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ESCUELA DE INGENIERÍA
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ABSTRACT

Machine learning techniques have been successfully used to classify variable stars on

widely-studied astronomical surveys. These datasets have been available to astronomers

long enough, thus allowing them to perform deep analysis over several variable sources

and generating useful catalogs with identified variable stars. The products of these stud-

ies are labeled data that enable supervised learning models to be trained successfully.

However, when these models are blindly applied to data from new sky surveys their per-

formance drops significantly. Furthermore, unlabeled data becomes available at a much

higher rate than its labeled counterpart, since labeling is a manual and time-consuming

effort. Domain adaptation techniques aim to learn from a domain where labeled data is

available — the source domain — and through some adaptation perform well on a differ-

ent domain – the target domain. We propose a full probabilistic model that represents the

joint distribution of features from two surveys as well as a probabilistic transformation of

the features between one survey to the other. This allows us to transfer labeled data to a

study where it is not available and to effectively run a variable star classification model in

a new survey. Our model represents the features of each domain as a Gaussian mixture

and models the transformation as a translation, rotation and scaling of each separate com-

ponent. We perform tests using three different variability catalogs: EROS, MACHO, and

HiTS, presenting differences among them, such as the amount of observations per star,

cadence, observational time and optical bands observed, among others.

Keywords: Astronomy, Variable Stars, Machine Learning, Transfer Learning, Domain

Adaptation.

xi



RESUMEN

Las técnicas de aprendizaje de máquina han sido aplicadas con éxito en la clasificación

de estrellas variables en sondeos astronómicos bien estudiados. Estos conjuntos de datos

han estado disponibles el tiempo suficiente para que los astrónomos analicen en profun-

didad una serie de fuentes variables y generen catálogos prácticos con estrellas variables

identificadas. El producto de estos estudios son datos etiquetados que permiten entre-

nar modelos supervisados con éxito. Sin embargo, cuando estos modelos son aplicados

ciegamente a datos provenientes de nuevos sondeos celestes su desempeño disminuye de

manera considerable. Más aún, los datos sin etiqueta son generados a una tasa muchı́simo

mayor que la de su contraparte etiquetada, ya que el etiquetado es un proceso manual que

toma tiempo. Las técnicas de adaptación de dominio apuntan a aprender en un dominio

donde hay etiquetas disponibles — el dominio fuente — y mediante alguna adaptación

clasificar con éxito en otro dominio — el dominio objetivo. Proponemos un modelo prob-

abilı́stico completo que representa la distribución conjunta de las caracterı́sticas de dos

conjuntos de datos distintos, ası́ como una transformación probabilı́stica desde las car-

acterı́sticas de uno de los conjuntos de datos hacia el otro. Esto permite transferir datos

etiquetados a un sondeo donde éstos no están disponibles y efectivamente aplicar un mod-

elo de clasificación en un sondeo nuevo. Nuestro modelo representa las caracterı́sticas

de cada dominio como una mezcla de Gaussianas y modela la transformación como una

translación, rotación y escalación de cada componente por separado. Realizamos pruebas

usando tres catálogos de variabilidad diferentes: EROS, MACHO y HiTS. Presentamos las

diferencias entre ellos, como la cantidad de observaciones por estrella, cadencia, tiempo

de observación, y bandas ópticas observadas, entre otros.

Palabras Claves: Astronomı́a, Estrellas Variables, Aprendizaje de Máquina, Transferen-

cia de Aprendizaje, Adaptación de Dominio.
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1. INTRODUCTION

1.1. The Big Data Bang

Astronomy is perhaps one of the most notable examples of the “data explosion” phe-

nomenon in science. Astronomical datasets have been growing in size at an accelerating

pace since the appearance of the Babylonian star catalogs around 1370 BCE, some of the

oldest known to date. These ancient catalogs contain precise measurements of over 70

stars (Rogers, 1998). More than 1,000 years later, around 126 BCE, the Greek astronomer

Hipparchus of Nicaea compiled his star catalog, which included more than 653 stars. He

introduced the apparent magnitude scale used to measure the brightness of celestial objects

that is still in use today (Graßhoff, 2013). Ptolemy would then expand on Hipparchus work

in the Almagest or Syntaxis Mathematica — one of the most important scientific texts of

all time, which introduced the geocentric model — documenting Hipparchus’ star tables

and his work on trigonometry (Graßhoff, 2013). Figure 1.1 shows part of a star table from

the Almagest.

Figure 1.1. Star table from a 1515 print of the Almagest
(Ptolemei, 1515). The table shows star designations, po-
sitions in ecliptic coordinates and magnitudes. Source:
Linda Hall Library of Science, Engineering & Technology
(http://lhldigital.lindahall.org/cdm/ref/collection/astro images/id/1700).
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The greatest increases in the size of astronomical datasets have been tied to technolog-

ical advancement, which has allowed the observation of the skies beyond the capabilities

of the naked eye. Galileo Galilei’s telescope, constructed in 1609, started the era of optical

astronomy. Following this invention, ever larger and more precise telescopes have been

constructed. Figure 1.2 shows various optical telescope aperture diameters by the year

they were built.

The XVII century also saw the first well-organized sky survey when the English as-

tronomer John Flamsteed cataloged around 3,000 stars. In the late XIX century, Henry

Draper funded the first spectroscopic star survey, which cataloged around 300,000 stars.

Table 1.1. Data volume of different astronomical surveys as presented by
Y. Zhang and Zhao (2015).

Astronomical Survey Data Volume
DPOSS (The Palomar Digital Sky Survey) 3 TB
2MASS (The Two Micron All-Sky Survey) 10 TB
GBT (Green Bank Telescope) 20 PB
GALEX (The Galaxy Evolution Explorer) 30 TB
SDSS (The Sloan Digital Sky Survey) 40 TB
SkyMapper Southern Sky Survey 500 TB
PanSTARRS (The Panoramic Survey Telescope and Rapid Response System) 40 PB expected
LSST (The Large Synoptic Survey Telescope) 200 PB expected
SKA (The Square Kilometer Array) 4.6 EB expected

The advent of digital surveys, automated telescopes and online catalogs brought as-

tronomy to the big data era. The Sloan Digital Sky Survey (SDSS), designed in 1990,

surveyed on the visible spectrum one-third of the sky obtaining positions and brightness

of a billion stars, galaxies, and quasars, as well as the spectra of a million objects. Still ac-

tive today, it generates around 200 GB of data every night, accumulating more than 40 TB

of data to date (Feigelson & Babu, 2012). The Large Synoptic Survey Telescope (LSST),

currently under construction in Chile, is expected to generate an average of 15 Terabytes

of data per night upon entering operations in 2022 (Jurić et al., 2015). The Square Kilo-

meter Array (SKA), a multi radio telescope project, would generate an estimated 4.6 EB

2



Figure 1.2. Optical telescope aperture diameter by construction year. The
aperture of a telescope is the diameter of its main light-gathering lens or
mirror. The diameter axis is in logarithmic scale. Telescopes under con-
struction are shown with a square marker. Based on data by Racine (2004),
and updated with data from GRANTECAN S.A. (2013), European South-
ern Observatory (2014), TMT Observatory Corporation (2007), LBTO
(2016) and GMTO Corporation (2016).

of data in total (Y. Zhang & Zhao, 2015). Table 1.1 shows the estimated volume of data

generated by past and planned stellar surveys.

Traditional analysis techniques do not scale with this myriad amount of data. As a

solution to this, machine learning methods have been applied with success to astronomy

3



problems such as classification of galaxy morphology (Freed & Lee, 2013), spectral classi-

fication (Christlieb, Wisotzki, & Grasshoff, 2002; Bromley, Press, Lin, & Kirshner, 1998),

photometric classification (Cavuoti, Brescia, D’Abrusco, Longo, & Paolillo, 2014; Bres-

cia, Cavuoti, D’Abrusco, Longo, & Mercurio, 2013), solar activity prediction (Colak &

Qahwaji, 2009), photometric redshift regression (Benitez, 2000; Collister & Lahav, 2004),

anomaly detection (Nun, Pichara, Protopapas, & Kim, 2014) and variable star classifica-

tion (Pichara & Protopapas, 2013; Pichara, Protopapas, & León, 2016; Blomme et al.,

2011).

1.2. Astronomical Domain Shift

Astronomical datasets have different characteristics depending on the survey they were

derived from. Indeed, filters and atmospheric conditions vary, and observations differ

due to detector sensitivity and the depth observed, among other factors. For example,

a deep survey may be more biased towards active galactic nuclei (AGNs) – the central,

most bright, section of a galaxy – than a shallower survey, because it is able to detect

objects farther away (such as galaxies). This means that models trained in one survey

cannot be readily used in data generated from other surveys and must be retrained from

scratch. Moreover, labeled data – needed for supervised classification – is unavailable

for new surveys, since labeling must be done manually by trained astronomers in a time

consuming effort (Sterken & Jaschek, 2005). Since applying a previously trained model

to a new survey results in considerable losses in performance, this renders supervised

learning on new datasets unfeasible.

The latter problem arises from the assumption, often taken in traditional learning tech-

niques, that the distribution of the data used to train the model is the same as the distri-

bution of the data to which the model is applied to. However, this assumption does not

generally hold in practical applications.

4



Therefore, it is desirable to transfer the information learned by a classifier in a domain

where labels abound — the source domain — to a domain where few or no labels are

available — the target domain. This problem is known as domain adaptation (Jiang, 2008)

and is part of the more general problem of transfer learning (Pan & Yang, 2010; Raina,

Battle, Lee, Packer, & Ng, 2007) – applying knowledge generated solving one problem

into another one.

1.3. Thesis Contribution

This thesis addresses the problem of domain adaptation in the context of variable star

classification. Stars are classified as variable when their apparent brightness, as seen from

Earth, measurably fluctuates over human timescales. Furthermore, variable stars are clas-

sified according to the nature of the brightness change, the time-scale and magnitude of the

fluctuation, among other properties. Variable stars and their classification are introduced

in more depth in Section 4.1.2.

