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chapter 1

Theoretical Background

1 .1 memory

Learning and memory are related concepts and form an essential part of our lives,

allowing past experiences to influence future behavior and permit organisms to adapt

to the environment. While learning is the ability of the Central Nervous System

(CNS) to acquire new information which is evidenced by a behavioral change as an

effect of the experience (effect of the interaction with the environment), memory is

the persistence of learning over time and refers to the process of how the learned

information is encoded, stored, and retrieved after (Kandel et al. (2013)).

Memory is the basis of what living beings are, as it includes all information on

the ‘what’, ‘who’, ‘where’, and ‘when’ of our life experiences (Chen and Wilson

(2017)). Based on it, we act and decide because it defines our sense of self-identity.

Memory is formed in a three stages process: encoding, storage/consolidation, and

recall. Encoding is the initial acquisition of new information. It refers to processes that

involve attention for new information learned to be elaborated in the first encounter.

The extent and nature of this encoding determine how the learned material will be

recalled later. For a memory to be kept and well-retained, requires attention and

association with the knowledge that is already well established in memory. The

storage and consolidation refer to the strengthening and stabilization of these new

contents. Consolidation includes processes that alter recently stored information, still

labile, to make it more stable for long-term storage, involving the expression of genes

and the synthesis of new proteins, inducing structural changes that store memory in

a stable way over time. Storage includes the mechanism and places where memory is

preserved over time. Finally, recall refers to the processes that allow the retrieval and

use of stored information. Retrieval involves gathering different types of information

that are stored separately in different storage locations. It is a constructive process,

and therefore subject to distortion. In this stage of memory, when a retrieval cue (a
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part of the sequence) arrives, the sequences in the hippocampus related to a particular

experience are activated, directing towards the neocortical assemblies that originally

processed the events during perception (Kandel et al. (2013)). Figure 1.1 shows an

example of the different stages of memory formation.

F igure 1 .1 : Taken from Feld and Diekelmann (2020)

Memory systems can be classified according to temporal, and qualitative criteria.

The temporal criterion takes into account the duration or persistence of the informa-

tion in time. The qualitative criteria separate memory according to the type of content

of the information that is stored (see details of qualitative distinction in section 1.1.1).

The temporal criteria for separating memory recognize two main types of mem-

ory, short-term and long-term memory. Short-term memory maintains information

over a short period (seconds), while long-term memory spans years and even all

life, involving the unconscious repetition of past experiences between encoding and
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retrieval. This is also supported by the fact that short-term memory can remain

unimpaired in amnesic patients or, inversely, impaired in patients whose long-term

memory functions remain intact (Brem et al. (2013)).

Figure 1.2 shows the temporal and qualitative divisions of memory, as well as

subdivisions and associated brain regions. The sensory memory is included as well

in this schematic, being the shortest type of memory maintaining information for less

than 1 second. In the following section, the long-term memory is described in detail

as this is the type of memory that we are mostly interested in in this project.

1.1.1 Long-term Memory

Long-term memory is essential for development and adaptation over time. Classical

and prominent models of human long-term memory separate memory systems based

on the way the retrieval occurs: consciously or unconsciously, dividing them into two

broad classes. The ability to consciously recall information is known as declarative

memory, while various forms of unconscious learning and memory skills are referred

to as non-declarative memory (Henke (2010)). See Figure 1.2 for a detailed schematic.

Declarative Memory — The declarative (or explicit) memory system includes

the memory of events, dates, and facts that can be deliberately and consciously

recalled and described verbally (Kandel et al. (2013)). In addition, declarative memory

includes the capacity to recall particular experiences and draw generalizations from

a variety of experiences. A typical example of this generalization is the ability of the

brain to find similar features or overlapping representations of different sea creatures

seen in different experiences but still retain their specific characteristics (categoriza-

tion) (Witkowski et al. (2020)).

Declarative memory can be divided into episodic and semantic memory. The

episodic memory consists of memories of autobiographical events and personal ex-

periences. The semantic memory consists of facts and general knowledge; it is im-

personal and contains objective knowledge devoid of autobiographical context (one

example of this is the type of knowledge, is the one acquired from books) (Henke

(2010); Kandel et al. (2013)).
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Non -Declarative Memory — The term ‘non-declarative’ (implicit) memory

encompasses many memory systems which are difficult to verbalize and do not

require conscious processes to evoke them. Their common characteristics are shown

mainly in behavior, allowing its distinction from the declarative memory system.

This type of memory includes procedural learning of sensorimotor and cognitive

skills and habits; simple conditioning; priming; operant conditioning; habituation

and sensitization (Henke (2010)).
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F igure 1 .2 : Adapted from Henke (2010)
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1.1.2 Role of the hippocampus in the long-term memory formation

The first evidence that memory processes could be specific to some areas of the

human brain was collected by the neurosurgeon Wilder Penfield while performing

electrical stimulation of the temporal lobe showing that when stimulating regions of

the temporal lobe, patients were able to evoke memories (Penfield (1952)). However,

more convincing evidence emerged in the mid-1950s from the study of patients who

had undergone a bilateral excision of the hippocampus and neighboring regions in the

temporal lobe to treat epilepsy (Scoville and Milner (1957)). Scoville and Milner, who

investigated the cognitive impairments of patients after intervention in the medial

temporal lobe and showed that the medial temporal lobe is dedicated to episodic

memory, independent of other cognitive functions. The best-known case is of the

patient H.M. that despite having lost a large part of his temporal lobe, he could learn

new motor skills at an average rate.

All patients with injury to the medial temporal lobe were unable to recall learning

experiences, but when given ample training opportunities, they displayed sensori-

motor learning (Scoville and Milner (1957)). Also, they preserved perceptual and

conceptual priming of single items (Levy et al. (2004); Tulving et al. (1991)). They

showed an intact delay in eye blinks in classical conditioning when trained with

a tone presented just before the onset of an air puff (Weiskrantz and Warrington

(1979)). They demonstrated sustained cognitive skill development and long-term

learning of the intricacies of rule-governed stimulus sequences, both of which are

used in artificial grammar learning, even in more cognitively demanding tasks (Henke

(2010);Knowlton et al. (1992)). Since the hippocampus was recognized as an essential

region for long-term memory formation, it was possible to differentiate between

explicit and implicit memory (Kandel et al. (2013)).

All previous evidence supports that the hippocampus is vital and almost exclusive

for declarative memory formation. However, Research has demonstrated that the

hippocampus region’s contribution to memory is temporary, even for memories of

spatial environments learned in childhood. The length of the hippocampus’ critical

involvement may be influenced by the mediation of neighboring cortical areas, and
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injury outside of the hippocampus can lead to prolonged memory loss (Eichenbaum

(2000)). evidence of the hippocampus’ involvement in conscious memory does not

rule out its participation in types of unconscious memory (Henke (2010)). In 2015,

Addante performed a study of a group of patients with evidence of damage limited

to the hippocampus. He found that patients had a dramatic impairment of implicit

memories compared to healthy subjects, suggesting that the hippocampus is funda-

mental for memory processing beyond conscious awareness (Addante (2015)).

1 .2 memory consolidation

Memory consolidation refers to the process of transforming, stabilizing, and inte-

grating new and initially labile memories acquired in the awake state within the

brain, becoming part of the neocortical circuits of long-term memories (Diekelmann

and Born (2010)). But, how can these physical changes emerge during wakefulness

while the brain processes a continuous stream of new information? To explain this

process, (Marr (1971)) proposed a model assuming two separate memory storages,

each working at different learning rates. First, in this model, features from the

new information are encoded by neural networks and are initially retained on the

temporal lobe’s fast-learning regions as shown in Figure 1.3. Then, during "offline"

periods, these memory traces are gradually redistributed to the neocortical areas

enhancing cortico-cortical connections where long-term storage is located. This two-

stage model of memory consolidation offers a solution for dealing with the dilemma

of how the hippocampal-cortical system achieves plasticity related to the acquisition

of new information without affecting stability, which means no overwriting of older,

pre-existing memories because memory traces are repeatedly re-activated in the fast-

learning store (see Figure 1.3) driving reactivation in the slow-learning store making

memories gradually redistributed and long-term store connections stronger. The

active re-processing of fresh memories within the neural networks that encoded them

is then involved in memory consolidation. (Diekelmann and Born (2010)) (this active

re-processing is detailed in section 1.2.1). This is supported by the observation that

learning experiences are strengthened during post-encoding ‘offline’ periods. The
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first evidence on how the brain strengthens memories was seen when sequences of

neuronal firing in the hippocampus during exploration of a novel environment were

spontaneously reactivated during subsequent sleep in rats (shown in Figure 1.4) and

the magnitude of the reactivation also predicted future memory performance (Skaggs

and McNaughton (1996); Wilson and McNaughton (1994); Schreiner and Staudigl

(2020)).

F igure 1 .3 : During wakefulness, the rapid learning mechanism of the hippocampus (shown by green arrows) in the domain
of hippocampal-dependent declarative memory rapidly combines sensory information (shown as yellow arrows) from the
sensory cortices into a temporary representation. The memory trace is frequently played again during subsequent sleep,
especially Slow Wave Sleep (SWS), which causes it to change and integrate into the neocortex’s long-term memory storage
(shown by blue arrows), a process known as active systems consolidation. Sleep not only strengthens synapses, which removes
useless information, but also consolidates pertinent memories. Rapid Eye Movement (REM) sleep appears to be important
for the hippocampus, contrary to the synaptic homeostasis hypothesis, which emphasizes the importance of SWS for cortical
renormalization. The hippocampus (shown by green upward arrows) can be accessed during wakefulness, and new knowledge
can be stored into its updated stores (represented by yellow and green downward arrows).Taken from Feld and Born (2017))

F igure 1 .4 : The sensory cortex and hippocampus’ neurons fire in a distinctive pattern of sequential firing during encoding
(exploring a circular track). Each row in the diagrams represents a single cell, and the marks in the upper parts indicate spikes.
The curves in the lower parts show the average firing patterns of the cells. The temporal firing patterns found in the cell
assemblies during running recur in the cortex and hippocampus during Slow Wave Sleep (SWS). Taken from (Diekelmann and
Born (2010)), based on (Ji and Wilson (2007))



9

1.2.1 Memory Reactivation

Memory reactivation is the phenomenon in which patterns of activation of neural

networks expressed during the encoding of new information are re-expressed at a

later time (Favila et al. (2020a)). This phenomenon is observed across hippocam-

pal and cortical areas and correlates with objective and subjective expressions of

memory. It comprises reinstatement, replay, and pattern completion (Schreiner and

Staudigl (2020); Vieweg et al. (2015)): Reinstatement refers to the reoccurrence of a

neural pattern present during a past experience. Replay implies a reinstatement with

temporal dynamics and order (forward versus backward replay; non-compressed or

time-compressed replay). Pattern completion is a process ascribed specifically to the

hippocampal CA3 region, in which the original memory trace is restored (completed)

via reactivation, as a vital aspect of successful episodic memory recall as it allows

for the activation of a previously formed connection. (for example an object with a

certain environment) (Schreiner and Staudigl (2020); Vieweg et al. (2015)).

Studies in rodent models make clear that both the consolidation of memories

during sleep and their retrieval during wakefulness depend on the hippocampal-

triggered memory reactivation. Studying reactivation processes is essential because

it enables the study of the cognitive processes connected to reactivation processes

and aids in evaluating the multi-sensory components of real-life experiences and

memories (Carr et al. (2011); Skaggs and McNaughton (1996); Schreiner and Staudigl

(2020); Wilson and McNaughton (1994)).

Memory reactivation differences between the awake bran and the

sleeping brain — The transfer of information is different in wakefulness com-

pared to during sleep. In contrast with wakefulness, there is no external information

during sleep, so memories go through straight-forward traces of reconsolidation with-

out risk of being interfered with conflicting information (Rasch and Born (2007)).

In the awake brain, new information from the external world passes through the

entorhinal cortex to reach the hippocampus. In this case, the hippocampus is in

an aroused state associated with theta, and gamma oscillations. On the other hand,

during sleep, the information flows from the hippocampus to the neocortex. In this
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case, activation in the hippocampus is initiated as bursts of neuronal activity during

SWS (BuzsÁk (1998)).

Whereas reactivation of memories during wakefulness induces labialization of

the representation that enables its acute updating (Diekelmann and Born (2010)),

reactivations during sleep, especially SWS, leads to an immediate stabilization of

the memory which is assumed to be a consequence of an optimal communication

between the hippocampus and the neocortex. Supporting this idea, the study of (Gais

et al. (2007)) shows increasing functional connectivity between the medial prefrontal

cortex and hippocampus during sleep after learning as compared to wakefulness.

Additionally, neuronal activity in rodents suggests that newly acquired memories are

reactivated during offline periods, preferentially during sleep, because of the absence

of interference from external inputs. For example, studies in which recorded rat

hippocampal place-cells were exposed to their individual place fields, significantly

increased spiking activity was noticed in the cell that was exposed during subsequent

sleeping states, which was not present in the unexposed cell (Pavlides and Winson

(1989)). It has been seen that experience-dependent reactivations are also present in

other brain areas such as the thalamus, putamen, ventral striatum, and neocortex

(Ribeiro et al. (2004)), as well as in other species.

It is suggested that information is replayed during sleep at a faster time scale. In

a study of memory reactivation during sleep in rats, during exploratory behavior in

which encoding phases appear, the neuronal patterns were noisier, less accurate, and

in general at a different firing rate than in sleep (Nádasdy et al. (1999)).

Rodent studies have shown that, during wakefulness, reactivations can occur in a

reversed temporal order. At the termination of a run, place neurons on an elevated

track fired in reverse order, but in anticipation of the run, in forward order. These

bidirectional reactivations during wakefulness may help the establishment of higher-

order episodic associations during learning.(Diba and Buzsáki (2007); Rasch and Born

(2007)). On the other hand, (Ji and Wilson (2007)) show in rats that the temporal firing

sequences observed in cell assemblies of the sensory cortex and the hippocampus

during the exploration of a circular track re-appear in SWS both in the cortex and in

the hippocampus in the same order as they were activated while running. Further-
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more, hippocampal neuronal assemblies that are activated during maze learning are

also reactivated during SWS in the same temporal order as during learning (Maquet

(2000)).

Memory reactivation during wakefulness Studies indicate that memory reactiva-

tion can emerge while the animals are awake i.e. during immobility, grooming, con-

summatory behavior, and task engagement (Schreiner and Staudigl (2020)), but also,

the reactivation of a memory trace is necessary to achieve the subjective experience

of remembering, it is therefore assumed that reactivations can happen in “offline”

periods during the awake state as well as during memory retrieval.

Brain activity during ‘rest’ is significantly affected by a prior learning episode

(Vincent, 2009), and the consolidation of recently learned information is known to

take place over a period of several hours after learning (Albert et al. (2009))

In 2012, Wimber and colleagues presented participants with flickering words at

different frequencies and discovered that when participants correctly recognized a

previously learnt word, the imposed frequencies reappeared (Wimber et al. (2012)).

Later, (Linde-Domingo et al. (2019)) found evidence for memory reactivation of visual

memories during retrieval and investigated their temporal structure. Interestingly, the

order of the reactivation during retrieval was found to be reversed when compared

with encoding.

Memory Reactivation During Sleep The first evidence for memory reactivation dur-

ing sleep came from studies in rodents showing that the firing rates of hippocampal

neurons during behavior, doing exploration of a new environment, tend to correlate

with spontaneous firing rates of the same neurons during subsequent sleep (Lewis

and Bendor (2019); Pavlides and Winson (1989)). Also, during sleep, hippocampal

sequences spontaneously trigger memory reactivation in the neocortex. It is suggested

that the repetition of memory reactivation of neuronal sequences stabilize memories to

long-lasting representation, storing them permanently in neocortical networks. More-

over, fMRI and positron emission tomography investigations of memory reactivation

in humans during sleep revealed that brain activation linked to acquiring different
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memory contents reappears during sleep (Bergmann et al. (2012); Maquet (2000);

Schreiner and Staudigl (2020)); for example, After navigating a virtual maze, the

hippocampus region spontaneously activates again during subsequent sleep, but it

has also been shown for declarative and motor learning (Peigneux et al. (2004)).

The advantage of sleep over wakefulness for memory reactivation to happen is that

the competition from other information processing is minimal. Researchers argue that

communication between the hippocampus and the neocortex has certain advantages

during sleep in terms of proper decontextualization and transfer of information to

extra-hippocampal regions (Witkowski et al. (2020)).

1 .3 sleep and memory consolidation

1.3.1 Functions of Sleep

Sleep is defined behaviorally as “the normal suspension of consciousness” (Purves

(2004)) and is identified by specific patterns of brain activations. Almost one-third

of our lives is spent in sleep and occurs in all mammals, and is considered to be

present in all vertebrates. Sleep is so important that we crave it when deprived of

it. Continued sleep deprivation can be fatal (Purves (2004)). During sleep, animals

do not eat, reproduce, or forage, and are vulnerable to predation. This may lead

us to think that from an evolutionary perspective, the function of sleep is of high

relevance. The harmful consequences of sleep deprivation, which show that sleep

serves purposes that cannot be simply circumvented, reinforce this. (Anafi et al.

