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Abstract
The minimal Bures distance of a quantum state of a bipartite system AB to
the set of classical states for subsystem A defines a geometric measure of
quantum discord. When A is a qubit, we show that this geometric quantum
discord is given in terms of the eigenvalues of a (2nB) × (2nB) Hermitian
matrix, nB being the Hilbert space dimension of the other subsystem B. As a
first application, we calculate the geometric discord for the output state of the
DQC1 algorithm. We find that it takes its highest value when the unitary matrix
from which the algorithm computes the trace has its eigenvalues uniformly
distributed on the unit circle modulo a symmetry with respect to the origin. As
a second application, we derive an explicit formula for the geometric discord
of a two-qubit state ρ with maximally mixed marginals and compare it with
other measures of quantum correlations. We also determine the closest classical
states to ρ.

PACS numbers: 03.67.Mn, 03.67.Hk

(Some figures may appear in colour only in the online journal)

1. Introduction

In order to understand the origin of quantum speedups in quantum algorithms and to analyze
the specificities of quantum communication protocols, it is of prime importance to identify
the resources needed to have a quantum advantage [1]. Despite substantial progress in the
last decades [2, 3], a complete characterization of quantum correlations (QCs) in composite
quantum systems has not yet emerged, even for bipartite systems. Furthermore, the role
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played by these correlations in information processing tasks remains to a large extent unclear.
The quantum discord (QD) is one measure of QCs in bipartite systems [4, 5]. It coincides
with the entanglement of formation [6] for pure states, but for mixed states it quantifies QCs
that may be present even in separable states. The discord is believed to be a better indicator
than entanglement of the ‘degree of quantumness’ of mixed states. Moreover, it has been
suggested [7–10] that it could capture the relevant quantum resource in Knill and Laflamme’s
algorithm of deterministic quantum computation with one qubit (DQC1) [11]. This algorithm
allows to compute efficiently the trace of a 2n × 2n unitary matrix Un. It involves a polarized
control qubit, which remains unentangled with n unpolarized target qubits at all stages of the
computation. The amount of entanglement for any bipartition of the (n + 1) qubits is bounded
independently of n [12]. However, a non-vanishing QD between the control and the n target
qubits appears in the output state [7–10], save for some particular unitaries Un [8, 13].

In a recent article [14], we have proposed to use the Bures distance to the set of zero-
discord states as a geometrical analogue of the QD. This geometric QD (GQD) does not
suffer the drawbacks of a similar measure introduced by Dakić et al [13], which makes use
of the Hilbert–Schmidt distance. In particular, for pure states the Bures-GQD is equal to the
geometric measure of entanglement defined as the Bures distance to the set of separable states
[15, 16]. The main advantage of the geometric approach is that, in addition to quantifying the
degree of quantumness of a given state ρ, one can look for the closest zero-discord states to
ρ. This may help to understand decoherence processes and peculiar features of QCs during
dynamical evolutions, such as the sudden transitions discussed in [17, 18]. The main result
of [14] is that the Bures-GQD of a mixed state ρ is equal to the maximal success probability
in ambiguous quantum state discrimination (QSD) of a family of states ρi depending on ρ.
Moreover, the closest zero-discord states to ρ are given in terms of the optimal von Neumann
measurement in this discrimination task.

In this paper, we apply the aforementioned results [14] in order to calculate the Bures-
GQD when one subsystem of the bipartite system is a qubit. In particular, we determine
the GQD between the control qubit and the n target qubits of the output state in the DQC1
algorithm. We show that for any unitary matrix Un, the discord is bounded from above by its
value obtained by choosing random unitaries distributed according to the Haar measure. We
also derive an explicit formula for states ρ of two qubits with maximally mixed marginals and
determine the closest zero-discord states to ρ. We compare our results to those obtained by
using the Hilbert–Schmidt distance and the relative entropy.

The layout of the paper is as follows. We recall in section 2 the problem of ambiguous
QSD, the definitions of the QDs, and the link between the geometric discord and QSD. In
section 3, we show how to solve the QSD task and determine the GQD when the measured
subsystem is a qubit. We calculate in section 4 the GQD for the output state in the DQC1
model. Section 5 is devoted to the case of two qubits. We compare our results for the GQD
with the other QDs and find the closest zero-discord states to a Bell-diagonal state. The last
section 6 contains conclusive remarks. Some technical details are presented in the appendix.

2. Quantum state discrimination and the geometric quantum discord

2.1. Ambiguous quantum state discrimination

The objective of QSD consists in distinguishing states taken randomly from a known ensemble
of states [19, 20]. If these states are non-orthogonal, any measurement devised to distinguish
them cannot succeed to identify exactly which state from the ensemble has been chosen.
The QSD task is to find the optimal measurements leading to the smallest probability of
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equivocation. More precisely, a receiver is given a state ρi in a finite dimensional Hilbert space
H, drawn from a known family {ρi}nA

i=1, with a prior probability ηi. In order to determine which
state he has received, he performs a generalized measurement and concludes that the state is ρ j

when he gets the measurement outcome j. The probability to find this outcome given that the
state is ρi is Pj|i = tr(Mjρi), where {Mj} is a family of non-negative measurement operators
satisfying

∑
j Mj = 1 (POVM). In the so-called ambiguous QSD strategy, the number of

measurement outcomes is chosen to be equal to the number nA of states in the ensemble
{ρi, ηi}. The maximal success probability of the receiver reads

Popt
S ({ρi, ηi}) = max

POVM {Mi}

nA∑
i=1

ηi tr(Miρi). (1)

If the ρi have rank nB = dim(H)/nA and are linearly independent, in the sense that their
eigenvectors |ξi j〉 with nonzero eigenvalues form a linearly independent family {|ξi j〉} j=1,...,nB

i=1,...,nA
of

vectors inH, it is known [21] that the optimal POVM {Mopt
i }nA

i=1 is a von Neumann measurement
with projectors of rank nB. Therefore, in that case P opt

S ({ρi, ηi}) = P opt v.N.

S ({ρi, ηi}), where

Popt v.N.

S ({ρi, ηi}) = max
{�i}

nA∑
i=1

ηi tr(�iρi) (2)

is the maximum success probability over all orthogonal families {�i}nA
i=1 of projectors of rank

nB (i.e., self-adjoint operators satisfying �i� j = δi j�i and rank(�i) = nB).

2.2. Quantum discords

We first briefly recall the definition of the QD of Ollivier and Zurek and Henderson and Vedral
[4, 5]. Let AB be a bipartite system in the state ρ. The mutual information of AB is given
by IA:B(ρ) = S(ρA) + S(ρB) − S(ρ), where S(·) stands for the von Neumann entropy and
ρA = trB(ρ) and ρB = trA(ρ) are the reduced states of A and B, respectively. The mutual
information is non-negative by the sub-additivity of S. It characterizes the total (classical and
quantum) correlations in AB. The QD measures the amount of mutual information which is
not accessible by local measurements on the subsystem A. It can be defined as

δA(ρ) = IA:B(ρ) − max
{πA

i }
IA:B(M{πA

i }(ρ)), (3)

where the maximum is over all von Neumann measurements (i.e., orthogonal families of
projectors) {πA

i } on A and M{πA
i }(ρ) = ∑

i π
A
i ⊗ 1 ρ πA

i ⊗ 1 is the post-measurement state in
the absence of readout. The second term in (3) represents the amount of classical correlations.
It can be shown that δ(ρ) � 0 and δA(σA−cl) = 0 if and only if

σA-cl =
nA∑

i=1

qi|αi〉〈αi| ⊗ σB|i, (4)

where {|αi〉}nA
i=1 is an orthonormal basis for subsystem A, σB|i are some (arbitrary) states of B

depending on the index i, and qi � 0 are some probabilities. We call A-classical states the
zero-discord states of the form (4). 4

The set of quantum states can be equipped with various distances. From a quantum
information perspective, it is natural to study the geometry induced by the Bures distance
[1, 22, 23]

dB(ρ, σ ) = [
2
(
1 −

√
F(ρ, σ )

)] 1
2 , (5)

4 In the literature these states are often referred to as the ‘classical-quantum’ states.
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where F(ρ, σ ) is the Uhlmann fidelity

F(ρ, σ ) = ∥∥√ρ
√

σ
∥∥2

1 = [
tr
([√

σρ
√

σ
]1/2)]2

(6)

generalizing the usual pure-state fidelity |〈
|�〉|2. The distance dB pertains to the family of
monotonous (that is, contractive with respect to completely positive trace-preserving maps)
Riemannian distances [24]. Its metric coincides with the quantum Fisher information playing
an important role in quantum metrology [25]. We take this opportunity to mention a misprint
in our previous article [14]: although the square distance dB(ρ, σ )2 is jointly convex, this is
not the case for dB(ρ, σ ).

