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Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, December 2021
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ABSTRACT

Platooning of connected and automated vehicles (CAVs) has received extensive inter-

est due to its potential to improve road traffic. In this context, multi-lane platoons have

appeared as a generalized version of the classical train-like platoon structure used in the

early platoon implementations from the 80s. Multi-lane platoons add structural flexibility

to perform complex inter-vehicle maneuvers such as lane changes, coordination during

bottlenecks, among others. Nonetheless, these advantages are at the price of more intri-

cate internal dynamics. This work addresses motion planning in tight multi-lane platoons

using distributed techniques that make use of a graph theoretical formulation of platoon

formations, for reference generation, and distributed non-linear model predictive control,

for vehicle command. The effectiveness of the proposed approaches is tested by simulat-

ing a variety of scenarios with progressive complexity, where it is shown that graph-based

distributed approaches inherently promote cooperation within vehicles. Moreover, the

second proposed approach, denominated incremental approach, is robust to sensor biases.

Keywords: Distributed control, Platooning, Motion planning
ix



RESUMEN

Platooning o coordinación en pelotones de vehı́culos conectados y automatizados

(CAVs, por sus siglas en inglés) han recibido un gran interés debido a su potencial para

mejorar el tráfico. En este contexto, los pelotones de múltiples carriles han aparecido como

una versión generalizada de la estructura clásica de pelotón similar a un tren utilizada en

las primeras implementaciones de los años 80. Los pelotones de múltiples carriles agre-

gan flexibilidad estructural para realizar maniobras complejas entre vehı́culos, tales como

cambios de carril, coordinación durante cuellos de botella, entre otros. No obstante, es-

tas ventajas tienen el precio de una dinámica interna más intrincada. Este trabajo aborda

la planificación del movimiento en pelotones estrechos de múltiples carriles utilizando

técnicas distribuidas que hacen uso de una formulación teórica en base a grafos de forma-

ciones de pelotones, para la generación de referencias, y el control predictivo distribuido

no lineal, para el comando de vehı́culos. La efectividad de los enfoques propuestos se

prueba mediante la simulación de una variedad de escenarios con complejidad progresiva,

donde se muestra que los enfoques distribuidos basados en grafos promueven inherente-

mente la cooperación entre de los vehı́culos. Además, el segundo enfoque propuesto,

denominado enfoque incremental, es robusto ante posibles sesgos de los sensores.

Palabras Claves: Control distribuido, Coordinación en pelotones, Planificación de movimiento

x



1. INTRODUCTION

1.1. Motivation

In the last decades, the automotive industry has been working intensively in develop-

ing the first fully functional autonomous vehicle. When operational, these vehicles, also

known as connected and automated vehicles (CAVs), will communicate and collaborate,

which is expected to improve drivers’ efficiency, response, and comfort while enhancing

safety and mobility. Furthermore, CAVs could improve road traffic, achieving efficiencies

out of the reach of manually operated vehicle systems (Talebpour & Mahmassani, 2016).

In the context of CAVs, one of the simplest forms of collaboration is platooning.

The earliest platooning implementation dates back to the PATH program in the 1980s

(Shladover et al., 1991; S. E. Li et al., 2017) and has been studied since, in projects

like CHAUFFEUR I and II (Harker, 2001), SARTRE (Chan, Gilhead, Jelinek, Krejci, &

Robinson, 2012), and GCDC (Kianfar et al., 2012) in Europe, and EnergyITS in Japan

(Tsugawa, Kato, & Aoki, 2011), where the potential of platooning to improve safety and

traffic throughput was exposed. Recently, the potential of platooning to increase energy

savings has also been observed (Wu, Bayen, & Mehta, 2018; Turri, Besselink, & Johans-

son, 2017; Smith et al., 2020).

The benefits of platooning are generally stated by understanding platoons as single

lanes of vehicles, and its collective behavior is based on vehicles’ mutual awareness of

their states which is achieved by inter-vehicle sensing and communication. The infor-

mation connectivity within CAVs affects the platoon behavior in terms of string stability

(Swaroop & Hedrick, 1996; Seiler, Pant, & Hedrick, 2004; Wang & Nijmeijer, 2015),

stability margin (Hao, Barooah, & Mehta, 2011; Zheng, Li, Li, & Wang, 2015), and co-

herence behavior (Lin, Fardad, & Jovanovic, 2011; Bamieh, Jovanovic, Mitra, & Patter-

son, 2012). Common communication topologies are presented in Fig. 1.1, which are

Predecessor-Following (PF) and Bidiferectional (BD) topologies, Predecessor-following

Leader (PFL), Bidirectional Leader (BDL) type, Two Predecessor-Following (TPF) and
1



Figure 1.1. Common single-lane platoon connectivity topologies. (a) PF,
(b) PFL, (c) BD, (d) BDL, (e) TPF, (f) TPFL (Li et al., 2017).

Two Predecessor-Following Leader (TPFL). (Zheng, Li, Wang, Cao, & Li, 2015; S. E. Li

et al., 2017). For these train-like platoons, connectivity determines the control strategy,

which is generally known as Adaptive Cruise Control (ACC) (Xiao & Gao, 2011; Wang &

Nijmeijer, 2015; Dang, Wang, Li, & Li, 2015), and is mainly based on Model Predictive

Control (Zheng, Li, Li, Borrelli, & Hedrick, 2016; Turri et al., 2017).

Previous works addressing complex maneuvers in platoons consider vehicles joining

or leaving platoons (P. Liu, Kurt, & Ozguner, 2019; H. Liu, Zhuang, Yin, Tang, & Xu,

2018). These approaches are well suited for simple situations but insufficient when free-

ways operate at maximum capacity. Moreover, single-lane platoons are unable to handle

lane-changes, which have been shown empirically as the primary source of traffic pertur-

bations in multi-lane freeways (Ahn & Cassidy, 2007). This suggests that complex traffic

maneuvers should be handled by multi-lane platoon approaches with collision avoidance

(CA) in consideration.

Multi-lane platoons can be studied as multi robot coordination and formation control

problems, where robots or vehicles are also denominated agents. Previous works address-

ing multi robot coordination include Dynamic window (Fox, Burgard, & Thrun, 1997),

Priority Order (Čáp, Novák, Kleiner, & Selecký, 2015) and Scheduling (Bruni, Colombo,

2



& Del Vecchio, 2013). Nonetheless, these approaches do not consider the interaction

within agents (Firoozi, Zhang, & Borrelli, 2021). Interaction within agents is investigated

in formation control and classical works include Flocking and Particle Swarm Optimiza-

tion (Olfati-Saber, 2006; Ren & Cao, 2011; Marjovi, Vasic, Lemaitre, & Martinoli, 2015),

Sequence of Motion Primitives (Balch & Arkin, 1998), Potential Fields (Olfati-Saber &

Murray, 2002; L. Gao, Chu, Cao, Lu, & Wu, 2019) and Learning-based methods (Chen,

Liu, Everett, & How, 2017; Kreidieh, Wu, & Bayen, 2018; Fan, Long, Liu, & Pan, 2020;

Busoniu, Babuska, & De Schutter, 2008). Flocking and Particle Swarm Optimization

consider the interaction among agents as single points, which cannot model the CA within

them. Sequence of Motion Primitives is difficult to mathematically analyze and solve. Po-

tential Fields and Learning-based methods consider CA, however, it does not impose hard

constraints on them. Another approach to study multi robot coordination and formation

control is based on Constrained Optimization (Keviczky, Borrelli, Fregene, Godbole, &

Balas, 2007; Alonso-Mora, Beardsley, & Siegwart, 2018; Firoozi et al., 2021; Firoozi,

Ferranti, Zhang, Nejadnik, & Borrelli, 2020), nowadays, this approach is the only one

that can handle explicit CA constraints with stability guarantees (Borrelli, Bemporad, &

Morari, 2017). Up to date, the most advanced schemes targeting multi-lane platooning

with constrained optimization are (Firoozi et al., 2021) and (Firoozi et al., 2020).

In (Firoozi et al., 2021), multi-lane platoons are considered from a centralized per-

spective where a non-linear model predictive control (NMPC) scheme is used to calculate

control actions for each CAV, based on a set of global references for the platoon. Addition-

ally, explicit CA constraints are incorporated by considering that the area occupied by each

CAV should not intersect with any neighbor in the platoon. Although this approach shows

good results in platoon reconfiguration and obstacle avoidance involving lane changes, its

centralized formulation precludes scalability and is proposed only for small platoons.

