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Holography and the Polyakov action
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In two-dimensional conformal field theory the generating functional for correlators of the stress-energy
tensor is given by the nonlocal Polyakov action associated with the background geometry. We study this
functional holographically by calculating the regularized on-shell action of asymptotically AdS gravity in three
dimensions, associated with a specified~but arbitrary! boundary metric. This procedure is simplified by making
use of the Chern-Simons formulation, and a corresponding first-order expansion of the bulk dreibein, rather
than the metric expansion of Fefferman and Graham. The dependence of the resulting functional on local
moduli of the boundary metric agrees precisely with the Polyakov action, in accord with the AdS/conformal
field theory correspondence. We also verify the consistency of this result with regard to the nontrivial trans-
formation properties of bulk solutions under Brown-Henneaux diffeomorphisms.
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I. INTRODUCTION

The interplay between two-dimensional conformal fie
theories and classical three-dimensional gravity with a ne
tive cosmological constant can be traced back to the ide
fication, by Brown and Henneaux@1#, of an infinite-
dimensional symmetry acting on the space of gravitatio
solutions asymptotic to anti–de Sitter space (AdS3). On the
two-dimensional conformal boundary at infinity this symm
try reduces to two copies of the Virasoro algebra with
central charge

c5
3l

2G3
, ~1!

wherel is the AdS3 scale~set to unity from here on!, andG3
is the three-dimensional Newton constant. This structu
now embedded within the general AdS/conformal fie
theory~CFT! correspondence@2–5#, has come under consid
erable recent scrutiny. In particular, Strominger’s observa
@6# that a unitary CFT on the boundary, with the cent
charge~1!, would have a density of states sufficiently large
account for the entropy of 3D Ban˜ados-Teitelboim-Zanelli
~BTZ! black holes@7,8# has stimulated further work on pa
ticular realizations of this system in string theory, such
configurations of fundamental strings and Neveu-Schw
5-branes~NS5-branes! wrapped on eitherT4 or K3, in the
hope of understanding the dual CFT@9# and consequently the
microscopic origin of the black hole entropy. Howeve
string theory on noncompact target spaces such as AdS3 is
still rather mysterious@10# ~see, e.g.,@11,12# for earlier
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work!, and recent studies@13# ~see also@14–21#! are only
now leading in particular cases to a consistent picture of
perturbative spectrum.

In this context, it is interesting to explore how informatio
about the dual CFT is encoded at the purely gravitatio
level, namely, in the space of solutions to asymptotica
AdS 3D gravity. All such solutions are locally AdS, and sta
ing from pure AdS3 the classical phase space may be co
structed in terms of orbits of the Brown-Henneaux mappi
Recall, for example, that a solution of the form

ds3D
2 5dr21e2rdzdz̄1

12p

c
T~z!dz21•••, ~2!

asymptotic to AdS3for large r, wherer is the radial coordi-
nate, admits infinitesimal Brown-Henneaux diffeomorphis
@1# @with parametere(z)# as an asymptotic symmetry unde
which the metric remains form invariant, up to the shift

dT5e]T12T]e2
c

24p
]3e, ~3!

where]5]/]z. These mappings reduce on the boundary
infinitesimal local conformal transformations, and we s
from Eq. ~3! that in accord with the AdS/CFT correspon
dence we can identify the subleading componentsT(z) @and
T̄( z̄)# of the metric~2! with the expectation value of chira
~and antichiral! components of the boundary stress-ene
tensor @22–24,5,25–27#. Extending the consideration tofi-
nite Brown-Henneaux mappings relates solutions with a d
ferent topology, given suitable coordinate identification
However, in practice it is convenient to consider orbits
fixed topology generated by Eq.~3! which are characterized
by a given background topology~say pure AdS3), perturbed
by Brown-Henneaux ‘‘gravitational waves’’~described byT)
in Eq. ~2!.
©2002 The American Physical Society08-1
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This picture of the classical phase space generalize
solutions with a specified conformal structure@g# at infinity,
which then depend on a general representative metricgi j in
this conformal equivalence class@in Eq. ~2! gi j is simply the
flat metric#. These bulk geometries may be obtained via
construction of Fefferman and Graham@28# ~see also@29#!,
and take the asymptotic form@27,26,30,31#

ds3D
2 5dr21e2rgi j dxidxj

1
1

2 S Rgi j 1
24p

c
^Ti j & Ddxidxj1•••, ~4!

where^Ti j &, which is traceless, is unconstrained by the b
Einstein equations@28#. This is consistent with its anomalou
transformation under Brown-Henneaux diffeomorphisms@as
in Eq. ~3!#, and^Ti j & can again be identified with the expe
tation value of the boundary stress-energy ten
@27,26,30,31#. Thus, in general, 3D bulk Einstein solution
can be reconstructed given two pieces of boundary d
$g,^T&%. In addition, one has holonomy data which descr
the global properties1 of the 3D geometry.

The possibility of turning on sourcesgi j for the stress-
energy tensorTi j in the boundary CFT allows consideratio
of how the bulk dynamics reproduces the current secto
the CFT associated with correlators of the stress-energy
sor. This is the topic we will now focus on, and we aim in t
present paper to tackle the local part of this problem, wh
may also be inverted as the question of how the bulk the
encodes~holographically! the local geometric moduli of the
boundary CFT. In this context the basic quantity in the C
is the generating functionalW@g# for correlators of the
stress-energy tensor,

eiW[gi j ][K expF i E
S
gi j Ti j G L

CFT

~5!

where$S,gi j % is the conformal boundary of the asympto
cally AdS bulk geometry. This boundary coupling leads to
Weyl anomaly given by

^Ti
i&CFT52

c

24p
R, ~6!

whereR is the scalar curvature associated with the me
gi j , andc is the corresponding central charge. Using this,
anomalous Ward identity for Weyl transformations can
integrated@32#, leading to the Polyakov action as the expre
sion for the generating functionalW@g# in covariant form,

WP@g#5
c

96pE E FR 1

¹2R1l2G , ~7!

wherel2 is a cosmological constant.

