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Abstract

A standard approach for dealing with unobserved heterogeneity and clustered time-to-

event data within the proportional hazards (PH) context has been the introduction of a

cluster-specific random effect (frailty) that is common to subjects within the same cluster.

PH models with shared random effects have been widely employed because they provide use-

ful summary information in the absence of estimates of a baseline survival distribution and

may be formulated in a semiparametric fashion. However, the conditional PH assumption

could be too strong for some applications. For example, the marginal association of survival

functions within a cluster does not depend on the subject-specific covariates. We propose an

alternative partially PH modelling approach based on the introduction of cluster-dependent

random hazard functions and on the use of mixture models induced by completely random

measures. We show that the proposed approach accommodates for different degrees of asso-

ciation within a cluster, which varies as a function of cluster level and individual covariates.

We also show that a particular specification of the proposed model has the appealing property

of preserving marginally the PH structure. We illustrate the performances of the proposed

modelling approach on simulated and real datasets.

Keywords: Completely random measures; Partially proportional hazard model; Frailty model;

Hazard rate; Kendall’s τ ; Survival ratio.
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1 Introduction

Cox’s proportional hazards (PH) model (Cox, 1972) has been widely used in the analysis of

time-to-event data. In the standard PH regression model, the hazard function for an individual

with covariate vector zi, h(· | zi), is given by h(· | zi) = h(·) exp{z′iβ}, where β is a vector

of regression coefficients and h(·) is a baseline hazard function, corresponding to zi = 0. The

PH assumption has several advantages: (i) the effect of a factor can be easily summarized

by the relative risk, and (ii) mathematical simplicity, which has been exploited to produce a

simple semiparametric approach via the partial likelihood. However, in the standard version

of the model, the responses are assumed to be independent, which is not appropriate for data

containing heterogeneous groups of subjects.

A common approach to take into account this heterogeneity is to extend the PH model

by including a group-specific random effect term in the hazard function, usually called frailty.

Under this model the conditional hazard function for the ith individual in the jth cluster,

with covariate vector zi,j , is given by hi,j(·) = hj(·) exp{z′i,jβ}, where the group-specific baseline

hazard is given by hj(·) = Vjh0(·), with Vj being a positive random variable and h0(·) a common

baseline hazard function (see, e.g. Hougaard, 2000). To complete the model specification, the

random effect components Vj ’s are often assumed to be independent and identically distributed

(iid). The resulting shared frailty PH model provides a convenient tool for modelling unobserved

heterogeneity and for taking into account the correlation of the data since, conditionally on the

random effect term, the interpretation of the hazard rates and other relevant quantities is similar

to that of a standard PH model (see, e.g., Clayton, 1978, Hougaard, 2000). However, the random

effect PH model presents some potentially important drawbacks too. For instance, the choice

of the baseline hazard and the random effect’s distribution can have a crucial impact on the

inference (see, e.g., Hougaard, 2000, Chapter 7). In addition, for some applications the simple

marginal association structure implied by the model may not be appropriate, and the conditional

PH assumption could be too strong (see, e.g., De Iorio et al., 2009).

There is a rich Bayesian nonparametric (BNP) literature robustifying the frailty distribu-

tion (see, e.g., Müller et al., 2015), the baseline hazard function (Kalbfleisch, 1978, Hjort, 1990,

Ibrahim et al., 2001, Sinha and Dey, 1997, Gelfand and Mallick, 1995, Carlin and Hodges,

1999), and relaxing the iid nature of the cluster-specific frailty terms to allow for more general

covariate-dependent marginal association structures (see, e.g., Pennell and Dunson, 2006, Zhou

et al., 2015). BNP approaches for baseline hazards include gamma processes (Kalbfleisch, 1978),
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beta processes (Hjort, 1990), piecewise exponential priors (Ibrahim et al., 2001), correlated incre-

ments priors (Sinha and Dey, 1997), Bernstein polynomials (Gelfand and Mallick, 1995, Carlin

and Hodges, 1999), and penalized B-splines (Kneib and Fahrmeir, 2007). Pennell and Dunson

(2006) proposed a Bayesian semiparametric approach that allows for subject-specific frailties to

change dynamically with time and pice-wise constant time dependent regression coefficients in

the analysis of recurrent time-to-event data. Zhou et al. (2015) proposed a covariate-adjusted

frailty PH model, where the frailty is modelled through a linear dependent tailfree process so

that its complete distributional shape can change with both continuous and categorical cluster-

level covariates. The approach proposed by Zhou et al. (2015) still assumes a conditional PH

assumption within and across clusters, and the approach proposed by Pennell and Dunson (2006)

can be expressed as a conditional Cox model with time-dependent covariates.

We propose an alternative partially PH modelling approach that generalizes the shared

random effect PH models. In our proposal the cluster-specific baseline hazard functions are

treated as functional random parameters and a BNP framework is used to provide a flexible and

robust model for them. Specifically, the cluster-specific baseline hazard functions are modelled

as a mixture model induced by a completely random measure (CRM), in the class of generalized-

gamma CRMs (Dykstra and Laud, 1981, Lo and Weng, 1989, Nieto-Barajas and Walker, 2004,

James, 2005, Lijoi and Nipoti, 2014, Arbel et al., 2016). The resulting framework allows for a

convenient modelling of heterogenous intra-cluster associations, by accommodating covariate-

dependent marginal associations between the survival functions of subjects within a cluster. We

illustrate the marginal association structure induced by the proposed model by studying the

behavior of Kendall’s τ and survival ratio, two quantities that have been widely used in the

literature to assess the intra-cluster dependence (Anderson et al., 1992). We also show that a

particular version of the proposed model retains the PH structure marginally and that it is the

only model with such property in the class of the generalized-gamma CRMs.

2 The modelling approach

2.1 The conditional partially PH model

Let Ti,j ∈ IR+ be the time-to-event for the ith individual in the jth cluster, with j = 1, . . . , r and

i = 1, . . . , nj . Let zi,j ∈ Z ⊆ IRp be a p–dimensional vector of explanatory covariates associated

with the ith individual in the jth cluster. We assume that, given the cluster-specific baseline

hazard function hj , j = 1, . . . , r, the time-to-event variables Ti,j are independent, following a
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clustered PH model with conditional density p (· | zi,j ,β, hj), that is,

Ti,j | zi,j ,β, hj
ind.∼ p (· | zi,j ,β, hj) , (1)

where

p (t | zi,j ,β, hj) = exp{z′i,jβ}hj(t) exp

[
− exp{z′i,jβ}

∫ t

0
hj(u)du

]
, (2)

which implies that the conditional hazard function for the ith individual in the jth cluster is

given by hi,j(·) = hj(·) exp{z′i,jβ}. We complete the model specification by assuming that the

cluster-specific hazard functions are random functional parameters with common distribution.

