
Pontificia Universidad Católica de Chile
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Date: August 2021

Author : Valeria Leiva Yamaguchi

Title : New contributions to joint models of longitudinal and survival

outcomes: Two-stage approaches

Department : Statistics

Degree : Doctor in Statistics

Convocation : August

Year : 2021

Permission is herewith granted to Pontificia Universidad Católica de Chile to circulate and
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Abstract

Joint models of longitudinal and survival outcomes have gained much popularity over the

last three decades. This type of modeling consists of two submodels, one longitudinal

and one survival, which are connected by some common term. Unsurprisingly, sharing

information makes the inferential process highly time-consuming. This problem can be

overcome by estimating the parameters of each submodel separately, leading to a natural

reduction in the complexity of joint models, but often producing biased estimates. Hence,

we propose different two-stage strategies that first fits the longitudinal submodel and then

plug the shared information into the survival submodel. Our proposals are developed for

both the frequentist and Bayesian paradigms. Specifically, our frequentist two-stage ap-

proach is based on the simulation-extrapolation algorithm. On the other hand, we propose

two Bayesian approaches, one inspired by frailty models and another that uses maximum

a posteriori estimations and longitudinal likelihood to calculate posterior distributions of

random effects and survival parameters. Based on simulation studies and real applica-

tions, we empirically compare our two-stage approaches with their main competitors. The

results show that our methodologies are very promising, since they reduce the estima-

tion bias compared to other two-stage methods and require less processing time than joint

specification approaches.
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Chapter 1

Introduction

In medical studies, it is common to find outcomes of interest of the following nature: the

moment of occurrence of an event, such as clinical diagnosis, cure of a disease, or death;

and an unobserved latent process measured repeatedly over time, as the indicator of pro-

gression for a certain disease. A classic example of such studies can be found in human

immunodeficiency virus (HIV) clinical trials (Goldman et al., 1996), where patients af-

fected by HIV were randomly assigned to receive one of two possible treatments. The

evolution of the disease was monitored through the CD4 cell counts, which were mea-

sured over time. Typically, the time to death and the longitudinal trajectory of cell counts

are modeled separately. Nevertheless, some researchers may potentially be interested in

studying the association between both processes and therefore a joint modeling is required

(Rizopoulos, 2012; Elashoff et al., 2016).

In a joint model specification, survival analysis incorporates into the risk of an event a

biomarker measured repeatedly over time (endogenous covariate), which is usually mod-

1
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eled as a longitudinal process (Ibrahim and Molenberghs, 2009). On the other hand, lon-

gitudinal studies model possible bias due to missing not at random data (Little and Rubin,

2019) through a survival process (Yu et al., 2004). In both cases, the joint modeling pro-

vides complete inference (longitudinal, survival, and association between both of them),

reduces estimation bias, increases statistical efficiency, and conveniently makes predic-

tions of outcomes (Muthén et al., 2009; Ibrahim et al., 2010; Wang et al., 2012). See

Papageorgiou et al. (2019), Furgal et al. (2019), and Alsefri et al. (2020) for a review on

joint models up to date.

These models have been extended in different directions with important practical ap-

plications, mainly in epidemiological research (Taylor et al., 2013). As one of the first

proposals, Tsiatis et al. (1995) developed a two-stage procedure for this class of joint

models. First, the longitudinal model is fitted. Then, the estimated values for the longitu-

dinal trajectory are used as an endogenous covariate in a Cox proportional hazards model.

The main advantage of this approach is that it avoids computational complexity problems

by ignoring the potential joint nature of both processes. However, the main weakness of

this methodology is that survival model parameter estimates are often biased (Faucett and

Thomas, 1996; Tsiatis and Davidian, 2004; Ye et al., 2008; Rizopoulos, 2012).

Many authors have proposed two-stage alternatives that try to correct the estimation

bias. For instance, Wulfsohn and Tsiatis (1997) estimated parameters within the Cox

model while the longitudinal covariate is measured occasionally and with measurement

error. They relaxed the distributional assumption of random effects to a distribution with a

smooth density. Ye et al. (2008) and Albert and Shih (2010) proposed two-stage strategies

based on regression calibration with longitudinal data modeled nonparametrially. Mu-

rawska et al. (2012) developed a two-stage approach using a non-linear mixed-effects
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model and empirical Bayes estimates of subject-specific parameters as predictors in the

Cox proportional-hazards model. Viviani et al. (2014) formulated an approach for non-

Gaussian longitudinal data using an expansion of shared parameter models and assumed

that the longitudinal trajectory up to the current time may have an impact on the hazard

of dropout. Donnelly et al. (2018) considered a two-stage approach based on the Coxian

phase-type distribution to represent the survival process. Huong et al. (2018) proposed a

modified two-stage method considering an approximation of the fully joint log-likelihood

function to estimate parameters from longitudinal process to later be incorporated into

the survival model. In addition, some authors have developed two-stage model-based ap-

proaches for multivariate longitudinal and survival outcomes (Guler et al., 2017; Mauff

et al., 2020).

Even so, these proposals are not generalized to different joint model structures. Thus,

making the inference simultaneously is still the most recommended option, even though

it is computationally more intense (Hsieh et al., 2006; Ye et al., 2008; Ibrahim et al.,

2010; Andrinopoulou et al., 2018). However, the joint model specification has at least two

drawbacks: i) identifiability problems due to the large number of parameters (Henderson

et al., 2000; Wu, 2009; Gould et al., 2015; Wu and Yu, 2016; Papageorgiou et al., 2019);

and ii) requirement for numerical integrations that can make the inferential process time-

consuming (Lesaffre and Spiessens, 2001; Pinheiro and Chao, 2006; Rizopoulos et al.,

2009; Wu et al., 2010; Barrett et al., 2015).

Two-stage approaches dodge both problems (Self and Pawitan, 1992; Tsiatis et al.,

1995) but, as previously discussed, they often produce biased estimates and/or are not

extended to any joint modeling. Hence, in order to overcome the potential limitations of

traditional methods, we propose three two-stage strategies that aim to reduce or eliminate
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the estimation bias with low processing times as well as providing easy-to-implement

alternatives to more complex formulations of joint models. One of these proposals is

developed within the context of frequentist statistics based on the simulation-extrapolation

algorithm (Cook and Stefanski, 1994). In contrast, the other two proposals are based on the

Bayesian paradigm, one inspired by frailty models (Ibrahim et al., 2001) and another that

uses maximum a posteriori estimations and longitudinal likelihood to calculate posterior

distributions of random effects and survival parameters.

This thesis is organized as follows: Chapter 2 introduces a general formulation of joint

models for longitudinal and survival outcomes. Chapter 3 presents our frequentist two-

stage proposal. Chapter 4 describes our two Bayesian proposals for two-stage estimation

of joint models. Chapter 5 presents a brief description of three real datasets. Chapter 6

describes a simulation scheme of synthetic data from a joint modeling. Chapters 7 and 8

compare our methodologies against their main competitors using real and simulated data,

respectively. Finally, Chapter 9 discusses the advantages, limitations, and extensions of

the methods developed in this thesis.



Chapter 2

Joint formulation

Joint modeling for longitudinal and survival data has become very popular medical appli-

cations (Neuhaus et al., 2009; Wu et al., 2011). This class of models is a useful tool when

it is necessary to study the association between repeated measurements and time until an

event of interest (Papageorgiou et al., 2019). When considering both information together

(simultaneously) into a single model, the estimates are less biased and there is an increase

in statistical efficiency, since clinical hypotheses consider in advance that longitudinal and

survival data are connected in some way (Muthén et al., 2009; Ibrahim et al., 2010). In the

next sections, we will introduce the key elements for formulating a standard joint model.

2.1 Mixed-effects models for longitudinal data

Generally, mixed-effects models are considered for the estimation of the longitudinal pro-

cess (Pinheiro and Bates, 2000). These models are based on the idea that each individual in

5
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the population has his/her own subject-specific mean response profile over time. To intro-

duce this representation of longitudinal data, we let yi(t) denote the response of individual

i, (i = 1, . . . , n) at time t. A standard mixed-effect model has the following functional

form:
yi(t) = µi(t | bi,θy) + εi(t),

εi(t) ∼ Normal(0, σ2),
(2.1)

where µi(t | bi,θy) denotes a trajectory function at time t, θy is a parameter vector, and bi

represents anM -dimensional vector of individual random effects, often assumed normally

distributed (Verbeke, 1997). Additionally, εi(t) denotes a random error term and follows

a normal distribution with zero mean and variance σ2. The trajectory function can be

formulated in different ways, but the most common corresponds to the linear mixed model

specification with µi(t | bi,β) = x>i (t)β + z>i (t)bi, where xi(t) and zi(t) are covariates

of the individual i at time t.