Scalability is addressed in (Firoozi et al., 2020), with the so-called Distributed Motion

Planner, in which the problem is solved by distributing the centralized NMPC problem

into an alternating optimization scheme where distributed NMPC and CA are sequentially

3



solved, using a hand-crafted individual reference for each CAV. This approach for multi-

lane platoons can effectively deal with lane-changes ensuring CA; yet, it does not exploit

the shape of the platoon nor does it use information from neighbors in the cost function of

the local NMPC problem, it does so only for CA. Moreover, the problem of generating the

references for each CAV is not addressed in detail, adding an extra level of complexity.

1.2. Objectives, Methodology and Contributions

The main objective of this work is to propose a framework to solve the motion plan-

ning problem in multi-lane platoons, which must be scalable for a large number of vehi-

cles, while ensuring collision free maneuvers without overestimating the vehicles sizes.

To this end, we propose to tackle planning in tight multi-lane platoons using distributed

formulations that explicitly consider the collaborative nature of the platoon.

Consequently, the main contributions of this work are two frameworks for distributed

multi-lane motion planning. Both schemes use a graph-based description of the platoon to

formulate a distributed NMPC problem (Constraint-based Optimization) that tracks refer-

ences involving a set of neighboring CAVs in the platoon. First, an initial approach where

each CAV takes states referenced to a global reference frame, and a second incremental

scheme where each CAV takes states referenced to a local reference frame from its neigh-

bors and uses information from local sensors to refer neighbors’ information to its own

local reference frame. A detailed simulation study compares the performance of the pro-

posed techniques with a benchmark under a variety of scenarios, ranging from simple lane

changes to motion planning in large-scale multi-lane platoons.

1.3. Organization

The rest of this thesis is organized as follows. In chapter 2, preliminaries on which this

work is built are introduced. In chapter 3, the proposed graph-based distributed motion

4



planners are described in detail, as well as the benchmark planner. Chapter 4 summarizes

the numerical evaluation performed. Finally, concluding remarks are given in chapter 5.
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2. PRELIMINARIES

2.1. Notation

Throughout this manuscript, R denotes the real numbers, Rn the Euclidean space of

dimension n, and Rn⇥m the set of n ⇥ m matrices with real coefficients. Vectors and

matrices are denoted in boldface, the latter also denoted in capital letters. For a vector

v, v> denotes its transpose. The standard Euclidean distance is denoted by k·k2, while

kxkQ :=
p

x>Qx is defined for x 2 Rn and a positive semi-definite matrix Q 2 Rn⇥n.

For a countable set X , |X | denotes its cardinality.

2.2. Vehicle Models

In the following sections, the two vehicle models used in this work are described. The

first one corresponds to the state model that could be easily computed and has a wide

operation range, while the second one corresponds to the region occupied by each vehicle

and is used to avoid collisions.

2.2.1. Vehicle State Representation

In the literature, many state vehicle models are presented, ranging from low dimension

point mass-models to high fidelity multi-body models (Dixit et al., 2018). These models

are designed mainly to capture the longitudinal, lateral and yaw dynamics of the vehicles

and have been documented in (Rajamani, 2011). For multi-lane platoons, in most cases

re-configurations include lateral maneuvers. Therefore, a model with lateral dynamics

should be considered.

Lateral models have been reviewed in detail (Snider et al., 2009; Rajamani, 2011;

Amer, Zamzuri, Hudha, & Kadir, 2017; Sorniotti, Barber, & De Pinto, 2017; Rupp &

Stolz, 2017) because the performance of a close loop tracking controller depends on the

accuracy of the modelled system dynamics. Overall, the preferred ones are the dynamic

6



Figure 2.1. Kinematic Bicycle Model (Rajamani, 2011).

bicycle model and the kinematic bicycle model (KBM) since there is a good compromise

between computational complexity and accuracy for control design related to highway

driving applications (Kong, Pfeiffer, Schildbach, & Borrelli, 2015).

The dynamic bicycle model has high fidelity since it includes the tire and the road

interaction, which means that a tracking controller could be developed with this model to

perform well within the dynamic limits of the vehicle (i.e., lateral acceleration, vehicle

side-slip, and yaw rate) (Dixit et al., 2018). Nonetheless, the KBM requires less com-

putational power, it is easier because there are only two parameters to identify, and can

be implemented over a wide range of vehicle speeds (Kong et al., 2015). Therefore, in

this work vehicles are going to be modelled with the KBM. However, at higher speeds

dynamic models should be used.

Accordingly, for a given vehicle labeled by the subscript i, the KBM defines a state

vector as zi = [xi, yi, i, vi]>, ruled by the following dynamic equations:

7



ẋi = vi cos( i + �i), ẏi = vi sin( i + �i),

 ̇i =
vi cos(�i)

lf,i + lr,i
tan(�i), v̇i = ai, (2.1)

where xi and yi represent the longitudinal and lateral position, respectively;  i is the

heading angle and vi is the velocity at the center of gravity (CG). The side slip angle is

defined as �i := arctan( lr,i
lf,i+lr,i

tan(�i)), lf,i and lr,i are the longitudinal distance from the

CG to front and rear tires, respectively. The control input is denoted by ui = [ai, �i]>,

where ai is the vehicle’s acceleration and �i is the steering angle. For implementation

purposes, the model is discretized using Euler’s method with sample time �t as:

xi(t+ 1) = xi(t) + vi(t) cos( i(t) + �i(t))�t,

yi(t+ 1) = yi(t) + vi(t) sin( i(t) + �i(t))�t,

 i(t+ 1) =  i(t) +
vi(t) cos(�i(t))

li,f + li,r
tan(�i)�t, (2.2)

vi(t+ 1) = vi(t) + ai(t)�t.

Finally, for notation compactness, the KBM is defined by the function f : R4 ⇥R2 !

R4 where

zi(t+ 1) = f(zi(t),ui(t)) (2.3)

2.2.2. Road Area Occupied by the Vehicle

Modeling vehicles as point-masses with the KBM is useful for approximating the

states. However, when using the KBM the spatial notion of the vehicle is lost, which

is critical for motion planning in tight platoons where both the road (lane width) and pla-

toon (longitudinal and lateral inter-vehicle spacing) geometries restrict the motion of the

vehicles. Therefore, it is essential to consider vehicle dimensions with their exact sizes

(Firoozi et al., 2021).

8



Figure 2.2. Two-dimensional polytope P describing the region occupied
by a vehicle (Firoozi et al., 2021).

Following (Firoozi et al., 2021), we define the region occupied by each vehicle as a

convex polytope P (see Fig. 2.2). Polytopes are described as the intersection of a set of

half-spaces and formulated as a set of inequalities (Firoozi et al., 2020). In the platooning

context, two-dimensional polytopes are used.

As the vehicle moves, the physical space it occupies naturally changes. Consider

that each vehicle i has an initial pose Pi,0, when travelling along the road the polytope

can be determined at any time instant t from the vehicle’s state vector zi using affine

transformations, as (Firoozi et al., 2021): P(zi(t)) = R(zi(t))Pi,0 + t(zi(t)), where

R : R4 ! R2⇥2 is a matrix-valued function that outputs orthogonal rotation matrices and

t : R4 ! R2 is a translation mapping. For each t, the rotation matrix R(zi(t)) is defined

using the heading angle  i,

R(zi(t)) =

2

4cos i(t) � sin i(t)

sin i(t) cos i(t)

3

5 , (2.4)

while the translation vector t(zi(t)) depends on xi(t) and yi(t). The transformed polytope

is given by (Firoozi et al., 2021):

P(zi(t)) :=

(2

4x

y

3

5 2 R2 : A(zi(t))

2

4x

y

3

5  b(zi(t))

)
, (2.5)

9



where A and b are defined as

A(zi(t)) =

2

4 R(zi(t))>

�R(zi(t))>

3

5 ,

b(zi(t)) = [hi/2, wi/2, hi/2, wi/2]
> +A(zi(t))[x(t), y(t)]

>,

with hi and wi being the length and the width of vehicle i, respectively.

2.3. Platoon Representation

A platoon is understood as a set V := {1, 2, . . . , N} of cooperative vehicles, where

N < 1 is the size of the platoon. Elements inside the platoon cooperate to fulfill a

collective objective, as a common speed or safety distance constraints. For motion plan-

ning purposes, in this work we define the platoon formation graph as an undirected graph

G := {V , E}, where the edge set E is such that (i, j), (j, i) 2 E if there exists a set of con-

straints involving the internal states of vehicles i and j. For each vehicle i 2 V , a neighbor

set is defined as Ni := {j 2 V : (i, j) 2 E}. G is assumed to be a connected graph.

In this work, we consider the presence of a virtual leader in the platoon. Therefore,

we introduce the platoon formation graph with virtual leader as a directed graph ḠN :=

(V̄N , ĒN), where a virtual leader node, labeled as node 0, is included, yielding V̄N :=

{0} [ V and ĒN := {(0, i)} [ E . ḠN is directed since edges (0, i) imply that information

is only transmitted from the virtual leader to the other vehicles in the platoon.