(2019)). The clinical importance of sleep is obvious from the prevalence of sleep

disorders, such as insomnias (Purves (2004)). On the premise that if sleep is removed,

its underlying function will also be lost, sleep deprivation experiments have been

used to deduce the function of sleep. On one hand, sleep deprivation has an impact

on both neural and non-neural tissues. Prolonged lack of sleep over several days

can cause a hypermetabolic state, skin damage, multi-organ failure, and ultimately

lead to death. Conversely, sleep is essential for memory formation, brain plasticity,

maintaining neuron health, promoting insulin release and responsiveness, regulating

body temperature, and supporting immune and skin function. Sleep deprivation also
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has associated consequences, such as increased emotional stress, increased muscle

tension, alterations in temperature and dietary changes (Anafi et al. (2019)).

Sleep does not imply a diminution of brain activity. On the contrary, during

REM (rapid eye movement) sleep, the brain is as active as it is during wakefulness

(Purves (2004)) and brain oxygen consumption during sleep can surpass the one

during wakefulness. However, one main function of sleep is to isolate the brain

from the body and the environment (Buzsaki (2006)). Sleep is comprised of carefully

regulated brain states that are managed by a group of brainstem nuclei that have

widespread connections throughout the brain and spinal cord (Purves (2004)).

Sleep architecture and its oscillatory signatures — In humans, at

least four sleep stages with progressively higher wakening threshold can be distin-

guished (Buzsaki (2006)), but sleep consists of two main groups: Non-REM (NREM)

sleep and rapid-eye-movement (REM) sleep, which alternate in a cyclic manner (Diekel-

mann and Born (2010)). NREM involves sleep stages 1 and 2 known as light sleep

and the SWS which is the most representative period, comprising sleep stages 3

and 4. Stage 1 is the phase transition between wake and sleep. It is identified by

relatively low-amplitude electroencephalography (EEG) (as compared to wakefulness)

with mixed frequencies, mainly in the slow alpha and theta range. Stage 2 is marked

by the emergence of k-complexes and sleep spindles. Some delta waves are seen in

stage 2, but constitute less than 20%. Stages 3 and 4 are known as SWS or delta

sleep. Stage 4 is characterized by the dominance of delta activity with only a few

traces of spindles, whereas stage 3 is a mixture of spindles and delta waves (20 to

50%). Stage 4 only accounts for 5–15% of total sleep time and may not even exist

after age 40 (Buzsaki (2006)). In clinical evaluation of sleep scoring, stage 4 of sleep

is omitted and combined with stage 3 (Berry et al. (2017)), although some research

groups consider that stage 4 has substantial differences. In human nocturnal sleep,

SWS is characterized by slow, high-amplitude EEG oscillations (also known as slow-

wave activity, or SWA), which are predominant in the early hours of the night and

decrease in intensity and duration throughout the sleep period. In contrast, rapid-

eye movement sleep (REM sleep), which occurs toward the end of the sleep period
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awakeness and is characterized by fast, low-amplitude oscillations similar to those in

waking, increases in intensity and extent. REM sleep is characterized by increases in

blood pressure, heart rate, and metabolism to levels almost as high as those found in

the awake state. Other significant characteristics of this stage of sleep include rapid

eye movements, pupillary constriction, and the paralysis of numerous major muscle

groups. All animals and at least some birds have been found to have REM sleep.

(Purves (2004)) and composes usually 20-25 percent of total sleep time in human

adults. This sleep stage is an indicator of the end of a NEM/REM sleep cycle (Buzsaki

(2006)).

F igure 1 .5 : The waking state: high-frequency (15–60 Hz) and low-amplitude activity. Stage I: Theta and alpha activity and
increasing amplitude vs awake. Stage II: sleep spindles occurring periodically. Stage III: slower waves at 2–4 Hz and higher
amplitude than previous sleep stages. Stage IV: slow waves at 0.5–2 Hz and the highest amplitude. REM sleep: low-amplitude,
high-frequency activity similar to the awake state. Taken from (Purves (2004)), adapted from (Hobson (1989))

In general, four or five NREM/REM cycles with a period of 70–90 minutes each

occur within a night. All sleep stages occur in a periodic sequence (see Figure 1.6)

(Buzsaki (2006)).

Electrophysiological signatures of NREM Sleep and their relationship with mem-

ory consolidation The periods of NREM sleep are distinguished by slow, rolling eye

movements and reductions in muscle tone, physical movements, heart rate, respira-

tion, blood pressure, metabolic rate, and temperature. All of these parameters reach

their minimum levels during S4 (Purves (2004)). NREM contains sleep stages S1,
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F igure 1 .6 : Physiological changes in a volunteer over time (x-axis) during the various sleep stages in a typical 8-hour sleep
period. Note that stage IV is attained only in the first two cycles. electro-oculogram (EOG) and electromyogram (EMG) activity
are shown in the lower panels. Most eye movements evident in the EOG occur in REM sleep and the greatest EMG activity
occurs during the onset of sleep and just prior to awakening. Taken from (Purves (2004))

S2, and SWS. SWS is more prominent during the first half of the night (Diekelmann

and Born (2010)). S1 is usually very short and is identified by a decrease in the

amplitude of the EEG in which a combination of alpha and theta waves can happen

together. S2 is characterized by sleep spindles and k-complexes. Slow oscillations

(SO) (defined later) can occur as well during S2 but account for less than 20%. Finally,

the SWS is mainly characterized by SO, spindles, and sharp-wave ripples, and usually

is identified by high amplitude in the EEG signal due to the synchronization of large

populations of neurons, and with almost complete absence of eye movements and

reduced muscle tone. Differences between S3 and S4 are established according to the

percentage of SO occurrence. Usually, 20% to 50% of S3 activity is composed of SO,

and SO composes more than 50% of the S4 activity (Wolpert (1969)).

Sleep spindles Regular electroencephalographic oscillations between 10 and 15

Hz that typically last 0.5-2 seconds are referred to as spindle activity. Although they
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are present at a similar level throughout SWS, sleep spindles are more frequently

seen in human sleep stage 2 as distinct waxing and waning spindles (Diekelmann

and Born (2010) ) (see Figure 1.7). After their sporadic onset, the intensity of sleep

spindles increases progressively with the increasing coupling to SO (Buzsaki (2006)).

Spindles are the result of the interaction between GABAergic neurons of the nu-

cleus reticularis, and glutamatergic thalamo-cortical projections. They originate in

the thalamus and are propagated to cortical regions (De Gennaro and Ferrara (2003);

Steriade (2006)). Sleep spindles are located in the prefrontal cortex for learning

word-pairs (Clemens et al. (2005); Schmidt et al. (2006)), in the parietal cortex after

a visuospatial learning task (Clemens et al. (2006)), and motor cortex after motor

learning (Nishida and Walker (2007)). Studies in rats and humans showed an increase

in the spindle density after motor and declarative learning. Further, an increase in

spindle density was correlated with improvement of memory after sleep (e.g. Gais

et al. (2002)). The thalamo-cortical spindles seem to prepare the cortical networks

for long-term storage (Diekelmann and Born (2010)) by driving synaptic Long Term

Potentiation (LTP) as an underlying mechanism of memory consolidation (Rosanova

and Ulrich (2005)).

F igure 1 .7 : The spindles, k-complexes, sharp wave ripples, and SO are the most noticeable field potential oscillations during
NREM sleep. Ponto-geniculo-occipital (PGO) waves and theta activity are markers of REM sleep. Adapted from (Diekelmann
and Born (2010)).
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K-complexes Spindles are frequently preceded by a high-amplitude wave that

has a sharp component in the shape of the letter "K" which is why they are referred

to as K-complexes. This pattern typically occurs during S2 and S3 sleep, periods

in which the occurrence of spindles is higher. K-complexes are associated with a

population burst discharge of cortical neurons projecting to the thalamus (Buzsaki

(2006)). All sensory input modalities can trigger K-complexes, which accounts for

the spatial heterogeneity of K-complex initiation in various cortical regions. (Buzsaki

(2006)).

Sharp Wave Ripples Sharp Wave Ripples (SWR) are characteristic of SWS and

consummatory behavior. They occur irregularly, and are present during immobility,

drinking, eating, showering, but more frequently during SWS. It represents a spread

of excitatory activity in the recurrent CA3 collateral system (Buzsaki (2006)).

SWRs are the most synchronous network pattern in the limbic system, prevalent

during sleep (BuzsÁk (1998)). The hippocampal sharp-wave ripples are associated

with the reactivation of neuron ensembles which were activated during learning

(Buzsáki (1989); Nádasdy et al. (1999); Peyrache et al. (2009); Wilson and McNaughton

(1994)). During one unique ripple, only a small subpopulation of pyramidal neurons

fire (Buzsáki (1989); Csicsvari et al. (2000)), which suggests selectivity. In rats, odor

cue learning produced a robust increase in the number and amplitude of ripple events

(Eschenko et al. (2008)). Moreover in humans, it was possible to correlate the number

of learned images with the number of SWR in the entorhinal and perientorrinal

cortices, which are important output regions of the hippocampus (Axmacher et al.

(2008a)).

Slow Oscillations The SO (<1Hz) are produced in the neocortex and have been

ascribed the role of a time-giving pacemaker inducing global up and down states that

synchronize with the thalamo-cortical sleep spindles and the hippocampal ripples.

Detection of SO is important as they mark the SWS stages of sleep. The SWS is

characterized by being the highest coherent neuronal activity (BuzsÁk (1998)).
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The global up and down states induced by the SO enable, in a temporal frame, the

dialogue between the neocortex and subcortical structures which is necessary for the

memory redistribution (Sirota et al. (2003); Sirota and Buzsáki (2005)). Studies using

transcranial electrical stimulation at 0.75 Hz have shown how induced SO improved

the consolidation of hippocampus-dependent memories, but not those hippocampal-

independent memories (Marshall et al. (2006)).

Coupling of spindles, SWR and SO Consistent findings in different animals

and humans, show how the activity of spindles and ripples increase during the up-

state and is suppressed during the down-state of the SO (Sirota et al. (2003); Sirota

and Buzsáki (2005); Isomura et al. (2006); Mölle et al. (2002);Mölle et al. (2006))).

SWR complexes are also temporally coupled with spindles (Siapas and Wilson (1998);

Wierzynski et al. (2009)). Such ripple-spindle events may have a role in hippocampal-

neocortical communication, as ripples and hippocampal reactivations related to mem-

ory are presented exactly into the excitatory phases of the SO cycle (BuzsÁk (1998);

Mölle and Born (2009); Sirota et al. (2003)). Thus, the feedforward control of SO over

SWR and spindles permits the transfer of information to the neocortex during the

up-state, which favors the induction of persistent synaptic changes, and consequently,

long-term storing the information in the cortex (Diekelmann and Born (2010)) see

Figure 1.8.

Electrophysiological signatures of REM Sleep and their relationship with memory

consolidation In the brain, REM sleep is recognized by ponto-geniculo-occipital

(PGO) waves, theta, and gamma oscillations. Neuroimaging studies in humans have

shown that REM sleep activates the pons, thalamus, limbic areas, and the temporo-

occipital cortices (supporting the appearance of PGO waves), and de-activates the

prefrontal areas (Sasaki, 2012). Theta and gamma oscillations appear during REM

sleep and during exploratory behavior. Interneurons are in phase coupled with both

oscillations (BuzsÁk (1998)).
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F igure 1 .8 : The active system consolidation model introduced in Figure 1.3 asserts that both neocortical and hippocampal
networks encode wakefulness-related events. After Slow Wave Sleep (SWS), slow oscillations cause these representations in
the hippocampus to repeatedly reactivate, synchronized with sharp wave-ripples and thalamo-cortical spindles (a result of the
slow oscillation’s synchronizing feed-forward effect). The slow oscillations coordinate these events, promoting the formation of
ripple-spindle events, which facilitate the effective transfer of the reactivated information from the hippocampus to the neocortex.
When spindle activity occurs during the depolarizing slow oscillation up-state in conjunction with the hippocampal memory
output, cortical networks are more vulnerable to long-lasting synaptic plastic alterations. Taken from (Diekelmann and Born
(2010))

ponto-geniculo-occipital (PGO) waves PGO waves are found during REM in

animals, but they are not clearly identifiable in humans yet. They are propagated

from the brainstem to the lateral geniculate nucleus and the visual cortex and are

representative of bursts of synchronous activity (Diekelmann and Born (2010)). In

rat studies, results show a robust increase of PGOs density in REM sleep for 3 to

4 hours after training for an avoidance task (S. Datta (2000)). An increase in PGO

is associated with an increase of performance of memory post-sleep as well as an

increase of expression of plasticity-related Immediate Early Gene (IEG) activity (Datta

et al. (2008)). REM sleep-dependent consolidation processes appear to be supported

by PGO waves and the theta rhythm of the EEG (Diekelmann and Born (2010)).

Theta oscillations Theta activity (4-8 Hz) is the product of hippocampal systems

which generate extracellular currents. The most prominent are entorhinal afferences

to granular cells and to hippocampal CA1-CA3 pyramidal cells. Theta also is a result

of inhibitory currents in the perisomatic region of pyramidal neurons (Buzsáki et al.

(1983)).

Theta activity occurs during the codification of hippocampal memories and is also

related to emotional memories (Diekelmann and Born (2010)). Some studies show a
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relationship between theta and the neuronal replay of memories in the hippocampus

during REM (Louie and Wilson (2001); Poe et al. (2000)). Poe and coworkers (2000)

show that the place cells which code for a known path are reactivated preferentially

during the theta waves after training (Poe et al. (2000)). In humans, neocortical theta

activity increased during REM after learning word-pairs (Fogel et al. (2007)). Theta

is also related to emotional memories. Nishida et al showed how theta activity in

the right prefrontal cortex was related to emotional memory consolidation (Nishida

et al. (2009)). However, a decrease of REM theta activity was found in mice after

fear conditioning (Hellman and Abel (2007); Nishida et al. (2009)). One interesting

feature of theta is the reduced coherence between limbic-hippocampal and thalamo-

cortical circuits compared to wakefulness and SWS (Axmacher et al. (2008b); Cantero

et al. (2003)) and in a wide range of frequencies, which could be a consequence of

decoupled areas and memory systems (Diekelmann and Born (2010)).

Gamma oscillations Theta usually modulates gamma activity (40-100 Hz). This

activity is present in the hilus and in the vicinity of CA1 and CA3 pyramidal Cells

(Buzsáki et al. (1983)), with a reduced coherence between these two areas (Mont-

gomery et al. (2008)).

Sleep and declarative memory — There are many studies supporting the

fact that the consolidation of hippocampus-dependent memories such as declarative

memory, is especially characteristic of SWS. (Wilson and McNaughton (1994)) showed

that neuronal assemblies activated during maze behavior are reactivated during SWS,

suggesting consolidation. Moreover, hippocampal reactivations were observed in a

study in humans using positron emission tomography (PET) during SWS following

a period of route learning in a virtual environment (Peigneux et al. (2004)). Plihal

and Born conducted an experiment in which subjects learned declarative memory

tasks (spatial rotation task and paired-associate list) and non-declarative memory

tasks (priming task, and mirror-tracing). Here, after retention intervals of early and

late sleep during the night, subjects’ recall was assessed and compared with the

retention during wakefulness. Results showed that declarative memory was better
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improved during early sleep when compared to retention during wakefulness or after

late retention sleep. This result may reflect the influence of SWS on consolidation

because SWS was shown to be more prominent and five times longer during early

sleep than during late sleep (Plihal and Born (1997a, 1999)). Moreover, Aeschbach

and colleagues evaluated the improvement in the performance of subjects in a texture

discrimination task after a Slow Wave Activity (SWA) suppressed sleep. Subjects did

not show improvement, as compared with the control sleep group with unsuppressed

SWS (Aeschbach et al. (2008)).

Although most studies demonstrate the role of SWS in declarative memory con-

solidation, there are some studies that have shown that this phenomenon could be

attributed to REM sleep as well. For example, Fogel et al. showed a significant

increase in theta power after paired associate learning, this being the first evidence of

REM sleep theta’s role in the consolidation of declarative memory (Fogel et al. (2007)).

Supporting this idea, in a REM sleep deprivation, in which a cognitive task was

designed to evaluate factual, spatial, and temporal components of episodic memory,

Supporting this idea, in a cognitive task designed to evaluate factual, spatial, and

temporal components of episodic memory, REM-sleep deprived subjects showed a

significantly lower recall of spatial information as compared to SWS deprived subjects.

Moreover, REM-sleep deprivation caused an impairment of temporal information

recall and significant impairment in true memories related to fewer R responses than

SWS deprivation (Rauchs et al. (2004)).

Sleep and non-declarative memory — There is strong evidence support-

ing that REM sleep benefits non-declarative memories. Maquet and colleagues found

reactivations in the cuneus and premotor cortex during REM sleep in the night fol-

lowing procedural learning of a motor task (Maquet et al. (2000a,b); Maquet (2000)).