1Such global data need to be specified in prescribing^T& since the
stress-energy tensor undergoes Casimir-type shifts on changin
topology.
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From the bulk point of view, the AdS/CFT correspo
dence implies a relation between the generating functio
W@g# and the string partition function evaluated with co
formal boundary datagi j . In the classical gravitational re
gime, this relation takes the form2 @2–5,27#

W@g#;I reg@G#5 lim
e→0

~ I EH@Ge#2I ct@ge# !, ~8!

where I EH@Ge# is the bulk Einstein-Hilbert action~plus the
appropriate boundary terms! evaluated on a solutionGi j @g#
of the form ~4! with boundary conformal structure@g#, and
an infrared regulatorr ,1/e is used to subtract the bulk di
vergences with covariant countertermsI ct @29,34# ~for further
work on holographic renormalization, see@25,27#!.

The duality in Eq.~8! has already been sucessfully test
in the computation of Weyl anomalies of the boundary C
via regularization of the bulk action. The calculation outlin
in @4# and carried out explicitly by Henningson and Sken
eris @29# makes use of diffeomorphism invariance in th
bulk. Specifically, by looking at the logarithmically diverge
terms in the Einstein-Hilbert action evaluated on a gene
asymptotically AdS solution@28#, the variation of the action
under Weyl transformations can be computed and the
pected expressions for Weyl anomalies in various dimens
were obtained@29#. In particular, ford52, the result~6! was
reproduced with a central charge given by~1!, consistent
with the expected Weyl anomaly for a CFT realizing t
Brown-Henneaux@1# asymptotic conformal symmetry.

The correspondence~8! is, however, considerably stron
ger than just a relation between the Weyl anomalies a
implies a direct equivalence between the generating fu
tionals. In this paper, we will focus on the induced bounda
effective action and its relation to the generating function3

W@g# given in Eq.~7!. An advantage of working within the
AdS3 /CFT2 framework is that the dependence ofWP@g#
@Eq. ~7!# on the underlying moduli of the metric onS is well
understood, and this can be contrasted with the corresp
ing dependence of the bulk actionI reg@g#. Working within
the Chern-Simons formalism, we will show that this mod
dependence is precisely that of the Polyakov action~7!, a
relation that has also been argued to hold by Skenderis
Solodukhin@25# using a different approach.

The appearance of the Polyakov functional through
relation ~8! may be anticipated by observing that, from th
point of view of the boundary CFT, the right hand side of E
~8! represents a particular covariant 3D ‘‘localization’’ of th
generically nonlocal generating functionalW@g#. To inter-
pret this it is helpful to recall that the standard means
localizing the Polyakov action involves the introduction of
Liouville field f. If the background metric onS is gi j , then

the

2In general, it may be necessary to specify topological datag and
to sum over inequivalent bulk topologies having the same bound
@33#, although we will not need to consider the latter cases her

3See@25,27,31# for other work on the induced effective action v
AdS/CFT in various dimensions.
8-2
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we consider a new backgroundefgi j with constant curva-
ture. The Liouville action~dropping the potential! for f is
then given by

WL@g,f#52
c

48pES
d2zA2uguF1

2
gi j ¹if¹jf1fR@g#G ,

~9!

which, on integrating outf, reduces to the nonlocal Polya
kov action~7! for gi j . This procedure can be realized with
the AdS/CFT correspondence if we consider the dynamics
a regulated boundaryS r 0

at fixed radial coordinater 5r 0 in
the asymptotic regime. We can regard the radial depende
as described by a fieldr 05r 0(S r 0

). It follows from the form
of the asymptotically AdS bulk metric~4! that, under local
conformal transformations onS r 0

, r 0 transforms as a Liou-
ville field. This identification of the bulk radial coordinat
with a Liouville field @37# is simply the standard uv/ir corre
spondence@35# with radial shifts translated to scale transfo
mations on the boundary. The corresponding behavior
regulating surfaces was discussed in some detail in@36# ~see
also @18#!. This picture provides qualitative evidence for th
appearance of the Polyakov action as the boundary gen
ing functional. The main aim of this paper will be to verif
this relation in detail.

Following the same theme, there is in the present con
another aspect of the bulk ‘‘localization’’ which will be o
interest. Recall that the Polyakov action evaluated in a lig
cone gauge background was originally constructed@32# as a
gravitational Weso-Zununo-Witten~WZW! model, and thus
has a natural local representation in 3D. This is the appro
ate background geometry onS in which to make explicit the
dependence on ‘‘complex’’ structure moduli and we will fin
that there is a nice mapping between these chiral and a
chiral moduli and the degrees of freedom entering via
two Chern-Simons fields which arise in the first-order form
lation of the bulk dynamics. This in part motivates our a
proach to the calculation of the bulk action in Eq.~8! which
makes use of the Chern-Simons formalism. The relevanc
this formalism for realizing the holomorphic factorizatio
associated with the generating functional of a CFT was a
discussed recently in@31#.

An important issue which arises in interpreting Eq.~8! is
that fixing the boundary conformal structure@gi j # does not in
general specify a unique bulk continuation@28#, due to the
anomalous transformation properties of^T&, as discussed
above. This concerns the first variation of Eq.~8!,

^T&CFT;
1

A2ugu

dI reg@g#

dg
, ~10!

and we will show that bulk Brown-Henneaux transform
tions that shift̂ T& correctly maintain the correspondence
Eq. ~10!. Specifically, the ambiguities associated with bu
Brown-Henneaux diffeomorphisms enter, as expected, via
cal conformal transformations on the boundary, i.e.
moduli determine only the conformal class of the bound
12600
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metric and Brown-Henneaux diffeomorphisms amount
free-field shifts in the corresponding conformal mode.

