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Abstract

In this work, we investigate the effect of a magnetic field background to the pion electro-
magnetic form factor. We face this problem through the Finite Energy Sum Rule (FESR)
program, where a suitable current correlation function, built of Quantum Chromodynam-
ics (QCD) degrees of freedom, is used to establish a map to the hadronic world and then
extracting then the form factor. The magnetic field effects are encoded in the pertur-
bative QCD side through the fermionic propagator in the presence of a magnetic field
background, known as Schwinger propagator. We analyze the strong and weak magnetic
field limits. For the weak field limit, the current correlator can be written as an expansion
in powers of eB. We restricted the calculation to first order in eB leading to anomalous
results which must be improved. However, for the strong field limit, we applied the Lan-
dau level expansion of the Schwinger propagator and consider up to the first Landau
level leading to a proper FESR. The numerical results show that a strong magnetic field
increases the pion form factor several times. For example, for a fixed magnetic field of
eB = 1 GeV2 the pion form factor can be four times larger. This result affects directly
the electron-pion scattering cross section which is also connected to the Sullivan process,
leading to potential effects of the magnetic field on collider experiments.
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Introduction

Large magnetic fields are created in nature, either by experiments conducted by us or by
nature itself. In a non-central or peripheral heavy-ion collision a dominant magnetic field
is generated in the direction perpendicular to the interaction plane. In the Large Hadron
Collider (LHC) at the European Organization for Nuclear Research (CERN) the intensity
of these magnetic fields can reach large values such as eB ∼ 15m2

π ∼ 0.3 GeV2 and in
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL),
magnetic fields can be near eB ∼ m2

π ∼ 0.02 GeV2 [1] [2], since their magnitudes depends
mainly on the collision energy. Astrophysical objects, such as magnetars, possess natural
conditions to generate large magnetic fields. For example, in anomalous X-ray pulsars
and soft gamma-ray repeaters, we can encounter large magnetic fields reaching values up
to eB ∼ 1018 G ∼ 0.02 GeV2 [3] [4]. If the lifetime of such magnetic fields is longer than
the other relevant scales of the physical processes under study, we can treat them as a
constant background field.

Besides, magnetic field backgrounds are known for their significant effects on observ-
able phenomena such as magnetic catalysis or the chiral separation effect [5]. The former,
for example, happens due to the dimensional reduction on the dynamics of the system
leading to a spontaneous chiral symmetry breaking. Therefore, the features of an external
magnetic field in quantum field theories have motivated the Quantum Chromodynamics
(QCD) community, from lattice QCD to QCD Sum Rules (QCDSR), and also using
the approach of effective lagrangians like Nambu-Jona-Lasinio model, linear and non-
linear sigma models, etc, to study how this background field affects hadron physics. Vast
progress has been made to understand the effect of the magnetic field on hadronic param-
eters, from the two fronts QCDSR and LQCD as, for example, the deconfinement phe-
nomenological parameter s0, magnetic field dependence of quark masses, the condensates
and the pion decay constant fπ and finally the QCD phase diagram [6] [7] [8] [9] [10] [11].
But the list could go on.

This motivates us to the main focus of this thesis. The behaviour of the pion elec-
tromagnetic form factor Fπ under the effects of a magnetic field background. We rely
on the Finite Energy Sum Rules (FESR) approach [12] since the lowest dimensional sum
rule concentrates on the high-energy region (perturbative region) of QCD and establishes
a direct connection to the pion form factor. The magnetic contribution is given by the
Schwinger propagator [13] introduced in a suitable three-point interpolating current cor-
relation function, built of QCD degrees of freedom. This correlator via FESR allows one
to connect the magnetic dependence on the perturbative QCD world with the hadronic
parameter Fπ. At first sight, there is no need to consider a magnetic dependence on the
hadronic world but recent works have determined the appearance of new decay modes
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of the pion when a magnetic field is acting on the system [9] [14]. We found that for
certain regions of finite magnetic field strength, the electromagnetic pion form factor is
considerably larger than the pion form factor in absence of an external magnetic field. For
example, for momentum transfer Q2 = 1 GeV2 and magnetic fields near Q2 . eB the pion
form factor could reach up to four times the zero magnetic field form factor. This affects
directly, for example, the pion-electron scattering cross section since it is proportional to
the form factor.

This thesis is organized as follows. In Chapter 1 we give a short introduction to
Quantum Chromodynamics (QCD). Then we explain the building blocks to understand
the QCD Sum Rules program and we end the chapter with the standard calculation of the
pion electromagnetic form factor in the vacuum, i.e. at zero magnetic field. In Chapter
2 we follow the same steps as Schwinger did to calculate the fermion propagator in a
magnetic field background. In Chapter 3 we use the Schwinger propagator in the QCD
three-point function which connects to the pion form factor. We take both, strong and
weak magnetic field limits. In Chapter 4 we present the method to extract the pion form
factor via Finite Energy Sum Rules with magnetic corrections and show the numerical
results. Finally, we end with a brief discussion of the obtained results and give our
conclusions.

Chapter 0 Mauricio A. Dı́az 6



Chapter 1

Quantum Chromodynamics and
Sum Rules

1.1 Quantum Chromodynamics

The theory of strong interactions, known as Quantum Chromodynamics (QCD) [15] [16]
[17], is a Yang-Mills quantum field theory with a local symmetry group SU(Nc), where
Nc is the number of colour degrees of freedom. Experimental evidence, as the pion decay
rate through the π0 → 2γ channel, the ratio R in electron-positron annihilation, etc,
has shown that Nc = 3 [18]. The Lagrangian was first introduced in [19] by Gell-Mann,
Fritzsch and Leutwyler, after ’t Hooft demonstrated that massless and massive Yang-Mills
theories (the latter, after spontaneous symmetry breaking) were renormalizable [20] [21].
It includes Dirac spinor fields ψ describing the matter fields called quarks and gauge fields
G called gluons and is given by,

LQCD = iψ̄qi (δij /∂ + ig /Gaλ
a
ij)ψ

q
j −mqψ̄

q
iψ

q
i −

1

4
GaµνG

µν
a + LGF + LFP , (1.1)

where i, j = 1, 2, 3, λa are the SU(3) generators, thus a = 1, 2, ..., 8, Gaµ is the gluon field.
Also we included the gauge fixing term and the Faddeev-Popov ghost terms. The gluon
field strength tensor is given by,

Gaµν ≡ ∂µGaν − ∂νGaµ − gfabcGbµGcν . (1.2)

Where fabc are the structure constants of SU(3). Additionally, there are six different
types (flavours) of quarks in nature which are represented by the index q. This index
runs according to q = u, d, s, c, b, t. Besides the principal gauge symmetry of the theory,
we have different kinds of global symmetries depending on quark masses consideration.
First, in the light-quark sector, the theory has a SU(2)L×SU(2)R global symmetry called
chiral symmetry. This group acts only in the flavor indices and is parametrized as,

ψα → ψα = e−iθqτ
q
ψα

ψα → ψα = e−iγ5βqτ
q
ψα.

(1.3)

Where α = u, d. This transformations, via Noether’s theorem, lead to the gauge invariant
currents

V µ = ψγµτψ

Aµ = ψγµγ5τψ
(1.4)

7



Magnetic corrections to the pion electromagnetic form factor

which are known as vector and axial-vector current. From current algebra, it has been
obtained [22] that ∂µV

µ ∝ (md − mu) whereas for the axial current we have ∂µA
µ ∝

(mu + md). Notice that with these relations one can see that these symmetries are
exact symmetries when mu = md = 0, and are explicitly broken symmetries at non-
vanishing masses. Nevertheless, due to the small values of the masses these symmetries are
considered as approximate symmetries. However, the SU(2)L×SU(2)R is spontaneously
broken by the QCD vacuum condensates 〈uu〉 and 〈dd〉 leading to the SU(2)V isospin
group. Since the chiral symmetry is spontaneously broken, it has a realization à la Nambu-
Goldstone. The generators of the SU(2)A group do not annihilate the vacuum, giving
rise to massive pseudo-Goldstone bosons associated to the triplet of pions (π+, π−, π0).
A consequence of the spontaneously breaking of the axial symmetry is that the matrix
element of the associated axial current between the vacuum and a pion state is non-
vanishing,

〈0 |jAµ(0)|π(p)〉 = i
√

2fπpµ, (1.5)

where fπ is the pion decay constant and it is defined through this relation. One can
also consider as an approximate symmetry the SU(3)L × SU(3)R group by adding up
the strange quark s. This symmetry spontaneously breaks down to SU(3)V through the
u, d and s condensates, leading to eight pseudo-Goldstone bosons: three pions π, four
kaons K and the η particle. This symmetry is also related to the eightfold way introduced
by Gell-Mann in 1961 [23] which leds to the discovery of the Ω− baryon1. Besides the
chiral symmetry, the Lagrangian is invariant under global U(1)B × U(1)A called baryon
and axial symmetries. The U(1)B symmetry corresponds to the baryon number and is
conserved even at non-vanishing quark masses. The axial symmetry, even in the massless
limit is actually not conserved due to quantum effects known as anomalies.

QCD is an asymptotically free theory. This means that perturbative methods from
quantum field theory can be applied to high-energy processes. The dependence of the
running coupling αs (µ) = g2 (µ) /(4π) on the renormalization energy scale µ is given by
the β-function,

µ
d

dµ
g2 (µ) = β [g (µ)] . (1.6)

Assuming a small enough g, this β-function can be solved perturbatively. At one-loop
approximation, the Renormalization Group Equation (RGE) is,

µ
d

dµ
αs = −α

2
s

2π
b1 (1.7)

where b1 is defined as the one-loop contribution and depends on the number of quark
flavors [24] [25],

b1 =

(
11− 2

3
Nf

)
. (1.8)

As long as Nf < 17, is adequately small for b1 to be positive. It is conventional to
identify the typical momentum transfer of a particular process with the physical scale

1There is the BBC Horizon documentary of 1964 in YouTube where Richard Feynman, Juval Ne’eman
and Murray Gell-Mann explain this discovery.
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µ = Q. Thus, the solution can be written as,

αs(Q
2) =

2π

b1

1

ln Q2

Λ2
QCD

, (1.9)

where ΛQCD is a dimensionful integration constant fixed by experimental data of αs and
corresponds to the Landau pole of the theory, i.e. the value where αs diverges. Notice
that αs decreases at high-energies. This property is called asymptotic freedom. That
is why perturbative QCD can describe high-energy processes, viewing the quarks inside
the Hadrons as a collection of free quarks interacting with other matter fields through
gauge bosons. In Deep Inelastic Scattering, the process e−p+ → e− X can be viewed as
an electromagnetic scattering of an electron and a single quark inside the proton, i.e. a
high-virtual photon ejects the interacting quark from the proton forming a jet of hadrons.
The remnant spectator quarks breaks apart giving rise to a new jet, these two jets are
denoted by X.

However, at low energies, comparable to ΛQCD, the running coupling constant di-
verges. Hence pure perturbation theory in this energy region is meaningless. At such
scales the hadronic degrees of freedom become dominant. Therefore, non-perturbative
methods should be developed. One of these methods is the QCD Sum Rules approach,
where non-perturbative effects are parametrized in terms of gauge invariant vacuum con-
densates.

1.2 Sum Rules

There exist several approaches to understand the low-energy phenomenology of QCD
as for example, Lattice QCD or effective field theories. We will rely this work on the
Sum Rules (QCDSR) method, introduced by Shifman, Vainshtein and Zakharov [26] in
the late seventies. The QCDSR framework is built on two pillars: the first one is to
exploit the analytic properties of several interpolating current correlation functions; the
second one is the operator product expansion (OPE) of these correlators, which allows
to go beyond perturbation theory, where the non-perturbative parts are parametrized
as vacuum expectation values of gauge-invariant operators, the so-called condensates.
These two building blocks allow to establish a mapping between both limits of the strong
interactions, the high-energy limit where the degrees of freedom are the quarks and gluons
and the low-energy limit where the relevant degrees of freedom are the hadrons, obtaining
then information about Hadronic parameters like masses, decay constants, form factors,
etc. Different mappings can be constructed, each one gives rise to a certain type of Sum
Rule.