In Plihal and Born’s study mentioned above, after learning a declarative memory task

and a procedural memory task, retention intervals of early and late sleep during

the night, subjects’ recall were assessed and compared with the retention during

wakefulness. Findings show that procedural memory was better improved after late

retention sleep. This result may reflect the influence of REM sleep because REM
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sleep was two times longer during late sleep than during early sleep (Plihal and

Born (1997b)). Another similar study compared emotional memory retention using

emotional text material versus neutral text material. In this case, retention improved

with sleep in comparison with wakefulness, specifically for late sleep intervals in

which REM sleep was three times greater than early sleep (Wagner et al. (2001)). In

a study in rats exposed to a conditioned avoidance learning session, after learning

trials, rats had 25.5% more REM sleep in comparison with control trials (Datta (2000)).

Researchers calculated the P-wave density, characteristic of REM sleep, and found a

significant increase in the first four periods of REM sleep after learning. Moreover, the

increase between the first and the third REM periods was proportional to the better

performance after sleep (Datta (2000)).

In contrast to the above results, some studies support the idea of non-declarative

memory consolidation during NREM sleep. In a first study, after training visual tex-

ture discrimination, researchers compared the effects of early and late sleep intervals.

Findings show that discrimination skills were improved in early sleep, but not during

the late sleep interval, suggesting that SWS could drive procedural memory formation

(Gais et al. (2006)). Similar findings are reported by Huber R. and colleagues in which

an increase in SWA is reported in motor cortical areas during sleep after a motor skill

learning (Huber et al. (2004)). Specifically. for NREM sleep Stage 2, Fogel et al. show

an increase in the duration of stage 2 sleep after pursuit motor learning. Researchers

also measured different spindle features as density, average duration which showed

an increase after learning (Fogel et al. (2007)).

1.3.2 Cues to enhance memory consolidation

After a large variety of evidence demonstrating that cues help memory to enter into

the active state from conditioning learning studies, Hars and colleagues did the first

research using cues to induce memory reactivation during sleep in rats in the 1980s

(Hars et al. (1985a); Klinzing and Diekelmann (2019)). In this study, mild non-aversive

electric shocks to the ear were paired with extended aversive foot shocks, so rats

learned to avoid the foot shocks when the stimulation in the ear happened. When the
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shock to the ear was presented again during REM sleep, the avoidance response was

enhanced (Hars et al. (1985b); Klinzing and Diekelmann (2019)).

Rasch and colleagues were the first ones to manipulate reactivations of memory in

humans using a cue (Rasch et al. (2007)). In this study, subjects were presented with an

odor cue while learning a 2-dimensional object location task. When memory retrieval

was tested after sleep, the memory of the card locations was significantly enhanced

when the odor had been presented during SWS as compared to the control condition

involving the presentation of the odor alone without prior association of it to the

memory content during learning as well as compared to cue presentation during

REM sleep. A subsequent functional imaging investigation revealed that re-exposure

to the odor cue during SWS activated the hippocampus after learning (Diekelmann

et al. (2011)). This study shows enhancement with cue re-exposition during SWS, but

not during REM sleep. It also shows a stronger activation of the hippocampus during

sleep than during wakefulness, further supporting the hypothesis that cueing during

SWS is specifically enhancing reactivation processes of memory contents (Rasch et al.

(2007)).

The study of Rasch and colleagues opened a whole research field on Cued Memory

Reactivation (CMR) or Targeted Memory Reactivation (TMR). The studies make use

of particular cues for remembering things that have been experimentally connected to

learning experiences. A common experimental paradigm is depicted in Figure 1.9 in

which participants are trained on a memory task while sensory stimuli are provided.

The memory task and continual cue presentation help students connect the cues to the

context and learning material. The stimuli are then repeated the following night. It is

assumed that the presentation of the cues induce memory reactivation, supported by

the fact that individuals often display improved recall if they received the reminder

signals while they were asleep compared to control (Klinzing and Diekelmann (2019)).

This effectiveness can also last for over a week (Hu et al. (2015)).

Cued memory reactivation (CMR) can be defined as “the application of learning-

associated sensory reminder cues, like odors or sounds, to manipulate memory con-

solidation processes during sleep” (Klinzing and Diekelmann (2019)). CMR is useful
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in research to understand the effects and mechanisms of sleep-associated memory

consolidation and has good potential on clinical and home settings.

F igure 1 .9 : Participants practice a memory task while receiving sensory cues concurrently (indicated in blue). Cues become
linked to the subject matter being learned. All or some of the cues are presented once more as reminders during particular sleep
stages throughout subsequent sleep (e.g., during early SWS, indicated in blue). Following sleep, retrieval of the learned material
is evaluated without the use of cues. Taken from (Klinzing and Diekelmann (2019))

There is another commonly used term called Targeted Memory Reactivation (TMR)

which is applied in relation to the reactivation of single memory traces. TMR usually

uses sounds as stimulus. The first study demonstrating that sounds can also serve

as cues to enhance memory consolidation during sleep was conducted by Rudoy

and colleagues (Rudoy et al. (2009)). In this study, auditory cues were associated

with the learning of a two-dimensional object-location memory task before a nap.

During NREM sleep, subjects were presented with the cue sounds of half of the objects

learned during pre-nap and for the rest of sleep they presented with constant white

noise. During the post-nap test, subjects had better performance at locating the cued

images than locating uncued images. This finding implies that the above procedure

“targets” item-specific content.

Many research conducted over the past ten years employing various learning

styles, cues, subject groups, lengths of sleep, and sleep stages have demonstrated

the efficiency of cued memory reactivation (Klinzing and Diekelmann (2019)). This

effectiveness can last for over a week (Hu et al. (2015)). However, it is unclear how

similar or distinct the neural activations are under different cueing modalities.

The olfactory system has the benefit of reaching the entorhinal cortex and hip-

pocampus more immediately bypassing the thalamus (Zelano and Sobel (2005)). How-

ever, odors act slowly and have no temporal dimension, making it difficult to target
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specific times. Contrarily, the temporal and spectral characteristics of the auditory

system are precise. To facilitate the execution of serial procedural finger movements,

ordered sequences of tones are preferable to scents, which are used as generic context

cues (Klinzing and Diekelmann (2019)), as we explain in the following subsections.

Odor Cues — Most studies on humans use familiar odors for olfactory cues, such

as the scent of roses, mint, orange-vanilla, citrus, or pine. On the contrary, other

studies use unfamiliar odors, like isobutyraldehyde (IBA) (Klinzing and Diekelmann

(2019)).

The studies that prefer olfactory cues argue that using odor as a cue is particularly

advantageous because odor has a negligible impact on the sleep architecture (Badia

et al. (1990); Carskadon and Herz (2004)). Odors do not disturb ongoing sleep pro-

cesses and have been reported to not affect sleep quality either. Moreover, neural

responses to odors are minimal during sleep (Rasch et al. (2007)). On the other hand,

odor activates associated memories with strong potential, since primary olfactory

processing areas project directly to higher order regions (Zelano and Sobel (2005)),

without projecting to the thalamus as compared with other types of stimulus. Conse-

quently, it enables the modulation of hippocampus-dependent declarative memories.

However, none of the studies measured the effectiveness of different odors, but all of

them induced consistent behavioral effects, indicating that they are equally suited for

cued memory reactivation (Klinzing and Diekelmann (2019)).

The first study to use odor cues in humans was performed by Rasch and colleagues

(Rasch et al. (2007)). In this study, they show that odor re-exposure during SWS

was effective for the retention of hippocampus-dependent declarative memories but

ineffective for the retention of hippocampus-independent procedural memories; this

effect was not observed during REM sleep, alertness, or when the odor had been

skipped during earlier learning. This result became one of the strongest evidences of

memory reactivation of declarative memories preferably during SWS. Later in time,

another study evaluated the stability of memories inducing reactivation on differ-

ent brain states using odor cues. Induced reactivation during waking destabilized

memories, but when presented during SWS, memories were immediately stabilized.
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Furthermore, fMRI showed activations of the hippocampus and posterior cortical

regions during reactivation in SWS, and activation of the prefrontal cortex during

reactivation in wakefulness (Diekelmann et al. (2011)). Shanahan and colleagues used

simultaneous EEG-fMRI recording in human subjects during olfactory cueing with

an object-location memory task. Pattern analysis of fMRI recordings showed that

presentation of the odor during sleep induced enhanced activity of the ventromedial

prefrontal cortex correlated with post-sleep task performance, indicating induced

reactivation (Shanahan et al. (2018)).

The amount of sleep and odor cue stimulations seem to have an influence on

the effectiveness of odor-cued memory reactivation. (Diekelmann et al. (2012)) and

colleagues compared the influence of the stimulation period on the consolidation

of previously learned hippocampus-dependent visuospatial memories, showing that

cue-induced memory reactivations during 40-min sleep enhanced memory stability

in the same amount as 90 min of sleep without odor presentation. The time spent in

SWS was also associated with memory enhancement, concluding that the efficacy of

memory consolidation for declarative memories depends on the duration of SWS and

that external cues can accelerate this consolidation process (Diekelmann et al. (2012)).

Along with enhancing explicit knowledge, olfactory cued memory reactivation

while people sleep may also improve the ability to think creatively and solve problems

in situations that are similar to those in real life. This was demonstrated in a study

in which participants were given a challenge that required a creative solution while

being presented with an odor before going to sleep. After cue odor presentation

during sleep, participants were found to be more creative in comparison to the control

groups (different odor, or no odor) (Ritter et al. (2012)).

Odor cues are also used in fear extinction applications. This was shown by Hauner

and colleagues in 2013 where participants underwent olfactory contextual fear con-

ditioning before sleep. Presentation of the odor during SWS helped the stimulus-

specific fear extinction, reducing hippocampal activity and reorganizing the amygdala

ensemble patterns (Hauner et al. (2013)).

Interestingly, the effect of the odor on memory reactivation is not the same for men

and women. When subjects were trained on a serial reaction time task (SRTT) in the
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presence of an odor, and then presented with the same odor or an odorless vehicle

for the control condition during subsequent SWS, the results of the morning test on

their explicit knowledge about the task showed that odor cueing did not significantly

affect overall explicit knowledge. However, they showed differences when analyzing

male and female participants independently (Diekelmann et al. (2016)).

Odors are argued to be less specific and associated with the entire learning experi-

ence triggering the reactivation of a whole set of learning contents and their associated

aspects (Klinzing and Diekelmann (2019)). However, some studies have been able to

describe certain local effects of the odor in the brain and specific associations with the

contents to which they were associated (Bar et al. (2020); Rihm et al. (2014)). In the

study of Rihm and colleagues, participants practiced a visuospatial memory exercise

while an odor was present. The same odor, a new odor, or an unscented vehicle was

provided during subsequent SWS. Only when the same odor was presented during

sleep, there was an improvement in memory. Also, significant increases in frontal

delta and parietal fast spindle power were seen with an increased negative-to-positive

slope of the frontal SO for this condition (Rihm et al. (2014)). On the other hand, Bar

and colleagues showed evidence for spatially local reactivation of memories. In this

study, subjects were presented with words located in a certain visual field location,

and simultaneously they were stimulated with an odor in one nostril. Presenting the

odor in one nostril during sleep induced local memory reactivation specific to the

hemisphere in which the words were cued (Bar et al. (2020)).

Auditory cues — Auditory cues are more specific than odor cues and can be

linked to single learning contexts. One example of the specific use of auditory cues

is the case of the association of the “meow” sound with the picture of a cat (Rudoy

et al. (2009)). This is particularly advantageous since it enables researchers to study

in more detail the memory reactivation, comparing the specific activation brain pat-

terns during the encoding of specific memory contents during their encoding, their

reactivation during sleep as well as. Furthermore, it is possible to include information

of temporally ordered sequences using auditory stimulus (Klinzing and Diekelmann

(2019)). It also gives greater temporal resolution allowing for more accurate time-
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locked analysis of neuronal signals since auditory sensing is more controlled in time

as compared to odor whose sensing might depend on ventilatory activity (Klinzing

and Diekelmann (2019)). Auditory cueing seems to be more versatile in its application

for different types of memory since it is possible to vary different parameters such

as volume, length, sequence, and pitch in a more controlled way as compared to air-

moved odors. However, auditory stimulation can have an impact on sleep architecture

affecting the memory consolidation processes. This can happen because auditory

stimuli evoke event related potentials in the brain that may alter sleep’s ongoing

oscillations (Klinzing and Diekelmann (2019)).

Several human studies used common sounds like "meow," "a dog barking," or "the

clicking of an alarm clock" as auditory cues. Other research used verbal stimuli like

real words, made-up words, foreign language vocabulary, or phrases in an artificial

language. In several experiments, basic tones, musical notes, or tonal sequences, like

melodies, were also used as memory cues. No study directly examined the efficacy of

various auditory signals when it came to olfactory cues. The following is a list of the

findings from these studies. It is still unclear whether some auditory cues are more

effective than others, despite the fact that the majority of auditory cues produced

behavioral effects (Klinzing and Diekelmann (2019)).

Rudoy and colleagues studied for the first time the effect of using auditory CMR.

Auditory cues were presented to the participants during a two-dimensional object-

location memory task before taking a nap. During sleep, subjects were presented

with constant white noise, and during NREM sleep, they were presented with the cue

sounds of half of the objects learned pre-nap. During the post-nap test, subjects had

a better performance at locating the cued images than locating uncued images. Also,

the mean amplitude of the EEG signal from 600ms to 1000ms after the sound onset

was higher when there was less forgetting; thus, as measured by brain potentials,

the degree of recall improvement or deterioration appears to have been influenced

by sound-induced memory processing during sleeping. Based on this observation,

the level in which cues influence the consolidation could be dependent on the level

of attention on these cues. These results show that memory processing during sleep

could be highly specific (Rudoy et al. (2009)).
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Later, in 2012, Van-dongen and colleagues showed that the thalamus and medial

temporal lobe are involved in the reactivation of memories triggered by associated

sounds. In this study, participants learned object-location associations with object-

related sounds. During subsequent SWS, a subset of the associated sound was pre-

sented while participants were recorded with fMRI. Increased right parahippocampal

cortical activation was linked to related noises. The thalamus, bilateral medial tem-

poral lobes, and cerebellar activation in response to sound during sleep were linked

with behavioral outcomes. Additionally, during the retrieval of reactivated memo-

ries, it was positively linked with variations in parahippocampal-medial prefrontal

connectivity (Van Dongen et al. (2012)).

TMR has been proven to be effective independent of the motivation of learning. In

a study, participants learned object-location associations while hearing characteristic

object sounds and associated with a certain reward value. Behavioral performance

was reduced for low-value than high-value associations after 90 min of nap or wake

interval. However, using TMR during nap time, both low and high-value related

memories were “rescued” from forgetting (Oudiette et al. (2013)).

TMR effect during REM sleep has been studied as well for declarative memories.

Revealing enhanced cortical responses during retrieval. When participants learned

pictures of faces, while presented with auditory cues and the same cues were pre-

sented during REM sleep, they enhanced subsequent retrieval performance. fMRI

measurements show that during retrieval, response in a visual area and in a cortical

region of multisensory (auditory-visual) convergence was enhanced (Sterpenich et al.

(2014)).

Another series of studies on declarative memory used TMR during sleep to in-

crease vocabulary learning (Schreiner et al. (2015);Schreiner and Rasch (2015a);Schreiner

and Rasch (2015b)). They cued prior learned Dutch words either during NREM or

during waking. After TMR, Dutch words improved the memory for the German

translation after being presented during sleep and not during waking. This successful

verbal cueing during NREM sleep correlates with frontal negativity in ERPs, higher

frequency of SO, as well as an increase in the right frontal and left parietal oscillatory

theta power (Schreiner and Rasch (2015a)). Furthermore, they proved that during
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sleep, memories are reactivated and more open to integrating new information after

the cue. In a first study, they presented Dutch-German word pairs to the participants.

During sleep memory cues were presented directly followed by either correct or

conflicting auditory feedback or a pure tone. The effect of the cueing was a blocked

memory benefit. This auditory stimulation also removed the characteristic increases in

theta and spindle activity, markers of successful reactivation during sleep (Schreiner

et al. (2015)).

Direct content-stimulus associations seem to be important for TMR. In a study of

Cairney and colleagues, participants were presented with pictures in specific screen

locations simultaneously with a semantically related sound. In a separate task, they

were presented with the same pictures with no screen location association but with

an unrelated word association. During SWS, half of the sounds were replayed again.

TMR enhanced memory recall of picture locations (involving direct cue-memory as-

sociations) but not for picture-word pairs (indirect cue-memory associations). Addi-

tionally, a recall test was performed before sleep, and the TMR showed to benefit the

low accuracy memories before sleep, but not the ones recalled with high accuracy

(Cairney et al. (2016)), being another proof that consolidation via TMR strengthens

memories. In a second experiment, they switched the gender of the verbal auditory

stimuli between the one presented during encoding and the one presented during

sleep. When presented during sleep, the nonidentical verbal cues reduced forgetting

of both cued and uncued associations concluding that "TMR with nonidentical verbal

cues may utilize linguistic decoding mechanisms, resulting in widespread reactivation

across a broad category of memories"(Cairney et al. (2017)).