One of the main advantages of the mixed-effects model is to predict how individual

response trajectories change over time. On the other hand, the main challenge for the

analysis of longitudinal data is the missing data. Although in longitudinal studies, mea-

surements are collected repeatedly over time in pre-specified follow-up times, it is often

some individuals may fail to show up at a scheduled time for various reasons. Depending

on the features of missing values patterns, we can distinguish two types of mechanisms:

monotone and non-monotone missingness. The first type is when a patient leaves the study

before its completion or when a individual does not provide information about initial re-

sponse measurements, but appears later on and stays in the study until completion. On the

other hand, the second type of missing data is when patients are missing at intermittent

times, i.e., that other measurements are observed following missing values. The appropri-

ateness of different procedures of analysis of incomplete longitudinal data is determined
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by the missing data mechanism. In particular, there are three types of mechanisms (Little

and Rubin, 2019):

• Missing Completely at Random (MCAR): occurs when the probability that the re-

sponses are missing is unrelated to the longitudinal outcome, meaning that is unre-

lated to both the specific values that individuals would have been obtained and the

set of observed responses.

• Missing at Random (MAR): the probability of missingness depends on the set of

observed responses, but it is unrelated to the longitudinal outcomes that would have

been obtained.

• Missing Not at Random (MNAR): when the probability the longitudinal outcomes

are missing depends on the set of responses observed and unobserved.

These missing data mechanisms may affect the covariates of longitudinal studies,

which are defined as time-dependent and time-independent covariates. Time-dependent

covariates are measured repeatedly over time and their values change at the same time. On

the other hand, time-independent (or baseline) covariates are only measured once and their

values do not change over time. In a mixed-effects model, when covariates have missing

values, we must use a model for incompletely observed covariates in likelihood inference

(Little, 1995).

2.2 Proportional hazard models for survival data

When we are interested in modeling the time to an event of interest occurs, Cox-type

regression models are widely used (Cox, 1972). To introduce such type of model, we
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denote T ∗i as the true event time for individual i and Ci the censoring time, then Ti =

min(T ∗i , Ci) is the observed event time and δi = I(T ∗i ≤ Ci) represents the event indicator.

The proportional hazard models assume that covariates have a multiplicative effect on the

hazard function for an event, and the formulation is given by:

hi(t | Mi(t)) = h0(t) exp
{
w>i γ + αµi(t | bi,θy)

}
, (2.2)

where h0(t) represents an arbitrary and left unspecified baseline hazard function at time

t and wi is a covariate vector with coefficients γ. Mi(t) = {µi(l | bi,θy), 0 ≤ l < t}

denotes the history of the longitudinal process up to t and µi(t | bi,θy) is the underly-

ing true trajectory from the longitudinal submodel (2.1), which has the role of connecting

both processes while α measures the strength of this association. In order to simplify

the notation, we will omit the term Mi(t) when specifying a hazard function. Under

this approach, the distributional assumptions for T ∗i are hidden in the specification of the

baseline hazard. For instance, when assuming a Weibull specification for the survival sub-

model (2.2), the baseline hazard takes the form h0(t) = φ tφ−1 exp(γ0). When the interest

is on the survival time and we wish to explain the effect of the longitudinal trajectory as

a time-dependent covariate, traditional approaches to analyze the time until the event of

interest are not applicable, because these assume that the time-dependent covariates are

predictable processes and measured without error (Cox, 1975). In particular, the stan-

dard survival models require that the time-dependent covariates are external, i.e., that their

value at a certain instant is not affected by the appearance of the event of interest. How-

ever, the type of time-dependent covariates found in longitudinal studies does not satisfy

this condition, since they are the result of a stochastic process generated by the individual

that is directly related to the failure mechanism (Kalbfleisch and Prentice, 2002).

The Cox model can be extended to time-dependent covariates, but however this type
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of model works well only for exogenous time-varying covariates. For endogenous time-

dependent covariates, such as biomarkers measured on patients, this approach can cause

biases and poor coverage properties (Sweeting and Thompson, 2011). One of the main

reasons is that it assumes that the level of the markers remains constant on the next visit.

2.3 Joint specification (JS) approach

Based on the mixed-effects (2.1) and proportional hazard (2.2) submodels, we introduce

the standard joint model of longitudinal and survival data. The main idea behind this class

of models is to couple the survival model for continuous time-to-event process with a

mixed-effects model for the longitudinal outcome. The main estimation approach that has

been proposed for joint modeling is the maximum likelihood-based estimator (Rizopou-

los, 2012). The inferential methods that simultaneously consider the estimation of all

parameters of a joint model depend on the specification of the joint density between both

processes. Let y and s be the longitudinal and survival data, respectively. The vector of

all parameters is specified by θ and the random effects by b. So, the joint density of (y, s)

can be written as:

f(y, s | θ) =

∫
f(y, s | b,θ) f(b | θ) db, (2.3)

where f(·)’s denote density functions. There are different proposals for the specification

of the conditional density f(y, s | b,θ) (Alvares, 2017). However, the most widely used

approach is the shared-parameter specification (Wu and Carroll, 1988), in which it as-

sumes that the longitudinal process is conditionally independent of the survival process

given the shared information, i.e.:

f(y, s | b,θ) = f(y | b,θ) f(s | b,θ), (2.4)
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where f(y | b,θ) and f(s | b,θ) are commonly specified according to submodels (2.1)

and (2.2), respectively. Assuming that individuals are independent of each other, the like-

lihood function of θ is expressed as:

L(θ) =
n∏
i=1

f(yi, si | θ)
(2.3)
=

n∏
i=1

∫
f(yi, si | bi,θ)f(bi | θ) dbi

(2.4)
=

n∏
i=1

∫
f(yi | bi,θ)f(si | bi,θ)f(bi | θ) dbi, (2.5)

where f(bi | θ) is typically assumed as a multivariate normal density with zero mean and

M × M variance-covariance matrix Σ. In some cases, the parameter vector θ is more

conveniently specified as θy (longitudinal), θs (survival), and θb (random effects).

From the frequentist perspective, an expectation–maximization algorithm (Rizopou-

los, 2012) robustly estimates the joint model parameters using the likelihood function (2.5).

However, there are two potential limitations that deserve attention:

i) Joint models have many parameters to be estimated, so these parameters can become

non-identifiable, i.e., two sets of different parameters can lead the same likelihood

value (Henderson et al., 2000; Wu, 2009; Gould et al., 2015; Wu and Yu, 2016;

Papageorgiou et al., 2019);

ii) Computational complexity can be challenging when the integral in (2.5) is high

dimensional (Lesaffre and Spiessens, 2001; Pinheiro and Chao, 2006; Rizopoulos

et al., 2009; Wu et al., 2010; Barrett et al., 2015).
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2.4 Standard two-stage (STS) approach

Due to the potential complexity of numerical integration of the joint model likelihood

function (2.5), several two-stage estimation methods for joint models of longitudinal and

survival data have been proposed, both from the frequentist (Tsiatis et al., 1995; Wulfsohn

and Tsiatis, 1997; Ye et al., 2008; Albert and Shih, 2010; Huong et al., 2018) and Bayesian

(Murawska et al., 2012; Viviani et al., 2014; Mauff et al., 2020) perspectives. However,

the most common two-stage procedure is described as follows:

• Stage 1: Fit the submodel (2.1), typically using a linear mixed model;

• Stage 2: Fit the submodel (2.2), typically using an extended Cox model, where the

trajectory function estimated in Stage 1 is considered as a time-varying covariate.

Note that this approach allows the specification of complex submodels while main-

taining an acceptable processing time, since estimating the parameters of each submodel

separately is computationally more stable. In addition, standard R-packages for each sub-

model can be used easily, for instance, nlme (Pinheiro and Bates, 2021) for the longitudi-

nal submodel and survival (Therneau, 2011) for the survival submodel. However, as pre-

viously discussed, by ignoring the potential joint nature between both processes, this two-

stage approach often produce biased estimates for the survival model regressors. (Faucett

and Thomas, 1996; Tsiatis and Davidian, 2004; Ye et al., 2008; Rizopoulos, 2012).
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Chapter 3

Frequentist perspective

This chapter is based on the article “A novel two-stage bias correction approach for joint

models of longitudinal and survival data” (currently under review).

To get around the problems of both the joint specification (JS, see Section 2.3) and

the standard two-stage (STS, see Section 2.4), we propose a novel two-stage (NTS) ap-

proach, based on a frequentist perspective, which prioritizes computational efficiency and

robustness of parameter estimation. Like traditional two-stage approaches, our proposal

starts by fitting the longitudinal submodel without considering survival data. In the second

stage, we incorporate information from the longitudinal process to the survival process,

using the simulation-extrapolation (SIMEX) methodology to estimate the survival model

parameters. The step-by-step construction of our proposal and an algorithm that summa-

rizes it are presented in the next sections.