Specifically, we extend the ideas proposed by Dykstra and Laud (1981) in the context of non-

clustered data and assume that the conditional hazard functions can be expressed as a mixture

model induced by iid cluster-specific random distributions,

hj(t) =

∫
Y

k(t | y)µj(dy) (3)

and

µj | G
iid∼ G,

j = 1, . . . , r, where Y is an appropriate measurable space, k(· | ·) is a suitable kernel (i.e., a

jointly measurable mapping from R+×Y to R+), µj is a random probability measure defined on

Y, such that limt→∞
∫ t
0 hj(s)ds = +∞ a.s., and G is the common probability law for the mixing

distributions. Here we assume that G is the law of a CRM, parameterized by a finite-dimensional

parameter ϑ, for which we introduce the notation CRM(ϑ). The specific class of CRM employed

in the definition of the model is given in Section 2.2, along with a brief discussion of its basic

properties.

The modelling approach given by expressions (1) – (3) generalizes the class of shared frailty

PH models, which can be recovered as a special case of our framework. Specifically, if we assume

k(t | y) = h0(t)m(y) in (3), for some suitable functions h0 and m, then the resulting conditional

hazard function is given by hj(t) = h0(t)Vj , where Vj
D
=
∫
Y
m(y)µj(dy). As in the shared frailty

PH model, the proposed model assumes that the conditional PH assumption holds for subjects

within the same cluster. However, our modelling approach also allows for non-proportional

conditional hazard functions across clusters.

2.2 Completely random measures

The notion of CRM was first introduced by Kingman (1967) and can be thought of as the

foundation of many commonly used BNP priors (see, e.g., Lijoi and Prünster, 2010). A CRM
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µj is defined as a boundedly finite random measure on a measurable space Y such that, for

any collection A1, . . . , An of pairwise disjoint measurable subsets of Y, the random variables

µj(A1), . . . , µj(An) are independent. We assume that µj , j = 1, . . . , r, has only random atoms,

which implies that it is fully characterized by its Lévy intensity νϑ (a measure on R+ × Y,

parametrized by ϑ), through the Lévy-Khintchine representation,

Eϑ

[
e−µj(f)

]
= exp

{
−
∫
R+×Y

(
1− e−sf(y)

)
νϑ(ds,dy)

}
, (4)

for any f : Y → R such that
∫
|f |dµj < ∞, where Eϑ(·) = Eµj |ϑ(·). Thus (4) provides an

explicit expression for the Laplace functional transform Eϑ
[
e−µj(·)

]
of the CRM µj . For future

convenience we introduce also the Laplace exponent ψj of µj , defined as

ψj(f) = − log
(
Eϑ

[
e−µj(f)

])
. (5)

It is often useful to write νϑ as the product of a transition kernel ρy, and a diffuse measure α

on Y,

νϑ(ds,dy) = ρy(s)ds α(dy).

Because it includes important special cases, we focus here on the class of generalized-gamma

(gg) CRMs (Brix, 1999). A gg-CRM is a homogeneous CRM, i.e. ρy(s) = ρ(s) for every y,

characterized by

ρ(s) =
σ

Γ(1− σ)
s−1−σe−θs,

for some parameters σ ∈ (0, 1) and θ ≥ 0. A gamma-CRM corresponds to σ → 0 and θ = 1,

and has transition kernel given by ρ(s) = exp{−s}s−1, whereas a σ-stable CRM sets θ = 0.

We further consider α = cP0, where c > 0 and P0 is a probability measure defined on Y. In

summary, we complete the model specification by assuming that

µ1, . . . , µk | σ, c, P0
iid∼ gg-CRM(σ, θ, c, P0). (6)

The properties of the random hazard functions hj , induced by model (3) and (6), depend

on the choice of the kernel function. The effect of the kernel has been extensively investigated

(see, e.g., Lo and Weng, 1989, James, 2005, De Blasi et al., 2009). However, to the best of our

knowledge, only De Blasi et al. (2009) provides insights on the effect of the choice of the mixing

CRM, by investigating the asymptotic properties of functionals of the hazard mixture, both a

priori and a posteriori.

With reference to Section 2.1, we can retrieve popular specifications of shared frailty PH

models by assuming m(y) = 1Y(y) and suitably specifying the distribution of the CRMs, where
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1Y(y) is the indicator function, taking the value 1 if y ∈ Y and 0 otherwise. Specifically, if we

assume that µj is a gamma CRM, then Vj ∼ µj(Y) is a gamma random variable with shape

parameter 1 and scale parameter c. Similarly, if µj is a σ-stable CRM and c = 1, then Vj has

positive stable distribution with parameter σ ∈ (0, 1).

3 Distributional and association properties

3.1 The marginal distribution properties

Let h̃i,j and S̃i,j be the marginal hazard and survival function for the ith subject in the jthe clus-

ter under the proposed model. Therefore, S̃i,j(t) = Eϑ[Si,j(t)], where Si,j(t) = exp
{
−
∫ t
0 hi,j(s)ds

}
is the corresponding conditional survival function, and h̃i,j(t) = −∂S̃i,j/∂t

S̃i,j
. Based on results by

James (2005), it is straightforward to show that

Eϑ[hi,j(t) |Ti,j ≥ t] = −∂Eϑ[Si,j(t)]/∂t

Eϑ[Si,j(t)]
= −∂S̃i,j/∂t

S̃i,j
= h̃i,j(t),

i.e. Eϑ [hi,j(t) |Ti,j ≥ t] coincides with the population average hazard function. By means of the

Lévy-Khintchine representation, the following expressions are obtained for the marginal survival

and hazard function under any class of CRMs, respectively,

S̃i,j(t) = exp

{
−
∫
R+×Y

(
1− exp

{
−sKt(y) ez

′
i,jβ
})

νϑ(ds,dy)

}
,

and

h̃i,j(t) =

∫
R+×Y

exp
{
−sKt(y) ez

′
i,jβ
}
k(t | y) νϑ(ds,dy)ez

′
i,jβ, (7)

where Kt(y) =
∫ t
0 k(s | y) ds. Under model (1) – (6), with θ = 0, the previous expressions

reduce to

S̃i,j(t) = S′0(t)
exp{σz′i,jβ},

and

h̃i,j(t) = h′0(t)e
σz′i,jβ, (8)

respectively, where S′0(t) = exp
{
−
∫
Y
Kt(y)σα(dy)

}
and h′0(t) = σ

∫
Y
k(t | y)Kt(y)σ−1α(dy).

Therefore, if we assume a σ-stable CRM, our model remarkably retains the PH assumption

marginally. As a matter of fact, this property characterizes the σ-stable version of our model

also with respect to all other alternatives based on any µj(·) in the class of gg-CRMs. The

following result is proved in the Appendix A of the online supplementary material.
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Proposition 1. Consider the conditional partially PH model given by expressions (1) – (3),

where µ1, . . . , µr are independent and identically distributed gg-CRMs with parameters σ ∈ (0, 1)

and θ ≥ 0. Then, the PH structure is retained marginally if and only if θ = 0.

