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ABSTRACT

The knowledge representation community has invested great efforts in building general-

purpose ontologies which contain large amounts of commonsense knowledge on various

aspects of the world. Among the thousands of assertions contained in them, many ex-

press relations that can be regarded as relevant to visual inference; e.g., “a ball is used

by a football player”, “a tennis player is located at a tennis court”. In general, current

state-of-the-art approaches for visual recognition do not exploit these rule-based knowl-

edge sources. Instead, they use learning techniques to learn recognition models directly

from training examples (plenty of them). In this thesis, we study the question of whether

or not general-purpose ontologies—specifically, MIT’s ConceptNet ontology—could play

a role in state-of-the-art vision systems, as it seems plausible, in principle, that general-

knowledge may be complementary to knowledge acquired from examples. As a testbed,

we tackle the problem of sentence based image retrieval. As a starting point we make use of

recent successful efforts on convolutional network models to develop a retrieval approach

based only on a large pool of object detectors. Afterwards, we show how we can enhance

this system using relevant relations from ConceptNet ontology leading to new state-of-the-

art results on a common benchmark dataset.

Keywords: artificial intelligence, commonsense ontologies, machine learning, com-

puter vision, visual recognition, image retrieval, ConceptNet, ESPGAME.
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RESUMEN

La comunidad de representación del conocimiento ha invertido grandes esfuerzos en

la creación de ontologı́as de sentido común. Ellas poseen miles de relaciones sobre distin-

tos aspecto del mundo cotidiano, por ejemplo “todo hombre es persona” o “los libros son

usados para leer”. Dentro de esta gran cantidad de relaciones, algunas de ellas contienen

información relevante sobre el mundo visual. Sin embargo, hasta la fecha, ningún algo-

ritmo (que sea el estado del arte en alguna tarea de visión por computador) ha incorporado

este conocimiento en forma explı́cita. Dichos algoritmos suelen utilizar técnicas de apren-

dizaje de máquina para aprender modelos de reconocimiento a partir de ejemplos (miles de

ellos). En esta tesis estudiamos si una ontologı́a de propsito general, especı́ficamente Con-

ceptNet (la ontologı́a del MIT), puede, o no, tener un rol en el estado del arte de visión por

computador. Elegimos sentence based image retrieval (búsqueda de imágenes mediante

oraciones) como escenario de pruebas. Nuestro punto de partida es una red convolucional

profunda que nos permite generar un algoritmo de image retrieval basado en detectores

de palabras. Luego de eso presentamos una variante que incorpora relaciones de sentido

común provenientes de ConceptNet. Como resultado, obtuvimos una mejora el estado del

arte para la base de datos MSCOCO 5K.

Palabras Claves: inteligencia artificial, ontologı́as de sentido común, aprendizaje de

máquina, visión por computador, reconocimiento visual, búsqueda

de imágenes, ConceptNet, ESPGAME.
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1. INTRODUCTION

In the last few decades, feature-based techniques have become dominant at tackling

visual recognition problems (Grauman & Leibe, 2010). While earlier approaches focused

on the creation of hand-crafted visual features (Lowe, 1999; Belongie, Malik, & Puzicha,

2000; Dalal & Triggs, 2005), recent approaches focus on applying learning techniques to

obtain suitable mid-level representations (Bourdev, Maji, Brox, & Malik, 2010; Yang, Yu,

Gong, & Huang, 2009; S. Singh, Gupta, & Efros, 2012; Lobel, Vidal, & Soto, 2013) or

deep hierarchical layers of composable features (Boureau, Cun, et al., 2008; Krizhevsky,

Sutskever, & Hinton, 2012). A common denominator of those methods is that they mainly

rely on visual appearance. Their goal is to uncover visual spaces where visual similarities

carry enough information to achieve robust visual recognition.

Feature-based approaches do not incorporate high-level semantic knowledge. Indeed,

they consist mainly of data-driven procedures that, besides a limited use of class labels,

do not exploit further semantic information. Contextual-based approaches (Choi, Lim,

Torralba, & Willsky, 2010; Rabinovich, Vedaldi, Galleguillos, Wiewiora, & Belongie,

2007; Galleguillos & Belongie, 2010) and approaches based on visual semantic attributes

(Farhadi, Endres, Hoiem, & Forsyth, 2009; J. Liu, Kuipers, & Savarese, 2011; Parikh &

Grauman, 2011) aim at closing the semantic gap, incorporating stronger sources of high-

level knowledge. This knowledge is typically obtained through manual labeling (Wolf

& Bileschi, 2006), direct mining of nonaccidental visual relations (Desai, Ramanan, &

Fowlkes, 2011; Peralta, Espinace, & Soto, 2012), or statistical analysis of text corpora