13
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3.1 Novel two-stage (NTS) approach

The general idea behind the SIMEX is to fix the bias of a particular estimator when the

bias is due solely by the presence of a covariate measured with known errors. The standard

SIMEX algorithm consists on three steps: simulation, estimation, and extrapolation (Cook

and Stefanski, 1994). In the simulation step, the covariate measured with error is generated

many times with some fixed and larger amount of measurement errors. From each of the

generated covariate a new parameter estimator is obtained, and then a function is learned

that relates the amount of measurement error with the parameter estimator. This function is

then extrapolated to zero variability to obtained at last the presumably unbiased estimator.

Our proposal is strongly inspired by SIMEX steps. However, the joint models frame-

work requires some relevant adaptations, such as the initialization step introduced next.

3.1.1 Initialization

Without loss of generality, we assume an additive measurement error specification (Carroll

et al., 2006) for the longitudinal outcome of the individual i at time t given by:

yi(t) = y∗i (t) + ξi(t), (3.1)

where yi(t) represents the observed error-prone value, y∗i (t) is the true unobserved value,

and ξi(t) ∼ Normal(0, σ̂2
ξ ). The term σ̂2

ξ is called measurement error variance and it is

assumed known (Yang et al., 2019). In practice, we recommend that the user set the value

of σ̂2
ξ . However, we are aware that the scale of this variance is strictly associated with

the longitudinal outcome magnitude and therefore setting it can be a difficult task. For

instance, a small value can lead to results quite similar to the standard two-stage approach,
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while a large value can inflate this variance causing an increase in the estimation bias. As

an alternative, based on simulation studies, we propose to estimate the measurement error

standard deviation as σ̂ξ = p σ̂, where p ∈ [0, 1] is chosen by the user and σ̂ represents the

error standard deviation of the longitudinal submodel (2.1) estimated from the observed

longitudinal outcomes. In short, σ̂ξ is defined as a fraction of σ̂.

3.1.2 Simulation

Since the measurement error variance σ̂2
ξ has been set, two tuning parameters of the

SIMEX simulation step must be defined:

• K: number of simulations/repetitions. A large value of K lead to a better SIMEX

estimator according to the Monte Carlo error reduction criterion (Hastings, 1970).

Usually, K = 50 or K = 100 works well (Cook and Stefanski, 1994).

• ∆ = [λ1, . . . , λm] with 0 < λ1 < λ2 < . . . < λm: grid of values used to create

response variables with increasingly larger amounts of measurement error. Typi-

cally, ∆ = [0.5, 1, 1.5, 2] is considered the default specification (Hardin et al., 2003;

Carroll et al., 2006).

For each k = 1, . . . , K and λ ∈ ∆, we generate “new” longitudinal outcomes with

the following perturbation/contamination:

yi(t; k, λ) = yi(t) + λ1/2ξi(t; k) ∀i, (3.2)

where ξi(t; k) ∼ Normal(0, σ̂2
ξ ). Note that we are simulating values from a normal distri-

bution centered on yi(t) and with variance λ σ̂2
ξ . In particular, the total measurement error



CHAPTER 3. FREQUENTIST PERSPECTIVE 16

variance for the kth simulated response variable, given a λ, is

Var
[
Y (t; k, λ)

]
= Var

[
Y (t)

]
+ λVar

[
ξ(t; k)

]
= σ̂2

ξ I + λ σ̂2
ξ I = (1 + λ) σ̂2

ξ I, (3.3)

where Y (t; k, λ), Y (t) and ξ(t; k) represent random vectors of dimension n (number of

individuals) and I is the n× n identity matrix.

Using yi(t; k, λ) instead of yi(t) for i = 1, . . . , n, we estimate the trajectory function

at time t of the longitudinal submodel (2.1) and then connect it into the survival submodel

(2.2), the same way as in STS approach (see Section 2.4). For each iteration, the esti-

mated survival model parameters (let’s say θ̂s(k, λ)) are stored as well as other potential

quantities of interest.

3.1.3 Estimation

The average value of the estimated survival model parameters for each λ is calculated:

θ̂s(λ) =
1

K

K∑
k=1

θ̂s(k, λ). (3.4)

The average value of other quantities of interest can also be obtained, e.g., estimated

variance and standard error of each parameter (Apanasovich et al., 2009; He et al., 2012).

3.1.4 Extrapolation

The average estimates θ̂s(λ1), . . . , θ̂s(λm) generate a trajectory of values for each sur-

vival model parameter according to the (sequential) increment in the variance (1 +λ) σ̂2
ξ I.

Note that λ = 0 is equivalent to estimating the parameters using the original data (STS
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approach), i.e., without applying our bias correction proposal. In SIMEX literature, this

estimate is known as naive estimation (Carroll et al., 2006).

The trajectory of each estimated average parameter can be modeled using a polyno-

mial or nonlinear regression (Cook and Stefanski, 1994; Stefanski and Cook, 1995). In

general, a quadratic regression satisfactorily fits these values (Carroll and Küchenhoff,

1995; He et al., 2012) and therefore it is implemented in this thesis. Figure 3.1 illustrates

an example for the extrapolation step using a quadratic regression.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

λ

θ̂s(simex)

θ̂s(naive)

θ̂s(0.5)

θ̂s(1.0)

θ̂s(1.5)

θ̂s(2.0)

Figure 3.1: Illustration of a quadratic extrapolation function to estimate a (univariate) pa-

rameter θs. The green and red points indicate the naive (STS approach) and SIMEX (NTS

approach) estimators, respectively. The blue points are the estimates when increasing the

measurement error variance, (1 + λ) σ̂2
ξ , for λ = 0.5, 1, 1.5, 2.

It is worth noting that the case of no measurement error is obtained when the variance

in Equation (3.3) is equal to zero. Thus, the SIMEX estimator is calculated by extrapolat-
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ing a polynomial or nonlinear regression back to λ = −1. Our proposal is summarized in

Algorithm 1.

Algorithm 1: Novel two-stage (NTS) approach for joint models.

0 INITIALIZATION: Let σ̂2
ξ be the measurement error variance defined either by the

user directly or by specifying p ∈ [0, 1] (see Section 3.1.1).

1 SIMULATION:

for (k = 1 : K) do

for (λ ∈ ∆) do
– Generate

yi(t; k, λ) = yi(t) + λ1/2ξi(t; k) ∀i,

where ξi(t; k) ∼ Normal(0, σ̂2
ξ ).

– Estimate µi(t; k, λ) from (2.1) using yi(t; k, λ) instead of yi(t) ∀i.

– Estimate θs(k, λ) from (2.2) using µi(t; k, λ) instead of µi(t | bi,θy) ∀i.
end

end

2 ESTIMATION: Obtain θ̂s(λ) as the mean of the K estimates of θs(k, λ).

3 EXTRAPOLATION: Fit curve to the generated pairs
(
λ, θ̂s(λ)

)
. The extrapolated

value at λ = −1 is the SIMEX estimator of θs.



Chapter 4

Bayesian approach

This chapter is based on articles “A two-stage approach for Bayesian joint models of

longitudinal and survival data: correcting bias with informative prior” (Entropy, 23(1),

1-10, 2021) and “A two-stage approach for Bayesian joint models: reducing complexity

while maintaining accuracy” (currently under review).

As we have discussed throughout this thesis, share information between submod-

els makes the inferential process highly time-consuming. From a Bayesian perspective,

Markov chain Monte Carlo (MCMC) methods are computationally very demanding, espe-

cially for complex models with random effects (Gelman et al., 2013), which is the case for

most joint models of longitudinal and survival data. Again, this problem can be alleviated

by estimating the parameters of each submodel separately, leading to a natural reduction

in the complexity of the joint modeling, but often producing biased estimates.

Since the philosophy of Bayesian statistics is different from the frequentist perspec-

tive, the following sections introduce the Bayesian version for joint specification (JS) and

19
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standard two-stage (STS) approaches. Next, we will present our two Bayesian two-stage

proposals for joint models.

