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RESUMEN 

Esta tesis se proponen modelos de programación matemática y métodos eficientes para 

resolver distintos problemas de ruteo de vehículos con mezcla de productos. Esta 

investigación aborda tres problemas que consideran mezcla de productos: Un Problema 

de Recolección de Leche con Mezclas; El Problema de Recolección de Leche con 

Mezclas y Puntos de Recolección; y El Problema de Recolección de HAZMAT con 

carga de múltiples productos. 

El problema de ruteo con mezcla de productos considera transporte productos de distinta 

calidad/tipo ofrecidos o demandados por un conjunto de clientes utilizando una flota de 

vehículos. A diferencia de los problemas tradicionales de ruteo de vehículos multi-

producto, la mezcla de dos o más productos puede producir cambios en el estado de cada 

vehículo. Se requiere realizar un seguimiento de cada vehículo a lo largo de una ruta. 

En el problema de recolección de leche con mezcla, donde una compañía recolecta leche 

utilizando una flota de vehículos no-homogénea, desde un conjunto de predios 

organizados como cooperativa. Existen tres calidades de leche, donde cada predio 

produce sólo una calidad. Los ingresos aumentan con la calidad de la leche. Además, se 

requieren cantidades mínimas de cada calidad en la planta. Los predios están 

distribuidos en una extensa zona geográfica, haciendo que el costo de transporte sea 
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relevante. La novedad del problema es permitir la mezcla de distintas calidades de leche 

en los camiones, donde la calidad de la mezcla equivale a la leche de más baja calidad 

cargada. Utilizamos una heurística para resolver el problema, que busca maximizar el 

beneficio. Se propone un modelo de programación entera y se resuelve con branch-and-

cut. El método se prueba en instancias test y en un caso real en el sur de Chile. 

En el problema de recolección de leche con mezclas y puntos de recolección, la leche 

también se mezcla en los camiones. La recolección desde predios lejanos puede generar 

altos costos de transporte. Se propone ubicar puntos de recolección para que algunos 

predios lejanos puedan trasladar su producción a esos puntos. Luego, la leche acumulada 

en esos puntos es recolectada por un camión, evitando así largos recorridos. Se presenta 

un modelo de programación entera y se resuelve con branch-and-cut en instancias 

pequeñas. También presentamos una heurística para resolver instancias rápidamente.  

En el problema de recolección de materiales peligrosos, un grupo de materiales 

peligrosos de distinto tipo son recolectados con una flota de camiones homogénea. Cada 

residuo posee expone a la población en distinta medida ante un accidente. Los residuos 

peligrosos pueden ser transportados en un mismo vehículo, a menos que la legislación 

actual lo prohíba. El riesgo generado por un vehículo hacia las personas y el ambiente, 

cambia cuando se agregan a éste nuevos residuos con otros tipos de riesgo. Se propone 

un modelo de programación entera que minimiza la población expuesta, y los costos de 

transporte. Presentamos un caso de estudio en Santiago de Chile. 
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ABSTRACT 

In this thesis, new mathematical programming models and efficient methods to solve 

different routing problems with product mixing are proposed. This research addresses 

three problems dealing with product mixing: A Milk Collection Problem with Blending; 

The Blended Milk Collection Problem using Collection Points; and The Hazardous 

Materials Collection problem with multiproduct loading. 

The routing problem with product mixing studies the transportation of different 

quality/type of products generated or required by a set of clients using a fleet. Unlike the 

known multi-product routing problems, in the particular cases addressed in this Thesis, 

the combination of two of more commodities can produce changes in the status of the 

product or the load of each vehicle, which requires following this status along the route. 

In the Milk Collection Problem with Blending, a firm collects milk using a 

nonhomogeneous truck fleet, from a number of geographically distributed farms 

organized as a cooperative. There are three qualities of milk, and each farm produces 

only one quality. Although the firm revenue increases with the quality of the collected 

milk, minimum amounts are required at the plant of each quality. The farms are spread 

over a large rural area, which makes transportation cost very relevant. The problem‘s 
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novelty lies in the fact that different qualities of milk can be blended in some of the 

trucks en route, and the resulting blend is classified as its lowest quality component. A 

heuristic is used to solve the problem, which maximizes the profit while fulfilling the 

minimum requirements for the different milk qualities at the plant. The integer 

programming model is solved using branch and cut. The model is then run on several 

test instances and a real case in the south of Chile. 

