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Abstract In environmental decisions, analysts commonly
face substantial uncertainties around stakeholders’ values
judgments. Multi-Attribute Value Theory (MAVT), a fam-
ily of multi-criteria decision analysis techniques, is applied
in participative settings to articulate stakeholders’ values in
decision-making. In MAVT, value judgments represent the
intensity of individuals’ preferences in a set of objectives,
which are operationalized as scaling factors or weights.
Different sets of weights may express variation in people’s
preferences or value judgments. Unfortunately, there are
still important methodological gaps regarding how to in-
corporate uncertainty and the substantial variation com-
monly encountered in stakeholders’ preferences. This arti-
cle presents a model of uncertainty that encompasses the
dispersion of value judgments in MAVT. To achieve this
goal, we draw on info-gap theory, which provides a math-
ematically grounded method for exploring sensitivity to
preference weights when there are relatively high levels

of uncertainties. We experimentally tested the uncertainty
model in an environmental decision problem. We found
that MAVT can use info-gap analysis to deal with multiple
value judgments, avoiding exclusive reliance on nominal
expected values to inform decisions. We explored a mech-
anism to explicitly consider the trade-offs between the
performance of alternatives and the level of uncertainty
that in any specified context a decision maker is willing
to accept. Findings emphasize the potential of MAVT to
support environmental management decisions, particularly
in situations where multiple stakeholders and their
contested value judgments have to be considered simulta-
neously to explore uncertainties around value trade-offs.
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1 Introduction

Dealing with multiple stakeholders’ values and preferences is a
critical stage in environmental decision-making [1].
Nevertheless, integrating value judgments in decision-making
is not straightforward [2]. Important environmental decisions
typically involve adverse impacts for a subset of stakeholders
who may disagree about what is relevant for a particular deci-
sion [3]. Articulating amultiplicity of perspectives and formally
integrating value judgments in decision models have emerged
as a methodological challenge for environmental managers and
analysts [4, 5].

Multi-criteria decision analysis (MCDA) provides methods
to systematically analyze multi-objective problems, evaluat-
ing and prioritizing alternatives under a set of parameters and
criteria. These methods have been largely applied in different
contexts to support environmental decision problems [6–8]. In
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addition, new developments consider formal protocols to ex-
plicitly include people’s values and participation in decision-
making [4, 9, 10].

Multi-Attribute Value Theory (MAVT) is a family of
MCDA techniques, which is characterized by estimating
expected values for a multi-attribute rank of alternatives.
MAVT is based on explicit trade-offs among fundamental
objectives [11, 12]. In this sense, MAVT is considered a
compensatory approach, whereby poor performance on
one objective can be offset by good performance in another
objective [13]. In MAVT, value judgments represent the
intensity of individuals’ preferences in a set of objectives.
Formally, value judgments are operationalized as scaling
factors or weights, where the relative importance of one
objective is related to others [14]. Weights express a sub-
jective judgment: individuals express an equivalent valua-
tion of the increment from the worst to the best perfor-
mance on one fundamental objective (measured by an at-
tribute) compared with the increment from the worst to
best performance on another fundamental objective (mea-
sured by a different attribute) [15]. Decision analysis and
cognitive psychology theory have developed formal proto-
cols and procedures to elicit these weights from respon-
dents, reducing arbitrary sources of uncertainty arising
from measurement error [16].

Some participative environmental decisions are based on
multi-sector management committees, which can hold sys-
tematic and deep value differences among their members.
These differences will be expressed in the final set of attribute
weights elicited from each individual. Though different sets of
weights may express real discrepancies in people’s prefer-
ences or value judgments, it may be necessary to aggregate
preferences to progress consensus solutions. This is a partic-
ularly problematic task, which requires integrating numerous
perspectives and potentially conflicting interests in one mea-
sure [17]. In these situations, a different kind of uncertainty
emerges, associated with the set of weights that best represent
a group’s interests. In environmental settings, there is little
guidance on methods or illustrative applications for incorpo-
rating variation in stakeholders’ preferences on objectives in
decision models. For example, Estévez and Gelcich [5] found
that in 14 articles that actually have elicited individual weights
from a sample of stakeholders in fisheries management and
marine conservation, only four reported results of sensitivity
analysis of weights in alternative performances. Therefore, in
a multi-stakeholder decision setting, it is worth developing
sensitivity analyses to explore a plausible range of weights
that might reasonably reflect the individual and collective
judgments of stakeholders [18–21].