In our problem, the source domain is a well-known astronomical survey — in which

a relatively large amount of labels exist and a trained classifier can perform accurately —

and the target domain is a newer or relatively less studied survey where no or very few

labels exist.

To solve this, one may use the target dataset instances to induce a change in the source

domain classifier that allows it to perform better in the target domain. This approach relies

on the creation of an adaptation objective that effectively reduces the classification error

on the target domain using no label information. On the other hand, one might find a

transformation between the feature spaces of the source and target domains, which allows

passing the instances in the target dataset to a representation suitable for training a new

classifier. Moreover, this transformation can also be applied in the opposite direction; i.e.

to transfer the labeled instances from the source domain to the feature space of the target

domain and then train a classifier on this data. We favor the latter approach, as it is model

5



independent. A classifier modification would generally depend on a model’s particularities

— such as the way a discriminative classifier models class boundaries — while a feature

space transformation has the advantage of being model agnostic, decoupling the adaptation

and classification problems and thus allowing for the use of the best suited model in a given

situation and applying new models as they become available.

We propose a new probabilistic model, based on the Gaussian mixture model (GMM).

We use two GMMs to represent the feature distributions of the source and target domains.

We then infer linear transformations of the GMM components. We assume that the sta-

tistical descriptor shift between the surveys can be corrected by translating, rotating and

scaling the GMM components. Our method is unsupervised, as we only require unlabeled

data in both domains. We estimate and apply a transformation to the labeled instances in

the source domain for each of the mixture components, weighted by how much impor-

tance each component has on each data point. In this way, we build a training set suitable

for classifying in the target domain. In doing this, we assume that the transformation that

corrects the shift in the unlabeled dataset will also correct it in the training set.

Our approach offers some advantages compared to previous research:

(i) It finds a transformation from the feature space of one domain to the other, mean-

ing that any data from one domain can be used as if belonging to the other. Other

methods perform adaptation at the model level and leave data intact.

(ii) Since it makes no assumptions about the classifier, our approach is classifier

agnostic. Transformed training sets can be used with any model of choice, ef-

fectively decoupling domain adaptation from model learning.

1.4. Thesis Overview

This document is based on the paper Automatic Survey-invariant Classification of Vari-

able Stars by Patricio Benavente, Pavlos Protopapas and Karim Pichara. The paper was

6



published on the 21st of August, 2017 in The Astrophysical Journal, Volume 845, Number

2, Page 147 (Benavente, Protopapas, & Pichara, 2017).

The remainder of this thesis is organized as follows: Chapter 2 formalizes the prob-

lem and introduces relevant notation. Chapter 3 presents an overview of related previous

work on the subject, and Chapter 4 briefly introduces the relevant background theory.

Our method is described in depth in Chapter 5. Experimental results are presented and

analyzed in Chapter 6. Section 6.1 outlines our experimental methodology. Section 6.2

illustrates the model’s operation and results in simulated datasets. Results in real datasets

are presented in Section 6.3. Finally, we conclude this work in Chapter 7.

7



2. PROBLEM DESCRIPTION AND NOTATION

We follow a notation similar to Jiang (2008). Let X be the feature space and Y the

label space in our problem. The term feature refers to a property or characteristic that

describes an object or phenomenon being observed (Bishop, 2006). Features should be

informative and discriminative, in order to allow distinguishing between labels. In variable

star classification, features may include statistical descriptors about the star’s magnitude

over time (such as the mean, standard deviation and skewness), or brightness periodicity

characteristics derived from autoregressive models, among others (Nun et al., 2015).

LetX ∈ X and Y ∈ Y be random variables representing the observed features and the

observed class labels, respectively. We denote their true underlying joint distribution as

P (X, Y ). We distinguish two domains: a source domain where a large amount of labeled

data is available and a target domain where labeled data is unavailable or scarce. We denote

the true joint distributions of X and Y in the source and target domains as Ps(X, Y ) and

Pt(X, Y ), respectively. Consequently, we denote the true marginal distributions of X

and Y for each domain as Ps(X), Ps(Y ), Pt(X) and Pt(Y ), and the true conditional

distributions as Ps(X|Y ), Ps(Y |X), Pt(X|Y ) and Pt(Y |X), as one would expect.

Let Dl
s =

{
(xsli , y

sl
i )
}N l

s

i=1
⊆ X × Y be the labeled data available in the source domain

and Du
s = {xsui }

Nu
s

i=1 ⊆ X the available unlabeled data in the source domain. Similarly,

let Du
t = {xtui }

Nu
t

i=1 ⊆ X be the unlabeled data available in the target domain and Dl
t ={

(xtli , y
tl
i )
}N l

t

i=1
⊆ X × Y the labeled data in the target domain. We call a value x ∈ X an

unlabeled instance and a tuple (x, y) ∈ X × Y a labeled instance.

Three types of domain adaptation problems are distinguished based on the kind of

data available (Pan & Yang, 2010): (a) Supervised domain adaptation exploits labeled

data both in the source and in the target domain, (b) unsupervised domain adaptation uses

only unlabeled data, and (c) semi-supervised domain adaptation employs only a small

amount of labeled data from the target domain.
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We focus on the unsupervised domain adaptation problem, therefore we will generally

ignore the labeled data in the target domain, Dl
t, and use it for testing purposes only.

In our problem, the true joint distributions differ between the two domains: Ps(X, Y ) 6=

Pt(X, Y ). Additionally, several different scenarios can be considered under the domain

adaptation problem depending on the assumptions made about the cause of the joint dis-

tribution difference between the domains.

2.1. Covariate Shift

If we assume that the causal relationships between X and Y remain the same and

that the only difference in the joint distributions arises from the marginal distribution of

the covariates – that is Ps(Y |X) = Pt(Y |X) and Ps(X) 6= Pt(X) – then the problem

is known as covariate shift or sample selection bias (Shimodaira, 2000; Huang, Gretton,

Borgwardt, Schölkopf, & Smola, 2006). This scenario applies whenever there is a bias in

the data selection procedure. For example, consider two different telescopes of which one

is equipped with a detector with higher sensitivity than the other. The data captured by the

more sensitive telescope will be more biased towards dimmer objects than the one captured

by the less sensitive telescope. However, the characteristics of the celestial objects do not

change, that is, P (Y |X) is the same. Figure 2.1 shows covariate shift between a sample

of the EROS and HiTS datasets when looking at the mean apparent magnitude and the

Psi CS feature from the FATS package (Nun et al., 2015). These features are described in

table 6.2.
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Figure 2.1. Covariate shift between EROS and HiTS datasets. The HiTS
survey is more biased toward dimmer objects than EROS. See table 6.2 for
a description of the axes.
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2.2. Target, Conditional and Generalized Target Shift

K. Zhang, Muandet, and Wang (2013) identify three distinct scenarios that arise if

we assume that Ps(Y |X) 6= Pt(Y |X). By virtue of Bayes’ theorem, this difference is

produced by the marginals P (Y ) or the conditionals P (X|Y ) being different, or both.

If the marginal distributions of the classes change and the conditional distributions of

the features given the classes stay the same – that is Ps(Y ) 6= Pt(Y ) while Ps(X|Y ) =

Pt(X|Y ) – then the problem is known as target shift (TarS) (K. Zhang et al., 2013), class

imbalance (Patel, Gopalan, Li, & Chellappa, 2015) or prior probability shift (Quionero-

Candela, Sugiyama, Schwaighofer, & Lawrence, 2009). This scenario arises whenever

a class is more present in one domain than in the other. For example, in the problem

of medical diagnosis prediction, one is interested in predicting diseases given symptoms.

Disease prevalence varies across geographical locations, as such some diseases that are

common in tropical regions will be rare in areas close to the poles and class distributions

will be different (but the probability of the symptoms given the disease remains constant).

In astronomy, if the sensitivity of the telescope changes significantly, then we see objects

such as distant galaxies that are not in the other dataset. Note that covariate shift would

also be present in this scenario.

Conversely, the problem is known as conditional shift (ConS) (K. Zhang et al., 2013) if

the conditional distribution of the features given the classes changes and the marginal dis-

tribution of the classes stays the same – that is Ps(Y ) = Pt(Y ) and Ps(X|Y ) 6= Pt(X|Y ).

ConS appears when the causal relationship of one or all the classes in relation to the fea-

tures changes. For example, some diseases manifest symptoms differently depending on

the patient’s gender. The probability of having nausea given that the patient is suffering a

heart disease will be higher if female patients are being diagnosed. In astronomy, variabil-

ity may appear in some part of the electromagnetic spectrum. For example, a star may be

variable in the ultraviolet, but not in the optical spectrum. If we are considering the mean
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apparent magnitude in the band observed by the telescope, then the variability of certain

objects would appear in some surveys and not in others.

Finally, if both distributions change, meaning that Ps(Y ) 6= Pt(Y ) and Ps(X|Y ) 6=

Pt(X|Y ), the problem is known as generalized target shift (GeTarS) (K. Zhang et al.,

2013). This situation arises when both TarS and ConS are present.

Our research focuses on the domain adaptation problem under covariate and general-

ized target shift. Therefore, we do not assume that any of the marginal probability distri-

butions are the same. Our goal is to find a transformation from the source feature space

to the feature space of the target domain, in order to adapt the source labeled instances to

a representation suitable for training a classifier that performs well in the target domain.

By doing this, we assume that the transformation that corrects the shift in the unlabeled

dataset will also correct it in the training set.
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3. RELATED WORK

Domain adaptation has been studied extensively in the contexts of natural language

processing (NLP) (Foster, Goutte, & Kuhn, 2010; Blitzer, McDonald, & Pereira, 2006)

and computer vision (Gong, Shi, Sha, & Grauman, 2012; Gopalan, Li, & Chellappa, 2011;

Patel et al., 2015).

A popular approach for domain adaptation is known as instance weighting or impor-

tance reweighting (Shimodaira, 2000; Foster et al., 2010). In instance weighting, the

terms of the loss function corresponding to each sample are weighted by the relative den-

sity Pt(x,y)
Ps(x,y)

, which effectively minimizes the expected loss of the model over the target

distribution (Jiang, 2008). However, it is generally not possible to calculate this value and

the support of the source distribution must be contained in that of the target distribution

for this to work in practice. In the covariate shift scenario, this weight can be simplified

to Pt(x)
Ps(x)

(Shimodaira, 2000). Under target shift, on the other hand, the weighting term is
Pt(y)
Ps(y)

. See Patel et al. (2015) for a more thorough explanation.