In the blended milk collection problem using milk collection points, the milk is also 

blended in the trucks. Collecting milk from the farthest farms could have high costs, so 

collection points are located so that the farthest farms can bring their milk to these 

points, where it is collected by a plant truck, avoiding a longer trip. A model is presented 

and solved using Branch and Cut for small instances. A heuristic is presented to solve 

larger instances quickly. 

In the HAZMAT collection problem, a set of different hazardous wastes are transported 

using a homogeneous truck fleet. Each waste poses a level of risk to the population and 

environment exposed to an accident. The wastes can be transported in a same truck, 

unless considered incompatible by the regulations. The risk posed by a truckload to the 

exposed people and environment, changes when new waste with different risk level is 

added to the truck. Using an integer programming model, we minimize the total exposed 

population, as well as the total transportation costs. We present a case study in the city of 

Santiago of Chile to show the practical application of our proposed approach. 
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1. INTRODUCTION 

Mathematical models can be used to help optimizing transportation costs and improving 

the use of available resources in many real problems dealing with distribution and 

collection of goods. The broad range of problems known as the Vehicle Routing 

Problem (VRP), appear in this context. The VRP aims at finding a set of vehicle routes 

and defining the most efficient sequence in which each vehicle must collect from, or 

deliver to a set of customers, not exceeding the capacity constraints, at the minimum 

cost (Irnich, Toth, & Vigo, 2014).  

An important variant of VRP is the Multi-Product VRP (MPVRP). The MPVRP 

addresses transportation of a set of supplies or products of different types (size, class, 

quality, grade, classification, risk, among other features). When different products 

cannot be carried in the same truck, a VRP must be solved for each type of product 

(Abkowitz & Cheng, 1988; Ahluwalia & Nema, 2006; Dooley, Parker, & Blair, 2005; 

Hu, Sheu, & Huang, 2002; A. Nema & Gupta, 2003; A. K. Nema & Gupta, 1999; Sheu, 

2007; Verter & Kara, 2008). In addition, trucks with compartments can be used, so that 

each compartment carries a different product. This approach is known as the Multi-

Compartment Vehicle Routing Problem (MC-VRP). It usually appears in the 

transportation of products such as livestock, fuel, olive oil and perishable products, 

among others (Caramia & Guerriero, 2010; Fallahi, Prins, & Wolfler Calvo, 2008; 

Henke, Speranza, & Wäscher, 2015; Lahyani, Coelho, Khemakhem, Laporte, & Semet, 

2015; Masson, Lahrichi, & Rousseau, 2015; Mendoza, Castanier, Guéret, Medaglia, & 

Velasco, 2010; Reed, Yiannakou, & Evering, 2014; Sethanan & Pitakaso, 2016).  

If different products can be carried in a same vehicle or vehicle compartment, and they 

do not interact in any way with each other, the transportation costs can be decreased, 

taking advantage of the economies of scope. This problem has been studied in different 

contexts. Some researchers study the multiple product vehicle routing focusing on 

inventory routing over a time horizon, satisfying supply and demand for different goods 
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(Coelho & Laporte, 2013; Moin, Salhi, & Aziz, 2011). Other authors address dimension 

or weight constraints for products with different weight and volume, e.g. boxes, 

furniture, etc. (Junqueira, Oliveira, Carravilla, & Morabito, 2013; Russell, Chiang, & 

Zepeda, 2008; Viswanathan & Mathur, 1997). In all these cases, the products are 

combined in a same vehicle or compartment, but there is no particular need to study the 

interactions between the products being transported. Whenever a new product is loaded, 

the only relevant change in the vehicle status is its available capacity.  

In this thesis, we propose, formulate and solve a novel variant of the MPVRP, which 

arises when different products are carried in the same truck or truck compartment, and 

these products interact with each other. In this problem, loading two products jointly 

results in a third, single product, whose features can be either equal to one of the loaded 

products, or different to both products originally loaded. Solving the problem requires 

studying the interactions between products and finding the best vehicle routes according 

to mixing requirements and operational constraints.  

A mix of different products can be seen as a change in the status or qualification of the 

vehicles. For example, in the milk collection context, there may be different qualities of 

milk. If different qualities of milk are loaded in a same truck, the resulting mix is 

classified as the lesser quality milk among all those loaded in the truck. In hazardous 

material transportation, there is the need to account (and minimize) the exposed 

population of the vehicles when they transport different hazardous materials. The risk to 

which the vehicles expose the population, depends on the mix of the loaded products.  