One-dimensional and three-dimensional sensitivity analy-
ses have been commonly applied to weights in MCDA [22].
One-dimensional analysis estimates the effect of a single
weight in the output of the decision model, keeping the

original ratios between weights of other criteria constant [23,
24]. This has limited practical application because interpreta-
tion obfuscates dissenting opinions. On the other hand, three-
dimensional analyses can explore potential interactions
among weights, evaluating different performance scores with-
out the restriction of keeping original ratios of weights [15].
Nevertheless, in scenarios where group consensus is difficult
to achieve, three-dimensional analysis does not consider mea-
sures of dispersion associated with each attribute’s average
weight.

In this article, we developed two experimental decision
problems, involving the hypothetical culling of feral horses
in Southern Australia, as a way to operationalize and exem-
plify our methodological approach. We propose a model of
uncertainty that encompasses the dispersion of value judg-
ments around the average of attributes’ weights in MAVT.
To achieve this goal, we draw on info-gap theory, which pro-
vides a mathematically grounded method for exploring alter-
native performances when there are relatively high levels of
uncertainties [25]. We focus on finding robust alternatives
relative to the uncertainty in the weights, which increases the
prospects for acceptable outcomes for a broad range of stake-
holders, as opposed to optimal outcomes for a small subset
[26]. We complemented the info-gap model with additional
sensitivity analysis to discriminate alternatives that do not per-
form satisfactorily. Finally, we explored a mechanism to ex-
plicitly consider a trade-off between the selection of the best
alternative using the expected values of the uncertain weights
and the selection of the best alternative that is the most
Brobust^ to uncertainty.

1.1 The Additive Value Model

In MAVT, marginal value functions represent people’s judg-
ments about the desirability of individual objectives (mea-
sured by attributes), associated with a set of alternatives
[13]. The attributes’ value scores are generally normalized
with a linear or polynomial function [12]. Then, the additive
value function is commonly used to aggregate independent
marginal value functions, according to a set of weights
(Eq. (1)).

V aj
� � ¼ ∑n

i¼1wivi a j
� �

; j ¼ 1;…;m ð1Þ

Where, V(aj) is the overall multi-attribute value of alterna-
tive aj, vi(aj) is the marginal value function of aj on attribute i,
wi is the weight of attribute i, n is the number of attributes, and
m is the number of alternatives [14]. In the additive value
function, the values of wi indicate the relative importance of
the objectives in the specific context provided by the range of
performance of alternatives. Each weight is non-negative and
the sum of the weights is normalized to 1 (Eq. (2)), where,wi ∈
[0,1].
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∑n
i¼1wi ¼ 1; wi≥0; i ¼ 1;…; n ð2Þ

1.2 The Info-gap Model of Uncertainty

In decision science, estimating the uncertainty by deriving for
each alternative the minimal value in the set of value functions
have been previously considered [27, 28]. In this article, we
relied on info-gap analysis to priotitize alternatives in the ro-
bustness function, which plots performance robustness against
uncertainty, given a nominal model [29]. The info-gap robust-
ness function is based on three elements: a particular decision-
making model, the info-gap model of uncertainty, and a set of
performance requirements [25]. In the info-gap framework, a
more robust decision increases satisfactory results [26].
Therefore, more robustness is preferred to less robustness:
the function maximizes the robustness of pre-defined ade-
quate (satisfactory) outcomes [26]. In this context,
Bsatisfactory^ refers to a satisfactory aggregate performance
for the additive value function.

In this article, vi(aj) is a marginal value function with no
uncertainty. The true weight (wi) is an unknown value
representing the relative importance of the attribute; the best
estimate of wi is wi, with a dispersion around the value (wi)
represented by its error estimate σwið Þ. In this article, wi is the
nominal value of wi, which is calculated as the mean of re-
spondents’ weights.

