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Holography and the Polyakov action
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In two-dimensional conformal field theory the generating functional for correlators of the stress-energy
tensor is given by the nonlocal Polyakov action associated with the background geometry. We study this
functional holographically by calculating the regularized on-shell action of asymptotically AdS gravity in three
dimensions, associated with a specifibdt arbitrary boundary metric. This procedure is simplified by making
use of the Chern-Simons formulation, and a corresponding first-order expansion of the bulk dreibein, rather
than the metric expansion of Fefferman and Graham. The dependence of the resulting functional on local
moduli of the boundary metric agrees precisely with the Polyakov action, in accord with the AdS/conformal
field theory correspondence. We also verify the consistency of this result with regard to the nontrivial trans-
formation properties of bulk solutions under Brown-Henneaux diffeomorphisms.
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[. INTRODUCTION work), and recent studiefl3] (see alsd14-21)) are only
now leading in particular cases to a consistent picture of the
The interplay between two-dimensional conformal field perturbative spectrum.

theories and classical three-dimensional gravity with a nega- In this context, it is interesting to explore how information

tive cosmological constant can be traced back to the identiabout the dual CFT is encoded at the purely gravitational

fication, by Brown and Henneaukl], of an infinite- level, namely, in the space of solutions to asymptotically

dimensional symmetry acting on the space of gravitationaAdS 3D gravity. All such solutions are locally AdS, and start-

solutions asymptotic to anti—de Sitter space (Ad®¥n the ing from pure AdS the classical phase space may be con-

two-dimensional conformal boundary at infinity this symme- structed in terms of orbits of the Brown-Henneaux mapping.

try reduces to two copies of the Virasoro algebra with aRecall, for example, that a solution of the form

central charge

— 127
d%Dzdr2+e2rddeTT(z)dzz+~-~, 2
C=— (8]
asymptotic to Adgfor larger, wherer is the radial coordi-

nate, admits infinitesimal Brown-Henneaux diffeomorphisms

wherel is the AdS scale(set to unity from here onandGs  [1] [with parameter(z)] as an asymptotic symmetry under
is the three-dimensional Newton constant. This structureynich the metric remains form invariant up to the shift

now embedded within the general AdS/conformal field

theory(CFT) correspondenc-5], has come under consid- c

erable recent scrutiny. In particular, Strominger’s observation ST=€dT+2Tde— — 3°¢, ®)

[6] that a unitary CFT on the boundary, with the central 24m

charge(1), would have a density of states sufficiently large to

account for the entropy of 3D Bados-Teitelboim-Zanelli Whered=d/dz. These mappings reduce on the boundary to

(BTZ) black holeg7,8] has stimulated further work on par- infinitesimal local conformal transformations, and we see

ticular realizations of this system in string theory, such afrom Eq. (3) that in accord with the AdS/CFT correspon-

configurations of fundamental strings and Neveu-Schwarglence we can identify the subleading componéifig [and

5-branes(NS5-braneswrapped on eithe® or K3, in the  T(z)] of the metric(2) with the expectation value of chiral

hope of understanding the dual CF] and consequently the (and antichirgl components of the boundary stress-energy

microscopic origin of the black hole entropy. However, tensor[22-24,5,25—-2] Extending the consideration fi

string theory on noncompact target spaces such as AS nite Brown-Henneaux mappings relates solutions with a dif-

still rather mysterious10] (see, e.g.[11,12 for earlier ferent topology, given suitable coordinate identifications.
However, in practice it is convenient to consider orbits of
fixed topology generated by E¢B) which are characterized

*Email address: mbanados@fis.puc.cl by a given background topologgay pure Adg), perturbed
"Email address: ochandia@maxwell.fis.puc.cl by Brown-Henneaux “gravitational wavegtiescribed byT)
*Email address: a.ritz@damtp.cam.ac.uk in Eq. (2).
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This picture of the classical phase space generalizes to From the bulk point of view, the AdS/CFT correspon-
solutions with a specified conformal structligg at infinity,  dence implies a relation between the generating functional
which then depend on a general representative mgfrim W[ g] and the string partition function evaluated with con-
this conformal equivalence clags Eq. (2) g;; is simply the  formal boundary data;; . In the classical gravitational re-
flat metrid. These bulk geometries may be obtained via thegime, this relation takes the fofi2—5,27
construction of Fefferman and Grahd28] (see alsd 29]),
and take the asymptotic forfi27,26,30,31

o WLg]~lred GI1= M (Tgd[ Gl = el 9D, ®
dsip=dr?+e’g;;dx'dx’ 0
1 241 S ) ) ) ) )
+ > Rgjj+ T<T”> dx'dxi+- .-, (4)  wherelg G,.] is the bulk Einstein-Hilbert actiofplus the

appropriate boundary termsvaluated on a solutio®;;[ g]
of the form (4) with boundary conformal structufey], and
an infrared regulator<1/e is used to subtract the bulk di-
vergences with covariant counterterigg 29,34 (for further

where(T;;), which is traceless, is unconstrained by the bulk
Einstein equationg28]. This is consistent with its anomalous
transformation under Brown-Henneaux diffeomorphiges

in Eq. (3)], and(T;;) can again be identified with the expec- work on hol_ographic renormalization, sE25,27).
tatio(?] ( \)/]alue <0'f1> the %oundary stress-energy t[()ansor The duality in Eq.(8) has already been sucessfully tested

[27,26,30,31 Thus, in general, 3D bulk Einstein solutions In the computation of Weyl anomalies of the boundary CFT

can be reconstructed given two pieces of boundary dat¥1ia regularization of the bulk action. The calculation outlined