To illustrate the method [27] [12] let us consider, for definiteness, a general two-point
current correlation function,

Π
(
q2
)

= i

∫
d4xeiqx〈0|T (J(x)J(0))|0〉. (1.10)

Where J(x) is a color singlet local currents built up from QCD degrees of freedom, i.e.
quark and gluon fields, and combinations of Lorentz structures γµ, γ5, gµν , etc. Its
graphical representation is shown in Figure 1.1. The distinction between the perturbative

Chapter 1 Mauricio A. Dı́az 9
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J(x) J(0)

Figure 1.1: Two-point current correlation function. The dashed region represents all the
possible perturbative and non-perturbative contributions.

and non-perturbative physics is encoded in the OPE as,

Π
(
q2
)∣∣

QCD
= C0Î +

∑
N=1

C2N

(
q2
)

(−q2)N

〈
Ô2N

〉
, (1.11)

where 〈Ô2N 〉 ≡ 〈0|Ôn|0〉. As discussed earlier, the confinement of quarks and gluons
is introduced through the condensates which are the vacuum expectation values of the
operators Ô2N in the full QCD vacuum. These operators are ordered in terms of increasing
mass dimension. Also, the terms Cn(q2) are the Wilson coefficients and depend on Lorentz
indices and the quantum numbers of the condensates and the currents. Each term in
the expansion fall off by inverse powers of −q2N . The Wilson coefficients are evaluated
perturbatively and CI〈I〉 is the purely perturbative contribution since I is the identity
operator. Since there is no evidence for an operator 〈Ô〉 with dimension 2 in experimental
data and also it can not be constructed as a gauge invariant quantity [28], the sum in
(1.11) starts from dimension d ≡ 2N = 4.

The connection with the Hadronic world that we use in this work was proposed by
Shankar [29]. When considering the complex and real axes of the squared energy plane
(s-plane) expanded by q2 = s, the physical Hadronic spectrum emerges as poles and cuts
related to the multiparticle production along the positive real axes in the complex s-plane
where, by hypothesis, the hadronic representation of the correlator lives Π(s)→ Π(s)HAD.
While the QCD spectral function Π(s) → Π(s)QCD is still valid within a circle of radius
s0 in the s-plane avoiding the positive real axis, as shown in Figure 1.2 . Since there are
no other singularities in the complex s-plane we can use Cauchy’s theorem leading to,∫ s0

0

1

π
Im Π(s)HADW (s)ds = − 1

2πi

∮
C(|s0|)

Π(s)QCDW (s)ds (1.12)

where W (s) is an integration kernel. The choose of this W (s) is what differentiates the
different types of Sum Rules. The equation above is a mathematical manifestation of the
quark-hadron duality. We are going to work with W (s) = sN with N ≥ 0 which is called
Finite Energy Sum Rule (FESR). A feature of FESRs is that it focus on the high-energy
region of hadronic observables, in contrast to other Sum Rules. It also produces decoupled
equations for each condensate.

1.3 Pion form factor from QCDSR

Until now we have explained the Sum Rules method and its theoretical formulation but
we have not seen any application. As explained in the previous section, different classes of
Sum Rules can be built depending on the purpose. We can extract any kind of Hadronic

Chapter 1 Mauricio A. Dı́az 10
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Figure 1.2: Contour in the complex s-plane used when applying the Cauchy’s theorem.

parameters like quark masses, decay constants and form factors [30] [31]. The pion elec-
tromagnetic form factor is the hadronic observable that we are going to investigate in this
work. It has been calculated in the vacuum in references [32] [33]. Using QCDSRs, the
thermal behavior of the pion electromagnetic form factor has also been discussed in the
literature [34] within the finite temperature Sum Rules framework [35]. We will follow
closely the derivation of the pion electromagnetic form factor in the vacuum from [34]
and then this approach will be extended to finite magnetic field background. From now
on, the three-point current correlation function we are going to consider is the following,

Πµνλ

(
p, p′, q

)
= i2

∫
d4xd4y ei(p

′x−qy)〈0|T
{
j†Aµ(x), jelν (y), jAλ(0)

}
|0〉, (1.13)

where q = p′ − p is the momentum transfer, jAν(x) is the axial current and jemλ is the
electromagnetic current which are given by,

jAν(x) =: ū(x)γµγ5d(x) :

jelµ (x) =: quū(x)γµu(x) + qdd̄(x)γµd(x) : .
(1.14)

Where qu = 2
3e and qd = −1

3e are the charges of the quarks. In what follows we consider
only the light-quark sector u and d. The current correlator satisfies a double dispersion
relation,

Πµνλ

(
p, p′, Q2

)
=

1

π2

∫ ∞
0

ds

∫ ∞
0

ds′
Im Πµνλ

(
s, s′, Q2

)
(s+ p2) (s′ + p′2)

, (1.15)

where Q2 ≡ −q2. Recall that the imaginary part of Π can be evaluated using,

Disc Π = (−2i)2 Im Π. (1.16)

The Perturbative QCD (PQCD) part of the Sum Rule program is given by the lowest or-
der, i.e. one-loop, diagrams in Figure 1.3 and are determined through the QCD Feynman
rules. This cumbersome calculation can be found in literature [32] [33], it is commonly
calculated by taking the double discontinuity of the amplitude using Cutkosky’s rules.
We will not include radiative corrections to the triangle diagram. A single Lorentz tensor

Chapter 1 Mauricio A. Dı́az 11
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Figure 1.3: One-loop diagrams contributing to the QCD three-point function.

structure has to be selected to establish a mapping with the hadronic spectral function.
Therefore, the QCD spectral function at the structure PµPνPλ was found to be,

ρµνλ
(
s, s′, Q2

)∣∣
QCD

=
3Q4

2π2
λ−7/2

[
3λ
(
x+Q2

) (
x+ 2Q2

)
− λ2 − 5Q2

(
x+Q2

)3]
,

(1.17)
where,

λ
(
s, s′, Q2

)
=
(
s+ s′ +Q2

)2 − 4ss′. (1.18)

Here is useful to use the momentum average and momentum transfer variables given by
P = (p′ + p)/2 and Q. The contact with the hadronic world is made by writing the
spectral function ρµνλ in terms of the hadronic degrees of freedom. We can saturate the
dispersion relation with the ground state followed by some threshold energy s0, which is
the beginning of the hadronic continuum modelled by QCD,

ρµνλ
(
s, s′, Q2

)∣∣
HAD

= < 0 |jAν(0)|π+
(
p′
)
>< π+

(
p′
) ∣∣∣jelλ (0)

∣∣∣π+(p) >

× < π+(p) |jAµ(0)| 0 > δ(s)δ
(
s′
)

+ continuum,

=4f2
πFπ

(
Q2
) [
PµPνPλ +

1

2
Pλ (Pµqv − Pνqµ)− 1

4
qµqνPλ

]
+ ρµνλ

(
s, s′, Q2

)∣∣
QCD

[
1− θ

(
s0 − s− s′

)]
(1.19)

where fπ ' 93 MeV and Fπ
(
Q2
)

is the pion electromagnetic form factor. Now, we use
the quark-hadron duality in equation (1.12). The lowest dimensional FESR leads to,∫ so

0

∫ so

0
dsds′ Im Π

(
s, s′, Q2

)∣∣
HAD

=

∫ so

0

∫ so

0
dsds′ Im Π

(
s, s′, Q2

)∣∣
QCD

(1.20)

To construct the Sum Rule we have to insert equations (1.17) and (1.19) in (1.20). The
integration region is defined by the θ-function in (1.19). We have to choose a suitable
integration region in which the contribution of the hadronic continuum (modelled by
QCD) cancels with the pure QCD contribution in that region. It turns out that this
region, which we called Ω, is well given by figure 1.4. Therefore the FESR gives,

4f2
πFπ(Q2)

∫
Ω
dsds′δ(s)δ(s′) =

∫
Ω
dsds′ ρ(s, s′, Q2)

∣∣
QCD

. (1.21)

Chapter 1 Mauricio A. Dı́az 12
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Figure 1.4: Integration region in the (s, s′) plane after the subtraction of the continuum.

Therefore we can extract the form factor,

Fπ(Q2) =
1

4f2
π

∫
Ω
dsds′ ρ(s, s′, Q2)

∣∣
QCD

, (1.22)

which yields to,

Fπ
(
Q2
)

=
s0

16π2f2
π

1

(1 +Q2/2s0)2 . (1.23)

Here we take s0 ' 1 and fπ ' 93 MeV [18]. It is expected that this result fits the
experimental data when Q2 ≥ 1 GeV 2, since in lower energies the condensates need to
be considered. Additionally, the electromagnetic form factor (1.23) is in good agreement
with old and recent experimental data [36] [37] in a Q2 ' 1−4 GeV 2 region. Therefore we
are going to present our later results within this energy interval. The behavior of Fπ(Q2)
is shown in Figure 1.5.

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

Q2 GeV2

F
π
(Q
2 )

Figure 1.5: Electromagnetic pion form factor given by the equation (1.23). Where we
followed [34].
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Chapter 2

The Schwinger propagator

In the previous chapter, we introduced the pion electromagnetic form factor. It was
calculated via QCDSR where in the QCD side only the one-loop diagrams shown above
are needed. As we discussed at the beginning of this thesis, we want to extend this
calculation by considering a constant magnetic field background of intensity eB, obtaining
in this way the dependence on eB of the pion electromagnetic form factor

To start with this extension we can study the propagator of the electron field coupled
to an external magnetic field. Then, this propagator can be replaced in each internal
fermionic line of a diagram associated to a particular process, in the presence of a mag-
netic background. The exact electron propagator for this configuration was found by J.
Schwinger [13] in the Fock-Schwinger [38] proper time formalism. In this chapter, we will
follow closely the references [39] and [40] for the derivation of the fermionic propagator.

2.1 Proper time formalism for the fermionic propagator

The Dirac field equation in presence of an external field Aµ is written as,

(i/∂ + qf /A−mf )ψ = 0. (2.1)

The Green’s function for this field equation satisfy,

(i/∂ + qf /A−mf )G
(
x, x′

)
= δ

(
x− x′

)
. (2.2)

We can introduce a one-particle Hilbert space spanned by |x〉 and then define the Green’s
function as an operator matrix element by G (x, x′) = 〈x′| Ĝ |x〉 so that the equation (2.3)
can be written as,

( /̂Π−mf )Ĝ = 1, (2.3)

where Π̂µ = P̂µ + qfAµ(x̂) is the conjugated momentum operator. This equation can be
solved by,

Ĝ =
1

/̂Π−m
= ( /̂Π +m)

1

ˆ
/Π

2 −m2
. (2.4)

Now using Schwinger’s parametrization technique, based on the identity,

1

A
= −i

∫ ∞
0

dseisA, (2.5)
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we write the equation (2.4) as,

Ĝ =
1

/̂Π−m
= −i

∫ ∞
0

ds( /̂Π +m) exp

[
−i
(
m2 − /̂Π

2
)
s

]
. (2.6)

We define the effective Hamiltonian in this system as,

H ≡ −(/Π)2 = −Π2 − 1

2
qfσµνF

µν , (2.7)

and also Û(s) = e−iĤs which can be interpreted as a unitary time-evolution operator
where an state |x〉 evolves as,

|x; s〉 ≡ Û(s)|x; 0〉. (2.8)

With the above definitions, equation (2.6) can be written as,

G
(
x, x′

)
=− i

∫ ∞
0

dse−im
2s
〈
x′| ( /̂Π +m)Û(s) |x〉 ,

=− i
∫ ∞

0
dse−im

2s
[
γµ
〈
x′; 0| Π̂µ(0) |x; s〉 +m

〈
x′; 0|x; s

〉]
.

(2.9)

Here Π̂(s) operates on |x; s〉 and Π̂(0) operates on |x; 0〉. We have interpreted s as a time
variable known as Schwinger proper time. Recall that the commutation relations for this
cannonical system are, [

Π̂µ, x̂ν

]
= igµν ,[

Π̂µ, Π̂ν

]
= ieFµν ,

(2.10)

where Fµν ≡ ∂µAν−∂νAµ denotes the field-strength tensor of the gauge field Aµ and also
we assume that it is constant. The evolution of the operators x̂µ and Π̂µ is generated by
the Hamiltonian via Heisenberg equations of motion,

dx̂µ
ds

= −i
[
x̂µ, Ĥ

]
= 2Π̂µ, (2.11)

dΠ̂µ

ds
= −i

[
Π̂µ, Ĥ

]
= −2eFµνΠ̂ν . (2.12)

Using the definition (2.8) we can find,

i∂s
〈
x′(0)|x(s)

〉
=
〈
x′(0)| Ĥ |x(s)〉 , (2.13)

(i∂µ + eAµ(x))
〈
x′(0)|x(s)

〉
=
〈
x′(0)| Π̂µ(s) |x(s)〉 , (2.14)(

−i∂′µ + eAµ
(
x′
)) 〈

x′(0)|x(s)
〉

=
〈
x′(0)| Π̂µ(0) |x(s)〉 (2.15)

with 〈x′(0)|x(s)〉 → δ4 (x− x′) as s → 0. From now on, we drop the Lorentz indices
and write the matrix and vector structures with boldface type and also we will drop the
circumflexes on operators. Now we solve the equations (2.11) and (2.12),

Π(s) = e−2eFsΠ(0), (2.16)

x(s)− x(0) =
(
1− e−2eFs

)
(eF)−1Π(0). (2.17)
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Thus we can write the Hamiltonian in terms of x(s) and x(0),

Ĥ = −Π2 − 1

2
eσF

= (x(s)− x(0))K(x(s)− x(0))− 1

2
eσF, (2.18)

where,

K ≡ 1

4
(eF)2 sinh−2 eFs,

finding,
[x(s),x(0)] = i

(
1− e−2eFs

)
(eF)−1.