In problems based on random samples or probability dis-
tribution, we can use the standard deviation or the coefficient
of variation as an error estimate in the info-gap model.
Nevertheless, the non-probabilistic approach of info-gap al-
lows us to incorporate a subjective estimation of the weights’
dispersion in the model, if the standard deviation is not avail-
able. We express the absolute fractional error of each wi, cal-
ibrated by its own error estimate (Eq. (3)). We refer to h as the
horizon of uncertainty. We adopted a non-probabilistic frac-
tional-error info-gap model of uncertainty, defining U(h) as
the set of all possible vectors of weights that satisfy a pre-
defined horizon of uncertainty (Eq. (4)) [26].

wi−wi

σwi

�����
�����≤h ð3Þ

U hð Þ ¼ w :
wi−wi

σwi

�����
�����≤h;wi∈ 0; 1½ �;∑wi ¼ 1; i ¼ 1; 2; :::; n

( )
; h≥0 ð4Þ

In this info-gap model, when σwi is equal to 0, wi is equal
to wi for all values of h; thus, the model contains only the
nominal estimate values of wi.

The performance requirement establishes a minimum ac-
ceptable value for the outcome; it represents what the decision
makers aspire to achieve [26]. The robustness function is
based on satisfying this performance requirement. In this

paper, Vc pre-defines a performance requirement, where the
value of V(aj) is satisfactory if V(aj) ≥ Vc (Eq. (5)).

min
w∈U hð Þ

V aj
� �

≥Vc ð5Þ

The robustness hð Þ to uncertainty of the weights for alter-
native aj is the greatest horizon of uncertainty, h, which sat-
isfies the performance requirement (Vc). The result cannot be
negative (Eq. (3)). Higher values of robustness suggest that
the alternative will be more immune to uncertainty in the
weights. On the other hand, lower values of robustness sug-
gest that the alternative is more vulnerable to uncertainty in the
weights (Eq. (6)).

h a j;Vc
� � ¼ max h : min

w∈U hð Þ
V aj
� �� �

≥Vc

� �
ð6Þ

When defining Vc, we must be careful in setting a value
such that the set (Eq. (7)) is not empty. To assure this, we need
to satisfy (Eq. (8)):

h : min
w∈U hð Þ

V aj
� �� �

≥Vc

� �
ð7Þ

∑n
i¼1wivi a j

� �
≥Vc ð8Þ

Considering Eq. (6) and Eq. (7), the satisfactory condition
of one alternative depends on the results of the optimization
problem (Eq. (9)),

min
wϵU hð Þ

V aj
� � ð9Þ

under different horizons of uncertainty (h ≥ 0). The evalu-
ation of alternatives has to consider the satisfactory condition
(Eq. (5)).

The uncertainty model presented in Eq. (4) can also be
expressed as Eq. (10),

U hð Þ ¼ w : ∑n
i¼1wi ¼ 1;wi∈ 0; 1½ �∩ wi−hσ

wi

;wi þ hσ
wi

	 

; i ¼ 1; :::; n

� �
; h≥0

ð10Þ

Here, it is important to note that,

0; 1½ �∩ wi−hσ
wi

;wi þ hσ
wi

	 

¼ 0; 1½ � ð11Þ

if Eq. (12) and Eq. (13),

wi−hσ
wi

≤0⇒
wi

σ
wi

≤h ð12Þ

wi þ hσ
wi

≥1⇒
1−wi

σ
wi

≤h; i ¼ 1; :::; n ð13Þ
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then, Eq. (14) and Eq. (15),

h≥max
i¼1;:::;n max

wi

σ
wi

;
1−wi

σ
wi

8<
:

9=
;

2
4

3
5 ð14Þ

U hð Þ ¼ w : ∑
n

i¼1
wi ¼ 1; wiϵ 0; 1½ �; i ¼ 1;…; n

� �
; h≥0

ð15Þ

and the value of Eq. (9) does not change for those horizons
of uncertainty. In doing so, in this range of values for h, and
considering Eq. (5), even for a constant increase of the horizon
of uncertainty (h→ +∞), the alternative under evaluation will
be satisfactory. In this scenario, the robustness function is
defined as Eq. (16), expressed in this case as Eq. (17).

h a j;Vc
� � ¼ sup h : min

w∈U hð Þ
V aj
� �� �

≥Vc

� �
ð16Þ

h aj;Vc
� � ¼ þ∞ ð17Þ

In this article, the performance under uncertainty (mj(h))
corresponds to the minimum value of the function V(aj) for
all w belonging to U(h) (Eq. (18)).

mj hð Þ ¼ min
wϵU hð Þ

V aj
� � ð18Þ

Cost of robustness (C) refers to the quality of the outcome
that is sacrificed for an increase in the level of robustness [26].
This can be expressed as the derivative of the functionm(h) with
respect to the horizon of uncertainty (h), in h = 0 (Eq. (19)).