{9,{T)}. In addition, one has holonomy data which describem.[4] and carried out explicitly by Henningson and Skend-

the alobal propertidsof the 3D geometry. eris [29] mqkes use of _diffeomorphism in\_/ariancg in the
T%e poszibﬁity of turning or? source(;» for the stress- bulk. Specifically, by looking at the logarithmically divergent
energy tensof; in the boundary CFT allgaws consideration terms in the Einstein-Hilbert action evaluated on a general

of how the bulk dynamics reproduces the current sector 0?symptotically AdS solutiof28], the variation of the action

the CFT associated with correlators of the stress-energy ter%j-nder Weyl transformations can be computed and the ex-

sor. This is the topic we will now focus on, and we aim in the pected expressions for Weyl anomaﬁes in various dimensions
present paper to tackle the local part of this problem, which "€ gbtalgecﬂ%g]. n pa;tlclular:, ford—_2, the resul(6)_v¥ast
may also be inverted as the question of how the bulk theor{ﬁ.przo huce Wi (;i\(/:venlra ¢ arglge fglvencbéb_l,_ °°”|$'$ en h
encodegholographically the local geometric moduli of the Ith the expecte €yl anomaly for a realizing the

boundary CFT. In this context the basic quantity in the CFTBrql'vr:g-Ig:lgrnrggag)r%]er?sér)n?stOtrllf)v(\:/z:]/LC)rrn::iL?dme?;itlry.stron-
is the generating functionalWW[g] for correlators of the P ! ’ y

stress-energy tensor, ger _than ju_st a relat_ion between the Weyl anoma!ies as it
implies a direct equivalence between the generating func-
tionals. In this paper, we will focus on the induced boundary
e‘W[gii]E<ex+J o'l T; > (5)  effective action and its relation to the generating functidnal
2 CFT W[ g] given in Eq.(7). An advantage of working within the
AdS;/CFT, framework is that the dependence Wfp[g]
where{X,g;;} is the conformal boundary of the asymptoti- [Eq. (7)] on the underlying moduli of the metric d is well
cally AdS bulk geometry. This boundary coupling leads to aynderstood, and this can be contrasted with the correspond-

Weyl anomaly given by ing dependence of the bulk actidgg g]. Working within
the Chern-Simons formalism, we will show that this moduli
(T!) — LR 6) dependence is precisely that of the Polyakov action a
I7CFT 241 relation that has also been argued to hold by Skenderis and

Solodukhin[25] using a different approach.
whereR is the scalar curvature associated with the metric The appearance of the Polyakov functional through the
gij » andc is the corresponding central charge. Using this, therelation (8) may be anticipated by observing that, from the
anomalous Ward identity for Weyl transformations can bepoint of view of the boundary CFT, the right hand side of Eq.
integrated 32], leading to the Polyakov action as the expres-(8) represents a particular covariant 3D “localization” of the
sion for the generating function®V[g] in covariant form,  generically nonlocal generating functiond&g]. To inter-

pret this it is helpful to recall that the standard means of

Wolg]= %J’ f ' ) localizing the Polyakov action involves the introduction of a

where\? is a cosmological constant.

1 2
RW'RA— A

Liouville field ¢. If the background metric ok is g;; , then

2In general, it may be necessary to specify topological gegad
to sum over inequivalent bulk topologies having the same boundary
Such global data need to be specified in prescrififigsince the  [33], although we will not need to consider the latter cases here.
stress-energy tensor undergoes Casimir-type shifts on changing théSee[25,27,31 for other work on the induced effective action via
topology. AdS/CFT in various dimensions.
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we consider a new backgrour&fgij with constant curva- metric and Brown-Henneaux diffeomorphisms amount to
ture. The Liouville action(dropping the potentiglfor ¢ is  free-field shifts in the corresponding conformal mode.

then given by In concluding this section, it is worth noting that, when

using a conformal gauge for the boundary metric, the Polya-

3 c 5 1 i kov generating functional we obtain reduces to that of Liou-

W9, ¢]=~ @Ld zy—|g| 59 VigVio+dR[9]), ville theory, where the presence or otherwise of the potential
(99  term depends on the renormalization condition for the two-

dimensional cosmological constant. However, it is important

which, on integrating out, reduces to the nonlocal Polya- {0 realize that the Liouville theory found here should not be
kov action(7) for g;; . This procedure can be realized within identified with that obtained by Coussaert, Henneaux, and
the AdS/CFT correspondence if we consider the dynamics oian Driel (CHVD) [38] describing the asymptotic dynamics
a regulated boundary, | at fixed radial coordinate=roin ~ of gravity in AdS;. More precisely, in[38] the Liouville

the asymptotic regime. We can regard the radial dependendynamics describes gravitational perturbations propagating
as described by a fielh=ro(2; ). It follows from the form ~ On @ fixed 2D background metrig;; (see[39,26,3Q for a

of the asymptotically AdS bulk metri¢4) that, under local generalization of38] to arbitrary backgrpundsBeca}J se of
conformal transformations oErO, ro transforms as a Liou- the lack .Of local degrees of freedom in 3D grawty, these
ville field. This identification of the bulk radial coordinate PErturbations actually encode the entire bulk dynarfugsto