Another factor contributing to the beneficial effect of TMR is prior learning. (Groch

et al. (2017)) used targeted memory reactivations to evaluate the influence of prior

knowledge to new acquisition of information for successful reactivation and con-

solidation of memories during sleep. They show that cueing benefited memory

retention the next morning only for stimuli related to prior knowledge but not for

stimuli unrelated to prior knowledge. This effect is also seen at an oscillatory level,

specifically for spindle and theta activity that is increased for the prior knowledge

condition vs the non-prior knowledge.
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In 2018, after decoding analysis of EEG data became a common tool, (Cairney et al.

(2018)) introduced a novel paradigm presenting adjective-object and adjective-scene

associations before sleep. Adjectives were presented in an auditory modality. Later

during sleep, they presented some of the already encoded adjectives in addition to

new adjectives. Those ones triggering a memory reactivation evoked an increase in

fast spindles. Also, it was possible to decode the type of memory category linked

to the verbal cue (object or scene) with the data during the induced spindle activity,

which also correlated with the behavioral performance after sleep.

Novel experimental paradigms have been developed in the last years using audi-

tory TMR as a tool. On one hand, TMR with auditory stimulation has been explored

in real-time closed-loop setups. (Shimizu et al. (2018)) developed an EEG-based closed-

loop system to precisely deliver auditory stimulation at the time of down-state to up-

state transitions during NREM sleep. This technique improved significantly spatial

navigation efficiency after sleep that is accompanied by increases in the power of

the fast spindle band. On the other hand, (Simon et al. (2018)) innovated using a

paradigm of forgetting, training participants first to associate the act of forgetting

with an auditory tone (2-s auditory synthesized sound). In a separate task, subjects

learned object-sound location pairings. During SWS, participants were presented with

a subset of the cue sounds paired with the “forgetting tone”. Behavioral results show

an impairment in the recall of the location of the reactivated objects. This approach,

after further validation, could be used in the therapy of phobias in the future.

Other cues — Only one study attempted CMR with tactile cues, in which par-

ticipants were trained on a finger-sequence tapping task using their non-dominant

hand. Later during sleep, subjects were presented with mechanical fingertip stimu-

lation in the same sequence that was presented during learning. Control condition

included an untrained sequence. However, this tactile cueing did not affect motor

skill performance after sleep (Klinzing and Diekelmann (2019); Pereira et al. (2017)).
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1.3.3 Electrophysiological signatures of memory reactivations

Many attempts have been made to describe the way the brain consolidates memory

by memory reactivations. In this section, I describe oscillatory signatures, temporal

signatures, and the localization in the brain mainly by lateralization paradigms of

memory reactivation that are reported in the literature.

Memory reactivations can be described by correlating activity during learning with

the activity either during the retrieval of the same content previously learned, or dur-

ing sleep when memory reactivation is occurring (most of the time, triggered by a cue).

Approaches of univariate and multivariate pattern analysis have been used in order

to describe the memory reactivation signatures. In univariate analysis, the variation

of neural activity between conditions is identified in specific brain regions: electrodes

(in the case of EEG), or voxels (in the case of fMRI). In multivariate analysis, patterns

of activity are identified involving different brain regions. In the case of multivariate

analysis, different approaches were used to describe memory reactivations. Among

them, we have pattern similarity analysis, decoding models, and encoding models.

In Pattern similarity analysis, activity across voxels or sensors is correlated between

conditions (learning vs reactivation); reactivation is detected when the correlation sur-

passes the one between non-corresponding patterns. In decoding models, supervised

models are trained on the neural activity recorded during learning and then tested on

neural activity recorded during memory reactivation states; reactivation is identified

when classification accuracy increases. Finally, for encoding models, mathematical

models are fit to neural data recorded during learning, and reactivation is detected

when the model parameters generalize from learning to reactivation (Favila et al.

(2020b)).

Oscillatory signatures of memory reactivation — Most of the oscil-

latory signatures of memory reactivation are described in sleep studies. The most

relevant oscillatory rhythms appearing during memory reactivation in sleep are slow

waves, delta, theta, and fast spindles.

The relevance of delta is confirmed by the study of (Oudiette et al. (2013)) described

in section 1.3.2, which showed a correlation between memory accuracy for low-value
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objects and frontopolar midline delta power during SWS (See Figure 1A). The rele-

vance of spindles is confirmed by (Antony et al. (2012)) who conducted a study in

which participants learned to play two melodies by pressing four keys in time with

sequences of visual symbols. After a nap, they enhanced relative performance in one

melody, when when it was presented during sleep as compared to the uncued melody.

They only addressed the effectiveness of cueing during SWS recognizing it as critical

for systems memory consolidation. EEG recordings showed a correlation between

reactivation advantage and the percentage time of SWS, as well as with the number

of spindle events at electrode F4. The authors report that, in general, the effect of

spindles was largest over cortical regions contralateral to the hand used to perform

the melodies.

Interestingly, one study showed the need for a silent period after spindle activity to

facilitate memory reactivation. (Farthouat et al. (2017)), studied the effects of auditory

presentations of previously learned material during wakefulness or non-rapid eye

movement (NREM) sleep on memory consolidation. A list of word pairings that were

presented to participants both visually and audibly was learned. Half of the pairs’ first

words were delivered as sounds during the consolidation period (whether the learner

was awake or asleep), followed by either the right pair or the wrong connection. TMR

had beneficial effects on the correct pair cueing but not for the incorrect one only

during wakefulness. Time-frequency analyses showed an early rise of power in the

theta band and a few hundred milliseconds later in the fast spindle band after cue

presentation. The increase in sigma activity (spindle-related) suggests an association

with memory reactivation. However, when presenting the second word immediately

after (either correct or incorrect), the sigma activity is extinguished, suggesting a

necessity for a period of no stimulation after the cue presentation.

Following studies have reproduced the role of both delta and spindles for memory

reactivation. The study of (Rihm et al. (2014)), described in section 1.3.2, showed an

increase in slow oscillation slopes, frontal delta, and parietal spindle power during the

first 10s of an odor cue during SWS. Later, Creery and colleagues conducted a study

in which participants learned to associate each of the images of common objects with

a unique screen location, paired with a characteristic sound. During SWS, half of the



34

F igure 1 .10 : A Shows the correlation between memory accuracy for low-value objects with delta power at frontopolar midline
EEG during SWS in (Oudiette et al. (2013)). B shows the variations in relative EEG power during the last 10 seconds of baseline
and the first 10 seconds of odor-on. Subdelta (0.5–1.5 Hz) and delta (1.5–4.5 Hz) power were calculated in frontal electrodes
(*p < .05, **p < .01). Taken from (Rihm et al. (2014)). C left displays the difference in Slow Wave (SW) power between the cued
(purple, left) and uncued hemisphere on average (gray, right). Lower/higher power in the hemisphere with the cue is indicated
by solid/dashed lines, respectively. **p < 0.01. The scatterplot in C right displays the relationship between the SW power in
the cued hemisphere during odor cueing and post-sleep recall for cued words as a percentage of pre-sleep baseline (as SD of
baseline) (*p < 0.05) Taken from (Bar et al. (2020)).

sounds were presented. EEG analyses revealed that the cueing benefit correlated with

delta power and fast spindle density. Specifically, relative delta power values were

highest for the frontal electrode cluster, and spindle density values were highest for

the parietal cluster (Creery et al. (2015)).

Furthermore, the phase of the SO is important for the reactivation of memory

to happen. In (Batterink et al. (2016)) study, participants learned arbitrary spatial

locations for objects, each one paired with a characteristic sound. Then, during

SWS, half of the sounds were presented. This study was the first to prove that the

memory benefit was predicted by the slow-wave phase in which the stimulation was

presented. Specifically, they show that cueing is most effective during the first half

of the downstate of the SO. Additionally, in another series of studies, using closed-

loop TMR to stimulate during a specific phase of the SO, participants first learned

foreign vocabulary, while presented with a sound. Later during sleep, the sound

was presented during up- and down-states of slow oscillations, respectively, in a

within-subject design. The presentation of cues during the up-states improved recall

performance, which was not the case for the down-states. Electrophysiologically, the

memory reactivation was associated with a characteristic power increase in the theta

and sleep spindle band. The event-related potential associated with TMR in upstate
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F igure 1 .11 : A. Shows the changes in relative EEG power during the first 10 s of odor cue presentation compared with the
last 10 s of baseline. Fast spindle power (13.0–15.0 Hz) is retrieved from parietal electrodes. Taken from (Rihm et al. (2014)).
B. shows the correlation between successful cueing of dutch words and enhanced power in the spindle band **p<.01. Taken
from (Schreiner et al. (2015)). C top shows mean spindle power for SO upstate cueing within the significant clusters shown as
filled black dots in the bottom topoplot comparing remembered vs not-remembered words. Taken from (Göldi et al. (2019)). E.
shows the relationship between spindle density and the cueing benefit. Fast spindle density was averaged over parietal locations.
Taken from (Creery et al. (2015)). F. shows average fast spindle activity in response to later remembered and later forgotten cues
indicated for stimuli related and stimuli not related to prior knowledge. The topographical distribution of the difference in the
Standard error of the mean (SEM) is shown for mean activity in the fast spindle band for a time interval between 1100–1300 ms
after cue onset. Scatterplots indicate the correlation between fast spindle response to remembered cues and the cueing-induced
benefit for stimuli related to prior knowledge. Fast spindle activity was significantly correlated with the cueing-induced benefit.
*p<.05. Taken from (Groch et al. (2017)). G. shows the topography of the resulting cluster of significant spindle power increase,
revealing left-hemisphere specificity of the effect of auditory cueing. Taken from (Cairney et al. (2018))

showed 1 Hz oscillation after cue onset, while down-state TMR seemed to disrupt the

ongoing SO (Göldi et al. (2017, 2019)).

The coupling between SO and spindles is also considered an important signature

of memory reactivations as well. (Bar et al. (2020)) showed that, the cued hemisphere’s

local TMR enhanced the phase-amplitude coupling (PAC) between the SO and sleep

spindles. There was a noticeable difference in the favored phases specifically: in the

cued hemisphere, the chosen phase occurred later than in the uncued hemisphere

(See Figure 3C). More recently, Shreiner and colleagues have explored the role of

the SO phase in memory reactivation using machine learning. In this study, authors

didn’t use TMR, but on the contrary, studied endogenous memory reactivation. For

this, participants acquired associative memories (images with words) before sleep

while recorded with surface EEG. Later, multivariate decoding was used in EEG data

acquired during NREM sleep to capture endogenous memory reactivation. Results

show an increase in decoding AUC during SO-spindle complexes with the precision

of SO-spindle coupling predicting reactivation strength, which also correlated with

memory performance after sleep (Schreiner et al. (2021))(See Figure 3A).
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F igure 1 .12 : A. the top left figure shows the time-frequency representation of all SO-spindle segments (z-scored across
time and the bottom left shows that learning-related brain patterns (objects vs. scenes) were decodable during SO-spindle
complexes (contour lines indicate the extent of the significant cluster, p = 0.016; color range (blue to yellow) represents t-values
against surrogate decoding performance. The topographical figure illustrates the results of a ‘searchlight decoding procedure’,
indicating that bilateral parietal and occipital areas exhibited stimulus category related effects. Top right shows the phases
of the SO-spindle modulation derived from channel Cz, illustrating the clustering of spindle power toward the SO up-state
(rad = 0). Circular-linear correlation analysis between the individual mean SO-spindle coupling phase (circles) and the mean
reactivation strength (area under the curve [AUC] scores; white indicates high classification performance and black indicates
low classification performance) revealed a positive association (r = 0.66; p = 0.011). Bottom right shows reactivation strength
correlated positively with behavioral levels of associative memory consolidation. Taken from (Schreiner et al. (2021)). B. shows
a histogram of participants’ corresponding SO-spindle modulation phases (mean direction = 15°, shown in red). Taken from
(Cairney et al. (2018)). C. depicts phase-amplitude coupling during unilateral odor stimulation in sleep taken from (Bar et al.
(2020)). The left figure displays the hemisphere- and experiment-specific locking of spindle amplitude peaks at SO up-state
phases in frontal EEG electrodes (TMR experiment, black circles; control experiment, light circles; cued hemisphere, purple
circles; uncued hemisphere, gray circles). The preferred phases for each subject are indicated by circles. The preferred phases
histogram for all experiments and hemispheres is represented by green bars. The grand average phase (angle) and vector are
indicated by a red line (radius). The mean normalized preferred phases for the TMR experiment are displayed on the right for
the cued (purple) and uncued (gray) hemispheres. Participants are represented by circles with lines connecting them. In the
cued hemisphere compared to the uncued hemisphere, full/dashed lines denote a later/earlier preferred phase, respectively.
The sleep spindle amplitude in the cued hemisphere peaks later than in the uncued hemisphere in the majority of participants
(15/19) (**p 0.01).

From 2015, a series of experiments showed that auditory cues consistently generate

an ERP resembling a slow oscillation (SO)/k-complex potential. They also reported

an increase in theta power a few hundred milliseconds after auditory cues during

sleep, followed by an increase in the fast spindle band (in the upstate of the evoked

SO) (Schreiner et al. (2015); Schreiner and Rasch (2015b); Cairney et al. (2018))(studies

described in section 1.3.2). From this moment, theta has been included as a marker of

memory reactivation (see Figure 4).

Since 2017 different studies have confirmed the relevance of theta for memory

reactivation. In the study of (Groch et al. (2017)) described in section 1.3.2, authors

show increases in theta and fast spindle power after the cue, for successful cues (stim-

ulus paired with successfully recalled information). Later, in (Schreiner et al. (2018))

study, participants performed a vocabulary-learning task in the evening learning to

associate Dutch words (cues) with German words (targets). During NREM sleep, the
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F igure 1 .13 : A. shows that successful cueing was associated with a more pronounced negativity EEG activity at frontal
electrode sites (representative electrode Fz). The bar plot shows the difference in amplitude of the signal for Losses (words that
were not remembered in the test post-sleep that were in the pre-sleep baseline), Gains (words that were remembered in the test
post-sleep that were not in the pre-sleep baseline), HitHits (words that were remembered in both the test post-sleep and the
pre-sleep baseline), and Missmisses (words that were not remembered at all). On the right, the Event-Related Potential (ERP)
is shown. The waveform quantization time window is represented by the rectangle. The frontal distribution is clearly visible
in the scalp map, which depicts the topographical distribution of the difference between Gains and Losses in the time window
between 800 and 1100 ms. Taken from (Schreiner and Rasch (2015b)) B. shows the time-frequency representation difference map
of responses elicited by old memory cues versus new control adjectives, with the corresponding ERP for old cues superimposed.
Taken from (Cairney et al. (2018))

Dutch words were repeatedly presented and the memory performance was assessed

after sleep. The results show that theta oscillations orchestrate the reactivation of

memories during both wakefulness and sleep following a phase similarity approach.

Specifically, the 5 Hz frequency is an oscillation that reappeared in response to TMR

reminders fluctuating in power at a rate of 1 Hz indicating coordination by slow

oscillations.

The study of (Antony et al. (2018)) described in section 1.3.2, demonstrated novel

rhythmicity to spindles, such that a spindle is more likely to occur about 3-6 seconds

after a previous spindle, and cueing is less effective 3-6 seconds after the occurrence

of a sleep spindle, indicating that there may be a refractory period after sleep spindles

during which the brain is not receptive to outside memory cueing.

In the awake brain, the oscillatory signatures of memory reactivation reinforce the

role of theta in the memory reactivation process. Kerrén and colleagues demonstrate

that the phase of a theta oscillation influences neuronal markers of memory reactiva-

tion in humans. They trained pattern classifiers to detect brain reactivation of previ-
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ously learned word-object correlations. Classifier fidelity fluctuated regularly at 7 or

8 Hz and was modulated by theta phase. Surprisingly, the best classification phase

was moved 180° between encoding and retrieval. There was also high theta phase

consistency approximately 300 ms before the classifier-identified time periods of max-

imal brain memory reactivation (Kerrén et al. (2018)). On another hand, (Staudigl and

Hanslmayr (2019)) conducted a sensory match/mismatch memory paradigm using

temporal pattern analysis in MEG and discovered that neural pattern reinstatement of

MEG activity at 6–8 Hz only improved memory in the match condition and impaired

memory in the mismatch condition for the auditory but not for the visual encoded

words. Michelman and colleagues have also shown an effect in theta. However, in

their case, memory reinstatement was accompanied by a decrease of low-frequency (8

Hz) power and the effects were evident in the visual and auditory domains localized

in their sensory-specific regions. This signature of memory reactivation was observed

early in the first 500 ms after cue onset (Michelmann et al. (2016, 2018)).