C ¼ d m j hð Þð Þ=d hð Þ ð19Þ

The value 0 on the robustness axis represents the point where
the performance requirement is equal to the highest nominal
multi-attribute performance score. Such nominal performance
scores do not consider the sensitivity of decisions to uncertainty
in the value judgments. In this sense, there is no guarantee that
alternatives will achieve these values. This property is known as
zeroing in the info-gap framework [26]. The negative slope in-
dicates that as the value of h increases, the performance require-
ment must become more modest.

In this article, we tested the info-gap model of uncertainty
for weights in the additive value function in two experimental
decision problems about a hypothetical feral horse manage-
ment problem in Southern Australia.

2 Methods

Environmental management decisions are typical exam-
ples of multi-objective decisions where individuals

require to perform trade-offs among fundamental objec-
tives. In Southern Australia, decisions involving the
management of feral horses are controversial, because
decision makers are required to make value judgments
on the lives of charismatic and culturally relevant ani-
mals such as brumbies (Equus caballus). In our exper-
imental setup, we focused on eliciting weights from
participants that had to analyze trade-offs in a conse-
quence matrix, including five alternatives and three ob-
jectives: total management cost (COST), number of
plant species threatened with extinction by horses
(PLANTS), and number of horses killed (HORSES)
(Table 1).

We generated two decision problems, what only var-
ied between them was the range of consequence for
each objective. All participants were introduced to the
same hypothetical management decision in the
Kosciuszko National Park:

BAustralia has more than 400,000 wild horses or
brumbies, the largest population in the world.
Memorials, museums, films and books recognize
their economic and cultural role in the history of
Australia. However, ecologists highlight their impact
on native plants. Feral horse management is contro-
versial, attracting much scrutiny and adverse public-
ity. Kosciuszko National Park was established in
1944 and is one of the largest conservation reserves
in Australia. It contains continental Australia’s
highest mountains and a great variety of floristic

Table 1 Consequence matrices for the hypothetical decision problems.
Attribute—specific performance of alternatives in a) decision problem 1
and b) decision problem 2.

Alternatives Total
management
cost (AUD)

Number of plant
species threatened
with extinction
by horses

Number
of horses
killed

a)

A 250,000 2 800

B 100,000 3 500

C 200,000 5 400

D 90,000 6 200

E 50,000 10 50

b)

A 260,000 2 1100

B 170,000 3 700

C 120,000 4 400

D 90,000 6 270

E 80,000 7 100

AUD Australian dollars
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communities. Today, 1,700–3,000 feral horses live
in the park, increasingly having an impact on the
native flora. Decision-makers are developing a
Horse Management Plan. In considering the merit
of alternative management options, they have iden-
tified three relevant objectives: minimize the finan-
cial cost of implementing the plan, minimize loss of
native plant species and minimize the number of
horses killed. Table 1 shows the objectives, their
attributes, and the full range of impacts (best and
worst outcomes) under the set of candidate manage-
ment options. Note that the Number of species
threatened with extinction refers only to the number
of species affected by horses (through grazing or
trampling). The number of horses killed refers main-
ly to aerial shooting, although candidate manage-
ment plans may include on-ground capture and eu-
thanizing of horses. Costs vary according to differ-
ent cull methods and the accessibility of horse
population.^

After reading the problem statement, participants were
asked to articulate trade-offs among objectives, using the
swing weights method1 [14].

Responses for both decision problems were collected
during the months of July and August 2012. In decision
problem 1, participants were 36 post-graduate environ-
mental science students at the University of Melbourne.
The questionnaire was offered during coursework and
participation was voluntary and not related to students’
grades. Students responded to the questionnaire with
pen and paper, taking around 20 min. In decision prob-
lem 2, participants were recruited from a list of 26 post-
graduate students and 54 academics/researchers in the
School of Botany, University of Melbourne. A total of
34 individuals (42.5% response rate) participated in the
decision problem, consisting of 15 students and 19 ac-
ademics/researchers. The sample is not representative of
researchers and students of School of Botany at

University of Melbourne. This research was approved
by the Human Ethics Committee of the University of
Melbourne (HREC 1135693.2).