To illustrate how the marginal structure can vary when different members of the class of

gg-CRMs are considered, we also illustrate the case of the commonly used gamma CRM. Under

the conditional partially PH model given by expressions (1) – (3), where

µ1, . . . , µr | c, P0
iid∼ gamma CRM(c, P0),

the corresponding expressions for the marginal survival and hazard functions are given, respec-

tively, by

S̃i,j(t) = exp

{
−
∫
Y

log
(

1 +Kt(y)ez
′
i,jβ
)
α(dy)

}
,

and

h̃i,j(t) =

∫
Y

k(t | y)ez
′
i,jβ

1 +Kt(y)ez
′
i,jβ

α(dy).

The different marginal structures implied by the gamma and σ-stable versions of the model

emphasize the interesting correspondence between the BNP formulation considered here and

the commonly used parametric shared frailty PH models. In the recent literature, there has

been a renewed attention on positive stable frailty models (see, e.g, Choi and Huang, 2012).

The positive stable distribution serves as a “bridge distribution” for clustered time-to-event

data under a shared frailty PH model since the regression parameter in the marginal model can

be obtained as a product of the conditional regression parameters and the frailty parameter σ

(Liu et al., 2011), similarly to what we obtained under the proposed σ-stable model. In both

frameworks, the parameter σ has a tempering effect, since the value of σ attenuates the effect

of the covariates in the marginal model. This leads to a straightforward interpretation of the

model parameters σ and β. We will further clarify the interpretation of σ for the modelling of

the association structure within each cluster in Section 3.2.

An important advantage of the proposed model over other BNP-based approaches is that

the marginal likelihood of the clustered time-to-event data can be analytically computed for

some specific kernel functions, speeding up posterior computations dramatically. Specifically,

we consider a generalization of the kernel proposed by Dykstra and Laud (1981), given by

k(t | y) = d(t)1(0,ta](y), where d(t) is a positive real-valued function and a > 0. In the following,

we explicitly obtain the expression of the marginal distribution under a generic CRM, assuming

that d(t) = eb, where b ∈ R. This choice ensures that the support of the resulting random hazard
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functions covers the space of the increasing hazard functions, where the model is known to hold

consistency properties in a non-clustered data scenario (De Blasi et al., 2009). The resulting

version of the model is, therefore, suitable for the wide range of applications, e.g. biomedical, in

which risk increases with age. For simplicity, we limit our discussion to the case of no censoring.

However, the results can be extended to the case of any uninformative censoring scheme at the

expense of an increased notational burden. The following proposition is proved in the Appendix

B of the online supplementary material.

Proposition 2. Consider the conditional partially PH model given by expressions (1) – (3),

where µj | ϑ
iid∼ CRM(ϑ) and k(t | y) = eb1(0,ta](y). Set Tj = (T1,j , . . . , Tnj ,j) and zj =

(z′1,j , . . . , z
′
nj ,j

)′. Then, for any j = 1, . . . , r, it follows that the marginal distribution of the

time-to-event data is given by

p(Tj | β, zj) = exp

{
njb−

nj∑
i=1

(∫ Ta
(i),j

Ta
(i−1),j

∫
R+

(1− exp {−sFi,j(y)}) νϑ(ds,dy)− z′i,jβ

)}

× (−1)nj
∑
`∈Lj

nj∏
i=1

B
n
(`)
i,j

(
ζ
(j)
•,i

)
,

where {(T(1),j , z(1),j), . . . , (T(nj),j , z(nj),j)} are the ordered pairs ((Ti,j , zi,j))
nj
i=1, with the order

being taken with respect to the increasing values of the elements in Tj,

Fi,j(y) =

nj∑
r=i

(T(r),j − y1/a)e
z′
(r),j

β+b
,

Lj = {` = (`1, . . . , `nj ) s.t. `i ∈ {1, . . . , i} for every i = 1, . . . , nj},

B
n
(`)
i,j

(
ζ
(j)
•,i

)
= B

n
(`)
i,j

(
ζ
(j)
1,i , . . . , ζ

(j)

n
(`)
i,j ,i

)
is the n-th complete Bell polynomial, with n

(`)
i,j = #{r ∈

{1, . . . , nj} s.t. `r = i}, and, for each ` and i such that n
(`)
i,j ≥ 1,

ζ
(j)
r,i = (−1)r

∫ Ta
(i),j

Ta
(i−1),j

∫
R+

exp {−sFi,j(y)} srνϑ(ds,dy),

for r = 1, . . . , n
(`)
i,j . We agree that T(0),j = 0.

Proposition 2 is valid for any family of CRMs. When the Laplace transform of µj is known,

the marginal distribution of the responses assigned to the same cluster can be written in closed

form. Furthermore, simplifications are possible if nj is small, which is a common situation in

many applications of frailty models. For example, when the cluster size is nj = 2 and α = U(0, T ]
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for some T > 0, then the marginal distribution under the σ-stable version of the proposed model

is given by

p(Tj | β, zj) = exp
{
−
(
I(j)1 + I(j)2

)}
A1,jA2,j

(
ζ
(j)
1,1ζ

(j)
1,2 +

(
ζ
(j)
1,1

)2
+ ζ

(j)
2,1

)
,

where Ai,j = e
z′
(i),j

β+b
, for i = 1, 2, and, if we agree on the notation Cj := A1,jT(1),j +A2,jT(2),j ,

I(j)1 = Cσj 2F1

(
a,−σ; 1 + a;

(A1,j +A2,j) min(T, T a(1),j)
1/a

Cj

)
min(T, T a(1),j)

T
,

I(j)2 = (A2,jT(2),j)
σ

(
2F1

(
a,−σ; 1 + a;

min(T, T a(2),j)
1/a

T(2),j

)
min(T, T a(2),j)

T

− 2F1

(
a,−σ; 1 + a;

min(T, T a(1),j)
1/a

T(1),j

)
min(T, T a(1),j)

T

)
,

ζ
(j)
1,1 = Cσ−1j σ 2F1

(
a, 1− σ; 1 + a;

(A1,j +A2,j) min(T, T a(1),j)
1/a

Cj

)
min(T, T a(1),j)

T
,

ζ
(j)
1,2 := (A2,jT(2),j)

σ−1σ

(
2F1

(
a, 1− σ; 1 + a;

min(T, T a(2),j)
1/a

T(2),j

)
min(T, T a(2),j)

T

− 2F1

(
a, 1− σ; 1 + a;

min(T, T a(1),j)
1/a

T(1),j

)
min(T, T a(1),j)

T

)
,

ζ
(j)
2,1 = −Cσ−2j (σ − 1) 2F1

(
a, 2− σ; 1 + a;

(A1,j +A2,j) min(T, T a(1),j)
1/a

Cj

)
min(T, T a(1),j)

T
,

where 2F1 denotes the Gaussian hypergeometric function. {(T(1),j , z(1),j), (T(2),j , z(2),j)}, as in

Proposition 2, are the ordered pairs ((Ti,j , zi,j))
2
i=1 where the order is taken with respect to

increasing values of the elements in Tj .