Temporal signatures of memory reactivation — Several studies men-

tioned above have a temporal component of the specific signature described. In Figure

5, a compilation of different studies with a similar results is presented. In general, it

is possible to observe that, in the auditory modality, the cues evoke a low-frequency

response similar to a SO or a k-complex, with a theta power increase around the

downstate (500 milliseconds after the cue onset), and a sigma power increase (related

to spindle events) around the upstate (1000 milliseconds after the cue onset), being

consistent across all studies.

Accordingly, (Göldi et al. (2017, 2019)) focused on the time-frequency analysis

between the time points of 0 ms and 2000 ms after stimulus onset. For memory

cues played during the up-state, they observed a significant increase in theta power

for cued words that were remembered vs the non-remembered ones in a topograph-

ical right central distribution. Spindles also revealed a significant increase between

830 and 1770 ms involving all electrodes. In line with these findings, the study of

Schreiner and colleagues in 2021 that identified endogenous memory reactivations

showed that the above-chance classification occurred from 800 to 1200 ms relative to
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F igure 1 .14 : (A) displays a depiction of the electrode F3’s time-frequency. Verbal cues were given at time 0 milliseconds. Post
hoc t-test results (in black) comparing "gains" and "losses" in spindle and theta power are shown in the top and bottom panels,
respectively. Taken from (Schreiner et al. (2015)S). (B,G) In the fast spindle frequency range, time-frequency charts show the
difference between the subsequent memory effect (later remembered stimuli minus later forgotten stimuli) for stimuli linked to
prior knowledge ("priorKnow") and stimuli unrelated to prior knowledge ("noPriorKnow") (B), and in the theta frequency range
(G). Taken from (Groch et al. (2017)). (C) Items that were more easily recalled had spindle powers that were higher post-cue
but lower pre-cue. Significant time intervals (p 0.05) are indicated by horizontal bars. Taken from (Antony et al. (2018)). Using
the corresponding ERP for the old memory cues as a superimposition, (D) displays the time-frequency representation difference
map of responses triggered by old memory cues vs new control adjectives. (E) is identical to (D) After statistical thresholding
(p<0.05, corrected). Take note of the notable rise in fast spindle power (13-16 Hz) between 1.7 and 2.3 s after cue onset. Taken
from (Cairney et al. (2018)). (F) The difference between "Gains" and "Losses" is shown by induced theta power (electrode FC6),
which clearly increases in response to successful cueing. Taken from (Schreiner and Rasch (2015b)). (H) displays the wake
retrieval word-specific phase similarity. Early after cue initiation (t = 0 s), a considerably improved phase similarity during
successful subsequent retrieval was seen in the theta range. The significant cluster’s electrodes’ t-values were added together.
Taken from (Schreiner et al. (2018)). (I) displays the time-frequency representation and ERP that are triggered by the appearance
of auditory memory cues. The unthresholded time-frequency and grand average ERP are shown in the figure (both collapsed
across all channels and then averaged across participants), and they show a significant increase in theta/slow spindle power in
the evoked SO down-state followed by an increase in fast spindle power in the subsequent SO up-state. Taken from (Cairney
et al. (2018)

the SO down-state coinciding with the presence of coupled sleep spindles and that the

stronger the fidelity of the accompanying reactivation signal, the closer the spindles

were nested towards the SO-upstate (Schreiner et al. (2021)).

Despite the specific signatures observed after the onset of cues in TMR, a study

by Schönauer and colleagues in 2017, the first study to use multivariate pattern

classification to decode the type of content that subjects viewed before sleep from

the electrical brain activity during sleep, described global temporal patterns in which

memory reactivations are more likely to happen. They discovered significant, subject-

generalizable patterns in both REM and non-REM sleep. It’s interesting to note

that this processing happens in cycles, and NREM and REM sleep have different

topographical distributions throughout the scalp and relevant frequency ranges. Only

the SWS prediction accuracy, showed a link with memory function (Schönauer et al.

(2017)). Figure 6 depicts the nighttime time history of categorization accuracy.
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F igure 1 .15 : S2, S4, and REM sleep stages all underwent separate analyses. Performance on classification tasks oscillates and
peaks between 3 and 6 hours after learning in all stages. Taken from (Schönauer et al. (2017)).

Apart from the mentioned studies observing temporal patterns of memory reacti-

vation during sleep, most of the studies that focus on temporal patterns of memory

reactivation are described in wakefulness during retrieval. In a study by Wimber et al,

participants were presented with words on flickering backgrounds inducing a brain

response at either 6 or 10 Hz. Later, during a memory test, when successfully recogniz-

ing a word, these frequency signatures emerged in the brain. These early signatures of

memory reactivation happened in the first 500 ms after cue onset (Wimber et al. (2012)).

Later, in 2014, Jafarpour and colleagues showed that MEG brain patterns appearing

during encoding were later replayed during recall. Using CMR (words associated

with pictures), and machine learning classification, they showed that recollection of

images is associated with a replay of brain patterns happening early (180 ms) during

encoding. On the other hand, this replay occurs 500 ms after the onset of the cue

(Jafarpour et al. (2014)). In line with the previous findings, (Johnson et al. (2015))

performed EEG-based pattern-classification analyses using the Multi-Voxel Pattern
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Analysis toolbox to apply multivariate analyses of the EEG, using neural networks

with 2 layers, showed early reactivation of category-specific encoding activity during

cued recall; the incidence of reactivations during a specific retrieval trial seemed to

rise from the pre-stimulus phase to roughly 500 ms after the beginning of the stimulus,

and they then persisted throughout the recording epoch.

Earlier memory reactivation signatures have been shown in 2016, in a study where

participants performed a novel non-spatial reasoning task while being recorded using

MEG. The task required selecting paths through a set of six visual objects. They

trained pattern classifiers on the data recorded during the presentation of visual

objects alone and tested the classifiers on data recorded during periods when no object

was presented (offline periods). In the object-free periods, spontaneously happening

brain patterns in fast sequences lasting on the order of 120 ms were detected (showing

compressed replay) similar to the representations of encoding (Kurth-Nelson et al.

(2016)).

Recently, in 2019, a couple of studies have shown more complex temporal signa-

tures of memory reactivations. In one study, participants were recorded with EEG

while being asked to create word-object associations and later reconstruct the object

as vividly as possible when cued with the word. Once they considered having a

vivid image in mind, they had to press a key. Later, authors used classification to

decode at which time the model is most likely to categorize perceptual and semantic

features correctly. Results show that low-level perceptual features are decoded earlier

than high-level conceptual features from brain activity, but interestingly, this pattern

is reversed during recall, as shown in Figure 7 (Linde-Domingo et al. (2019)). On

another hand, in a series of studies, Liu and colleagues trained participants on a rule

describing object ordering and then presented a new set of objects in randomized

order to evaluate reactivation in a subsequent period of rest. The patterns of reacti-

vation occurred in sequences accelerated in time and reversed their direction after a

reward (Liu et al. (2019)).

Intracranial EEG-based studies evaluating the memory reactivation features dur-

ing recall have provided detailed temporal signatures. Similar results to the study of

Liu et al. were found earlier in 2017 where authors tested the hypothesis of a faster
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F igure 1 .16 : (a) Left panels show variations in ERP group activity (T values) over time in electrodes that formed a significant
cluster when an item was presented, locked to the stimulus’s onset. Line drawings versus pictures are contrasted in the top left
panel, and animate versus lifeless things are contrasted in the bottom left panel. All relevant electrodes in a cluster are shown
with an asterisk in the scale figures that are placed next to each contrast to show the topography of the maximal cluster as
averaged across the significant time window. (b) The right panels, which are time-locked to participant answers, display ERP
group differences (T values) across time in those electrodes that are contained in the most significant clusters during memory
retrieval. The bottom right panel displays the semantic contrast, and the top right panel displays the perceptual contrast.Each
panel has a cluster topography for each comparison, and the temporal extent of important clusters is colored-shaded.

timescale for reinstatement in the human cortex as compared to encodings. Patients

were recorded with implanted electrodes (for seizure monitoring) while performing a

verbal episodic memory task. During reinstatement, they observed that high gamma

activity occurs faster than during encoding using a time-warping algorithm (Liu et al.

(2019)).

In 2011, in a study using intracranial recordings conducted by Manning and col-

leagues, a contiguity effect during free recall is shown. Patients first learned a list

of words. Later, when recalling, the authors identified similar patterns of brain

activity observed during the encoding of the same item, but they were also similar

to the patterns observed during the learning of neighboring list items. This similarity

decreased with positional temporal distance from the learned item. On another

hand, the correlation with behavioral results shows that the individual tendency

to recall list items in temporal proximity relates to this neural signature of context

reinstatement. These effects were particularly strong in temporal lobe recordings

(Manning et al. (2011)). In a similar fashion, in the study of (Folkerts et al. (2018)),

epilepsy patients performed an item recognition task. Authors calculated similarity

of neural activity as a function of lag between items, and also as a function of recency

of the items presented. Results evidenced that only well-remembered items show a
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neural contiguity effect as compared to the not well-remembered ones which showed

an anti-contiguity effect.

Local signatures of memory reactivation — Different experiments con-

sistently showed that the memory reactivation signatures can happen locally in the

brain depending on the location of the neural networks that are activated during

encoding. More specifically, these studies are focused on the lateralization of memory

reactivation. This is the case for the study of (Cousins et al. (2014)), in which authors

subtracted spindle density in left (non-learning) from the right (learning) hemispheres,

to explore regional spindle effects. Results show differences in spindle density be-

tween left and right electrodes as shown in Figure 8. In line with these findings, Cox

and colleagues put participants to learn word-location associations (left and right)

paired with different odors. During sleep, they presented a single odor in order to

selectively reactivate a subset of word locations. The authors found higher amplitude

and number of fast spindle events over posterior brain areas involved in visuospatial

processing, contralateral to the visual field being cued showing hemisphere-specific

changes in neuronal oscillations (Cox et al. (2014)).

F igure 1 .17 : T maps (A–C) illustrating the strong cueing side effects. Significant clusters are denoted by gray solid ovals, and
the significant electrodes within each cluster are denoted by white dots. Contralateral "mirror" clusters are shown in gray dashed
ovals, which are utilized to examine the hemisphere-dependence of cueing side effects in (D–F). (A) In the cue-left condition, a
right parieto-occipital area responded with greater spindle amplitude than in the cue-right condition. (B) The cue-right group’s
spindle amplitude was higher than the cue-left group’s at a left parietal location. (C) More spindle density in the cue-right
group compared to the cue-left group in a left parietal area. (D-F) For each cluster, there are significant crossover interactions
between the cueing side and the hemisphere, indicating that spindle modulations in response to memory cues are bilaterally
symmetrical. Taken from (Cox et al. (2014)). (G) The procedural cueing effect in an experimental group during CUE and NO-
CUE was predicted by the spindle laterality at the central electrodes. Taken from (Cousins et al. (2014))
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In 2016, in a study done by Waldhauser and colleagues, participants were pre-

sented with stimuli to the left or right of fixation at encoding. Later, they performed an

episodic memory test with retrieval cues centered on the screen. Successful retrieval

showed reactivation at 100-200ms characterized by a lateralized alpha/beta (10 – 25

Hz) power decrease in the visual cortex contralateral to the visual field activated at

encoding (Waldhauser et al. (2016)).

Recently in 2019, researchers attempted to decode the content of retrieved mem-

ories in the EEG during sleep. For this, participants learned to associate spatial

locations of visual objects using their left or right hand while presented with cue

sounds. Later, during sleep, subjects were presented with half of the sounds asso-

ciated during learning. Then authors trained a classifier using the sleep EEG data

to predict learning content (focusing on lateralization). Results show a significant

above-chance performance of the classifier and predicted memory performance of the

participants. Specifically, they observed lateralized increased spindle power after cue

presentation of successfully remembered items (Wang et al. (2019)).

More recently, the study of (Bar et al. (2020)), in which volunteers learned to

associate words with left or right visual field locations cued while presented with

an odor and later during sleep were presented with the odor to one nostril only,

showed a local modulation of local (hemispheric) features of memory reactivation. For

example, the EEG showed earlier lateralized activity. Overall, the results show robust

lateralization in the EEG during the task that increases with a learning progression,

supporting unihemispheric memory processes.
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chapter 2

Objectives

2 .1 general objective

To provide a deeper understanding of the role of specific Spatio-temporal patterns of

brain states of memory reactivations in the consolidation of declarative memories in

wakefulness and sleep.

2 .2 specific objectives

• To characterize experimentally and computationally the spatio-temporal pat-

terns of declarative memory reactivations in SWS sleep stages by odor cues,

and to determine the relation between specific reactivation patterns and the

subsequent performance of declarative memory recall in wakefulness.

• To develop a pattern classifier based on EEG signals that would be designed to

identify brain states of memory reactivations during sleep.

• To identify the correlation between the spatio-temporal brain patterns of mem-

ory reactivation and the classifier performance with the consolidation effect

during sleep measured by the post sleep memory performance.
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chapter 3

Hypotheses

• Brain activation patterns corresponding to declarative memory encoding during

wakefulness, in the presence of a discriminating cue, are reactivated in SWS

when the discriminating cue is presented again in sleep evidenced in memory

improvement after sleep.

• It is expected that the memory representation of the declarative memory reacti-

vations in SWS relate to ongoing EEG activity in terms of reactivation-contingent

neural spindles (11-15 Hz) and slow waves (0.5 - 4 Hz).

• Specific temporal and oscillatory features selection can help improve the pattern

classifier accuracy to identify memory reactivations.

• The classifier accuracy to detect memory reactivations will correlate with the

post sleep memory performance.
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chapter 4

Methodology

4 .1 experimental design

The recordings have been done under Prof. Jan Born and Dr. Susanne Diekelmann at

the Department of Medical Psychology and Behavioral Neurobiology at the University

of Tübingen, Germany. The experimental design was developed by Dr. Jens G.

Klinzing. Data were collected by Dr. med. Svenja Hinrichs. The study was approved

by the ethics committee of the medical faculty and the University Clinic Tübingen

(project no .: 072 / 2015BO2).

4.1.1 Experimental paradigm

Figure 4.1 shows a scheme of the general experimental design. Selected participants

were invited for three overnight sessions (Night 0, Night 1, and Night 2) and an MRI

scan session. Night 0 and 1 were separated by 1-14 nights at their home, Night 1 and

2 by 14-28 days. Night 0 was used as a conditioning night in order to allow the subject

to get familiar with sleeping using the entire equipment. Participants did not perform

any tasks and were not presented with an odor during Night 0. They merely wore

the mask and the EEG system to habituate to the laboratory setting.

After the subjects completed both acclimatization night (Night 0) and MRI scan ses-

sion, they participated in the two experimental nights. During Nights 1 and 2, partic-

ipants first performed a finger-tapping Random Reaction Time Task (RRTT) while be-

ing stimulated with an odor fragrance defined as the "Motor task associated odor" or

“Odor M”. Two hours after the RRTT, participants learned a declarative memory task

while being intermittently stimulated with an odor fragrance defined as the "Declara-

tive task associahttps://www.overleaf.com/project/629201a2886fed0d63c33570ted odor"

or “Odor D” via a face mask allowing controlled delivery of fragrances. Resting-

state electroencephalographic recordings (EEG) of 10 minutes were performed before

and after the learning. After the second resting-state recording, participants went to
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sleep and were presented with either of the two previously presented odors during

Slow Wave Sleep (SWS). The presentation of Odor D and Odor M was randomized,

such that half of the subjects received odor M on the first night and odor D on the

second night and vice versa (balanced crossover design). Once participants had slept

for a maximum of 100 minutes and received the minimum number of stimulations

(80 stimulations), the subjects were woken up. After waking up, a film was shown

during a 30-minute break interval to shake off sleep inertia before the subjects learned

an interference task (without odor). This was followed by another 45-minute break

interval with film before the recall test of the declarative memory task. Finally, a last

resting-state recording was performed.

The study began at 7:30 p.m. with an odor familiarization phase in a separate

room, followed by the RRTT. Around 8:15 p.m., the EEG cap was put on. Around

10:30 p.m. the first resting state was performed. The subjects went to bed around

11:30 p.m. The experiment ended between 2:00 and 4:00 am. The subjects slept for the

remaining hours without EEG monitoring and without further tests.

F igure 4 .1 : After the preparatory phase, a two-dimensional object localization task was learned with an olfactory presentation.
In the subsequent sleep phase, in SWS (S3/4), stimulation was again carried out with odor (condition Odor D: Declarative task
associated odor; condition Odor M: motor task associated odor). The subsequent break interval was followed by learning an
interference task and a final test without any further odor presentation.