2.1 Expected Values, Sensitivity Analysis, and Info-gap

We calculated the mean and standard deviation of respon-
dents’ weights, searching for statistical differences among
nominal weights (ANOVA). We checked normality of the
weights’ distributions with the Shapiro-Wilk normality
test. Then, we calculated the coefficient of variation
(CV) (the ratio of the standard deviation to the mean) of
the weights to normalize the measure of dispersion. We
normalized each objective vi in the consequence matrix
with a linear value function, with 0 representing the worst
value and 100 the best, which is an often-made assump-
tion in MAVT [12].2

We calculated the nominal expected value (V(aj)) for
each alternative by the additive value function (Eq. (1)),
using the arithmetic mean of respondents’ weights wið Þ
(Eq. (2)). These results can identify the best alternative
based on the available information for this particular de-
cision problem, assuming no uncertainty in the conse-
quences and the weight average as the best estimation of
respondents’ opinions. Nevertheless, these nominal ex-
pected values do not consider the dispersion of value
judgments around the arithmetic mean of respondents’
weights.

We developed a three-dimensional sensitivity analysis
using Eclipse and plotted with R ggplot2 library. We com-
pared alternative performances for all possible combina-
tions of weights in objectives, regardless of respondent’s
opinions, and observed structurally dominated alternatives
and conditions for the highest nominal values for each
alternative. The same exercise was developed considering
ranking in weights between objectives.

We resolved the info-gap model of uncertainty (Eq. (4)),
resolving the optimization problem (Eq. (9)). We used the
function ‘linpro’ (toolbox ‘Quapro’) (codes were written in

1 Questionnaires for decision problems 1 and 2 are included in Online
Resource.

Table 2 Mean, standard
deviation (Stdev) and coefficient
of variation (CV) for objectives’
weights in decision problems 1
and 2

Objectives Decision problem 1 (N = 36) Decision problem 2 (N = 34)

Mean Stdev CV Mean Stdev CV

Minimize management cost (COST) 0.22 0.10 45.45 0.22 0.11 50.00

Maximize plant species protection (PLANT) 0.48 0.13 27.08 0.55 0.11 20.00

Minimize horses killed (HORSE) 0.30 0.10 33.33 0.23 0.14 63.64

Weights were normalized to sum to 1

2 Marginal value functions for decision problems 1 and 2, respectively: COST
(Y = −0.0005X + 125; −0.0005556X + 144.4), PLANTS (Y = 12.4X + 125;
Y = −20X + 140), HORSES (Y = −0.1333X + 106.6667; −0.1X + 110).
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Fig. 1 Alternative with the highest nominal expected value at all weight
combinations: a decision problem 1, c decision problem 2. Alternative
with the highest nominal expected value at all weight combinations with

ranking constraint: b decision problem 1, d decision problem 2. Black
dots correspond to the nominal weights

Table 3 Expected values and
cost of robustness for decision
problems 1 and 2

Plans Decision problem 1

(N = 36)

Decision problem 2

(N = 34)

Nominal
expected values

Respondents
(%)

Cost of
robustness

Nominal
expected values

Respondents
(%)

Cost of
robustness

A 48.0 16.7 −13.0 55.0 26.5 −11.0
B 64.4 61.1 −5.1 57.4 50.0 −4.7
C 42.2 8.3 −4.0 57.8 23.5 −2.0
D 56.8 13.9 −3.9 46.6 0 −8.2
E 52.0 0 −13.0 45.0 0 −11.0
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Scilab). We finally developed an uncertainty analysis to ex-
plore how far it is worth to sacrifice the performance require-
ment for robustness. We hypothesized that, in some cases, the
more robust alternative may show its benefits (higher expect-
ed value under uncertainty) only under rare situations (very
big deviations from nominal weights).