The platoon formation graph with virtual leader is finally enhanced with a reference

set DN , which is such that DN := {dij 2 R4|(i, j) 2 ĒN} where dij represents an equality

constraint on the absolute value of the component-wise difference between the states of

vehicles i, j 2 V̄N .
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2.4. MPC

Model Predictive Control (MPC) refers to a class of control algorithms that utilize a

dynamic optimization with an explicit model to predict the future response of a plant (Qin

& Badgwell, 2003), for example

x(k + 1) = g(x(k),u(k)), x(0) = x0

that describes the evolution of the state x(k) with time, starting from the initial condition

x(0), as it is affected by the manipulated input u(k). Here g(x(k),u(k)) could be a

linear or nonlinear function, for the nonlinear case, we refer to the problem as a Nonlinear

MPC (NMPC). The goal of MPC procedure is to find a sequence of manipulated inputs

ui(·|t) = [ui(k|t), . . . ,ui(k + Nc � 1|t)] such that the objective is optimized over some

time horizon Nc, typically

min
ui(·|t)

t+NcX

k=t

q(x(k),u(k)) + p(x(N))

The terms q(x(k),u(k)) and p(x(N)) are referred as the stage cost and the terminal cost.

Many practical problems can be put into this form and many algorithms and software

packages are available to determine the optimal solution vector ui(·|t). The various al-

gorithms exploit the structure of the particular problem, e.g., linearity and convexity, so

that even large problems described by complex models and involving many degrees of

freedom can be solved efficiently and reliably.

One difficulty with this idea is that, in practice, the sequence of ui(·|t), which is ob-

tained by this procedure cannot be simply applied. The model of the system predicting its

evolution is usually inaccurate and the system may be affected by external disturbances

that may cause its path to deviate significantly from the one that is predicted. Therefore, it

is common practice to measure the state after some time period, say one time step, and to

solve the dynamic optimization problem again, starting from the measured state x(t + 1)
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as the new initial condition. This feedback of the measurement information to the opti-

mization endows the whole procedure with a robustness typical for closed-loop systems

(Borrelli et al., 2017). What was described above is referred as the Receding Horizon

Principle and it is a central part of the MPC formulation.

MPC formulation integrates optimal control, stochastic control, control of processes

with dead time, multivariable control and future references when available (Camacho &

Alba, 2013). Moreover, it has evolved to dominate the process industry, where it has

been employed for thousands of problems (Qin & Badgwell, 2003). The popularity of

MPC stems from the fact that the resulting operating strategy respects all the system and

problem details, including interactions and constraints, something that would be very hard

to accomplish in any other way. Indeed, often MPC is used for the regulatory control

of large multivariable linear systems with constraints, where the objective function is not

related to an economical objective, but is simply chosen in a mathematically convenient

way, namely quadratic in the states and inputs, to yield a “good” closed-loop response.

Again, there is no other controller design method available today for such systems, that

provides constraint satisfaction and stability guarantees (Borrelli et al., 2017).

Concerning the path planning problem, MPC is suited for this class of problems since it

can handle Multi-Input Multi-Output systems with input and state constraints while taking

into account the nonlinear dynamics of the vehicle. The design task of path-generation

and path-following is simplified, e.g., the reference path fed to the MPC controller does

not need to be physically realizable, i.e respect to dynamic constraints, since the MPC

optimization would find a solution that satisfy a feasible dynamic (Kong et al., 2015).

2.5. Centralized Motion Planning

Following (Firoozi et al., 2021), the centralized motion planner is formulated as an

NMPC problem that computes a collision-free trajectory for N vehicles. The NMPC
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problem is formulated as

min
ui(·|t)

NX

i=1

J1,i(zi,ui) (2.6a)

s. t. zi(k + 1|t) = f
�
zi(k|t),ui(k|t)

�
(2.6b)

zi(k = t|t) = zi(t) (2.6c)

zi(k|t) 2 Zi, ui(k|t) 2 Ui (2.6d)

P(zi(k|t)) \ P(zj(k|t)) = ;,

i 6= j 8i 2 V , j 2 Ni (2.6e)

J1,i(zi,ui) =
t+NcX

k=t

kzi(k|t)� zi,Ref(k|t)k2Qz
+

t+Nc�1X

k=t

�
kui(k|t)k2Qu

+ k�ui(k|t)k2Q�u

�
,

(2.7)

where ui(·|t) = [ui(k|t), . . . ,ui(k + Nc � 1|t)] is the control sequence optimized by

the NMPC over the planning horizon Nc for the ith vehicle in the platoon. zi(·|t) =

[zi(k|t), . . . , zi(k+Nc|t)] is the ith vehicle state sequence. The cost function J1,i(zi,ui) :

R4 ⇥ R2 ! R is calculated for the N vehicles in the platoon and penalizes: i) the de-

viation of the states z from a reference sequence zref , which is not necessarily smooth

and collision free, yet the optimal trajectory has these properties since they are ensured

by the optimization; and ii) the input effort u and input rate effort �u. The three terms

forming the cost function are weighted using positive semi-definite matrices Qz,Qu and

Q�u, respectively. In terms of constraints, (2.6b) corresponds to the nonlinear vehicle

model, which in this work is given by the KBM, (2.6c) defines the initial conditions for

NMPC, (2.6d) defines the feasible state and input sets, given by road characteristics and

the actuators and vehicles’ operation range, and (2.6e) enforces CA by checking that the

intersection between polytopes is empty.

13



2.5.1. Collision Avoidance Reformulation

Constraints (2.6e) use polytopes to address CA, which hinders solving (2.6) since in

general (2.6e) are non-convex and non-differentiable. Hence, the condition is reformulated

to preserve continuity and differentiability, which enables using existing gradient- and

hessian-based optimization algorithms (Schulman et al., 2014; Zhang, Liniger, & Borrelli,

2020).

A common method of formulating CA is with the notion of distance between two

polytopes, where each one is a closed convex set modeled using half-spaces.

dist(Pi,Pj) :=min
x,y

kx� yk2

s.t. Aix  bi,Ajy  bj. (2.8)

This formulation means that collisions are avoided when dist(Pi,Pj) > 0. In prac-

tice, to deal with uncertainties of physical models and stochastic measurement errors, the

distance is restricted to a minimum safe distance as dist(Pi,Pj) > dmin, where dmin is

calibrated for each specific application.

The distance formulation (2.8) is per se an optimization problem that cannot be incor-

porated in (2.6) as a constraint. Nonetheless, the primal problem of minimum distance

between two convex sets can be reformulated to its dual problem as the maximal “sepa-

ration” between them (Dax, 2006). The strong dual problem was used in (Zhang et al.,

2020; Firoozi et al., 2021, 2020) to include the reformulated CA into (2.6). To reformulate

(2.8), the Karush–Kuhn–Tucker (KKT) conditions are used resulting in

dist(Pi,Pj) := max
�ij ,�ji,sij

�b>
i �ij � b>

j �ji

s.t. A>
i �ij + sij = 0,A>

j �ji � sij = 0,

ksijk2  1,��ij  0,��ji  0, (2.9)

14



where �ij , �ji and sij are the dual variables. Then, (2.9) is incorporated in (2.6) and the

platoon motion planning results in

min
ui(·|t),
�ij(·|t)
�j,i(·|t),
sij(·|t)

NX

i=1

J1,i(zi,ui)

s.t. (2.6b), (2.6c), (2.6d),

A(zi(k|t))>�ij(k|t) + sij(k|t) = 0, (2.10a)

A(zj(k|t))>�ji(k|t)� sij(k|t) = 0, (2.10b)
�
� b(zi(k|t))>�ij(k|t)� b(zj(k|t))>�ji(k|t)

�
� dmin, (2.10c)

ksijk2  1,��ij  0,��ji  0, (2.10d)

8i 2 V , j 2 Ni,

where (2.10a), (2.10b), (2.10c) and (2.10d) are solved for each vehicle i 2 V with respect

to each of its neighbors j 2 Ni. By adding sequences of dual variables to (2.10), more

variables need to be optimized; yet, the CA constraint can be solved using gradient- and

hessian-based optimization algorithms.

As mentioned earlier, the geometric interpretation behind the dual problem is that

instead of calculating the shortest distance between two convex sets, the new formulation

calculates the maximal “separation” between the sets, where the term “separation” refers

to the distance between a pair of parallel hyperplanes that separates the two sets (see Fig.