(Rabinovich et al., 2007; Espinace, Kollar, Roy, & Soto, 2013). Recently, new massive

sources of structured visual data, such as ImageNet (Deng et al., 2009), have been used to

augment appearance-based visual similarities using semantic relations (Deselaers & Fer-

rari, 2011; C. Fang & Torresani, 2012). However, to the best of our knowledge, to date

no approach has attempted to exploit publicly available, large commonsense knowledge

repositories for visual recognition.
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The knowledge representation community has recognized for years that large com-

monsense knowledge bases are needed to reason in the real world. Consequently, a number

of projects have been conducted to build such a knowledge base or ontology. Cyc (Lenat,

1995) and ConceptNet (Havasi, Speer, & Alonso, 2007) are two well-known examples of

large, publicly available commonsense knowledge bases. In particular, in this work we

focus on ConceptNet (CN), a large hyper-graph containing information about million of

world concepts and their relations, such as, “books can be made from paper“. CN has been

used successfully for tasks that require rather complex commonsense reasoning. This in-

cludes a recent study that showed that the information in CN may be used to score as good

as a four-year old in an IQ test (Ohlsson, Sloan, Turán, & Urasky, 2013).

In this work, we study the question of whether or not large publicly available com-

monsense knowledge repositories could play a role in state-of-the-art vision systems. We

understand commonsense knowledge as a collection of facts about the world that most

people possess, such as, “a piano is used for performing music”. This also includes com-

monsense relations such as “used for”, “capable of”, or “caused by”, which are not con-

sidered by current visual recognition systems. In principle, these knowledge sources can

provide strong constraints and a richer representation to achieve a deeper understanding of

the visual world. Furthermore, they can be complementary to current state-of-the-art visual

recognition approaches mainly based on mining large sources of training examples. Our

own visual perceptual system illustrates the power of commonsense reasoning. As an ex-

ample, we use knowledge about friendships or familial relationships to be able to recognize

people in low resolution images.

As a testbed, we tackle the problem of unconstrained sentence based image retrieval.

This is a challenging and relevant task that requires a suitable mapping between natural

language and the visual world. Recent works that fuse text and images have highlighted

the need to provide this task with suitable sources of high level knowledge (Karpathy & Li,

2015; Vinyals, Toshev, Bengio, & Erhan, 2015). Our proposed approach is based on using

CN to augment or complement the information that we can extract from a set of object
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detectors operating on the input image. As an example, Figure 1 shows an illustrative situ-

ation, where an image retrieval query contains the word Chef, for which there is not a visual

detector available. However, the information contained in the nodes directly connected to

the concept Chef in CN provides key information to active related visual detectors, such as

Person, Dish and Kitchen that results key to retrieve the intended image.

Briefly, our proposed method consists of using the information contained in the words

of the query sentence, and a set of related concepts and relations extracted from CN, to se-

lectively activate a bank of visual object detectors. These detectors correspond to a large set

previously trained using a recent successful model based on convolutional neural networks.

The level of activations of the selected detectors in each of the images in the dataset allow

us then to rank the images according to their relevance to the textual query. As an addi-

tional step, we mine complementary sources of knowledge, such as the ESPGAME dataset,

to filter out noisy or irrelevant relations provided by CN. We evaluate our approach over

standard 5K- and 22K- COCO image datasets showing that it improves the performance of

a state-of-the-art approach to image retrieval.

A chef getting ready to stir 
up some stir fry in the pan

FIGURE 1.1. Left. An image and one of its associated sentences from the MS
COCO dataset. Among its words, the sentence features Chef, for which there is
not a visual detector available. Right. Related nodes to chef in ConceptNet s.t.
we have visual detectors for them. Notice that several of those nodes would be
informative if we wanted to detect chef.
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2. PREVIOUS WORK

The relevance of contextual or semantic information to visual recognition has long

been acknowledged and studied by the cognitive psychology and computer vision com-

munities (Peissig & Tarr, 2007; Biederman, 1972). In computer vision, the main focus

has been on using contextual relations to boost recognition by learning models about the

organization of the visual world. In particular, following Biederman (1972), contextual

information in the form of object co-occurrences, and geometrical and spatial constraints,

has been successfully applied to improve object and action recognition performance (Choi

et al., 2010; Desai et al., 2011; Wang, Chen, & Wu, 2011). Adaptive forms on contextual

cues has also been proposed (Peralta et al., 2012). Due to space constraints, we derive the

reader to Galleguillos and Belongie (2010) and Marques et al. (2011) for in-depth reviews

about these topics. As a common issue of these methods, they do not employ high-level

semantic relations.