3 Results

Table 2 presents the mean, standard deviation and coeffi-
cient of variation for weights in decision problems 1 and
2. In general, both decision problems have similar results,
despite independent samples. PLANTS was the most im-
portant objective for respondents in decision problem 1
(ANOVA-F test = 41.4, p < 0.001) and decision problem
2 (ANOVA-F test = 26.3, p < 0.001). Then, COST and
HORSES have a relatively similar degree of importance,
with slightly higher mean weights for HORSES. In gen-
eral, weights were normal or near-normally distributed,
except for HORSES in decision problems 1 and 2 and
PLANTS in decision problem 2 (Appendix). In both de-
cision problems, PLANTS presents a relatively small dis-
persion of weights (CVdecision problem 1 = 27.1%, CVdecision

problem 2 = 20.0%), which is interpreted as a higher level
of consensus about its degree of importance in this par-
ticular decision context. In contrast, COST and HORSES
had higher dispersion of weights, representing a lower
degree of consensus about their relative importance.

Table 3 presents the nominal expected values for each
alternative. In decision problem 1, alternatives B and D
have the highest expected values (64.4 and 56.8, respec-
tively); alternatives A, C, and E have less than 53 points
of performance. Interestingly, most respondents selected
alternative B (61.7%), concordant with the alternative
with the highest nominal expected value. In decision
problem 2, alternatives B and C have the highest nominal
expected values (more than 57), being selected by 73.5%
of the respondents. It is important to note that despite
differences described between respondents’ choices and
nominal expected values, in both decision problems, the
two alternatives with the highest nominal expected value
were selected by more than the 70% of respondents
(75.0% in decision problem 1).

We developed a tridimensional sensitivity analysis for both
decision problems (Fig. 1). In decision problem 1, alternative
C is structurally dominated by other alternatives, that is, for no
weight combination, this alternative has the highest nominal
expected value (Fig. 1a). Nevertheless, it was chosen by 8.3%
of respondents. Additionally, it can be observed that alterna-
tive E has the highest nominal value only when the weight of
PLANTS is less than 0.3, a condition which explains why no
respondent chose this alternative (Table 3). Figure 1b shows

alternatives with the highest nominal expected value based on
the constraint that the order of importance is PLANT,
HORSE, and COST. In this scenario, there are only three
alternatives available. Alternative B is dominant in the major-
ity of weight combinations. In decision problem 2, Fig. 1c
shows that alternative C is dominant in almost all scenarios
when the weight of PLANTS is between 0.35 and 0.60.
Alternative B is almost always dominant in scenarios when
the weight of PLANTS fluctuates between 0.6 and 0.7.

Based on the three-dimensional analysis, the nominal
expected values, and respondents’ choices, we could nar-
row the competing alternatives to two for each decision
problem (B and D in decision problem 1, B and C in
decision problem 2). Figure 2 presents the robustness
curves for the alternatives in both decisions problems. In
decision problem 1 (Fig. 2a), alternative B has the highest
nominal expected value (70.5). Nevertheless, it has a
higher cost of robustness than alternative D, with the sec-
ond highest nominal expected value (65.6) (Table 3). The
curves of alternatives D and B intersect at the critical
point of 50.0, under a level of uncertainty (h) of 4.1. If
we accept a performance requirement lower than the crit-
ical value of 50.0, alternative D could be recommended

Fig. 2 Robustness curves for the two alternatives with the highest
nominal expected values: a decision problem 1, b decision problem 2.
h = horizon of uncertainty, m(h) = performance under uncertainty

Uncertainty in Value Judgements



over alternative B. In decision problem 2, we find that
alternative C held the highest performance score and the
lowest cost of robustness; consequently, alternative C
would be preferred over alternatives A, B, D, and E at
any performance requirement (Fig. 2b).

4 Discussion

We found that MAVT can use info-gap analysis to explore
sensitivity of multiple value judgments, avoiding exclu-
sive reliance on nominal expected values to inform deci-
sions. We developed an info-gap analysis to identify

acceptable alternatives, based not only on nominal perfor-
mances scores but also on relative immunity to dispersion
on weights. Under such circumstances, an alternative with
a lower nominal performance score may be preferred over
an alternative with a higher nominal value, if its behavior
against sensitivity on weights is more desirable. This is
referred to as preference reversal in info-gap literature
[26].

Robustness about the best set of weight that represents
a group position is definitely a desirable characteristic of
the alternative to be chosen. Nevertheless, it might be
reasonable to consider for which value of uncertainty this
robustness is actually a reference to make a better choice.