4.1 Bayesian joint specification (BJS) approach

Let y, s and b be the longitudinal data, survival data and random effects, respectively, and

the vector of all parameters, θ, can be partitioned by random component, such as θy, θs

and θb. Bayesian joint models for longitudinal and survival outcomes usually assume a

full joint probability density given by (Armero et al., 2018; Alvares et al., 2021):

f(y, s, b,θy,θs,θb) = f(y, s | b,θy,θs)f(b | θb)π(θy)π(θs)π(θb). (4.1)

The factors on the right hand side of (4.1) are the conditional joint density of the

processes y and s given b, θy and θs, f(y, s | b,θy,θs); the conditional density of b given

θb, f(b | θb); and the (independent) prior distributions of θy, θs and θb, π(θy), π(θs)

and π(θb), respectively. Similar to Equation (2.4), f(y, s | b,θy,θs) can be factorized as

f(y | b,θy)f(s | b,θy,θs) (see Section 2.3 for more details).

From a joint specification approach, the posterior distribution π(b,θy,θs,θb | y, s) is

proportional to (4.1). This posterior distribution, partially derived from submodels (2.1)

and (2.2), is highly complex due to the large number of parameters and random effects

as well as potential integrations with no closed-form. Hence, as expected, the processing

time is quite demanding and, in some cases, the Bayesian approach may be impractical

(Ye et al., 2008; Andrinopoulou et al., 2018).
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4.2 Bayesian standard two-stage (BSTS) approach

As we have discussed previously, two-stage strategies are very useful for reducing the

complexity of joint models and speeding up the inferential process. From a frequentist

point of view, Tsiatis et al. (1995) proposed one of the most popular two-stage approaches

(see Section 2.4 for more details). The first stage is to fit the longitudinal submodel (2.1)

and then the trajectory function µi(t | bi,θy) is calculated using the estimated param-

eters and random effects. Hence, this estimated trajectory function is considered as an

endogenous time-varying covariate when fitting the survival submodel (2.2).

As a potential competitor, we use the Tsiatis et al. (1995) approach adapted to the

Bayesian framework. Specifically, in the first stage, we calculate the maximum a pos-

teriori (MAP) of parameters θy and random effects b from longitudinal submodel fitted

separately. Posterior mean or median can also be used instead. In the second stage, we

incorporate the trajectory function into the survival submodel considering µ̂i(t | b̂i, θ̂y),

for i = 1, . . . , n, where b̂i and θ̂y are the MAP of bi and θy, respectively, and then the

posterior distribution of θs is calculated via MCMC.

4.3 First novel Bayesian two-stage (NBTS1) approach

The first part of our two-stage proposal is similar to the Bayesian standard approach, i.e.,

the trajectory function µi(t | bi,θy) from the longitudinal submodel (2.1) is estimated

using the MAP of bi and θy. However, we propose the following modification to the

survival submodel:

hi(t) = ϑi h0(t) exp
{
w>i γ + αµ̂i(t | b̂i, θ̂y)

}
, (4.2)
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where ϑi denotes a multiplicative fixed-effect for individual i.

The role of ϑi is essential to satisfactorily correct the estimation bias by ignoring the

potential joint nature between both processes. Specifically, what we propose is a very small

perturbation using the individual fixed-effect. To do so, we specify a highly informative

prior distribution for ϑi, given by:

ϑi ∼ Gamma(η, η), (4.3)

where η is a known parameter and must be specified such that E(ϑi) = 1 and Var(ϑi)

small. Interpretatively, if ϑi is not perturbed (i.e., Var(ϑi) = 0), then we turn to the

Bayesian standard two-stage approach presented in Section 4.2. Moreover, note that if we

assume that η is an unknown parameter and so a hyperprior should be set for it, then the

specification (4.2) becomes a Bayesian frailty model (Ibrahim et al., 2001).

4.4 Second novel Bayesian two-stage (NBTS2) approach

Like all two-stage methods for joint models, the first stage is to fit the longitudinal sub-

model separately. So, we calculate the MAP of the longitudinal and random effects pa-

rameters, which will be denoted by θ̂y and θ̂b, respectively. Note that it is not necessary

to estimate the random effects b and therefore, we can run a Bayesian estimation algo-

rithm using the marginalized likelihood function (integrating out the random effects) of

the longitudinal submodel (2.1).

In the second stage, we estimate the random effects b and survival parameters θs
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replacing the full joint probability distribution (4.1) with:

f(y, s, b,θs | θ̂y, θ̂b) = f(y, s | b, θ̂y,θs)f(b | θ̂b)π(θs)

(2.4)
= f(y | b, θ̂y)f(s | b, θ̂y,θs)f(b | θ̂b)π(θs),

(4.4)

where f(·)’s and π(·) have the same functional form as in (4.1) and (2.4), except that the

parameters θy and θb are now assumed to be known and so it is not necessary to include

their prior distributions in (4.4). Note that when using θb estimated from the longitudinal

submodel (i.e., θ̂b), random effects b become fixed effects, further reducing the complexity

of (4.4) with respect to the full joint probability distribution (4.1).

Essentially, our proposal simplifies/approximates the likelihood function from the

joint approach by assuming that the shared parameters can be satisfactorily estimated from

their MAP using the longitudinal submodel separately. Proposition 4.4.1 presents asymp-

totic aspects that support our proposal.

Proposition 4.4.1. For fixed sample size n, and as the number ni of repeated measure-

ments per individual in the longitudinal process y increases, the maximum a posteriori

(MAP) of θy and θs from the Bayesian joint specification (BJS) and the second novel

Bayesian two-stage (NBTS2) approaches will closely resemble.

Proof. Let f(yi | bi,θy) and f(si | bi,θy,θs) be the longitudinal and survival likelihood

functions for individual i, respectively, where yi = {yitij : tij = 1, . . . , ni}. We will

analyze the behavior of the maximum a posteriori (MAP) of θy from the conditional joint
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log-likelihood function of individual i, as ni grows:

lni
(θy) = log

(
ni∏
j=1

f(yitij | bi,θy)

)
+ log

(
f(si | bi,θy,θs)

)
=

ni∑
j=1

log
(
f(yitij | bi,θy)

)
+ log

(
f(si | bi,θy,θs)

)
= −ni

2
log
(
2πσ2

)
− 1

2σ2

ni∑
j=1

(
yitij − µi(tij | bi,θy)

)2
+ log

(
f(si | bi,θy,θs)

)
.

(4.5)

Calculating limni→∞
[
lni

(θy)/ni
]
, we note that the longitudinal term is Op(1), while

the survival one is op(1). Extending this result to the joint likelihood for all individuals is

straightforward. In summary, as ni grows, the MAP of θy depends only on the longitudinal

submodel. In this sense, we can calculate the MAP of θy both from the BJS and from the

NBTS2 first stage equivalently.

Taking the MAP of θy (let’s say θ̂y) from the NBTS2 approach, our next goal is to

calculate the MAP of θs. Hence, similar to a profiled likelihood strategy (Murphy and van

der Vaart, 2000), we can consider θ̂y as a vector of nuisance parameters and then estimate

the MAP of θs from the the conditional joint log-likelihood function:

l(θs) = log
(
f(y | b, θ̂y)

)
+ log

(
f(s | b, θ̂y,θs)

)
. (4.6)

The MAP of (θy,θs) jointly estimated from the conditional joint log-likelihood func-

tion is equivalent to calculating the MAP of θy from lni
(θy) (assuming that ni → ∞)

and then obtaining the MAP of θs from l(θs). Note that Equation (4.6) is specified as the

log-likelihood function in NBTS2 second stage.

So far we have omitted the specification of random effects and priors for the estimation

of the MAP of θy and θs. We assume that the distribution of b, f(b | θb), from the BJS
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approach is the same as the prior distribution of fixed effects b, π(b | θ̂b), from the NBTS2

approach. So, the contribution of random effects to calculate the MAP of θy and θs from

both approaches is the same. Additionally, even if the random effects distributions are

misspecified, Rizopoulos et al. (2008)’s Theorem 1 demonstrates that, as ni grows, the

estimates of θy and θs will be minimally affected. On the other hand, we assume that the

prior distributions are proper and weakly-informative, so they must have an irrelevant role

in calculating the MAP of θy and θs. Furthermore, as the sample size increases, the choice

of prior distributions have a minimal impact.

4.5 Prior distributions

To complete the Bayesian models formulation, we need to assign prior distributions to

all parameters and hyperparameters. As a standard specification, we assume independent

and diffuse marginal prior distributions, i.e., proper distributions with a large variance

(Gelman et al., 2013). More specifically, all longitudinal and survival regression coeffi-

cients (including the association parameter) follow normal distributions with zero mean

and large variance; σ follows a weakly-informative half-Cauchy(0, 5) (Gelman, 2006);

and Σ follows an inverse-Wishart(V, r), where V is an M ×M identity matrix, r = M

is the degrees-of-freedom parameter (Schuurman et al., 2016). Once the baseline hazard

function h0(t | θs) is defined, diffuse priors are also specified for its parameters.
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Chapter 5

Datasets

We introduce three real datasets, which are available in the R-package JM (Rizopoulos,

2018), in order to further compare the performance of the methods presented in this thesis.