with a Liouville field [37] is simply the standard uv/ir corre- ho:on%m|e$, for agiven Se.t of boundaryl cogdlltlorgf. 88] d
spondencé¢35] with radial shifts translated to scale transfor- ony't € constraynt equations were solved, leading 'to y-
mations on the boundary. The corresponding behavior o|f|am|ca_1l fluctuathns on the boundar_y. In contrast, in our
regulating surfaces was discussed in some det&B6i (see apaly3|s, the entire set of 3D equatlon-s.are solved, for a
also[18]). This picture provides qualitative evidence for the 9iven 2D background metrig;; , thus obtaining the generat-
appearance of the Polyakov action as the boundary generdfld functional W[g;;] for stress tensor correlators. For a
ing functional. The main aim of this paper will be to verify Proper comparison the CHvD action should be put on shell,
this relation in detail. and the on-shell correspondence between bulk geometries
Following the same theme, there is in the present contex@nd Liouville solutions has been discussed28,36.
another aspect of the bulk “localization” which will be of ~ The paper is organized as follows. In Sec. Il we turn to
interest. Recall that the Polyakov action evaluated in a lightthe general parametrization of bulk metrics, introducing a
cone gauge background was originally constru¢@%] as a  first-order form for the expansion of Fefferman and Graham
gravitational Weso-Zununo-WittefWZW) model, and thus [28]. We then review in Sec. Ill how the generating func-
has a natural local representation in 3D. This is the appropritional W[ g] encodes the local moduli of the boundary met-
ate background geometry @in which to make explicit the ric in explicit form. In the present context we will restrict
dependence on “complex” structure moduli and we will find attention to simple boundary topologies, and the moduli are
that there is a nice mapping between these chiral and antgonveniently encoded in a chiral parametrization of the met-
chiral moduli and the degrees of freedom entering via theic, the analogue of a Beltrami parametrization for Riemann
two Chern-Simons fields which arise in the first-order formu-surfaces. In Sec. IV we derive the dependencégfg] on
lation of the bulk dynamics. This in part motivates our ap-the boundary moduli using a covariant Chern-Simons con-
proach to the calculation of the bulk action in Ef) which  struction; the result is consistent with E). We also dis-
makes use of the Chern-Simons formalism. The relevance @uss the action of Brown-Henneaux diffeomorphisms on the
this formalism for realizing the holomorphic factorization space of solutions, and the relation to the expectation value
associated with the generating functional of a CFT was alsef the boundary stress tensor. Section VI contains some con-

discussed recently if81]. cluding remarks concerning global data.
An important issue which arises in interpreting E8). is

that fixing the boundary conformal structyig; | does not in
general specify a unique bulk continuatif?8], due to the Il. CHERN-SIMONS EORMULATION AND A
anomalous transformation properties @f), as discussed FIRST-ORDER EXPANSION
above. This concerns the first variation of E§),
To implement the AAS/CFT prescription one needs to re-

construct a bulk Einstein metric with negative cosmological
1 ol reig] i i)
(T~ —== (10 constant, given a representatlgé) of the conformal struc-
V=1l 9 ture at infinity. In the Chern-Simons formulation, this prob-

lem can be rephrased in first-order form, where the gauge
and we will show that bulk Brown-Henneaux transforma-freedom can be used to generate a solution in a straightfor-
tions that shifi(T) correctly maintain the correspondence in ward manner. Before describing this, we recall some details
Eq. (10). Specifically, the ambiguities associated with bulk of the conventional metric formalism.
Brown-Henneaux diffeomorphisms enter, as expected, via lo- Finding a bulk solution given a fixed boundary conformal
cal conformal transformations on the boundary, i.e. thestructurd g‘®)] is a nontrivial problem in general, although a
moduli determine only the conformal class of the boundaryparticular existence theorem was obtained by Graham and
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Lee[40] for the special case of boundary metrics sufficientlywith A=—1 (in units wherel =1), then
close to the standard one on the sphere. However, it was

shown by Fefferman and Grahd28] (see alsd41]) that an 4_77 _ e
asymptotic expansion near infinity can be constructed start- k 'en=lcdAl=lcd Al +boundary terms, - (16)
ing from an arbitrary boundary metric. This expansion has
the special form wherek=1/4G is the level, and -d A] is the Chern-Simons
o functional,
ds?=dr?+e?g;(r,x)dxdx, (11
2
with lcd Al= f AdA+ ZAY, (17
M
gi(r 0 =gi)+e g+, (12)

with M the bulk 3D manifold. We will fix the required

wherer is a radial coordinate, related to that used8] by =~ boundary terms once we have considered the asymptotic
e* ~ 1/p. The Einstein equations in general determine almosform of the on-shell connection in comparison with the
all of the coefficientgy[’ as covariant functions af{’ and Fefferman-Graham expansion in H33). . _

its derivatives. The coefficiergﬂ-(jo), which is defined up to a Recall that the space of solutions of three-dimensional

Weyl rescaling, determines the boundary conformal structurgrlem'lSimons theory is.the set of ﬂat(&’fﬁ) connections
and is identified with the boundary metric. A=g~ ~dg plus holonomies. We shall consider the pure AdS

For the(2+1)D case of particular interest here, this struc- €25€ with no holonomies, although we will comment on their

ture is known to simplify with the expansion truncating atmclusion in Sec. V. Note that the breakdown of gauge invar?-
O(e~*) (for pure Einstein metrics which are all locally ance at the boundary nonetheless prevents us from setting

AdS). Wi ite{ 24,2 9=
dS). We can write{ 24,23 The radial dependence af is itself given by a gauge

dsz=dr2+(ez'gi(jo)Jrgi(jz)+e‘zrgff)gfz)")dx‘dxj. (13 transformation, and an appropriate asymptotic radial coordi-
nate can be introduced as folloWw$2,3§:

Given the boundary metrig{”, the Einstein equations de-
termine the trace ofi{? automatically(which is enough to
determine the boundary Weyl anomdl29]), but do not — =
specify the trace-free part gf?) [28,29. This “ambiguity” A=e"3ae”"3—drJ;, (19
is equivalent to the choice of a quadratic féram the bound- — )
ary [24], which as noted in the Introduction transforms Where « and « are both SL(2R)-valued flat connections
anomalously under Brown-Henneaux diffeomorphisms. Thiglefined on the surface at fixed
is consistent with the corresponding transformation of the Expandinga ande« in the basisl, ,J_,J3, we obtain the
boundary stress tensor under local conformal mappings, anskries expansion for the 3D formsand A,
these quantities are identified via the AdS/CFT correspon-

A=e MsgeVs+drl;, (18

dence[27,26,30,3]. We will return to this issue in Sec. IV. A=(dr+ad)Jdz+e Tatd, +e'a"J_, (20
A Fefferman-Graham-type expansion can also be formu- o . . .
lated in first-order form in terms of connections. Recall that a A=(—dr+a®)dz+eatd,+e Ta"J_, (21

3D Lorentzian geometry can be written in terms of two flat ] , B _ o
SL(29%) gauge fieldsA and A, i.e., the dreibein and spin Where we have used "3].e"3=e"'J.. This series is

connection are given by consistent with the structure of the Fefferman-Graham ex-
o o pansion(13), and the corresponding dreibea= (A—A)/2
e,=(A,—A)I2, w,=(A,+A,)I2, (14 becomes
where A=A%J,, A=A%J,. We use the SL(#) basis 3 1 5, — 1. . —
{3,035} with [J,,J_]=2)5, [JgJ.]=+J., and e=|dr+glaimal) [Js+ pela ) —atl.)
Tr(3.3.)=1, Tr(Jzdz)=1/2.
The Einstein-Hilbert action is then equal to the difference " Ee*r(aﬂJ ey ) 22)
of two Chern-Simons actions, supplemented by boundary 2 * -
terms which depend on the boundary conditions. Specifi-
cally, if we normalize the Einstein action as In analogy with the metric treatment, we define the con-

formally induced boundary 2D zweibein as the leading term

1 . o
IEH:%J V—|g|(R—2A)+boundary terms,(15) in the r—co limit,

SIn general, to avoid singularities et 0, and hence the introduc-

“It has recently been emphasized that this ambiguity is equivation of other degrees of freedom, one must allewnda to depend
lently understood in Euclidean signature as a choice of projectiven r near the horizon. We ignore this subtlety here as we are con-
structure on the boundafg1]. cerned with the asymptotics neaf> .
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41

1 _
O="(ap"] —a"
e z(a J_—a'l,), (23 K

I=|[A]—I[A]+f (A*/\A‘

M

where3, =M is identified as the conformal boundary of the R BT

Poincarepatch, and not the global boundary of Ad$lote +ATAAT - §A AA. (27)

that this procedure yields a completely general zweibein on

the surfacex, which is determined by two independent one- ) . — . )

— The negative sign in front of the teri®/\A® is required to

forms from o and a. Note, however, that of the four com- . . —

ponents entering the zweibein, only three deeally) inde- MPose the Neumann condition @7 —A°. In other Word,f"

pendent as one may be decoupled in the line element by 2f5€_variation of the actiori27) will have a term [y (A

Lorentz transformations. — A% S8(A3+A%. We demand the action to be stationary
At this point, it is clear that, since we wish to fix the with respect to arbitrary variations @€+ A® at the bound-

conformal structure at the boundary, it is necessary to imposgy The conditiore®— =0 then follows as an equation of

suitable(conforma) Dirichlet conditions onw™ ande . Ac-  motion in the boundary theory.

tually, since we want to fix the conformal structure, but nota It is important to note that this treatment has been mani-

particular representative, we write the corresponding condifestly covariant on the 2D surfacg. In particular, we have

tion in terms ofA andK, not needed any coordinate choice to fix the boundary terms.

S(A—A)"=0, S(A—A) =0. (29
o I1l. BOUNDARY MODULI AND THE POLYAKOV ACTION
The remaining boundary condition @&* andA® follows by
comparing the metric determined by Eg2) with the block-
diagonal metric of the Fefferman-Graham expans(b8).
We see that the off-diagonal tenuhr(oz?—E?)dxi arising
from Eq. (22) is canceled in the asymptotic regime on im-
posing the “Neumann” boundary condition,

Before turning to the analysis of the bulk acti®v), we
consider the expected form of the boundary generating func-
tional (i.e., the Polyakov actionin suitable test geometries
on 2. The boundary metri¢23) determined in the previous
section is sufficiently general to allow an arbitrary depen-
dence on local moduli.

To make this dependence manifest, we first recall that in
2D any metric is locally conformally flat, and thus can be
represented in suitable coordinates as

a®—a®=0. (25)

We will see later that this condition is also sufficient to en-
sure that the boundary metric is torsion-free. These boundary .

conditions lead to a 3D geometry parametrized by the metric ds?=e® dxdx (28
[following from Eq. (22)],

wherego’(x,;) is the conformal mode. We are considering

boundary geometries with Lorentzian signature, an{ixse}
—e 2ata, (26) are independent real light-cone coordinates, although the
transition to Euclidean signatuttr low genus will be clear
which we see is consistent with the truncated expansion ifrom the notation.

d32=dr2—e2ra7;++(a7a++Z+;7)

Eq. (13). The parametrizatioi28), while simple, hides the depen-
The ﬂ)propriate action for imposing Diricﬂet conditions dence on the “complex” structure of the surfake To make
on (A—A)~ and a Neumann condition o\ A)3 is® this manifest, we consider a quasiconformal mapgixag}