3.2 The marginal association structure properties

We derive the expressions for the Kendall’s τ and survival ratio under the proposed model. The

former describes the association between two survival functions and, therefore, is considered as

a global measure of dependence. The latter evaluates the degree of dependence at a single time

point, thus capturing changes over time and local dependence (see, e.g., Anderson et al., 1992).

Without loss of generality, let us consider the time-to-event data for the first two units in a

cluster j, T1,j and T2,j . The joint survival function for (T1,j , T2,j), S1,2,j , is given by

S1,2,j(t1, t2) = exp

{
−
∫ t1

0
h1,j(s)ds−

∫ t2

0
h2,j(s)ds

}
.
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Let τ1,2,j and Σ1,2,j(t1, t2) denote the Kendall’s τ and the survival ratio associated with the

marginal distribution implied by the conditional PH model, respectively. We provide explicit

expressions for these association parameters, by assuming that µj | ϑ
iid∼ CRM(ϑ). The following

proposition is proved in the Appendix C of the online supplementary material.

Proposition 3. Consider the conditional PH model given by expressions (1) – (3), where µj |

ϑ
iid∼ CRM(ϑ). The Kendall’s τ and survival ratio for the first two experimental units in the jth

cluster is given by

τ1,2,j =

∫ ∞
0

∫ ∞
0
Eϑ[S1,2,j(t1, t2)]

∂2

∂t1∂t2
{Eϑ[S1,2,j(t1, t2)]} dt1dt2,

= 4e(z1,j+z2,j)
′β

∫ ∞
0

∫ ∞
0

e
−2ψ

(
K

(1,2)
t1,t2

) [∫
Y

ξ2

(
K

(1,2)
t1,t2

(y)
)
k1(t1 | y) k2(t2 | y)α(dy)

+

∫
Y

ξ1

(
K

(1,2)
t1,t2

(y)
)
k1(t1 | y)α(dy)

∫
Y

ξ1

(
K

(1,2)
t1,t2

(y)
)
k2(t2 | y)α(dy)

]
dt1 dt2 − 1,

(9)

and

Σ1,2,j(t1, t2) =
Eϑ[S1,2,j(t1, t2)]

Eϑ[S1,j(t1)]Eϑ[S2,j(t2)]
,

= exp

{
−
∫
Y×R+

(
e−sK

(1)
t1

(y) + e−sK
(2)
t2

(y) − e−sK
(1,2)
t1,t2

(y) − 1

)
νϑ(ds,dy)

}
,(10)

respectively, where, for notational simplicity, we denote ki(t | y) = k(t | y) exp{z′i,jβ}, K
(i)
t (y) =∫ t

0 ki(s | y) ds, i = 1, 2, K
(1,2)
t1,t2

(y) = K
(1)
t1

(y) + K
(2)
t2

(y), ξn(q) =
∫∞
0 sn exp{−qs}ρy(s)ds, and ψ

is the Laplace exponent of µj, for any j = 1, . . . , r, as defined in (5).

From Proposition 3 it follows that, under the σ-stable version of the proposed model, the

Kendall’s τ and survival ratio for the first two experimental units in the jth cluster is given by

τ1,2,j = 4σc e(z1,j+z2,j)
′β

∫ ∞
0

∫ ∞
0

e
−2c

∫
Y

(
K

(1,2)
t1,t2

(y)
)σ
P0(dy)

×
{

(1− σ)

∫
Y

(
K

(1,2)
t1,t2

(y)
)σ−2

k1(t1 | y)k2(t2 | y)P0(dy)

+σc

∫
Y

(
K

(1,2)
t1,t2

(y)
)σ−1

k1(t1 | y)P0(dy)

∫
Y

(
K

(1,2)
t1,t2

(y)
)σ−1

k2(t2 | y)P0(dy)

}
dt1 dt2 − 1,

and

Σ1,2,j(t1, t2) = exp

{
−c
∫
Y

((
K

(1,2)
t1,t2

(y)
)σ
−K(1)

t1
(y)σ −K(2)

t2
(y)σ

)
P0(dy)

}
,
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respectively. From Proposition 3 it also follows that by assuming

µ1, . . . , µr | c, P0
iid∼ gamma CRM(c, P0),

then,

τ1,2,j = 4ce(z1,j+z2,j)
′β

∫ ∞
0

∫ ∞
0

e
−2c

∫
Y
log
(
1+K

(1,2)
t1,t2

(y)
)
P0(dy)

[∫
Y

k1(t1 | y)k2(t2 | y)

(1 +K
(1,2)
t1,t2

(y))2
P0(dy)

+c

∫
Y

k1(t1 | y)

1 +K
(1,2)
t1,t2

(y)
P0(dy)

∫
Y

k2(t2 | y)

1 +K
(1,2)
t1,t2

(y)
P0(dy)

]
dt1 dt2 − 1,

and

Σ1,2,j(t1, t2) = exp

{
−c
∫
Y

log
1 +K

(1,2)
t1,t2

(y)

(1 +K
(1)
t1

(y))(1 +K
(1)
t2

(y))
P0(dy)

}
.

Despite their apparent complexity, the previous expressions can be explicitly evaluated once

the kernel k(· | ·) and the normalized base measure P0 are specified. We can also observe that

Σ1,2,j(t1, t2) = 1 corresponds to the case of intra-cluster independence, whereas Σ1,2,j(t1, t2) >

1 (resp. Σ1,2,j(t1, t2) < 1) corresponds to the case of positive (resp. negative) intra-cluster

association. The previous expressions also show that both the Kendall’s τ and the survival

ratio may depend on the values of the individual specific covariates and thus they are able

to accommodate different degrees of association within each cluster, in contrast to standard

frailty models. It is important to stress that predictor-dependent association structures can be

obtained also by adopting other models. For instance, this can be achieved by considering time-

dependent frailty terms or by relaxing the iid assumption of the frailties and introducing the

dependence on predictors of the distribution of the frailty terms. Unfortunately, to the best of

our knowledge, the existing literature on these models have not explored the induced marginal

association structure of the model. This can therefore be considered as an advantage of the

proposed conditional partially PH model, for which explicit expressions for common marginal

association measures can be found. Another way of inducing a predictor dependent association

structure and, at the same time, avoid assumptions on the relationship between predictors and

the distribution of the time-to-event, is by considering dependent mixture models. Such an

alternative approach will be considered in Section 5.2 where the fit of our model is compared

with a linear dependent Dirichlet process (LDDP) mixture (see, e.g. De Iorio et al., 2004, 2009,

Jara et al., 2010). For the sake of illustration, we assume now that c = 1 in the σ-stable version

of the proposed model. This allows us to draw a comparison of the two proposed versions of our

model, each one being characterized by only one parameter, that is σ ∈ (0, 1) for the σ-stable
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version and c > 0 and the gamma version. As discussed previously, shared frailty models are

obtained as a special case of the proposed model by setting k(t | y) = h0(t)m(y). Indeed, by

further assuming that m(y) = 1Y(y), we can obtain the well-known expressions for the Kendall’s

τ under the gamma and stable shared frailty models (see, e.g., Duchateau and Janssen, 2008).