Several works have pointed out the relevance of enhancing appearance-based similarity

metrics with semantic information. Deselaers and Ferrari (2011) and C. Fang and Torresani

(2012) used the structure of ImageNet and nearest neighbors learning techniques to create

distance metrics based on appearance and semantic object-category similarities. Following

Bush (1979), Malisiewicz and Efros (2009) posed visual recognition as a search operation

in a large relational graph, the so-called Visual Memex. Malisiewicz and Efros (2009)

focused on relations based on visual similarity and object co-occurrence. However, they

do not use relations between object-context, object-action or object-attribute, which are

available in ConceptNet.

Knowledge adquisition is one of the main challenges of using a semantic based ap-

proach to object recognition. One common approach to obtain this knowledge is via text

mining (Rabinovich et al., 2007; Espinace et al., 2013) or crowd sourcing (Von Ahn &

Dabbish, 2004a; Deng et al., 2009). As an alternative, recently, Chen et al. (2013) and

Divvala et al. (2014) presented bootstrapped approaches where an initial set of object de-

tectors and relations is used to mine the web in order to discover new object instances and
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new common sense relationships. The new knowledge is in turn used to improve the search

for new classifiers and semantic knowledge in a never ending process. While this strategy

opens new opportunities, unfortunately, as it has been pointed out for Von Ahn and Dab-

bish (2004a), public information is biased. In particular, common sense knowledge is so

obvious that it is generally tacit and not explicitly included in most information sources.

Furthermore, unsupervised or semi-supervised semantic knowledge extraction techniques

often suffer from semantic drift problems, where slightly misleading local association are

propagated to lead to wrong semantic inference.

Recently, work on automatic image captioning has made great advances to integrate

image and text data (Karpathy & Li, 2015; Vinyals et al., 2015; H. Fang et al., 2015; Don-

ahue et al., 2014). These approaches use datasets consisting of images as well as sentences

describing their content, such as the Microsoft COCO dataset (Lin et al., 2014). Coinciden-

tally, all these methods share similar ideas which follow initial work in (Weston, Bengio,

& Usunier, 2011). Briefly, these works employ deep neural network models, mainly con-

volutional and recurrent neural networks, to infer a suitable alignment between sentence

snippets and the corresponding image region that they describe. In contrast to our pro-

posed approach, these methods do not make explicit use of high level semantic knowledge.

In terms of works that use ontologies to perform visual recognition, Maillot and Thon-

nat (2008) built a custom ontology to perform visual object recognition. Ordonez et al.

(2015) used Wordnet and a large set of visual object detectors to automatically predict nat-

ural nouns that people will use to name visual object categories. Zhu et al. (2014) used

Markov Logic Networks and a custom ontology harvested from different sources, to iden-

tify in images several properties related to object affordance. In contrast to our work, these

methods target different applications. Furthermore, they do not exploit the type of common

sense relations that we want to extract from ConceptNet.
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3. PRELIMINARIES

Below we present an overview of the elements we use in this thesis, including the

ontology and visual datasets we use, and background on the image retrieval task.

3.1. Stemming

A standard technique in Natural Language Processing that we use below is stemming.

The stemming of a word w is a legal (e.g., English) word that results from stripping a suffix

out of w. Stemming is a heuristic process that aims at returning a word that is closest to the

“root” of a word. For example, the stemming of the words run, runs, and running all return

the word run.

For a word w, we denote its stemmed version as st(w). If W is a set of words, then

st(W ) = {st(w) | w ∈ W}.

3.2. ConceptNet

ConceptNet (CN) (H. Liu & Singh, 2004) is a commonsense-knowledge semantic net-

work which represents knowledge in a hypergraph structure. Each node in the hypergraph

corresponds to a concept represented by a stemmed word or phrase. Hyperarcs, on the other

hand, represent relations between nodes, an are associated with a weight, that expresses the

confidence in such a relation. As stated in its webpage, CN is a knowledgebase “containing

lots of things computers should know about the world, especially when understanding text

written by people”.

CN relations are commonsensical in the sense that they represent knowledge that is

standard for most humans (see Figure 3.1 for a sample). One of the design principles

behind CN is that knowledge is automatically generated from sentences coming from the

Open Mind Comonsense Corpus (P. Singh et al., 2002; H. Liu & Singh, 2004), which are

natural-language sentences created by humans. Online games (e.g., Verbosity von Ahn,

Kedia, & Blum, 2006) have also been used to massively collect relations for CN.
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ConceptNet relation ConceptNet’s description
sofa –IsA→ piece of furniture A sofa is a piece of furniture
sofa –AtLocation→ livingroom Somewhere sofas can be is livingroom
sofa –UsedFor→ read book A sofa is for reading a book
sofa –MadeOf→ leather sofas are made from leather

FIGURE 3.1. A sample of CN relations that involve the concept sofa, together with
the English description provided by the CN team in their website.

Among the set of relation types in CN, a number of them can be regarded as “vi-

sual”, in the sense that they correspond to relations that are important in the visual world.