5.1 Liver cirrhosis (prothro) dataset

This dataset includes 488 patients with histologically verified cirrhosis, with 237 of them

randomized to treatment with prednisone and the remaining received placebo (Andersen

et al., 1993). Liver cirrohosis is a generic term that includes all forms of liver disease in

which healthy liver tissue is replaced with scar tissue and the liver is permanently dam-

aged. This study took place from 1962 to 1974 in Copenhagen, and the principal objective

was to evaluate whether prednisone prolongs survival for patients with cirrhosis. The visits

are specified at 3, 6, and 12 months, and yearly thereafter, and provide records for several

clinical and biochemical variables. Figure 5.1 shows subject-specific longitudinal trajec-

27
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tories of the prothrombin index (in logarithmic scale) and the Kaplan-Meier estimate for

the time to death by treatment.
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Figure 5.1: Left panel: Longitudinal trajectories of the prothrombin index (in logarithmic

scale) by treatment. Right panel: Kaplan-Meier estimate for the time to death by treatment.

5.2 Acquired immunodeficiency syndrome (aids) dataset

This study consists of 467 patients with advanced human immunodeficiency virus infec-

tion during antiretroviral treatment who had failed or were intolerant to zidovudine therapy

(Goldman et al., 1996). The principal aim was to compare the efficacy of two antiretrovi-

ral drugs/treatments, namely didanosine (ddI) and zalcitabine (ddC), in the time to death.

Patients were randomly assigned to receive either ddI or ddC, and the evolution of the

disease was monitored through the CD4 cell counts were recorded at study entry, for these
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patients specified visits at 2, 6, 12, and 18 months thereafter. Figure 5.2 shows longitudinal

trajectories of the square root of the CD4 cell counts and the Kaplan-Meier estimate for

the time to death by treatment.
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Figure 5.2: Left panel: Longitudinal trajectories of the square root CD4 cell counts by

treatment. Right panel: Kaplan-Meier estimate for the time to death by treatment.

5.3 Primary biliary cirrhosis (pbc) dataset

This dataset includes 312 patients with primary biliary cirrhosis, a rare autoimmune liver

disease, at Mayo Clinic trial conducted between 1974 and 1984, where 158 patients were

randomized to D-penicillamine and 154 to placebo (Murtaugh et al., 1994). The out-

come of primary interest was patient survival and whether this could be prolonged by

D-penicillamine. Figure 5.3 shows longitudinal profiles of the serum bilirubin (in loga-

rithmic scale) and Kaplan-Meier estimate for the time to death by treatment.
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Figure 5.3: Left panel: Longitudinal trajectories of the serum bilirubin (in logarithmic

scale) by treatment. Right panel: Kaplan-Meier estimate for the time to death by treatment.



Chapter 6

Simulating data from joint models

Chapter 8 will compare the performance of the methodologies presented in this thesis

regarding the dual problem “biased estimation versus high computational time”. To do so,

a joint model simulation scheme should be used. Therefore, we develop in this chapter

a simulation algorithm for joint models based on (2.1) and (2.2). More specifically, the

longitudinal process for an individual i at time t is written as a linear mixed model:

yi(t) ∼ Normal
(
µi(t | bi,θy), σ2

)
,

µi(t | bi,θy) = β0 + b0i + (β1 + b1i)t+ β2xi,

bi = (b0i, b1i)
> ∼ Normal(0,Σ),

(6.1)

where θy = (β0, β1, β2, σ
2)> and θb = Σ. The covariate xi is a binary group indica-

tor simulated from a Bernoulli distribution with probability 0.5. The random effects and

measurement error are independent.

The hazard function of the survival time Ti of individual i is specified as follows:

hi(t) = φ tφ−1 exp {γ0 + γ1xi + αµi(t | bi,θy)} , (6.2)
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where h0(t) is a Weibull baseline hazard with φ and exp(γ0) being shape and scale pa-

rameters, respectively, and θs = (φ, γ0, γ1, α)>, where γ1 and α are group and association

parameters, respectively.

As a preliminary simulation step, all parameters (θy, θs and θb), number of individuals

(n), minimum number of longitudinal observations (mmin), and maximum observational

time (tmax) must be set. Then, the covariate xi and the random effects bi, for i = 1, . . . , n,

are simulated.

The event time for individual i, T ∗i , is obtained by simulating a value ui from the

standard uniform distribution and solving the following equation:

ui = Si(t) = exp

{
−
∫ T ∗

i

0

hi(w) dw
}
⇐⇒ log(ui) +

∫ T ∗
i

0

hi(w) dw = 0. (6.3)

Note that calculating T ∗i is a (univariate) root-finding problem, which can be solved

using numerical integration techniques such as Gauss-type quadrature rules (Crowther and

Lambert, 2013).

The censoring time for each individual, Ci, is generated from a uniform distribution

on the interval [0, tmax] and then the observed time is set as Ti = min{T ∗i , Ci} and the

event indicator as δi = I(T ∗i ≤ Ci).

The number of longitudinal observations of individual i, ni, is set as mmin plus the

largest integer less than Ti (i.e., bTic). The recording times of the repeated measurements

are equispaced set from 0 to bTic. The random errors εi(t1), . . . , εi(tni
) are simulated from

a normal distribution with zero mean and variance σ2. Finally, the longitudinal observa-

tions of individual i, yi(t1), . . . , yi(tni
), are computed according to Equation (6.1).

The simulation scheme to jointly generate longitudinal and survival data is summa-

rized in Algorithm 2.
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Algorithm 2: Simulation scheme for joint models.

0 INITIALIZATION: Set θy, θs, θb, n, mmin, and tmax.

1 SIMULATING SURVIVAL DATA:

– Simulate xi ∼ Bernoulli(0.5) and bi ∼ Normal(0,Σ) ∀i.

– Calculate T ∗i ∀i based on the survival submodel (6.2) using (6.3).

– Simulate Ci ∼ Uniform(0, tmax) ∀i.

– Set Ti = min{T ∗i , Ci} and δi = I(T ∗i ≤ Ci) ∀i.

2 SIMULATING LONGITUDINAL DATA:

– Set ni = mmin + bTic ∀i.

– Set 0 = t1, . . . , tni
= bTic ∀i equispaced.

– Simulate εi(t) ∼ Normal(0, σ2), t = t1, . . . , tni
∀i.

– Compute yi(t1), . . . , yi(tni
) ∀i based on the longitudinal submodel (6.1).
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Chapter 7

Application

We compared the inferential procedures, both frequentist and Bayesian, presented in this

thesis using datasets introduced in Chapter 5. The three datasets contain two observation

formats, the long one for longitudinal data and the short one for survival data. For all

analyses, we used the joint formulation based on (6.1) and (6.2), where the longitudinal

submodel is specified as a linear mixed model with random intercept and slope, and the

survival submodel is defined as a proportional hazard model with Weibull specification.

Moreover, xi is the treatment/drug indicator variable for each dataset. Finally, for Bayesian

models, prior distributions were specified as in Section 4.5.

For the novel two-stage (NTS) approach from a frequentist perspective, we fixed the

number of simulations/repetitions and the grid of values used to create response variables

as recommended in the literature, i.e., K = 50 and ∆ = [λ1, . . . , λ4] = [0.5, 1, 1.5, 2], re-

spectively (see Section 3.1.2 for more details). The parameter p ∈ [0, 1], which defines the

measurement error standard deviation, was set according to a simulation study sensitivity
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analysis presented in Appendix A.1. Specifically, p = 0.9 was used for the prothro and

aids datasets, and p = 0.1 was used for the pbc dataset.

For the first novel Bayesian two-stage (NBTS1) approach, we set the individual mul-

tiplicative fixed-effect parameter, η, based on a simulation study sensitivity analysis pre-

sented in Appendix B.1 (see Section 4.3 for more details). Specifically, η = 10, 20, 30

were used for the prothro, aids and pbc datasets, respectively.

The MCMC configuration for all Bayesian models was defined as follows: 2000 it-

erations with warm-up of 1000 for the joint model using the joint specification (BJS) and

for the longitudinal submodel from the novel two-stage (NBTS1 and NBTS2) and stan-

dard two-stage (BSTS) approaches. Additionally, 1000 iterations with warm-up of 500

were set to run the survival submodel from the three Bayesian two-stage approaches. All

models were implemented using the R-package rstan (Stan Development Team, 2020).