Note that the problem we address in this thesis is NP-Hard, as its versions are 

generalizations of the Vehicle Routing Problem or the Location Routing Problem. 

To the best of our knowledge, this multi-product problem with product mixing or 

blending has not been dealt with in the specialized literature. We optimize this approach 

for three real applications. 
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The objective of this thesis is to determine the best transportation routes considering the 

particular complexities of each situation, using mathematical models and ad-hoc solution 

methods.  

This research addresses three real problems including product blending or mixing: A 

Milk Collection Problem with Blending; The Blended Milk Collection Problem using 

Collection Points; and The Hazardous Materials Collection Problem with Multiple-

Product Loading. 

1.1. Milk Collection Problem with Blending 

Chapter 2 presents the Milk Collection Problem with Blending (MB), which is 

the first vehicle routing problem with product mixing, analyzing the interactions 

between the different products loaded in a same truck.  

In the MB problem, a firm collects raw milk to produce its final milk products. 

The firm has a heterogeneous truck fleet to collect the milk from a set of farms. 

The milk is collected directly from the farms, which are organized as a 

cooperative (Palsule-Desai, 2015). This organization requires all the produced 

milk being collected daily from all farms, regardless the distance, volume or 

quality.  

There are three qualities of milk, and each farm produces a single quality. Is 

important to note that there are minimum volume requirements for each milk 

quality at the plant. The farms are spread over a large rural area, which makes the 

transportation cost an important component of the total cost.  

Currently, blending is used in practice, but the milk is collected using an 

intuitive, empiric method by a dispatcher. Therefore, a mathematical approach is 

needed to improve the milk collection process.  



4 

 

 

The main contribution of this Chapter lies in the fact that different qualities of 

milk can be blended in some of the trucks en route, and the resulting blend is 

classified as its lowest quality component. It is also possible to blend at the plant, 

so that some amounts of higher quality can be used to satisfy the requirements of 

lower quality milk, whenever it is required to meet the quotas of milk.  

Blending reduces the revenue, but the transportation cost decreases, resulting in a 

higher profit. The trucks may start the trip at any node (e.g. house of truck 

drivers, dispatching point, truck depot, plant, etc.) and end the trip at the plant.  

It is important to note that the milk blending is a usual practice worldwide, and it 

does not violate any regulation when correctly done (CDIC, 2005; Chite, 1991; 

INIFAP, 2011; MHFW, 2015; Pinzón, 2015; U.S. DHHS, 2009; UNIA, 2011). 

GHL Incorporated (2014), in a report for the Food and Drug Administration 

(FDA), declares that ―It is a common practice in some states (United States), that 

bulk milk pickup tankers collect milk from two grades, Grade A and non-Grade 

A. Then these loads are delivered as non-Grade A milk at processing facilities‖. 

Several approaches for the milk collection problem have been presented in the 

literature, but none them includes blending. Some articles study real milk 

collection problems considering one quality of milk (Basnet, Foulds, & Wilson, 

1999; Butler, Herlihy, & Keenan, 2005; Butler, Williams, & Yarrow, 1997; 

Claassen & Hendriks, 2007; Igbaria, Ralph H. Sprague, Basnet, & Foulds, 1996; 

Masson et al., 2015; Prasertsri & Kilmer, 2004; Sankaran & Ubgade, 1994).  

If there is more than one quality of milk, there are different approaches: separate 

trucks (Dooley et al., 2005) or trucks with compartments (Caramia & Guerriero, 

2010; Hoff & Løkketangen, 2007; Lahrichi, Gabriel Crainic, Gendreau, Rei, & 

Rousseau, 2015; Sethanan & Pitakaso, 2016). 

We propose a mixed integer programming model for the milk blending problem. 
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The model allows blending in the trucks and at the plant. The model determines 

the farms visited by each truck and the route that the trucks must follow so that 

all the milk produced is delivered to the plant. It also shows where the blending 

should be done: in the trucks or at the plant. We also test our approach in trucks 

with compartments. The objective function of the model is to maximize the 

profit, computed as the revenues less the transportation costs (Paredes-Belmar, 

Marianov, Bronfman, Obreque, & Lüer-Villagra, 2016).  