In concluding this section, it is worth noting that, whe
using a conformal gauge for the boundary metric, the Pol
kov generating functional we obtain reduces to that of Lio
ville theory, where the presence or otherwise of the poten
term depends on the renormalization condition for the tw
dimensional cosmological constant. However, it is import
to realize that the Liouville theory found here should not
identified with that obtained by Coussaert, Henneaux,
van Driel ~CHvD! @38# describing the asymptotic dynamic
of gravity in AdS3. More precisely, in@38# the Liouville
dynamics describes gravitational perturbations propaga
on a fixed 2D background metricgi j ~see@39,26,30# for a
generalization of@38# to arbitrary backgrounds!. Because of
the lack of local degrees of freedom in 3D gravity, the
perturbations actually encode the entire bulk dynamics~up to
holonomies!, for a given set of boundary conditions. In@38#
only the constraint equations were solved, leading to
namical fluctuations on the boundary. In contrast, in o
analysis, the entire set of 3D equations are solved, fo
given 2D background metricgi j , thus obtaining the generat
ing functional W@gi j # for stress tensor correlators. For
proper comparison the CHvD action should be put on sh
and the on-shell correspondence between bulk geome
and Liouville solutions has been discussed in@22,36#.

The paper is organized as follows. In Sec. II we turn
the general parametrization of bulk metrics, introducing
first-order form for the expansion of Fefferman and Grah
@28#. We then review in Sec. III how the generating fun
tional WP@g# encodes the local moduli of the boundary me
ric in explicit form. In the present context we will restric
attention to simple boundary topologies, and the moduli
conveniently encoded in a chiral parametrization of the m
ric, the analogue of a Beltrami parametrization for Riema
surfaces. In Sec. IV we derive the dependence ofI reg@g# on
the boundary moduli using a covariant Chern-Simons c
struction; the result is consistent with Eq.~7!. We also dis-
cuss the action of Brown-Henneaux diffeomorphisms on
space of solutions, and the relation to the expectation va
of the boundary stress tensor. Section VI contains some c
cluding remarks concerning global data.

II. CHERN-SIMONS FORMULATION AND A
FIRST-ORDER EXPANSION

To implement the AdS/CFT prescription one needs to
construct a bulk Einstein metric with negative cosmologi
constant, given a representativegi j

(0) of the conformal struc-
ture at infinity. In the Chern-Simons formulation, this pro
lem can be rephrased in first-order form, where the ga
freedom can be used to generate a solution in a straigh
ward manner. Before describing this, we recall some det
of the conventional metric formalism.

Finding a bulk solution given a fixed boundary conform
structure@g(0)# is a nontrivial problem in general, although
particular existence theorem was obtained by Graham
8-3
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Lee @40# for the special case of boundary metrics sufficien
close to the standard one on the sphere. However, it
shown by Fefferman and Graham@28# ~see also@41#! that an
asymptotic expansion near infinity can be constructed s
ing from an arbitrary boundary metric. This expansion h
the special form

ds25dr21e2rgi j ~r ,x!dxidxj , ~11!

with

gi j ~r ,x!5gi j
(0)1e22rgi j

(2)1•••, ~12!

wherer is a radial coordinate, related to that used in@28# by
e2r;1/r. The Einstein equations in general determine alm
all of the coefficientsgi j

(n) as covariant functions ofgi j
(0) and

its derivatives. The coefficientgi j
(0) , which is defined up to a

Weyl rescaling, determines the boundary conformal struc
and is identified with the boundary metric.

For the~211!D case of particular interest here, this stru
ture is known to simplify with the expansion truncating
O(e24r) ~for pure Einstein metrics which are all locall
AdS!. We can write@24,25#

ds25dr21~e2rgi j
(0)1gi j

(2)1e22rgik
(2)gj

(2)k!dxidxj . ~13!

Given the boundary metricgi j
(0) , the Einstein equations de

termine the trace ofgi j
(2) automatically~which is enough to

determine the boundary Weyl anomaly@29#!, but do not
specify the trace-free part ofgi j

(2) @28,29#. This ‘‘ambiguity’’
is equivalent to the choice of a quadratic form4 on the bound-
ary @24#, which as noted in the Introduction transform
anomalously under Brown-Henneaux diffeomorphisms. T
is consistent with the corresponding transformation of
boundary stress tensor under local conformal mappings,
these quantities are identified via the AdS/CFT corresp
dence@27,26,30,31#. We will return to this issue in Sec. IV.

A Fefferman-Graham-type expansion can also be form
lated in first-order form in terms of connections. Recall tha
3D Lorentzian geometry can be written in terms of two fl
SL(2,R) gauge fieldsA and Ā, i.e., the dreibein and spin
connection are given by

em5~Am2Ām!/2, wm5~Am1Ām!/2, ~14!

where A5AaJa , Ā5ĀaJa . We use the SL(2,R) basis
$J1 ,J2 ,J3% with @J1 ,J2#52J3 , @J3 ,J6#56J6 , and
Tr(J1J2)51, Tr(J3J3)51/2.

The Einstein-Hilbert action is then equal to the differen
of two Chern-Simons actions, supplemented by bound
terms which depend on the boundary conditions. Spe
cally, if we normalize the Einstein action as

I EH5
1

16pGE A2ugu~R22L!1boundary terms,~15!

4It has recently been emphasized that this ambiguity is equ
lently understood in Euclidean signature as a choice of projec
structure on the boundary@31#.
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4p

k
I EH5I CS@A#2I CS@Ā#1boundary terms, ~16!

wherek51/4G is the level, andI CS@A# is the Chern-Simons
functional,

I CS@A#5E
M

AdA1
2

3
A3, ~17!

with M the bulk 3D manifold. We will fix the required
boundary terms once we have considered the asymp
form of the on-shell connection in comparison with th
Fefferman-Graham expansion in Eq.~13!.