—{z(x,X),z(x,X)}, wherex andx satisfy the equations

A comparison with the dreibein formulation may be useful here.
The 3D Einstein-Hilbert action written in frame variables[iR,
Ae? where R3=dw?+ (1/2)e2 WwP/AWE. Varying this action one
picks up the boundary termidw,/\e? and thus either a Dirichlet whereu andu are independent, real, and bound@j“and

. a -, aQ . . _ _ ) )
condition onw? or a Neumann condition og® is requwed. Con |M|<1) funCtlonS, and are théLorentZIar) analogues of

versely, one can write an action appropriate for Dirichlet ConditionsBeltrami parameters. The meti28) then takes the form
on e? or Neumann conditions ow? by adding the boundary term '

— fwy/\€e% In the Chern-Simons formulation we consider the ac- o

tion 1.=IcdA]—IcdA]=JAANA whose variation yields the ds’=e?(dz+ udz)(dz+ ud2). (30
boundary terny (A+A)/\S(A¥A). The sign has to be chosen ac-

cording to whether we want to fix the connectidn+A or the ~ We will restrict our attention to boundaries of cylindrical
dreibein, A—A and to whether these conditions are Dirichlet or topology, and thus this parametrization is sufficient to de-
Neumann. In our situation, we have a mixed case with DirichletSCribe an arbitrary metric obi given a fixed coordinate sys-
conditions on A—A)* and Neumann conditions o A)3. This  tem {z,z}. The metric(30) also makes explicit the depen-
leads directly to the actiof®7). dence on a representative of the conformal clags &nd on

TX=pd X, OX= X, (29
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Fhe deformations of the “complex” structuref(;) specify- e(O):E( )3t )
ing the conformal class. These three moduli map to the three Jla ST Jy
(independentcomponents of the boundary zweibdiB).
We will find it useful to consider particular examples of 1 — 1 —
the general boundary geomet{$0). Recalling that confor- - E(dz+ pdz)Jd-— EdZ‘J+ ' (35

mal symmetry in 2D is generated by chiral and antichiral
stress tensor'g(z) andT(Z), it will be sufficient to consider which makes the chiral structure qUIte manifest. We see that

the dependence on the conformal magdeand one chiral the nontrivial dependence on the “Beltrami” paramejer
paramete.. These components of the metric are sources foenters only viaA and notA. In contrast, it is clear that in an

the stress-energy tensoﬁ?(z,?) and T(z), respectively. antichiral gauge, the dependence Enwould enter viaA.

Note that the distinction here is tied up with the question OfReca”ing thatlu and ; act as sources for the chiral and
whether Eq.(29) has a global solution, or in other words ,piichiral stress tensors and T, which generate the two

whether or notls® and the metrids®=exp(g)dzdzare inthe  copies of the Virasoro algebra comprising the conformal
same conformal classee, e.g.[43]). group, this correspondence provides a simple map from “ho-
With this information in hand, we can determine the form jomorphic” factorization on the boundary to the obvious fac-
of the Polyakov generating function®Vo[ ¢,u, ] which  torization of the two Chern-Simons systems in the HGIK].
exhibits the explicit dependence on the moduli. The general This conclusion is perhaps not as obvious as it might
decomposition ofWp for the metric(30) was obtained by seem due to the collapse of the bulk dynamics to the bound-
Verlinde[44], but for simplicity we will restrict our attention  ary, where the boundary terms coupleand A. What we
to boundary geometries depending on eitpeor . observe from Eq32) and(35) is that as expected the con-
formal mode reflects a violation of this factorization, while
the light-cone gauge is special in that it is preserved. We
might anticipate that the simple factorization observed in the
Consider first the conformal gauge where, with a signajight-cone gauge is related to Polyakov's observatisee
ture convention chosen for later convenience, the metrig|so[44]) of a SL(28R) structure in 2D gravity. However, the

takes the form, fact that Eq.(35) still involves both gauge fields and A
makes the relation obscufeand we will not explore this
issue further here.
Returning to the generating functional, when evaluated in
The corresponding zweibei{23) is given by the background35), one obtains the light-cone gauge Polya-
kov action[32] (see alsd45])

A. Conformal gauge

ds?= —exp(¢)dzdz (31)

1 _
O="(a"J —at 2
eV=—(a J_—a"Jd,) C X
2 - 2
WP[IU“] A8+ Ed Z&X élui (36)
1 —
=3 (e?dzJ_ —e’dzl,), (32 where we have ignored thigonstank potential term anck

=x(z,2) satisfies Eq(29).

where o= ¢+ ¢, and we see that in general the conformal

mode will receive contributions from both gauge fiekland

A entering the bulk action. In this background the Polyakov We now return to the bulk actiof®7), and determine its

action reduces to that of Liouville theory, dependence on the boundary moduli for comparison with
Egs.(33) and(36). The bulk equations of motion are simply

c - da+a/\a=0 and similarly fora, and it is useful to write
Welel=— 56— Ldzz[mpacpﬂze‘ﬂ], (33)  these equations explicitly in the SL{R) basis,

IV. THE HOLOGRAPHIC GENERATING FUNCTIONAL

o de®+2a"ANa” =0, da’+2a"Na =0, (37)
where d=d/dz and 9= gl dz. There is clearly no curvature L
coupling as the reference background in this d84gis flat. da —a*Na =0, da*+aNa"=0, (38