The GQD is by definition the square distance of ρ to the set CA of A-classical states,

DA(ρ) = dB(ρ, CA)2 ≡ min
σA-cl∈CA

dB(ρ, σA-cl)
2. (7)

One can similarly define the discord DB(ρ) = dB(ρ, CB)2, where CB is the set of B-classical
states. One has in general DB �= DA (in fact, it is clear from the form (4) of the A-classical
states that CB �= CA). The same holds for the discords δA �= δB, because the maximal mutual
informations after measuring subsystems A or B are in general different. It is not difficult to
show [14] that for pure states DA and DB coincide with the geometric measure of entanglement
E(ρ) = minσsep∈S dB(ρ, σsep)

2, where S denotes the convex set of separable states. More
precisely, if ρ
 = |
〉〈
| then DA(ρ
 ) = DB(ρ
 ) = E(ρ
 ) = 2(1 − √

μmax), μmax being
the highest eigenvalue of (ρ
 )A (maximal Schmidt coefficient). This equality between DA,
DB, and E comes from the fact that the closest separable state to a pure state is a pure product
state5.

2.3. Link between DA and state discrimination

The evaluation of the GQD (7) for mixed states ρ turns out to be related to an ambiguous QSD
task [14]. More precisely, the fidelity between ρ and its closest A-classical state is given by
the maximum success probability (2),

FA(ρ) ≡ max
σA-cl∈CA

F(ρ, σA-cl) = max
{|αi〉}

P opt v.N.

S ({ρi, ηi}). (8)

In the right-hand side, the maximum is over all orthonormal basis {|αi〉}nA
i=1 of A and {ρi, ηi}nA

i=1
is an ensemble of states depending on {|αi〉} and ρ defined by

ηi = 〈αi|ρA|αi〉, ρi = η−1
i

√
ρ|αi〉〈αi| ⊗ 1

√
ρ (9)

(if ηi = 0 then ρi is not defined but does not contribute to the success probability). The number
of states ρi is equal to the dimension nA of the Hilbert space of A. It is easy to see that if ρ > 0
then all the ρi have ranks equal to the dimension nB of the space of B. Furthermore, they are
linearly independent. Thus P opt v.N.

S can be replaced by P opt
S in equation (8).

Note that {ρi, ηi} defines a convex decomposition of ρ, ρ = ∑
i ηiρi. A remarkable

property of this decomposition is that the associated square-root measurement operators
Mi = ηiρ

−1/2ρiρ
−1/2, which are known to be optimum in the ambiguous QSD of symmetric

ensembles [26, 27], coincide with the projectors �i = |αi〉〈αi| ⊗ 1. By bounding from below
P opt v.N.

S ({ρi, ηi}) by the success probability corresponding to �i, we obtain

FA(ρ) � max
{|αi〉}

nA∑
i=1

trB
[〈αi|√ρ|αi〉2

]
. (10)

5 More precisely, a pure state can have either a unique closest separable state given by a pure product state or,
if the maximal Schmidt coefficient μmax is degenerate, infinitely many closest separable states, given by convex
combinations of orthogonal pure product states (see [14]).
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Let us denote by {|αopt
i 〉} and {�opt

i } the basis and projective measurement(s) maximizing
P opt v.N.

S ({ρi, ηi}) in (8). Then the closest A-classical state(s) to ρ is (are) [14]

σρ = 1

FA(ρ)

nA∑
i=1

∣∣αopt
i

〉〈
α

opt
i

∣∣ ⊗ 〈
α

opt
i

∣∣√ρ�
opt
i

√
ρ
∣∣αopt

i

〉
. (11)

Finding analytically the optimal success probability and optimal measurement(s) in
ambiguous QSD with nA > 2 states is an open problem, excepted for symmetric ensembles
[20, 26, 27]. A necessary and sufficient condition for a POVM to be optimum is due to Helstrom
[19]. Various bounds on Popt

S have been derived in the literature (see [28] and references therein).
Moreover, efficient methods are available to solve this problem numerically [29, 30]. We focus
in the next section on the simpler case nA = 2, for which an analytic solution is well-known.

3. Geometric discord for a (2, nB ) bipartite system

If the subsystem A is a qubit, the ensemble {ρi, ηi} contains only nA = 2 states and the QSD
task can be easily handled [19, 20]. In our case, we must maximize the success probability
over all von Neumann measurements given by orthogonal projectors �0 and �1 having the
same rank nB. One starts by writing the projector �1 as 1−�0 in the expression of the success
probability,

P{�i}
S ({ρi, ηi}) = η0 tr(�0ρ0) + η1 tr((1 − �0)ρ1)

= 1
2 (1 − tr�) + tr(�0�) (12)

with � = η0ρ0 − η1ρ1. Thanks to the min-max principle [31], the maximum of tr(�0�) over
all projectors �0 of rank nB is equal to the sum of the nB highest eigenvalues λ1 � · · · � λnB

of the Hermitian matrix �, and the optimal projector �
opt
0 is the spectral projector associated

to these highest eigenvalues. One has

Popt v.N.

S ({ρi, ηi}) = max
{�i}

P{�i}
S ({ρi, ηi}) = 1

2
(1 − tr�) +

nB∑
l=1

λl . (13)

For the states ρi and probabilities ηi defined by equation (9), � = √
ρ (|α0〉〈α0| − |α1〉〈α1|)⊗

1
√

ρ, where {|αi〉}1
i=0 is an orthonormal basis of C

2. For any such basis the operator inside
the parenthesis in the last formula is equal to σu ≡ ∑3

m=1 umσm for some unit vector u ∈ R
3

(here σ1, σ2, and σ3 are the Pauli matrices). Reciprocally, one can associate to any unit vector
u ∈ R

3 the eigenbasis {|αi〉}1
i=0 of σu. By substituting (13) into (8), we get

FA(ρ) = 1

2
max
‖u‖=1

{
1 − tr�(u) + 2

nB∑
l=1

λl(u)

}
(14)

where λl(u) are the eigenvalues in non-increasing order of the 2nB × 2nB Hermitian matrix

�(u) = √
ρ σu ⊗ 1

√
ρ. (15)

Note that −ρ � �(u) � ρ, so that
∑nB

l=1 λl(u) �
∑nB

l=1 pl , pl being the eigenvalues of ρ

in non-increasing order. If ρ > 0 then �(u) has nB positive and nB negative eigenvalues. In
such a case (13) reduces to the well-known expression P opt v.N.

S ({ρi, ηi}) = P opt
S ({ρi, ηi}) =

(1 + tr|�(u)|)/2 [20].

5
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It is shown in [14] that the minimal value that FA(ρ) can take is equal to 1/nA when
nA � nB. 6 If A is a qubit, the maximal value of the GQD is thus DA = 2 − √

2, see (5). It is
convenient to work with a normalized discord, given in terms of FA(ρ) by

D̃A(ρ) = DA(ρ)

2 − √
2

= 1 − √
FA(ρ)

1 − 1/
√

2
. (16)

4. Geometric discord in the DQC1 model

In this section, we determine the Bures-GQD for the output state of the DQC1 algorithm.
We obtain an analytic expression of the discord for all unitary matrices Un from which the
algorithm computes the trace.