2.3)(Dax, 2006).
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Figure 2.3. Dual interpretation of the shortest distance between two convex
sets (Dax, 2006).
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3. DISTRIBUTED MOTION PLANNING*

Centralized motion planning is fully capable of coordinating vehicles inside a platoon.

However, its computational complexity increases proportionally to the number of vehicles

in the platoon (Firoozi et al., 2020); therefore, using centralized planning in real time for a

large platoon becomes infeasible. In (Firoozi et al., 2020) distributed motion planning was

introduced by distributing (2.10) into two alternating optimizations, where each vehicle

solves locally a sub-problem in parallel.

In the following, three distributed motion planning techniques are presented, starting

with the approach introduced in (Firoozi et al., 2020), which will serve as inspiration and

benchmark for the two novel graph-based approaches.

3.1. Distributed Motion Planning

To distribute (2.10), the vehicles should be decoupled from each other. Particularly

in (2.10), vehicles are coupled through CA constraints (2.10a)-(2.10c). In (Firoozi et

al., 2020), distribution is achieved by alternately solving two independent optimization

problems. The first one consists of an NMPC where each vehicle solves its own states and

inputs while keeping the neighbors dual variables fixed. The second problem solves for

the CA dual variables while keeping the states fixed.

⇤ Parts of the material presented in this chapter were published in: Pizarro, G., & Núnẽz, F. (2021).
Graph-based distributed lane-change in tight multi-lane platoons. In 2021 IEEE Conference on Control
Technology and Applications (CCTA) (p. 1031-1036); and in Pizarro, G., & Núnẽz, F. (2021). Graph-based
distributed motion planning in tight multi-lane platoons. Control Engineering Practice, under review.
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3.1.1. NMPC

The first optimization is a Distributed Non-linear Model Predictive Control (DNMPC)

problem formulated as

min
ui(·|t)

J1,i(zi,ui)

s. t. (2.6b), (2.6c), (2.6d),
�
� b(zi(k|t))>�̄ij(k|t)� b(z̄j(k|t))>�̄ji(k|t)

�
� dmin (3.1a)

A(zi(k|t))>�̄ij(k|t) + s̄ij(k|t) = 0 (3.1b)

8j 2 Ni,

where constant variables are denoted by (̄·). It can be seen that in the CA constraints (3.1a)

and (3.1b), the dual variables and b matrices are fixed.

3.1.2. CA

Regarding CA, the corresponding optimization solves for the dual variables, while

keeping the ego and neighbor states fixed, as follows

max
�ij(·|t),
�ji(·|t),
sij(·|t)

� b(z̄i(k|t))>�ij(k|t)� b(z̄j(k|t))>�ji(k|t)

s. t. A(z̄i(k|t))>�ij(k|t) + sij(k|t) = 0, (3.2a)

A(z̄j(k|t))>�ji(k|t)� sij(k|t) = 0, (3.2b)
�
� b(z̄i(k|t))>�ij(k|t)� b(z̄j(k|t))>�ji(k|t)

�
� dmin, (3.2c)

ksijk2  1,��ij  0,��ji  0, (3.2d)

8j 2 Ni, 8k 2 {1, 2, ..., N}.
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Algorithm 1 Alternating Optimizations Scheme
1: Initialize [sij(t), . . . , sij(t+Nc|t)],

[�ij(t), . . . ,�ij(t+Nc|t)],
[�ji(t), . . . ,�ji(t+Nc|t)]

2: for t = 0, 1, . . . ,1 do
3: for all vehicle i, i 2 V do in parallel
4: Solve DNMPC Optimization Problem (3.1)
5: Compute the shifted sequence zi(·|t) =

[zi(t+ 1|t), . . . , zi(t+Nc|t), zi(t+Nc|t)].
6: Compute the polytopes of the sequence A

�
zi(·|t)

�
and b

�
zi(·|t)

�
.

7: Communicate the polytopes to agent j, 8j 2 Ni t
8: Solve CA Optimization Problem (3.2)
9: Apply ui(t|t) obtained from (3.1) to move

With this formulation, the CA is a convex optimization problem and can be solved sepa-

rately for each pair of neighbor vehicles. Therefore, it should be solved fast enough using

a state-of-the-art convex solver.

3.1.3. Alternating Optimizations Scheme

Taking into account both optimizations, the Alternating Optimizations Scheme is ex-

ecuted following Algorithm 1. First, the dual variables are initialized and each vehicle

solves its own NMPC Problem. Then, the optimal state sequences computed by the NMPC

optimization are shifted one time step to address communication delays, followed by the

calculation of the polytope sequence using the shifted state sequence. After that, the poly-

topes are communicated to all the agents in the neighbor set Ni and each vehicle solves

in parallel the CA optimization. Finally, each vehicle applies the optimal input ui(t|t)

calculated in the first step and the algorithm is repeated (Firoozi et al., 2020).

Note that the distributed algorithm requires that the vehicles have their clocks syn-

chronized, which is indispensable for a correct operation. The synchronization must be

performed before Algorithm 1 begins and, it should be constantly corrected. Although the

synchronization problem is not taken into account in this work, the distributed synchro-

nization problem is well studied and, could be easily solved for connected graphs networks
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(Núñez, Wang, & Doyle, 2014) like the platoons using an external synchronization loop

that runs in parallel to Algorithm 1.

The presented distributed motion planning scheme provides an effective alternative to

centralized motion planning. However, there are still some issues that must be addressed.

First, individual references for each vehicle must be designed, which are then tracked

individually by each vehicle without cooperating. Reference generation is left open in

(Firoozi et al., 2020), where it is also stated that (2.10) might become infeasible and that

persistent feasibility could be guaranteed by computing the reachable set. Infeasibility can

be caused by long-term maneuvers that the fixed-length prediction horizon is not capable

of foreseeing. Although references could be easily generated for each vehicle, finding a

reachable reference for long-term maneuvers could become unscalable. A second issue

is related to the shifted state sequence. Although shifting accounts for communication

delays, at the end of the sequence the last state is just copied, which conceptually means

that vehicles impulsively stop moving and could cause a stabilization at a speed lower than

desired. Finally, a third issue is related to the neighbor set used in (Firoozi et al., 2020),

where a neighbor is merely defined as a vehicle inside the transmission range. Under this

setup, the problem grows in size as the platoon becomes larger, reducing the scalability.

3.2. Graph-based Distributed Motion Planning

To address the feasibility and scalablity issues that arise from reference generation, we

propose a Graph-based Distributed Motion Planner. The proposed planner is conceptually

different in the sense that the platoon tracks a formation, instead of each vehicle track-

ing an individual reference. Formation tracking enables a collaborative behavior, which

promotes a smoother and faster solution.

In Graph-based Distributed Motion Planning, the platoon formulation takes relevance.

Platoons are modeled as platoon formation graphs with virtual leader, which is particu-

larly useful to model the interactions within vehicles and is essential to track references

20



collaboratively within the platoon. Based on the formation, vehicles track relative dis-

tances with respect to their neighbors, which makes vehicles aware of how close they are

to their neighbors. In the graph-based setup, maneuvers are modeled by formation (graph)

transitions, which gives freedom on how to generate references.

3.2.1. Graph-based DNMPC

Collaboration is achieved by adapting (3.1) to use the platoon formation. Constraints

are the same as the vanilla case, while the main difference is in the cost function, which

now consists of three parts, as follows,

J2,i(zi,ui) =
t+Nc�1X

k=t

�
kui(k|t)k2Qu

+ k�ui(k|t)k2Q�u

�

+
X

j2Ni\0

t+NcX

k=t

1

|Ni \ 0|
kzi(k|t)� zj(k|t)� dij(k|t)k2Qn

+
t+NcX

k=t

kzi(k|t)� di0(k|t)k2Q0
, (3.3)

where the first term weights the the input effort u and input rate effort �u, similar to

(2.7), the second term is in charge of tracking the distance references of vehicle i with

respect to its neighbor j 2 Ni\0. Here, dij(k|t) 2 DN is the distance reference associated

to the platoon formation ḠN , and |Ni \ 0| is used to normalize the summation based on

the number of neighboring vehicles. With these two terms, the platoon is able to track a

formation ḠN ; nonetheless, since it is only tracking state differences, the formation can

position itself at any place in the road or at any speed. To stick to an absolute reference,

the third term is added, which propagates the states of a virtual leader, where di0 2 D

plays the same role as the references in the second term; yet, this time referred to the

virtual leader. This term is used to fix the platoon desired speed and the distance reference

with respect to the road border. All the terms forming the cost function are weighted using

positive semi-definite matrices Qu,Q�u,Qn and Q0, respectively.
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Note that in the proposed formulation, vehicles should not track a global reference in

the x position of di0. In case Q0 is not well defined, the DNMPC will track a global x

reference. To address this issue, the component of the diagonal matrix Q0 associated with

the x state is set to zero. As a consequence, vehicles only track y,  , and v state references

with respect to the virtual leader. Moreover, the steady-state velocity of the platoon and

its lateral position are defined by these constraints in d0i.