B. Light-cone gauge de*+a*A\a*=0, da —a®Aa =0. (39
If instead we consider Polyakov’s light-cone gauge, with

~ — — 7 . .
d$2=—dzdz udZ, 4 Note that the geometric data f&r can be combined to form a
K (34) single flat SL(2R) connection A=—iwl;+e’J +e J),
where the constraill A+A/AA=0 arises directly in Hamiltonian
the corresponding zweibeii23) is given by Chern-Simons theory.
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The components of the zweibein™ anda™* appear in Eq.  and, sincex=g~'dg ande=g dg, it depends only on the
(38). In view of Eq. (25), the pullback of Eq.(38) to the  boundary values of the fields. Note that in general the group
boundary can be regarded as the torsion-free condition faslementsy andg are not single valued.

the spin connection coefficiem= a”, with associated two- Localizing the actior(42) in general requires a parametri-
form curvatureR =dw, and this observation will be useful in  zation of the holonomies of the gauge fields, thus specifying
what follows. the topology in terms of the conjugacy classes of SH)2,

The on-shell value of the Einstein-Hilbert action can beWe will return to this issue in Sec. V, but as mentioned ear-
obtained straightforwardly by substituting Eq0) and(21) jier it will not be necessary to explicitly specify a particular
in Eq. (27). We obtain(suppressing thé\ produc} class as we are interested in the dependendg.én local
quantities. It will be sufficient here to choose a suitable local
patch of AdS, which is consistent with a choice of boundary

471'I
k coordinates.

=53] wt@r- @ sl @2s,0n
M

+f 20 atte ot — 1. Boundary conformal gauge
a o o -
M

alad. (40

N| =

The simplest choice is one in which the metric may be

. ) o _written in conformally flat form. The appropriate boundary
As expected, this expression contains finite terms along with\eibein(32) is given by

a quadratidin €") and logarithmic divergence. Note that

and a are still restricted by the flatness conditions ) 1 P’ e
(37),(38),(39). e=5(e%dxJ-—e%dxJ,), (43)

A. Weyl anomaly where the conformal mode of the metric is ther ¢+ .

From the on-shell action40), it is straightforward to re- Recalling the discussion of Sec. lll, this coordinate choice
cover the expression for the boundary Weyl anomaly whichDides the moduli in the conformal modg as in Eq.(28).
following the discussion df4,29], is given by the coefficient 'I_'hls co_ordlnate system is convenient for (_1er|vmg the effec-
of the logarithmically divergent term, as all the other termstive action, and the dependence on moduli can then be made

Wevl i iant. Th | 6T a2+ o2 explicjt by performing a quasiconformal transformayion.
are Weyl invariant e relevant term ifTr(a”+ o) This choice of the boundary metric may be achieved by

Ngdr=(1/2)fdr[sy(a"Na”+a"Na"). Using the making use of the following Gauss decomposition of the
equations of motiori37) and the Neumann boundary condi- SL(28R) group elements:

tion (25 the coefficient reduces td ,ydw=[drf,uR,

yielding the Weyl anomaly g=eXJ7e¢J3ey'J+, Ez e;he*@:*eyl, (44)

. c
(Tiy=- ER(O), (41)  which yields the following expressions for the Chern-Simons
currents:

in agreement with the calculation j29], whereR (9 is the e e — o=
boundary Ricci scalar, and we have used6k. a’=e Y(—y“dx+tdy), a"=e’dx

B. Boundary generating functional a”=e’dx, a =e ¥(—yZdx+dy), (45

The other divergent terntwhich is Weyl invariant is
e’ fa~/\a". This contribution is precisely the cosmologi-
cal constant term in two dimensions because/\a™ is
equal to the determinant of the zweibd2B). The appear- - i
ance of this divergence is consistent with the analysis ofdY' =€ . _

[34], and it can be associated with a divergent bare cosmo- The action wrl_tten in terms of these fields now takes a
logical constant in the CFT. Therefore, we shall renormalizé®¢@l form onX given by
this term, canceling the divergence but retaining a finite cos-
mological constanh?. As in 2D quantum gravity, we find 4_7T| X X0y, y]= }J 2¢(dx/A\dy—dx/\dy)
that the Liouville potential comes from this term. k rod X X;Y,Y 2) ¢ y y
The finite part of the action is therefore

a’=—2ydx+de¢, a3=2ydx—de.

Here we have made the convenient replacemghtse™ %y

+(4yy+22e®)dx/\dx  (46)

4 —_
_ — 3+ -_ .3 + - .
k lreg fM(a a’a —ataan) with ¢ = ¢+ ¢ the conformal mode in the metric. Note that
1 the mode¢— ¢ has decoupled, which is a consequence of
— 2| (afaB+2n2a ). (42) the Neumann boundary conditid@25) on the spin connec-
2 Jom tion, and our neglect of holonomidsee, e.g.[23]).
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The variablesy and?are auxiliary fields which can be
eliminated by their own equations of motion. Using the dif-
feomorphism invariance of Eq46) to choosex and x as
coordinates, the action reads

_ k . _
lred X;Y,Y] =§f d?z[ 2Inax(Ixay — axdy + dy)

+4yyax], (52)

ok L . and, again ignoring boundary terms, we can integrateyout
lred @,Y,Y]= QJ' d*x[2¢(dy+dy)+4yy+\2e?], (47 a@? Making use of Eq(29) we find 2y= — #°x/(dx)? and
2y=—du, leading to
where the derivatives are with respectxtandz The fields

y and?can be integrated out ar@ynoring boundary terms
we obtain the Liouville action for the conformal mode

J & azx(?
Z_
2 (?X M,

which we recognize as the light-cone gauge Polyakov action
W5[ 1] given in Eq.(36).