Recall that the space of solutions of three-dimensio
Chern-Simons theory is the set of flat SL(2,R) connections
A5g21dg plus holonomies. We shall consider the pure A
case with no holonomies, although we will comment on th
inclusion in Sec. V. Note that the breakdown of gauge inva
ance at the boundary nonetheless prevents us from se
g51.

The radial dependence ofg is itself given by a gauge
transformation, and an appropriate asymptotic radial coo
nate can be introduced as follows@42,38#:

A5e2rJ3aerJ31drJ3 , ~18!

Ā5erJ3āe2rJ32drJ3 , ~19!

where a and ā are both SL(2,R)-valued flat connections
defined on the surface at fixed5 r.

Expandinga andā in the basisJ1 ,J2 ,J3, we obtain the
series expansion for the 3D formsA and Ā,

A5~dr1a3!J31e2ra1J11era2J2 , ~20!

Ā5~2dr1ā3!J31er ā1J11e2r ā2J2 , ~21!

where we have usede2rJ3J6erJ35e7rJ6 . This series is
consistent with the structure of the Fefferman-Graham
pansion~13!, and the corresponding dreibeine5(A2Ā)/2
becomes

e5S dr1
1

2
~a32ā3! D J31

1

2
er~a2J22ā1J1!

1
1

2
e2r~a1J12ā2J2!. ~22!

In analogy with the metric treatment, we define the co
formally induced boundary 2D zweibein as the leading te
in the r→` limit,

a-
e

5In general, to avoid singularities atr 50, and hence the introduc

tion of other degrees of freedom, one must allowa andā to depend
on r near the horizon. We ignore this subtlety here as we are c
cerned with the asymptotics nearr→`.
8-4
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HOLOGRAPHY AND THE POLYAKOV ACTION PHYSICAL REVIEW D65 126008
e(0)5
1

2
~a2J22ā1J1!, ~23!

whereS5]M is identified as the conformal boundary of th
Poincare´ patch, and not the global boundary of AdS3. Note
that this procedure yields a completely general zweibein
the surfaceS, which is determined by two independent on
forms from a and ā. Note, however, that of the four com
ponents entering the zweibein, only three are~locally! inde-
pendent as one may be decoupled in the line element by
Lorentz transformations.

At this point, it is clear that, since we wish to fix th
conformal structure at the boundary, it is necessary to imp
suitable~conformal! Dirichlet conditions ona2 andā1. Ac-
tually, since we want to fix the conformal structure, but no
particular representative, we write the corresponding con
tion in terms ofA and Ā,

d~A2Ā!150, d~A2Ā!250. ~24!

The remaining boundary condition onA3 andĀ3 follows by
comparing the metric determined by Eq.~22! with the block-
diagonal metric of the Fefferman-Graham expansion~13!.
We see that the off-diagonal termdr(a i

32ā i
3)dxi arising

from Eq. ~22! is canceled in the asymptotic regime on im
posing the ‘‘Neumann’’ boundary condition,

a32ā350. ~25!

We will see later that this condition is also sufficient to e
sure that the boundary metric is torsion-free. These bound
conditions lead to a 3D geometry parametrized by the me
@following from Eq. ~22!#,

ds25dr22e2ra2ā11~a2a11ā1ā2!

2e22ra1ā2, ~26!

which we see is consistent with the truncated expansio
Eq. ~13!.

The appropriate action for imposing Dirichlet conditio
on (A2Ā)6 and a Neumann condition on (A2Ā)3 is6

6A comparison with the dreibein formulation may be useful he
The 3D Einstein-Hilbert action written in frame variables is*Ra

`ea where Ra5dwa1(1/2)ebc
a wb`wc. Varying this action one

picks up the boundary term*dwa`ea and thus either a Dirichle
condition onwa or a Neumann condition onea is required. Con-
versely, one can write an action appropriate for Dirichlet conditio
on ea or Neumann conditions onwa by adding the boundary term
2*wa`ea. In the Chern-Simons formulation we consider the a

tion I 65I CS@A#2I CS@Ā#6*A`Ā whose variation yields the

boundary term*(A6Ā)`d(A7Ā). The sign has to be chosen a

cording to whether we want to fix the connectionA1Ā or the

dreibein, A2Ā and to whether these conditions are Dirichlet
Neumann. In our situation, we have a mixed case with Dirich

conditions on (A2Ā)6 and Neumann conditions on (A2Ā)3. This
leads directly to the action~27!.
12600
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I 5I @A#2I @Ā#1E

]M
S A1`Ā2

1A2`Ā12
1

2
A3`Ā3D . ~27!

The negative sign in front of the termA3`Ā3 is required to
impose the Neumann condition onA32Ā3. In other words,
the variation of the action~27! will have a term*]M(A3

2Ā3)d(A31Ā3). We demand the action to be stationa
with respect to arbitrary variations ofA31Ā3 at the bound-
ary. The conditiona32ā350 then follows as an equation o
motion in the boundary theory.

It is important to note that this treatment has been ma
festly covariant on the 2D surfaceS. In particular, we have
not needed any coordinate choice to fix the boundary ter

III. BOUNDARY MODULI AND THE POLYAKOV ACTION

Before turning to the analysis of the bulk action~27!, we
consider the expected form of the boundary generating fu
tional ~i.e., the Polyakov action! in suitable test geometrie
on S. The boundary metric~23! determined in the previous
section is sufficiently general to allow an arbitrary depe
dence on local moduli.

To make this dependence manifest, we first recall tha
2D any metric is locally conformally flat, and thus can b
represented in suitable coordinates as

ds25ew8dxdx̄, ~28!

wherew8(x,x̄) is the conformal mode. We are considerin
boundary geometries with Lorentzian signature, and so$x,x̄%
are independent real light-cone coordinates, although
transition to Euclidean signature~for low genus! will be clear
from the notation.