In order to solve equation (2.13) we write,

〈
x′(0)| Ĥ |x(s)〉 = −1

2
eσF−

(
x− x′

)
K
(
x− x′

)
− i

2
tr(eF coth eFs)

〈
x′(0)|x(s)

〉
. (2.19)

Now the operators x′ and x turn to position vectors. Sice (2.13) is now just a diferential
equation, the general solution is,

〈
x′(0)|x(s)

〉
=C

(
x, x′

)
s−2 exp

[
−1

2
tr ln

[
(eFs)−1 sinh(eFs)

]]
× exp

[
− i

4

(
x− x′

)
eF coth(eFs)

(
x− x′

)
+
i

2
eσµνF

µνs

] (2.20)

To determine the factor C(x, x′) we rewrite the right-hand side of the remaining equations
(2.14) and (2.15),〈

x′(0)|Π(s)|x(s)
〉

=
1

2
[eF coth(eFs)− eF]

(
x− x′

) 〈
x′(0)|x(s)

〉
, (2.21)〈

x′(0)|Π(0)|x(s)
〉

=
1

2
[eF coth(eFs) + eF]

(
x− x′

) 〈
x′(0)|x(s)

〉
. (2.22)

Replacing (2.20) in the left-hand side of equations (2.14) and (2.15) we get,[
i∂µ + eAµ(x)− 1

2
eFµν

(
x′ − x

)ν]
C
(
x, x′

)
= 0, (2.23)[

−i∂′µ + eAµ
(
x′
)

+
1

2
eFµν

(
x′ − x

)ν]
C
(
x, x′

)
= 0, (2.24)

whose solution is given by,

C
(
x, x′

)
= C exp

[
ie

∫ x

x′
dξµ

(
Aµ +

1

2
Fµν

(
ξ − x′

)ν)]
(2.25)

Since the integrand has zero curl, this line integral is independent of the path which
conects x′ to x. The constant C is found to be C = −i/(4π)2. Finally, with the equations
(2.9), (2.22) and (2.25), the fermion propagator in presence of an external field takes the
form,

G
(
x, x′

)
= Φ

(
x, x′

)
G
(
x, x′

)
(2.26)
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where,

G
(
x, x′

)
≡

− (4π)−2

∫ ∞
0

ds

s2

[
m+

1

2
γ · (eF coth(eFs) + eF)

(
x− x′

)]
× exp

(
−im2s+

i

2
eσµνF

µνs

)
× exp

[
−1

2
tr ln

[
(eFs)−1 sinh(eFs)

]
− i

4

(
x− x′

)
(eF coth(eFs))

(
x− x′

)]
(2.27)

and,

Φ
(
x, x′

)
≡ exp

{
ie

∫ x

x′
dξµ

[
Aµ +

1

2
Fµν

(
ξ − x′

)ν]}
. (2.28)

This last equation is the so called Schwinger phase factor, which breaks the translation
invariance. For two point correlators, the phase factor can be shown to be removed by
a gauge transformation. However, in our case, a three-point correlator it will play an
important role. If the magnetic field is chosen to be along the ẑ direction, we can use the
parallel and perpendicular notation for four-vectors,

a‖ = (a0, 0, 0, a3) , a⊥ = (0, a1, a2, 0) ,

with the properties,
(a · b)‖ = a0b0 − a3b3

(a · b)⊥ = a1b1 + a2b2,
(2.29)

also a squared four-vector can be written as,

a2 = a2
‖ − a

2
⊥ = a2

0 − ~a2. (2.30)

The metric tensor in this notation is considered as,

gµν = g‖µν − g⊥µν ,

g‖µν = diag(1, 0, 0,−1),

g⊥µν = diag(0, 1, 1, 0).

(2.31)

Now the propagator G (x, x′) in (2.27) is written as,

G(x) =− (4π)−2

∫ ∞
0

ds

s2

eBs

sin(eBs)
exp

(
−im2s+ ieBsσ3

)
× exp

[
− i

4s

(
x2
‖ − eBs cot(eBs)x2

⊥

)]
×
[
m+

1

2s

(
γ · x‖ −

eBs

sin(eBs)

× exp (−ieBsσ3) γ · x⊥)] .

(2.32)

It is also useful to write the propagator in the momentum space,

G
(
x, x′

)
= Φ

(
x, x′

) ∫ d4p

(2π)4
e−ip(x−x

′)S(p) (2.33)

where S(p) is defined in the next section.
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2.2 Landau Level expansion

The fermionic propagator found in the previous section, through the Schwinger proper
time formalism, is not quite appropriate for practical calculations. Therefore, we will use
a representation where the propagator is written as a sum over Landau Levels. In the
massless limit it is given by,

iS(p) = ie−p
2
⊥/|qfB|

+∞∑
n=0

(−1)n
Dn (qfB, p)

p2
‖ − 2n |qfB|

(2.34)

with,

Dn (qfB, p) = /p‖

[
2O−f L

0
n

(
2p2
⊥

|qfB|

)
− 2O+

f L
0
n−1

(
2p2
⊥

|qfB|

)]
+ 4/p⊥L

1
n−1

(
2p2
⊥

|qfB|

)
where Ln ≡ L0

n and Lα−1 = 0 are the associated Laguerre polynomials. Also O±f =(
1± iγ1γ2 sign (qfB)

)
/2 are projection operators. For the details of this derivation please

see reference [39]. For the next calculations, the following properties are useful,

O±γµO
± = O±γ‖µ (2.35)

O±γµO
∓ = O±γ⊥µ (2.36)[

γ‖µ, O
±
]

= 0 (2.37)

O±γ⊥µ = γ⊥µ O
∓ (2.38)

where we omitted the sub-index f .

2.2.1 Strong field limit

In the limit where the magnetic field is the largest energy scale in the system, the level
with n = 0 in (2.34) might be the most important contribution1. Thus, the fermionic
Schwinger propagator in the lowest Landau level (LLL) is given by,

iS(p) = i2e
− p2⊥
|qfB

| /p‖

p2
‖
O−f (2.39)

An important feature of this approximation is that it demonstrates a dimensional reduc-
tion where the parallel and perpendicular momentum decouple from each other, since the
motion of the charged particles is restricted to directions perpendicular to the magnetic
field.

2.2.2 Weak field limit

When the magnetic field is considerably smaller than the momenta. The Schwinger
propagator can be expanded in powers of qfB [39]. Thus, up to order qfB, the propagator
is,

iS(p) = i
6 p
p2
−
γ1γ2

(
γ · p‖

)
(p2)2 qfB (2.40)

1This is not generally true. In fact, in this study higher Landau levels are needed to be considered.
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2.3 Bosonic propagator

The derivation of the boson propagator in a constant magnetic field background with
the Schwinger’s proper time formalism is analogous as in section 2.1, and is found in the
literature [41]. We present it here for completeness. For the strong magnetic field limit
the bosonic propagator in the lowest Landau level is given by,

iDB(k)
qB→∞−→ 2i

e−k
2
⊥/qB

k2
‖ − qB −m2

(2.41)

For the weak magnetic field limit is given by,

iDB(k)
qB→0−→ i

k2
‖ − k

2
⊥ −m2

1− (qB)2(
k2
‖ − k

2
⊥ −m2

)2 −
2(qB)2

(
k2
⊥
)(

k2
‖ − k

2
⊥ −m2

)3

 . (2.42)

2.4 Comments on the phase factor

Since we are going to calculate three-point functions of the form (3.1) with Schwinger
propagators in its internal lines, we will have to deal with products of Schwinger phase
factors. First, note that a single phase factor (2.28) can be reduced if we chose the
integration path from x′ to x to be a straigh line,

ξµ = x′µ + t(x− x′)µ (2.43)

leaving (2.28) as,

Φ
(
x, x′

)
≡ exp

{
ie

∫ 1

0
dt

[
Aµ(x− x′)µ +

1

2
Fµν

(
x− x′

)ν
(x− x′)µ

]}
, (2.44)

since Fµν is antisymmetric the last term in the exponential vanish. Thus,

Φ
(
x, x′

)
≡ exp

{
ie

∫ 1

0
dtAµ(x− x′)µ

}
. (2.45)

The constant magnetic field background along the ẑ axis can be produced by the vector
potential,

Aµ(x) =
B

2
(0,−x2, x1, 0). (2.46)

Now, if we make a gauge transformation of the form,

Aµ(ξ)→ A′µ(ξ) = Aµ +
∂

∂ξµ
Λ(ξ), (2.47)

where Λ(ξ) = B
2 (x′2ξ1−x′1ξ2), the integral in (2.44) vanishes, thus the single phase factor is

equal to one. Therefore, when we are dealing with products of phases where we can choose
this configuration, the whole phase factor can be gauged away. That is, when we have a
single phase factor or a product of two factors that coincide at a given space-time point.
However, in the magnetic corrections to the three-current correlation function (3.1) at
one loop, we face a product of three phase factors which gives a non-trivial contribution.
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To illustrate this feature we rewrite a single phase factor which goes from P to Q with
the boundary dependence isolated as,

Φ (P,Q) = exp

[
ie

∫ P

Q
dxµ

(
Aµ +

1

2
Fµνx

ν

)]
exp

[
−i e

2
Fµν

∫ P

Q
dxµQν

]
(2.48)

So that when we link together the three phase factors, the only terms that survive are,

Φ (P,Q) Φ (Q,R)Φ (R,P ) =

exp

[
−i e

2
Fµν

(∫ P

Q
dxµQν +

∫ Q

R
dxµRν +

∫ R

P
dxµP ν

)]
(2.49)

leading to,

Φ (P,Q) Φ (Q,R) Φ (R,P ) = exp
[
−i e

2
Fµν(Rµ − Pµ)(P ν −Qν)

]
. (2.50)

This non-trivial Schwinger phase contribution will affect directly in amplitude of a three-
point process, where the Schwinger propagator is involved. Nevertheless, this term is
treated differently in each magnetic field limit.
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Chapter 3

Magnetic corrections to the
PQCD term

Now that we have introduced the fermion propagator in a magnetic field background.
In this chapter, we will describe the implementation of the Schwinger propagator in the
three-point function, since this corresponds to the perturbative QCD side to construct
the Sum Rule in Chapter 4. We will go through both limits of the magnetic field defined
in the previous chapter. In the weak magnetic field limit we will use the expansion on
powers of eB of the Schwinger propagators and write the QCD three-point function up
to the linear terms in eB. For the strong magnetic field limit we will consider up to the
first Landau level contributions to the Schwinger propagator.

3.1 Strong magnetic field limit

3.1.1 Lowest Landau Level

Consider the three-point correlation function from equation (1.13). To obtain the two
Feynman diagrams contributing to this correlator (Figure 1.3), we replace the electro-
magnetic and axial interpolating currents and use Wick’s theorem (see Appendix B).
These two contributions are given by,

Πµνλ

(
p, p′, q

)
= −i2Nc

∫
d4xd4y ei(p

′x−qy)

{quTr[γ5γµiS
u(x− y)γνiS

u(y − 0)γλγ5iS
d(0− x)]

+qdTr[γλγ5iS
d(0− y)γνiS

d(y − x)γ5γµiS
u(x− 0)]}.

(3.1)

We can rewrite the second trace in a suitable form by inserting the charge conjuga-
tion operator identity CC−1 = 1 and making use of the trace cyclical property. Also,
the Schwinger propagator in both weak and strong magnetic field limit transforms as
CiS(p)C−1 = −iS(p)T under charge conjugation and it satisfies the anti-commutation
relation {γ5, iS(p)} = 0. For the details in this procedure, please see Appendix B. Thus,
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we can start from the three-point function,

Πµνλ

(
p, p′, q

)
= −i2Nc

∫
d4l

(2π)4

d4t

(2π)4

d4k

(2π)4
d4xd4y ei(p

′x−qy)e−il(x−y)e−ityeikx

{qdΩC
d Tr[γµiSd(l)γνiSd(t)γλiSu(k)]

−quΩuTr[γµiSu(l)γνiSu(t)γλiSd(k)]}.