These include relations for spatial co-occurrence (e.g., LocatedNear, AtLocation), visual

properties of objects (e.g., PartOf, SimilarSize, HasProperty, MadeOf ), and actions (e.g.

UsedFor, CapableOf, HasSubevent).

CN 5.3, the version we use in our experiments, contains over four million nodes and

over 13 million relations. Many of these relations are truthful. Indeed Singh et al. (P. Singh

et al., 2002) reported that human evaluators have rated 75% of items as “largely true”, 82%

as “largely objective”, and 85% as “largely making sense”.

CN has been used successfully for tasks that require rather complex commonsense

reasoning. A recent study showed that the information in CN may be used to score as good

as a four-year-old person in an IQ test (Ohlsson et al., 2013).

Unfortunately however, CN contains a number of so-called noisy relations, which are

relations that do not correspond to a true statement about the world. Two examples of these

for the concept pen are “pen –AtLocation→ pen”, “pig –AtLocation→ pen”. The existence

of these relations is an obvious hurdle when utilizing this ontology. We discuss later some

of the implications of this for visual reasoning.

3.3. Sentence-Based Image Retrieval

Given a set of images I and a natural-language query string t, the objective of image

retrieval is to rank the images in I according to their “relevance” with respect to t. As such,
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the problem reduces to building a function that returns a numeric score to each image in

I ∈ I given t that correlates with the relevance of I with respect to t.

Two recent state-of-the-art approaches to image retrieval are those by Klein et al.

(Klein, Lev, Sadeh, & Wolf, 2015), based on Mixture Models, and that by Karpathi and

Li (Karpathy & Li, 2015), based on a bidirectional recurrent neural network.

3.4. Visual Datasets

In the next chapters we refer to two visual datasets: MS COCO and ESPGAME.

3.4.1. MS COCO

Microsoft COCO (Lin et al., 2014) is a new captioning dataset. It is divided in 3

sets with over 80K, 40K and 40K images for training, validating, and testing, respectively.

Each image in the training and validating set is associated with, at least, 5 natural language

descriptions. Figure 3.2 shows an example image with its descriptions.

- A couple of birds are standing on a branch.
- There are two parrots perched on the branch.
- Two parrots sitting on a branch side by side.
- Two parrots perching on a tree branch in a

tropical garden.
- Two multicolored exotic birds perched on a

wooden branch with trees and flowers behind
them.

FIGURE 3.2. An image with its 5 associated sentences in MS COCO.

3.4.2. ESPGAME

ESPGAME (Von Ahn & Dabbish, 2004b) is a well known tagging database. It contains

100001 images with meaningful tags (English word) for each of them. Figure 3.3 shows

an example image with its tag list.
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Tags: old, 1908, wheels, red, car, auto, race, museum,
wheel, flag, around, automobile, the, world.

FIGURE 3.3. An image with its associated tag list in ESPGAME.
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4. A BASELINE FOR IMAGE RETRIEVAL

To evaluate our technique for image retrieval, we chose as a baseline a simple approach

based on a large set of visual word detectors (H. Fang et al., 2015). These detectors, that

we refer to as Fang et al.’s detectors, were trained over the MS COCO image dataset (Lin

et al., 2014). Each image in this dataset is associated with 5 natural-language descriptions

(for more details, see section 3.4.1). Fang et al.’s detectors were trained to detect instances

of words appearing in the sentences associated to MS COCO images. As a result, they

obtain a set of visual word detectors for a vocabulary V , which contains the 1000 most

common words used to describe images on the training dataset.

Given an image I and a word w, Fang et al.’s detector outputs a score between 0 and

1. With respect to training data, such a score can be seen as an estimate of the probability

that image I has been described with word w. Henceforth, we denote such as score by

P̂V (w | I).

A straightforward, but effective way of applying these detectors to image retrieval is

by simply multiplying the scores. Specifically, given a text query t and an image I we run

the detectors on I for words in t that are also in V and multiply their output scores. We

denote this score by MIL (after Multiple Instance Learning, the technique used in H. Fang

et al., 2015 to train the detectors). Mathematically,

MIL(t, I) =
∏

w ∈ V ∩ St

P̂V (w|I), (4.1)

where St is the set of words in the text query t.

The main assumption behind Equation 4.1 corresponds to an independence assumption

among word detectors given an image I . This is similar to the Naive Bayes assumption

used by the classifier with the same name (Mitchell, 1997). In chapter 6, we show that,

although simple, this score outperforms state-of-the-art approaches (e.g., Klein et al., 2015;

Karpathy & Li, 2015). While these detectors were trained using MS COCO dataset, we still
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found—suprisingly—that they lead to state-of-the-art performance when they are used in a

sentence-based image retrieval task using this dataset.
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5. OUR METHOD: ENHANCING DETECTORS SETS USING CN

The MIL score has two limitations. First, it considers the text query as a set of inde-

pendent words, ignoring their semantics relations and roles in the sentence. Second, it is

limited to the set V of words the detector has been trained for. While the former limitation

may also present in other state-of-the-art approaches to image retrieval, the latter is inherent

to any approach that employs a set of visual word detectors for image retrieval.