The parametrization~28!, while simple, hides the depen
dence on the ‘‘complex’’ structure of the surfaceS. To make
this manifest, we consider a quasiconformal mapping$x,x̄%
→$z(x,x̄),z̄(x,x̄)%, wherex and x̄ satisfy the equations

]̄ z̄x5m]zx, ]zx̄5m̄]̄ z̄x̄, ~29!

wherem andm̄ are independent, real, and bounded (umu and
um̄u,1) functions, and are the~Lorentzian! analogues of
Beltrami parameters. The metric~28! then takes the form

ds25ew~dz1mdz̄!~dz̄1m̄dz!. ~30!

We will restrict our attention to boundaries of cylindric
topology, and thus this parametrization is sufficient to d
scribe an arbitrary metric onS given a fixed coordinate sys
tem $z,z̄%. The metric~30! also makes explicit the depen
dence on a representative of the conformal class (w), and on
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the deformations of the ‘‘complex’’ structure (m,m̄) specify-
ing the conformal class. These three moduli map to the th
~independent! components of the boundary zweibein~23!.

We will find it useful to consider particular examples
the general boundary geometry~30!. Recalling that confor-
mal symmetry in 2D is generated by chiral and antichi
stress tensorsT(z) andT̄( z̄), it will be sufficient to consider
the dependence on the conformal modew and one chiral
parameterm. These components of the metric are sources
the stress-energy tensorsTw(z,z̄) and T(z), respectively.
Note that the distinction here is tied up with the question
whether Eq.~29! has a global solution, or in other word
whether or notds2 and the metricds̃25exp(w)dzdz̄are in the
same conformal class~see, e.g.,@43#!.

With this information in hand, we can determine the for
of the Polyakov generating functionalWP@w,m,m̄# which
exhibits the explicit dependence on the moduli. The gen
decomposition ofWP for the metric~30! was obtained by
Verlinde @44#, but for simplicity we will restrict our attention
to boundary geometries depending on eitherw or m.

A. Conformal gauge

Consider first the conformal gauge where, with a sig
ture convention chosen for later convenience, the me
takes the form,

ds̃252exp~w!dzdz̄. ~31!

The corresponding zweibein~23! is given by

e(0)5
1

2
~a2J22ā1J1!

5
1

2
~efdzJ22ef̄dz̄J1!, ~32!

wherew5f1f̄, and we see that in general the conform
mode will receive contributions from both gauge fieldsA and
Ā entering the bulk action. In this background the Polyak
action reduces to that of Liouville theory,

WP@w#52
c

96pES
d2z@]w]̄w1l2ew#, ~33!

where ]5]/]z and ]̄5]/] z̄. There is clearly no curvature
coupling as the reference background in this case~31! is flat.

B. Light-cone gauge

If instead we consider Polyakov’s light-cone gauge, w

ds̃252dzdz̄2mdz̄2, ~34!

the corresponding zweibein~23! is given by
12600
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e(0)5
1

2
~a2J22ā1J1!

5
1

2
~dz1mdz̄!J22

1

2
dz̄J1 , ~35!

which makes the chiral structure quite manifest. We see
the nontrivial dependence on the ‘‘Beltrami’’ parameterm

enters only viaA and notĀ. In contrast, it is clear that in an
antichiral gauge, the dependence onm̄ would enter viaĀ.
Recalling thatm and m̄ act as sources for the chiral an
antichiral stress tensorsT and T̄, which generate the two
copies of the Virasoro algebra comprising the conform
group, this correspondence provides a simple map from ‘‘
lomorphic’’ factorization on the boundary to the obvious fa
torization of the two Chern-Simons systems in the bulk@31#.

This conclusion is perhaps not as obvious as it mi
seem due to the collapse of the bulk dynamics to the bou
ary, where the boundary terms coupleA and Ā. What we
observe from Eqs.~32! and~35! is that as expected the con
formal mode reflects a violation of this factorization, whi
the light-cone gauge is special in that it is preserved.
might anticipate that the simple factorization observed in
light-cone gauge is related to Polyakov’s observation~see
also@44#! of a SL(2,R) structure in 2D gravity. However, the
fact that Eq.~35! still involves both gauge fieldsA and Ā
makes the relation obscure,7 and we will not explore this
issue further here.

Returning to the generating functional, when evaluated
the background~35!, one obtains the light-cone gauge Poly
kov action@32# ~see also@45#!

WP@m#52
c

48pES
d2z

]2x

]x
]m, ~36!

where we have ignored the~constant! potential term andx
5x(z,z̄) satisfies Eq.~29!.

IV. THE HOLOGRAPHIC GENERATING FUNCTIONAL

We now return to the bulk action~27!, and determine its
dependence on the boundary moduli for comparison w
Eqs.~33! and~36!. The bulk equations of motion are simpl
da1a`a50 and similarly forā, and it is useful to write
these equations explicitly in the SL(2,R) basis,

da312a1`a250, dā312ā1`ā250, ~37!

da22a3`a250, dā11ā3`ā150, ~38!

da11a3`a150, dā22ā3`ā250. ~39!

7Note that the geometric data forS can be combined to form a
single flat SL(2,R) connection (A52 ivJ31e1J11e2J2),
where the constraintdA1A`A50 arises directly in Hamiltonian
Chern-Simons theory.
8-6
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HOLOGRAPHY AND THE POLYAKOV ACTION PHYSICAL REVIEW D65 126008
The components of the zweibeina2 and ā1 appear in Eq.
~38!. In view of Eq. ~25!, the pullback of Eq.~38! to the
boundary can be regarded as the torsion-free condition
the spin connection coefficientw[a3, with associated two-
form curvatureR5dw, and this observation will be useful i
what follows.