Table 7.1 shows the comparative results for the three frequentist approaches (JS, NTS,

and STS) and the four Bayesian approaches (BJS, NBTS1, NBTS2, and BSTS) for each

dataset. In particular, estimation comparisons are focused on the group and association

parameters, as these are the parameters potentially biased when using two-stage method-

ologies. Besides, average computational times are also compared.

Broadly speaking, the conclusions for each dataset do not change due to the inferen-

tial methodology chosen. Point and interval estimates are relatively robust for the group

parameter regardless of the estimation approach. The same pattern is also observed for

the association parameter from the frequentist perspective, i.e., the three approaches seem

to be equivalent. On the other hand, the Bayesian standard two-stage (BSTS) approach

presents estimates that are a little different from the others, and which can potentially be
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Table 7.1: Estimation and 95% confidence/credible interval for survival regression param-

eters and computational time from each inferential approach using three real datasets.

Perspective Approach γ1 (Group) α (Association) ∗ACT

prothro dataset

Frequentist

JS -0.132 (-0.368, 0.104) -2.292 (-2.333, -2.251) 13.818

NTS -0.164 (-0.404, 0.075) -2.371 (-2.717, -2.024) 1.511

STS -0.153 (-0.392, 0.085) -2.336 (-2.695, -1.976) 0.013

Bayesian

BJS -0.159 (-0.408, 0.088) -2.386 (-2.776, -1.967) 21.499

NBTS1 -0.170 (-0.453, 0.083) -2.384 (-2.747, -2.018) 9.632

NBTS2 -0.168 (-0.418, 0.082) -2.322 (-2.731, -1.914) 13.463

BSTS -0.134 (-0.370, 0.103) -2.134 (-2.493, -1.775) 4.862

aids dataset

Frequentist

JS 0.342 (0.054, 0.631) -1.084 (-1.204, -0.964) 3.712

NTS 0.337 (0.042, 0.633) -0.994 (-1.206, -0.782) 1.391

STS 0.322 (0.028, 0.615) -0.938 (-1.148, -0.728) 0.019

Bayesian

BJS 0.334 (0.026, 0.642) -1.081 (-1.319, -0.843) 11.031

NBTS1 0.335 (0.036, 0.634) -0.988 (-1.201, -0.775) 5.419

NBTS2 0.340 (0.025, 0.655) -1.044 (-1.277, -0.811) 5.224

BSTS 0.333 (0.027, 0.639) -0.970 (-1.176, -0.765) 3.609

pbc dataset

Frequentist

JS 0.001 (-0.291, 0.292) 1.198 (1.108, 1.288) 1.793

NTS 0.006 (-0.307, 0.319) 1.219 (1.065, 1.374) 0.472

STS -0.014 (-0.325, 0.297) 1.209 (1.055, 1.363) 0.029

Bayesian

BJS -0.004 (-0.339, 0.331) 1.226 (1.052, 1.402) 8.504

NBTS1 0.019 (-0.284, 0.317) 1.219 (1.071, 1.371) 6.559

NBTS2 -0.018 (-0.347, 0.311) 1.230 (1.058, 1.403) 4.844

BSTS -0.000 (-0.317, 0.317) 1.121 (0.976, 1.266) 3.609

∗ACT: Average Computational Time (in minutes).
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seen as estimation biases. However, as expected, the standard two-stage methodologies,

both frequentist and Bayesian, are the fastest, while our proposals (NTS, NBTS1, and

NBTS2) take a little longer than them, but with quite reasonable times and less than those

obtained with the joint specification approaches (JS and BJS).

In the context of each dataset, only AIDS treatments seem to be statistically different,

in which the didanosine (ddI, experimental group) has a higher risk of death than the zal-

citabine (ddC, control group). On the other hand, there is no doubt about the relevance of

the association parameter in each context, indicating that analyzed longitudinal biomarkers

effectively help explain the time to death.



Chapter 8

Simulation study

This chapter validates and compares our frequentist and Bayesian two-stage methodolo-

gies with their competitors using a broad simulation study. Scenarios are simulated using

Algorithm 2 based on the joint model (6.1)-(6.2). For each scenario, we simulate 50

datasets with n = 500 (number of individuals), mmin = 5, 10, 20 (minimum number of

longitudinal observations), and tmax = 20 (maximum observational time).

8.1 Scenarios

To complete the simulation scheme input arguments, we must specify the true parameter

values, θy = (β0, β1, β2, σ
2)>, θb = Σ, and θs = (φ, γ0, γ1, α)>. To do this realisti-

cally, we use the estimated values of each parameter from the Bayesian joint specification

(BJS) approach for the three datasets. Table 8.1 shows the true parameter values for each

scenario.
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Table 8.1: Setting true parameter values for each scenario.

Parameter Scenario I Scenario II Scenario III

β0 4.276 2.473 0.550

β1 -0.004 -0.039 0.190

β2 -0.097 0.085 -0.120

σ2 0.069 0.135 0.121

Σ11 0.093 0.757 0.997

Σ22 0.004 0.001 0.033

Σ12 -0.001 0.002 0.435

φ 0.937 1.267 1.084

γ0 8.500 -2.204 -4.302

γ1 -0.159 0.334 -0.004

α -2.372 -1.081 1.226

Note that Scenarios I, II and III are based on the joint modeling for the prothro, aids

and pbc datasets, respectively, used in Chapter 7.

8.2 Results

Similar to Chapter 7, SIMEX parameters are defined asK = 50 and ∆ = [0.5, 1, 1.5, 2]. In

addition, NTS and NBTS1 user-specified parameters, p and η, are chosen for each scenario

from a sensitivity analysis presented in Appendices A.1 and B.1. Specifically, p = 0.9 and

η = 10 for Scenario I, p = 0.9 and η = 20 for Scenario II, and p = 0.1 and η = 30

for Scenario III. For Bayesian models, the MCMC configuration is set as in Chapter 7.

Table 8.2 shows the comparative results for γ1 and α using Scenario I.
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Table 8.2: Scenario I: Estimation and 95% confidence/credible interval for survival regres-

sion parameters and computational time from each inferential approach.

mmin Approach
γ1 (Group)

True Value: -0.159

α (Association)

True Value: -2.372
∗ACT

Frequentist Perspective

5

JS -0.144 (-0.364, 0.075) -2.245 (-2.283, -2.207) 7.584

NTS -0.150 (-0.515, 0.215) -2.330 (-2.551, -2.108) 2.188

STS -0.142 (-0.363, 0.079) -2.216 (-2.580, -1.851) 0.143

10

JS -0.162 (-0.382, 0.058) -2.325 (-2.363, -2.287) 10.125

NTS -0.170 (-0.527, 0.188) -2.405 (-2.628, -2.181) 2.553

STS -0.162 (-0.385, 0.061) -2.320 (-2.677, -1.964) 0.192

20

JS -0.168 (-0.385, 0.048) -2.276 (-2.313, -2.238) 13.389

NTS -0.174 (-0.521, 0.173) -2.343 (-2.565, -2.121) 3.461

STS -0.170 (-0.391, 0.052) -2.291 (-2.639, -1.944) 0.262

Bayesian Perspective

5

BJS -0.155 (-0.386, 0.076) -2.471 (-2.861, -2.081) 18.030

NBTS1 -0.149 (-0.383, 0.084) -2.377 (-2.750, -2.004) 9.234

NBTS2 -0.148 (-0.381, 0.086) -2.359 (-2.745, -1.973) 13.670

BSTS -0.142 (-0.369, 0.084) -2.272 (-2.631, -1.914) 6.552

10

BJS -0.155 (-0.386, 0.076) -2.429 (-2.804, -2.054) 21.660

NBTS1 -0.154 (-0.388, 0.080) -2.411 (-2.777, -2.046) 10.412

NBTS2 -0.151 (-0.380, 0.078) -2.377 (-2.742, -2.011) 16.240

BSTS -0.149 (-0.375, 0.078) -2.313 (-2.660, -1.996) 8.416

20

BJS -0.154 (-0.381, 0.072) -2.439 (-2.799, -2.078) 27.520

NBTS1 -0.155 (-0.390, 0.081) -2.464 (-2.833, -2.094) 13.700

NBTS2 -0.150 (-0.377, 0.076) -2.399 (-2.756, -2.042) 18.880

BSTS -0.148 (-0.372, 0.076) -2.354 (-2.703, -2.006) 11.290

∗ACT: Average Computational Time (in minutes).
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Similar to real applications (see Chapter 7), the group parameter estimation differ-

ences are negligible and very close to the true value of γ1, showing once again that this

parameter is not significantly affected when using two-stage methods. Increasing the min-

imum number of longitudinal observations (mmin) does not alter the quality of the γ1

estimation either. Appendices A.2, B.2 and C.1 also study this behavior through a bias

analysis using point estimates of each approach by simulated dataset. Visibly, frequentist

approaches (JS, NTS and STS) withmmin = 5 are the only ones that show some estimation

bias, but this is quickly corrected by increasing mmin to 10 or 20.