Daumé III (2009) proposes a feature augmentation framework in which features from

both source and target domains are mapped into a feature space triple size of the origi-

nal, which captures the feature similarities and particularities between source and target

domains. In Daumé III’s approach, given an input vector x ∈ Rn, two mapping func-

tions Φs(x) = [x, x, 0] and Φt = [x, 0, x] are defined for the source and target datasets,

respectively. Here 0 = [0, 0, ..., 0] ∈ Rn is the zero vector. In this way the enhanced

feature space contains a general version of the data (the first third of the vector where data

from both domains appear) and a version of the data specific to one of the domains (the

second third of the vector for the source domain and the last third of the vector for the

target domain). The classifier is then expected to learn the adaptation by, for example, as-

signing weights to each version of the data depending on how well it generalizes between

the domains.
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Other approaches are based on the idea of learning new feature representations that

are domain invariant. Gopalan et al. (2011) developed a method motivated by incremental

learning in which the adaptation is performed by gradually transitioning from one domain

to the other. This is done by treating each domain as a point in the Grassmann mani-

fold and sampling points along the geodesic path between them to obtain a description of

the underlying domain shift. Gong et al. (2012) go further and integrate over an infinite

number of subspaces using a kernel-based method.

Chan and Ng (2005) use expectation-maximization (EM) to estimate the class densities

under the TarS setting by assuming the that the distribution of the features given the labels

stay constant and applying the iterative procedure of the EM algorithm.

Kulis, Saenko, and Darrell (2011) introduce a method for finding non-linear transfor-

mations between domains by learning in the kernel space.

Our method is similar to the location-scale generalized target shift (LS-GeTarS) trans-

formation proposed by K. Zhang et al. (2013). In LS-GeTarS, a transformation from

Ps(X|Y ) to Pt(X|Y ) is modeled as a translation and a scaling of the data given by

xnew = x ·W +B, whereW is the scaling matrix andB the translation. Instead of working

directly with the marginal and conditional distributions they use their kernel mean embed-

ding. A kernel mean embedding is a representation of a probability distribution as a point

in a Reproducing Kernel Hilbert Space. In this manner, they do not need to assume a

certain distribution, but minimize the loss using the kernel embedding and the algebraic

operations it supports. The importance weight Pt(Y )
Ps(Y )

is estimated along the transformation

parameters.

There are some other proposals that also use Bayesian transfer learning. Gönen and

Margolin (2014) present a multi-task learning framework in which they apply kernel-based

dimensionality reduction and use task-specific projection matrices to jointly find a com-

mon subspace. They define a different transformation of the data for each task, each of

which is modeled as a projection matrix. The classifier is also part of the probabilistic
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model, and they do inference on the transformations and the classifier at the same time.

Our work differs in two substantial ways: (1) we find a transformation from the feature

space of one “task” (in our case of one survey) to the space of another one, while this

method creates a new common space that is different from the original space of all the

tasks; and (2) the specific classification task is not part of our model, only the transforma-

tion. This means that our method can be used with any classifier and that if we change the

classifier we do not need to do inference again to find the transformation.

Another Bayesian method is proposed by Finkel and Manning (2009), who present a

hierarchical Bayesian framework for multiple domain adaptation. For each domain, there

is an arbitrary probabilistic model for which a normally distributed prior is put on its

parameters. In the next level of the hierarchy, another normally distributed prior is added

to the domain specific parameter priors. This hierarchy can be extended further for an

arbitrary number of levels, reflecting related super-domains, super-super-domains, and so

on.
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4. BACKGROUND THEORY

4.1. Time Domain Astronomy

Digital synoptic sky surveys enabled the emergence of the time domain research field

in astronomy. Automated telescopes allow surveying large areas of the sky repeatedly

in short scales of time. While prior star catalogs recorded a single apparent magnitude

and position for a set of stars, current surveys provide multiple temporal measurements of

each star over up to several years and even decades. The study of the time dimension in

astronomy allows for the characterization of both existing and undiscovered phenomena.

For example, type Ia supernovae, the result of the sudden thermonuclear explosion of a

white dwarf in a gigantic emission of visible energy, can be used to map out the geometry

of the universe (Committee for a Decadal Survey of Astronomy and Astrophysics, 2011).

According to the Committee for a Decadal Survey of Astronomy and Astrophysics of the

National Academy of Sciences in the United States (2011):

“By surveying large areas of the sky repeatedly, once every few days,
we anticipate the discovery of the wholly unanticipated. Endpoints
of stellar evolution we have yet to imagine, and the behavior of ordi-
nary stars outside our experience, could be discoveries that cause us
to dramatically revise our cosmic understanding. Exotic objects and
events never before anticipated may be revealed. The full realization
of time-domain studies is one of the most promising discovery areas
of the decade” (p. 45).

4.1.1. Light Curves

Timed brightness measurements of a celestial object can be tabulated and represented

as a light curve, a plot of apparent magnitude versus time. Light curves are the funda-

mental analysis tool in time domain astronomy. Figure 4.1 shows four examples of light

curves from the MACHO survey (Alcock et al., 1997).
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Figure 4.1. Example light curves for stars of four different variable classes.

4.1.2. Variable Stars

The apparent magnitude of every star changes along their typical life cycle: from the

ignition of the collapsing nebula of gas and dust that marks the star’s birth, through its

growth into a red (super) giant, to its end as a planetary nebula and the formation of a

white dwarf, or its spectacular death as a supernova and the formation of a neutron star

or a black hole. However, a star is called variable when its brightness varies significantly

during a human-perceptible time scale, ranging from minutes to centuries. This variation

can be periodic, semi-periodic or irregular (Sterken & Jaschek, 2005).
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Table 4.1. Descriptions of general types of variable stars. Adapted from
Sterken and Jaschek (2005) citation of Kholopov et al. (1985).

Family Type Description

Intrinsic Eruptive Stars varying their brightness because of violent processes
and flares taking place in their chromospheres and coronae.

Pulsating Stars showing periodic expansion and contraction of their
surface layers. Pulsation may be radial or non-radial.

Cataclysmic Explosive variables showing outbursts caused by ther-
monuclear processes in their surface layers (Novae) or deep
in their interiors (Supernovae).

Extrinsic Rotating Stars with non-uniform surface brightness or ellipsoidal
shape. Their variability is caused by their axial rotation
with respect to an observer. The non uniform surface
brightness distribution may be caused by the presence of
spots or by some thermal or chemical inhomogeneity of
stellar atmospheres caused by magnetic fields.

Eclipsing
binary (EB)

Systems of two stars with their orbital plane aligned to
Earth. Periodic drops in brightness are observed when one
of the stars moves in front of the other, blocking its light.

The cause of brightness variability in stars can be roughly identified with one of two

families depending on the nature of the underlying variability process. Intrinsic variable

stars due their variability to some internal astrophysical process that may involve ther-

modynamic, gravitational, electrochemical, and other elements. For example, pulsating

variables suffer periodic expansions and contractions of their outer layers, which momen-

tarily change their size, temperature and brightness. On the other hand, extrinsic variable

stars’ brightness is perceived as changing to an observer due to external phenomena, such

as stellar eclipses and stellar rotation. Table 4.1 describes some general star types belong-

ing to these two families.

Depending on the time-scale, the magnitude of the amplitude variation and the shape

of the light curve, variable star types are further classified into a series of classes (Sterken

& Jaschek, 2005). Table 4.2 presents a description for some of them. The most important

classes in the family, type and class topology are shown in Figure 4.2.
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Figure 4.2. Classification of variable stars according to Sterken and
Jaschek (2005).
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Table 4.2. Descriptions of some variable star classes. Adapted from
Sterken and Jaschek (2005).

Type Class name Description
Eruptive Flare Dwarf stars that undergo sudden brightening at irregu-

lar time intervals due to the violent ejection of material.
The increase of their brightness can be more than 6 mag-
nitudes. The time intervals between consecutive flares is
usually between several hours and several days.

Pulsating RR Lyrae
(RRLYR)

Radial pulsators with periods from 0.2 to 1 days. Shock
waves propagate outwards through their atmospheres
once per pulsation cycle.

Cepheid
(CEP)

Strictly periodic variables with periods ranging from 1
day to 50 days with a few extreme cases of up to 200
days. They expand and contract periodically. Their
brightness is very high and they can be detected in very
distant galaxies. For this reason they are the basis of the
extra-galactic distance scale.

Long Period
Variable

(LPV)

The most studied pulsating red super giant stars. They
are three orders of magnitude brighter than our sun and
have periods from 80 to 1000 days. Their light curve
shows maximums that often vary by a magnitude or more
between cycles.

Rotating Pulsars Rapidly rotating neutron stars that emit regular pulses
with periods between 1.558 ms and 4.308 s.

Cataclysmic Supernovae A rare type of stellar explosion in which large amounts
of matter (several times the mass of our sun) are expelled
at several thousands kilometers per second.
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4.2. Machine Learning Background

Machine learning is the field of computer science concerned with developing models

able to learn tasks from data without being explicitly programmed to perform said tasks

(Samuel, 1959). It can also be defined as a set of methods of data analysis that can detect

patterns in data automatically, and then use the discovered patterns in order to predict

future data or to make decisions under uncertainty (Murphy, 2012).

Machine learning techniques are traditionally divided into two main types defined by

the general goal of the task one wants to perform. Supervised learning aims to learn a

mapping between input data X , known as features or covariates, to output data Y , known

as response variables or labels. On the other hand, unsupervised learning aims to learn

structure or interesting patterns in data, without using the notion of labels.

4.2.1. Supervised Learning

The most common tasks in supervised learning are classification and regression. In

classification, the output or response variables are categorical. Each possible value of the

output variable Y is known as a category or label. In regression, each output variable Y

is continuous. Examples of classification tasks are hand-written digit recognition (Liu,

Nakashima, Sako, & Fujisawa, 2003) and variable star classification (Pichara & Protopa-

pas, 2013). Some examples of regression tasks are predicting stock market prices (Kim,

2003) and photometric redshift estimation (Benitez, 2000).