(3.2)

The strong magnetic field effects are introduced through the Landau Level expansion of
the Schwinger propagator (equation (2.34)). For every term in the expansion there is a
product of three Schwinger phases that does not vanish, as we discussed in section 2.4.
These products are computed through the equation (2.50). We can always take z = 0,
getting,

Ωu = Φu(x, y)Φu(y, 0)Φd(0, x) = exp

{
−i |quB|

2
εijx

iyj
}
, (3.3)

ΩC
d = Φu(x, 0)Φd(0, y)Φd(y, x) = exp

{
−i |qdB|

2
εijx

iyj
}
. (3.4)

First, we will work with the Lowest Landau Level (LLL) term since it is simpler and
holds all the mathematical properties which appear when considering higher terms in the
Landau Level expansion. Therefore, we take,

iS(p) = i2e
− p2⊥
|qfB

| /p‖

p2
‖
O−f . (3.5)

We can rewrite the traces in (3.2) carefully, using the properties introduced in (2.35)-
(2.38). The term sign(qfB) within O±f changes the sign depending on the charge of the

fermion, so keep in mind that O±qd = O∓. Thus, the traces are,

Tr[γµ/l‖O
−
u γν/t‖O

−
u γλ/k‖O

−
d ] = Tr[O+γ⊥µ /l‖γν/t‖γ

⊥
λ /k‖],

Tr[γλ/t‖O
−
d γν/l‖O

−
d γµ/k‖O

−
u ] = Tr[O−γ⊥µ /l‖γν/t‖γ

⊥
λ /k‖].

(3.6)

Splitting the three-point function into two contributions, one proportional to qu and the
other one to qd,

Πµνλ

(
p, p′, q

)
= Πu

µνλ

(
p, p′, q

)
+ Πd

µνλ

(
p, p′, q

)
, (3.7)

we end up with the following expressions,

Πu
µνλ

(
p, p′, q

)
=i2(2i)3quNc

∫
d4xd4y

∫
d4l

(2π)4

d4t

(2π)4

d4k

(2π)4
e−ix(l−p′−k)e−iy(t+q−l)

e−i
|quB|

2
εijx

iyje
− l2⊥
|quB| e

− t2⊥
|quB| e

− k2⊥
|qdB|

1

t2‖k
2
‖l

2
‖

Tr[O+γ⊥µ /l‖γν/t‖γ
⊥
λ /k‖],

(3.8)
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and,

Πd
µνλ

(
p, p′, q

)
=− i2(2i)3qdNc

∫
d4xd4y

∫
d4l

(2π)4

d4t

(2π)4

d4k

(2π)4
e−ix(l−p′−k)e−iy(t+q−l)

e−i
|qdB|

2
εijx

iyje
− l2⊥
|qdB| e

− t2⊥
|qdB| e

− k2⊥
|quB|

1

t2‖k
2
‖l

2
‖

Tr[O−γ⊥µ /l‖γν/t‖γ
⊥
λ /k‖].

(3.9)

The evaluation of the multidimensional integral in the above equation is straightfor-
ward but lengthy. The procedure that we apply is explained in the next section, but
the idea is the following. First, we integrate the space variables obtaining Dirac delta
functions. The argument of perpendicular delta functions, gets modified due to the non-
vanishing Schwinger phase, making an unusual shift in the perpendicular momenta. The
perpendicular momenta integrals are solved easily as Gaussian integrals. To evaluate
the parallel momenta integrals we use the Feynman parametrization technique. Since we
are computing a triangle loop we end up with two Feynman parameters integrals. We
use the FeynCalc Mathematica package [42] which was made for symbolic evaluation of
Feynman diagrams and algebraic calculations in quantum field theory. The main features
that we exploit from this package are the Lorentz index contraction and Dirac γ-matrices
manipulation.

Space integrals

Note that the Schwinger phase term contributes with an exponential that mixes just the
perpendicular space variables, hence we have to integrate them separately. If we split the
spatial integration measure into d4x d4y → d2x⊥d

2x‖d
2y⊥d

2y‖ we can easily integrate the
parallel part, ∫

d4xd4y ei(p
′x−qy)e−il(x−y)e−ityeikxe−i

|quB|
2

εijx
iyj

=

∫
d2x⊥d

2y⊥(2π)4δ(2)((l − k − p′)‖)δ(2)((t+ q − l)‖)

× e−ix⊥(l−k−p′)⊥e−iy⊥(t+q−l)⊥e−i
|quB|

2
εijx

iyj .

(3.10)

Now we integrate the y⊥ terms making a Dirac delta function for x⊥. Recall that the
subindex ⊥ refers to the two components i = 1, 2, so we write the perpendicular structures
in the above equation as,

∫
d2x⊥d

2y⊥e
−ix⊥(l−k−p′)⊥e−iy⊥(t+q−l)⊥e−i

|quB|
2

εijx
iyj

=
2∏
i=1

∫
dxie

−ixi(l−k−p′)iδ(2)((t+ q − l)j +
|quB|

2
εijx

i)(2π)2.

(3.11)

The property εijεin = δjn of the Levi-Civita symbol allows us write the Dirac delta
function as,

δ(2)((t+ q − l)j +
|quB|

2
εijx

i) =
2

|quB|
δ(2)(

2εij
|quB|

(t+ q − l)j + xi), (3.12)
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so with the last two equations the perpendicular space integral is,

∫
d2x⊥d

2y⊥e
−ix⊥(l−k−p′)⊥e−iy⊥(t+q−l)⊥e−i

|qu|
2
Bεijx

iyj

=

(
4π

|quB|

)2

e
i

2εij
|quB|

(t+q−l)j(l−k−p′)i .

(3.13)

Therefore, the total space integral for the three-point function is given by,

(2π)4

(
4π

|quB|

)2

δ(2)((l − k − p′)‖)δ(2)((t+ q − l)‖)e
i

2εij
|quB|

(t+q−l)j(l−k−p′)i , (3.14)

leading to,

Πu
µνλ

(
p, p′, q

)
=i2(2i)3quNc(2π)4

(
4π

|quB|

)2 ∫ d4l

(2π)4

d4t

(2π)4

d4k

(2π)4

×δ(2)((l − k − p′)‖)δ(2)((t+ q − l)‖)e
i

2εij
|quB|

(t+q−l)j(l−k−p′)i

×e−
l2⊥
|quB| e

− t2⊥
|quB| e

− k2⊥
|qdB|

1

t2‖k
2
‖l

2
‖

Tr[O+γ⊥µ /l‖γν/t‖γ
⊥
λ /k‖].

(3.15)

The evaluation of the space integrals for the Πd
µνλ (p, p′, q) contribution is the same,

but with the change qu → qd.

Momentum integrals

For the momentum integration, we also split the momentum variables into perpendicular
and parallel components. We can integrate the perpendicular part of the three-point func-
tion (3.15) by a sequential square completion in the exponentials. Thus, these integrals
become Gaussian and can be solved easily. First, we complete the square in the structure
given by,

e
i

2εij
|quB|

(t+q−l)j(l−k−p′)ie
− l2⊥
|quB| = e

− 1
|quB|

l̃2⊥−
1

|quB|
(t−k−p)2⊥−

2i
|quB|

εij(t+q)j(k+p′)i , (3.16)

where we did the change of variable,

l̃i = li − iεij(t− k − p)j , (3.17)

so that we can integrate the variable l̃ as a Gaussian integral and so on. The remaining
perpendicular structure is

e
− 1
|quB|

(t−k−p)2⊥−
2i
|quB|

εij(t+q)j(k+p′)i−
t2⊥
|quB|

− k2⊥
|qdB| , (3.18)

completing the square for t⊥ in the exponential we have,

(3.18) = e
− 2
|quB|

t̃2⊥+ 1
2|quB|

(iεij(k+p′)i−(k+p)j)
2− (k+p)2⊥

|quB|
− 2i
|quB|

εijqj(k+p′)i , (3.19)
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with the change of variable,

t̃j = tj +
1

2
(iεij(k + p′)i − (k + p)j). (3.20)

The last perpendicular structure is,

e
− k2⊥
|qdB|

+ 1
2|quB|

(iεij(k+p′)i−(k+p)j)
2− (k+p)2⊥

|quB|
− 2i
|quB|

εijqj(k+p′)i , (3.21)

again, completing the square for k⊥ we get,

(3.21) = e
− |qdB|+|quB||qdB||quB|

k̃2⊥+ 1
4

|qdB|
|quB|

(p′i+pi+iεijqj)
2

(|qdB|+|quB|)
)− 1

2|quB|
(p′2⊥+p2⊥−4iεijp

′
ipj), (3.22)

with the last change of variable,

k̃i = ki +
|qdB|

2(|qdB|+ |quB|)
(p′i + pi + iεijqj). (3.23)

Now we can integrate the perpendicular momentum variables since there are no other
perpendicular dependencies in the three-point function. We get,

efu(p⊥,p
′
⊥)

∫
d2 l̃⊥d

2t̃⊥d
2k̃⊥ e

− l̃2⊥
|quB| e

− 2
|quB|

t̃2⊥e
− |qdB|+|quB||qdB||quB|

k̃2⊥

= efu(p⊥,p
′
⊥)π

3

2

|quB|3|qdB|
|quB|+ |qdB|

,

(3.24)

where we defined the remnant structure,

fu(p⊥, p
′
⊥) ≡ 1

4

|qdB|
|quB|

(p′i + pi + iεijqj)
2

(|qdB|+ |quB|)
)− 1

2|quB|
(p′2⊥ + p2

⊥ − 4iεijp
′
ipj), (3.25)

which goes out from the integral. The integration of the parallel Dirac delta functions in
(3.15) leads to l‖ = k‖ + p′‖ and t‖ = k‖ + p‖. Thus, the three-point function is given by,

Πu
µνλ

(
p, p′, q

)
= i2(2i)3quNc

(
4π

|quB|

)2 π3

2

1

(2π)8

|quB|3|qdB|
|quB|+ |qdB|

ef(p⊥,p
′
⊥)∫

d2k‖
1

(k‖ + p‖)2(k‖ + p′‖)
2k2
‖

Tr[O+γ⊥µ (/k‖ + /p′‖)γν(/k‖ + /p‖)γ
⊥
λ /k‖]︸ ︷︷ ︸

I1

.
(3.26)

Following the same steps but changing qu ↔ qd we get a similar expression for the Πd
µνλ

contribution,

Πd
µνλ

(
p, p′, q

)
= −i2(2i)3qdNc

(
4π

|qdB|

)2 π3

2

1

(2π)8

|qdB|3|quB|
|quB|+ |qdB|

efd(p⊥,p
′
⊥)∫

d2k‖
1

(k‖ + p‖)2(k‖ + p′‖)
2k2
‖

Tr[O+γ‖ν(/k‖ + /p′‖)γµ/k‖γ
⊥
λ (/k‖ + /p‖)]︸ ︷︷ ︸

I2

,
(3.27)
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with fd(p⊥, p
′
⊥) defined as,

fd(p⊥, p
′
⊥) ≡ 1

4

|quB|
|qdB|

(p′i + pi + iεijqj)
2

(|qdB|+ |quB|)
)− 1

2|qdB|
(p′2⊥ + p2

⊥ − 4iεijp
′
ipj). (3.28)

In equations (3.26) and (3.27) we defined I1 and I2. The next step is to evaluate
these parallel momentum integrals which contain the relevant tensor structures due to
the Dirac traces. For this we use the FeynCalc Mathematica package that we mentioned
before. The procedure is the following. First, we rewrite the I1 and I2 integrals, with the
Feynman parametrization defined in the Appendix C.1. Then we evaluate the Dirac trace
with the shift on the momentum ki defined in equation (C.2) for both contributions. The
surviving Lorentz structures we get are combinations of gµν , ε

⊥
µν = g1µg2ν − g2µg1ν , pµ

and p′µ. We have to integrate all the resulting terms of these traces, but only terms of
even order in l will survive because of the symmetry of the integrals. Thus, we collect the
quadratic and zero-order terms using the following identities [16],∫

dd`

(2π)d
1

(`2 −∆)n
=

(−1)ni

(4π)d/2
Γ
(
n− d

2

)
Γ(n)

(
1

∆

)n− d
2

, (3.29)∫
dd`

(2π)d
`2

(`2 −∆)n
=

(−1)n−1i

(4π)d/2
d

2

Γ
(
n− d

2 − 1
)

Γ(n)

(
1

∆

)n− d
2
−1

, (3.30)∫
dd`

(2π)d
`µ`ν

(`2 −∆)n
=

(−1)n−1i

(4π)d/2
gµν

2

Γ
(
n− d

2 − 1
)

Γ(n)

(
1

∆

)n− d
2
−1

. (3.31)

Since we are taking d = 2, these integrals are not divergent. Therefore, simplifying terms
in equations (3.26) and (3.27), we can write,

Πd
µνλ

(
p, p′, q

)
=

ie2

18π3
Befd(p⊥,p

′
⊥)I2,

Πu
µνλ

(
p, p′, q

)
=

ie2

9π3
Befu(p⊥,p

′
⊥)I1,

(3.32)

where we considered qu = 2
3e, qd = −1

3e and Nc = 3. Thus, according to (3.7) the
three-point function becomes,

Πµνλ

(
p, p′, q

)
=

ie2

18π3
B(efd(p⊥,p

′
⊥)I2 + 2efu(p⊥,p

′
⊥)I1). (3.33)

Now, we change variables to q = p′ − p and P = p′+p
2 , where q is the transferred

four-momentum and P is the momentum average. We consider the symmetric three-
momentum configuration where −p = (E,−~p) and p′ = (E, ~p), so that,

q = (2E, 0)

P = (0, ~p)
. (3.34)

With this configuration q⊥ = 0 and P‖ has a non-vanishing component only in the ẑ
direction. The functions (3.25) and (3.28) become,

fu(P⊥) = fd(P⊥) = − 1

|eB|
P 2
⊥ (3.35)
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Finally, the three-point function can be expanded in its tensor structures given by,

Πµνλ

(
p, p′, q

)
= ε⊥µλP

‖
νΠε

P + ε⊥µλq
‖
νΠε

q + g⊥µλP
‖
νΠ⊥P + g⊥µλq

‖
νΠ⊥q , (3.36)

where we defined Πε
P , Πε

q, Π⊥P and Π⊥q being the one loop QCD form factors. These func-
tions depend on the squared parallel momenta and also contain the Feynman parameters
integrals. They have the following form,

Πε
P =

4i|eB|
9π2

e
−P2
⊥

|eB|

∫ 1

0
dx1

∫ 1−x1

0
dx2

(x1 + x2)(4P 2
‖ (x1 + x2 − 1)2 + q2

‖((x1)2 − 2x1(x2 + 1) + (x2 − 1)2))

(4P 2
‖ ((x1)2 + x1(2x2 − 1) + (x2 − 1)x2) + q2

‖((x1)2 − x1(2x2 + 1) + (x2 − 1)x2))2
,

where the functions Πε
q, Π⊥P and Π⊥q are given in the Appendix D, equations (D.1)-(D.3).