We solve instances of the problem using a branch-and-cut algorithm with known 

cuts and a new cut. This exact approach can solve medium size instances up to 

100 nodes optimally. However, real cases can have many more producers, like 

our 500-node real case study. We develop the following three-stage heuristic for 

these instances:  

 The first stage separates the instance into clusters using a suitable clustering 

method. The geographical accidents (rivers, main roads, lakes, mountains) 

can be used appropriately to make an efficient clustering. The k-means 

method is also a good and easy standard clustering method.  

 As minimum amounts of each quality of milk must be met at the plant, and 

the there is an available truck fleet with different capacities, both milk quotas 

and trucks have to be allocated to each cluster. In the second stage, a mixed 

integer programming model is proposed to allocate milk requirements and 

correctly share the truck fleet among cluster.  

 Finally, each cluster is solved to optimality using the branch-and-cut 

algorithm.  

The models involved in this three-stage heuristic are coded in AMPL and solved 

with standard options of CPLEX. 
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The main contributions in this chapter are the introduction of the new Milk 

Collection Problem with Blending and an efficient solution method. 

1.2. The Blended Milk Collection Problem using Collection Points 

The simplest way to collect the raw milk from farms is the door-to-door method. 

However, when the farms are scattered over a large area, the milk collection 

truck routes could be long and they could contain many farms, resulting in high 

transportation costs and collection times. This method is inefficient when there 

are small farms grouped far away from the plant (Anquez & Tiersonnier, 1962), 

especially when there are several qualities of milk. The high transportation cost 

of this system has motivated the search for better collection options. 

In Chapter 3, we generalize the problem introduced in the previous chapter, 

proposing an extension called the Milk Blending Collection with Collection 

Points (MBCP). In this extension, we consider the location of some collection 

points, to facilitate and expedite the milk collection process.  

The aim of MBCP is finding the number and the location of collection 

(accumulation) points, to which a set of distant and small farms can deliver their 

production, decreasing the distances traveled by the firm trucks. Thereby, a 

vehicle can collect the total production of one or more farms in a single stop, 

saving cost and time and increasing the profit for the company. Those 

unallocated farms are visited directly by the trucks. 

Note that there is an access cost of transporting the milk from the small and 

distant farms to the collection points. However, this cost is lesser than the cost of 

operating big tankers visiting the small and distant farms.  
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The objective is to maximize the profit, considering the milk revenues obtained 

from the milk received at the plant, the transportation costs, the costs of setting 

collection points and the access cost from farms to collection points.  

The specialized literature presents a set of related problems to the MBCP. For 

example, the Median Tour Problem, consists in design a main tour for a vehicle, 

and the nodes not belonging to this main tour are assigned to the nearest node in 

the tour (Current   Schilling,  99 ; Labb , Laporte, Mart n,   Gonz lez,     ; 

Labb , Laporte, Rodr  guez Mart  n,   Gonz lez,     ). Moreover, the MBCP is 

similar to the Vehicle Routing-Allocation Problem (VRAP), which consists in 

constructing a main route set to visit a subset of clients, where the non-visited 

clients can be assigned to a client in the route or be discarded with an associated 

penalization cost (Beasley & Nascimento, 1996; Ghoniem, Scherrer, & Solak, 

2013; Vogt, Poojari, & Beasley, 2007). Other extensions of VRAP appears in the 

context of school bus routing problems (Bowerman, Hall, & Calamai, 1995; 

Riera-Ledesma & Salazar-González, 2012; P Schittekat, Sevaux, & Sorensen, 

2006; Patrick Schittekat et al., 2013). None of these papers consider the mixing 

of different products in the same vehicle. 

To the best of our knowledge, the MBCP has not been studied or solved in the 

literature of VRP nor milk collection, despite to be a practical and efficient 

approach. 

To solve the MBCP we design the following approximate methodology. First, we 

propose a mixed linear integer programming model for the MBCP. Each truck 

can load milk in the farms and in the location points. Milk blending is allowed if 

it is profitable. As an output of the proposed model, we obtain the optimal route 

for each truck considering blending and collection points simultaneously; the set 

of collection points to be located, the farms allocated to an open collection point, 
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and the unallocated farms which are loaded directly by trucks. We solve small 

size instances to optimality using a branch-and-cut procedure.  