All forms of supervised learning require a set of data containing input-output pairs

(i.e. feature-label or feature-value pairs) D = {(xi, yi)}Ni=1. Such a dataset is known as a

labeled dataset and each (xi, yi) tuple as a labeled instance.

Three commonly used supervised learning models, decision trees, random forests and

support vector machines, are explained in the following subsections.
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4.2.1.1. Decision Trees

A decision tree recursively partitions the feature space based on the value of a feature.

Each region of the partition is defined as a node in a tree, and each partitioning condition

as an edge. The simplest form of decision tree is a binary decision tree, which partitions

the space in two in each recursion step. The label or regression value of an instance

can be predicted by traversing the tree from its root, following the edges that satisfy the

instance’s feature values. At the end of the tree, each leaf contains the predicted label

or value. Figure 4.3 shows a representation of a binary decision tree as a graph and the

corresponding feature space partition.

x < 0.65

y < −1.45

Class A

false

Class B

true

false

Class A

true

(a) (b)

Figure 4.3. A binary decision tree. Example binary decision tree for
classification in a 2D feature space with 2 labels. (a) Graph representa-
tion. (b) Equivalent space partition representation.

Decision trees are learned recursively by greedily choosing the partition that maxi-

mizes some criterion of “goodness”, such as the information gain (the change of infor-

mation entropy) from the previous state of the tree to the state resulting from the added

partition.
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In a binary decision tree, the learning algorithm starts with the whole dataset. The

partitioning condition in the first node is chosen such that the resulting two partitions best

separate the two classes (i.e. each partition contains mostly objects from a single class,

which is the opposite of that of the other partition). Then, this step is repeated recursively

with each generated partition. The process stops at any given node when the partitions

only contain objects from one class, or when the objects from the “wrong” class are below

some threshold.

4.2.1.2. Random Forests

Random Forests (Breiman, 2001) is a technique that employs multiple decision trees,

each trained on a random subset of the data. To make a prediction, each tree casts a “vote”,

which is aggregated with that of the rest of the trees (for example, by taking the mode of

the classification, or the mean in the case of regression). This general technique is known

as ensemble learning (Dietterich et al., 2000). To reduce correlation among the trained

trees, each of them is trained using a random subset of input features, as well as a random

subset of input data.

Random Forests have been used with success in astronomical datasets (Pichara, Pro-

topapas, Kim, Marquette, & Tisserand, 2012; Carliles, Budavári, Heinis, Priebe, & Szalay,

2010; Dubath et al., 2011; Johnston & Oluseyi, 2017).

4.2.1.3. Support Vector Machines

Support Vector Machines (SVM) (Boser, Guyon, & Vapnik, 1992; Vapnik, 1963) is

a supervised learning framework that builds hyperplanes with the most possible distance

between data points of different classes – maximum margin separators – and uses them

as decision boundaries to classify instances. The hyperplanes learned by SVMs are not

limited to linearity. By applying the “kernel trick”, data can be embedded into a higher-

dimensional space using a kernel function. The linear hyperplane learned in the higher

dimension is then non-linear in the original space (Russell & Norvig, 2009).
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Kernel functions can be understood as a similarity measure between a pair of points.

An ideal kernel function assigns a high similarity score to two points that belong to the

same class, and a lower score to points belonging to different classes (Hofmann, 2006).

One of the most used kernels is the radial basis function (RBF) kernel, which for a pair of

data points x, x′ is defined as:

κ(x, x′) = exp

(
−‖x− x

′‖2

2σ2

)
(4.1)

With σ a free parameter.

4.2.2. Unsupervised Learning

Unlike supervised learning, unsupervised learning does not need a labeled dataset.

Instead, an unlabeled dataset D = {xi}Ni=1 is available. Each xi is known as an unlabeled

instance. Since there is no explicit output to be found, the goal is to find inherent structure

and patterns in the data.

The most common application of unsupervised learning is clustering. Clustering con-

sists in dividing a dataset into a discrete number of subsets called clusters, such that each

instance is associated with one of them. One of the most popular clustering techniques is

the K-means algorithm.

4.2.2.1. K-means

The K-means algorithm (MacQueen et al., 1967) is a method for partitioning a set

of points into a given number of clusters. Each cluster is defined in terms of a centroid

and each point is assigned to the cluster of the closest centroid. Note that the clustering

is completely defined in terms of the centroids. The learning algorithm initializes the

centroids of a given number K of clusters at random and then proceeds iteratively through

two stages. In the first stage, each data instance is mapped to the cluster with the closest
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Figure 4.4. K-means example in 2D space. (a) Cluster centroids are ini-
tialized at random positions. (b) First step: each data point is mapped to
the closest centroid. (c) Second step: the centroids are moved to the mean
of each cluster’s mapped points. (d, e, f) The steps are repeated iteratively
until convergence.

centroid. Then, in the second stage, each cluster centroid is re-calculated as the mean of

all the points mapped to them. These steps are repeated until convergence (i.e. when no

or very small variations in the centroid coordinates exist between two iterations). Figure

4.4 shows two iterations of an example execution of K-means.

25



4.2.3. Probabilistic Graphical Models

Probabilistic graphical models are a framework for conveniently representing and ma-

nipulating joint probability distributions that draws from probability theory and graph

theory. By using a graph data structure, graphical models leverage representations and

algorithms from computer science to allow for representation, learning and inference of

otherwise unmanageable probability distributions.

Season

Flu Allergies

Muscle Pain Congestion

Figure 4.5. Probabilistic graphical model example. Graphical repre-
sentation of an hypothetical model for disease diagnosis.

In a graphical model, random variables are represented as nodes in a graph, while

dependence relationships are encoded as graph edges. In this work, we are interested in

a form of directed graphical models known as Bayesian networks (Koller & Friedman,

2009), which encode a set of conditional independences in a joint probability distribu-

tion. In a Bayesian network, a directed edge from variable X to variable Y indicates that

variable Y directly depends on variable X . The network satisfies the local independence

assumption, which holds that every node Xi ∈ {X1, ..., Xn} of an n node graph is condi-

tionally independent of its non-descendants given its parents (Koller & Friedman, 2009):

(Xi⊥NonDescendantsXi
| ParentsXi

)

∀i ∈ 1, . . . , n
(4.2)

Consider the following hypothetical example for medical diagnosis from Koller and

Friedman (2009). Imagine we want to model the probability of having two diseases – flu
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(F ) and allergies (A) – given the season of the year (S) and two symptoms – muscle pain

(M ) and nasal congestion (C). The graphical model for this example is shown in figure

4.5. These are some of the conditional independencies encoded by the model:

(Flu⊥Allergies | Season)

(Muscle Pain⊥Congestion,Allergies | Flu)

(Congestion⊥Muscle Pain | Flu)

If we are interested in knowing the probability of muscle pain, and we know that the

patient has the flu, then knowing if they have congestion is no longer informative. This

does not mean that muscle pain is independent of congestion: if we do not know if the

patient has the flu, then knowing they suffer congestion changes our belief on whether

they have this disease or not. This ultimately affects the probability they also suffer muscle

pain.

4.2.3.1. Plate Notation

In this work, we represent graphical models using the plate notation (Koller & Fried-

man, 2009). Identically distributed variables that are repeated many times are enclosed

by a rectangle or plate, capturing the notion that they correspond to a “stack” of identical

variables. Variables in a plate are indexed and repeated according to the indication on the

lower right corner of the plate. Edges connecting two nodes in the same plate connect

variables with the same index. Edges connecting nodes inside a plate with nodes outside

of it connect the outer variable with all the instances of the repeated variable. Edges from

one plate to a different plate connect all instances in one plate with all the instances in the

second plate. In this way, models can be represented in a more compact way by plotting

each variable instance once. Consider a model for medical diagnosis with P patients in

which the presence of each of N diseases Dk,1, . . . , Dk,N depends on the manifestation on
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Figure 4.6. Example of a graphical model in plate notation. The top panel
shows the model in plate notation. Indexed variables are displayed once.
The bottom panel shows the same model using no plates. Each variable is
explicitly displayed.
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patient k ofM symptoms Sk,1, . . . , Sk,M and the genderGk and ageAk of the patient. Fig-

ure 4.6 shows a graphical representation for this model, both using plates and by explicitly

displaying all variables.

4.2.3.2. Mixture Models

Π

Zi

Xi

Mk

ω

µ

Λk

l0

λ

l1

α

i = 1..N k = 1..K

1

Figure 4.7. Gaussian mixture model in plate notation. Each data pointX is
generated by the component indicated byZ. Each of theK components has
mean vector and precision matrix priors Mk and Λk, respectively. Black
squares indicate prior hyperparameters.

A mixture model is a convex combination (i.e. relative weights sum to one) of proba-

bility distributions (Bishop, 2006). Suppose we have K Gaussian distributions generating

a set of data. We call each distribution a component. Let Z be a binary vector indicating

which component generated a certain value of X , and give it a representation where Zk

is equal to 1 if X was generated by component k and 0 otherwise (e.g. Z = [0 1 0 0]

when the value is generated by component 2). Let Πk be the mixture coefficients (i.e. the

relative weight or importance of each component in generating the data). Then we can

write the marginal distribution of Z:
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P (Z) =
K∏
k=1

(Πk)Z
k

(4.3)

And the conditional distribution of X given it was generated by component k as:

P (X|Z) =
K∏
k=1

N (X|Mk,Σk)Z
k

(4.4)

WhereN (X|Mk,Λk) is the probability density function for the multivariate Gaussian

distribution with mean vector Mk and covariance matrix Σk. Unfortunately, using co-

variance matrices is inefficient, as it involves expensive matrix inversion operations when

computing the likelihood. For this reason, we use the inverse covariance matrix, also

known as precision matrix, Λk = (Σk)−1:

P (X|Z) =
K∏
k=1

N (X|Mk,Λk)Z
k

(4.5)

We use equations (4.3) and (4.5) to obtain the mixture’s density by marginalizing over

Z:

P (X) =
∑
Z

P (X|Z)P (Z)

=
∑
Z

K∏
k=1

N (X|Mk,Σk)Z
k
K∏
k=1

(Πk)Z
k

=
∑
Z

K∏
k=1

(
Πk N (X|Mk,Σk)

)Zk

= Π1 N (X|M1,Σ1) + ...+ ΠK N (X|MK ,ΣK)

=
K∑
k=1

ΠkN (X|Mk,Λk)

(4.6)
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Thus, we can interpret each Πk as the prior probability of assigning a sample X to

component k (Bishop, 2006).