3.1.2 First Landau Level

As we saw in the last section, when considering just the Lowest Landau Level we obtain
four kinds of tensor structures. Since we want to construct a QCDSR to extract the pion
electromagnetic form factor, we have to compare the tensor structures in equation (3.36)
to the ones which appear in the hadronic spectral function, defined in equation (1.19).
Since any of the Lorentz structures of equation (3.36) appear also in the hadronic side,
we will consider the contribution of the next Landau level of the Schwinger propagator
(2.34). This in fact will give proper additional tensor structures to establish a QCDSR.
Thus, up to the first Landau Level (1LL) the Schwinger propagator is given by,

iS(p) = i2e−p
2
⊥/|qfB|

(
/p‖

p2
‖
O−f −

1

p2
‖ − 2|qfB|

[
/p‖O

−
f

(
1−

2p2
⊥

|qfB|

)
− /p‖O

+
f + 2/p⊥

])
,

(3.37)
Recall that we start from equation (3.2), so here we are also considering the splitting of
the three-point function into Π = Πu + Πd. For the perpendicular momenta integrals, we
use the method developed in equations (3.16) to (3.23), since it is still valid. However, the
Gaussian integrals change, due to the linear and quadratic perpendicular momenta depen-
dencies in the traces. To summarize, in Πu we make the consecutive square completion
for each momentum variable,

∫
d2l⊥d

2t⊥d
2k⊥ e

i
2εij
|quB|

(t+q−l)j(l−k−p′)ie
− l2⊥
|quB|

− t2⊥
|quB|

− k2⊥
|qdB|

=

∫
d2 l̃⊥d

2t̃⊥d
2k̃⊥ e

− l̃2⊥
|quB| e

− 2
|quB|

t̃2⊥e
− |qdB|+|quB||qdB||quB|

k̃2⊥ ,

where we made the following change of variable in sequential order,

l̃i = li − iεij(t− k − p)j , (3.38)

t̃j = tj +
1

2
(iεij(k + p′)i − (k + p)j), (3.39)

k̃i = ki +
|qdB|

2(|qdB|+ |quB|)
(p′i + pi + iεijqj). (3.40)
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We want the triangle to have one internal line with the 1LL and the other two with the
LLL. Then, for Πu we have,

Tr[γµiSu(l)γνiSu(t)γλiSd(k)]

=− Tr[γµ
1

l2‖ − 2|quB|

[
/l‖O

−
u

(
1−

2l2⊥
|quB|

)
− /l‖O+

u + 2/l⊥

]
γν
/t‖

t2‖
O−u γλ

/k‖

k2
‖
O−d ] (3.41)

− Tr[γµ
/l‖

l2‖
O−u γν

1

t2‖ − 2|quB|

[
/t‖O

−
u

(
1−

2t2⊥
|quB|

)
− /t‖O+

u + 2/t⊥

]
γλ
/k‖

k2
‖
O−d ] (3.42)

− Tr[γµ
/l‖

l2‖
O−u γν

/t‖

t2‖
O−u γλ

1

k2
‖ − 2|qdB|

[
/k‖O

−
d

(
1−

2k2
⊥

|qdB|

)
− /k‖O+

d + 2/k⊥

]
]. (3.43)

Expanding the traces and with the properties in (2.35)-(2.38) we rewrite each one above
as,

(3.41) =
1

(l2‖ − 2|quB|)t2‖k
2
‖

[
Tr[O+γµ/l‖γν/t‖γ

⊥
λ /k‖] +

2l2⊥
|quB|

Tr[O+γ⊥µ /l‖γν/t‖γ
⊥
λ /k‖]

−2Tr[O+γµ/l⊥γν/t‖γ
⊥
λ /k‖]

]
,

(3.44)

(3.42) =
1

l2‖(t
2
‖ − 2|quB|)k2

‖

[
Tr[O+γ⊥µ /l‖γν/t‖γλ/k‖] +

2t2⊥
|quB|

Tr[O+γ⊥µ /l‖γν/t‖γ
⊥
λ /k‖]

−2Tr[O+γ⊥µ /l‖γν/t⊥γλ/k‖]
]
,

(3.45)

(3.43) =
1

l2‖t
2
‖(k

2
‖ − 2|qdB|)

[
−
(

1−
2k2
⊥

|qdB|

)
Tr[O+γ⊥µ /l‖γν/t‖γ

⊥
λ /k‖] + Tr[O−γ‖µ/l‖γν/t‖γ

‖
λ
/k‖]

−2Tr[O+γ⊥µ /l‖γν/t‖γ
‖
λ
/k⊥] + 2Tr[O−γ‖µ/l‖γν/t‖γ

⊥
λ /k⊥] .

(3.46)
Denoting each equations (3.44), (3.45) and (3.46) as Aµνλ, Bµνλ and Cµνλ, we can write,

Tr[γµiSu(l)γνiSu(t)γλiSd(k)] = Aµνλ +Bµνλ + Cµνλ. (3.47)

For the Πd contribution we have to change qu ↔ qd and O− ↔ O+ then redo the calcula-
tions. Therefore the total integral that we have to solve for the Πu contribution is given
by,

Πu
µνλ

(
p, p′, q

)
=

− i2Nc
−qu

(2π)8

(
4π

|quB|

)2

efu(p⊥,p
′
⊥)

∫
d2l‖d

2t‖d
2k‖ δ

(2)((l − k − p′)‖)δ(2)((t+ q − l)‖)

d2 l̃⊥d
2t̃⊥d

2k̃⊥ e
− l̃2⊥
|quB| e

− 2
|quB|

t̃2⊥e
− |qdB|+|quB||qdB||quB|

k̃2⊥ (Aµνλ +Bµνλ + Cµνλ) .
(3.48)

From now on, we use Mathematica to make every calculation, since the algebraic expres-
sions for the integrals are extremely laborious and cumbersome. We will explain, however,
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the procedure. Note that the terms Aµνλ, Bµνλ and Cµνλ have linear and quadratic terms
in a singly momentum variable. In each one, we have to make the corresponding trans-
formation of equations (3.38), (3.39) and (3.40) so that we can integrate all variables
as Gaussian integrals. Here we keep the integrals with zero and quadratic order in the
momentum i.e. the even ones, since the odd integrals vanish. But each change of variable
depends on the remaining ones and, therefore, we have to do it sequentially. Thus, for
the perpendicular momenta integrals we use the identities,

∫ ∞
−∞

d2p‖p
2
‖e
−Ap2‖ = −i π

A2
,

∫ ∞
−∞

d2p‖e
−Ap2‖ = −i π

A
,∫ ∞

−∞
d2p⊥p

2
⊥e
−Ap2⊥ = − π

A2
,

∫ ∞
−∞

d2p⊥e
−Ap2⊥ = − π

A
,

Having done the perpendicular part, we can proceed with the parallel integrals using the
Feynman parametrization method. From the Dirac delta functions, we introduce l‖ =
k‖+p′‖ and t‖ = k‖+p‖. We use the Feynman parametrizations for Aµνλ, Bµνλ and Cµνλ

defined in Appendix C, equations (C.4)-(C.6). The first Landau Level contribution to
the three-point function contains many new different combinations of gµν , ε

⊥
µν = g1µg2ν−

g2µg1ν , qµ and Pµ, recall the change of variables (3.34). Therefore, as we did in the
previous section, we can expand Π in its constituents Lorentz structures and define for
each one a function factor. Here we will concentrate on the following tensor structures,

Πµνλ (P, q) = Π
‖
1P
‖
λP
‖
µP
‖
ν + ΠS

1 P̃λP
‖
µP
‖
ν , (3.49)

where we defined P̃µ ≡ ε⊥µνP ν = (g1µP2−g2µP1) and the QCD form factors Π
‖
1 and ΠS

1 are
defined in the Appendix D. The first term in the last equation is the parallel part of the
same tensor structure that is conventionally used to extract the pion form factor at zero
eB. The second tensor structure does not have an analogous structure in the hadronic
side but we include it here for purposes that will become clear later in this work.
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3.2 Weak magnetic field limit

3.2.1 First order eB-corrections

In chapter 2 we introduced the Schwinger propagator and its representation in both
magnetic field limits. Now we want to evaluate the three-point correlation function for
a weak magnetic field background. In the strong field limit all the internal fermionic
propagators have to include magnetic corrections from the beginning with the LLL, and
then all the combinations with one internal line being in the 1LL. In contrast with the
weak magnetic field we can start from zero eB and then add contributions in powers of
eB. The massless Schwinger propagator in the weak magnetic field limit and up to order
eB is written as,

iS(p) = i
6 p
p2
−
γ1γ2

(
γ · p‖

)
(p2)2 qfB (3.50)

We also start from equation (B.13). As we said in the previous chapter we can get this
form for the correlator through the charge conjugation operator and the trace properties
(see Appendix B),

Πµνλ

(
p, p′, q

)
= −i2Nc

∫
d4l

(2π)4

d4t

(2π)4

d4k

(2π)4
d4xd4y ei(p

′x−qy)e−il(x−y)e−ityeikx

{qdΩC
d Tr[γµiSd(l)γνiSd(t)γλiSu(k)]

−quΩuTr[γµiSu(l)γνiSu(t)γλiSd(k)]}.

Now we have to replace the propagator (3.50) in each trace of the equation above for the
three-point function. Since we want to keep contributions just up to the first power in
eB, each trace will split into four different traces. For the trace proportional to qu we get,

Tr
[
γµiSu(l)γνiSu(t)γλiSd(k)

]
= Tr

[
γµi

/l

l2
γνi

/t

t2
γλi

/k

k2

− (quB)γµ
γ1γ2/l‖

(l2)2 γνi
/t

t2
γλi

/k

k2

− (quB)γµi
/l

l2
γν
γ1γ2/t‖

(t2)2 γλi
/k

k2

− (qdB) γµi
/l

l2
γνi

/t

t2
γλ
γ1γ2/k‖

(k2)2

]
.

(3.51)

We keep the zero-order term because we also have to expand the three-product Schwinger
phase, which in this case for both contributions is given by,

Ωu/d = 1−
|qu/dB|

2
εijx

iyj . (3.52)

Equations (3.51) and (3.52) are also valid for the qd contribution but with the change
u ↔ d. Therefore, we insert these expressions into (3.51) and collect the terms up to
order qfB. If we replace the quark charge values qu = 2

3e and qd = −1
3e the three-point

correlation function is given by,
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Πµνλ

(
p, p′, q

)
= −i2Nc

∫
d4l

(2π)4

d4t

(2π)4

d4k

(2π)4
d4xd4y ei(p

′x−qy)e−il(x−y)e−ityeikx

{ − eTr

[
γµi

/l

l2
γνi

/t

t2
γλi

/k

k2

]
(3.53)

+
1

3
|eB|Tr

[
γµ
γ1γ2/l‖

(l2)2 γνi
/t

t2
γλi

/k

k2

]
(3.54)

+
1

3
|eB|Tr

[
γµi

/l

l2
γν
γ1γ2/t‖

(t2)2 γλi
/k

k2

]
(3.55)

+
5

18
|eB|εijxiyjTr

[
γµi

/l

l2
γνi

/t

t2
γλi

/k

k2

]
} (3.56)

The first trace is the zero-order in eB contribution which we introduced in section 1.3.
In the last trace term we have a space dependence coming from the expansion of the
Schwinger phase product. We can rewrite equation (3.56) to a proper form, as in [39],
with the identity,

e−i(l−k−p
′)xe−i(q+t−l)yxiyj =

∂

∂ki
∂

∂tj
e−i(l−k−p

′)xe−i(q+t−l)y. (3.57)

After integration by parts, the partial derivatives act on the trace. This causes an addi-
tional splitting into several traces coming from (3.56) due to,

∂

∂ti
γµt

µ

tµtµ
=
γi
t2
−

/t

(t2)2 2ti.