The DQC1 model [11] consists in a control qubit, labelled by the index 0, coupled to n
target qubits 1, 2, . . . , n. The control qubit is initially in a mixture of the standard basis vectors
|0〉 and |1〉 with populations (1 ± α)/2 differing from one half. The target qubits are in the
completely mixed state 2−n 1n, where 1n stands for the identity operator on the 2n-dimensional
space HB of qubits 1, . . . , n. This state approximates well the thermal state of the nuclear
spins in liquid-state nuclear magnetic resonance (NMR) experiments at room temperature.
The initial state of the (n + 1) qubits reads

ρα
n+1,in = 1

2n+1
(1 + α σ3) ⊗ 1n (17)

with α ∈ [−1, 1], α �= 0. This state is transformed by the following circuit composed of a
Hadamard gate H and a unitary gate Un acting on HB controlled by the qubit 0:

1
2
(1 + α σ3) H •

1
2n 1n Un

(18)

The output state is

ρU,α
n+1 = 1

2n+1

(
1n αU†

n
αUn 1n

)
= 1

2N

(|0〉〈0| ⊗ 1n + |1〉〈1| ⊗ 1n + α|0〉〈1| ⊗ U†
n + α|1〉〈0| ⊗ Un

)
(19)

with N = 2n. Hence the reduced state tr1,...,n(ρ
U,α
n+1) of the qubit 0 contains some information

about the normalized trace zn = tr(Un)/N. No efficient classical algorithm to compute zn is
known. The DQC1 quantum algorithm provides accurate approximations of 〈σ1 ⊗ 1n〉out =
α Rezn and 〈σ2 ⊗ 1n〉out = α Imzn after sufficiently many runs of the measurement of the spin
σ1 and σ2 on the qubit 0. The number of runs is independent of n and scales logarithmically
with the error probability. In that sense, the DQC1 algorithm is exponentially more efficient
than all known classical algorithms for estimating the normalized trace of Un [12]. Moreover,
it works whatever the value of α provided that α �= 0, hence demonstrating the ‘power of even
the tiniest fraction of a qubit’ [12].

The control qubit is unentangled with the target qubits, as can be shown from the relation

ρU,α
n+1 = 1

2N

N∑
k=1

(|ϕk〉〈ϕk| + |χk〉〈χk|) ⊗ |uk〉〈uk|, (20)

6 Moreover, the ‘most quantum’ states ρ having a minimal fidelity FA(ρ) are the maximally entangled pure states or
convex combinations of such states with reduced B-states having supports on orthogonal subspaces.
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where |uk〉 are the eigenvectors of Un with eigenvalues eiωk , |ϕk〉 = cos δ|0〉 + eiωk sin δ|1〉,
and |χk〉 = sin δ|0〉 + eiωk cos δ|1〉, with sin(2δ) = α. For other bipartitions of the (n + 1)

qubits, e.g., putting together in one subsystem the control qubit and half of the target qubits,
the entanglement does not vanish in general but it is bounded uniformly in n [12]. For large
system sizes, the total amount of bipartite entanglement is thus a negligible fraction of the
maximal entanglement possible.

In what follows, we split the (n + 1) qubits into the subsystem A containing the qubit
0 and the subsystem B containing the qubits 1, . . . , n. It is clear from (20) that the output
state is B-classical, hence it has a vanishing discord δB. It was shown in [7] that this state
has generically a non-vanishing discord δA. The term ‘generically’ refers here to a random
choice of the unitary Un with the Haar distribution. This presence of a nonzero discord has
been demonstrated experimentally in optical [8] and liquid-state NMR [9] implementations of
DQC1.

The Bures-GQD of the output state (19) can be easily determined with the help of (14).
The eigenvalues of ρU,α

n+1 are (1±α)/(2N) and the two corresponding eigenspaces are spanned
by the N vectors |0〉| j〉± |1〉Un| j〉, where | j〉, j ∈ {0, 1}n, are the standard basis vectors of HB.
This yields the square root√

ρU,α
n+1 = 1√

2N
V

(√
1 + α 1n 0

0
√

1 − α 1n

)
V †, V = 1√

2

(
1n 1n

Un −Un

)
. (21)

Substituting this expression into (15) and introducing the angles θ, φ such that u =
(sin θ cos φ, sin θ sin φ, cos θ ), one finds

�(u) = 1

2N
V

(
(1 + α) sin θ Re

(
Uφ

n

) √
1 − α2

(
cos θ − i sin θ Im

(
Uφ

n

))
√

1 − α2
(

cos θ + i sin θ Im
(
Uφ

n

)) −(1 − α) sin θ Re
(
Uφ

n

) )
V †

(22)

with Uφ
n = e−iφUn. Here, Re(O) = (O + O†)/2 and Im(O) = (O − O†)/2i denote the real

and imaginary parts of the operator O. By diagonalizing each of the four blocks of the matrix
appearing between V and V† in the right-hand side of (22), one sees that its eigenvalues λk,±(u)

are the eigenvalues of k distinct 2 × 2 matrices. This yields

λk,±(u) = 1

2N

(
α sin θ cos

(
ω

φ

k

) ±
√

1 − α2 + α2 sin2 θ cos2
(
ω

φ

k

))
(23)

for k = 1, . . . , N, where ω
φ

k = ωk − φ are the eigenphases of Uφ
n . One has clearly

±λk,±(u) � 0. Writing the maximum over u in (14) as a maximum over θ and φ and
noting that the maximum over θ is reached for sin2 θ = 1, we get

FA
[
ρU,α

n+1

] = 1

2
max

φ

{
1 + 1

N

N∑
k=1

√
1 − α2 sin2(ωk − φ)

}
. (24)

Let us point out that the maximal fidelity (24) to the A-classical states is a decreasing function
of α2. Hence the geometric discord DA(ρU,α

n+1) increases with the initial purity (1 + α2)/2 of
the control qubit.

For large system sizes n, the sum over k in (24) can be replaced by an integral over the
smooth normalized spectral density n(ω) of the eigenphases ωk of Un,

FA
[
ρU,α

n+1

] = 1

2
max

φ

{
1 +

∫ π
2

0
dω

√
1 − α2 sin2 ω (nS(ω + φ) + nS(π − ω + φ))

}
(25)

7
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Figure 1. QDs of the output state in the DQC1 algorithm as a function of the purity
parameter α. From top to bottom: discord δA for random unitaries Un distributed
according to the Haar measure in the limit n → ∞ (black squares); normalized Bures-
GQD D̃A for the same choice of unitaries (blue circles); normalized Bures-GDQ for the
rotation matrices (28) (black crosses).

with nS(ω) = n(ω) + n(ω + π). Let us show that the smallest fidelity is achieved for unitary
operators Un having a constant symmetrized spectral density nS(ω) = 1/π . Actually, by
substituting maxφ by

∫ 2π

0 dφ/(2π) in (25) and using
∫ 2π

0 dφ nS(φ) = 2, one gets the bound

FA
[
ρU,α

n+1

]
� FA

[
ρ

Uunif,α
n+1

] = 1

2

(
1 + 2

π

∫ π
2

0
dω

√
1 − α2 sin2 ω

)
. (26)

The inequality is an equality if and only if the integral in (25) is independent of φ. Expanding
nS as a Fourier series, nS(ω) = ∑

p ape2ipω, this is equivalent to

∞∑
p=−∞

pap e2ipφ
∫ π

2

0
dω

√
1 − α2 sin2 ω cos(2pω) = 0 (27)

for any φ ∈ [0, 2π [. For α = 1, one easily sees that the integrals in (27) do not vanish for any
p. Therefore ap = 0 when p �= 0 and nS(ω) is constant. Reciprocally, if nS(ω) is constant then
for any α ∈ [−1, 1] the inequality in (26) is an equality.

Let us emphasize that the bound (26) is satisfied for all n � 1 (in fact, it can be obtained by
replacing as before the maximum over φ by an integral, but in equation (24) instead of (25)).
As a consequence, whatever the unitary matrix Un and the system size n, the GQD is always
smaller or equal to the GQD for an infinite unitary matrix Uunif with constant symmetrized
spectral density nS. Such matrices have equidistributed eigenvalues on the unit circle modulo
a symmetry with respect to the origin. This highest possible discord is achieved in particular
for random unitaries distributed according to the Haar measure on the unitary group U (N),
since then n(ω) = 1/(2π) almost surely in the large n limit [7].