We can derive the corresponding posterior probability Γ using Bayes’ theorem:

Γk(X) = P (Zk = 1|X)

=
ΠkN (X|Mk,Λk)∑K
l=1 ΠlN (X|M l,Λl)

(4.7)

Γk is referred to as the responsibility of component k and it represents how strongly

component k contributed to generating sample X (Bishop, 2006).

Figure 4.7 shows a Gaussian Mixture model in plate notation.

4.2.3.3. Precision Matrix Modeling

As we are developing a Bayesian model, we assign priors to the mixture component’s

parameters. For the components’ means a Gaussian prior is commonly used. As for

the precisions, the Wishart distribution is a popular choice due to its conjugacy to the

multivariate Gaussian distribution when a dependency to the mean is introduced. However,

as Barnard, McCulloch, and Meng (2000) point out, when specifying a prior it is more

convenient to work in terms of standard deviation and correlation. For this purpose, they

suggest a separation strategy, decomposing a covariance matrix Σ into a standard deviation

vector σ and a correlation matrix C:

Σ = diag(σ)C diag(σ) (4.8)

Here diag(v) represents the square diagonal matrix whose main diagonal contains the

elements in vector v. This provides the advantage that we can express our prior knowledge
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of the standard deviation and correlation separately on the original scale of the standard

deviation (Barnard et al., 2000).

A random value for σ can be generated using any continuous distribution. We generate

the correlation matrix C using the method proposed by Lewandowski, Kurowicka, and

Joe (2009), from which we can get a random correlation matrix C of any given dimension

with density proportional to |C|λ−1 for a shape parameter λ > 1. We will refer to this

distribution over the space of correlation matrices as LKJ. In section 5.1 we explain how

we use this principle to model the precision matrix priors for the mixture components.

4.2.4. N-Dimensional Rotations

Rotations in 2D and 3D space are commonly understood as rotations about an axis by

a certain angle. Duffin and Barrett (1994) argue that it is better to think about them as

occurring in a plane: the plane perpendicular to the axis of rotation in 3D, and the only

plane in 2D. They generalize the concept to rotation in n-dimensional space in principal

planes formed by two coordinate axes.

The rotation matrix for the rotation of axis Xa in the direction of axis Xb by an angle

of θ is as follows (Duffin & Barrett, 1994):

Rab(θ) =



rij

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

rii = 1 i 6= a, i 6= b

raa = cos θ

rbb = cos θ

rab = − sin θ

rba = sin θ

rij = 0 elsewhere



(4.9)

An arbitrary rotation in n-dimensional space can then be specified as the composition

of rotations in the
(
d
2

)
principal planes.
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5. METHOD DESCRIPTION

We propose a probabilistic model based on the Gaussian Mixture Model (GMM) to

describe the Ps(X, Y ) and Pt(X, Y ) distributions. We model mixture weights, compo-

nent mean vectors and precision matrices for the source distribution in the usual manner.

However, each of the target distribution mixture parameters is modeled as a separate trans-

formation of the respective parameter of the source mixture: each target mean vector is

equal to the respective source mean vector plus a translation and each target precision ma-

trix is equal to a scaling and a rotation of the respective source precision matrix. Note that

each component needs not undergo the same transformation as the others, since there are

separate transformation variables for each one. Here, we are making the assumption that

we can capture the domain shift between the datasets as a mixture of transformations in

the subspaces defined by each multivariate Gaussian. That is, we propose a model that

describes a mixture of Gaussians over the source dataset and a linear transformation for

Source
Unlabeled Data

Target
Unlabeled Data

Bayesian Model

(1)

MCMC
Sampling

(2)

Parameter
Estimation

(3)

Π̂s

M̂s Λ̂s

T̂

Ŝ Θ̂

Target
Test Data

(*)

Classifier

(5)

Transformed
Training Data Feature

Transformation

(4)

Source
Training Data

1
Figure 5.1. Domain adaptation method overview. (1) The probabilistic
model is constructed according to the specification and the unlabeled in-
put data. (2) MCMC techniques are used to sample from the posterior
distributions of the transformation parameters. (3) The transformation pa-
rameters are estimated by averaging the samples. (4) The transformation is
applied to the source training data according to the estimated parameters.
(5) A classifier is trained on the transformed input data from the source
domain. (*) In our experiments, the classifier is tested on labeled data from
the target domain to assess performance.
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each of its components, which result in a transformed mixture of Gaussians over the tar-

get dataset. Note that since the target mixture is fully determined by the source mixture

and the transformation, the mapping between the corresponding components is given im-

plicitly – the target component that corresponds to a source component is simply the one

resulting from applying the component’s transformation. Furthermore, we assume that

the training set suffers the same shift between the domains than the unlabeled dataset and

that by inferring it from the latter we will be able to correct it for the former as well. The

latter implies that we assume that there is no significant unrepresented population in the

unlabeled data.

Our method comprises 5 steps, as shown in Figure 5.1: (1) the model is set-up using

the unlabeled data from the source and target domains (the detailed model specification

follows in Section 5.1). An optional step of randomly sampling from the datasets may be

performed here, depending on the amount of data and computational resources available.

(2) The mixture and transformation parameters variables are sampled using the Metrop-

olis Hastings MCMC method. (3) The samples are used to make a point estimate of the

parameters. Steps 2 and 3 are explained in Section 5.2. (4) The estimated parameters are

used to apply the modeled transformation to the training set that is available for the source

domain, in order to correct the shift. The transformation is explained in detail in Section

5.3. (5) Using the transformed training data, a classifier expected to perform well on the

target domain is trained.

In our experiments, presented in Chapter 6, we perform an additional step of testing on

a target domain labeled dataset in order to assess the method’s performance. This dataset

is not used at any moment in the previous steps.

5.1. Model Specification

First, we specify the mixtures that represent the source and target datasets. Let X i
s and

Xj
t be random variables for the i-eth and j-eth unlabeled sample in the source and target

34



Πs

Zi
s

Mk
s

µ ω

Mk
t

T k

SkRk

Λk
tΛk

s

Xi
s

l0λ l1

Xj
t

Zj
t

Πt

H

i = 1..Nu
s j = 1..Nu

t

k = 1..K

1

Figure 5.2. Proposed model in plate notation. Random variables are shown
in circles. Variables derived deterministically from other variables are
shown in squares. Prior hyperparameters are shown as small black squares.
Observed variables are shaded in gray. Some hyperparameters are omitted
for clarity.

datasets, respectively, and let d be the dimensionality of the data. Let Zi
s and Zj

t denote

the component assignments for source sample i and target sample j, Mk
s andMk

t the mean

for component k ∈ 1..K and Λk
s and Λk

t the precision for component k in the source and

target domains, respectively. Let Πs and Πt be the priors for the component weights.

The following distributional assumptions are made:
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Πs ∼ D(α) H ∼ D(η)

Zi
s ∼ C(Πs) ∀i Zj

t ∼ C(Πt) ∀j

Mk
s ∼ N (µ, ω) ∀k

X i
s ∼ N (MZi

s
s ,ΛZi

s
s ) ∀i Xj

t ∼ N (M
Zj
t

t ,Λ
Zj
t

t ) ∀j

Where D(α) denotes the Dirichlet distribution with concentration parameter vector

α and dimension K, C(π) represents the categorical distribution with event probability

vector π of dimension K, and N (µ,Λ) represents the normal distribution of dimension d

with mean vector µ and precision matrix Λ.

The target component weights are determined by the source component weights and

the Dirichlet distributed variable H , which scales each weight like so:

Πk
t = Πk

s H
k/

K∑
l=1

Πl
sH

l ∀k (5.1)

Higher values for the hyperparameter η will favor small differences in component

weight between domains.

As explained in section 4.2.4, the source domain components’ precision matrices Λk
s

are generated using the separation strategy defined in equation (4.8). Each resulting co-

variance matrix is then inverted to yield the corresponding precision matrix:

Lk ∼ LKJ (λ) ∀k Σk ∼ U(l0, l1) ∀k

Λk
s =

(
diag(Σk)Lkdiag(Σk)

)−1 ∀k

Where U(l0, l1) denotes the uniform distribution of dimension d with minimum value

l0 and maximum value l1, and LKJ (λ) denotes the LKJ distribution of dimension d with

shape parameter λ.
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Second, we introduce random variables for the component transformations. Each com-

ponent suffers a translation of its mean vector, and a rotation and a scaling of its precision

matrix. The translation of component’s k mean, T k, and the resulting target mean vectors

Mk
t are as follows:

T k ∼ N (0, κI) ∀k

Mk
t = Mk

s + T k ∀k

Where 0 represents the zero vector of dimension d and I represents the d× d identity

matrix. The κ hyperparameter specifies the a priori belief about the magnitude of the

translations, so that smaller κ values will favor larger translations.