Henceforth, given a set of words V for which we have a detector, we say that word w

is undetectable with respect to V iff w is not in V , and we say w is detectable otherwise.

In the rest of the chapter we describe a technique to enhance a detector-based approach

for image retrieval with undetectable words.

5.1. CN for Undetectable Words

Our goal is to provide a score to each image analogous to that defined in Equation 4.1,

but including undetectable words. A first step is to define a score for an individual unde-

tectable word w. Intuitively, if w is an undetectable word, we want an estimate analogous

to P̂V (w|I). Formally, the problem we address can be stated as follows: given an image I

and a word w which is undetectable wrt. V , compute the estimate P̂ (w|I) of the probability

P (w|I) of w appearing in I .

To achieve this, we are inspired by the following fact: for most words representing

a concept c, CN “knows” a number of other concepts that are related to c that may share

related visual characteristics. As an illustration, if w is, e.g. tuxedo, then we may consider

the concept jacket as one that could provide useful visual information because “tuxedo–

IsA→ jacket” is a relation in CN. Likewise, other visual CN relations such as AtLocation

or MadeOf may also provide useful information.

Let us define cn(w) as the set of concepts (each represented by an English word) that

appear related to the stemmed version of w, st(w), in CN. We propose to compute P̂ (w|I)

based on the estimation P̂ (w′|I) of words w′ that appear in cn(w). Specifically, by using

12



standard probability theory we can write the following identity about the actual probability

function P and every w′ ∈ cn(w):

P (w|I) = P (w|w′, I)P (w′|I) + P (w|¬w′, I)P (¬w′|I), (5.1)

where P (w|w′, I) is the probability that there is an object in I associated to w given that

there is an object associated to w′ in I . Likewise P (w|¬w′, I) represents the probability

that there is an object for word w in I , given that no object associated to word w′ appears

in I .

Equation 5.1 can be re-stated in terms of estimations, thus for any w′ ∈ cn(w), P (w|I)

can be estimated by p̂(w′, w, I), which is defined by

p̂(w′, w, I)
def
= P̂ (w|w′, I)P̂ (w′|I) + P̂ (w|¬w′, I)P̂ (¬w′|I). (5.2)

However the problem with such an approach is that it does not tell us which w′ to use.

Below, we propose to aggregate p̂ over the set of all concepts w′ that are related to w in

CN. Before stating such an aggregation formally, we focus on how to compute P̂ (w|w′, I)

and P̂ (w′|I).

Let us define the set stDet(w, V ) as the set of words in the set V such that when

stemmed are equal to st(w); i.e., stDet(w, V ) = {w′ ∈ V : st(w) = st(w′)}. Intuitively,

stDet(w, V ) contains all the words in V whose detectors can be used to detect w after

applying stemming.

Now we define P̂ (w′|I) as:

P̂ (w′|I) = max
w∈stDet(w′,V )

P̂V (w|I), (5.3)

that is, to estimate how likely it is that w′ is in I , we look for a word w in the set of de-

tectors V whose stemmed version matches the stemmed version of w′, and that maximizes

P̂V (w|I).

Now we need to define how to compute P̂ (w|w′, I). We tried two options here (we

report both in Section 6). The first is to assume P̂ (w|w′, I) = 1, for every w,w′. This is

13



because for some relation types it is correct to assume that P̂ (w|w′, I) is equal to 1. For

example P̂ (person|man, I) is 1 because there is a CN relation “man–IsA→ person”. While

it is clear that we should use 1 for the IsA relation, it is not clear whether or not this estimate

is correct for other relation types. Furthermore, since CN contains noisy relations, using 1

might yield significant errors.

Our second option, which yielded better results, is to make P̂ (w|w′, I) equal to an es-

timate of P (w|w′); i.e., the probability that an image that contains an object for w′ contains

an object for word w. P (w|w′) can be estimated from the ESPGAME database, which con-

tains tags for many images (for more details, see section 3.4.2). After stemming each word,

we simply count the number of images tagged in which both w and w′ occur and divide it

by the number of images tagged by w′.

Now we are ready to propose a CN-based estimate for P (w|I) when w is undetectable.