Fig. 3 Performance under uncertainty (m(h)) at all weight combinations,
indicating levels of uncertainty in decision problem 1: a alternative B and
b alternative D. c Comparison of alternatives B and D indicating which

has higher m(h) at all weight combinations. Black dots correspond to the
nominal expected value

Estévez R.A. et al.



In other words, under which circumstances the more ro-
bust alternative has a higher expected value than the other
less robust option. If the level of uncertainty (h) that
makes the robust alternative and the most desirable one
is too high, choosing this alternative seems too costly
compared to the expected value that is lost for all those
situations where the level of uncertainty is smaller. The
question can be formulated in terms of the trade-offs be-
tween the level of uncertainty considered and the differ-
ence in the expected value that implies a change in alter-
native with the best performance score.

In decision problem 1, for levels of uncertainties higher
than h = 4.1, we conclude that it would be plausible to
choose alternative D over alternative B, if the perfor-
mance requirement is lower than 50. Nevertheless, we
should consider if it is useful to evaluate the expected
value of alternatives for values of h equal or bigger than
4.1. In other words, what is the probability that the real
weights are at such levels of dispersion from the estimated
weights? In Fig. 3a and b, different colors indicate the
values of m(h) achieved at all weight combinations, indi-
cating the respective different levels of uncertainty, for
alternatives B and D. Figure 3c compares both alterna-
tives, indicating which option has a higher performance
under uncertainty (m(h)) at each weight combination. We
can observe that in the area with h ≤ 4.1, alternative B has
higher m(h) than D, covering most of the potential com-
binations of weights in objectives, particularly in the area
around the nominal weights. In consequence, the benefit
of the robust alternative D, is only under circumstances
where h ≥ 4.1, which seems to be too high. If we assume
normal distributions of the weights (Appendix) and con-
sidering the data presented in Table 2, the probability of
real weights at a distance h bigger or equal to 4.1 from the
nominal weights is around 0.018%.

Before making a decision between the two alternatives,
where one is more robust than the other but has a smaller
nominal expected value, it is advisable to consider the
range of dominance of each alternative under the different
combinations of weights that the different values of h
allow. As an example, the scenario presented in decision
problem 1 shows that the less robust alternative has a
higher performance under uncertainty, m(h), for most of
the weight combinations, and that assuming a situation of
h > 4.1, where the robust alternative dominates, seems
quite unlikely. Robustness curves make plain the trade-
off between expected performance and insulation to the
adverse implications of uncertainty. Decision makers need
to consider their level of risk aversion in arriving at a
preferred alternative.

In environmental decision problems, variations in
weights may represent irreducible differences in value
judgments. In these cases, estimating a nominal expected

value based on a single underlying true weight may be
inappropriate. In this article, we present a sensitivity anal-
ysis to explore alternative performances that could be sat-
isfactory to different stakeholders, despite different com-
binations of weights. The findings presented here empha-
size the potential of multi-criteria decision analysis to
support resource management decisions, particularly in
situations when multiple value judgments have to be con-
sidered simultaneously to explore uncertainties around
value trade-offs. In these scenarios, decision analysis can
articulate the many objectives of those stakeholders that
stand to win or lose in management decisions. These
methods, supported by advances in mathematical tools
such as info-gap analysis, can be used to negotiate and
satisfy stakeholders’ expectations.

5 Conclusion

Decision makers commonly have to make difficult envi-
ronmental decisions, characterized by substantial uncer-
tainties around the things that people value. Sometimes,
these decisions trigger clashes among social groups hold-
ing different value judgments, making it difficult to find
consensus solutions. Despite such difficulties, participato-
ry approaches require decision makers to evaluate trade-
offs and the implications of uncertainty explicitly. In this
context, we have provided a tool for MAVT that will
assist decision makers to consider the uncertainties of val-
ue judgments in the decision analysis process, thereby
promoting effective democratic and participative deci-
sion-making. We showed the potential of using the info-
gap model of uncertainty to consider uncertainties around
value judgments, when the decision is potentially affected
by disagreements about the weights. We explicitly consid-
er the trade-offs between the performance of alternatives
and the level of uncertainty that in any specified context a
decision maker is willing to accept. We found that MAVT
can use info-gap analysis to deal with multiple value
judgments, improving on the reliance of the average
weights (nominal performance score) to inform decisions.
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