Therefore, we rewrite equation (3.56) as,

5

18
|eB|

∫
d4k

(2π)4
εij

(
Tr

[
γµi

/k + /p′

(k + p′)2
γνi

γj
(k + p)2

γλi
γi
k2

]
(3.58)

− 2Tr

[
γµi

/k + /p′

(k + p′)2
γνi

γj
(k + p)2

γλi
/k

(k2)2ki

]
(3.59)

− 2Tr

[
γµi

/k + /p′

(k + p′)2
γνi

/k + /p

((k + p)2)2 (k + p)jγλi
γi
k2

]
(3.60)

+4Tr

[
γµi

/k + /p′

(k + p′)2
γνi

/k + /p

((k + p)2)2 (k + p)jγλi
/k

(k2)2ki

])
(3.61)

The equations (3.54) and (3.55) contain parallel and perpendicular structures but with

/p‖ = γµ‖ pµ and pi = giµp
µ where i = 1, 2, we can project the parallel and perpendicular

dependence into the gamma matrix or the metric tensor. We also can easily integrate the
spatial variables getting,∫

d4xd4ye−ix(l−k−p′)e−iy(t+q−l) = (2π)4δ(4)
(
l − k − p′

)
(2π)4δ(4)(t+ q − l). (3.62)

Now, we follow the same procedure as in the previous section. We use the Feynman
parametrizations defined in Appendix C.2. With the FeynCalc Mathematica package we
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evaluate the Dirac traces and collect the zero and quadratic order terms in the momentum
integration variable. Thus, we can integrate the momentum with the identities defined in
equations (3.29)-(3.31). We get all the tensor structures, being their coefficients the form
factor functions. At this point, to be consistent, we also change to the variables q = p′−p
and P = p′+p

2 and choose the symmetric three-momentum configuration.

The purpose of the magnetic corrections calculations in the QCD side is to find a
single structure which can be mapped to the hadronic world. But, there is no emergence
of a tensor structure which also appears in the ones defined in the hadronic spectral
function at zero eB, equation (1.19). Consequently, we cannot extract the form factor at
the same tensor structure as in zero eB. Nevertheless, in the next chapter in section 4.2,
we will see that we can establish a QCDSR to new tensor structures which arise through
a redefinition of the hadronic spectral function at finite eB. With this in mind, from all
the combinations of gµν , ε

⊥
µν = g1µg2ν − g2µg1ν , qµ and Pµ that we got, we choose the

following tensor structure,

ΠW
µνλ (P, q) = (eB)ΠW

1 P̃λP
‖
µP
‖
ν . (3.63)

Notice that we extract the factor eB out from ΠW
1 since it is the only dependence. Recall

that P̃µ ≡ ε⊥µνP ν . We defined ΠW
1 in Appedix D, equation (D.6).
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Chapter 4

Magnetic corrections to Fπ

Let us summarize what we have obtained up to this point. In chapter 3 we evaluated
the three-point current correlation function under the effects of a strong magnetic back-
ground. The influence of the magnetic field is encoded in the Schwinger propagator and
its representation through a sum of Landau levels. At first glance, it is generally assumed
that the lowest Landau level (LLL) is the dominant contribution in the limit of a strong
magnetic field [39]. But recent works have shown that the LLL is not sufficient for certain
particular processes and, therefore, other Landau levels need to be considered since they
can be of the same order as the LLL [43]. For example in [44], they considered up to the
first Landau level due to the high virtuality in the neutrino dispersion relation in external
magnetic fields, improving the results of previous calculations. Furthermore, in equation
(3.36) we demonstrated that the LLL contribution does not provide suitably Lorentz ten-
sor structures to establish a QCDSR with the hadronic spectral function in the vacuum.
Therefore we computed the first landau Level contribution leading to well-defined tensor
structures which also appear in the hadronic side (see equation (1.19)).

At the end of chapter 3, we went through the weak magnetic field limit, where the
Schwinger propagator can be written as an expansion in powers of qfB. Here we just
considered up to the first-order contribution, due to the analytical difficulties of the
calculation. We also ended up with several Lorentz tensor structures contributing to
the three-point function, but none of them appears also in the hadronic spectral function.
However, these new kinds of tensor structures emerge in both limits of the QCD side,
weak and strong magnetic field. The major difference between both limits is that in
the strong magnetic field limit, when other Landau levels are considered, some tensor
structures map to the hadronic side and some of them do not.

It turns out, that novel works [9] [14] have revealed that when studying the magnetic
effects to pion decay, new decay constants arise, hence new channels have to be considered
in the hadronic spectral function. These new contributions lead to hadronic tensor struc-
tures which also appear in the QCD side. We will study this extension to the hadronic
spectral function in section 4.2.

4.1 Strong magnetic field FESR

In order to construct a FESR, in general, we need to let the external momentum variables
p2 and p′2 of the triangle loop to be the s and s′ variables. But we have a splitting in
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every Lorentz structure into parallel and perpendicular components due to the magnetic
field. Consequently, we can first take the frame in which the perpendicular components

vanishes p′2⊥ = p2
⊥ = 0 leading to s ≡ p2

‖ and s′ ≡ p′2‖ . Recall Π
‖
1 defined in equation (3.49)

associated to the structure P
‖
µP
‖
νP
‖
λ ,

Π
‖
1(eB, P 2

⊥, P
2
‖ , q

2
‖) ≡ Π

‖
1 =

1

π4|eB|
e
−P2
⊥

|eB|

∫ 1

0
dx1

∫ 1−x1

0
dx2

216i(x1+x2−1)2(x1+x2)(
8|eB|(x1+x2−1)−12P 2

‖ (x1+x2)(x1+x2−1)+3q2‖(−x
2
1+2x1x2+x1−x22+x2)

)2 . (4.1)

To write the expression above in terms of the s, s′ variables we change,

P 2
‖ → (Q2

‖ + (
√
s+
√
s′)2)/2, (4.2)

which is valid in our frame of reference. Therefore, the QCD spectral function is given
by,

ρ
(
eB, s, s′, Q2

‖

)∣∣∣
QCD

= Im Π
‖
1

(
eB, s, s′, Q2

‖

)
. (4.3)

We follow the method introduced in section 1.3 to extract the electromagnetic form factor
via FESR at B = 0. The lowest dimensional FESR defined in equation (1.20) leads to,

Fπ(eB,Q2
‖) =

1

4f2
π

∫
Ω
dsds′ ρ(eB, s, s′, Q2

‖)
∣∣∣
QCD

, (4.4)

Now we focus on technicalities to evaluate the four integrals involved, two on the s, s′ vari-
ables and two on the Feynman parameters. We used Mathematica to calculate analytically
one of the Feynman parameters integrals. Then we must use a numerical integration tool
to estimate the rest since the analytical evaluation is not possible, as it was the case
wherein B = 0. Here we also want to evaluate the s, s′ integrals in the Ω triangle region
on the (s, s′)-plane (see Figure 1.4). To do so, we change s′ → (s0 − s)s′ in order to get
numerical integration limits.

An important effect that we have not discussed yet is that fπ gets corrections from
the magnetic field background. Different works have calculated the behaviour of fπ(eB),
for example [8] [14] [9]. To introduce these results in our calculation we take the one
from [14], which studied the masses and decay constants of charged pions through the
Nambu–Jona-Lasino (NJL) model in intense magnetic fields. We extracted the fπ(eB)
data and also made an interpolation to get the value of fπ at slightly higher magnetic
fields. The original data of [14] is shown in Figure 4.1. Therefore, the final form of the
electromagnetic form factor is given by,

Fπ(eB,Q2
‖) =

1

4f2
π

∫ s0

0

∫ s0

0
dsds′ (s0 − s)ρ(eB, s, s′, Q2

‖)
∣∣∣
QCD

, (4.5)

We used the Adaptive Monte Carlo Numerical integration method provided by Mathe-
matica. In general, this method has a better performance than the crude Monte Carlo
strategy. By partitioning the region in each dimension, this method concentrates on the
subregion where the integrand has any kind of discontinuity. It can be adjusted by in-
creasing the number of maximum recursions to tell the algorithm when to stop and the
minimum number of recursions to guarantee that a narrow spike in the integrand is not
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Figure 4.1: Magnetic field dependence of the pion decay constants fπ and f ′π.

missed. Also, the estimation improves when the number of sample points increments but
also the execution time. All these features have to be tested to assure a right convergence
of the integral. The numerical results for the equation (4.5) are shown in Figures ?? to
4.2, taking s0 = 1 GeV2. We get rid of the numerical noise by fitting an exponential
model for each plot.
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Figure 4.2: Pion Electromagnetic form factor under strong magnetic fields eB =
1, 3 GeV2.

In Figures 4.2 and 4.3, we can see that the chosen value of the magnetic field has
a huge impact on the magnitude of Fπ. The ratio between the pion form factor with
magnetic corrections and the vacuum form factor is shown in Figure 4.3. As we described
in chapter 2, the magnetic field has to be the largest energy scale. A natural energy scale
of a typical process involving Fπ is the pion mass mπ. But since we took the chiral limit,
the mass can not be a scaling parameter, due to numerical inconsistencies. Therefore,
we establish the constraint {s0, Q

2} . eB, so that we can identify the valid domain of
our magnetic corrections. Following this constraint, in Figures 4.4 we notice that for
each fixed Q2

‖ the form factor is valid for magnetic fields such that Q2 . eB showing a
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significant increment of Fπ(eB) compared to the vacuum F 0
π for some eB regions.
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Figure 4.3: Dependence on Q2
‖ of the normalized pion electromagnetic form factor with

fixed eB values.
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Figure 4.4: Dependence on eB of the normalized pion electromagnetic form factor with
fixed Q2

‖ values.
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4.2 Hadronic spectral function redefinition

Recent works from Lattice QCD [9] and effective theories [14], generalized the hadronic
matrix element of the axial current between the vacuum and a pion state under the
influence of a magnetic field background. Since the Fµν tensor can now be part of the
tensor structure of the matrix element. The strength tensor can then be written in the
convenient form Fµν = ε⊥µνB, with the perpendicular antisymmetric tensor defined as

ε⊥µν = gµ1gν2 − gν1gµ2. Thus we get,

〈0|JAµ|π+(p)〉 ≡ i
√

2fπpµ + i
√

2f ′πeBp̃µ, (4.6)

where we defined p̃µ ≡ ε⊥µνp
ν . Now we can calculate the hadronic spectral function with

this new definition. We follow the same procedure as in section 1.3, using single pion
states to saturate the spectral function followed by the continuum after the threshold s0,

ρµνλ
(
s, s′, Q2

)∣∣
HAD

= < 0 |jAν(0)|π+
(
p′
)
>< π+

(
p′
) ∣∣∣jelλ (0)

∣∣∣π+(p) >

× < π+(p) |jAµ(0)| 0 > δ(s)δ
(
s′
)

+ continuum .
(4.7)

Recall that 〈π+(p′)|Jelµ |π+(p)〉 → Fπ(B,Q2)(pµ + p′µ). Inserting equation (4.6) in (4.7)
and changing to the variables P and q, the hadronic spectral function is given by,

ρµνλ
(
s, s′, Q2

)
|HAD

= f2
πFπ(Q2)P ν(2P λ − qλ)(2Pµ − qµ)δ(s)δ(s′)

+ 4(eB)2Fπ(B,Q2)f ′2π P
νP̃ λP̃µδ(s)δ(s′)

+ (eB)fπf
′
πFπ(B,Q2)P ν

(
4P λP̃µ + 4PµP̃ λ − 2qλP̃µ − 2qµP̃ λ

)
δ(s)δ(s′).