As discussed above, P (w|I) could be estimated by the expression of Equation 5.2 for any

concept w′ ∈ cn(w). As it is unclear which w′ to choose, we propose to aggregate over

w′ ∈ cn(w) using three aggregation functions. Consequently, we identify three estimates

of P (w|I) that are defined by:

P̂F(w|I) = Fw′∈cnDet(w,V )p̂(w
′, w, I), (5.4)

where cnDet(w, V ) = {w′ ∈ cn(w) : stDet(w′, V ) 6= ∅} is the set of concepts related to

w in CN for which there is a stemming detector in V , and F ∈ {min,max,mean}.

5.2. The CN Score

With a definition in hand for how to estimate the score of an individual undetectable

word w, we are ready to define a CN-based score for a complete natural-language query

t. For any w in t, what we intuitively want is to use the set of detectors whenever w is

detectable and P̂F(w|I) otherwise.

To define our score formally, a first step is to extend the MIL score with stemming. In-

tuitively, we want to resort to detectors in V as much as possible, therefore, we will attempt

14



to stem a word and use a detector before falling back to our CN-based score. Formally,

MILSTEM(t, I) = MIL(t, I)×
∏

w∈W ′
t

P̂ (w|I), (5.5)

where W ′
t is the set of words in t that are undetectable wrt. V but that are such that they have

a detector via stemming (i.e., such that stDet(w, V ) 6= ∅), and where P̂ (w|I) is defined by

Equation 5.3.

Now we define our CN score which depends on the aggregation functionF . Intuitively,

we want to use our CN score with those words that remain to be detected after using the

detectors directly and using stemming to find more detectors. Formally, let W ′′
t be the set of

words in the query text t such that (1) they are undetectable with respect to V , (2) they have

no stemming-based detector (i.e., stDet(w, V ) = ∅), but (3) they have at least one related

concept in CN for which there is a detector (i.e., cnDet(w, V ) 6= ∅). Then we define:

CNF(t, I) = MILSTEM(t, I)×
∏

w∈W ′′
t

P̂F(w|I), (5.6)

for F ∈ {min,max,mean}.
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6. RESULTS AND DISCUSSION

We evaluated our algorithm over the MS COCO image database (section 3.4.1). Fol-

lowing Karpathy and Li (2015) and Klein et al. (2015) we used a specific subset of 5K

images (from the validation set) and evaluated the methods on the union of the sentences

for each image. Henceforth, we refer to this subset as COCO 5K.

In our tables we report the mean and median rank of the ground truth image; that is,

the one that was tagged by the query text being used in the retrieval task. We report also the

k-recall (r@k), for k ∈ {1, 5, 10}, which corresponds to the percentage of times the correct

image was found among the top k results.

Recall that we say that word w is detectable when there is a detector for word w; in

this chapter we use Fang et al.’s detectors (H. Fang et al., 2015) which is comprised by 616

detectors for nouns, 176 detectors for verb and 119 detectors for adjectives. We do not use

detectors for other word types (such as prepositions or pronouns) because they decrease

the performance. In addition, we say that a word w is stemming-detectable if it is among

the words considered by the MILSTEM score, and we say a word is CN-detectable if it is

among the words included in the CN-score.

6.1. Comparing Variants of CN

The objective of our first experiment was to compare the performance of the various

versions of our approach that use different aggregation functions. Since our approach uses

data from ESPGAME we also compare to an analogous approach that uses only ESPGAME

data, without knowledge from CN. This is obtained by interpreting that word w is related

to a word w′ if both occur on the same ESPGAME tag, and using the same expressions

presented in chapter 5. We considered a comparison to this method was important because

we wanted to evaluate the impact of using an ontology with general-purpose knowledge

versus using a crowded-sourced, mainly visual knowledge such as that in ESPGAME.
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TABLE 6.1. Subset of COCO 5K with sentences that contains an undetectable word.

Database r@1 r@5 r@10 median mean
⊂ COCO 5K rank rank
Our baselines
MIL 13.2 33.4 45.2 13 82.2
MIL STEM 13.5 33.8 45.7 13 74.6
CN only
CN MIN 12.2 31.4 43.4 15 77.0
CN MEAN 13.2 33.7 46.0 13 66.3
CN MAX 12.2 32.1 44.1 14 73.0
ESPGAME only
ESP MIN 12.6 30.7 41.1 17 122.4
ESP MEAN 13.6 34.2 46.2 13 69.0
ESP MAX 13.5 33.7 45.7 13 66.2
CN + ESPGAME

CN ESP MIN 14.3 34.6 46.6 12 68.3
CN ESP MEAN 14.6 35.6 48.0 12 61.2
CN ESP MAX 14.3 35.9 48.2 12 60.6

Table 6.1 shows results over the maximal subset of COCO 5K such that a query sen-

tence has a CN-detectable word that is not stemming-detectable, including 9, 903 queries.