4.1.2 Participants

Participants between 19 and 25 years of age were recruited on a voluntary basis, based

on their health history and sleep habits. Exclusion criteria of the former were smoking,

a diagnosed psychiatric disorder, ongoing medication, and a body-mass index (BMI)

lower than 25. Exclusion criteria in relation to sleep habits were a normal sleep-wake

rhythm (going to bed between 22:00 and 1:00 a.m. and getting up between 6:00 a.m.
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and 9:00 a.m.) as well as the waiver of shift work. On the days of the experiment,

naps, alcohol, excessive exercise, or extreme stress, as well as caffeine after 2 p.m.

were forbidden. After drop out due to poor sleep quality, a total of 23 subjects were

taken into account for data analysis (11 men and 12 women) aged 19 to 25 years

(22.17 ± 0.41 years; mean ± standard error (SEM)). In the beginning, all subjects were

informed in detail and consented in writing to take part in the study. Each participant

also received compensation of up to 170 euros. A total of 52 subjects participated in

the study. The reasons for exclusion of recorded subjects (n = 29) were: Not enough

deep sleep (n = 14), termination of the experiment for personal or temporal reasons

in the MRI recording (n = 4), sleepless acclimatization night (n = 3), illness (n = 3),

insufficient learning performance (at least 60 % correctly reproduced positions) in

the learning test after 5 repetitions (n = 2), exceeding the maximum sleep time of 60

minutes (n = 1), technical problems (n = 2).

4.1.3 Random Reaction Time Task RRTT

The "Random Reaction Time Task" is a reaction and attention task in which the

displayed key must be pressed as quickly as possible. The task is similar to the

classic "Serial Reaction Time Task", but without repeated patterns, (ie the order of

the keys to be pressed was random). A kind of piano keyboard appeared on the

computer monitor with four keys that alternately turned black. The subjects placed

the four fingers of their leading hand (thumb excluded) on the appropriate keys on

the computer keyboard and were asked to press the correct displayed key as quickly

as possible. When defective pressing the subject was given feedback in the form of

red illuminated keys. The test lasted five minutes twice, with a short break of a

self-selected length. During the entire test, all six keystrokes were stimulated with

the motor-associated odor. There were no learnable sequences in the key sequences.

The goal of the RRTT was only the familiarization of the participants with the motor-

associated odor that is then presented during SWS (if applying for that night) to avoid

a nuisance by an unknown stimulus.
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4.1.4 Declarative memory task

The memory task consisted of an object-localization memory task adapted from the

social game "Concentration" or "Memory". The task involved 15 card pairs for a total

of 30 cards being hidden at first as gray squares in a 5 x 6 matrix defined as the

"default game state".

Two sets of cards were used for the task with different images but the same type

of content (which showed colorful everyday motifs such as animals or cars). In the

two experimental nights, different pictures, motives and positions were used. Card

positions inside each version were the same for all participants. In a randomized

way, one of the versions was presented to the participants on Night 1 while the other

was presented on Night 2. In the interference version of the task, the second card

of each pair was located at a different position than in the main version of the task.

Comparable tasks: (Diekelmann et al. (2012); Rasch and Born (2007); Klinzing et al.

(2016))

Learning — Before going to sleep in Nights 1 and 2, participants learned one

version of the task. For this, in two sequences of 15 card pair presentations, after the

default game state, one card turned face up showing the image for 1 second before the

corresponding card turned up for 3 additional seconds. Afterward, cards were turned

over, and after another 3 seconds, the next card pair was presented in the same way.

Each pair of cards was presented twice (see Figure 4.2A).

Right after observing the location of each pair of images twice, subjects performed

the task themselves. For this, after the default game state, one card was turned up

and the subject had to locate and click on the back of the second corresponding card.

Upon correct selection of the card, a green tick image appeared on the back of the

corresponding image for 1 second. Upon a wrong answer, a red cross appeared on

the back of the selected card for 1 second. Regardless of the correctness of the clicked

card, both cards (the second one being the correct corresponding card) were turned up

for 3 additional seconds after the red cross or green check appeared before returning

to the default game position (see 4.2B). During one run of the task, each type of image

has been presented once. The run was repeated when after 15 trials, the subject had
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a score of correct answers below 60% (learn test). After achieving more than 60% of

correct responses, subjects are considered to have learned the task and were allowed

to go to sleep.

F igure 4 .2 : Memory task.
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Interference task — The interference task was intended to test the stability

of the memory of the learning task, which is why the same memory structure was

used with the same 15 pairs of images. This time, however, the position of the second

card of a pair was changed according to the interference scheme AB, AC (A, B, C

correspond to spatial localization) see (Diekelmann et al. (2012)). Again, the test

subjects had two learning rounds, but this time the learning was only followed by

one direct round of questions (regardless of the performance). During the interference

memory, the subjects wore the odor mask, but no odor was applied.

Post -sleep performance measurement (recall test) — 45 minutes af-

ter interference, participants performed once again a unique run of the original task

learned before sleep, but without repetitions of the run based on correct and wrong

answers and without the feedback of correct and wrong answers for each trial. In the

end only the total accuracy was displayed

4.1.5 Odor delivery

Two odors were used: Citral (C83007, Merck Sigma Aldrich) and Isobutyraldehyde

(abbrev. IBA, 240788, Merck Sigma Aldrich). The odors were neutral, in that they do

not have any reported psychotropic effect and had been assessed with intermediate

valence ratings.

Odors were delivered through PTFE Teflon tubes of >4 mm of inner diameter (ID).

Tubes were connected on one end to an air pump and on the other end to a 12-channel

olfactometer. The olfactometer was built by Dr. Christine Barner based on Rasch et al.

(2007) and instructions found in Lorig (2000). It allowed controlling airflow through

different outlets that could be opened and closed via E-prime software. Each outlet

was connected to a tube of 4 mm ID. Each tube on the other end reached into a

bottle (Duran, 218012417) via a cap with a GL45 aperture and a gas washing system

(Duran, 292271007) containing IBA or Citral diluted in Propanediol (134368, Merck

Sigma Aldrich) to a final concentration of 12 L/mL and 24 L/mL, respectively. For

a negative control condition called “vehicle”, a bottle containing Propanediol alone

was prepared as well. Lastly, a bottle without liquid (referring to the "air bottle") was
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prepared to allow continuous airflow outside of odor stimulation sequences. Outlets

of bottles then converged into one tube reaching a nasal mask (ComfortGel Blue,

Philips). The distance between bottles and the nasal mask was kept at 1.5 m in order

to minimize the travel time of the odors to the participant. All important event time

points were registered in the EEG recordings.

Each type of task (declarative and motor) and each version of the task has been

paired to one odor in a randomized way. The pairing was achieved during the

learning of the tasks by presenting odors in an event-locked manner: When the first

card was faced up, the outlet opening on the olfactometer was switched to odor and

switched back to air when the first and second card was turning down again as shown

in Figure 4.2.

4.1.6 Overnight odor stimulation

During sleep, participants received a constant airflow of 6.7 NL/min of air. Upon Slow

Wave Sleep (SWS) detection, participants were presented with one odor in alternating

windows of 15s of air and vehicle presentation as shown in Box 1. Odor stimulation

commenced after the detection of the initialization of the stable SWS period (specified

as > 20% of slow waves in a 30s time window for at least 2 min) and stopped when

participants shifted from SWS to another sleep stage or woke up.

4.1.7 Electrophysiological recordings

The EEG data was acquired with a 128-electrode high-density EEG (Electrical Geodesics

Inc., Eugene, United States) with a sampling rate of 1000 Hz and referenced to

the mastoids (mean value from both mastoids). In addition, an electromyogram

(EMG) and an electrooculogram (EOG) with a bipolar lead were recorded. For the
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polysomnography evaluation, C3 and C4 (according to the international 10-20 system,

filtered between 0.3 and 35 Hz and with a reduced sampling rate of 200 Hz), as well

as the EMG and EOG were used.

4.1.8 Brain anatomy recordings

Anatomies have been acquired in a MAGNETOM prism shape scanner (Siemens

Healthcare GmbH, Erlangen, Germany), with a 20- channel head coil, and MPRAGE

GRAPPA sequence (176 layers; voxel size: 1.0 x 1.0 x 1.0 mm3 ; Field of view (FoV

/ read) = 256 mm; Repetition time (TR) = 2.3 s; Echo time (TE) = 4.18 ms; Inversion

time (Engl. Inversion time (TI)) = 900ms) used. For this purpose, the test subjects were

again informed in detail orally and in writing form about the risks and side effects.

They were asked explicitly about possible metal in the body and it was ensured that

all answered negatively.

Anatomies were recorded as DICOM files. and transformed into NIfTI using the

Matlab function ’dicm2nii (xiangruili/dicm2nii - File Exchange - MATLAB Central,

2021). Afterward, the NIfTI images were bias-corrected using SPM12’s segmentation

function and a custom MATLAB script. These bias-corrected anatomies were used for

electrode localization and for creating individual forward models for source recon-

struction.

4 .2 data analysis

4.2.1 Sleep scoring

Offline Sleep Scoring was evaluated in SchlafAUS software (Unpublished, non-commercial

software programmed by Dr. Steffen Gais), According to the standard criteria of

Rechtschaffen and Kales (1968). Each 30-s epoch was labeled with one of the fol-

lowing labels: Awake (W), Stage 1, 2, 3, or 4 (S1-S4), REM (rapid eye movement)

sleep (R), Movement Time (MT). “Awake” was marked when more than 50% activity

corresponded to alpha or mixed frequencies in low amplitudes, plus high EMG /

EOG activity. S1 was marked when less than 50% activity corresponded to alpha, and

no spindles or K complexes were seen. S2 was marked once spindles or K complexes
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are seen and/or slow waves with amplitudes higher than 75 V and longer than 0.5s.

S3 was marked when slow waves are seen from 20% to 50% of the 30-sec epoch. S4

was marked when more than 50% of activity corresponded to slow waves. REM

was marked in epochs with low EMG, no slow waves, rapid eye movements. MT

was marked in epochs with more than 50% movement (noise) and was marked only

between two sleep epochs; otherwise, it was marked as awake. The hypnograms were

generated with SchlafAUS and exported from .sls to .txt.

4.2.2 Behavioral data

During the learning period and after images were presented twice, subjects completed

the encoding of images location by “playing” the game. Each run was repeated

until after 15 trials, the subject had a score of correct answers below 60%. The

number of correct responses was identified per run, per subject. After achieving

more than 60% of correct responses, subjects are considered to have learned the task

and were allowed to go to sleep. The percentage of correct responses in the last run

represents the accuracy of learned paired locations before going to sleep. After sleep,

participants were tested in a unique run of the task, without repetitions of the run, as

explained in section 1.1.3. The percentage of correct responses represents the accuracy

of recalled paired locations after sleep. The performance of the subjects was measured

by comparing the accuracy of recalled paired locations (recall test) versus the accuracy

of learned paired locations before going to sleep (learn lest) as a percentage: Recall

Test / Learn Test *100.

4.2.3 Pre-processing of EEG recordings

For all EEG analyses, custom MATLAB scripts were combined with functions from

the EEGLAB toolbox (version 2019.1). As a first step, to remove noise for power

analysis, the EEG signal was filtered with EEGLAB’s bandpass FIR filter with inbuilt

phase-shift correction between 0.1 and 45 Hz. Then, we selected only the time periods

scored as NREM sleep excluding stage 1 of sleep. Noisy channels and artifact periods

were removed (6.88 ± 6.15%); the electrodes located in the face were removed as
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well. In the next step, data were re-referenced to the mastoids. Noisy channels were

recreated by spherical interpolation of neighboring channels. The signal was down-

sampled to 200Hz and finally divided into epochs. All the ensuing EEG analyses were

conducted on the resulting data after these pre-processing steps.

4.2.4 Definition of clusters of channels

For the analysis of activity by brain cortical regions, clusters of channels were prede-

fined as shown in Figure 4.3.
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F igure 4 .3 : Defined clusters of channels

4.2.5 Events detection

Slow Oscillations (SO) — Individual SO events were detected automatically

using a custom script based on the spectral content and duration of delta oscillations

and using an established detection algorithm based on (Klinzing et al. (2016)). In each

channel separately, the EEG signal was band-pass filtered to the delta frequency range

(0.5 - 4 Hz) using a zero-phase filter (an example of a resulting filtered signal is shown
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in Figure 4.4). Negative and positive signal domains were identified by detection of

zero-crossings on the mean amplitude of negative throws as well as the mean peak-

to-peak amplitudes between negative and positive signal half-waves. We defined

SO as oscillations two subsequent positive-to-negative zero-crossings and overpassing

two amplitude-based thresholds: Negative half-waves with negative throws 1.1 times

larger than the mean negative throw amplitude as well as oscillations with a peak-to-

peak amplitude of at least 1.1 times the mean peak-to-peak amplitude were defined

as SO candidates. The selected periods were later evaluated for the duration criteria.

Only SO candidates with consecutive positive-to-negative zero-crossings separated by

0.8 to 2 seconds were considered Slow Oscillations (as marked in green in Figure 4.4).

F igure 4 .4 : The top image shows an example of an epoched raw signal. The bottom plot shows the same piece of the signal
filtered in the delta frequency range (0.5 - 4 Hz). Detected periods of SO are marked in green

Sleep Spindles — Sleep spindles were identified from subjects’ individual beta

band peaks (Purcell et al. (2017)). Fast spindle peaks (mean = 13.79 Hz, std = 0.38 Hz,

across all subjects) were calculated in the central electrodes for each subject separating

fractal and oscillatory components of the whole pre-processed signal (NREM exclud-

ing S1) using Irregular Resampling Auto-Spectral Analysis (IRASA) (Wen and Liu

(2016)) implemented in Fieldtrip Toolbox (Oostenveld et al. (2011)). Figure 4.5 shows

an example of sleep spindle peaks for central (usually located in the fast spindle



59

F igure 4 .5 : Example of individual peak calculation using IRASA

range) and frontal (usually located in the slow spindle range) electrodes. Discrete fast

spindles were detected channel by channel automatically using a MATLAB custom

script based on methods described in (Klinzing et al. (2016)). First, the EEG signal

was filtered with a band-pass width of 3 Hz centered around the detected individual

peak frequency (±1.5Hz). The signal envelope was calculated with a root-mean-square

(RMS) representation of the filtered signal using a sliding window of 0.2 s with a step

size of one sample. Additional smoothing was performed with a sliding-window

average of the same 0.2s size. Time frames were considered as spindle intervals if the

RMS signal exceeded a threshold set at mean + std of the RMS signal of the whole

pre-processed data. Events with a duration between 0.5 s and 3 s were considered

for further analysis (i.e. events marked in red/green in Figure 4.6). Final spindle

event detection was performed using second amplitude thresholding, assuring that

selected events were following bell-like shapes (as shown in Figure 4.6, marked in

green), established at 2.5 standard deviations from the mean RMS signal. Only waves

surpassing the second threshold were considered spindles. See Figure 4.6.

Events ’ feature extraction and validation — For SO and spindles we

extracted different features per event, such as: Start time: first up-down zero crossing

Middle time: down-up zero crossing End time: spindle: negative zero crossing Dura-
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F igure 4 .6 : Spindle detection example

tion: duration from start to end in seconds Maximum time: time of maximum peak

(upstate) Minimum time: time of minimum peak (downstate) Minimum amplitude:

amplitude of minimum (upstate) in uV Maximum amplitude: amplitude of maximum

(downstate) in uV Peak to peak amplitude Peak to peak time: time in seconds from

peak-to-peak.

Overall, spindles and slow oscillations were evaluated in a seven-step and six-step

process respectively. 1. Topographic distribution of the density of detected events,

2. Occurrence of events along hypnogram to see a general trend of sleep/wake-

dependent detection by the algorithm as well as the trend in the power of the events

during recording, 3. Average waveform 4. Time-frequency decomposition of the

raw signal during S2-S4, 5. A number of events per time spent in each sleep/wake

stage, 6. Occurrence of spindles in concert with slow oscillations (phase-coupling

according to the maximum peak of their RMS representation) in S2-S4 sleep and

7. The symmetry of detected events of S2-S4 stages in order to assure that detected

spindles follows a bell-like shape with the maximum peak of their RMS representation

located around the event’s midpoint. Slow oscillations were evaluated the same way

except for symmetry.
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4.2.6 Events-coupling: spindles and SO

For detecting the SO phase at which sleep spindles occur, we used the subset of

SO events detected. For each channel, we band-pass filtered (using a zero-phase

filter between 0.5 and 2Hz) the signal, computed then the Hilbert transformation, and

extracted the phase angle at each point in time of SO events. Sleep spindles that

occur during SO were identified in the next step. For this, we coupled the timestamp

of the maximum amplitude of the spindle RMS signal, to the phase of the SO they

correspond to.

We used the circ_stat toolbox from (Berens (2009)) to determine the preferred

phase of occurrence of spindles during slow oscillations in Odor and Vehicle condi-

tions. We then determined the shift in the SO phase at which spindles occur by taking

the difference between the condition’s preferred phase from the mean of preferred

phases over conditions.

4.2.7 Spectral analysis of spindles around SO

Spectral analysis has been performed on 4s time windows of SO events centered

around SO inflection phase time point using Morlet wavelets of 12 cycles. The range

of frequencies to analyze was centered around each individual fast-spindle peak

using a bandwidth of 10Hz (±5Hz) in steps of 0.05 Hz and including all time points.

The corresponding time-frequency response was normalized to the complete event

using z-score approximation. Events spectrum was averaged across events for each

channel and for each condition (odor and vehicle) per subject and finally, a cluster

permutation-based analysis was performed to identify differences in the spectrum for

SO-spindles complexes at each condition (see statistical analysis section).