One can generalize this approach to a more general back-
. ) ground, but these examples are sufficient for us to conclude
where we have usekl= 1/(4G) and the value of given in  that the dependence on the boundary moduli is correctly en-
Eq. (1). We see that this agrees with the evaluation of thecoded in the bulk action, consistent with the AdS/CFT cor-
Polyakov action in the backgrourid3), as given in Sec. lll.  respondence. However, as mentioned in Sec. Ill, specifying
It is also straightforward to check that the constraint equathe boundary metric does not uniquely determine the bulk
tions fory=d¢/2 andy=d¢/2 do imply a®=a(® asre- geometry due to the possibility for Brown-Henneaux trans-
quired by the 3D variational principle. This result, combinedformations. We will now explore the consequences of this for

C

Ireg[:“] == 487 (53

c _
e o1=- 5o | dxlagae e, (@9

with the fact that the remaining boundary conditions specifythe boundary generating functional.

a fixed boundary zweibein, imply that the acti¢t8) is in-
deed to be interpreted as a functioh@f] ¢ | which generates
correlation functions of the boundary stress tensor.

We can now verify the result for the Weyl anoma#n),
by considering the variation of the generating functional
I ed ¢] directly. We obtain

ol reg[ ¢] .

C
=————e
Sp

- .
247 9¢,

(Thy=—2e7¢

(49

which is equivalent to Eq(41) in the background43),

C. Brown-Henneaux diffeomorphisms and stress tensor
expectation values

The consistency of the results of the preceding section
hides the ambiguity of the Fefferman-Graham expansion re-
garding the trace-free part of the first subleading term in the
bulk metric. This ambiguity, equivalent to specifying the ex-
pectation value of the boundary stress tensor, is associated
with the asymptotic symmetry of the space of bulk solutions
under Brown-Henneaux diffeomorphisifts], and the ambi-
guity can be rephrased as specifying the position of a par-

whereR (9=e~¢jie, and we have dropped the dependenceicular solution along a Brown-Henneaux orbit.

on the cosmological constant.

2. Boundary light-cone gauge

To exhibit the dependence on the chiral moduli we

consider the alternate boundary zweibé3h)
1 _ 1 —

e(°>=§(dz+ﬂdz)a,—§dz3+, (50)

which leads to the light-cone gauge met{3#). The decom-

position of the group element for this case is conveniently

achieved by noting that Eq50) may be obtained from the
zweibein (43) in conformal gauge by the quasiconformal
mapping
é——Inax, ¢—0, (52)

Wh_erex satisfies the Beltrami-type equatid@9), while x
=z, andd now denotesy/ dz.

The potential term is unchanged under this mapping, s
we concentrate on the kinetic part. Evaluating Ef) in
this background, we find

12600

The finite generalization of the mappirig) corresponds
to

T(z)ﬂ(af)zT(f)—%{f,z}, (54)

wheref(z) represents a local diffeomorphism of the circle in

the case that we start with a boundary of cylindrical topol-
ogy, and{f,z} is the Schwarzian derivative

|

It is the Schwarzian term in the anomalous mappi&g)
which leads to a finite chardd] characterizing the position

of a given solution on a Brown-Henneaux orbit. We will now
explore the consequences of this mapping for the results of
the previous section.

of

(55

1. Brown-Henneaux diffeomorphisms acting on the currents

o0 The Brown-Henneaux diffeomorphisms have a simple
and direct action on the Chern-Simons currents. Let us go
back to the expression for the currei®) and impose the

8-8
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conditionsa®= a® (which are equivalent to the equations of that T# transforms anomalously is conveniently encoded in
motion fory andy). In conformal coordinates=z andx  EQ. (59) by writing it in a new coordinate systerfx,x}

=z, these conditions reagi=(1/2)d¢ andy=(1/2)dp and —1{z=f(X),z=f(X)},
the currents take the form . L
_ ds3 p=dr?—e? "¢dzdz+  (T*+T)dZ2+ 3 (T*+T)dZ
at=%1e ¥ T¢dz+Rdz], - -
+Rdzdz Le ¥ ¢[(T?*+T)dz+RdZ]
a =e’dz, (56) o
X[(T¢+T)dz+RdZz], (60)
a’=—9¢pdz+dgdz.
whered=d/9z, and T=T(z) is an arbitrary chiral function
given by T(z)=—c{x,z}/24x. This representation makes
explicit the anomalous shift54) of the subleading terms
. 1 under Brown-Henneaux diffeomorphisms, in accordance
T¢=——(T)=*p— = (d¢)? (570  with the mapping T(z)=(Tcer) to the dual CFT
c 2 [22,24,5,26,2]

can be identified with the Liouville stress-energy tensor of In_order to “”qerSt"ﬁ‘”d_ how the generating fun_ctlonal IS
- .~ . "~ consistent with this shiffvia Eq. (10)], it is convenient to
the conformal modep. Note that similar formulas arise in

the “antiholomorphic” sector. consider a particular example. Specifically, settingo zero

Now consider the following local conformal transforma- in Eq. (60), the metric reduces tédropping the tildes
tions:

whereR = ﬁg(p is the scalar coefficient of the two-form cur-
vature of the backgroun@3), and