Given the cost function (3.3), the Graph-based DNMPC is given by

min
ui(·|t)

J2,i(zi,ui) (3.4)

s. t. (2.6b): zi(k + 1|t) = f
�
zi(k|t),ui(k|t)

�

(2.6c): zi(k = t|t) = zi(t)

(2.6d): zi(k|t) 2 Zi, ui(k|t) 2 Ui

(3.1a):
�
� b(zi(k|t))>�̄ij(k|t)� b(z̄j(k|t))>�̄ji(k|t)

�
� dmin

(3.1b): A(zi(k|t))>�̄ij(k|t) + s̄ij(k|t) = 0,

8j 2 Ni

3.2.2. Graph-based Alternating Optimizations Scheme

The proposed graph-based scheme differs from the alternating optimization scheme

presented in the previous section, yet, it still requires an external synchronization loop.

In this case, the information communicated by each vehicle to the neighbors is different.

First, the A and b sequences are communicated along with the state sequence obtained

by the Graph-based DNMPC optimization to the neighbors. And secondly, the way how

sequences are shifted to compensate for communication delays is changed, since when

states are shifted as in Algorithm 1 ([zi(t+1|t), . . . , zi(t+Nc|t), zi(t+Nc|t)]), the Graph-

based DNMPC stabilizes the platoon at a speed value lower than the reference. This is a

consequence of Algorithm 1 just copying the last state, which means that vehicles stop

moving in just one time step. In the proposed graph-based formulation, this is solved
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Algorithm 2 Graph-based Alternating Optimizations Scheme
1: Initialize [sij(t), . . . , sij(t+Nc|t)]

[�ij(t), . . . ,�ij(t+Nc|t)]
[�ji(t), . . . ,�ji(t+Nc|t)]

2: for t = 0, 1, . . . ,1 do
3: for all vehicle i, i 2 V do in parallel
4: Solve Graph-based DNMPC Optimization Problem (3.4)
5: Compute the shifted sequence zi(·|t) =

[zi(t+ 1|t), . . . , zi(t+Nc|t), f
�
zi(t+Nc|t),0

�
]

6: Compute the polytopes of the sequence A
�
zi(·|t)

�
and b

�
zi(·|t)

�
.

7: Communicate the polytopes and vehicle state to agent j, 8j 2 Ni

8: Solve CA Optimization Problem (3.2)
9: Apply ui(t|t) obtained from (3.4) to move

by projecting the last state using the KBM, considering a zero-input, i.e., it is projected

considering that vehicles keep a constant movement with respect to the last state. The

proposed Graph-based Alternating Optimization Scheme is given in Algorithm 2.

The structure of graph-based planner makes platoons capable of tracking formations

cooperatively using each vehicles’ global states. Additionally, generating feasible and

scalable references for complex maneuvers can be easily achieved by decoupling them

into elemental longitudinal and lateral maneuvers. Nonetheless, the graph-based planner

relies blindly on the information communicated by neighbors. It is of interest to formulate

an approach that can make use of on-board sensors to estimate neighbors’ states. This is

addressed in the next section.

3.3. Incremental Graph-based Distributed Motion Planning

In this section, a robuster planner denominated the Incremental Graph-based Dis-

tributed Motion Planer is proposed, which exploits local proximity information using on-

board sensors. This is achieved at each vehicle by re-framing the information received

from neighbors with respect to the ego state. In practice, the re-framed information sup-

presses biases since it uses sensors that do not require integration of their measurements.
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3.3.1. Incremental Graph-based Alternating Optimizations Scheme

The new optimization scheme uses the same structure as the Graph-based, since it is

formulated in terms of the Graph-based DNMPC (Problem (3.4)) and CA (Problem (3.2)).

Therefore, it also requires an external synchronization loop to operate correctly. Yet,

it modifies the information communicated to neighbors and, incorporates the re-framing

process. The modifications are described in the following.

Concerning the communicated information, vehicles only require to send the incre-

mental state trajectory which is given by

zi,0(·|t) = [zi(t+ 1|t), . . . , zi(t+Nc|t), f(zi(t+Nc|t),0)]� zi(t+ 1|t) (3.5)

where zi,0(·|t) refers to the trajectory of vehicle i referred to the current state. The state

sequence is obtained by the Graph-based DNMPC which is first projected with the KBM

to account for communication delays, and then it is shifted.

To perform the neighbors’ information re-framing, a state distance estimation z�ij(t)

within vehicles i and j is used. z�ij(t) would give the notion of proximity respect to each

neighbor and it is calculated at every time-step, avoiding problems like bias integration.

In practice, the state distance estimation should be obtained using the local proximity

information from on-board sensors like cameras and radars, among others.

When vehicle i computes its Graph-based DNMPC and needs to track the relative state

distance with respect to j, it uses zj,i(·|t), which corresponds to the state sequence of j

referred to i, given by

zj,i(·|t) = zi(t)� z�ij(t) + zj,0(·|t) (3.6)

Two points should be noted. First, z�ij(t) should be signed. And second, since the

polytopes are not communicated anymore, these sequences must be calculated by each

vehicle using the re-framed neighbor sequences zj,i(·|t) 8j 2 Ni\0. The resulting Incre-

mental Graph-based Alternating optimization scheme is presented in Algorithm 3.
24



Algorithm 3 Incremental Graph-based Alternating Optimization scheme
1: Initialize [sij(t), . . . , sij(t+Nc|t)]

[�ij(t), . . . ,�ij(t+Nc|t)]
[�ji(t), . . . ,�ji(t+Nc|t)]

2: for t = 0, 1, . . . ,1 do
3: for all vehicle i, i 2 V do in parallel
4: Estimate z�ij(t), 8j 2 Ni

5: Calculate the re-framed sequence zj,i(·|t) and their polytopes
A
�
zj,i(·|t)

�
and b

�
zj,i(·|t)

�
, 8j 2 Ni

6: Solve CA Optimization Problem (3.2)
7: Solve Graph-based DNMPC Optimization Problem (3.4)
8: Compute the origin-referred state trajectory zi,0(·|t)
9: Communicate the origin-referred state trajectory zi,0(·|t) to agent j, 8j 2 Ni

10: Apply ui(t|t) obtained from (3.4) to move

3.4. Reference Generation

Reference generation plays a fundamental role in the operation of the vanilla and

graph-based planners to test their performance. Despite the planners use DNMPC to track

a smooth trajectory from the reference, some references may end up in deadlock scenarios

which may be unsolvable by the DNMPC due to finite horizon reference tracking. There-

fore, references should be generated from a feasible set. In (Firoozi et al., 2020), reference

generation was left as an open problem. In this work, reference generation is addressed

based on hand-crafted rules and heuristics based on the platoon characteristic, the road

structure and the desired speed.

A fair comparison between the vanilla distributed planners and the graph-based plan-

ners is necessary in order to achieve unbiased results about the performance of the plan-

ners. In order to achieve this, the graph-based reference were generated first and from

them, the references for each individual vehicle used by the vanilla distributed planner

were generated.

The design was generated for an open-loop controlled and known environment in a

centralized fashion, which was sufficient to test the performance of the planners. Vehicles

were considered point agents and bumper to bumper distances within vehicles are not
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considered, but because the references were based on heuristic, they were designed with

enough distances to avoid infeasible references.

3.4.1. Graph Reference Generation

The process of designing references is based on hand-crafted instructions as a func-

tion of the desired maneuver, the speed and time to perform it. The instructions consists

on canonical movements and they are composed of four parameters: the type of move-

ment (longitudinal or lateral); the time step Tvehicleid in which the maneuver should start;

the time window �Tvehicleid in which the maneuver should be performed; and the desired

(signed) distance �Dvehicleid to move. This method allows decoupling complex platoon

maneuvers as single-vehicle instructions. For example, a maneuver like a lane change is

decoupled into longitudinal and lateral maneuvers, where initially vehicles perform the

longitudinal instructions to make enough longitudinal gap, followed by the lateral instruc-

tions for the vehicles lane changing. Additionally, this method allows each vehicle to

perform a different maneuver respect to the others. A set of instructions for three different

vehicles would have the following structure.

instructions(id1) = ()

instructions(id2) = (

(0Longitudinal0, TLoid2,�TLoid2,�DLoid2)

)

instructions(id3) = (

(0Longitudinal0, TLoid3,�TLoid3,�DLoid3)

(0Lateral0, TLaid3,�TLaid3,�DLaid3)

)
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where the first vehicle would not perform any instructions, the second one will perform

a longitudinal displacement and the third one will perform longitudinal and a lateral dis-

placements.