Each precision matrix rotation is modeled as a
(
d
2

)
-dimensional vector of angles Θk,

representing the rotation of each principal plane. The precision matrices scalings are mod-

eled as factors multiplying each dimension centered at the component’s mean:

Φk ∼ B(d
2)(β, β) ∀k Sk ∼ Bd(ε, ε) + 0.5 ∀k

Θk = (2Φk − 1) ρ ∀k

The notation Bd(α, β) corresponds to the beta distribution of dimension d with shape

parameters α and β. We abuse the notation Bd(α, β) + δ to represent the same beta dis-

tribution with its range offset by δ, resulting in a support in the range [δ, 1.0 + δ]. We let

the rotation in each principal plane be in the interval [−ρ, ρ]. In order to do so, we draw

from each Φk prior
(
d
2

)
values between 0 and 1 and use them to interpolate between the

rotation limits and get Θk, the angles of rotation. The hyperparameter β represents the a

priori belief about the magnitude of the rotations. Larger values of β mean a more tight

distribution around 0.5, which equals to a null rotation. Then, for each of the
(
d
2

)
main

planes of rotation we use equation 4.9 to build a rotation matrix and compose them like

so:
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Rk = →
d−1∏
a=1

→
d∏

b=a+1

Rab(Θ
k
l ) ∀k (5.2)

l = (a− 1)(d− a/2) + b− a (5.3)

Where →
∏

denotes aggregated left side matrix multiplication so that equation (5.2)

expands to:

Rk =R(d−1) d

(
Θk

(d
2)

)
. . . R2d(Θ

k
2d−3) . . .

. . . R24(Θ
k
d+1) R23(Θ

k
d) R1d(Θ

k
d−1) . . .

. . . R13(Θ
k
2) R12(Θ

k
1) ∀k

(5.4)

The scaling factors for each dimension are allowed in the range [0.5, 1.5]. The ε deter-

mines how tightly around a 1 scaling factor the distribution will be.

We get the precision matrix that would result from scaling the data in each component

k by Sk and then rotating it according to Rk as:

Λk
t = Rk(Sk)−1Λk

s(S
k)−1(Rk)−1 ∀k (5.5)

5.2. Parameter Estimation

In order to apply the transformation, we first estimate the T k, Sk and Θk transformation

parameters, and the Πs, Πt, Mk
s , Λk

s model parameters by sampling from their posterior

distributions using the Gibbs MCMC sampler. To accelerate convergence, we run K-

means on the source dataset to find centroids for the source components and initialize

the mean vectors to their values. We step through MCMC iterations until the standard
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deviation of the samples is below a certain threshold. We then use the mean point estimate

of the samples as the parameter values.

5.3. Feature Transformation

Let Π̂s and Π̂t be the estimates for the source and target component weights Πs and

Πt, respectively. Let the K× d matrix T̂ contain the estimate of the translation T k of each

component as rows, the K × d matrix Ŝ contain the estimates of the component scalings

Sk as rows, and the K ×
(
d
2

)
matrix Θ̂ contain the estimate for the rotation angles of the(

d
2

)
principal planes of each component as rows. Similarly, let M̂k

s and Λ̂k
s be the estimates

for the mean vector and the precision matrix for each component k, respectively.

We then apply a transformation Ψ to the source domain training set Dl
s in order to

obtain a labeled dataset Dl
? = {(Ψ(xsli ), ysli )}N

l
s

i=1 suitable for training a classifier for the

target domain. Let X be a N l
s× d matrix containing the source training samples, such that

Xi = xsli for i = 1, ..., N l
s.

We compute the N l
s ×K matrix W containing the component transformation weights

for each instance given by equation 4.7:

Wik = Γk(Xi) ∀i,∀k (5.6)

The translation for each instance is given by the weighted average of the component

responsibilities and the component translations:

∆ = W T̂ (5.7)

Where ∆ is a N l
s × d matrix containing the translation for each instance.
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Scaling proportional to component responsibility is applied by computing the transla-

tion Ξi that results from scaling centered under each component:

Ξi =
K∑
k=1

Wik

(
diag(Ŝk)− I

)
(Xi − M̂k

s ) ∀i (5.8)

Where I is the d × d identity matrix and diag(v) is the square diagonal matrix whose

main diagonal contains the elements in vector v.

Finally, we rotate the data with respect to each component center. First we compose

the rotation matrices for each instance and component similarly as in equation 5.2, but

using weighted transformation angles:

R̂k
i = →

d−1∏
a=1

→
d∏

b=a+1

Rab(Wik Θ̂k
l ) ∀i,∀k (5.9)

With l as given by equation 5.3.

Then the transformation Ψ(Xi) = X? is given by the following algorithm:

X? = Xi + Ξi

for k = 1→ K do

X? = R̂k
i (X

? − M̂k
s ) + M̂k

s

end for

X? = X? + ∆i

Which applies the offset produced by the scalings, rotates the data according to each

component and finally applies the weighted translation.
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6. EXPERIMENTAL RESULTS AND ANALYSIS

6.1. Methodology

We transfer the training knowledge from the source to the target catalog by performing

the steps illustrated in Figure 5.1:

(i) Build the Bayesian model with the source catalog and target catalog unlabeled

datasets.

(ii) Perform MCMC sampling from the posterior distributions of the transformation

parameters until convergence.

(iii) Estimate the transformation parameters using the mean of the samples.

(iv) Take the source catalog’s training set and transform it using the parameters ob-

tained in the previous step.

(v) Train a classifier using the adapted training set.

We then measure the performance of our method by testing the classifier on a labeled

dataset from the target catalog left out for this purpose.

The classifiers used in our experiments are the Radial Basis Function (RBF) ker-

nel Support Vector Machine (SVM) (Boser et al., 1992) and the Random Forest (RF)

(Breiman, 2001) classifier.

6.2. Simulations

We generated datasets and simulated domain shifts of different nature in order to study

the performance and behavior of our model under conditional shift and generalized target

shift.

First, we simulated covariate and conditional shift. The left two panels in Figure 6.1

show a simulated dataset generated using two multivariate Gaussians. In the top panel, the

41



−8 −6 −4 −2 0 2 4
x1

−4

−2

0

2

4

6
x
2

Class 1 (source)
Class 1 (target)
Class 2 (source)
Class 2 (target)

Ps(Class1)= 0. 5

Pt(Class1)= 0. 5

−4 −2 0 2 4 6
x1

−6

−4

−2

0

2

4

6

x
2

Class 1 (source)
Class 1 (target)
Class 2 (source)
Class 2 (target)

Ps(Class1)= 0. 7

Pt(Class1)= 0. 4

−8 −6 −4 −2 0 2 4
x1

−4

−2

0

2

4

6

x
2

Class 1 (source)
Class 1 (transformed)
Class 2 (source)
Class 2 (transformed)

Ps(Class1)= 0. 5

Pt(Class1)= 0. 5

−4 −2 0 2 4 6
x1

−6

−4

−2

0

2

4

6

x
2

Component 1 (source)
Component 1 (transformed)
Component 2 (source)
Component 2 (transformed)

Ps(Class1)= 0. 7

Pt(Class1)= 0. 4

Figure 6.1. Model visualization on simulated data. Left two panels: sim-
ulation under ConS. Right two panels: simulation under GeTarS. Top pan-
els show the fitted models. The dashed level curves represent the mixture
components for the source dataset and the continuous lines show the com-
ponents after applying the transformation found. the bottom panels show
the transformation. The source dataset points are shown in blue along with
their image after applying the transformation in yellow. The class distribu-
tions for each dataset are shown on the lower right corner.

target dataset, shown in green, was generated by translating, scaling and rotating the source

dataset distribution, shown in blue. The components of the fitted model are represented

as level curves. The bottom panel shows the transformed source dataset in yellow, along

with the original source dataset in blue.

42



−8 −6 −4 −2 0 2 4
x1

−4

−2

0

2

4

6
x
2

Class 1 (source)
Class 1 (target)
Class 2 (source)
Class 2 (target)

Source data SVM
Transformed data SVM

Ps(Class1)= 0. 5

Pt(Class1)= 0. 5

−6 −4 −2 0 2 4 6 8
x1

−6

−4

−2

0

2

4

6

x
2

Class 1 (source)
Class 1 (target)
Class 2 (source)
Class 2 (target)

Source data SVM
Transformed data SVM

Ps(Class1)= 0. 7

Pt(Class1)= 0. 3

Figure 6.2. SVM classifier adaptation visualization. Decision boundaries
for RBF kernel SVM’s trained on the source training set and the trans-
formed source training set. Left panel: simulation under ConS. Right
panel: decision boundaries in a second simulation under GeTarS. The class
distributions for each dataset are shown on the lower right corner.

Table 6.1. F1 scores for simulated ConS and GeTarS experiments.

ConS GeTarS

Classifier Original Transformed Original Transformed

SVM 88% 95% 87% 93%

RF 84% 94% 85% 91%

Then, we simulated the GeTarS scenario by having a different class distribution be-

tween the source and target datasets. The two right panels in Figure 6.1 show the generated

datasets and the fitted model in the same manner.

Figure 6.2 shows how the decision boundary of a radial basis kernel (RBF) support

vector machine (SVM) adapts to classify better in the target dataset when trained with the

transformed data.

The classification F1 scores for both experiments are shown in Table 6.1.

Note that even tough each mixture component suffers a linear transformation, the over-

all transformation is not necessarily linear since the transformation under each component
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is combined with the others. For example, it is possible to rotate or scale some parts of the

space while maintaining others relatively constant. This suggests that it is possible to cap-

ture more complex transformations, such as non-affine transformations where collinearity,

line parallelism, convexity, length and area ratios, etc., are not preserved.

6.3. Real Datasets

We apply our method to variable star classification using lightcurves from three dif-

ferent survey catalogs: the Expérience pour la Recherche d’Objets Sombres II (EROS)

survey, the Massive Compact Halo Object (MACHO) survey and the High Cadence Tran-

sient Survey (HiTS). Sections 6.3.1, 6.3.2 and 6.3.3 contain a brief description of each

survey, followed by a comparison in Section 6.3.4.

We extract features from the lightcurves using the Feature Analysis for Time Series

(FATS) Python package (Nun et al., 2015). In addition to the two top features according

to the importance ranking presented by Nun et al. (2015), we selected the mean appar-

ent magnitude in the band with the lowest frequency (herein referred to as “Mean”) and

the skewness of the distribution of all the observed apparent magnitudes in the lowest

frequency band in a light curve (herein referred to as “Skew”). We know that the mean

magnitude is a proxy of the absolute magnitude for MACHO and EROS. Since these two

surveys observe the Magellanic Clouds, the distance to the observed stars is approximately

constant. We found that using 5 mixture components was enough to get reasonable results.

The extracted features are described in Table 6.2.