More specifically, we obtain τc = 1/(1 + 2c) and τσ = 1 − σ for the gamma and the σ-stable

version of the frailty PH model, respectively.

We now illustrate how Kendall’s τ changes as a function of subject-specific covariates in each

cluster. In this illustration we set k(t | y) = 1(0,t](y). Furthermore, we set P0 to be a uniform

distribution on the finite interval (0, 1]. We consider a single covariate per each individual and

focus on 4 possible combinations of values, namely {(0, 0), (3, 3), (0, 3), (−3, 3)}.

Figure 1 shows the values of the Kendall’s τ under the two versions of proposed model,

as a function of the parameter values. In both cases, we note that the Kendall’s τ is positive,

indicating a positive overall dependence. If we compare the results with the Kendall’s τ obtained

under shared frailty PH models, i.e. τc and τσ reported above, a few similar features can be

recognized. In the gamma case, when c → 0, τ approaches 1, whereas as c increases, τ → 0.

Similarly, in the σ-stable case, when σ → 0, τ → 1, whereas if σ → 1, then τ → 0. However,

Figure 1 also shows that, for any fixed value of the parameters c and σ, different combinations

of the covariate values generate significantly different association structures within a cluster,

which is a particular feature of our modelling framework only.

[Figure 1 about here.]

We note that the pattern of dependence is quite different between the two versions of the

proposed model. The exploratory analyses show that under the σ-stable version of the model,

the Kendall’s τ is affected more by the relative differences observed between the cluster covariates

|Z1 − Z2| than their individual magnitudes. This behaviour is exemplified in Figure 1(a). This

shows that when Z1 = Z2 = 0 and Z1 = Z2 = 3, the curves are very close to each other. On

the other hand, when (Z1, Z2) = (0, 3) and (Z1, Z2) = (−3, 3) significantly different Kendall’s

τ functions are obtained. A similar interpretation does not appear to hold under the gamma

version of the model.

The two versions of the conditional partially PH model also show different local dependence

structures. In order to avoid confounding of global and covariate effects, we illustrate the local

dependence structure assuming null covariate values. We further set c and σ so that the overall

Kendall’s τ is 0.25 for both the σ-stable and the gamma version of the model. This is achieved
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when c ≈ 1.905 and σ ≈ 0.736. Figure 2 displays the contour curves for the survival ratio,

Σ1,2,j(t1, t2), as a function of the survival functions. Both cases show positive local intra-class

correlation. Furthermore, higher values of the survival ratio correspond to smaller values of the

marginal survival functions, or, equivalently, larger t1 and t2. However, by comparing Figure 2(a)

and 2(b), it is evident that the gamma and σ-stable CRM based models are characterized by

late and early intra–cluster dependence, respectively. More specifically, contour lines indicating

positive correlation appear earlier for the σ-stable CRMs, corresponding to higher values of the

survival functions. For example, compare the contour lines for the value Σ = 1.05 in Figure 2.

On the other hand, the rate of increase of the survival ratio is slower in the σ-stable case. Thus,

high values of the survival ratio appear earlier when gamma CRMs are considered. As a matter

of fact, in the σ-stable case, two units of the same cluster tend to be relatively weakly correlated

in the long term. Those patterns of failures are often observed in familial associations of onset

ages for diseases with low penetrance (Fine et al., 2003). Therefore, the parameter σ can be

thought of as a dependence parameter. As suggested by our numerical study, if σ → 1, then

τ → 0 and Σ → 1, capturing both local and global independence between survival times. On

the other hand, a value σ < 1 reflects positive correlation between observations within and

between clusters. The interpretation of σ as a parameter capturing the dependence in a cluster

is supported also by the marginalization properties of the proposed σ-stable model, since in the

marginal model the parameter σ affects multiplicatively the regression coefficients β. Hence,

the stronger is the association between survival times in the same cluster (the smaller the value

of σ), the weaker should be the effect of the individual covariates of the subjects in the cluster.

Once again, the previous discussion shows how our modelling framework preserves and extends

well-known results for the shared frailty PH models with gamma and positive stable distributions

(Duchateau and Janssen, 2008).

[Figure 2 about here.]

4 A simulation study

We first illustrate the performances of the proposed modelling approach on simulated datasets.

4.1 The simulation settings

The clustered time-to-event data were simulated under two different simulation scenarios. In

the first case we consider a σ-stable shared frailty PH model, with a Weibull baseline hazard
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function h0(t) = κtκ−1/λκ (Manatunga and Oakes, 1999), where κ = 1.1 and λ = 1, a model

specification which corresponds to increasing hazard functions. In the second case we consider

a conditional partially PH model given by expressions (1) – (3), with k(t | y) = eb1(0,ta](y) and

where µ1, . . . , µr are iid σ-stable CRMs with base measure α(·) = 1(0,T ](·), where a = 2, T = 1

and b = 0. Under both simulation scenarios, we consider three data-generating mechanisms,

obtained by setting σ ∈ {0.25, 0.5, 0.75}. It is important to note that with these specifications,

the standard σ-stable shared frailty PH model is a limiting case of our proposed model for

T → 0.

For each data-generating mechanism, we consider three different sample sizes by setting

r = 100, 200 and 500. In all cases we set nj = 2, and consider a single binary predictor,

zi,j ∈ {0, 1}, randomly generated from a Bernoulli of parameter p = 0.5, and set β = 4. For

each of the 18 simulation settings, we generate 100 Monte Carlo replicates. The CRMs µj for

the proposed model were generated via the Ferguson & Klass algorithm (see, e.g., Orbanz and

Williamson, 2011).

For each simulated dataset, the σ-stable version of the proposed conditional partially PH

model was fit, by assuming k(t | y) = eb1(0,ta](y), α(·) = 1(0,T ](·), and using the Markov chain

Monte Carlo (MCMC) algorithm described in the Appendix D of the online supplementary

material. The model specification was completed by assuming β ∼ N(0, 1000), σ ∼ U(0, 1),

b ∼ N(0, 10), log(T ) ∼ N(0, 10) and log(a) ∼ N(0, 10). For comparison purposes, the σ-stable

shared frailty PH model, with a Weibull baseline hazard function, was also fit to each simulated

dataset. In this case, the model was completed by assuming β ∼ N(0, 1000), σ ∼ U(0, 1),

κ ∼ N(1, 10)1{κ>1} and log(λ) ∼ N(0, 10). The choice of a prior for κ with support (1,∞),

makes the comparison between the two models fair as both have support limited to increasing

hazard functions.

The standard shared frailty model was fit using the MCMC algorithm described in the

Appendix E of the online supplementary material. For each simulation scenario, generated

sample and considered model, we ran the MCMC algorithm for 5,000 iterations after a burn-in

period of 1,000 iterations. Standard MCMC tests (not shown), suggested convergence of the

chains. The results obtained in the simulation study and reported in the next section were

robust to a sensitivity analysis with different prior specifications.