dsl ,=dr’— (e’ +e 2 TT)dzdz+ : TdZ+ iTdZ, (61)
z—f(2), e?—e?(of) 71,
- - - which is equivalent to the general solution with a flat bound-
z—f(2), e’—e?(af)™". (58)  ary geometry obtained if24]. In interpreting Eq.(10) for
such a background it is important to recall that the boundary
We observe that the conformal factprthen transforms ap- - megric js specified only up to a Weyl rescaling. Thus, the
propriately as a Liouville fielde?—e?(af) ~*(of) % actual boundary metric in Eq61) is any geometry in the
Both &~ and «® are trivially invariant under these trans- same conformal class as the flat one. From BQ), we see
formations. In order to analyze the transformatiomdfwe  that the ambiguity reflects additive “free-field” shifts in the
note that the combinatioa™¢dz has conformal dimension conformal modep. This explains why the generating func-
(—2,0) while e %dz has conformal dimension<1,—1). tional is actually nonvanishing for Eq61) and leads on
SinceT¢ has conformal dimension (2,0) a@d¢ has con- Vvariation, via Eq.(10), to nonzero expectation values for
formal dimension (1,1), the componeni® transforms (Tcer) and(Tcer). Following[22], this interpretation of the
anomalously via the Schwarzian derivative. This is consisallowed free-field shifts inp may also be understood in
tent with the discussion in Sec. | on recognizing that  terms of the connection between the oscillator modes in an
enters the subleading term in the metric and encodes thexpansion of the Liouville fieldp, and the bulk “gravita-
boundary stress-energy tensor Vid&. This can be made tional wave” perturbations specified ByandT.
more explicit by considering the form of the bulk metric. In the discussion above, we concentrated for simplicity on
the boundary conformal gauge. If we instead consider
2. The general bulk metric and stress tensor expectation values houndary geometries in the conformal class of the light-cone
We can insert the expressions for the currents into EqMetric (34), then the situation is similar with the complica-
(26) to obtain the corresponding form of the bulk metric. Wetion that local conformal transformations on the boundary

find, amount to “chiral” free-field shifts in the conformal mode.
The stress-energy tensdr(x)=c{x,z}/24x given by the
ds2,=dr?— e tedxdx+ L Tedx2+ 1 Tedx2+ Rdxdx variation of Eq.(53), then shifts according to E¢54) via the

o Schwarzian, which is now chiral with respect to the light-
— e 2 ¢(Tedx+Rdx)(T?dx+Rdx), (59  cone structure determined by (see, e.g.[44]).

where, from the subleading terms, we identify the general
form of the expansion given in Ed4). Indeed, the metric
(59) is the general solution associated with a conformally flat Making use of the Chern-Simons formalism, we have
boundary geometry, as determined recentl{4i6,31. How-  shown that the dependence of the regularized bulk gravita-
ever, the mappings8) implies that the metri€59), in which  tional action on local moduli of the boundary metric is pre-
there is a direct correspondence between the subleadirgisely as one would expect for the Polyakov action, consis-
terms and the Liouville stress-energy tensor for the represenent with the AdS/CFT correspondence. In this final section
tative boundary metric, is not completely general. The factve comment on some of the important features that were

V. GLOBAL ISSUES AND CONCLUDING REMARKS
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ignored in the analysis of Sec. 1V, specifically, global datacorrespond to nonextreme back holes; while extreme black
associated with the holonomy of the gauge fields. holes are associated with parabolic holonomies, conjugate to
One of the main motivations for this work was to under- translationg8]. Including these global data will be important
stand the manifestation of the data specifying the bulk soluin extending the considerations both of this paper and of
tions in the boundary effective action. In 3D, we can roughly[38], to bulk and boundary geometries of more complicated
characterize these bulk data in terms of Brown-Henneau$oPology. _ _ o _
“gravitational waves” at the boundary, and global data con- AS emphasized i22], the classification of bulk conju-
veniently described by holonomies of the Chern-SimongJacy classes is mirrored in the classical solutions of Liouville
gauge field. The latter can alternatively be thought of as théh€ory, or in other words the uniformization of the boundary
modes associated with “large” Brown-Henneaux diffeomor- =- Thus one suspects that the holonomies map to zero modes
phisms which change the topology. The construction of thef the L|0UV|I_Ie fleld_, ar_1d it would be interesting to.under—
boundary effective action in Sec. IV, in contrast to earlierStand how this applies in the context of the generating func-
analysed38,46,31, which made use of the WZW model at tional studied here, where the Liouville field in question can
intermediate stagésshould allow a more direct analysis of Pe associated with the bulk radial scale rather than a dynami-
the dependence of the effective action on the global bulk datg2! field as in[38]. In practice, this picture is complicated
(see alsg48,49). We plan to report on this elsewhere. How- because in generic cases therg is no global L|<_)UV|IIe field
ever, some comments are in order regarding the need for thgrresponding to the bulk solutid@3,39,30. A straightfor-
extension of the effective action in the analysis of Sec. Iv. Ward example is given by a spinning black hole. For nonzero
Recall that, in general, the actidd2) can only be local- angular momentum, the corresponding Liouville solution can
ized once a suitable choice of the holonomies tr@&Apand only be specified locally. It is interesting to note in this re-

N e ... gard that the existence of global solutions for the Liouville
tr(exp$ A) is made, thus specifying the topology. Within 9 X ) : -
SL(29), these fall into three conjugacy classes: elliptic ho_f|eld is closely connected with the existence of Killing

lonomies, conjugate to rotations, correspond to conical Sin§p|n0r3[30]. The absence of a global Liouville solution for

o ; ; . ..~ the spinning black hole then correlates with the absence of
gularities; hyperbolic holonomies, conjugate to dllatlons,Killing spinors for the generic BTZ solutiofs0]. This sug-

gests that the holonomies of bulk solutions will be an impor-
tant ingredient in mapping out the zero-mode structure of the

8 .
As noted earlier, the work of Coussatal. [38] proceeded | i, \ville field, and consequently the global structure of the
along different lines. Nonetheless, we can consider using our for-

mulation to obtain the analogue of the CHvD actj88] by solving geometry experienced by the dual CFT.
the constraints, with appropriate falloff conditions for the fields at

infinity. In doing this, an important distinction is that we need to ACKNOWLEDGMENTS
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