(4.8)

Where we have omitted the continuum. These new kinds of tensor structures, like
P̃µP νqλ, also emerge in the QCD three-point function with magnetic corrections in-
troduced in chapter 3. In fact, we can construct new QCDSR with these structures. The
difference now is that the new constant f ′π is needed. The dependence of this constant on
the magnetic field is also extracted from [14] and is shown in Figure 4.1. We can establish

the lowest dimensional FESR at the structure P̃λP
‖
µP
‖
ν for both, strong magnetic field and

weak magnetic field limit. The QCD one-loop form factors are defined trough equations
(3.49) and (3.63). Then, following the same steps as in the previous section to extract
the pion form factor, both Sum Rules are given by,

F̃π(eB,Q2
‖) =

1

fπf ′πeB

∫
Ω
dsds′ ρ(eB, s, s′, Q2

‖)
∣∣∣
QCD

, (4.9)

where we defined F̃π to differentiate the one defined at the PµPνPλ structure (denoted

by F̃π (4.5)). The QCD spectral function in (4.9) can be either ρQCD = Im ΠS
1 for strong

magnetic field, or ρQCD = (eB) Im ΠW
1 for weak magnetic field. Though, to be able to

build these Sum Rules we have to extend the calculations to a finite P 2
⊥, since we are

mapping at structures involving the perpendicular components of P . For the strong field
limit, the numerical results show the same qualitative behavior as the form factor obtained
in the previous section. However, early results for the extension to finite P 2

⊥ for the pion
form factor defined in equation (4.5), show that the largest increasing values for Fπ(eB)
are reached where the perpendicular momenta vanishes.
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For the weak field limit, the numerical result presents anomalous behaviour. We
declare that this calculation must be improved. Even if the Sum Rule can be constructed,
the eB dependence occurs only via the constants fπ and f ′π, since we restricted ourselves to
linear order in eB for the three-point function. We believe that going further to quadratic
order, would allow to get an expansion up to linear order in eB for Fπ and also it might
provide as well the conventional tensor structure PµPνPλ to extract the magnetic form
factor.

Finally, we want to mention that besides the redefinition of the Axial matrix element
(4.6) with its new constant f ′π, a new channel arises with the magnetic field corrections,
the vector

〈
0
∣∣jelµ ∣∣π−〉 channel [9] [14], which in B = 0 vanishes. Therefore, a future work

for the magnetic corrections to Fπ is to consider the V-A currents for the three-point
function. From recent works [45], we can expect that the effect of this channel is small
compared to the Axial contribution.
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Discussion and Conclusions

This thesis was devoted to studying the magnetic corrections to the pion electromagnetic
form factor Fπ(eB). We employed the Finite Energy Sum Rules framework to establish
a mapping between a suitable interpolating QCD current correlator with the hadronic
spectral function for the ππγ vertex. The magnetic part of the calculation was done
through the introduction of the Schwinger propagator in the QCD correlation function,
considering both the strong as well as the weak field limits.

Restricting ourselves to the linear order in eB in the weak field limit, produced the
lack of proper tensor structures for the construction of the Sum Rule. However, the
redefinition of the hadronic spectral function made it possible to establish a Sum Rule
with new kinds of tensor structures involving perpendicular parts of the external momenta.
However, since both sides, hadronic and QCD, were proportional to eB the magnetic field
dependence cancels out. The QCD contribution to the form factor happen to be trivial,
leaving as the only magnetic dependence the hidden evolution of the decay constants fπ
and f ′π. The numerical results were anomalous so we concluded that this result must be
improved by adding higher orders in the expansion in eB.

For the strong field limit, we went further, taking the first Landau level contribution,
since the lowest Landau level produced the same issues as in the weak field. The addition
of this higher level made it possible to find the conventional tensor structure which is used
in the literature to extract de pion form factor. We established a QCDSR and obtaining
the magnetic dependence of the pion electromagnetic form factor, but restricted to the
regions where {s0, Q

2} . eB. We found that in the momentum transfer region around
Q2 ' 1 GeV2 the corrected pion form factor is considerably larger than the zero-eB form
factor, reaching values up to four times Fπ(eB = 0). And even for higher energies, for
example, when Q2 ' 2 GeV2 it could be six times larger. Therefore our main result
refers to the strong magnetic field limit. The increasing pion electromagnetic form factor
affects directly the pion-positron scattering e+π+ → e+π+ since the scattering amplitude
is proportional to Fπ. This scattering amplitude is related to the Sullivan process [46]
which is used to extract information about hadron physics in collider experiments.

We mention some potential future directions to this work. The first one, is to extend
to higher order in eB the weak magnetic field limit calculation. Second, to include the
vector channel, presenting the finite magnetic field case, since it is not clear how this
term will affect the results based exclusively on the axial channel. Finally, to employ the
analytical methods used in [47] by summing over all Landau levels, and then take the
appropriate strong and weak magnetic field limits.
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Appendix A

Schwinger propagator under
charge conjugation

The Schwinger propagator for a weak magnetic field intensity and in the massless limit is
given by,

iS(p) = i
6 p
p2
−
γ1γ2

(
γ · p‖

)
(p2)2 qfB (A.1)

to first order in eB. With the properties

C−1γµC = −γTµ (A.2)

C−1γ5C = γT5 (A.3)

C−1qfC = −qf (A.4)

The behavior of the propagator under charge conjugation is given by,

C−1iS(x− y)C = C−1Φ(x, y)C

∫
d4p

(2π)4
e−ip(x−y)C−1iS(p)C

= C−1Φ(x, y)C

∫
d4p

(2π)4
e−ip(x−y)C−1

(
i
/p

p2
−
γ1γ2

(
γ · p‖

)
(p2)2 qfB

)
C

= C−1Φ(x, y)C

∫
d4p

(2π)4
e−ip(x−y)

i−/pT
p2
−

(−γT1 )(−γT2 )
(
−/pT‖

)
(p2)2 (−qfB)


= C−1Φ(x, y)C

∫
d4p

(2π)4
e−ip(x−y)(−1)

(
i
/pT

p2
+

(/p‖γ2γ1)T

(p2)2 qfB

)

= C−1Φ(x, y)C

∫
d4p

(2π)4
e−ip(x−y)(−1)

(
i
/p

p2
+
/p‖γ2γ1

(p2)2 qfB

)T
.

With the identity γ1γ2/p‖ = −/p‖γ2γ1 and the change p→ −p we get the identity,

C−1iS(x− y)C = C−1Φ(x, y)C

∫
d4p

(2π)4
e−ip(y−x)iST (p), (A.5)

which also can be written in the momentum space as,

CiS(p)C−1 = −iS(p)T . (A.6)
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Following the same method, one can demonstrate the identities (A.5) and (A.6) for the
strong magnetic field limit of the Schwinger propagator.

In a triangle fermionic loop we face a three Schwinger phase product which we call Ω,

Ωf = Φ(x, y)Φ(y, z)Φ(z, x)|z=0 = e−
qf
2
Bεijx

iyj . (A.7)

We can operate C to this Schwinger phase product and get,

ΩC
f ≡ C−1ΩfC = e

qf
2
Bεijx

iyj (A.8)

which is equivalent to invert the direction of the momentum flow in the triangle.

The projection operators under charge conjugation transform as,

C−1O±f C = (O±f )T . (A.9)

This identity is useful to rewrite Dirac traces involving these projection operators.
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Appendix B

Feynman diagrams from Wick’s
theorem in Πµνλ

First we consider the three point function,

Πµνλ

(
p, p′, q

)
= i2

∫
d4xd4y ei(p

′x−qy)〈0|T
{
j†Aµ(x), jelν (y), jAλ(0)

}
|0〉. (B.1)

The interpolating electromagnetic and axial currents are given by,

jAν(x) =: ū(x)γµγ5d(x) :

jelµ (x) =: quū(x)γµu(x) + qdd̄(x)γµd(x) : .
(B.2)

If we replace the above currents in the equation (B.1),

Πµνλ

(
p, p′, q

)
= i2

∫
d4xd4y ei(p

′x−qy)〈0| : d̄ai (x)(γ5)ij(γµ)jku
a
k(x) :

: quū
b
l (y)(γν)lmu

b
m(y) + qdd̄

b
l (y)(γν)lmd

b
m(y) :: ūcn(0)(γλ)no(γ5)opd

c
p(0) : |0〉. (B.3)

We can split the three-point function in two contributions,

Πµνλ

(
p, p′, q

)
= i2

∫
d4xd4y ei(p

′x−qy)(γ5)ij(γµ)jk(γν)lm(γλ)no(γ5)op

×
[
qu〈0|T{: d̄ai (x)uak(x) :: ūbl (y)ubm(y) :: ūcn(0)dcp(0) :}|0〉 (B.4)

+qd〈0|T{: d̄ai (x)uak(x) :: d̄bl (y)dbm(y) :: ūcn(0)dcp(0) :}|0〉
]
. (B.5)

Now we apply Wick’s theorem in both terms. The contribution proportional to qu by
(B.4) is given by,

qu〈0|T{: d̄ai (x)uak(x) :: ūbl (y)ubm(y) :: ūcn(0)dcp(0) :}|0〉 =

− qudcp(0)d̄ai (x)uak(x)ūbl (y)ubm(y)ūcn(0). (B.6)

Recall that each contraction is defined as,

QAα (x) Q
B
β (y) = 〈0|T{QAα (x) Q

B
β (y)}|0〉 = δABiSαβ(x− y) (B.7)
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therefore, the RHS of the equation (B.6) is written as,

= −quδcaiSdpi(0− x)δabiS
u
kl(x− y)δbciS

u
mn(y − 0) (B.8)

Rearranging all Dirac and color indices to build a trace, the color indices give a factor
Nc. The contribution (B.4) is given by,

Πqu
µνλ

(
p, p′, q

)
=i2Nc

∫
d4xd4y ei(p

′x−qy)

{−quTr[γ5γµiS
u(x− y)γνiS

u(y − 0)γλγ5iS
d(0− x)]}. (B.9)

Now for the contribution (B.5) proportional to qd,

qd〈0|T{: d̄ai (x)uak(x) :: d̄bl (y)dbm(y) :: ūcn(0)dcp(0) :}|0〉

= −qddbm(y)d̄ai (x)uak(x)ūcn(0)dcp(0)d̄bl (y)

= −qdδbaiSdmi(y − x)δaciS
u
kn(x− 0)δcbiS

d
pl(0− y) (B.10)

Rearranging the terms, we get

Πqd
µνλ

(
p, p′, q

)
= i2Nc

∫
d4xd4y ei(p

′x−qy)

{−qdTr[γ5γµiS
u(x− 0)γλγ5iS

d(0− y)γνiS
d(y − x)]}.

(B.11)

Thus, the three current correlation function is given by,

Πµνλ

(
p, p′, q

)
= −i2Nc

∫
d4xd4y ei(p

′x−qy)

{quTr[γ5γµiS
u(x− y)γνiS

u(y − 0)γλγ5iS
d(0− x)]

+qdTr[γλγ5iS
d(0− y)γνiS

d(y − x)γ5γµiS
u(x− 0)]}, (B.12)

which are the one-loop contributions shown in Figure 1.3.

We can rewrite the second trace, with the identities introduced in Appendix A, inserting
CC−1 = 1 and making use of the trace cyclical property,

qdTr[γλγ5iS
d(0− y)γνiS

d(y − x)γ5γµiS
u(x− 0)]

= Tr[C−1γλCC
−1γ5CC

−1iSd(0− y)CC−1γνCC
−1iSd(y − x)CC−1γ5CC

−1γµCC
−1iSu(x− 0)C]

= qdTr[(−γTλ )γT5 C
−1iSd(0− y)C(−γTν )C−1iSd(y − x)CγT5 (−γTµ )C−1iSu(x− 0)C]

= (−1)qdTr[γTλ γ
T
5 C
−1iSd(0− y)CγTν C

−1iSd(y − x)CγT5 γ
T
µC
−1iSu(x− 0)C]

so that we can write in the momentum space,

qdTr[γλγ5iS
d(0− y)γνiS

d(y − x)γ5γµiS
u(x− 0)]

=

∫
d4l

(2π)4

d4t

(2π)4

d4k

(2π)4
e−il(x−y)e−ityeikx(−1)qdΩ

C
d Tr[γTλ γ

T
5 iSdT (t)γTν iSdT (l)γT5 γ

T
µ iSuT (k)]

=

∫
d4l

(2π)4

d4t

(2π)4

d4k

(2π)4
e−il(x−y)e−ityeikx(−1)qdΩ

C
d Tr[iSu(k)γµγ5iSd(l)γνiSd(t)γ5γλ]
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Then the three-point function is,

Πµνλ

(
p, p′, q

)
= −i2Nc

∫
d4l

(2π)4

d4t

(2π)4

d4k

(2π)4
d4xd4y ei(p

′x−qy)e−il(x−y)e−ityeikx

{quΩuTr[γ5γµiSu(l)γνiSu(t)γλγ5iSd(k)]

−qdΩC
d Tr[iSu(k)γµγ5iSd(l)γνiSd(t)γ5γλ]}.