The table shows results for our baselines, CN OP, ESP OP and CN ESP OP (with OP =

MIN (minimum), MEAN (arithmetic mean) and MAX (maximum)). CN OP considers

P̂ (w|w′, I) = 1 and P̂ (w|¬w′, I) = 0 for Equation 5.2, while CN ESP OP uses ESPGAME

to estimate those probabilities. To reduce the impact of noisy relations in ConceptNet in

CN OP and CN ESP OP, we only consider relationships with confidence weight ≥ 1 (this

threshold was defined by carrying out a sensitivity analysis). The last method, ESP OP uses

ESPGAME without ConceptNet. Results show that algorithms based on CN + ESPGAME

perform better in all the reported metrics, including the median rank. Overall, the MAX

version of CN ESP seems to obtain the best results and thus we select it as the method that

we compare to other approaches below.
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TABLE 6.2. Image retrieval results over COCO 5K. Note our baselines outperform
state-of-the-art results and our approach, CN ESP MAX, improved our baselines
performance.

Database r@1 r@5 r@10 median mean
COCO 5K rank rank
Other approaches
NeuralTalk (Karpathy & Li, 2015; Vinyals et al., 2015) 6.9 22.1 33.6 22 72.2
GMM+HGLMM (Klein et al., 2015) 10.8 28.3 40.1 17 49.3
BRNN (Karpathy & Li, 2015) 10.7 29.6 42.2 14 NA
Our baselines
MIL 15.7 37.8 50.5 10 53.6
MIL STEM 15.9 38.3 51.0 10 49.9
Our method
CN ESP MAX 16.2 39.1 51.9 10 44.4

6.2. Comparison to Other Approaches

We compared with NeuralTalk1 (Karpathy & Li, 2015; Vinyals et al., 2015), BRNN(Karpathy

& Li, 2015), and GMM+HGLMM (the best algorithm in Klein et al., 2015) over COCO 5K.

As we can see on the Table 6.2, MIL outperforms previous approaches to image retrieval.

Moreover, adding ConceptNet to detect new words improves the performance in almost all

metrics.

Figure 6.1 shows qualitative results for 6 example queries. The first column describes

the target image and its caption. The next columns show the rank of the correct image and

the top-4 ranked images for MIL STEM and CN ESP MAX. Blue words on the query

are stem-detectable but not detectable, and red words are CN-detectable but not stem-

detectable.

Queries 1 and 2, show examples of images for which no detectors can be used and thus

the only piece of available information comes from CN. Rank for MIL STEM is, therefore,

arbitrary but, as a result of using CN with ESPGAME, the correct image are under r@25 in

CN ESP MAX. Queries 3 and 4 show examples where we have both stem-detectable words

1We used the source code from https://github.com/karpathy/neuraltalk.
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and CN-detectable words (that are not stem-detectable). In both cases, using CN improves

the position of the target image by more than 100. For Query 3, CN ESP MAX is able to

detect “bagel” using the “doughnut” and “bread” detectors (among others), improving the

ranking of the correct image. Similarly, with Query 4, our approach detects “sculpture”

using detectors for “statue”, “metal”, and “stone”, among others. The last two queries are

cases for which the CN-score is detrimental. For Query 5, the word “resort” is highly

related with “hotel” in both CN and ESPGAME, thus the “hotel” detector became more

relevant than “looking” and “hills”. For Query 6, it turns out that the word “soul” is related

in CN to words that would seem helpful, like “person”, “man”, and “body” however it

is also related to detectable words like “church”, “live” and “many”, which do not seem

informative for this particular image.

Finally, we wanted to evaluate how good is the performance when focusing only on

those words that are CN-detectable but not stemming-detectable. To that end, we designed

the following experiment: we took the set of words from the union of text captions that were

only CN-detectable, and we interpreted those as one-word queries. An image is ground

truth in this case if any of its captions contains w.

Results presented in Table 6.3 disaggregate for word type (Nouns, Verbs, Adjectives).

As a reference of the problem difficulty, we added a random baseline. The results suggest

that CN yields more benefits for nouns, which may be easier to detect than verbs and

adjectives by CN ESP MAX.

We observe that numbers are lower than in Table 6.1. In part this is due to the fact that

in this experiment there is more than one correct image, therefore the k recall has higher

chances of being lower than when there is only one correct image. Furthermore, a qualita-

tive look at the data suggests that sometimes top-10 images are “good” even though ground

truth images were not ranked well. Figure 6.2 shows an example of this phenomenon for

the word tuxedo, which is not stemming-detectable.
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Sentence and target image Algorithm Pos 1 Pos 2 Pos 3 Pos 4

1) Seamen inside a navy vessel
communicate over the radio.

MIL STEM
Pos: 5000

CN ESP MAX
Pos: 15

2) The preparation of salmon,
asparagus and lemons.