The normalized GQD (16) of the output state (19) is shown in figure 1 as a function of α

for the optimal unitaries Uunif with constant nS(ω) and for the rotation operator

Un = exp

(
iπ

2
√

n
(Jz)n

)
, n � 1, (28)

8
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Figure 2. Normalized discord D̃A of the output state in the DQC1 algorithm for
Un(η) = exp[i π

2 η(Jz)n] as a function of η. The control qubit is initially in a pure
state (α = 1). From top to bottom: n = 100 (black crosses), n = 5 (blue squares),
and n = 1 (red diamonds). All discords are periodic with period 2 (not shown)
and symmetric with respect to η = 1. The horizontal line gives the maximal value
D̃A = (1 − √

1/2 + 1/π )/(1 − 1/
√

2) obtained for random unitaries as in figure 1.

where (Jz)n = ∑n
i=1 σ

(i)
3 /2 is the total angular momentum of the n spins in the z direction.

In the second case, the fidelity is determined from equation (24) by using the non-periodic
spectral density n(ω) = (2/π )3/2 exp(−8 ω2/π2) and noting that the maximum is reached
for φ = 0. This Gaussian density is obtained by using the fact that the eigenphases of Un,
ωk = π(k − n/2)/(2

√
n) with k = 0, . . . , n, have multiplicities dk = n!

k!(n−k)! satisfying

2−ndk ∼
√

2
πn exp[−2(k − n

2 )2/n] in the limit n → ∞ (note that the scaling like 1/
√

n of the
rotation angle in (28) is dictated by the wish to obtain a nontrivial n(ω)). We also compare
in figure 1 the geometric discord with the QD (3), using the result of [7] applying to random
unitaries with the Haar distribution. We observe that δA(ρU,α

n+1) � D̃A(ρU,α
n+1).

Finally, let us determine the unitaries Un leading to the smallest discord. The fidelity
(24) takes its maximal value 1 when eiωk ∈ {eiφ,−eiφ} ∀ k = 1, . . . , N, for a fixed angle
φ ∈ [0, 2π [. Hence DA(ρU,α

n+1) = 0 if and only if Un = eiφQ with φ ∈ [0, 2π [, Q = Q†,
and Q2 = Q. Figure 2 displays the GQD for finite system sizes n. In agreement with the
aforementioned criterion, the discord vanishes for rotation matrices Un with rotation angles
equal to 0 or π . Moreover, it is independent of n when the rotation angle is equal π/2. The
existence of output states of the DQC1 model with a zero-discord and the necessary and
sufficient condition stated above have already been discussed in [13]. Let us notice that the
particular matrices Un which have been conjectured in [12] to lead for α = 1 to the highest
possible bipartite entanglement among the (n + 1) qubits satisfy this condition. For such Un

the discord between the control qubit and the n target qubits thus vanishes.

5. Two-qubit states with maximally mixed marginals

This section is devoted to the determination of the geometric discord DA and the closest
A-classical states for two-qubit systems. With the aim of comparing DA with the other QDs,
we consider a simple convex family of two-qubit density matrices for which all discords can

9
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be easily calculated: the states ρ with maximally mixed marginals ρA = ρB = 1/2. Any such
state can be written up to a conjugation by a local unitary UA ⊗ UB (which leaves all discords
unchanged) as [32]

ρ = 1

4

(
1 ⊗ 1 +

3∑
m=1

cmσm ⊗ σm

)
(29)

where the real vector c = (c1, c2, c3) belongs to the tetrahedron with vertices F± =
(±1,∓1, 1) and G± = (±1,±1,−1), that is,

p0 = 1
4 (1 − c1 − c2 − c3) � 0,

pm = 1
4 (1 + c1 + c2 + c3 − 2cm) � 0, m = 1, 2, 3. (30)

The vertices F± and G± correspond to the Bell states |�±〉 = (|00〉 ± |11〉)/√2 and
|
±〉 = (|01〉 ± |10〉)/√2, respectively. The non-negative numbers pν are the probabilities
of these four Bell states in ρ = ∑3

ν=0 pν |
ν〉〈
ν |, with |
0〉 = |
−〉, |
1〉 = |�−〉,
|
2〉 = |�+〉, and |
3〉 = |
+〉. The states (29) form a 3-parameter convex subset T in
the 15-parameter set E of all two-qubit states.

5.1. Explicit formula for the GQD

Let us calculate DA(ρ) for two qubits in the state (29). The matrices ρ and
√

ρ are given in
the standard basis {|00〉, |10〉, |01〉, |11〉} by

ρ = 1

4

⎛⎜⎜⎝
1 + c3 0 0 c1 − c2

0 1 − c3 c1 + c2 0
0 c1 + c2 1 − c3 0

c1 − c2 0 0 1 + c3

⎞⎟⎟⎠ (31)

and

√
ρ =

⎛⎜⎜⎝
t0 + t3 0 0 t1 − t2

0 t0 − t3 t1 + t2 0
0 t1 + t2 t0 − t3 0

t1 − t2 0 0 t0 + t3

⎞⎟⎟⎠ (32)

where

4t0 = √
p0 + √

p1 + √
p2 + √

p3, 4t1 = −√
p0 − √

p1 + √
p2 + √

p3, (33)

with similar formulas for t2 and t3 obtained by permutation of the indices 1, 2, 3. The real
parameters tν satisfy 4(t2

0 + t2
1 + t2

2 + t2
3 ) = trρ = 1. Let θ and φ be the angles defined by the

vector u = (sin θ cos φ, sin θ sin φ, cos θ ) on the unit sphere. In the standard basis, the matrix
�(u) = √

ρ σu ⊗ 1
√

ρ reads

�(u) = 1

4

⎛⎜⎜⎝
(a3 + b3) cos θ ζ ∗

φ sin θ ξ ∗
φ sin θ 0

ζφ sin θ (a3 − b3) cos θ 0 ξ ∗
φ sin θ

ξφ sin θ 0 (−a3 + b3) cos θ ζ ∗
φ sin θ

0 ξφ sin θ ζφ sin θ (−a3 − b3) cos θ

⎞⎟⎟⎠ (34)

with ξφ = a1 cos φ + ia2 sin φ, ζφ = b1 cos φ + ib2 sin φ, and

bm = 8
(
t2
0 + t2

m

) − 1, a1 = 8(t0t1 + t2t3), a2 = 8(t0t2 + t1t3), a3 = 8(t0t3 + t1t2). (35)

One finds

a3 = 2
( − √

p0 p3 + √
p1 p2

)
, b3 = 2

(√
p0 p3 + √

p1 p2
)
. (36)

10
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Similar expressions hold for the other coefficients a1, a2, b1, and b2 by permuting the indices
1, 2, 3.