Second, we design a three-stage heuristic to solve large size instances, including 

exact models and heuristics: 

 The first stage solves optimally a covering model that allocates the small and 

distant farms to collection points. The output of this stage indicates which 

collection points needs to be open, and the total milk volume in each one.  

 The collection points have accumulated milk from a subset of farms. So, the 

collection points are now ―virtual farms‖ producing potentially the three 

qualities of milk. The second stage generates feasible routes for the routing 

problem (considering all unallocated farms and collection points) using the 

ant colony meta-heuristic (Bell & McMullen, 2004; Bullnheimer, Hartl, & 

Strauss, 1999; Dorigo & Stützle, 2004; Mazzeo & Loiseau, 2004; 

Montemanni, Gambardella, Rizzoli, & Donati, 2005; Yu, Yang, & Yao, 

2009). 

 The third stage selects the best routes (between the routes generated in the 

previous stage) for a capacitated available truck fleet using a mixed-integer 

programming model.  

The first and the third stage of the heuristic (mathematical models) are coded in 

AMPL and solved with CPLEX. The second stage (ant colony meta-heuristic) is 

coded in C++. 

We describe computational results for a rural area in Chile. The real instance has 

500 farms and 112 feasible location nodes (for collection points) and we compare 

those results with alternative approaches in the literature. 
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1.3. Hazardous materials collection with multi-product loading 

Industrial hazardous wastes or materials (HAZMAT) are generated daily by 

industries located in urban sites and must be transported to a disposal sites or to 

final treatment.  

The HAZMAT transportation involves risks of possible accidents with important 

consequences for human and natural environment. Particularly, in an urban zone, 

the accident probability of HAZMAT incident is low, but the consequences can 

be catastrophic (Zografos & Androutsopoulos, 2004). Hence, there is a general 

concern to develop mathematical models to find efficient and low-risk routes. 

In Chapter 4, we address a new HAZMAT multiple-product collection problem, 

which is another application for the routing problem with product mixing.  

Most of literature study the HAZMAT transportation problem with a single 

product (Androutsopoulos & Zografos, 2012; Bronfman, Marianov, Paredes-

Belmar, & Lüer-Villagra, 2015; Giannikos, 1998; Jacobs & Warmerdam, 1994; 

Leonelli, Bonvicini, & Spadoni, 2000; Pradhananga, Taniguchi, & Yamada, 

2010; Shih & Lin, 2003; Siddiqui & Verma, 2014; Tarantilis & Kiranoudis, 

2001; Zografos & Androutsopoulos, 2002, 2004) presenting different variants as 

objectives, risk models, etc.  

Moreover, there are authors considering the transport of more than one type/class 

of product (Abkowitz & Cheng, 1988; Ahluwalia & Nema, 2006; Hu et al., 2002; 

A. Nema & Gupta, 2003; A. K. Nema & Gupta, 1999; Samanlioglu, 2013; Sheu, 

2007; Verter & Kara, 2008). These authors study the risk estimation as the main 

concern.  

In our HAZMAT problem, a homogeneous truck fleet must collect a set of 

different hazardous materials from waste generators which are scattered over a 
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large urban area. There are compatible wastes/materials (defined by regulation) 

that can be transported together in the same truck. 

Each waste or material has a known population exposure risk. So, each waste 

exposes a different population size. We define the risk of the truck as the riskiest 

material being transported by the truck. The risk of a truck varies along his route 

and it is related to the products transported by the truck on each arc of the route. 

Note that the physical mix is different to that of the MB or MBCP, since in this 

case, there is no blending, but the concept is similar for truck status effects. In the 

HAZMAT waste collection problem, different risks are combined in a same truck 

and we study how the risk to which each truck exposes the population changes 

when new waste is added to the truck.  

The objectives of the HAZMAT collection problem are minimizing the routing 

costs and minimizing the total exposed population. Note that both objectives are 

in conflict: low-cost routes can be riskier in terms of total population exposure, 

and low-risk routes tend to be expensive. The literature on HAZMAT 

transportation has studied these objectives, offering a set of efficient solutions to 

decision makers. 

We propose a bi-objective integer-programming model and we solve it optimally 

using the solver CPLEX. The model is coded in AMPL. We solve a hypothetical 

case in the urban area of Santiago, Chile. To the best of our knowledge, the 

proposed work has not been dealt with in the literature on HAZMAT nor vehicle 

routing. 