After the instructions are set for each vehicle, the simulation begins. Every one sec-

ond, the instructions are checked for each vehicle and executed if they are in the time

window to perform it. Since the algorithm operates in a centralized way, the instructions

are executed by shifting the relative position of each vehicle inside the platoon, and then,

the graph-based reference is calculated based on the relative positions of the vehicles. A

detailed version of the procedure is presented in Algorithm 4. Ideally, instructions should

be generated in a distributed fashion and updated in close-loop. Nonetheless, the method

used had a suitable compromise between the capability of testing the planners’ perfor-

mance and the reference generation complexity.

Finally, the graph-based planners receive as input a sequence of distance references.

Therefore, a final step is performed to calculate a smooth sequence of distance references,

which are generated by linearly interpolating the current and the next graph, this procedure

is described in Appendix A. Interpolating the graphs induces a smoother response.

3.4.2. Trajectory Reference Generation

Concerning the reference generation for the vanilla distributed planner, it was gener-

ated from the positions used to obtain the graphs in order to perform the same maneuvers

at the exact time steps as the graph-based references. In order to do so, the reference was

generated before the simulation starts and each state was updated considering the sample

time. The longitudinal state x was obtained by integrating the velocity and adding the

longitudinal variations in longitudinal position. The lateral state y was updated only based

on the lateral variations in the position. While the heading angle � and the speed reference

v were kept constant. The details of the trajectory reference generation are presented in

Algorithm 5.
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Algorithm 4 Graph-based Reference Generation
1: for t = 0, 1, . . . ,1 do
2: for id = 1, ..., Nvehicles do
3: inst = instructions(id)
4: # Check if vehicle id has instructions
5: if isnotempty(inst) then
6: # Evaluate all possible instructions
7: for j = 1, ..., size(inst) do
8: type = inst(j, 1)
9: T0 = inst(j, 2)

10: �t = inst(j, 3)
11: �d = inst(j, 4)
12: # Check if there is an instruction to execute in the current time step.
13: if T0  t  T0 +�t then
14: # Check instruction type
15: if type ==0 Longitudinal0 then
16: positions(id) = positions(id) + [�L, 0, 0, 0]>

17: else
18: positions(id) = positions(id) + [0,�L, 0, 0]>

19: graph = []
20: for i = 1, ..., Nvehicles do
21: for j = 1, ..., Nvehicles do
22: graph(i, j) = positions(i)� positions(j)

Algorithm 5 Trajectory Reference Generation
1: # Initialize states and references.
2: for id = 1, ..., Nvehicles do
3: x(id) = x0(id)
4: y(id) = y0(id)
5: v(id) = vmax

6: �(id) = 0
7: ref(0)(id) = [x(id), y(id), v(id),�(id)]>

8: # Calculate the trajectory of the experiment.
9: for t = 0, 1, . . . ,1 do

10: # Calculate the current positions pos(t) and the desired positions pos(t+ 1) with
Algorithm 4.

11: for id = 1, ..., Nvehicles do
12: x(id) = x(id) + vmax ⇤�t+ pos(t+1)(id,1)�pos(t)(id,1)

�t

13: y(id) = y(id) + pos(t+1)(id,2)�pos(t)(id,2)
�t

14: v(id) = vmax

15: �(id) = 0
16: ref(t+ 1)(id) = [x(id), y(id), v(id),�(id)]>
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4. NUMERICAL EVALUATION

4.1. Scenarios

Four scenarios are setup to compare and analyze the performance of the three dis-

tributed planners. The scenarios consider possible situations in highways and the com-

plexity progressively increases.

In each scenario, vehicles are modeled using the KBM in MATLAB, and the optimiza-

tion problems are solved using YALMIP (Löfberg, 2004) in the same environment. DN-

MPC optimizations are solved using IPOPT (Wächter & Biegler, 2006), an interior-point

solver for non-convex optimization, and CA is solved using Gurobi (Gurobi Optimization,

2021), a QP solver. Similar parameters to the ones defined in (Firoozi et al., 2020) and

(Firoozi et al., 2021) are used. The controller’s planning horizon is 0.75s using a time

step of �t = 0.05s for the first two scenarios, while in the last two scenarios are 1s and

�t = 0.2s, respectively. CA minimum distance is dmin = 0.3m. Vehicles are considered

homogeneous with dimensions h = 4.5m and w = 1.8m. Vehicles’ actuators are bounded

by a = ±4m/s2 and � = ±1rad, while their rates of change are bounded by ±1m/s2/s

and ±1rad/s, respectively. Concerning the vehicles’ states, these are modeled by the fea-

sible set Z presented in (2.6d), which can be interpreted as the intersection of the vehicle

limitations and the road constraints. In Z , y is bounded by the road borders, where each

lane width is 3.7m (US standard for highways), while the speed is lower-bounded by zero

and upper-bounded by vmax = 19m/s. The weight matrices of cost functions J1,i(zi,ui)

and J2,i(zi,ui) are diagonal matrices and they are detailed in Appendices B.1 and B.2,

respectively.

For each planner in each scenario, the resulting states and optimal inputs are shown

in a single figure. Additionally, the longitudinal, or x states, plots are depicted relative

to a moving reference at the target platoon speed, which facilitates the comparison of the

distance within vehicles and helps to show if the platoon is gaining or losing longitudinal

distance compared to the moving at constant speed case.
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4.1.1. Ideal Lane-change

The first scenario consists of a lane-change in a two-vehicle platoon. In this scenario,

two cases are considered, one where the lane-changing vehicle is ahead enough to perform

the maneuver without colliding, and a second one where both vehicles are travelling in

parallel. Meanwhile in the first case the lane-change maneuver is direct, in the second case,

vehicles need to create the necessary space, which is accomplished through the reference.

4.1.2. Platooning with Uncertainty in the States

The second scenario consists of a single-lane two-vehicle platoon with non-ideal state

knowledge. Two cases are considered, in order to evaluate the influence of an additive

zero-mean multivariate normal distributed noise and a bias. In the first case, both vehicles

have state uncertainty modeled as additive zero mean noise with diagonal covariance given

by [0.01, 0.01, 0, 0.05], while in the second case, the rear vehicle additionally has a bias of

[�0.02, 0, 0, 0] in its state.

4.1.3. Internal Maneuvers in a Multi-lane Platoon

The third scenario consists of a ten-vehicle platoon performing internal maneuvers

such that two vehicles exchange lanes. Uncertainties in the states are considered, with the

same additive zero-mean multivariate normal distributed noise used in the previous sce-

nario; moreover, actuator disturbances are included, modeled as a zero-mean multivariate

noise with diagonal covariance matrix given by [0.05, 0.0001]. Vehicles are initialized in

random positions; therefore, the first maneuver is a rearrange of the platoon into a steady

state formation. To perform the lane-change, first vehicles rearrange longitudinally to

make a sufficient gap, then, two vehicles perform the lateral movement and finally, ve-

hicles rearrange longitudinally into the steady state formation again. The most relevant

snapshots of the formation* are depicted in Fig. 4.1.

*Note that these Graph-based planners, references are referred to each vehicle CG’s, nonetheless, they
can be effectively re-framed to the vehicles’ borders.
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Figure 4.1. Scenario 3: Platoon formation for ten vehicles. The maneuvers
involve vehicles 3 and 8 exchanging lanes.

Note that in this platoon, vehicles communicate with their surrounding neighbors in

Fig. 4.1.b, which means that all-to-all communication is not used.

4.1.4. Merging Lanes

The last scenario considers a thirty-six-vehicle three-lane platoon that, as travels, has

to rearrange into a two-lane platoon due to merging lanes. The scenario is simulated with

the same parameters and non-idealities of the previous scenario and it also considers com-

munication only with the surrounding neighbors in the platoon. In the experiment, the

lane-merge maneuver was hand-designed such that groups of six vehicles are merging just

in time and no shockwaves are created in the traffic flow. To perform the maneuver, each

group of vehicles have 15s and the lanes finish merging in T for the k group. Therefore,

let’s suppose that the first vehicle k + 1 of group k inside the platoon reaches T � 15, at
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Figure 4.2. Scenario 4: Lane merge formations of a six-vehicle group in-
side the platoon.

this point, the group is in a three-lane steady state formation (Fig. 4.2.a). At this time,

the group begins performing a longitudinal rearrange during the next 10 seconds (4.2.b)

to make enough space for the lane-merge. At T � 5, the group should be completely re-

arranged to perform the lane merge before T (Fig. 4.2.c). Three points should be noted

here, firstly, vehicles k + 1 and k + 2 do not move relative to the moves of the vehicle

of the next group k + 7 and k + 8, which means that each group is performing and inter-

nal maneuver like in scenario 3. Secondly, due to the fact that groups are moving, each

groups’ maneuvers are overlapping in order to perform them in the desired time. Finally,

the six-vehicle group structure was just used to design the formation graph references;

nevertheless, vehicles are still in a thirty-six vehicle platoon tracking their states respect

to their close neighbors, meaning that there are no restriction of vehicles communicating

across the six-vehicle groups.
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Figure 4.3. Results of scenario 1, lane change with enough longitudinal
gap, for the Distributed Motion Planner.