Table 8.2 also shows that frequentist point estimates of the association parameter are

relatively similar. However, the NTS confidence intervals are much narrower than those

from the STS approach. On the other hand, from the Bayesian approach, BSTS point

estimates are notoriously biased, both in comparison to the true parameter value and to

the value estimated by the Bayesian joint specification (BJS) approach. Our Bayesian

two-stage proposals reduce the estimation bias, having NBTS1 point estimates closer to

those of BJS. We can also appreciate that as mmin increases, the NBTS2 point estimate

resembles that of BJS, as demonstrated in Proposition 4.4.1.

As for the processing time, standard two-stage (STS and BSTS) approaches are the

fastest and joint specifications (JS and BJS) are the most time-consuming. In the fre-

quentist perspective, as expected, our proposal is a little more computationally costly than

the STS, but much faster than the JS approach. From a Bayesian point of view, NBTS1

is faster than the NBTS2 approach and only slightly slower than the BSTS. Still, both

Bayesian proposals drastically reduce the time consumed by the BJS approach.

Table 8.3 presents the inferential comparisons for γ1 and α using Scenario II as well

as the average computational times of each estimation approach.
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Table 8.3: Scenario II: Estimation and 95% confidence/credible interval for survival re-

gression parameters and computational time from each inferential approach.

mmin Approach
γ1 (Group)

True Value: 0.334

α (Association)

True Value: -1.081
∗ACT

Frequentist Perspective

5

JS 0.344 (-0.113, 0.802) -1.113 (-1.261, -0.984) 9.251

NTS 0.346 (-0.147, 0.645) -1.133 (-1.637, -0.630) 3.744

STS 0.346 (-0.158, 0.849) -1.133 (-1.432, -0.834) 0.177

10

JS 0.343 (-0.113, 0.799) -1.110 (-1.258, -0.962) 11.489

NTS 0.343 (-0.145, 0.641) -1.130 (-1.634, -0.626) 4.368

STS 0.343 (-0.161, 0.846) -1.130 (-1.428, -0.832) 0.256

20

JS 0.344 (-0.112, 0.800) -1.106 (-1.254, -0.958) 15.252

NTS 0.345 (-0.148, 0.642) -1.121 (-1.625, -0.617) 5.226

STS 0.345 (-0.159, 0.849) -1.121 (-1.417, -0.824) 0.285

Bayesian Perspective

5

BJS 0.340 (-0.178, 0.859) -1.131 (-1.432, -0.831) 18.170

NBTS1 0.352 (-0.151, 0.855) -1.127 (-1.422, -0.832) 10.854

NBTS2 0.342 (-0.159, 0.863) -1.130 (-1.429, -0.831) 11.485

BSTS 0.351 (-0.167, 0.869) -1.120 (-1.416, -0.824) 9.029

10

BJS 0.343 (-0.173, 0.859) -1.133 (-1.429, -0.836) 23.610

NBTS1 0.348 (-0.164, 0.861) -1.131 (-1.428, -0.834) 14.290

NBTS2 0.350 (-0.171, 0.872) -1.131 (-1.429, -0.834) 15.040

BSTS 0.345 (-0.167, 0.856) -1.122 (-1.415, -0.829) 12.222

20

BJS 0.342 (-0.173, 0.856) -1.130 (-1.422, -0.830) 31.500

NBTS1 0.353 (-0.158,0.864) -1.127 (-1.419, -0.835) 19.620

NBTS2 0.342 (-0.165, 0.869) -1.130 (-1.413, -0.824) 21.320

BSTS 0.342 (-0.173, 0.856) -1.123 (-1.418, -0.827) 17.810

∗ACT: Average Computational Time (in minutes).



CHAPTER 8. SIMULATION STUDY 44

Again, the group parameter point estimate is extremely robust from all inferential

methodologies, with very little difference when using our first Bayesian proposal. It is

also worth noting that the 95% confidence/credible intervals for γ1 are quite stable, even

when increasing the minimum number of longitudinal observations (mmin). The same

happens with point and interval estimates for the association parameter from the frequen-

tist approaches. This pattern can also be seen in the estimation bias analysis presented in

Appendix A.2. In this case, the results of the NTS and STS estimations are equivalent and,

when comparing the computational times, it would be preferable to use the (frequentist)

standard approach.

Focusing on association parameter estimations from the Bayesian paradigm, the dif-

ferences are subtle, except that NBTS1 is not able to estimate as accurately as other ap-

proaches. NBTS1’s regular performance can also be seen in Figure B.11 of Appendix B.2.

Additionally, NBTS2 produces point and interval estimates very similar to the BJS ap-

proach, even with mmin = 5.

Table 8.3 also shows the average computational time. Again, the inferential process is

performed faster by the standard two-stage approaches and slower by the joint specifica-

tions approaches. Since NBTS1 does not estimate the survival regression parameters very

well, then the most interesting processing time comparisons are between the BJS, BSTS

and NBTS2 methods. Specifically, our second Bayesian proposal spends around 30%

more time than its two-stage competitor (BSTS) and 70% less than the joint specification

(BJS) approach.

Finally, Table 8.4 compares point and interval estimates for survival regression pa-

rameters (group and association) and computational time from each inferential approach

using Scenario III.
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Table 8.4: Scenario III: Estimation and 95% confidence/credible interval for survival re-

gression parameters and computational time from each inferential approach.

mmin Approach
γ1 (Group)

True Value: -0.004

α (Association)

True Value: 1.226
∗ACT

Frequentist Perspective

5

JS -0.020 (-0.299, 0.303) 1.205 (1.086, 1.324) 8.596

NTS -0.016 (-0.190, 0.158) 1.254 (0.909, 1.598) 2.919

STS -0.016 (-0.361, 0.329) 1.253 (1.079, 1.428) 0.185

10

JS -0.021 (-0.324, 0.281) 1.201 (1.083, 1.320) 12.881

NTS -0.026 (-0.200, 0.148) 1.261 (0.917, 1.606) 4.827

STS -0.026 (-0.371, 0.318) 1.261 (1.087, 1.435) 0.395

20

JS -0.009 (-0.308, 0.290) 1.193 (1.077, 1.310) 16.617

NTS -0.023 (-0.195, 0.149) 1.258 (0.913, 1.602) 5.226

STS -0.023 (-0.368, 0.322) 1.257 (1.085, 1.430) 0.508

Bayesian Perspective

5

BJS -0.017 (-0.368, 0.335) 1.245 (1.070, 1.420) 22.230

NBTS1 -0.009 (-0.355, 0.336) 1.236 (1.065, 1.407) 11.020

NBTS2 -0.015 (-0.359, 0.336) 1.242 (1.066, 1.418) 12.880

BSTS -0.007 (-0.355, 0.341) 1.223 (1.052, 1.393) 9.797

10

BJS -0.027 (-0.378, 0.324) 1.258 (1.083, 1.433) 30.185

NBTS1 -0.019 (-0.366, 0.328) 1.256 (1.083, 1.428) 13.640

NBTS2 -0.025 (-0.376, 0.325) 1.255 (1.078, 1.431) 16.010

BSTS -0.021 (-0.374, 0.332) 1.241 (1.068, 1.415) 12.540

20

BJS -0.024 (-0.375, 0.327) 1.255 (1.080, 1.430) 33.200

NBTS1 -0.019 (-0.365, 0.327) 1.261 (1.089, 1.433) 21.920

NBTS2 -0.023 (-0.376, 0.332) 1.254 (1.079, 1.426) 23.710

BSTS -0.023 (-0.373, 0.327) 1.242 (1.073, 1.418) 19.310

∗ACT: Average Computational Time (in minutes).
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The frequentist results in Table 8.4 are similar to those in Scenario II, where both two-

stage strategies can be considered equivalent and very similar to the joint specification

approach. For Bayesian models, the group parameter is still robustly estimated, with a

slight difference in point estimation using the NBTS1 approach. On the other hand, BJS,

NBTS1 and NBTS2 estimate the association parameter practically equal, while the BSTS

presents a small bias in comparisons with the other approaches. In this case, one of the

novel two-stage proposals would be preferable, as their computational times are much

lower than the Bayesian joint specification approach.

In summary, our frequentist and Bayesian proposals are better than or equal to the

standard two-stage methods and their computational times are always much lower than

the joint specification approaches.



Chapter 9

Conclusions and discussion

In this thesis, we have developed three novel two-stage approaches for joint models of

longitudinal and survival outcomes in order to reduce or eliminate the estimation bias,

quite common in standard two-stage approaches, with an acceptable computational time.