4.2.8 Time-frequency analysis

Time-frequency analysis applying Morlet wavelets was implemented in a customized

script using functions of Fieldtrip toolbox (Oostenveld et al. (2011)) as follows: For

each channel separately, we extracted the epochs of Odor and vehicle presentation

(Sequence of one complete epoch corresponds to Off (Air) - Odor On - Off (Air) -
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Vehicle On - Off (Air)). Wavelet analysis was performed using steps of 0.1 seconds

and frequency intervals of 0.5 to 30 Hz in steps of 0.15 Hz (196 bins) and 12 cycles. For

each frequency bin, we normalized the data epoch by epoch using Z-scores in relation

to the complete epoch to reduce artifact effects on the results as suggested in (Grand-

champ and Delorme (2011)). Time-frequency response was then epoched around

odor and around the vehicle separately (5 seconds Off (Air) before odor/vehicle

onset and 25sec after odor/vehicle onset: 15 sec “On” and 10 sec Off (Air)). We

included the period after the odor/vehicle is switched off to incorporate possible

lasting effects of the odor when switched off. Then, for each channel separately, we

took the mean normalized power across all epochs (odor and vehicle independently).

To further quantify the modulation in power as a result of odor cues and to compare

this modulation between conditions, we evaluated the power in the frequency bands

of interest: SW range (0.5-2Hz), delta (1-4Hz), theta (4-8Hz) and fast spindle range

(12-16Hz).

4.2.9 Multivariate Pattern analysis: Machine learning classification for multidimensional

data

Classification using “Raw” signal — Multivariate Pattern analysis was

performed using classification to compare conditions with a customized MATLAB

script and the MPVA-light toolbox functions (Treder (2020)). For this purpose, ker-

nel SVM, k-fold cross-validation (k=5), 10 cross-validations, and z-score preprocess-

ing were performed on different classification approaches using “Raw” signal (pre-

processed data obtained as described in the pre-processing section):

• Subject-dependent (individual accuracies per subject) and subject independent

(one global accuracy based on the combined data of all subjects).

• Classification either using all channels as features or individual classification

channel by channel, obtaining a topographical distribution of accuracies.

• Classification by time segments after odor stimulation onset, to identify if a

specific period of time in the epoch predicts for differences given by declarative

memory consolidation.
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• Classification around SO, spindles, and SO-spindle complexes, to restrict the

information given to the classifier according to the specific events shown to be

relevant to memory reactivation.

Classification using F ilter Bank Common Spatial Pattern (FBCSP)

— Filter Bank Common Spatial Pattern (FBCSP) based on (Ray et al. (2015)) was

applied to the preprocessed EEG data, in order to perform classification to auto-

matic feature extraction from the data separating conditions based on their frequency

and spatial behavior. Subject-dependent classification was performed, for complete

Odor/Vehicle periods, for time segments, as well as for SO events, spindle events,

and SO-spindle complexes, extracting not only the accuracy but also relevant features

in frequency and topography that facilitate discrimination between conditions.

Decoding relevant frequency bands discriminating for declara -

tive memory reactivation — For decoding the relevant frequency bands dis-

criminating for declarative memory reactivation, we used a customized MATLAB

script and the functions of the MPVA-light toolbox (Treder (2020)) to perform time-

frequency classification that allowed us to answer the question: is the discriminative

information of Odor D vs Vehicle confined to specific oscillatory frequencies and

times? In this regard, we used the time-frequency spectra calculated for single epochs,

and classification was performed at each time-frequency bin separately using kernel

SVM, k-fold cross-validation (k=5), and 2 repetitions.

A generalization analysis was performed to answer the question: are represen-

tations shared across time, frequency, or channel locations? To answer this, time

generalization (time x time classification), frequency generalization (frequency x fre-

quency classification), and channel generalization (channel x channel classification)

were applied to the time-frequency response at each channel. In the generalization

analysis, a model is trained for each generalization element and then tested at each

other element. For example, classification across time does not give insight into

whether information is shared across different time points. In time generalization, this

question is answered by training the classifier at a certain time point t. The classifier
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is then tested at the same time point t but it is also tested at all other time points in

the epoch. The same happens with the frequency dimension and with the channel

dimension. The result is a 2D matrix of classification performance, with performance

calculated for each combination of training points and testing points.

4.2.10 Statistical analysis

Sleep architecture — In order to evaluate differences in sleep architecture

comparing both nights, and make sure this is not a factor affecting behavioral or

electrophysiological responses, we calculated the number of epochs scored, labeled,

or assigned to each sleep stage and performed a nonparametric t-test comparing the

percentage of epochs in each sleep stage for Night 1 vs Night 2. Other variables

compared statistically between both nights were: Sleep onset (in minutes), wake

after sleep onset, arousals, and sleep efficiency, defined as the percentage of sleep

after lights out. Furthermore, Pearson’s r and linear regression were performed

for the determination of the highest impacting factors comparing the different sleep

architecture measurements mentioned, as well as the number of odor stimulations

during the night to the memory performance.

Memory performance — A nonparametric t-test was used to measure the mem-

ory retention for each night, with the hypothesis of obtaining better memory per-

formance after the night of sleep in which participants were stimulated with the

declarative memory associated odor (Odor D) than the control odor (Odor M).

Event detection validation — Analysis of variance (1 way ANOVA) was

performed, to compare the number of events detected per sleep stage in NREM sleep.

This analysis allowed us to make sure that the spindle density is higher for sleep stage

2 and then decreases as sleep goes deeper to sleep stage 4. On the other hand, SO

should increase as sleep goes deeper from S2 to S3.

Events features — Event features were compared between odor and vehicle

(when switched on) periods and the significance of differences was determined using
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cluster-based permutation analysis over the scalp electrodes or by parametric t-tests

of event features averaged over pre-defined electrode clusters.

Time -frequency of events — We performed analyses such as time-frequency

comparing stimulation with vehicle and odor ("on") periods for SO-spindle complexes.

For this, we used cluster-based permutation analysis on time-frequency matrices

across the scalp. Thresholds for cluster data point inclusion were set at 0.05.

Correlation of detected events and memory performance — To

identify the relationship between the detected events and the memory performance,

we calculated Pearson’s correlation between the different features of the detected

events for each condition odor conditions (odor “on”, vehicle “on”) and the subjects’

memory performance. Furthermore, Stepwise multiple linear regression analysis was

performed to answer the question of which of the variables best predict performance.

Time -Frequency — In order to identify time-frequency patterns associated with

declarative memory reactivation during sleep, we compared the time-series for Odor

D vs vehicle using a nonparametric bootstrap (permutation-based test) with 10000 per-

mutations for each frequency band, and nonparametric false discovery rate correction,

with an established alpha value being 0.05. This statistical analysis was calculated as

well for the M night, to control for statistical differences as well between Odor M and

vehicle. Finally the same was applied to compare both odor conditions directly (Odor

D vs Odor M)

Correlation of classification accuracy and memory performance

— Subject-dependent classification accuracy has been compared with each subject’s

memory performance using Pearson’s correlation, in order to identify if the capacity

of the classifier to identify electrophysiological differences gives also information

about the behavioral outcome.
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chapter 5

Results

5 .1 sleep architecture and sleep quality

5.1.1 No significant differences in sleep architecture between Cue Odor D and Cue Odor M

presentation during sleep

Figure 5.1 shows the general sleep architecture for both nights representing the per-

centage of time in each sleep stage according to the total time of sleep. No significant

differences were observed for the general sleep architecture, especially in the SWS. S1

is the only sleep staFge reporting a significant difference between both nights, being

shorter for the M Night, although this period has minimal influence on cued memory

reactivation effects.

F igure 5 .1 : List of sleep characteristics during TMR. NREM1-4, Non-Rapid Eye Movement sleep stages 1 to 4; REM, Rapid
Eye Movement sleep; SE, Sleep efficiency; Sleep onset, the latency of first sleep score after lights out; SWS, Slow-wave sleep; TST,
total sleep time; WASO, wake after sleep onset. Sleep efficiency is defined as the percentage of sleep after lights out. Values are
expressed as mean ± standard deviation. Statistics were performed using a non-parametric t-test.
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5 .2 behavioral data results

5.2.1 No significant differences in memory performance between Cue Odor D and Cue Odor

M presentation during sleep.

We found no significant differences in memory performance for D Night as compared

to M Night, which means that participants obtained the same benefit in memory

consolidation either if presented with the cue odor associated with the declarative

memory task (Odor D), or if presented with the non associated odor (cue odor associ-

ated with the motor task, Odor M). Figure 5.2 shows the general memory performance

for both nights and the detailed performance according to memory gains or losses.

F igure 5 .2 : (A) Bar plots represent the general mean and standard deviation performance on the memory task as a measure
of the percentage of the accuracy in the post-sleep test according to the subject’s accuracy achieved during the learning session.
Red dots indicate individual performance in D Night and blue dots indicate individual performance in M Night. Performance
higher than 100% means that subjects’ accuracy after sleep is higher than the accuracy before sleep. (B) Specifies in more detail
the percentage of correct cards located before and after sleep (Hithit), the percentage of missing card locations before and after
sleep (Missmiss), the percentage of cards that were properly located after sleep and were not correct before sleep (Gain), and
the percentage of incorrect card locations after sleep that were correctly located before sleep (Loss). Dots represent individual
performances for D Night (Red), and M Night (Blue).

5.2.2 Memory performance is correlated with the number of stimulation presented during

the night when presenting cue odor M, but not when presenting cue odor D.

In Figure 5.3, the correlation between memory performance and stimulation amount

is presented. We observe a significant correlation between the number of total stim-

ulations and the memory performance for M Night, but not for D Night. Similar is
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seen when calculating this correlation with the total amount of time in which subjects

are stimulated with Odor. Significance improves for D Night when correlating only

with valid stimulations. Odor stimulations are considered valid stimulations if they

belong to a complete sequence of Odor - Vehicle trials without interruption. However,

p values don’t reach values below 0.05 for just valid stimulations.

F igure 5 .3 : (A, B) shows the correlation between memory performance and the number of odor stimulations for D Night (A,
red) and M Night (B, blue). Darker colors represent the total number of odor stimulations, regardless of completed sequences
of odor-vehicle. Lighter colors represent the valid odor stimulations that are considered for further analysis. (C, D) show the
correlation between memory performance and the total time of odor stimulation in minutes for D Night (A, red) and M Night
(B, blue). Each dot indicates individual subject values for all graphs.

5.2.3 Cue odor M can contribute to memory strength, but cue odor D stabilizes memories

and prevents them from being lost or interfered with.

When separating memory performance by Gains (Cards that were correctly located

in the test post-sleep that were not in the pre-sleep learning), Losses (Cards that were

correctly located during learning but were not in the post-sleep test), hithit(Cards

that were correctly located during learning and in the post-sleep test), and miss miss

(Cards that were never located correctly), we observe an inverse correlation between

the percentage of losses and the number of stimulation for D Night that is not seen in
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the M Night. On another hand, we observe a direct correlation between the number

of stimulation and the percentage of hithit cards for D Night that is not occurring for

M Night. M night, however, exhibits a direct correlation in the percentage of gains

versus the number of odor stimulations.

F igure 5 .4 : (A, B, C) show the correlation in D night between the number of odor stimulations and the percentage of Gains
(A), Losses (B), and Hihit (C) of paired card locations. (D, E, F) show the correlation in M night between the number of odor
stimulations and the percentage of Gains (D), Losses (E), and Hihit (F) of paired card locations. Darker colors represent the
total number of odor stimulations, regardless of completed sequences of odor-vehicle. Lighter colors represent the valid odor
stimulations that are considered for further analysis. Each dot indicates individual subject values for all graphs.

5 .3 event -detection validation

5.3.1 Detected SO are predominant in frontal areas, and increase in density as subjects

transit to deeper NREM sleep stages

The topographical distribution of the detected SO events shows a predominance of

the events in the frontal area, being consistent with the literature. Also, the mean

of the EEG data around the SO evidences a clear symmetrical oscillation. Moreover,

the density of detected SO increases significantly as NREM sleep stages increase, as

expected.
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F igure 5 .5 : (A) Shows the topographical distribution of SO density over the night. (B) shows the average of all SO events
detected (C) shows the mean number of detected events per minute for each sleep stage.

5.3.2 Detected Spindles are predominant in central areas and decrease in density as subjects

transit from sleep stage S2 to S4

The topographical distribution of the detected spindle events (fast spindle) shows a

predominance of the events in the central area, being consistent with the literature.

Also, the mean of the EEG data around the spindle evidences a clear symmetrical

oscillation. Moreover, as expected, the density of detected spindles decreases signifi-

cantly as NREM sleep stages progress. Finally, Evaluation of symmetry of individual

events verifies that detected spindles follow a bell-like shape with the maximum

power located towards the midpoint of the events.

F igure 5 .6 : (A) Shows the topographical distribution of spindle density over the night. (B) Shows the average of all spindle
events detected (C) Shows the mean number of detected events per minute for each sleep stage. (D) Evaluation of symmetry
of individual events in order to assure they follow a bell-like shape with the maximum power located towards the midpoint of
events.
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5 .4 event comparison between conditions

5.4.1 Significant differences for detected SO between conditions occur only for the first 7.5

seconds of odor presentation and show an increase in strength of SO for cue Odor D

presentation.

After calculating all the features for each SO detected, and comparing between odor

and vehicle periods, we identified differences between the conditions only if con-

sidering the first half of the stimulation period (0 to 7.5 seconds after the odor onset).

Differences were seen in the occipital lobe with a significant increase in the SO density,

peak to peak amplitude, and slope for odor D presentation as compared to the

vehicle condition. Moreover, the central, temporal, and parietal regions present also

a significant increase in the SO peak to peak amplitude for odor D presentation.

These differences are not evidenced in the odor M condition. Figure 5.7A shows

the mean SO density in the right occipital region showing a significant difference for

D night, but not for M night with an increase in the odor D condition. This increase

happens as well in the occipital and left occipital regions (occipital: p = 0.0763 for D

night, p = 0.4198 for M night. Left occipital: p = 0.0741 for D night, p = 0.4072 for

M night). Figure 5.7B shows the mean SO peak to peak amplitude in the occipital

region showing a significant difference for D night, but not for M night. This increase

happens as well in the left and right occipital regions (left occipital: p = 0.0721 for

D night, p = 0.8805 for M night. Right occipital: p = 0.0229* for D night, p = 0.5855

for M night). Figure 5.7C shows the mean SO slope in the occipital region showing a

significant difference for D night, but not for M night.

Figure 5.7B shows the mean SO peak to peak amplitude in the left central, left

parietal, and left temporal regions showing a significant difference for D night, but

not for M night with an increase in the odor D condition. This increase happens as

well in the central, parietal, and right parietal regions (central: p = 0.0798 for D night,

p = 0.3246 for M night. Parietal: p = 0.0381* for D night, p = 0.5526 for M night. Right

parietal: p = 0.0576 for D night, p = 0.3644 for M night).
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F igure 5 .7 : Changes in SO features are shown for D Night (top figures, red) and M Night (bottom figures, blue) between
vehicle stimulation periods (black) and odor stimulation periods (red/blue), taking only the first 7.5 seconds of stimulation (first
half). In green, periods of a significant trend are marked. Main effects were observed in SO density (A), SO peak to peak
amplitude (B), and SO slope (C).

5.4.2 Significant differences for detected Spindles between conditions occur mainly for the

first 7.5 seconds of odor presentation and show an increase in strength of spindles for

cue Odor D presentation

After calculating all the features for each spindle detected, and comparing between

odor and vehicle periods, we identified differences between the conditions mostly

if considering the first half of the stimulation period (0 to 7.5 seconds after the odor

onset). Differences were seen in the parieto-occipital region with a significant increase

in the spindle density, and in the frontotemporal region with a significant increase

in the spindle peak to peak amplitude. Additionally, the frontal region presents a

difference in the spindle duration with a significant increase for the odor D condition.

These differences are not evidenced in the odor M condition. The only significant

difference observed in the complete stimulation period (0 to 15 seconds after odor

onset) occurs in the left temporal region with a significant decrease in spindle peak to

peak amplitude for the odor M condition in M night.

Figure 5.8A shows the mean spindle density in the right parietal and left occipital

regions showing a difference for D night, but not for M night with an increase in the

odor D condition. This increase trend happens as well in the left parietal and parietal
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regions (left parietal: p = 0.0695 for D night, p = 0.2087 for M night. Parietal: p =

0.0229* for D night, p = 0.5855 for M night). Figure 5.8B shows the mean spindle

duration in the frontal region showing a significant difference for D night, but not for

M night with an increase in the odor D. This increase happens as well in the left and

right frontal regions (left frontal: p = 0.0521 for D night, p = 0.0664 for M night. Right

frontal: p = 0.0743 for D night, p = 0.4552 for M night). Figure 5.8C shows the mean

spindle peak to peak amplitude in the frontal and left temporal regions showing a

significant difference for D night, but not for M night with an increase in the odor D.