4.2. Evaluation Results for Scenario 1

The results for scenario 1, with sufficient longitudinal gap within vehicles (case 1),

for the Distributed Motion Planner, the Graph-based Distributed Motion Planner and the

Incremental Graph-based Distributed Motion Planner are presented in Figs. 4.3, 4.4 and

4.5, respectively. It can be seen that when there is only lateral movements with a feasi-

ble reference (since there is enough longitudinal gap), the three planners perform almost

identically, which is expected.

The results for the case where vehicles are travelling in parallel (case 2) are presented

Figs. 4.6, 4.7 and 4.8. In this case, graph-based planners perform identically between

them, with one vehicle accelerating and the other decelerating to accomplish the longitu-

dinal relative distance within them. In contrast, in the vanilla distributed planner, only one

vehicle accelerates while the other keeps tracking its constant reference.
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Figure 4.4. Results of scenario 1, lane change with enough longitudinal
gap, for the Graph-based Distributed Motion Planner.

Figure 4.5. Results of scenario 1, lane change with enough longitudinal
gap, for the Incremental Graph-based Distributed Motion Planner.
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Figure 4.6. Results of scenario 1, lane change with vehicles in parallel, for
the Distributed Motion Planner.

Figure 4.7. Results of scenario 1, lane change with vehicles in parallel, for
the Graph-based Distributed Motion Planner.
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Figure 4.8. Results of scenario 1, lane change with vehicles in parallel, for
the Incremental Graph-based Distributed Motion Planner.

4.3. Evaluation Results for Scenario 2

The results for scenario 2, with zero-mean multivariate normal distributed noise (case

1), for the planners are presented in Figs. 4.9, 4.10 and 4.11. Overall, measurement noise

does not destabilize the platoon, although noise is observed in states and manipulated

variables.

The results for scenario 2, when the rear vehicle has a state bias in the longitudinal

position (case 2) are presented in Figs. 4.12, 4.13 and 4.14. It can be seen that only

the Incremental Graph-based Motion planner is capable of accurately tracking the relative

longitudinal distances. Moreover, even though CA constraints are explicitly formulated,

the other two planners cannot avoid a collision, which is depicted by the dashed red line.
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Figure 4.9. Results of scenario 2, state with additive zero-mean multivari-
ate normal distributed noise, for the Distributed Motion Planner.

Figure 4.10. Results of scenario 2, state with additive zero-mean multi-
variate normal distributed noise, for the Graph-based Distributed Motion
Planner.
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Figure 4.11. Results of scenario 2, state with additive zero-mean multivari-
ate normal distributed noise, for the Incremental Graph-based Distributed
Motion Planner.

Figure 4.12. Results of scenario 2, state with additive biased multivariate
normal distributed noise, for the Distributed Motion Planner. The dashed
red line denotes a collision.
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Figure 4.13. Results of scenario 2, state with additive biased multivariate
normal distributed noise, for the Graph-based Distributed Motion Planner.
The dashed red line denotes a collision.

Figure 4.14. Results of scenario 2, state with additive biased multivariate
normal distributed noise, for the Incremental Graph-based Distributed Mo-
tion Planner.
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4.4. Evaluation Results for Scenario 3

The results for scenario 3 are presented in Figs. 4.15, 4.16 and 4.17. In this experiment,

it can be seen that the three planners are capable of rearranging vehicles internally to

perform a lane-change inside the platoon. Furthermore, the vehicles are not gaining or

losing longitudinal distance.

Figure 4.15. Results of scenario 3, internal maneuvers, for the Distributed
Motion Planner.
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Figure 4.16. Results of scenario 3, internal maneuvers, for the Graph-
based Distributed Motion Planner.

Figure 4.17. Results of scenario 3, internal maneuvers, for the Incremental
Graph-based Distributed Motion Planner.
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4.5. Evaluation Results for Scenario 4

The results for scenario 4 are presented in Fig. 4.18, 4.19 and 4.20. It can be seen that

the thirty-six vehicle platoon can accurately perform the lane merging, without gaining or

losing longitudinal distance. Moreover, vehicles inside the platoon do not need all-to-all

communication. And finally, meanwhile the graph-based references are feasible, there is

no restriction to have vehicles performing longitudinal maneuvers while others perform

lateral ones.

Figure 4.18. Results of scenario 4, merging lanes, for the Distributed Mo-
tion Planner.
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Figure 4.19. Results of scenario 4, merging lanes, for the Graph-based Dis-
tributed Motion Planner.

Figure 4.20. Results of scenario 4, merging lanes, for the Incremental
Graph-based Distributed Motion Planner.
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4.6. Discussion

The results presented show how the planners are capable of accomplishing almost

all tasks in the different scenarios. Yet, there are some differences in their behavior and

performance that need to be discussed.

In the first scenario, case 2, where longitudinal space to perform the lane change ma-

neuver is not available, initially, vehicles need to create that gap. It can be seen in the

results that in the graph-based solutions vehicles collaborate to accomplish the task, while

in the vanilla distributed planner, only one vehicle is moving to make the gap. The reason

behind this is that in the cost function of the graph-based planners, (3.3), both vehicles

track the relative distance within them, while in the vanilla planner, each vehicle tracks

its own global reference, which means that vehicles are not fully aware of how close they

are to their neighbors. This does not imply that the vanilla distributed planner is not ca-

pable of achieving a cooperative-like behavior; yet, this must be explicitly hand-coded in

the global reference. Therefore, graph-based planners show an advantage over the vanilla

distributed planner since collaboration is intrinsic, which promotes the use of smoother

actions to accomplish the same tasks.

Concerning scenario 2, both cases show important differences between the planners. In

case 1, it must be noted that, due to the uncertainty in the state, the steering angle presents

noise, particularly for the vanilla distributed planner, which shows a steering angle com-

parable with a lane change maneuver and much larger than graph-based planners. Despite

the fact that MPC’s weight matrices and cost functions are different, the main reason for

this is that graph-based planners track more than one reference: neighbors and the road

border, which naturally operates as disturbance rejection mechanism. Case 2 is also very

relevant, since it shows that only the Incremental Graph-based Distributed Motion Plan-

ner is capable of handling biased states, by using local sensors that estimate the neighbors’

states. To clearly illustrate the reason behind the malfunction of the other planners, sup-

pose that vehicle i has a state bias, analyzing (3.1) we notice that the optimization uses the
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state-dependent polytopes A(zi) and b(zi). If even a mild bias is integrated, the polytopes

will be biased and, as a consequence, both, vehicle i and its neighbors Ni calculate their

CA constraints using inputs that are inaccurate and may collide. State integration is com-

mon when using sensors like an IMU in the absence of a global positioning system, like

a GNSS (for example under a tunnel or in an urban area), to correct the state estimation.

In contrast, the Incremental Planner shifts neighbors’ states using local sensors and then

calculates their polytopes, which in practice solves this problem and increases robustness

to biased state conditions.

In the third scenario, it is important to note that results seem similar, and it looks

like the vanilla distributed planner promotes collaboration between vehicles. Nonetheless,

vehicles do not cooperate in this planner and the reason of this seemingly cooperation is

that individual references were carefully generated by hand, based on the graph designed

for the graph-based planners. As mentioned when discussing the formulation, the authors

of the vanilla planner do not address the generation of references, which must be feasible

or the planner cannot accomplish the task, adding an extra degree of complexity. On the

other hand, graph-based approaches work directly with graphs, which is a clear advantage

over the vanilla distributed planner, in terms of complexity and scalability.

In the last scenario, the complexity was scaled up by combining the results from the

previous scenarios. The results show that different maneuvers can be performed in par-

allel in different sections of the platoon, without propagating disturbances upwards or

backwards. The findings of this scenario can be extrapolated to a theoretical infinite pla-

toon across the road that maximizes road throughput and it is still capable of performing

essential internal rearranges in any section of the platoon, without impacting road per-

formance. Moreover the complexity of the algorithm does not increase, since only local

communication is used.
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5. CONCLUSIONS

In this work, graph-based distributed motion planners for tight multi-lane platoons are

presented. Inspired by a vanilla distributed planner, two graph-based solutions are pro-

posed: a formulation that tracks references referred to a global frame, and an incremental

formulation. Among the advantages of graph-based planners over the vanilla formulation

are: scalability, robustness to disturbances, the direct synthesis of references from graphs,

and the promotion of a cooperative behavior between vehicles.