Getting rid of the γ5 and using the cyclical property again, we end up with,

Πµνλ

(
p, p′, q

)
= −i2Nc

∫
d4l

(2π)4

d4t

(2π)4

d4k

(2π)4
d4xd4y ei(p

′x−qy)e−il(x−y)e−ityeikx

{qdΩC
d Tr[γµiSd(l)γνiSd(t)γλiSu(k)]

−quΩuTr[γµiSu(l)γνiSu(t)γλiSd(k)]} (B.13)
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Appendix C

Feynman parametrizations

C.1 Strong magnetic field parametrizations

Lowest Landau level

For the Feynman integrals in equations (3.26) and (3.27) we parametrize as,

1

(k‖ + p‖)2(k‖ + p′‖)
2k2
‖

= Γ(3)

∫ 1

0
dx1

∫ 1−x1

0
dx2

1

[l2 −∆]3
, (C.1)

where,

li = ki + (p′x1 + px2)i, (C.2)

∆ = p′2‖ x1(x1 − 1) + p2
‖x2(x2 − 1) + 2p′‖p‖x1x2. (C.3)

First Landau level

For the Feynman integrals in equation (3.48) we use the following Feynman parametriza-
tions: For Aµνλ,

1

[(k‖ + p′‖)
2 − 2|quB|](k‖ + p‖)2k2

‖
= Γ(3)

∫ 1

0
dx1

∫ 1−x1

0
dx2

1

[l2 −∆]3

li = ki + (p′x1 + px2)i

∆ = p′2‖ x1(x1 − 1) + p2
‖x2(x2 − 1) + 2p′‖p‖x1x2 + 2|quB|x1;

(C.4)

for Bµνλ,

1

(k‖ + p′‖)
2[(k‖ + p‖)2 − 2|quB|]k2

‖
= Γ(3)

∫ 1

0
dx1

∫ 1−x1

0
dx2

1

[l2 −∆]3

li = ki + (p′x1 + px2)i

∆ = p′2‖ x1(x1 − 1) + p2
‖x2(x2 − 1) + 2p′‖p‖x1x2 + 2|quB|x2;

(C.5)

and finally for Cµνλ,

1

(k‖ + p′‖)
2(k‖ + p‖)2[k2

‖ − 2|qdB|]
= Γ(3)

∫ 1

0
dx1

∫ 1−x1

0
dx2

1

[l2 −∆]3

li = ki + (p′x1 + px2)i

∆ = p′2‖ x1(x1 − 1) + p2
‖x2(x2 − 1) + 2p′‖p‖x1x2 + 2|qdB|(1− x1 − x2).

(C.6)
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C.2 Weak magnetic field parametrizations

Integral in equation (3.54)

We use the Feynman parameters to rewrite the denominator as,

1

(k + p)2 ((k + p′)2)2 k2

= Γ(4)

∫ 1

0
dx1x1

∫ 1−x1

0
dx2

1

[x1(k + p′)2 + x2(k + p)2 + (1− x1 − x2)k2]4

= Γ(4)

∫ 1

0
dx1x1

∫ 1−x1

0
dx2

1

[l2 −∆]4

where,
∆ = x1p

′2(x1 − 1) + x2p
2(x2 − 1) + 2x1x2pp

′

l = k + (x1p
′ + x2p)

Therefore, with the change k → l − (x1p
′ + x2p) the trace will be,

Tr
[
γµγ1γ2(/k‖ + /p′‖)γν(/k + /p)γλ/k

]
= Tr

[
γµγ1γ2(/l‖ − (x1 /p

′
‖ + x2/p‖) + /p′‖)γν(/l − (x1 /p

′ + x2/p) + /p)γλ(/l − (x1/p+ x2 /p
′))
]

Integral in equation (3.55)

We use the Feynman parameters to rewrite the denominator as,

1

(k + p′)2 ((k + p)2)2 k2

= Γ(4)

∫ 1

0
dx1x1

∫ 1−x1

0
dx2

1

[x1(k + p)2 + x2(k + p′)2 + (1− x1 − x2)k2]4

= Γ(4)

∫ 1

0
dx1x1

∫ 1−x1

0
dx2

1

[l2 −∆]4

where,
∆ = x1p

2(x1 − 1) + x2p
′2(x2 − 1) + 2x1x2pp

′

l = k + (x1p+ x2p
′)

Therefore with the change k → l − (x1p+ x2p
′) the trace will be,

Tr
[
γµ(/k + /p′)γνγ1γ2(/k‖ + /p‖)γλ/k

]
= Tr

[
γµ(/l − (x1/p+ x2 /p

′) + /p′)γνγ1γ2(/l‖ − (x1/p‖ + x2 /p
′
‖) + /p‖)γλ(/l − (x1/p+ x2 /p

′))
]
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Integral in equation (3.58)

We use the Feynman parameters to rewrite the denominator as,

1

(k + p)2 (k + p′)2 k2

= Γ(3)

∫ 1

0
dx1

∫ 1−x1

0
dx2

1[
x1(k + p)2 + x2 (k + p′)2 + (1− x1 − x2) k2

]3

= Γ(3)

∫ 1

0
dx1

∫ 1−x1

0
dx2

1

[l2 −∆]3

where,
∆ = x1p

2(x1 − 1) + x2p
′2(x2 − 1) + 2x1x2pp

′

l = k + (x1p+ x2p
′)

Therefore with the change k = l − (x1p+ x2p
′) the trace will be,

Tr
[
γµi(/k + /p′)γνiγjγλiγi

]
= Tr

[
γµi
(
/l − (x1/p+ x2 /p

′) + /p′
)
γνiγjγλiγi

]
Integral in equation (3.59)

First we make the change of variable k → k + p′ for our convenience, thus the trace and
the denominator is

− 2
5

18
|eB|

∫
d4k

(2π)4
εijTr

[
γµi

/k

k2
γνi

γj
(k − p′ + p)2

γλi
/k − /p′

((k − p′)2)2 (k − p′)i
]

= −2
5

18
|eB|

∫
d4k

(2π)4
εijTr

[
γµi/kγνiγjγλi(/k − /p′)(k − p′)i

] 1

k2(k − q)2 ((k − p′)2)2 .

Then, we use the Feynman parametrization,

1

k2(k − q)2 ((k − p′)2)2

= Γ(4)

∫ 1

0
dx1x1

∫ 1−x1

0
dx2

1[
x1(k − p′)2 + x2 (k − q)2 + (1− x1 − x2) k2

]4

= Γ(4)

∫ 1

0
dx1x1

∫ 1−x1

0
dx2

1

[l2 −∆]4

where,
∆ = x1p

′2(x1 − 1) + x2q
2(x2 − 1) + 2x1x2qp

′

l = k − (x1p
′ + x2q).

Thus, the trace is,

Tr
[
γµi/kγνiγjγλi(/k − /p′)(k − p′)i

]
= Tr

[
γµi(/l + x1 /p

′ + x2/q)γνiγjγλi(/l + x1 /p
′ + x2/q − /p′)(l + x1p

′ + x2q − p′)i
]
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Integral in equation (3.60)

We use the Feynman parameters to rewrite the denominator as,

1

(k + p′)2 ((k + p)2)2 k2

= Γ(4)

∫ 1

0
dx1x1

∫ 1−x1

0
dx2

1

[x1(k + p)2 + x2(k + p′)2 + (1− x1 − x2)k2]4

= Γ(4)

∫ 1

0
dx1x1

∫ 1−x1

0
dx2

1

[l2 −∆]4

where,
∆ = x1p

2(x1 − 1) + x2p
′2(x2 − 1) + 2x1x2pp

′

l = k + (x1p+ x2p
′)

Therefore with the change k → l − (x1p+ x2p
′) the trace will be,

Tr
[
γµi(/k + /p′)γνi(/k + /p)(k + p)jγλiγi

]
= Tr

[
γµi(/l − (x1/p+ x2 /p

′) + /p′)γνi(/l − (x1/p+ x2 /p
′) + /p)(l − (x1p+ x2p

′) + p)jγλiγi
]

Integral in equation (3.61)

First we make the change of variable k → k + p′ for our convenience, thus the trace and
the denominator is,

Tr

[
γµi

/k + /p′

(k + p′)2
γνi

/k + /p

((k + p)2)2 (k + p)jγλi
/k

(k2)2ki

]
= Tr

[
γµi/kγνi(/k − /q)(k − q)jγλi(/k − /p′)(k − p′)i

] 1

(k)2 ((k − q)2)2 ((k − p′)2)2 .

Then, we use the Feynman parametrization,

1

(k)2 ((k − q)2)2 ((k − p′)2)2

= Γ(5)

∫ 1

0
dx1x1

∫ 1−x1

0
dx2

x2

[x1(k − q)2 + x2(k − p′)2 + (1− x1 − x2)k2]5

= Γ(5)

∫ 1

0
dx1x1

∫ 1−x1

0
dx2

x2

[l2 −∆]5

where,
∆ = x1q

2(x1 − 1) + x2p
′2(x2 − 1) + 2x1x2qp

′

l = k − (x1q + x2p
′).

Therefore, with the change k = l + (x1q + x2p
′) the trace will be,

Tr
[
γµi/kγνi(/k − /q)(k − q)jγλi(/k − /p′)(k − p′)i

]
= Tr

[
γµi(/l + (x1/q + x2 /p

′))γνi(/l + (x1/q + x2 /p
′)− /q)

×(l + (x1q + x2p
′)− q)jγλi(/l + (x1/q + x2 /p

′)− /p′)(l + (x1q + x2p
′)− p′)i

]
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Appendix D

Form Factor functions

Lowest Landau level

Πε
q =

2i|eB|
9π2

e
−P2
⊥

|eB|

∫ 1

0
dx1

∫ 1−x1

0
dx2

(x1 − x2)(4P 2
‖ (x1 + x2 − 1)2 + q2

‖((x1)2 − 2x1(x2 + 1) + (x2 − 1)2))

(4P 2
‖ ((x1)2 + x1(2x2 − 1) + (x2 − 1)x2) + q2

‖((x1)2 − x1(2x2 + 1) + (x2 − 1)x2))2
,

(D.1)

Π⊥P =
4i2|eB|

3π2
e
−P2
⊥

|eB|

∫ 1

0
dx1

∫ 1−x1

0
dx2

(x1 + x2)(4P 2
‖ (x1 + x2 − 1)2 + q2

‖((x1)2 − 2x1(x2 + 1) + (x2 − 1)2))

(4P 2
‖ ((x1)2 + x1(2x2 − 1) + (x2 − 1)x2) + q2

‖((x1)2 − x1(2x2 + 1) + (x2 − 1)x2))2
,

(D.2)

Π⊥q =
2i2|eB|

3π2
e
−P2
⊥

|eB|

∫ 1

0
dx1

∫ 1−x1

0
dx2

(x1 − x2)(4P 2
‖ (x1 + x2 − 1)2 + q2

‖((x1)2 − 2x1(x2 + 1) + (x2 − 1)2))

(4P 2
‖ ((x1)2 + x1(2x2 − 1) + (x2 − 1)x2) + q2

‖((x1)2 − x1(2x2 + 1) + (x2 − 1)x2))2
,

(D.3)

First Landau level

Π
‖
1 =

1

π4|eB|
e
−P2
⊥

|eB|

∫ 1

0
dx1

∫ 1−x1

0
dx2

216i(x1 + x2 − 1)2(x1 + x2)(
8|eB|(x1 + x2 − 1)− 12P 2

‖ (x1 + x2)(x1 + x2 − 1) + 3q2
‖
(
−x2

1 + 2x1x2 + x1 − x2
2 + x2

))2 ,

(D.4)
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ΠS
1 =

1

π4|eB|
e
−P2
⊥

|eB|

∫ 1

0
dx1

∫ 1−x1

0
dx2

72(x1 + x2 − 1)2(
8|eB|(x1 + x2 − 1)− 12P 2

‖ (x1 + x2 − 1)(x1 + x2) + 3q2
‖
(
−x2

1 + 2x1x2 + x1 − x2
2 + x2

))2 .

(D.5)

Weak magnetic field

ΠW
1 =

16

9
π2

∫ 1

0
dx1x1

∫ 1−x1

0
dx2 20x1(x1 − 1)2(

4P 2
‖ (x1 − 1)x1 + q2

‖
(
x2

1 + x1(4x2 − 1) + 4(x2 − 1)x2

))2

+
5x2(2x2 − 1)(

4P 2
‖ (x2 − 1)x2 + q2

‖
(
4x2

1 + 4x1(x2 − 1) + (x2 − 1)x2

))2

− 4i(x1 + x2 − 1)2((3 + 5i)x1 + (3 + 5i)x2 − 5i)(
4P 2
‖ (x1 + x2 − 1)(x1 + x2) + q2

‖
(
x2

1 − x1(2x2 + 1) + (x2 − 1)x2

))2



(D.6)
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