The on-shell value of the Einstein-Hilbert action can
obtained straightforwardly by substituting Eqs.~20! and~21!
in Eq. ~27!. We obtain~suppressing thè product!

4p

k
I 52

1

3EM
tr$~a!32~ ā !313@~a!21~ ā !2#J3dr%

1E
]M

e2ra2ā11e22ra1ā22
1

2
a3ā3. ~40!

As expected, this expression contains finite terms along w
a quadratic~in er) and logarithmic divergence. Note thata

and ā are still restricted by the flatness conditio
~37!,~38!,~39!.

A. Weyl anomaly

From the on-shell action~40!, it is straightforward to re-
cover the expression for the boundary Weyl anomaly whi
following the discussion of@4,29#, is given by the coefficient
of the logarithmically divergent term, as all the other term
are Weyl invariant. The relevant term is*Tr(a21ā2)
`J3dr5(1/2)*dr*]M(a1`a21ā1`ā2). Using the
equations of motion~37! and the Neumann boundary cond
tion ~25! the coefficient reduces to*]Mdw5*dr*]MR,
yielding the Weyl anomaly

^Ti
i&52

c

24p
R (0), ~41!

in agreement with the calculation in@29#, whereR (0) is the
boundary Ricci scalar, and we have usedc56k.

B. Boundary generating functional

The other divergent term~which is Weyl invariant! is
e2r*a2`ā1. This contribution is precisely the cosmolog
cal constant term in two dimensions becausea2`ā1 is
equal to the determinant of the zweibein~23!. The appear-
ance of this divergence is consistent with the analysis
@34#, and it can be associated with a divergent bare cos
logical constant in the CFT. Therefore, we shall renorma
this term, canceling the divergence but retaining a finite c
mological constantl2. As in 2D quantum gravity, we find
that the Liouville potential comes from this term.

The finite part of the action is therefore

4p

k
I reg52E

M
~a3a1a22ā3ā1ā2!

2
1

2E]M
~a3ā312l2a2ā1!. ~42!
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and, sincea5g21dg andā5ḡ21dḡ, it depends only on the
boundary values of the fields. Note that in general the gro
elementsg and ḡ are not single valued.

Localizing the action~42! in general requires a parametr
zation of the holonomies of the gauge fields, thus specify
the topology in terms of the conjugacy classes of SL(2,R).
We will return to this issue in Sec. V, but as mentioned e
lier it will not be necessary to explicitly specify a particula
class as we are interested in the dependence ofI reg on local
quantities. It will be sufficient here to choose a suitable lo
patch of AdS3, which is consistent with a choice of bounda
coordinates.

1. Boundary conformal gauge

The simplest choice is one in which the metric may
written in conformally flat form. The appropriate bounda
zweibein~32! is given by

e(0)5
1

2
~efdxJ22ef̄dx̄J1!, ~43!

where the conformal mode of the metric is thenw5f1f̄.
Recalling the discussion of Sec. III, this coordinate cho
hides the moduli in the conformal modew, as in Eq.~28!.
This coordinate system is convenient for deriving the eff
tive action, and the dependence on moduli can then be m
explicit by performing a quasiconformal transformation.

This choice of the boundary metric may be achieved
making use of the following Gauss decomposition of t
SL(2,R) group elements:

g5exJ2efJ3ey8J1, ḡ5ex̄J1e2f̄J3eȳ8J2, ~44!

which yields the following expressions for the Chern-Simo
currents:

a15e2f~2y2dx1dy!, ā15ef̄dx̄,

a25efdx, ā25e2f̄~2 ȳ2dx̄1dȳ!, ~45!

a3522ydx1df, ā352ȳdx̄2df̄.

Here we have made the convenient replacementsy85e2fy

and ȳ85e2f̄ȳ.
The action written in terms of these fields now takes

local form onS given by

4p

k
I reg@w,x,x̄;y,ȳ#5

1

2E 2w~dx`dy2dx̄`dȳ!

1~4yȳ1l2ew!dx`dx̄ ~46!

with w5f1f̄ the conformal mode in the metric. Note th
the modef2f̄ has decoupled, which is a consequence
the Neumann boundary condition~25! on the spin connec-
tion, and our neglect of holonomies~see, e.g.,@23#!.
8-7
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The variablesy and ȳ are auxiliary fields which can be
eliminated by their own equations of motion. Using the d
feomorphism invariance of Eq.~46! to choosex and x̄ as
coordinates, the action reads

I reg@w,y,ȳ#5
k

8pE d2x@2w~]̄y1] ȳ!14yȳ1l2ew#, ~47!

where the derivatives are with respect tox and x̄. The fields
y and ȳ can be integrated out and~ignoring boundary terms!
we obtain the Liouville action for the conformal modew:

I reg@w#52
c

96pE d2x@]w]̄w1l2ew#, ~48!

where we have usedk51/(4G) and the value ofc given in
Eq. ~1!. We see that this agrees with the evaluation of
Polyakov action in the background~43!, as given in Sec. III.
It is also straightforward to check that the constraint eq
tions for y5]w/2 and ȳ5 ]̄w/2 do imply a (3)5ā (3), as re-
quired by the 3D variational principle. This result, combin
with the fact that the remaining boundary conditions spec
a fixed boundary zweibein, imply that the action~48! is in-
deed to be interpreted as a functionalI reg@w# which generates
correlation functions of the boundary stress tensor.

We can now verify the result for the Weyl anomaly~41!,
by considering the variation of the generating function
I reg@w# directly. We obtain

^Ti
i&522e2w

dI reg@w#

dw
52

c

24p
e2w]]̄w, ~49!

which is equivalent to Eq.~41! in the background~43!,
whereR (0)5e2w]]̄w, and we have dropped the dependen
on the cosmological constant.