The Graph-based distributed planner was achieved by enhancing the vanilla distributed

planner with a graph-based cost function, where neighbor vehicles track a reference among

their states differences. The planner scales by the fact that each vehicle only requires the

local information from their neighbors, which is referred to a global reference frame. Ad-

ditionally, the planner is designed to perform complex maneuvers in tight environments,

which is possible because it considers the (almost) exact area occupied by each vehicle

through a convex polytope to solve the DNMPC problem with an explicit CA hard con-

straint.

The Incremental Graph-based distributed planner was developed directly from the

Graph-based one, and its design was motivated to overcome the uncertainty errors of the

information communicated by each vehicle neighbors, which is achieved by translating

the neighbors states from a global to a local reference frame. As a consequence, it makes

the algorithm robust to non-zero mean uncertainty conditions.

Evaluation in a variety of scenarios shows that graph-based planners can accomplish

several maneuvers inside the platoon, ranging from simple lane-changes to complex re-

arranges due to line closures. To test the scenarios, all three approaches assume that:

vehicles could be modeled using the KBM with known parameters; there are no exter-

nal perturbations such as obstacles and human drivers; perfect synchronization within the

vehicles to perform the planning algorithms. It was shown that the vanilla distributed

planner (benchmark) cannot perform all the experiments. And although the results look
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cooperative-like, this was only because it was imposed explicitly by the single-agent refer-

ence. Graph-based distributed planners were shown to outperform the vanilla distributed

planner due to their natural cooperative behavior within agents due to the reference from

graphs. Nonetheless, both planners were incapable of accomplishing the tracking exper-

iment when information was biased. The experiments show that the Incremental Graph-

based distributed planner was capable of overcoming all the experiments, including the

biased ones, while keeping all the advantages of the previous planners.

Considering the evaluation in a 36-vehicle platoon, it can be concluded that the graph-

based distributed planners are appealing schemes for coordinating multi-lane platoons due

to the fact that they use explicit CA constraints for tight environments, they naturally

cooperate while using a reference from graphs and the local neighbors’ information, and

finally, they are scalable and robust. In addition, the presented planners resulted in two

papers, one conference paper (Pizarro & Núñez, 2021) presented in 2021 IEEE Conference

on Control Technology Applications (CCTA), and a second paper in Control Engineering

Practice under review.

5.1. Open Challenges

There are two open topics to keep improving the proposed framework. The first is

to adapt the planner for vehicles joining or leaving the platoon without deteriorating the

overall performance, while the second is associated to the reference generator from graphs.

Currently, the reference generator creates graphs for platoons with homogeneous vehicles,

under known highway topologies and in a centralized fashion. In order to exploit the full

potential of graph-based planners, the reference generator should be upgraded to work

under heterogeneous vehicles dimensions, under different road topologies and in a dis-

tributed fashion.

Concerning the former point, the scheme should be fully oriented to preserving the

safeness of the platoon by accomplishing conditions for joining or leaving the platoon. The
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minimum set of conditions should at least consider: the state and dimension interaction

within joining/leaving vehicle and the surrounding vehicles; if there is a deadline to join

or leave the platoon; and the road conditions. A possible approach for this should be

through an explicit set of hand-crafted rules to keep a full control and explainability of the

algorithm. Therefore, the program will only be executed when there are safe and known

situations.

The second point to improve is the reference generator, which seems much complex

than the first problem due to its three requirements: heterogeneous vehicles, different

road topologies and distributed implementation. Approaching this problem through a

hand-crafted set of rules could become unmanageable. Therefore, an alternative is to use

learning-based techniques, more specifically, Deep Reinforcement Learning (DRL), which

is the learning branch focused on Control and Decision Making. DRL has been gaining

traction in recent years due to its outstanding results in this area, for example in learning to

play Atari games (Mnih et al., 2013) and Robot Control from states or images (Haarnoja,

Zhou, Abbeel, & Levine, 2018; Laskin, Srinivas, & Abbeel, 2020). Even though learning-

based approaches do not consider explicit constraints, DRL has been used as a reference

generator for MPC controllers with CA (Brito, Everett, How, & Alonso-Mora, 2021; Brito,

Agarwal, & Alonso-Mora, 2021), where the learning-based approach generates a feasible

trajectory, while the MPC smooths it. Particularly in the proposed application, DRL can

be goal-conditioned (Ghosh et al., 2019; Lynch et al., 2020) and map-conditioned with

encoded maps (J. Gao et al., 2020). Goal-conditioning could be used to impose desired

distances within agents and map-conditioned to learn from different road topologies. Fur-

thermore, recent approaches on multi-agent DRL are focusing on communications within

agents and distributed applications (Q. Li, Gama, Ribeiro, & Prorok, 2020; Foerster, As-

sael, De Freitas, & Whiteson, 2016; Rashid et al., 2018). Finally, all these ideas could be

implemented in a Mixed-Autonomy Traffic Framework like Flow (Wu, Kreidieh, Parvate,

Vinitsky, & Bayen, 2021) by using a 100% of CAVs penetration.
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Čáp, M., Novák, P., Kleiner, A., & Selecký, M. (2015). Prioritized planning algorithms

for trajectory coordination of multiple mobile robots. IEEE Transactions on Automation

Science and Engineering, 12(3), 835-849. doi: 10.1109/TASE.2015.2445780

56

https://doi.org/10.1109/ITSC.2015.320
https://doi.org/10.1109/TCST.2019.2949540
https://doi.org/10.1109/TASE.2015.2445780


APPENDIX

57



A. GRAPH REFERENCE INTERPOLATION

Reference generation is conditioned to two cases: a constant formation or a formation

transition. In the first case, references are given by d(m)
ij (k|t) = d(m)

ij , 8k = t, . . . , t +Nc

with the distance constraints d(m)
ij 2 D(m)

N given by the formation Ḡ(m)
N , since there are

multiple graphs, the superindex (m) is used to differentiate between them.

Concerning formation transitions a platoon formation with virtual leader from Ḡ(m1)
N to

Ḡ(m2)
N , a linear interpolation function is used for smoother transitions. As a design feature,

formation transitions are restricted to either lateral or longitudinal maneuvers, not both,

and in this way, collision-free formations are ensured and increase the reliability of the

planning scheme.

The interpolation function is defined in Algorithm 6. The function is used for each

distance reference associated to vehicles’ i and j. To generate the reference sequence

d(m)
ij (·|t), an initial state difference reference d(m1)

ij 2 D(m1) is interpolated with a goal

state difference reference d(m2)
ij 2 D(m2), each one associated with formations graphs

Ḡ(m1)
N and Ḡ(m2)

N , respectively. To execute the function, the following parameters are used:

parameter ⌧ 2 [0, 1] which is saturated with the function sat10 between 0 and 1. Parameters

t 2 R+ and t0 2 R+ are the actual time and the start time of the maneuver, respectively.

Ts 2 R+ is the execution time, while �t 2 R+ and Nc 2 Z+ are the controller time step

and planning horizon.

Algorithm 6
1: function G(dm1

ij ,dm2
ij , t, t0, Ts,�t,Nc)

2: sequence = []
3: for k = 0 : Nc do
4: ⌧ = sat10((t0 + Ts � t� k�t)/Ts)
5: d = ⌧dm1

ij + (1� ⌧)dm2
ij

6: sequence = [sequence, d]
return sequence

7: Note: sequence corresponds to d(m)
ij (·|t)
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B. DNMPC WEIGHT MATRICES

B.1. Distributed Motion Planner Weight Matrices

The weight matrices used to evaluate the cost function J1,i(zi,ui) for the experiments

carried out in Chapter 4 are presented here in a compact notation where diag[·] represents

the values of the main diagonal of a square matrix.

Qz = diag[0.01, 10, 0.1, 0.01]

Qu = diag[0.1, 0.1]

Q�u = 02⇥2

B.2. Graph-based Distributed Planners Weight Matrices

The weight matrices used to evaluate the cost function J2,i(zi,ui) for the experiments

carried out in Chapter 4 are presented here in a compact notation where diag[·] represents

the values of the main diagonal of a square matrix.

Qz = diag[0.5, 0.05, 0, 0.25]

Q0 = diag[0, 10, 1, 0.01]

Qu = diag[0.01, 1]

Q�u = diag[0.05, 5]
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