MIL STEM
Pos: 5000

CN ESP MAX
Pos: 23

3) Those bagels are plain with
nothing on them.

MIL STEM
Pos: 360

CN ESP MAX
Pos: 2

4) People stand near a large
modern art sculpture.

MIL STEM
Pos: 149

CN ESP MAX
Pos: 1

5) a spooky looking hotel
resort in the hills.

MIL STEM
Pos: 349

CN ESP MAX
Pos: 597

6) Here is a soul in the
image alone.

MIL STEM
Pos: 1831

CN ESP MAX
Pos: 2602

FIGURE 6.1. Qualitative examples for our baseline “MIL STEM” and our method
“CN ESP MAX” over COCO 5K. Blue words are stemming-detectable, whereas
red words are only CN-detectable. 20



TABLE 6.3. Image Retrieval for new word detectors over COCO 5K. We include
a random baseline, and results for CN ESP MAX divided in 4 categories: Retriev-
ing nouns, verbs, adjectives and all of them. The results show that is easier, for
CN ESP MAX, to detect nouns than verbs or adjectives.

Algorithm r@1 r@5 r@10 median mean
CN ESP MAX rank rank
Random 0.02 0.1 0.2 2500.5 2500.50
All 0.4 1.8 3.3 962.0 1536.8
Noun 0.5 2.1 3.7 755.0 1402.7
Verb 0.2 1.1 1.9 1559.5 1896.2
Adjective 0.1 0.7 1.9 1735.5 1985.2

Target word: Tuxedo
Ground truth images positions: 1, 130, 192 and 275

Retrieved images position 1, 2, 3 and 4

FIGURE 6.2. Qualitative examples for tuxedo retrieval. First image row contains
our ground truth, the 4 examples where tuxedo was used to describe the image. The
second row of images are the first 4 retrieved images from CN ESP MAX.

These results prompted us to experiment with a version of our CN score that tries to

detect only undetectable nouns (but not verbs or adjectives). As we see below, better results

are produced by this variant.

6.3. From COCO 5K to COCO 22K

We tested our method on 22K images of the MS COCO database. With more im-

ages, the difficulty of the task increases. Motivated by the fact that CN seems to be
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TABLE 6.4. Image retrieval results for COCO 5K and 20K. In this table we com-
pare our best baseline against a version of CN ESP MAX which only detect new
noun words. Performance improvement increases when more images are consid-
ered.

Databases r@1 r@5 r@10 median mean
From 5K to 22K rank rank
COCO 5K
MIL STEM 15.9 38.3 51.0 10 49.9
CN ESP MAX (NN) 16.3 39.2 51.9 10 44.5
Improvement (%) 2.5 2.4 1.8 0 -10.8
COCO 22K
MIL STEM 7.0 18.7 26.6 43 224.6
CN ESP MAX 7.1 19.1 27.1 42 198.8
CN ESP MAX (NN) 7.1 19.2 27.2 41 199.7
Improvement (%) 1.4 2.7 2.3 -5 -46.7

best at noun detection (c.f ., Table 6.3), we designed a version of CN ESP MAX, called

CN ESP MAX(NN), whose CN-score only focuses on undetectable nouns.

Table 6.4 shows the results for MIL STEM and CN ESP MAX (NN). We show re-

sults over COCO 5K and 22K. Interestingly, the improvement of CN ESP MAX over

MIL STEM increases when we added more images. Notably, we improve upon the median

score, which is a good measure of a significant improvement.
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7. CONCLUSIONS AND PERSPECTIVES

This thesis presented an approach to enhancing a learning-based technique for sentence-

based image retrieval with general-purpose knowledge provided by ConceptNet, a large

commonsense ontology. Our experimental data, restricted to the task of image retrieval,

shows improvements leading to state-of-the-art performance. This suggests a promising

research area where the benefits of integrating the areas of knowledge representation and

computer vision should continue to be explored.

An important lesson learned while carrying out this work is that integration of a general-

purpose ontology with a vision approach is not straightforward. This is illustrated by the ex-

perimental data that showed that information in the ontology alone did not improve perfor-

mance, while the combination of an ontology and crowd-sourced visual knowledge (from

ESPGAME) did.

We believe there are many perspectives for future work. For example, an issue we did

not address is one related to the polysemy and synonymy issues. For example, in Concept-

Net the node fly has relations for the verb fly and for the insect fly; meanwhile, computer

has relations to concepts that pc does not. The stemming process—that we needed to use in

order to apply CN—may sometimes introduce ambiguity; for example, by transforming an

undetectable word such as bowling into bowl. Our approach also can be further optimized

for the task of image retrieval. For example, currently to detect tuxedo, we look for images

with high scores for jacket, black, etc., but we do not constrain these detectors to fire at the

same location.
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