The eigenvalues of �(u) come in opposite pairs (λ±(u),−λ±(u)) with

λ±(u) = 1
4

∣∣∣√b2
3 cos2 θ + |ζφ|2 sin2 θ ±

√
a2

3 cos2 θ + |ξφ|2 sin2 θ

∣∣∣, (37)

in agreement with tr�(u) = tr(ρAσu) = 0. But |am| � bm by (36), thus the second square root
is smaller than the first one. One deduces from (14) that

FA(ρ) = 1
2

(
1 + max

θ,φ

√
b2

3 cos2 θ + (
b2

1 cos2 φ + b2
2 sin2 φ

)
sin2 θ

)
. (38)

If the bm are distinct from each other, the maximum is reached for cos2 θ, cos2 φ ∈ {0, 1}, that
is, for u = ±e1, ±e2, or ±e3 (here em are the coordinate axis vectors). If b1 = b2 > b3, this
maximum is reached for u = cos φ e1 + sin φ e2 with φ ∈ [0, 2π [ arbitrary. Thus

FA(ρ) = 1 + bmax

2
and D̃A(ρ) =

(
1 − 1√

2

)−1
(

1 −
√

1 + bmax

2

)
(39)

with

bmax = max
m=1,...,3

{bm} = 1
2 max

{√
(1 + c1)2 − (c2 − c3)2 +

√
(1 − c1)2 − (c2 + c3)2,√

(1 + c2)2 − (c1 − c3)2 +
√

(1 − c2)2 − (c1 + c3)2,√
(1 + c3)2 − (c1 − c2)2 +

√
(1 − c3)2 − (c1 + c2)2

}
. (40)

We notice that if |cm| is maximum for m = mmax then this is also true for bm, i.e., the maximal
number inside the brackets in (40) is the (mmax)th one. Actually, one can show from (36) and
(30) that

c2
m − c2

k = b2
m − b2

k, m, k = 1, . . . , 3. (41)

It is clear on (40) that the vectors c such that bmax takes the highest possible value bmax = 1
have a single non-vanishing component cm. Therefore, in agreement with the results of [13], the
A-classical states with maximally mixed marginals are located (up to local unitary equivalence)
on the three segments of the coordinate axes inside the tetrahedron, represented in figure 3(a)
by thick dashed lines. As a consequence, all states ρ such that c is inside the octahedron
formed by the convex hull of the three aforementioned segments are separable (for indeed,
convex combinations of A-classical states are separable). It follows from the Peres–Horodecki
criterion that this octahedron contains all separable states with maximally mixed marginals
[32].

The states (29) with the highest discord D̃A = 1 have b1 = b2 = b3 = 0. These states are
the four Bell states |
ν〉 located at the vertices F± and G± of the tetrahedron (see figure 3(a)).
Note that an analogous result holds for the Hilbert–Schmidt-GQD [13].

Let us end this subsection by remarking that for two-qubit states ρ with maximally mixed
marginals ρA = ρB = 1/2, the inequality (10) is an equality. Actually, for such ρ one has equal
prior probabilities ηi = 〈αi|ρA|αi〉 = 1/2 in the QSD task of section 2.3. Moreover, it follows
from (29) that ρ is invariant under conjugation by the spin-flip operators σ1 ⊗ σ1 and σ2 ⊗ σ2.
But it has been observed above that an optimal direction uopt is given by one of the coordinate
vectors em or its opposite. Disregarding irrelevant phase factors, the two eigenvectors |αopt

0 〉
and |αopt

1 〉 of σuopt are transformed one into another by the spin-flip operator σm, with m = 1 if
uopt = ±e2,±e3 and/or m = 2 if uopt = ±e1,±e3. Hence the states ρi are related by a unitary
conjugation, ρ1 = σm ⊗ σm ρ0 σm ⊗ σm. The square-root measurement is known to be optimal
to discriminate such symmetric ensembles of states with equal prior probabilities [26, 27].
Thus FA(ρ) is given by the right-hand side of equation (10). Based on this observation, one
can rederive formula (39) in a slightly simpler way.
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Figure 3. (a) Tetrahedron T with vertices F± = (±1, ∓1, 1) and G± = (±1, ±1, −1),
and center O(0, 0, 0). The vectors c ∈ T represent physical states ρ(c) with maximally
mixed marginals. The A-classical states in T are also B-classical and are located on
the segments [IK], [JL], and [MN] (thick red dashed lines), with I(1, 0, 0), J(0, 1, 0),
K(−1, 0, 0), L(0, −1, 0), M(0, 0, 1), and N(0, 0, −1). The shaded region delimited by
the octahedron IJKLMN corresponds to separable states. (b) Cut view of T in the plane
c3 = 0. The state ρ( 1

4 , 1
2 , 0) has a unique closest classical state (CCS) σρ(0, s2, 0)

with s2 � 0.523 (see equation (47)). States on the broken lines are at equal Bures
distance from the segments [IK] and [JL] and have infinitely many CCSs, given by
equation (51). On these lines DA(ρ) is not differentiable. Two CCSs of the form (29) to
the state τ (− 1

4 ,− 1
4 , 0), corresponding to u = e1 and e2 in (51), are shown: στ (s1, 0, 0)

and στ (0, s1, 0) with s1 � −0.259. (c) Cut view of T in the plane c1 = c2. States in the
shaded region are separable. The state ρ( 1

2 , 1
2 , − 3

4 ) has a unique CCS σρ(0, 0, s3), with
s3 � −0.729. States inside the triangles H∓OG± have infinitely many CCSs, given by
(51). All states lying on the blue edges of the square and triangle in panels (b) and (c),
and on the faces of T in panel (a), have infinitely many CCSs, given by equations (55)
and (56).

5.2. Comparison with the other discords

We can now compare the normalized GQD D̃A(ρ) for states ρ of the form (29) with other
measures of QCs. The corresponding QD

δA(ρ) =
3∑

ν=0

pν ln2 pν + 2 − 1 − |c|
2

ln2(1 − |c|) − 1 + |c|
2

ln2(1 + |c|) (42)

has been calculated in [33]. Here, |c| = maxm |cm| and the probabilities pν are given by (30).
The GQD with Hilbert–Schmidt distance, D(2)

A (ρ) = d2(ρ, CA)2 ≡ minσ∈CA tr[(ρ − σ )2],
is easy to determine for arbitrary two-qubit states [13]. For the states (29) it reads
D(2)

A (ρ) = (
∑

m c2
m − |c|2)/4. Since the maximal value of D(2)

A is 1/2, we normalize
it as D̃(2)

A (ρ) = 2D(2)
A (ρ). A third discord considered in [34] is defined with the help

of the relative entropy S(ρ||σ ) = tr(ρ ln ρ) − tr(ρ ln σ ) as �A(ρ) = minσ∈CA S(ρ||σ ).

12
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Figure 4. Comparison of the normalized discords and geometric entanglement for a
Werner state ρW = 1−c

4 1 + c|
−〉〈
−| with c varying between 0 and 1 (ρW is located
on the segment [OG−] in figure 3(a)). From top to bottom: QD δA (black boxes), GQD
D̃(2)

A with Hilbert–Schmidt distance (red crosses), GQD D̃A with Bures distance (blue
circles), and geometric measure of entanglement Ẽ (green diamonds).

However, for the states (29) it coincides with δA(ρ) [18]. We also compare D̃A(ρ) with
the geometric measure of entanglement (see section 2.2), given for two qubits by E(ρ) =
2 − √

2(1 +
√

1 − C(ρ)2)1/2 [16] where C(ρ) is the Wootters concurrence [35]. In our case
C(ρ) = max{|c1 − c2| − 1 + c3, |c1 + c2| − 1 − c3, 0}/2. The measure E is normalized as
Ẽ(ρ) = E(ρ)/(2 − √

2). Let us point out that Ẽ(ρ) � D̃A(ρ) for any ρ, since A-classical
states are separable.

In figure 4, the four QC measures D̃A, δA, D̃(2)
A , and Ẽ are plotted together for the Werner

states, obtained by taking c1 = c2 = c3 = −c in (29), with 0 � c � 1.
Figure 5(a) displays the difference D̃A(ρ)−δA(ρ) for a subfamily of states with maximally

mixed marginals depending on two parameters. We observe that

δA(ρ) � D̃A(ρ). (43)

In contrast, one sees in figures 4 and 5(b) that the GQD with Hilbert–Schmidt distance can
be either smaller or larger than δA, as it has been noted previously in other works [36]. We
have looked numerically for vectors c inside the tetrahedron violating (43) and have not found
any such vector. This indicates that this bound holds for any state ρ with maximally mixed
marginals. It would be of interest to know if it also holds for more general states. Let us recall
from section 4 that (43) is true for the output state of the DQC1 model with random unitaries.