6.3.1. The EROS Survey

The Expérience pour la Recherche d’Objets Sombres II (EROS-II or simply referred

to as EROS in this paper) collaboration is an astronomical survey that started operation

in 1990 at the European Southern Observatory at La Silla, Chile. Its main purpose was

to search for microlensing events in the directions of the Magellanic Clouds, the Galactic
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Center and four areas within the Galactic Plane (Beaulieu et al., 1995). The EROS-II

instrument was a 0.98 m diameter Ritchey-Chrétien telescope located at the European

Southern Observatory in La Silla, Chile. It operated at f/5 with a 0.7° RA and 1.4° Dec

field of view. The telescope featured a dichroic beam splitter that allowed for simultaneous

observations in two wide pass-bands – a blue one and a red one (Perdereau, 1998; Bauer

et al., 1998; European Southern Observatory, 2017).

6.3.2. The MACHO Survey

The Massive Compact Halo Object (MACHO) project is a gravitational microlensing

survey whose main goal was to find massive compact halo objects in the Milky Way halo

Table 6.2. Features used in the experiments

Name Description

1 Color Difference between the mean apparent magnitude of observations from two
different bands. We used the two lowest frequency bands available in each
survey.

2 Mean Mean apparent magnitude. The arithmetic mean of all the lightcurve obser-
vations. We used the lowest frequency band available in each survey.

3 Psi CS Range of a cumulative sum of apparent magnitudes applied to the phase-
folded light curve (using the period estimated from the Lomb-Scargle
method). We used the lowest frequency band.

4 Skew The skewness of the distribution of observed apparent magnitudes in each
light curve in the lowest frequency band.

Notes. Names and descriptions are as in the FATS package. See Nun et al. (2015) for a
detailed definition.

The range of a cumulative sum Rcs of a light curve with N observations m1,m2, ...,mN

is defined as (Ellaway, 1978):

Rcs = max(S)−min(S)

S =
1

Nσ

l∑
i=1

(mi − m̄)

With l = 1, 2, ..., N , and m̄, σ are the mean magnitude and the standard deviation of the
magnitudes, respectively.
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to assess their mass contribution (Alcock et al., 1997). Observations were made in the

direction of the Large Magellanic Cloud (LMC), the Small Magellanic Cloud (SMC) and

the Galactic Bulge. The MACHO project instrument was the 1.27 meter telescope at

Mount Stromlo Observatory, Australia. It operated at f/3.8 with a 1° diameter field of

view. A dichroic beamsplitter and filters allowed image capture in the “red” (approx.

6,300 - 7,800 Å) and “blue” bands (approx. 4,500 - 6,300 Å). Each image has a sky

coverage of 0.72 x 0.72 degrees. The exposure times were of 300 seconds for the LMC,

600 seconds for the SMC and 150 seconds for the bulge (Alcock et al., 1997; Hart et al.,

1996; Cook, 1995). In this paper we only consider the LMC data.

6.3.3. The HiTS Survey

The High Cadence Transient Survey (HiTS) first campaign started in 2013 with the ob-

jective of exploring transient and periodic objects with characteristic timescales between a

few hours and days. This discovery survey uses high cadency data obtained from the Dark

Energy Camera (DECam) mounted on a 4 m telescope at Cerro Tololo Interamerican Ob-

servatory (CTIO). The large etendue (product of collecting area and field of view) of the

DECam allows the observation of apparent magnitudes as low as 24.5 mag. It operated at

f/2.7 with a 2.2° field of view (Förster et al., 2016; Flaugher, 2006; Fukugita et al., 1996).

6.3.4. Dataset Comparison

Among the three surveys studied, MACHO and EROS are the most similar. They ob-

served along two comparable bands (“blue” band wavelength limits differ in less than 7%,

and “red” band wavelength limits in less than 13%), had an analogous limiting magnitude

(a difference of half a magnitude), and we used data from the same observed area for our

experiments. However, as we can see from Tables 6.5, 6.6, and 6.10, the classification

performance drops significantly when training in one of these datasets and classifying in

the other. F1 score drops from 85% to 60% when training in MACHO and classifying in
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Table 6.3. Telescope and survey comparison

EROS MACHO HiTS

Instrument “MarLy” Ritchey-
Chrétien Telescope

Great Melbourne
Telescope (Renova-
tion)

Vı́ctor M. Blanco
Telescope

Institution European Southern
Observatory

Australian National
University

Cerro Tololo Inter-
american Observatory

Location La Silla, Chile Mount Stromlo, Aus-
tralia

Cerro Tololo, Chile

Altitude
(masl)

2,375 770 2,207

Diameter
(m)

0.98 1.27 4

Aperture ƒ/5 ƒ/3.8 ƒ/2.7

Field of view
0.7° (RA)

1° 2.2°
1.4° (Dec)

Bands (Å)

Blue (4,200 - 6,500) Blue (4,500 - 6,300) Blue-green (4,000 -
6,200)

Red (6,500 - 9,000) Red (6,300 - 7,800) Red (4,850 - 7,650)

Far-red (6,200 - 9,200)

Near-infrared (7,900 -
10,000)

Limiting
magnitude
(visual)

20 20.5 24.5

Observed
area1

Magellanic Clouds Magellanic Clouds Southern Galactic Cap

EROS using Random Forest with four features, versus training and testing in MACHO.

When training in EROS and classifying in MACHO, the drop is from 90% to 71%.

In contrast, EROS and MACHO are comparatively more dissimilar than HiTS. Some

differences are: HiTS observed in four bands instead of two, it had a limiting magnitude

around four points higher, a wider field of view, and it observed a different region of the
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Table 6.4. Dataset class composition

Class Description # EROS # MACHO # HiTS

1 CEP Cepheids. 472 14 35

2 EB Eclipsing Binaries. 12,061 207 15

3 QSO Quasars. 217 55 2,309

4 RRLYR RR Lyrae. 11,787 611 105

5 LPV Long Period Variables. 1,468 217 0

Total 26,005 1,104 2,464

sky. Table 6.3 shows a comparison of the three surveys and their instruments. Unsurpris-

ingly, the classification performance drops dramatically when using HiTS as a training

set for classifying in EROS or MACHO, and vice versa. When classifying in HiTS using

Random Forest and four features, the F1 score drops from 94% to 8% when training in

EROS, and to 11 % when training in MACHO. When using HiTS to train, the F1 score

using Random Forest and four features drops from 85% to 3% classifying in EROS, and

from 90% to 3% classifying in MACHO.

The datasets used in our experiments are also different in the amount of labeled data

available. While our labeled dataset for EROS has more than 25,000 labeled stars, the

MACHO and HiTS datasets have only about 1,000 and 2,5000, respectively. Moreover,

the class representation is different in each dataset. Table 6.4 shows a description and the

amount of instances for each class present in the labeled datasets of each survey.

6.3.5. Baseline Results

Tables 6.5, 6.6 and 6.7 present the per-class classification F1 scores obtained by cross-

validation in each dataset. These results serve as a baseline for the performance that can be

achieved by both training and testing in a same dataset using the same features we transfer

in our experiments.

1Of the data used in the experiments. See the survey description for the complete observation area.
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Table 6.5. Baseline F1 scores for variable star classification in EROS

Random Forest Support Vector Machine

Class 2 Features 3 Features 4 Features 2 Features 3 Features 4 Features

1 CEP 53% 72% 79% 32% 16% 72%

2 EB 75% 80% 85% 76% 78% 84%

3 QSO 1% 21% 24% 0% 0% 0%

4 RRLYR 74% 80% 84% 77% 79% 83%

5 LPV 90% 92% 92% 91% 91% 92%

Weighted Average 74% 80% 85% 76% 77% 83%

Table 6.6. Baseline F1 scores for variable star classification in MACHO

Random Forest Support Vector Machine

Class 2 Features 3 Features 4 Features 2 Features 3 Features 4 Features

1 CEP 52% 61% 69% 13% 13% 80%

2 EB 73% 74% 82% 65% 66% 82%

3 QSO 33% 67% 59% 0% 0% 10%

4 RRLYR 89% 91% 93% 89% 89% 93%

5 LPV 98% 98% 98% 98% 98% 98%

Weighted Average 84% 88% 90% 81% 81% 87%

Table 6.7. Baseline F1 scores for variable star classification in HiTS

Random Forest Support Vector Machine

Class 2 Features 3 Features 4 Features 2 Features 3 Features 4 Features

1 CEP 35% 41% 35% 10% 10% 33%

2 EB 0% 42% 33% 0% 0% 0%

3 QSO 97% 97% 98% 97% 97% 97%

4 RRLYR 24% 36% 46% 22% 23% 19%

Weighted Average 92% 94% 94% 92% 92% 93%

6.3.6. 2D Experiment Visualization

To illustrate the functioning of the model, we first apply it to a two-dimensional space

using the Mean and Color features (see table 6.2). We use EROS as the source dataset and

MACHO as the target. Hence our goal is to classify MACHO instances using the trans-

formed EROS training set. We use 10,000 unlabeled instances from each of the domains

49



1Figure 6.3. Main transformation components from EROS to MACHO. The
four components with the highest weights for a 2D transformation from
the EROS to the MACHO dataset are shown. The source components are
shown with a blue dashed line and the target components with a continuous
green line. Point transparency represents the responsibility of the plotted
component for that point, with higher opacity representing higher respon-
sibility.

to fit our transformation model with 5 components. Figure 6.3 shows the transformation

found for the four components with the highest weights. Note how each component “fo-

cuses” on a different region of the distribution and then transforms instances to “match’

the target distribution region.
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Table 6.8. F1 scores for classification experiments with 2 features

EROS→MACHO EROS→ HiTS

Classifier Original Transformed Original Transformed

RF 51% 68% 6% 27%

SVM 48% 65% 0% 0%

MACHO→ EROS MACHO→ HiTS

Classifier Original Transformed Original Transformed

RF 47% 70% 13% 50%

SVM 59% 72% 1% 0%

HiTS→ EROS HiTS→MACHO

Classifier Original Transformed Original Transformed

RF 1% 10% 2% 7%

SVM 1% 4% 1% 6%

Notes. Column “Original” displays the score obtained when training in the
untransformed source dataset and testing on the target dataset. Column “Transformed”
shows the score when training on the transformed source dataset and testing on the target
dataset.