This increase happens as well in the right frontal region (p = 0.0493* for D night, p =

0.7799 for M night).

F igure 5 .8 : Changes in Spindle features are shown for D Night (top figures, red) and M Night (bottom figures, blue) between
vehicle stimulation periods (black) and odor stimulation periods (red, blue), taking only the first 7.5 seconds of stimulation (first
half). In green, periods of a significant trend are marked. Main effects were observed in Spindle density (A), spindle duration
(B), and Spindle peak-to-peak amplitude (C).
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5.4.3 Cluster permutation-based statistics reveal a significant decrease in SO duration for

right-frontal electrodes and a significant increase in SO amplitude in parieto-occipital

channels during the first 7.5 seconds of odor presentation for cue odor D

Cluster permutation-based statistics reveal a significant decrease in SO duration for

right-frontal electrodes. However when calculating for the second half of odor stim-

ulation (7.5 to 15 seconds after odor onset) there is an inverse effect in SO duration

showing an increase for odor D in frontal electrodes with a p-value of 0.0608. This SO

behavior occurs in D night, but not in M night.

Results also show a significant increase in SO peak to peak amplitude in parieto-

occipital channels during the first 7.5 seconds of odor presentation for cue odor D.

This increase is not evidenced in M Night. Finally, spindles only show a close to a

significant increase in right frontocentral electrodes with a p-value of 0.0548 for odor

D condition in the first 7.5 seconds of stimulation, an effect that is not evidenced in

the odor M condition.

F igure 5 .9 : Topographical maps represent the difference in event features between Odor and Vehicle (Odor - Vehicle). Red
dots mark clusters of channels with p < 0.05. Orange dots mark clusters of channels with 0.05 < p < 0.1. Only features showing
significant clusters of channels are shown.
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5 .5 event coupling comparison between conditions

5.5.1 Spindles coupled with SO present a significant shift in the preferred phase of occurrence

closer to the upstate of the SO for cue Odor D in central and occipital regions as

compared to the Vehicle

Analyzing the typical phase of SOs at which sleep spindles preferentially occurred

during odor-on intervals, we observed tight locking of spindles around SO up-states

that are significant in central and occipital regions. In Figure 5.10 it is possible to

observe the mean and standard deviation preferred SOs phase at which spindles

occur.

F igure 5 .10 : The coupling of spindles with SO is shown for D night (top figures, red) and M night (bottom figures, blue).
Polar plots show the density of spindles occurring at each SO phase (green bars). Long lines indicate the mean of the phase
at which spindles occur (preferred phase) and std is represented as the shaded area. Next to each polar plot, the mean and
standard deviation of the distance to the mean angle is shown comparing the vehicle (black) and odor (red, blue) conditions.
In green, p values below 0.05 are marked. Only brain cortical areas showing significant differences in the preferred phase are
shown.
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5 .6 time -frequency response

5.6.1 The average time-frequency response shows a significant difference in spindle power

after 2.5 seconds of odor onset and in the SW frequencies between 10-12 seconds and

between 15-20 seconds when comparing odor versus vehicle for D night and not for M

night.

The average time-frequency response observed in Figure 5.11 shows the highest signif-

icant increase in the spindle frequency band 2.5 seconds after the odor onset versus the

vehicle onset. The SW frequencies, on the other hand, show a significant decrease in

power around 10 seconds after the odor onset. Furthermore, once the odor stimulation

is interrupted, the vehicle (control) condition shows an increase in power for the

SW band maintaining a significant difference with the Odor D condition that is

decreased. All mentioned significant differences are not observed for the M night

when comparing odor M vs vehicle.

It is also important to mention the increase in the SW, delta, and theta power just

right after the odor onset in the odor D condition; a response that is not observed for

any other condition, although for this case, it does not fulfill the significance criteria.
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F igure 5 .11 : Time-frequency responses are shown for D night (left) and M Night (Right). TF for odor and vehicle periods are
shown on top and z-scored time series of power at selected frequency bands are shown below (red for Odor D, blue for Odor M,
and black for Vehicle), represented by the mean across subjects (continuous line) and SEM (shaded areas). Significant differences
after a nonparametric permutation-based test and FDR correction are shown as gray transparent bars. The orange lines in the
x-axis indicate the stimulation period in which the odor is released, outside this area, valves are closed allowing airflow only.

5.6.2 The average time-frequency response by regions of interest, evidence different timing of

CMR effect in different cortical areas

When averaging the time-frequency response by clusters of channels, we evidence

different timing of significant differences between conditions.

The SW frequency band shows a significant difference between odor D and vehicle

first in the occipital region with a decrease in power for the odor D condition around
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10 seconds until 12.5 seconds after odor onset. This significant difference is also

observed in the right temporal region with a shorter duration. Moving to the parietal

region, it is possible to see the same significant difference after 10 seconds, which

reappears around 17 seconds with an increase in power for the vehicle condition.

The frontal, central and left-temporal regions, on the other hand, show a significant

difference later than the posterior region, between 15 and 20 seconds after odor onset

(just right after odor termination). In this case, the increase in power for the vehicle

condition is more pronounced.

The delta frequency band shows no significant difference in the occipital region,

nor in the right temporal region. The left temporal, parietal, and central regions

exhibit a significant difference between 15 and 20 seconds after odor onset (just right

after odor termination) with an increase in power for the vehicle conditions and a

decrease in power for the odor D condition. Furthermore, a significant increase

around odor onset is observed very short in the left temporal and parietal regions,

but more robust in the central region. Finally, the frontal area shows a significant

difference in delta power for multiple time points, first at 4 seconds, then around 10

seconds, and finally around 15 seconds after odor onset.

The theta and spindle frequency bands present more confounding results, but in

general perspective, we observe a significant increase in theta power around the odor

onset in the central, and occipital regions for the odor D condition, and a decrease in

the right temporal region around 12 seconds after odor onset for the same condition.

The spindle frequency band shows a significant increase for the odor D condition at

2.5 seconds after odor onset only in the occipital region.

Importantly, the time-frequency analysis for M night has no significant differences

in the time series for the different frequency bands at any region of interest when

comparing odor M vs vehicle (results not shown).
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F igure 5 .12 : Time series of z-scored power at selected frequency bands are shown for D night in different regions of interest
for Odor D (red), and Vehicle (black). Time series represents the mean across subjects (continuous line) and SEM (shaded areas).
Significant differences after a nonparametric permutation-based test and FDR correction are shown as gray transparent bars.
The orange lines in the x-axis, indicate the stimulation period in which the odor is released, outside this area, valves are closed
allowing airflow only. Time series for Odor M Night don’t show significant differences between Odor and Vehicle.
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5.6.3 The average time-frequency response when comparing odor D versus odor M shows

significant differences in theta power around the odor onset, and 4 seconds previous to

the odor onset, with an inverse response

F igure 5 .13 : TF for odor D and Odor M periods are shown on top and z-scored time series of power at selected frequency
bands are shown below (red for Odor D, and blue for Odor M), represented by the mean across subjects (continuous line) and
SEM (shaded areas). Significant differences after a nonparametric permutation-based test and FDR correction are shown as gray
transparent bars. The orange lines in the x-axis, indicate the stimulation period in which the odor is released, outside this area,
valves are closed allowing airflow only.

The averaged time-frequency response observed in Figure 5.13 shows that the odor D

condition exhibits an increase in the theta frequency band around the odor onset as

compared to the odor M condition. This effect is inverted 4 seconds before the odor
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onset, in which the odor M condition time series for theta power increase and the

odor M one decreases.

F igure 5 .14 : Time series of z-scored power at selected frequency bands are shown in different regions of interest for Odor D
(red), and Odor M (blue). Time series represents the mean across subjects (continuous line) and SEM (shaded areas). Significant
differences between odor conditions after a nonparametric permutation-based test and FDR correction are shown as gray
transparent bars. The orange lines in the x-axis, indicate the stimulation period in which the odor is released, outside this
area, valves are closed allowing airflow only.

5.6.4 The average time-frequency response by regions of interest shows a significant differ-

ence in theta power in frontal and central regions and a significant difference in SW

power at left central parietal regions

When averaging the time-frequency response by clusters of channels, we evidence a

significant difference in theta power in frontal and central regions around the odor
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onset and a significant difference in SW power at left central parietal regions after

10 seconds from the odor onset. In particular, the significant difference around the

odor onset reveals an increase in theta power for the odor D condition as compared

to the odor M condition consistent in frontal and central regions. This response is

also seen in the delta band for the central cluster of channels. On the other hand,

left centroparietal areas reveal a significant difference between odor D and odor M

around 11 seconds after odor onset, with a relative decrease in odor D condition and

a relative increase in the odor M condition.

5 .7 evolution of cmr effect over trials

5.7.1 Theta reveals a significant increase in power around the odor onset over trials in the

frontal area for CMR

After calculating the theta power around the odor onset (-1 to 1 seconds), and doing a

linear regression to identify the evolution over trials, the slope of the linear regression

shows an increase of theta power across trials for the odor D condition in the frontal

area. Particularly this increase is stronger in left frontal electrodes when comparing

odor D vs vehicle. This increase is even stronger and located prominently in frontal

and temporal channels when comparing odor D vs odor M. On another hand, if we

compare odor M vs vehicle there is a significant decrease in the slope for occipital

areas for odor D vs vehicle.
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F igure 5 .15 : Topographical maps represent the evolution of theta power at odor onset over the trials for D Night (left) and
M Night (right). The bottom figures show the difference in theta power slope across trials between odor and vehicle. The top
figures show confidence (1-p) values when calculating significance across subjects above an established threshold of 0.95. Darker
dots represent the electrodes that maintain significance after cluster permutation statistics.

F igure 5 .16 : Topographical maps represent the evolution of theta power at odor onset over the trials for Odor conditions (left)
and Vehicle conditions (right). The bottom figures show the difference in theta power slope across trials between conditions. The
top figures show confidence (1-p) values when calculating significance across subjects above an established threshold of 0.95.
Darker dots represent the electrodes that maintain significance after cluster permutation statistics.
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5.7.2 SO density calculated during the first 5 seconds of odor stimulation increases in power

over trials for the parieto-occipital regions

After calculating the SO density during the first 5 seconds of odor onset, and doing a

linear regression to identify the evolution over trials, the slope of the linear regression

shows an increase of SO density over parieto-occipital channels when comparing odor

D versus vehicle. This significant difference is not observed when comparing odor M

versus vehicle.

F igure 5 .17 : Topographical maps represent the evolution of SO density during the first 5 seconds of stimulation over the
trials for D Night (left) and M Night (right). Figures show the difference in SO density slope calculated across trials between
conditions. Red dots represent the electrodes that maintain significance after cluster permutation statistics.

5 .8 machine learning classification results

5.8.1 Classification between Odor versus vehicle increases accuracy when selecting the signal

around Slow Oscillations, compared to using the entire trial for both classification

approaches.

After performing the classification of Odor versus Vehicle trials, the accuracy is close

to the chance (50%) either using subject-dependent or subject-independent classifica-

tion. However, when the period of interest is changed to the time windows where SO

occurs (taking an interval of -1 to 1 s of the SO middle point), the subject-dependent

classification accuracy increases for both FBCSP and MVPA-light approaches (see 4).

Since the entire trial had 15s in length and the SO minitrials had 2s in length, to

control for differences due to the length of the trial, a second analysis was performed

using small time windows of 2 seconds in random times within the trial coinciding or

not with a SO. The resulting accuracies stayed at the chance level (results not shown).
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F igure 5 .18 : The top panels show the classification results using the FBCSP approach, and the bottom panels show the
classification results using the MVPA-light approach. Panels on the left side show classification results using entire stimulation
trials (subject-dependent and subject-independent classification). Panels on the right side show classification results using time
windows around the SO (subject-dependent and subject-independent classification).
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chapter 6

Discussion

Having no differences in sleep architecture assures that we have similar sleep charac-

teristics across nights making them comparable for the following analyses. The only

exception was the S1 sleep stage. However, S1 is the stage of the shortest duration

where no CMR occurred. Also, memory consolidation has been reported to be specific

to deeper NREM sleep stages as well as to REM sleep assuring that the difference in S1

should not interfere with any brain patterns associated with memory consolidation.

The result in memory performance contradicts our hypothesis that assumes a

better memory performance in the Odor D night as compared to the M night as

Rihm and colleagues reported in 2014 (Rihm et al. (2014)). However, differences exist

in the experimental design, as in our study we use an interference learning right

after sleep in order to better quantify the consolidation effect through the night. The

interference task prevents ceiling effects in the performance and tests for stability

against interfering information instead of just memory strength. Further analyses

show a correlation between memory performance and the number of stimulations

presented for M night, but not for D night. This result may be contradictory if we

assume that every odor stimulation causes an equal effect on memory consolidation.

However, the number of odor stimulations is similar for both nights, as well as

the memory performance, which could make us think that independently of the

amount of cue odor D presented, the consolidation effect may be higher for each

odor presentation, as compared to the cue odor M. Moreover, when correlating the

memory performance if we separate gains, losses, and hithit results, it is possible to

see that stimulation with odor D during the night protects memories from being lost,

which confirms the role of the CMR in stabilizing memories.

Significant differences for detected SOs and detected spindles between conditions

occur during the first 7.5 seconds of odor presentation. This result indicates that the

CMR effect is successful for the first seconds of stimulation but after this time window,

there is a need for a silent plastic period as suggested in (Farthouat et al. (2017)).
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These significant differences show, in general, an increase in the SO strength for the

CMR, according to the measurements in density, peak to peak amplitude, and slope.

This increase is mostly evidenced in posterior regions. For the case of the spindle

events, we observe an increase in strength as well induced by CMR, in measurements

of density, duration, and peak-to-peak amplitude. The increase in spindle density

is observed in posterior regions (probably linked to the SO occurrence), but the

increase in spindle duration and peak to peak amplitude happen more anteriorly,

in frontal areas. Taken together, these results confirm the role of SOs and spindles

in memory reactivation, and position both types of events as a substantial signature

of memory consolidation by memory reactivations as previously described in the

literature. Moreover, in our results, we observe that spindles are tightly coupled with

SOs upstate for the odor D condition reaffirming that the coupling between SOs and

spindles is also an important signature in memory reactivation.

Time-frequency response evidence the role of a variety of frequency bands in

memory reactivation. On one hand, our results evidence an increase in SW, delta, and

theta around the odor onset for the odor D condition, but the significant differences

with the odor M appear after 10 seconds of odor presentation where the power drops

for lower frequencies. CMR prevents the increase in power after 10 seconds that is

observed for vehicle conditions. This effect is stronger between 15 and 20 seconds

after odor onset, an effect that is reproduced in (Bar et al., 2020) cued hemisphere

versus uncued hemisphere. On another hand, delta power shows a peak around odor

onset and a second peak around 7.5 seconds after odor onset, followed by a significant

decrease in power in centroparietal regions around 15 to 20 seconds after odor onset.

It is surprising to have an effect on low-frequency power after many seconds of odor

presentation, and in our case, even when the odor stimulation is interrupted. One

explanation for this could be also related to the necessity of a silent plastic period after

memory reactivation occurrence, and a necessity for the brain to balance the increase

in power produced during the first seconds after the odor onset, a phenomenon that

moves from posterior to anterior cortical areas.
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The spindle frequency band also pops up in the time-frequency analysis. However,

for the case of spindles, the significant difference seems to be particular to the occipital

channels with an increase in power after 2.5 seconds of odor onset.

The effect on theta is stronger when comparing time series of power change

between odor D and odor M. This effect is particularly prominent around the odor

onset and is consistent in anterior cortical regions.

The effect in theta and in low-frequency bands so close to the odor onset might be

arguable due to the fact that the odor takes time to reach the subject when the valves

are open, and the odor perception may vary as well according to the breathing cycle

of the subject. This means that the odor can reach the subject even 3 seconds after

the odor is released from the olfactometer. For this reason, we decided to answer the

question of whether the brain is able to learn and anticipate the periodicity of the

odor presentation and react accordingly inducing a memory reactivation. We then

reported the evolution over trials of the power in theta calculated around the odor

onset period. Interestingly, results show an increase in power over trials for frontal

areas. This increase in power over trials is even stronger when comparing odor D

vs odor M involving frontal, but also temporal regions, especially the left-temporal

region. Furthermore, we were interested in exploring the evolution over trials in

other markers of memory reactivation as the SO density. For this case, we observed

an increase in SO density over trials for the first 5 seconds of odor presentation in

parieto-occipital regions that is not observed in the control night.

In summary, our results confirm the role of the SO, spindles, and theta in memory

reactivations. Moreover, our results provide evidence of the evolution over trials in

different memory reactivation markers that can be induced by a periodicity in the cue

stimuli presentation.

Finally, the results obtained from the machine learning classification tell us about

the relevance of the time window around the SO to decode memory reactivation

processes. The fact that classification was better in the subject-dependent classification

than the subject-independent classification opens the question of the individuality of

the brain patterns associated with memory consolidation that occurs within the SO

time window.
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