5.3. Closest A-classical states

We now turn to the problem of finding the A-classical states σρ satisfying

dB(ρ, σρ )2 = DA(ρ) = min
σA-cl∈CA

dB(ρ, σA-cl)
2. (44)

These closest A-classical states to ρ provide useful information on ρ and on the geometry of
the set of quantum states. Such information, which is not contained in the discord DA(ρ), can
be of interest when studying dynamical evolutions, for instance, when the two subsystems
are coupled to their environments and undergo decoherence processes. Like in the two
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Figure 5. (a) Difference δA(ρ)−D̃A(ρ) between the QD and the normalized Bures-GQD
for states with maximally mixed marginals with vectors c inside the triangle of vertices
F+, F−, and N (see figure 3(a)). The parameters u and v, 0 � u � 1 − v � 1, are chosen
such that c1 = −2u − v + 1 = −c2 and c3 = −2v + 1; (b) same for the difference
δA(ρ) − D̃(2)

A (ρ) between the QD and the normalized Hilbert–Schmidt-GQD.

previous subsections, we focus on two-qubit states with maximally mixed marginals given by
equation (29). The geometric representation of these states by vectors c in the tetrahedron T
will give some insight to our results. In order to compare the geometries on T associated to
the two distances dB and d2, we also determine the closest A-classical states for the Hilbert–
Schmidt distance d2 by using the results of [13].

The states σρ are obtained by applying formula (11). In view of the results of section 3,
the optimal basis {|αopt

i 〉}1
i=0 is the eigenbasis of the spin operator σuopt in the optimal direction

uopt. We already know that for the states (29), uopt is parallel to the coordinate vector emmax if
the maximum |c| = maxm=1,2,3 |cm| is reached for a single index m = mmax (see section 5.1);
otherwise, uopt is an arbitrary unit vector in the space spanned by the em corresponding to
indices m such that |cm| = |c| (indeed, for such indices the parameters bm in (38) are equal,
bm = bmax, by virtue of (41)). Moreover, it has been shown in section 5.1 that the states ρ

opt
i

are optimally discriminated by the square-root measurement given by the projectors

�
opt
i = ∣∣αopt

i

〉〈
α

opt
i

∣∣ ⊗ 1. (45)

Let us first take uopt = ±emmax . Then σmmax = ±(|αopt
0 〉〈αopt

0 | − |αopt
1 〉〈αopt

1 |). One infers
from the expression (32) of the matrix

√
ρ in the standard basis that

√
ρ = ∑3

ν=0 tνσν ⊗ σν ,
where tν are given by (33) and we have set σ0 = 1. This yields〈

α
opt
i

∣∣√ρ
∣∣αopt

i

〉 = t0 ± (−1)itmaxσmmax (46)

with tmax ≡ tmmax . Replacing (45) and (46) into (11) and using the identities FA(ρ) = 4(t2
0 +t2

max)

and 16t0tm = am + cm, which follow respectively from (39) and (35) and from (33), (30), and
(36), one finds

σρ = 1

4

(
1 ⊗ 1 + ammax + cmmax

2FA(ρ)
σmmax ⊗ σmmax

)
(47)

where

a1 = 2
( − √

p0 p1 + √
p2 p3

) = 1
2

(√
(1 + c1)2 − (c2 − c3)2 −

√
(1 − c1)2 − (c2 + c3)2

)
,

(48)
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with analogous formulas for a2 and a3 obtained via a permutation of indices. Hence, a two-
qubit state ρ with maximally mixed marginals always admits among its closest A-classical
states a state with maximally mixed marginals, given by equation (47). This closest state has
the following decomposition in terms of the four Bell states

σρ = 1 − qmmax

2

∑
ν=0,mmax

|
ν〉〈
ν | + qmmax

2

∑
ν �=0,mmax

|
ν〉〈
ν | (49)

with

qm = (t0 + tm)2

2
(
t2
0 + t2

m

) = 1

2
+ am + cm

2bm + 2
. (50)

Interestingly, the closest states (49) for the Bures distance have the same form as the closest
states for the relative entropy. Actually, the states σ�

ρ satisfying S(ρ||σ�
ρ ) = minσ∈CA S(ρ||σ )

are given by equation (49) but with different probabilities qmmax and 1 − qmmax , given by the
sums of the two largest or the two smallest probabilities pν [34]. According to our notation,
these two smallest (respectively largest) probabilities are p0 and pmmax if |cm| = |c| for a single
index m = mmax and p0 + pmmax < 1/2 (respectively p0 + pmmax > 1/2).

If |cm| = |c| for two indices m, say, |c1| = |c2| > |c3| with c1 = ±c2, all the eigenbasis
{|αopt

φ,i 〉} of the spin operators σφ = cos φ σ1 + sin φ σ2 maximize the success probability

P opt v.N.

S ({ρi, ηi}) in (8). Hence ρ has infinitely many closest A-classical states σρ . These
states can be determined by a simple generalization of the calculation leading to (47),
choosing for �

opt
i the square-root measurement operators (45) associated to {|αopt

φ,i 〉}. Let

us note that c1 = ±c2 implies t1 = ±t2 and recall the identities |αopt
φ,i 〉 = e−i φ

2 σ3 |αopt
0,i 〉 and

ei φ

2 σ3σu e−i φ

2 σ3 = σu′ , where u′ is related to u by a rotation around the z-axis with the angle
−φ. We find the following family of A-classical closest states depending on the optimal vector
u = u1 e1 + u2 e2 with u2

1 + u2
2 = 1:

σρ(u) = 1

4

(
1 ⊗ 1 + ammax + cmmax

2FA(ρ)
σu ⊗ σu(c)

)
(51)

with mmax ∈ {1, 2} and u(c) = c−1
mmax

(c1u1 e1 + c2u2 e2) (note that σρ(u) is independent of
the choice of mmax in {1, 2} since a2 + c2 = ±(a1 + c1)). Similar results are obtained by
permutation of indices in the cases |c1| = |c3| > |c2| and |c2| = |c3| > |c1|. The A-classical
states (51) have maximally mixed marginals, although they are not of the form (29) save for
u1 = 0,±1 (in fact, σρ(u) can be transformed into the state (47) by an appropriate conjugation
by a local unitary operator). If |c1| = |c2| = |c3|, any orthonormal basis is optimal and one
obtains a family of closest states depending on the arbitrary optimal unit vector u ∈ R

3, given
by (51) with u(c) = c−1

mmax
(c1u1 e1 + c2u2 e2 + c3u3 e3).

Let us now discuss a more subtle point, which is of relevance if one wants to find all
A-classical states σρ satisfying (44). Given an optimal basis {|αopt

i 〉}, there is not guarantee
that the square-root measurement (45) is the only optimal measurement maximizing
PS({ρopt

i , η
opt
i }). Actually, it turns out that this is not the case if c belongs to one of the faces

of the tetrahedron (so that p0 p1 p2 p3 = 0). In this situation, we encounter in the appendix a
whole family of optimal projectors �

opt
i (r), depending on a real parameter r ∈ [−1, 1]. Let

us emphasize that if two states of the form (11) with the same optimal basis {|αopt
i 〉} are the

closest A-classical states to ρ then, by convexity of the square Bures distance, any convex
combination of these states is also a closest A-classical state to ρ. Hence the set of optimal
projectors must be either infinite or reduced to one point. To each measurement in this set one
can associate a closest A-classical state by equation (11), which is determined in the appendix.
Before giving the result, let us introduce the product basis {|αi, β j〉 = |αi〉 ⊗ |β j〉}1

i, j=0 of
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C
2 ⊗C

2 defined as follows: (i) if |cm| is maximal for a single index m = mmax, then |αi〉 = |βi〉
are the eigenvectors of σmmax ; (ii) if |cm| is maximum for exactly two components cm, then
mmax, |αi〉, and |βi〉 are defined by

mmax =
⎧⎨⎩

1
3
3

, |αi〉 =

⎧⎪⎨⎪⎩
e−i φ

2 σ3 |0〉+(−1)i|1〉√
2

if c1 = ±c2, |c1| > |c3|
e−i θ

2 σ2 |i〉 if c1 = ±c3, |c1| > |c2|
ei θ

2 σ1 |i〉 if c2 = ±c3, |c2| > |c1|
, (52)

and

|βi〉 =

⎧⎪⎨⎪⎩
e∓i φ

2 σ3 |0〉+(−1)i|1〉√
2

if c1 = ±c2, |c1| > |c3|
e∓i θ

2 σ2 |i〉 if c1 = ±c3, |c1| > |c2|
e±i θ

2 σ1 |i〉 if c2 = ±c3, |c2| > |c1|
(53)

for some arbitrary angles φ or θ ∈ [0, 2π [; (iii) if |c1| = |c2| = |c3|, that is, c1 = ε2c2 = ε3c3

with ε2,3 ∈ {−1, 1}, then

mmax = 3, |αi〉 = e−i φ

2 σ3 e−i θ
2 σ2 |i〉, |βi〉 = e−iε2

φ

2 σ3 e−iε3
θ
2 σ2 |i〉 (54)

for arbitrary angles φ and θ ∈ [0, 2π [. Then all the closest A-classical states to ρ are of the
following form:

σρ(r) = qmmax

2

[|α0, β0〉〈α0, β0| + |α1, β1〉〈α1, β1|
]

+1 − qmmax

2

[
(1 + r)|α0, β1〉〈α0, β1| + (1 − r)|α1, β0〉〈α1, β0|

]
(55)

if p0 pmmax = 0 and pm > 0 ∀ m �= mmax, and

σρ(r) = qmmax

2

[
(1 + r)|α0, β0〉〈α0, β0| + (1 − r)|α1, β1〉〈α1, β1|

]
+1 − qmmax

2

[|α0, β1〉〈α0, β1| + |α1, β0〉〈α1, β0|
]

(56)

if p0 pmmax > 0 and p1 p2 p3 = 0. In these equations r ∈ [−1, 1] is arbitrary. When c is in
the interior of the tetrahedron T (i.e., p0 p1 p2 p3 > 0), all the closest states are obtained by
setting r = 0 in equations (55) and (56). One then recovers the previous results (47) and (51).
Therefore, ρ has a unique closest A-classical state if and only if c is in the interior of T and
the maximum |c| is non-degenerate (case (i)). In the case (ii), ρ admits a 1-parameter (or, if
c belongs to a face of T , a 2-parameter) family of closest A-classical states. In the case (iii),
this family is a 2-parameter (or, if c belongs to a face of T , a 3-parameter) family.

It should be noted that the states (55) and (56) do not have maximally mixed marginals
save for r = 0. This means that the states ρ on the faces of T have closest A-classical
states outside the tetrahedron. Let us also emphasize that all the closest A-classical states σρ

determined in this section are in fact classical states, that is, the eigenvectors of σρ are product
states. Thus

DA(ρ) = DB(ρ) = 2

(
1 −

√
1 + bmax

2

)
, (57)

as could be expected from the symmetry of ρ under the exchange of the two qubits.
In figures 3(b) and (c), some examples of states ρ in the tetrahedron and their closest states

σρ are represented. In figure 3(b), outside the dashed lines on which two or more components
cm have equal moduli, σρ is specified by a vector s lying on the closest coordinate semi-axis
to c for the usual distance in R

3 (but s is not the closest vector to c on that semi-axis).
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The closest A-classical states for the Hilbert–Schmidt distance d2 to a state ρ of the form
(29) can be found by using the results of [13]. They are given by

σ (2)
ρ (u) = 1

4

⎛⎝1 ⊗ 1 +
3∑

l,m=1

ulcmumσl ⊗ σm

⎞⎠ (58)

with an arbitrary unit vector u ∈ R
3. In contrast with the Bures distance, all states ρ with

maximally mixed marginals have infinitely many closest A-classical states. Moreover, there are
three states σ (2)

ρ of the form (29) lying on the coordinate axes, with non-vanishing coordinate
equal to the corresponding coordinate of c, irrespective of the order of the moduli |cm|. Since
tr[(σ (2)

ρ )2] = (1 +∑
m c2

mu2
m)/4 � 1/2, the closest states σ (2)

ρ are always mixed. In particular,
unlike for the Bures distance, the closest classical states to the maximally entangled pure states
|
ν〉 are not pure product states.

6. Conclusions

We have shown that the results of [14] can be used to determine the geometric quantum discord
(GQD) with Bures distance of a state ρ of a bipartite system AB and the corresponding closest
A-classical states to ρ when the subsystem A is a qubit. Analytical expressions for this GQD
in the DQC1 model and for two qubits in a state with maximally mixed marginals have been
obtained. In all cases for which exact analytical formulas for the usual quantum discord of
[4, 5] are also available, we observe that the normalized GQD is smaller than the usual discord.
In the DQC1 model, the comparison of the GQDs of the output state for different unitaries Un

shows that the highest discord appears when Un has uniformly distributed eigenvalues on the
unit disk modulo a symmetry with respect to the origin. In particular, the discord cannot be
larger than that obtained for large random unitary matrices distributed according to the Haar
measure, which have been studied in [7]. For rotation matrices and large number of qubits n,
the GQD is close to this upper bound, expected for small rotation angles and at certain specific
angles. For two-qubit states ρ with maximally mixed marginals, the closest A-classical states
for the Bures distance are qualitatively similar to the closest A-classical states for the relative
entropy, but completely different from those for the Hilbert–Schmidt distance. The geometry
induced by the Bures distance in the tetrahedron looks like the Euclidean geometry of R

3,
the A-classical states being located on the three segments of the coordinate axes inside the
tetrahedron. However, depending on the symmetry of ρ, ρ can have either a unique closest
classical state with maximally mixed marginals or a continuous family of closest classical
states with maximally mixed or non-maximally mixed marginals.

Our results constitute a first step in the study of the geometric measure of quantum discord
introduced in [14] in some concrete models and its relation with the usual discord and other
geometrical versions. It would be of interest to calculate the Bures-GQD in other physical
models, in particular in the presence of dynamical evolutions, and to compare it with other
measures of non-classicality in the literature.
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Appendix. Closest classical states of a two-qubit state with maximally mixed
marginals

In this appendix we determine all optimal projective measurements {�opt
i } maximizing

the success probability PS({ρopt
i , η

opt
i }) in equation (13) for a two-qubit state ρ of the

form (29). This allows us to find all the closest A-classical states to ρ by applying
formula (11).

Before starting the calculation, let us first note that we can restrict our analysis to optimal
directions uopt satisfying uopt · em � 0 for a fixed coordinate index m = 1, 2, or 3. Indeed,
changing the order of the vectors in the basis {|αopt

i 〉}1
i=0 in equations (9) and (11) amounts

to exchange (ρ
opt
0 , η

opt
0 ) ↔ (ρ

opt
1 , η

opt
1 ) and �

opt
0 ↔ �

opt
1 . This does clearly not modify the

optimal success probability and the A-classical states σρ . But {|αopt
i 〉} is the eigenbasis of the

spin operator σu for the optimizing direction u = uopt, see section 3. Changing the order of the
basis vectors thus corresponds to invert uopt. Hence we may assume uopt · em � 0 without loss
of generality. Thanks to the results of section 5, we know that if |cm| is maximal for a single
index m = mmax then uopt = emmax .

We first study the case |c3| > |c1|, |c2|. All other cases will be deduced by symmetry
arguments. Then uopt = e3 and |αopt

i 〉 = |i〉 (i = 0, 1) are the vectors of the standard
basis. By setting θ = 0 in (34), we immediately find that �opt ≡ �(uopt) has eigenvalues
λ

opt
+ = (b3 + |a3|)/4 > 0, λopt

− = (b3 − |a3|)/4 � 0, −λ
opt
− � 0, and −λ

opt
+ < 0 (here, we have

used the inequalities b3 � |a3| and b3 > 0, which follow from (36)). As stressed in section 3,
�

opt
0 is the projector on the direct sum V+ ⊕ V− of the eigenspaces V+ and V− associated to

the maximal eigenvalues λ
opt
+ and λ

opt
− , provided that these eigenvalues are non-degenerated.

