite T and �q

the condensate is given by

h �c c iðT;�qÞ¼�NcT
X
n

Z d3k

ð2�Þ3 TrS½ð2nþ1Þ�Tþi�q; ~k�

¼�NcT
X
n

Z d4k

ð2�Þ3 Tr½Sðk0;
~kÞ�

��½k0�ð2nþ1Þ�T�i�q�: (13)

Introducing the Poisson summation formulaX
l

ð�1Þl expfðik0 þ�qÞl=Tg

¼ ð2�ÞTX
n

�½k0 � ð2nþ 1Þ�T � i�q�; (14)

leads to

T
X
n

Z d3k

ð2�Þ3 TrS½ð2nþ 1Þ�T þ i�q; ~k�

¼ X
l

ð�1Þl
Z d4k

ð2�Þ4 Tr½Sðk0; ~kÞ� expfðik0 þ�qÞl=Tg:

(15)

Using this result in Eq. (13) gives

h �c c iðT;�qÞ ¼ �Nc

X
l

ð�1Þl
Z d4k

ð2�Þ4 Tr½Sðk0; ~kÞ�

� expfðiq0 þ�qÞl=Tg: (16)

Notice that from Eq. (16), the vacuum contribution to the
condensate comes from the term with l ¼ 0. For this, we
use the value

h �c c ij0 ¼ �ð0:241 GeVÞ3: (17)

The true matter contribution to the condensate is thus

h �c c iðT;�qÞ ¼ �Nc

X
l�0

ð�1Þl
Z d4k

ð2�Þ4 Tr½Sðk0; ~kÞ�

� expfðiq0 þ�qÞl=Tg: (18)

Because of the loss of Lorentz covariance at finite T and/or
�q, the general structure of the propagator is given by

S�1ðk0; ~kÞ ¼ A�0k0 þ B ~� � ~kþ C; (19)

where A, B andC are scalar functions of k0 and ~k. They can
be obtained from nonperturbative methods such as solu-
tions to SDE. We adopt this procedure here. Motivated by
the success of the rainbow-ladder truncation of the SDE
and the effective interaction of Ref. [22] in the description
of light pseudoscalar and vector mesons, and the meromor-
phic representation of the quark propagator [23], we con-
sider the parametrization

Sðk0; ~kÞ ¼
X3
i¼1

�
ri

ikþmi

�
þ r4

i�0k0 þ ib ~� � ~kþm4

; (20)

and choose b, the masses mi, and the residues ri,
i ¼ 1 . . . 4, to be real numbers. In addition we seek
T-dependent values of b, m4 and r4. The Lorentz covariant
part of this parametrization is fitted by requiring the propa-
gator to reproduce key features of the rainbow-ladder
model [22] at T ¼ 0. In particular, to match the ultraviolet
behavior of the gap equation for massive u=d quarks, the
value of the condensate in vacuum, and the constituent
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quark masses, as dictated by the solutions to SDE. Table I
shows the values thus obtained for the parameters mi and
ri, i ¼ 1 . . . 3. The last term in Eq. (20) is added to repro-
duce the Lorentz covariance breaking effects of the heat
bath at T � 0 and/or �q � 0. The values of b, m4 and r4
are adjusted to reproduce the light-quark condensate as a
function of T for �B ¼ 0 [see Eq. (21) below] extracted
from lattice QCD [3] by means of a point-distance mini-
mization procedure over a grid of 1500 points along the T
interval. Thus, these parameters are in fact nonanalytic
functions of T which, in practice, are numerically interpo-
lated to obtain the propagator. Table II shows the values of
these parameters calculated at the temperatures where the
lattice points are given. Carrying out the integrations in
Eq. (18), and in terms of the parametrization of the quark
propagator in Eq. (20), we obtain

h �c c iðT;�qÞjmatt ¼ � 8TNc

�2

X1
l¼1

ð�1Þl
l

cosh

�
�ql

T

�

� X4
i¼1

rim
2
i

jbij3
K1

�
ljmij
T

�
; (21)

where K1ðxÞ is a Bessel function, and for convenience we
have defined bi ¼ 1 for i ¼ 1, 2, 3, and b4 ¼ b. Fig. 2
shows the lattice QCD data for the light-quark condensate
as a function of T [3] together with the curve obtained from

the absolute value of the sum of Eqs. (17) and (21) for
�B ¼ 0. This parametrization gives a good description of
the condensate for the range of temperatures where the
phase transition occurs.