The performance of the models was evaluated by computing the mean squared error (MSE)

of the posterior mean of the corresponding parameters. In the case of the estimation of survival

ratio, the models where compared by means of the L∞ and L1 distance between the posterior
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mean and the true value. The competing models were also compared by means of the log

pseudo marginal likelihood method (LPML) developed by Geisser and Eddy (1979). A larger

value of the LPML indicates that the corresponding model has better predictive ability. The

computation of the LPML is given in Appendix F of the supplementary material.

4.2 The results

Tables 1 and 2 show the simulation results for the regression coefficient and Kendall’s τ when the

data are generated under a σ-stable shared frailty PH model and under the σ-stable conditional

partially PH model, respectively. The results suggest that when the assumptions of the shared

frailty PH model apply and we fit the proposed model, the parameter σ, the regression coefficients

and the association structure, measured via Kendall’s τ , are well estimated by their posterior

means. Specifically, the estimates of Kendall’s τ are not affected by the values of the predictors

in a given pair. Furthermore, the posterior mean of Kendall’s τ for every combination of the

covariates has similar bias and MSE than the estimator arising from the corresponding σ-stable

shared frailty PH model. The results also show that the MSE reduces as the number of clusters

r increases, suggesting that the posterior mean for σ, β and Kendall’s τ for any combination of

the covariates, is a consistent estimator of the corresponding parameter.

[Table 1 about here.]

On the other hand, if the conditional partially PH model assumption is the true model,

the results suggest that the shared frailty PH model leads to strongly biased estimators of the

association structure. Also, the MSE does not get smaller when the sample size increases. As

expected, the results under the proposed model suggest that the posterior mean is an unbiased

estimator of the association structure for every sample size and that it is consistent.

[Table 2 about here.]

Similar results are observed for the survival ratio. Table S.1, given in Appendix F of the

online supplementary material, shows the L1 and L∞ distance between the reciprocal of the true

survival ratio and the posterior mean of this association functional parameter. When the data

are generated from the proposed model, the average difference in L∞ (L1) distance between

the models, across simulations, combinations of covariate values and simulation settings, was

0.2057 (0.0519). In this case, the estimates of the survival ratio under the proposed model

are closer to the true function in all simulation settings. On the other hand, when the shared
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frailty PH model is the correct data generating mechanism, the two models behaved in a similar

way and the average difference in L∞ (L1) distance between the models was -0.0048 (-0.0026).

In this scenario, in 24 settings (out of 27) the shared frailty PH model performs better than

the proposed model with respect to the L∞ distance. In terms of L1 distance, in 2 simulation

settings the proposed model performs better and in 6 cases the two models perform equally

well. Table 3 displays the results on the behaviour of the model selection criterion. This table

shows the mean of the LPML for each model and the percentage of times across simulations

in which the LPML selects the true time-to-event model assumption. In agreement with the

results discussed for the model parameters, the LPML suggests that there are no differences

between the fit of the models when the data are generated from a shared frailty PH model.

Also, the LPML correctly selects the proposed model when the shared frailty assumption is not

valid, implying an association structure that varies with the predictors. Therefore, the results

show that the LPML is an adequate model selection criteria and that the power for selecting

the correct regression model assumption is high even for group sample sizes as small as r = 100.

[Table 3 about here.]

Finally, plots of the estimated marginal hazard functions for different combinations of the pre-

dictors are given in the Appendix F of the online supplementary material. The results show that

the posterior mean of the marginal survival function under the proposed model can correctly

estimate the true, with a behavior similar to the described for the regression coefficients and

association parameters.

5 Application to insurance data

5.1 The data

In recent years, last survivor policies have become quite popular in the actuarial industry. These

policies are issued to couples and are structured so that the payoff is due only at the time of

death of the second member. In order to fairly price such policies, it is important to adequately

take into account the joint survival times of the members of the couples and how these are

associated. As a matter of fact, the analysis of several datasets of married couples has identified

a significant positive correlation between the survival of the spouses. The possible sources of

association have been described by the common lifestyle, the involvement in a common disaster

and also the so-called broken-heart syndrome (Youn and Shemyakin, 1999).
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We consider a dataset of joint survival times from a Canadian insurance company, described

in detail by Luciano et al. (2008). The dataset contains information on r = 197 policy contracts,

in a 5-year period, from December 29, 1988, to December 31, 1993. Each contract was stipulated

by two people for which we know gender and date of birth. Here the response Ti,j is defined as

the time-to-death, calculated starting from the signing date of the contract, of the ith individual

in the jth couple (nj = 2). For each partner, the vector of covariates zi,j consists of their gender

(zi,j,1) and age at the moment the contract was signed (zi,j,2). As for the gender, we set zi,j,1 = 0

or 1 to indicate if the individual is a female or a male, respectively.

5.2 Model fit and results

We fit the σ-stable version of the conditional partially PH model by assuming k(t | y) =

eb1(0,ta](y), P0(·) = 1(0,T ](·)/T and the MCMC algorithm described in the Appendix D of the

online supplementary material. We ran the MCMC algorithm for 10,000 iterations after a burn-

in period of 2,000 iterations. Standard MCMC tests suggested convergence of the chains (see,

Appendix G.2). The model specification was completed with the same hyper-priors described

in Section 4. The σ-stable shared frailty PH model, with a Weibull baseline hazard function,

was also fit to the data, under the same prior specification described in Section 4. The values

for LPML under the proposed model and the σ-stable shared frailty PH model was 609 and

444, respectively, showing that the proposed model outperforms a natural competitor from a

predictive point of view. To evaluate the assumption on the relationship of predictors and the

time-to-event distribution and the implied association structure we also fit a BNP dependent

mixture model, arguably one of the most general models for regression data (see, e.g. Barrientos

et al., 2012). Specifically, we considered a linear dependent Dirichlet process (LDDP) mixture

of bivariate lognormals model (see, e.g. De Iorio et al., 2004, 2009, Jara et al., 2010). The details

of the implemented LDDP model are given in Appendix H of the supplementary material. The

LPML under the LDDP model was 534 suggesting that, from a predictive point of view, the

additional generality provided by the LDDP model regarding the mean and association structure

are not needed for the insurance data.