If λ
opt
− = 0 is two-fold degenerated, any projector on V+ ⊕ V with V ⊂ V− a one-dimensional

subspace of V− defines an optimal projector �
opt
0 . In view of the diagonal form (34) of �opt in

the standard basis, one gets

�
opt
0 =

⎧⎨⎩
|0〉〈0| ⊗ 1 if b3 > |a3|
|00〉〈00| + |�〉〈�| if b3 = a3 > 0
|01〉〈01| + |�′〉〈�′| if b3 = −a3 > 0

(A.1)

with |�〉 ∈ span{|10〉, |01〉} and |�′〉 ∈ span{|00〉, |11〉}, ‖�‖ = ‖�′‖ = 1. The condition
b3 > |a3| is achieved when all pν are nonzero, see (36). Then the optimal measurement {�opt

i }
is unique and thus ρ has a unique closest A-classical state. The condition b3 = a3 (respectively
b3 = −a3) corresponds to p0 p3 = 0 (respectively p1 p2 = 0), that is, to a vector c belonging to
the faces F+F−G+ or F+F−G− (respectively, G+G−F+ or G+G−F−) of the tetrahedron. In this
situation one has infinitely many optimal measurements. Note that p0 p3 and p1 p2 cannot both
vanish, since otherwise one would have b3 = a3 = 0, in contradiction with our hypothesis
|c3| > |c1|, |c2| (which is equivalent to b3 > b1, b2 � 0 by (41)). Let us replace |αopt

i 〉 = |i〉
and (A.1) into the expression (11) of σρ and make use of the expression (32) of

√
ρ in the

standard basis. By taking advantage of the identities t1 + t2 = ±(t0 − t3) for p0,3 = 0 and
t1 − t2 = ±(t0 + t3) for p1,2 = 0 (which can be established with the help of (33)), a simple
lengthy calculation yields

σρ(r) = (t0 + t3)2

FA(ρ)
[|00〉〈00| + |11〉〈11|] + (t0 − t3)2

FA(ρ)
[(1 + r)|01〉〈01| + (1 − r)|10〉〈10|]

(A.2)

if p0 p3 = 0, and

σρ(r) = (t0 + t3)2

FA(ρ)

[
(1 + r)|00〉〈00| + (1 − r)|11〉〈11|] + (t0 − t3)2

FA(ρ)

[|01〉〈01| + |10〉〈10|]
(A.3)
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if p1 p2 = 0. The real parameter r in (A.2) and (A.3) are given by r = ±2 Re{〈01|�〉〈�|10〉}
and r = ±2 Re{〈11|�′〉〈�′|00〉}, respectively. Since |�〉 and |�′〉 are arbitrary normalized
vectors in the two-dimensional spaces specified after (A.1), r can take any values in [−1, 1].
If all pν are nonzero, the unique closest classical state is given by setting r = 0 in (A.2) or
(A.3). Recalling that FA(ρ) = (1 + b3)/2 = 4(t2

0 + t2
3 ), we find that σρ is given by equations

(55), (56), and (50) with mmax = 3 and |αi〉 = |βi〉 = |i〉.
The case |c1| > |c2|, |c3| (respectively |c2| > |c1|, |c3|) can be deduced from the

previous case by the following symmetry argument. By means of the unitary conjugation
ρ ′ = Uρ U† with U = ei π

4 σ2 ⊗ ei π
4 σ2 (respectively U = e−i π

4 σ1 ⊗ e−i π
4 σ1 ), one can

transform ρ into a state ρ ′ of the form (29) with a vector c′ = (c3, c2, c1) (respectively
c′ = (c1, c3, c2)) satisfying |c′

3| > |c′
1|, |c′

2|. By invariance of the fidelity (6) and of
CA under local unitary conjugations, such a transformation does not change FA, so that
FA(ρ) = FA(ρ ′) = (1 + b′

3)/2 = (1 + bmax)/2, in agreement with (39). Moreover, according
to (44), the states σρ are related to the closest states σρ ′ to ρ ′ by σρ = U†σρ ′U . But σρ ′ is given
by (A.2) and (A.3) upon the replacement of t3 by t ′3 = tmax. Therefore, σρ is given by equations
(55) and (56) in which |αi〉 = |βi〉 are the eigenvectors of σmmax with eigenvalues (−1)i, that
is, |αi〉 = e−i π

4 σ2 |i〉 ∝ |0〉 + (−1)i|1〉 if |c1| > |c2|, |c3| and |αi〉 = ei π
4 σ1 |i〉 ∝ |0〉 + i(−1)i|1〉

if |c2| > |c1|, |c3|.
We now turn to states ρ with vectors c such that |cm| is maximum for exactly two

components cm. For instance, let us assume c1 = ±c2 and |c1| = |c2| > |c3| (the other cases
will easily follow by a state rotation as above). Then, as noted in section 5.3, any vector
uφ = cos φ e1 + sin φ e2 in the (xOy)-plane defines an optimal direction. The corresponding
optimal basis is formed by the eigenvectors |αopt

φ,i 〉 = e−i φ

2 σ3 |αopt
0,i 〉 of σuφ

with eigenvalues
(−1)i. The non-uniqueness of uopt comes from the symmetry of ρ. Actually, one finds from
(29) that for any angle φ ∈ [0, 2π [,

ρ = U±(φ)ρ U±(−φ), U±(φ) = e−i φ

2 σ3 ⊗ e∓i φ

2 σ3 . (A.4)

By using (15) and the identity ei φ

2 σ3σu e−i φ

2 σ3 = σu′ , where u′ is related to u by a rotation
around the z-axis with the angle −φ, it follows that

�(uφ ) = U±(φ)�(e1)U±(−φ). (A.5)

As a result, the spectral projectors �
opt
φ,i of �(uφ ) and thus the closest classical state (11)

corresponding to uopt = uφ are obtained from the corresponding projectors and classical state
for uopt = e1 by a unitary conjugation by U±(φ). But the closest classical state for uopt = e1

is given by (A.2) and (A.3) upon the substitution of t3 by t1 and of |0〉, |1〉 by the eigenvectors
of σ1. We conclude that the states σρ are given by (55) and (56) with mmax = 1 and the vectors
|αi〉 and |βi〉 as in equation (52).

Finally, let us study the states ρ with |c1| = |c2| = |c3|. This is the case for instance for
the Werner states. Let ε2, ε3 ∈ {−1, 1} be defined by c1 = ε2c2 = ε3c3. Then ρ is invariant
under rotations with arbitrary angles θ and φ,

ρ = Uε2,ε3 (θ, φ)ρ Uε2,ε3 (θ, φ)†, Uε2,ε3 (θ, φ) = e−i φ

2 σ3 e−i θ
2 σ2 ⊗ e−iε2

φ

2 σ3 e−iε3
θ
2 σ2 . (A.6)

Moreover, the eigenvalues of �(u) are independent of u, since b1 = b2 = b3, see (37) and
(41). Thus the optimal direction uopt is completely arbitrary and any orthonormal basis {|αopt

i 〉}
of C

2 is optimal. The closest classical states to ρ are again given by (55) and (56), with the
vectors |αi〉 and |βi〉 as in equation (54).
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[17] Maziero J, Céleri L C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102
[18] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[19] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic)
[20] Bergou J A, Herzog U and Hillery M 2004 Discrimination of quantum states in Quantum State

Estimation (Lecture Notes in Physics vol 649) ed M Paris and J Rehacek (Berlin: Springer)
pp 417–65

[21] Eldar Y C 2003 Phys. Rev. A 68 052303
[22] Uhlmann A 1976 Rep. Math. Phys. 9 273
[23] Bures D 1969 Trans. Am. Math. Soc. 135 199
[24] Petz D 1996 Linear Algebra Appl. 244 81
[25] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[26] Eldar Y C, Megretski A and Verghese G C 2004 IEEE Trans. Inform. Theory 50 1198
[27] Chou C-L and Hsu L Y 2003 Phys. Rev. A 68 042305
[28] Qiu D and Li L 2010 Phys. Rev. A 81 042329
[29] Helstrom C W 1982 IEEE Trans. Inform. Theory 28 359
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