2. Boundary light-cone gauge

To exhibit the dependence on the chiral modulim, we
consider the alternate boundary zweibein~35!

e(0)5
1

2
~dz1mdz̄!J22

1

2
dz̄J1 , ~50!

which leads to the light-cone gauge metric~34!. The decom-
position of the group element for this case is convenien
achieved by noting that Eq.~50! may be obtained from the
zweibein ~43! in conformal gauge by the quasiconform
mapping

f→2 ln]x, f̄→0, ~51!

where x satisfies the Beltrami-type equation~29!, while x̄

5 z̄, and] now denotes]/]z.
The potential term is unchanged under this mapping,

we concentrate on the kinetic part. Evaluating Eq.~46! in
this background, we find
12600
e
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e
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I reg@x;y,ȳ#5
k

8pE d2z@2ln]x~]x]̄y2 ]̄x]y1] ȳ!

14yȳ]x#, ~52!

and, again ignoring boundary terms, we can integrate oy

andȳ. Making use of Eq.~29! we find 2y52]2x/(]x)2 and
2ȳ52]m, leading to

I reg@m#52
c

48pES
d2z

]2x

]x
]m, ~53!

which we recognize as the light-cone gauge Polyakov ac
WP@m# given in Eq.~36!.

One can generalize this approach to a more general b
ground, but these examples are sufficient for us to concl
that the dependence on the boundary moduli is correctly
coded in the bulk action, consistent with the AdS/CFT c
respondence. However, as mentioned in Sec. III, specify
the boundary metric does not uniquely determine the b
geometry due to the possibility for Brown-Henneaux tran
formations. We will now explore the consequences of this
the boundary generating functional.

C. Brown-Henneaux diffeomorphisms and stress tensor
expectation values

The consistency of the results of the preceding sec
hides the ambiguity of the Fefferman-Graham expansion
garding the trace-free part of the first subleading term in
bulk metric. This ambiguity, equivalent to specifying the e
pectation value of the boundary stress tensor, is associ
with the asymptotic symmetry of the space of bulk solutio
under Brown-Henneaux diffeomorphisms@1#, and the ambi-
guity can be rephrased as specifying the position of a p
ticular solution along a Brown-Henneaux orbit.

The finite generalization of the mapping~3! corresponds
to

T~z!→~] f !2T~ f !2
c

24p
$ f ,z%, ~54!

wheref (z) represents a local diffeomorphism of the circle
the case that we start with a boundary of cylindrical top
ogy, and$ f ,z% is the Schwarzian derivative

$ f ,z%[
]3f

] f
2

3

2 S ]2f

] f D 2

. ~55!

It is the Schwarzian term in the anomalous mapping~54!
which leads to a finite charge@1# characterizing the position
of a given solution on a Brown-Henneaux orbit. We will no
explore the consequences of this mapping for the result
the previous section.

1. Brown-Henneaux diffeomorphisms acting on the currents

The Brown-Henneaux diffeomorphisms have a sim
and direct action on the Chern-Simons currents. Let us
back to the expression for the currents~45! and impose the
8-8
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HOLOGRAPHY AND THE POLYAKOV ACTION PHYSICAL REVIEW D65 126008
conditionsa35ā3 ~which are equivalent to the equations
motion for y and ȳ). In conformal coordinatesx5z and x̄

5 z̄, these conditions ready5(1/2)]w and ȳ5(1/2)]̄w and
the currents take the form

a15 1
2 e2f@Twdz1Rdz̄#,

a25efdz, ~56!

a352]f̄dz1 ]̄fdz̄.

whereR5]]̄w is the scalar coefficient of the two-form cu
vature of the background~43!, and

Tw5
24p

c
^T&5]2w2

1

2
~]w!2 ~57!

can be identified with the Liouville stress-energy tensor
the conformal modew. Note that similar formulas arise in
the ‘‘antiholomorphic’’ sector.

Now consider the following local conformal transform
tions:

z→ f ~z!, ef→ef~] f !21,

z̄→ f̄ ~ z̄!, ef̄→ef̄~ ]̄ f̄ !21. ~58!

We observe that the conformal factorw then transforms ap
propriately as a Liouville fieldew→ew(] f )21( ]̄ f̄ )21.

Both a2 anda3 are trivially invariant under these trans
formations. In order to analyze the transformation ofa1 we
note that the combinatione2fdz has conformal dimension
(22,0) while e2fdz̄ has conformal dimension (21,21).
SinceTw has conformal dimension (2,0) and]]̄f has con-
formal dimension (1,1), the componenta1 transforms
anomalously via the Schwarzian derivative. This is cons
tent with the discussion in Sec. I on recognizing thata1

enters the subleading term in the metric and encodes
boundary stress-energy tensor viaTw. This can be made
more explicit by considering the form of the bulk metric.

2. The general bulk metric and stress tensor expectation value

We can insert the expressions for the currents into
~26! to obtain the corresponding form of the bulk metric. W
find,

ds3D
2 5dr22e2r 1wdxdx̄1 1

2 Twdx21 1
2 T̄wdx̄21Rdxdx̄

2 1
2 e22r 2w~Twdx1Rdx̄!~ T̄wdx̄1Rdx!, ~59!

where, from the subleading terms, we identify the gene
form of the expansion given in Eq.~4!. Indeed, the metric
~59! is the general solution associated with a conformally
boundary geometry, as determined recently in@46,31#. How-
ever, the mapping~58! implies that the metric~59!, in which
there is a direct correspondence between the sublea
terms and the Liouville stress-energy tensor for the repre
tative boundary metric, is not completely general. The f
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that Tw transforms anomalously is conveniently encoded
Eq. ~59! by writing it in a new coordinate system$x,x̄%
→$z5 f (x),z̄5 f̄ ( x̄)%,

ds3 D
2 5dr22e2r 1wdzdz̄1 1

2 ~Tw1T̃!dz21 1
2 ~ T̄w1T! !dz̄2

1Rdzdz̄2 1
2 e22r 2w@~Tw1T̃!dz1Rdz̄#

3@~ T̄w1T! !dz̄1Rdz#, ~60!

where]5]/]z, and T̃5T̃(z) is an arbitrary chiral function
given by T̃(z)52c$x,z%/24p. This representation make
explicit the anomalous shift~54! of the subleading terms
under Brown-Henneaux diffeomorphisms, in accordan
with the mapping T(z)5^TCFT& to the dual CFT
@22,24,5,26,27#.