The results suggest that there is no significant effect of gender on the conditional or marginal

risk of death. Further, within a cluster the log relative risk of death (70 years old vs 40 years

old) is equal to 1.9570. On the contrary, if we randomly select a 70 years old person and a

40 years old person from the population (i.e., not from the same cluster), then the estimated
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log-relative risk of death is 0.4885. The posterior inference on Kendall’s τ coefficient shows

the existence of different degrees of association depending on the subjects’ covariates. Table 4

illustrates the results for Kendall’s τ as a function of the age of each member in a male/female

couple. The results suggest that the association of survival times is greater for couples of the

same age than for couples of different age. For instance, if we assume that the first member

is a male and the second a female, the posterior mean (95% credible interval) of Kendall’s τ

was 0.7029 (0.6681, 0.7465) and 0.7030 (0.6694, 0.7380) if both individuals were 40 and 70 years

old, respectively. On the other hand, if the couple consisted of a 40 years old male and a 70

years old female, the posterior mean (95% credible interval) for Kendall’s τ was only 0.5822

(0.4582, 0.6708). Similarly, for a 70 years old male and a 40 years old female, the posterior mean

(95% credible interval) for the Kendall’s τ was 0.6059 (0.5051, 0.6835). The heterogeneity in

the association structure as a function of the different covariate values observed in this dataset

explains the better predictive performance of our model with respect to the alternative shared

frailty PH model.

[Table 4 about here.]

Figure 3 shows estimated marginal survival curves for different combinations of the predictors

under the σ-stable conditional partially PH model. The posterior mean of the survival curve is

displayed, along with a point-wise 95% credible region. The figure also displays the empirical

survival function obtained by aggregating the data for the predictor age at the moment of

contract. The results suggest that the fit of the proposed model is adequate.

[Figure 3 about here.]

6 Discussion

We have proposed a class of conditional partially PH models and showed that it has appeal-

ing properties in terms of the implied marginal distribution and association structure for the

analysis of clustered time-to-event data. More specifically, our proposal accommodates for the

presence of different degrees of association depending on subjects’ specific covariates, allowing

for both a straightforward interpretation of the parameters of the survival model, and a conve-

nient modelling of heterogeneous intra-cluster associations. We have illustrated the performance

of the proposed model with a simulation study and an application to the analysis of last survivor
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policies, where the model is shown to outperform parametric competitors by virtue of its flexible

covariate-dependent modelling of the association structure in a cluster.

While in our illustrations we worked with a model specification corresponding to an assump-

tion of increasing hazards, the proposed model is more general and, according to the modelling

goals, other choices can be made. For instance, by reversing the inequality in the kernel pro-

posed by Dykstra and Laud (1981), that is by choosing k(t | y) = eb1[ta,∞)(y) in (3), we obtain

a family of decreasing random hazards. Other tractable examples are discussed in Lo and Weng

(1989): k(t | y) = eb1{|t−t0|≥y} and k(t | y) = eb1{|t−t0|≤y}, for some t0 > 0, lead respectively to

a class of U-shaped symmetric hazards with minimum in t0 and a class of unimodal symmetric

hazards centered at t0. The class of completely monotone hazards is instead recovered by choos-

ing k(t | y) = eb−ty. If the goal is to estimate hazard functions without shape restriction, then

one might consider more flexible kernels, such as the log-normal, although at the cost of losing

some of the analytical tractability of the examples considered above. Based on our experiments,

the choice of the normalized base measure P0 has not a major impact on the produced inference.

For instance, Appendix G.3 shows comparable inferences are drawn under the proposed model

if an exponential base measure is considered for fitting the insurance data. Thus, it might be

convenient to choose the base measure so to favour analytical tractability. We pursued this pur-

pose by working with a uniform base measure on some interval [0, T ], but other specifications

can be adopted. For example Lo and Weng (1989) suggest to choose P0 depending on k(· | ·),

with an argument analogous to the one of conjugate priors.

Future extensions of the proposed modelling framework might allow for borrowing of strength

across clusters by enabling shared components in the modelling of the CRMs µj . For example,

dependent priors for hazard functions could be introduced as in Lijoi and Nipoti (2014), so that

the cluster-specific random hazard functions µj could be modelled as a mixture, µj = µ̃0 + µ̃j ,

where µ̃0 denotes a common CRM, shared by all clusters, and µ̃j is a cluster-specific idiosyn-

cratic CRM. The two measures µ̃0 and µ̃j are characterized, respectively, by Lévy intensities

νϑ,0(ds,dx) = ε νϑ(ds,dx) and νϑ,j(ds,dx) = (1− ε) νϑ(ds,dx) with ε ∈ [0, 1] a parameter gov-

erning the amount of borrowing allowed across clusters. Since the marginal CRMs µj ’s are

identically distributed with Lévy intensity νϑ(ds,dx), the resulting shared CRM model retains

the marginal properties and the parameters’ interpretation of the class of conditional partially

PH models we have described in this manuscript. An alternative way to induce borrowing of

information across clusters can be obtained by adopting a hierarchical approach, that is mod-

elling the base measure α with an almost surely discrete nonparametric prior, in the spirit of
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Camerlenghi et al. (2018).

7 Supporting information

A web Appendix which contains proofs, details on posterior sampling and complementary results

on the study of simulated and real data, is available with this paper.
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Figure 1: Kendall’s τ plotted as a function of the parameters σ and c for the σ-stable and gamma
conditional PH model, respectively, for different sets of covariates values. See Section 3.2 for
details.
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Figure 2: Contour plots of the survival ratio Σ1,2,j(t1, t2) under the σ-stable and gamma version
of the model.
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Figure 3: Insurance data: Posterior mean of the survival function for different combinations of
the predictors (continuous line). A point-wise 95% credible region is also displayed as dotted
lines. In each case, the empirical survival function obtained by aggregating the data with respect
to the predictor age at the moment of contract is also displayed; the intervals considered for
the aggregation of the data are indicated in each case. The result under the proposed model
corresponds to the midpoint of the corresponding age interval.27



Table 1: Simulated Data: Data generated from a σ-stable shared frailty PH model. Mean
across simulations (mean squared error) of the posterior mean for σ, regression coefficient and
Kendall’s τ under the σ-stable version of the proposed conditional partially PH model and under
the σ-stable shared frailty PH model. The results for Kendall’s τ under the proposed model are
shown for the three different combinations of covariates, where τ1,1, τ0,0 and τ1,0 corresponds to
Kendall’s τ for pairs of individuals with covariates (1, 1), (0, 0) and (1, 0) (or equivalently (0, 1)),
respectively.

True value Conditional partially PH model shared frailty PH model

r σ β τ σ β τ1,1 τ0,0 τ1,0 σ β τ

100 0.25 4 0.75 0.2785 3.6805 0.7205 0.7209 0.7206 0.2485 4.1688 0.7515
(0.0012) (0.1389) (0.0013) (0.0013) (0.0013) (0.0004) (0.1353) (0.0004)

0.50 4 0.50 0.5371 3.6705 0.4644 0.4656 0.4585 0.4874 4.0397 0.5026
(0.0027) (0.1658) (0.0026) (0.0025) (0.0031) (0.0016) (0.0990) (0.0016)

0.75 4 0.25 0.7747 3.7951 0.2588 0.2586 0.2498 0.7338 4.1310 0.2662
(0.0031) (0.1094) (0.0017) (0.0016) (0.0013) (0.0030) (0.1362) (0.0030)

200 0.25 4 0.75 0.2751 3.6382 0.7246 0.7254 0.7246 0.2490 4.0582 0.7510
(0.0008) (0.1494) (0.0009) (0.0009) (0.0009) (0.0003) (0.0709) (0.0003)