First, from a frequentist perspective, we have introduced a novel two-stage (NTS)

approach based on the simulation-extrapolation (SIMEX) algorithm. Our approach was

shown to be promising, since it is more accurate than the standard two-stage (STS) ap-

proach and the processing time is much less than the joint specification (JS) approach. In

addition, NTS is easily implemented using standard R-packages for each submodel (lon-

gitudinal and survival). In our simulation study, we have found that the inference for the

survival submodel group parameter (γ1) is robustly estimated regardless of the estimation

approach. This result is expected since this parameter does not depend on shared informa-

tion and therefore it is not affected by ignoring the joint nature between both processes.

On the other hand, the association parameter (α) is quite sensitive, sometimes producing
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sharply biased estimates with both the STS approach and the JS approach (see the results

of Scenario I in Chapter 8). Still, even in these most extreme cases, our methodology

has satisfactorily reduced the estimation bias. However, the specification of the SIMEX

measurement error variance, through the parameter p, by the user is the critical drawback

of our approach. We partially circumvent this problem by proposing an ad-hoc estimation

mechanism for this parameter. Even so, this is still an open issue to be improved.

From a Bayesian perspective, our first two-stage proposal (NBTS1) has also proved

to be quite adequate. Specifically, point and interval estimations are very similar to the

Bayesian joint specification (BJS) approach, but the computational time is significantly

less than that of the BJS. Again, γ1 has been well estimated with all methodologies,

while α has been somewhat biased when estimated from the Bayesian standard two-stage

(BSTS) approach. The specification of the informative prior variance (η) for the fixed-

effects may be critical drawback of our Bayesian approach. In our simulation study, the

set value has produced quite satisfactory results. However, we would like to reinforce to

the reader that this choice depends on the scale of the problem, in which the value used

in this thesis can cause large perturbations in other applications and, therefore, a smaller

value should be preferred.

Our second Bayesian proposal (NBST2) uses the estimations from the longitudinal

submodel to specify an informative prior distribution for the random effects when esti-

mating them within the survival submodel. In addition, as a bias correction mechanism,

NBST2 incorporates the longitudinal likelihood function in the second stage, where its

fixed effects are set according to the estimation using only the longitudinal submodel.

Note that this approach does not require the user to set any parameters, such as p in NTS

and η in NBTS1. Moreover, we have shown in Proposition 4.4.1 that this second Bayesian
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approach resembles a joint inference as the number of repeated longitudinal measurements

per individual. Furthermore, NBTS2 was shown to be successful, producing satisfactory

results both in real applications and in simulated scenarios.

Overall, the group parameter has not been significantly affected by the use of two-

stage approaches. However, we have once again observed that the association parameter

is biased when the standard two-stage approaches (STS and BSTS) are used. This issue

can be solved by replacing STS/BSTS with NTS/NBTS1/NBTS2. In all scenarios, our

proposals have been much faster than the joint specification approaches (JS and BJS).

In future directions, it would be interesting to apply our proposals in more complex

longitudinal (e.g., skewed or multiple longitudinal data) and survival (e.g., competing-

risks or multistate data) submodels than those employed here. Hence, we would be able

to try determining the limits of the methodology. A further topic for research would be to

explore other frequentist and Bayesian methods to increase the speed of the computation

involved in fitting each submodel.
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Appendix A

Simulation study: NTS approach

A.1 Sensitivity analysis for p
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Figure A.1: Scenario I with mmin = 5: Bias for survival regression parameter estimates

considering different values of p. The dashed horizontal line indicates no bias.
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Figure A.2: Scenario I with mmin = 10: Bias for survival regression parameter estimates

considering different values of p. The dashed horizontal line indicates no bias.
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Figure A.3: Scenario I with mmin = 20: Bias for survival regression parameter estimates

considering different values of p. The dashed horizontal line indicates no bias.
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Scenario II
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Figure A.4: Scenario II with mmin = 5: Bias for survival regression parameter estimates

considering different values of p. The dashed horizontal line indicates no bias.
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Figure A.5: Scenario II with mmin = 10: Bias for survival regression parameter estimates

considering different values of p. The dashed horizontal line indicates no bias.
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Figure A.6: Scenario II with mmin = 20: Bias for survival regression parameter estimates

considering different values of p. The dashed horizontal line indicates no bias.
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Figure A.7: Scenario III with mmin = 5: Bias for survival regression parameter estimates

considering different values of p. The dashed horizontal line indicates no bias.
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Figure A.8: Scenario III with mmin = 10: Bias for survival regression parameter estimates

considering different values of p. The dashed horizontal line indicates no bias.
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Figure A.9: Scenario III with mmin = 20: Bias for survival regression parameter estimates

considering different values of p. The dashed horizontal line indicates no bias.
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A.2 Estimation bias analysis by simulation scenario
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Figure A.10: Scenario I with p = 0.9: Bias for survival regression parameter estimates

from JS, NTS and STS approaches. The dashed horizontal line indicates no bias.

● ● ● ● ●

−1.0

−0.5

0.0

0.5

γ1 : Group parameter

B
ia

s

5 10 20 5 10 20 5 10 20

JS NTS STS

●

●

●
●

●

−0.6

−0.4

−0.2

0.0

0.2

0.4

α : Association parameter

B
ia

s

5 10 20 5 10 20 5 10 20

JS NTS STS

Figure A.11: Scenario II with p = 0.9: Bias for survival regression parameter estimates

from JS, NTS and STS approaches. The dashed horizontal line indicates no bias.
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Figure A.12: Scenario III with p = 0.1: Bias for survival regression parameter estimates

from JS, NTS and STS approaches. The dashed horizontal line indicates no bias.
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Appendix B

Simulation study: NBTS1 approach

B.1 Sensitivity analysis for η
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Figure B.1: Scenario I with mmin = 5: Bias for survival regression parameter estimates

considering different values of η. The dashed horizontal line indicates no bias.
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Figure B.2: Scenario I with mmin = 10: Bias for survival regression parameter estimates

considering different values of η. The dashed horizontal line indicates no bias.
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Figure B.3: Scenario I with mmin = 20: Bias for survival regression parameter estimates

considering different values of η. The dashed horizontal line indicates no bias.
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Scenario II
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Figure B.4: Scenario II with mmin = 5: Bias for survival regression parameter estimates

considering different values of η. The dashed horizontal line indicates no bias.
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Figure B.5: Scenario II with mmin = 10: Bias for survival regression parameter estimates

considering different values of η. The dashed horizontal line indicates no bias.
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Figure B.6: Scenario II with mmin = 20: Bias for survival regression parameter estimates

considering different values of η. The dashed horizontal line indicates no bias.
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Figure B.7: Scenario III with mmin = 5: Bias for survival regression parameter estimates

considering different values of η. The dashed horizontal line indicates no bias.



APPENDIX B. SIMULATION STUDY: NBTS1 APPROACH 63

● ● ● ● ●

2 5 10 20 30

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

γ1 : Group parameter

η

B
ia

s

●

●●

●

●

●

●
● ●

2 5 10 20 30

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

α : Association parameter

η

B
ia

s
Figure B.8: Scenario III with mmin = 10: Bias for survival regression parameter estimates

considering different values of η. The dashed horizontal line indicates no bias.
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Figure B.9: Scenario III with mmin = 20: Bias for survival regression parameter estimates

considering different values of η. The dashed horizontal line indicates no bias.
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B.2 Estimation bias analysis by simulation scenario
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Figure B.10: Scenario I with η = 10: Bias for survival regression parameter estimates

from BJS, NBTS1 and BSTS approaches. The dashed horizontal line indicates no bias.
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Figure B.11: Scenario II with η = 20: Bias for survival regression parameter estimates

from BJS, NBTS1 and BSTS approaches. The dashed horizontal line indicates no bias.
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Figure B.12: Scenario III with η = 30: Bias for survival regression parameter estimates

from BJS, NBTS1 and BSTS approaches. The dashed horizontal line indicates no bias.
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Appendix C

Simulation study: NBTS2 approach

C.1 Estimation bias analysis by simulation scenario
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Figure C.1: Scenario I: Bias for survival regression parameter estimates from BJS, NBTS2

and BSTS approaches. The dashed horizontal line indicates no bias.
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Figure C.2: Scenario II: Bias for survival regression parameter estimates from BJS,

NBTS2 and BSTS approaches. The dashed horizontal line indicates no bias.
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Figure C.3: Scenario III: Bias for survival regression parameter estimates from BJS,

NBTS2 and BSTS approaches. The dashed horizontal line indicates no bias.
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