6.3.7. Further Experiments

We continue applying the method to an increasing number of features from table 6.2.

We repeat the experiments using all possible dataset pairs. Tables 6.8, 6.9 and 6.10 show

the F1 scores for this experiment when transforming two, three and four features, respec-

tively. The “Original” column displays the score obtained when training in the untrans-

formed source dataset and testing on the target dataset. The “Transformed” column shows

the score when training on the transformed source dataset and testing on the target dataset.

Tables 6.11 through 6.28 show the F1 scores for each class in each experiment when

transforming two, three, and four features.
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Table 6.9. F1 scores for classification experiments with 3 features

EROS→MACHO EROS→ HiTS

Classifier Original Transformed Original Transformed

RF 63% 73% 2% 35%

SVM 75% 81% 0% 1%

MACHO→ EROS MACHO→ HiTS

Classifier Original Transformed Original Transformed

RF 50% 62% 19% 63%

SVM 68% 74% 56% 60%

HiTS→ EROS HiTS→MACHO

Classifier Original Transformed Original Transformed

RF 1% 26% 2% 7%

SVM 0% 5% 1% 4%

Table 6.10. F1 scores for classification experiments with 4 features

EROS→MACHO EROS→ HiTS

Classifier Original Transformed Original Transformed

RF 71% 84% 8% 21%

SVM 84% 90% 1% 1%

MACHO→ EROS MACHO→ HiTS

Classifier Original Transformed Original Transformed

RF 60% 70% 11% 30%

SVM 78% 78% 45% 44%

HiTS→ EROS HiTS→MACHO

Classifier Original Transformed Original Transformed

RF 3% 11% 3% 16%

SVM 0% 0% 1% 1%

Notes. Column “Original” displays the score obtained when training in the
untransformed source dataset and testing on the target dataset. Column “Transformed”
shows the score when training on the transformed source dataset and testing on the target
dataset.
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Table 6.11. F1 scores for classification using 2 features to transfer from
EROS to MACHO

Class Unadapted RF Adapted RF Unadapted SVM Adapted SVM

1 CEP 3% 4% 7% 4%

2 EB 31% 37% 31% 36%

3 QSO 0% 0% 0% 0%

4 RRLYR 48% 79% 43% 77%

5 LPV 93% 90% 94% 81%

Weighted Average 51% 68% 48% 65%

Table 6.12. F1 scores for classification using 3 features to transfer from
EROS to MACHO

Class Unadapted RF Adapted RF Unadapted SVM Adapted SVM

1 CEP 13% 0% 7% 5%

2 EB 36% 45% 48% 59%

3 QSO 48% 40% 53% 38%

4 RRLYR 63% 79% 80% 90%

5 LPV 96% 95% 95% 94%

Weighted Average 63% 73% 75% 81%

Table 6.13. F1 scores for classification using 4 features to transfer from
EROS to MACHO

Class Unadapted RF Adapted RF Unadapted SVM Adapted SVM

1 CEP 7% 33% 12% 44%

2 EB 54% 73% 71% 81%

3 QSO 19% 37% 50% 60%

4 RRLYR 74% 91% 89% 95%

5 LPV 95% 93% 96% 94%

Weighted Average 71% 84% 84% 90%
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Table 6.14. F1 scores for classification using 2 features to transfer from
EROS to HiTS

Class Unadapted RF Adapted RF Unadapted SVM Adapted SVM

1 CEP 15% 0% 15% 0%

2 EB 2% 1% 2% 2%

3 QSO 6% 29% 0% 0%

4 RRLYR 3% 6% 0% 8%

Weighted Average 6% 27% 0% 0%

Table 6.15. F1 scores for classification using 3 features to transfer from
EROS to HiTS

Class Unadapted RF Adapted RF Unadapted SVM Adapted SVM

1 CEP 0% 0% 0% 0%

2 EB 1% 2% 1% 1%

3 QSO 2% 37% 0% 0%

4 RRLYR 11% 15% 5% 21%

Weighted Average 2% 35% 0% 1%

Table 6.16. F1 scores for classification using 4 features to transfer from
EROS to HiTS

Class Unadapted RF Adapted RF Unadapted SVM Adapted SVM

1 CEP 0% 0% 0% 0%

2 EB 1% 2% 1% 1%

3 QSO 8% 21% 0% 0%

4 RRLYR 10% 14% 17% 16%

Weighted Average 8% 21% 1% 1%
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Table 6.17. F1 scores for classification using 2 features to transfer from
MACHO to EROS

Class Unadapted RF Adapted RF Unadapted SVM Adapted SVM

1 CEP 10% 50% 5% 46%

2 EB 57% 68% 67% 67%

3 QSO 2% 3% 0% 1%

4 RRLYR 42% 73% 55% 77%

5 LPV 31% 85% 43% 91%

Weighted Average 47% 70% 59% 72%

Table 6.18. F1 scores for classification using 3 features to transfer from
MACHO to EROS

Class Unadapted RF Adapted RF Unadapted SVM Adapted SVM

1 CEP 4% 3% 11% 0%

2 EB 59% 62% 72% 72%

3 QSO 12% 16% 25% 21%

4 RRLYR 45% 64% 70% 80%

5 LPV 36% 73% 52% 82%

Weighted Average 50% 62% 68% 74%

Table 6.19. F1 scores for classification using 4 features to transfer from
MACHO to EROS

Class Unadapted RF Adapted RF Unadapted SVM Adapted SVM

1 CEP 14% 25% 28% 7%

2 EB 63% 76% 80% 81%

3 QSO 16% 2% 27% 5%

4 RRLYR 63% 69% 82% 81%

5 LPV 32% 58% 48% 76%

Weighted Average 60% 70% 78% 78%
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Table 6.20. F1 scores for classification using 2 features to transfer from
MACHO to HiTS

Class Unadapted RF Adapted RF Unadapted SVM Adapted SVM

1 CEP 12% 9% 18% 0%

2 EB 1% 2% 0% 1%

3 QSO 14% 53% 1% 0%

4 RRLYR 1% 2% 1% 1%

Weighted Average 13% 50% 1% 0%

Table 6.21. F1 scores for classification using 3 features to transfer from
MACHO to HiTS

Class Unadapted RF Adapted RF Unadapted SVM Adapted SVM

1 CEP 17% 0% 5% 0%

2 EB 1% 1% 1% 3%

3 QSO 20% 67% 59% 63%

4 RRLYR 2% 6% 9% 9%

Weighted Average 19% 63% 56% 60%

Table 6.22. F1 scores for classification using 4 features to transfer from
MACHO to HiTS

Class Unadapted RF Adapted RF Unadapted SVM Adapted SVM

1 CEP 22% 3% 15% 0%

2 EB 1% 3% 2% 2%

3 QSO 11% 38% 47% 47%

4 RRLYR 16% 9% 13% 10%

Weighted Average 11% 36% 45% 44%
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Table 6.23. F1 scores for classification using 2 features to transfer from
HiTS to EROS

Class Unadapted RF Adapted RF Unadapted SVM Adapted SVM

1 CEP 22% 7% 38% 2%

2 EB 0% 13% 0% 0%

3 QSO 2% 2% 2% 2%

4 RRLYR 0% 7% 0% 7%

Weighted Average 1% 10% 1% 4%

Table 6.24. F1 scores for classification using 3 features to transfer from
HiTS to EROS

Class Unadapted RF Adapted RF Unadapted SVM Adapted SVM

1 CEP 15% 10% 9% 2%

2 EB 0% 37% 0% 0%

3 QSO 2% 2% 2% 2%

4 RRLYR 0% 15% 0% 11%

Weighted Average 1% 26% 0% 5%

Table 6.25. F1 scores for classification using 4 features to transfer from
HiTS to EROS

Class Unadapted RF Adapted RF Unadapted SVM Adapted SVM

1 CEP 26% 19% 5% 0%

2 EB 4% 20% 0% 0%

3 QSO 2% 2% 2% 2%

4 RRLYR 0% 1% 0% 0%

Weighted Average 3% 11% 0% 0%

57



Table 6.26. F1 scores for classification using 2 features to transfer from
HiTS to MACHO

Class Unadapted RF Adapted RF Unadapted SVM Adapted SVM

1 CEP 11% 6% 18% 0%

2 EB 6% 9% 0% 0%

3 QSO 12% 11% 12% 13%

4 RRLYR 0% 6% 0% 8%

Weighted Average 2% 7% 1% 6%

Table 6.27. F1 scores for classification using 3 features to transfer from
HiTS to MACHO

Class Unadapted RF Adapted RF Unadapted SVM Adapted SVM

1 CEP 10% 0% 9% 0%

2 EB 0% 7% 0% 0%

3 QSO 12% 14% 12% 13%

4 RRLYR 2% 7% 0% 5%

Weighted Average 2% 7% 1% 4%

Table 6.28. F1 scores for classification using 4 features to transfer from
HiTS to MACHO

Class Unadapted RF Adapted RF Unadapted SVM Adapted SVM

1 CEP 18% 9% 32% 0%

2 EB 10% 68% 0% 0%

3 QSO 12% 8% 12% 11%

4 RRLYR 0% 0% 0% 0%

Weighted Average 3% 16% 1% 1%
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7. CONCLUSIONS

We present a method for survey invariant classification of variable stars by transform-

ing feature representations between surveys. Our probabilistic model does not assume a

particular classifier and can be used to work with the data of one survey as if it belonged

to the other, allowing for the reuse of existing training sets in related domains where no,

or not enough, labeled data is available. This will become increasingly important for prac-

tical applications as the volume of unlabeled data keeps growing surpassing the rate at

which labeled data becomes available. No explicit assumptions are made of the domain

shift, which we consider to follow a generalized target shift. We apply our method to sim-

ulated data and to three astronomical surveys. First, we do inference in our model to find

the transformation parameters. Then, we apply the transformation to the source domain’s

training set, train a classifier and test in the target domain. Our results show that a signifi-

cant performance gain in classification can be obtained by adapting a training set with our

model, only making use of unlabeled data in both domains.
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