0.50 4 0.50 0.5343 3.6738 0.4660 0.4668 0.4635 0.4958 4.0354 0.5042
(0.0017) (0.1341) (0.0017) (0.0017) (0.0009) (0.0007) (0.0456) (0.0007)

0.75 4 0.25 0.7782 3.7795 0.2550 0.2562 0.2488 0.7432 4.0621 0.2568
(0.0022) (0.1062) (0.0010) (0.0011) (0.0007) (0.0015) (0.0588) (0.0015)

500 0.25 4 0.75 0.2741 3.6300 0.7253 0.7255 0.7263 0.2510 3.9948 0.7490
(0.0006) (0.1456) (0.0007) (0.0007) (0.0006) (0.0001) (0.0300) (0.0001)

0.50 4 0.50 0.5401 3.6525 0.4637 0.4640 0.4684 0.4641 3.9848 0.4960
(0.00016) (0.1309) (0.0016) (0.0016) (0.0017) (0.0004) (0.0271) (0.0004)

0.75 4 0.25 0.7757 3.7925 0.2532 0.2520 0.2443 0.7473 4.0173 0.2527
(0.0019) (0.0908) (0.0008) (0.0008) (0.0004) (0.0008) (0.0336) (0.0008)
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Table 2: Simulated Data: Data generated from a σ-stable conditional partially PH model. Mean
across simulations (mean squared error) of the posterior mean for the parameter σ, the regression
coefficient and Kendall’s τ under the σ-stable version of the proposed conditional partially PH
model and under the σ-stable shared frailty PH model. The results are shown for the three
different combination of covariates, where τ1,1, τ0,0 and τ1,0 corresponds to Kendall’s τ for pairs
of individuals with covariates (1, 1), (0, 0) and (1, 0) (or equivalently (0, 1)), respectively. The
results for the mean squared error under the shared frailty model are shown for τ1,1, τ0,0 and
τ1,0, respectively.

True values Conditional partially PH model shared frailty PH model

r σ β τ1,1 τ0,0 τ1,0 σ β τ1,1 τ0,0 τ1,0 σ β τ

100 0.25 4 0.6988 0.7166 0.4978 0.2536 3.9626 0.7033 0.7214 0.4980 0.3065 2.0242 0.6932
(0.0004) (0.1348) (0.0005) (0.0004) (0.0011) (0.0054) (3.9773) (0.0024; 0.0029; 0.0406)

0.50 4 0.4512 0.4704 0.2432 0.5072 4.0060 0.4537 0.4723 0.2418 0.5566 2.8378 0.4434
(0.0027) (0.1662) (0.0021) (0.0024) (0.0011) (0.0131) (1.4087) (0.0100; 0.0106; 0.0500)

0.75 4 0.2498 0.2503 0.1155 0.7264 3.9614 0.2904 0.2503 0.1371 0.7526 3.3278 0.2474
(0.0048) (0.2142) (0.0036) (0.0036) (0.0009) (0.0067) (0.5508) (0.0067; 0.0067; 0.0241)

200 0.25 4 0.6988 0.7166 0.4978 0.2545 3.9626 0.6644 0.6822 0.4958 0.3186 2.2807 0.6814
(0.0005) (0.1362) (0.0016) (0.0015) (0.0007) (0.0061) (2.9963) (0.0017; 0.0027; 0.0351)

0.50 4 0.4512 0.4704 0.2432 0.5117 3.9192 0.4394 0.4523 0.2605 0.5791 3.0721 0.4209
(0.0024) (0.1709) (0.0013) (0.0014) (0.0008) (0.0090) (0.9248) (0.0037; 0.0052; 0.0344)

0.75 4 0.2498 0.2503 0.1155 0.7274 4.0300 0.2790 0.2707 0.1469 0.7769 3.4714 0.2231
(0.0043) (0.2225) (0.0019) (0.0017) (0.0012) (0.0037) (0.3303) (0.0036; 0.0037; 0.0145)

500 0.25 4 0.6988 0.7166 0.4978 0.2515 3.9838 0.7054 0.7238 0.4973 0.2860 1.9973 0.7140
(0.0001) (0.0327) (0.0003) (0.0002) (0.0004) (0.0018) (4.0308) (0.0007; 0.0005; 0.0473)

0.50 4 0.4512 0.4704 0.2432 0.4984 3.9788 0.4607 0.4807 0.2491 0.5240 2.8738 0.4760
(0.0005) (0.0374) (0.0006) (0.0006) (0.0003) (0.0029) (1.2880) (0.0029; 0.0023; 0.0564)

0.75 4 0.2498 0.2503 0.1155 0.7279 3.9737 0.2894 0.2857 0.1359 0.7458 3.3011 0.2542
(0.0014) (0.0308) (0.0021) (0.0018) (0.0005) (0.0020) (0.5127) (0.0020; 0.0019; 0.0212)
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Table 3: Simulated Data: Mean of LPML for the conditional partially PH model (shared frailty
PH model) and percentage in which LPML selects the conditional partially PH model (shared
frailty PH model), across simulation. The results are shown for the different simulation settings
and true underlying time-to-event regression model assumption.

True Model
Simulation Setting Conditional partially PH model shared frailty PH model
r σ Mean % Mean %

100 0.25 -152 (-375) 100 (0) 302(303) 0 (1)
0.50 -122 (-205) 100 (0) 175 (175) 1 (1)
0.75 -110 (-151) 100 (0) 162 (163) 0 (0)

200 0.25 -396 (-618) 100 (0) 605 (606) 0 (4)
0.50 -237 (-316) 100 (0) 347 (348) 0 (3)
0.75 -146 (-177) 100 (0) 324 (324) 1 (0)

500 0.25 -728 (-1855) 100 (0) 1532 (1534) 0 (8)
0.50 -624 (-1053) 100 (0) 870 (872) 0 (2)
0.75 -542 ( -756) 100 (0) 787 (788) 0 (1)
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Table 4: Insurance data: Posterior mean (95 % credible interval) for Kendall’s τ under the
proposed σ-stable conditional partially PH model. The results are presented for different com-
binations of gender and age for the members of the cluster.

Subject 1 Subject 2
Gender Age (Years) Gender Age (Years) τ

Male 40 Male 40 0.7039 (0.6615, 0.7428)
Male 40 Female 40 0.7029 (0.6681, 0.7465)

Female 40 Female 40 0.7049 (0.6748, 0.7418)
Male 70 Male 70 0.7036 (0.6715, 0.7423)
Male 70 Female 70 0.7030 (0.6694, 0.7380)

Female 70 Female 70 0.7038 (0.6735, 0.7379)
Male 40 Male 70 0.5935 (0.4810, 0.6769)
Male 40 Female 70 0.5822 (0.4582, 0.6708)

Female 40 Male 70 0.6059 (0.5051, 0.6835)
Female 40 Female 70 0.5947 (0.4778, 0.6790)
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