In order to understand how the generating functiona
consistent with this shift@via Eq. ~10!#, it is convenient to
consider a particular example. Specifically, settingw to zero
in Eq. ~60!, the metric reduces to~dropping the tildes!

ds3 D
2 5dr22~e2r1e22rTT̄!dzdz̄1 1

2 Tdz21 1
2 T̄dz̄2, ~61!

which is equivalent to the general solution with a flat boun
ary geometry obtained in@24#. In interpreting Eq.~10! for
such a background it is important to recall that the bound
metric is specified only up to a Weyl rescaling. Thus, t
actual boundary metric in Eq.~61! is any geometry in the
same conformal class as the flat one. From Eq.~60!, we see
that the ambiguity reflects additive ‘‘free-field’’ shifts in th
conformal modew. This explains why the generating func
tional is actually nonvanishing for Eq.~61! and leads on
variation, via Eq.~10!, to nonzero expectation values fo

^TCFT& and^T̄CFT&. Following @22#, this interpretation of the
allowed free-field shifts inw may also be understood i
terms of the connection between the oscillator modes in
expansion of the Liouville fieldw, and the bulk ‘‘gravita-
tional wave’’ perturbations specified byT and T̄.

In the discussion above, we concentrated for simplicity
the boundary conformal gauge. If we instead consi
boundary geometries in the conformal class of the light-co
metric ~34!, then the situation is similar with the complica
tion that local conformal transformations on the bounda
amount to ‘‘chiral’’ free-field shifts in the conformal mode
The stress-energy tensorT(x)5c$x,z%/24p given by the
variation of Eq.~53!, then shifts according to Eq.~54! via the
Schwarzian, which is now chiral with respect to the ligh
cone structure determined bym ~see, e.g.,@44#!.

V. GLOBAL ISSUES AND CONCLUDING REMARKS

Making use of the Chern-Simons formalism, we ha
shown that the dependence of the regularized bulk grav
tional action on local moduli of the boundary metric is pr
cisely as one would expect for the Polyakov action, cons
tent with the AdS/CFT correspondence. In this final sect
we comment on some of the important features that w
8-9
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ignored in the analysis of Sec. IV, specifically, global da
associated with the holonomy of the gauge fields.

One of the main motivations for this work was to unde
stand the manifestation of the data specifying the bulk so
tions in the boundary effective action. In 3D, we can roug
characterize these bulk data in terms of Brown-Henne
‘‘gravitational waves’’ at the boundary, and global data co
veniently described by holonomies of the Chern-Simo
gauge field. The latter can alternatively be thought of as
modes associated with ‘‘large’’ Brown-Henneaux diffeomo
phisms which change the topology. The construction of
boundary effective action in Sec. IV, in contrast to earl
analyses@38,46,31#, which made use of the WZW model a
intermediate stages,8 should allow a more direct analysis o
the dependence of the effective action on the global bulk d
~see also@48,49#!. We plan to report on this elsewhere. How
ever, some comments are in order regarding the need for
extension of the effective action in the analysis of Sec. I

Recall that, in general, the action~42! can only be local-
ized once a suitable choice of the holonomies tr(expr A) and
tr(expr Ā) is made, thus specifying the topology. With
SL(2,R), these fall into three conjugacy classes: elliptic h
lonomies, conjugate to rotations, correspond to conical
gularities; hyperbolic holonomies, conjugate to dilation

8As noted earlier, the work of Coussaertet al. @38# proceeded
along different lines. Nonetheless, we can consider using our
mulation to obtain the analogue of the CHvD action@38# by solving
the constraints, with appropriate falloff conditions for the fields
infinity. In doing this, an important distinction is that we need
identify their Liouville field f with the Bäcklund transform of the
field w appearing here~provided we choosel250 as the renormal-

ization condition!. That is, ]w52]f1e(f2w)/2, ]̄w5 ]̄f
2e(f1w)/2 @47#. This is due to the use of the Polyakov-Wiegma
identity in @38# which performs the appropriate canonical transf
mation, and this mapping then explains the form of the bulk me
which can be determined in the approach of@38#.
tt
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correspond to nonextreme back holes; while extreme bl
holes are associated with parabolic holonomies, conjugat
translations@8#. Including these global data will be importan
in extending the considerations both of this paper and
@38#, to bulk and boundary geometries of more complica
topology.

As emphasized in@22#, the classification of bulk conju-
gacy classes is mirrored in the classical solutions of Liouv
theory, or in other words the uniformization of the bounda
S. Thus one suspects that the holonomies map to zero m
of the Liouville field, and it would be interesting to unde
stand how this applies in the context of the generating fu
tional studied here, where the Liouville field in question c
be associated with the bulk radial scale rather than a dyna
cal field as in@38#. In practice, this picture is complicate
because in generic cases there is no global Liouville fi
corresponding to the bulk solution@23,39,30#. A straightfor-
ward example is given by a spinning black hole. For nonz
angular momentum, the corresponding Liouville solution c
only be specified locally. It is interesting to note in this r
gard that the existence of global solutions for the Liouvi
field is closely connected with the existence of Killin
spinors@30#. The absence of a global Liouville solution fo
the spinning black hole then correlates with the absence
Killing spinors for the generic BTZ solution@50#. This sug-
gests that the holonomies of bulk solutions will be an imp
tant ingredient in mapping out the zero-mode structure of
Liouville field, and consequently the global structure of t
geometry experienced by the dual CFT.
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