IV. QCD PHASE DIAGRAM

With the parametrization of lattice data at finite T and
�B ¼ 0, we proceed to extend the analysis to finite
�B ¼ 3�q. To explore the QCD phase diagram we make

use of the expressions for the light-quark condensate
and the PQCD threshold s0 that describe the chiral and
deconfinement phase transitions, respectively. Next, we
compute the corresponding susceptibilities which are pro-
portional to the heat capacities, �@h �c c i=@T and
�@s0=@T. Figs. 3 and 4 show examples of these heat
capacities (normalized to their vacuum values) for two

TABLE I. Parameters mi and ri, i ¼ 1, 2, 3 to describe the
Lorentz covariant part of the quark propagator.

i mi (GeV) ri

1 �0:490 �0:112
2 0.495 0.352

3 �0:879 0.259
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FIG. 3 (color online). (Color online) Heat capacity for the
normalized (to its vacuum value) quark condensate as a function
of T for�q ¼ 0 (solid line) and�B ¼ 300 MeV (dash line). The

critical temperature Tc corresponds to the maximum of the heat
capacity for a given value of �B.

TABLE II. Parameters b, m4 and r4, which describe the
Lorentz breaking part of the propagators at the lattice T points.

T (GeV) r4m
2
4=b

3
4 (GeV2) m4 (GeV)

0.139 �0:0 651 954 0.366 218

0.154 �0:0 494 999 0.305 228

0.170 �0:0 377 697 0.220 547

0.175 �0:10 482 0.321 765

0.180 �0:0952 544 0.279 434

0.185 �0:352 287 0.437 673

0.191 �0:344 934 0.19 104

0.196 �0:123 177 0.250 567

0.198 �0:342 024 0.397 248

0.206 �1:39 944 0.377 043

0.219 �0:975 465 0.387 967

0.227 �0:460 765 0.489 013

0.243 �1:30 498 0.802 619

0.259 �0:851 509 0.693 332

0.16 0.18 0.2 0.22 0.24 0.26
T(GeV)

0

0.003

0.006

0.009
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Parametrization
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FIG. 2 (color online). (Color online) Lattice data and parame-
trization of the absolute value of the quark condensate as a
function of T in the phase transition region.
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values of �B ¼ 0, 0.3 GeV. For a given �B, the transition
temperature is identified as the value Tc where the heat
capacity reaches a maximum. Fig.5 shows the transition
temperatures for the condensate and for s0. These tempera-
tures are basically identical within a small window of
roughly 3 MeV around T ¼ 185 MeV, for all values of
�B up to the maximum value of �B ¼ 300 MeV.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have studied the QCD phase diagram at
T � 0 and�B � 0 based on the behavior of the light-quark
condensate and of the PQCD threshold as probes of chiral
symmetry restoration and deconfinement, respectively. We
have shown that these quantities are related through a QCD

FESR and found that they lead to essentially equal tran-
sition temperatures.
We have worked to leading order within the FESR

approach. Notice that potential corrections to the factori-
zation of short and long distance contributions in the
operator product expansion can manifest in the calculation
of the Wilson coefficients. The origin of such potential
corrections are the extra scales introduced by T and/or �q,

upon which the coupling constant can depend. Given the
lack of theoretical insight into this problem, in this work
we rely on the fact that the size of perturbative corrections
at leading order for T ¼ 0 is small when the scale involved
is not too high, say, of order 200 MeV. If such scale is taken
as T or �q, this means that we expect the same degree of

accuracy as for T ¼ 0 calculations. This places an upper
limit for the ranges of T and �q. Since the transition

temperature is below this scale, we are in a safe regime.
Furthermore, the hard thermal loop approximation relies
on systematically assuming that T or�q are larger than any

mass scale in the problem. Since the only masses that are
relevant are the quark or the pion mass, which we are
taking as vanishing, this places a lower limit for the ranges
of T and �q. The upshot is that there is a window 0 & T,

�q & 200 MeV where the approximations are valid.

The quark condensate, and thus the PQCD threshold, is
computed using the quark propagator in the SDE frame-
work. We have found it convenient to use a meromorphic
parametrization of this propagator in terms of real poles
and residues. These are fixed by demanding consistency
with the rainbow-ladder truncation of SDE at T ¼ 0, and a
good description of lattice QCD data for the quark con-
densate at finite T. With this simple scenario we have been
able to extend the analysis up to baryon chemical potential
�B ’ 300 MeV. From our results, we can estimate the
position of the critical end point to be �Bc * 300 MeV
and Tc & 185 MeV, respectively. To parametrize the quark
condensate, we have made use of the lattice data provided
in Ref. [3]. There are other lattice results that give a slightly
lower transition temperature for �B ¼ 0. Most notably,
the HotQCD Collaboration has recently reported the value
Tc ¼ 157� 6 MeV using a highly improved staggered
quark (HISQ) action [24]. It is clear that we can employ
our approach to adjust our results to that transition tem-
perature since all that is involved is an adjustment of
the fit. A better fit, using a better representation of the
quark propagator, is in order even before. Therefore, a
more precise location of the critical end point requires a
more refined treatment of the parametrization of the quark
propagator. This is work in progress and will be reported
elsewhere.
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