Unlike the previous literature, we propose this new HAZMAT collection and we 

optimize it. We compare our results with the VRP approach (exclusive vehicles 

for each material) obtaining good results, in terms of number of vehicles, 

exposed population and transportation costs. 
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1.4. Thesis Contributions 

In synthesis, the main scientific contributions of this thesis are the following: 

First, we present a new class of routing problems with product mixing. This 

approach is new and different from other multi-product transportation problems 

presented in the vehicle routing literature. We study the interaction between the 

different materials loaded in a same vehicle and quantify the related effect. Three 

real applications are presented, modeled and solved in this thesis. 

Second, we present a milk collection problem with blending, inspired in a real 

problem of a milk company. We formulate a mathematical model for the problem 

and solve small instances with a branch-and-cut scheme. We propose a three-

stage heuristic to solve large instances. The methodology achieves good results 

and improves the current empiric method used by the company. 

Third, we generalize the milk collection problem with blending, adding 

collection points to improve the solutions of the problem. We formulate the 

problem using a mixed-integer programming model and solve it with a three-

stage heuristic obtaining good results in terms of solution quality (when they are 

compared with other approaches) and solution time. 

Fourth and finally, we model and solve a HAZMAT collection problem with 

multiple-products, in which loading different products in a truck is allowed, 

provided that the compatibility constraints given by current regulations are met. 

The methodology provides a set of non-dominated solutions for the HAZMAT 

collection problem. A case in the urban area of Santiago-Chile is presented and 

solved.  

The remainder of the thesis is organized as follows. Chapter 2 contains the paper 

―The Milk Collection Problem with Blending”, published in Transportation 
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Research Part E: Logistics and Transportation Review; Chapter 3 presents the 

paper ―The Milk Blending Problem using Collection Points‖, submitted to 

Computers & Electronics in Agriculture, Chapter 4 presents the paper 

―Hazardous Materials Collection with Multiple-Product loading‖ published in 

Journal of Cleaner Production.   
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2. A MILK COLLECTION PROBLEM WITH BLENDING  

A milk collection problem with blending is introduced. A firm collects milk from 

farmers, and each farm produces one out of three possible qualities of milk. The revenue 

increases with quality, and there is a minimum requirement at the plant for each quality. 

Different qualities of milk can be blended in the trucks, reducing revenues, but also 

transportation costs, resulting in higher profit. A mixed integer-programming model, a 

new cut, and a branch-and-cut algorithm are proposed to solve medium-sized instances. 

A three-stage heuristic is designed for large instances. Computational experience for test 

instances and a large-sized real case is presented.  

This chapter was formatted as a manuscript and submitted to Transportation Research 

Part E: Logistics and Transportation Review in December, 2015. It was accepted in July 

21, 2016 and published (Paredes-Belmar et al., 2016). This chapter contains the 

modifications done to the manuscript. 

Complete reference: Paredes-Belmar G., Marianov V., Bronfman A., Lüer-Villagra A., 

Obreque C. (2016). A Milk Collection Problem with Blending. Transportation Research 

Part E: Logistics and Transportation Review 94, 26-43. 

http://doi.org/10.1016/j.tre.2016.07.006 
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2.1. Introduction 

The cost of collecting milk from producers in the milk production supply chain 

has a significant impact on profit (Lahrichi et al., 2015; Rojas & Lusa, 2005). 

Milk producers are frequently scattered over extended rural areas, sometimes far 

from processing plants, making transportation cost a relevant component of total 

cost. It is also common for small producers to organize themselves into 

cooperatives, able to obtain better commercial terms with, usually, a single buyer 

(FAO, 2012). Each cooperative sells the milk produced by its members to the 

buyer, or firm, who performs the collection process (Palsule-Desai, 2015). This 

arrangement is convenient for the cooperative members, but poses some 

challenges to the buyer, who must collect milk from all farms in the cooperative, 

although some may be located far from the plant. Moreover, milk produced by 

different farms can have different qualities or grades, used for different final 

products. Currently, firms address the differences in quality by either using 

separate trucks for collecting different qualities, or using tanks with separate 

compartments for different qualities. Both solutions are expensive, and 

particularly if some farms produce small quantities of milk, as in the real case in 

this study. 

A different approach, consisting of mixing or blending different qualities of milk 

in some of the trucks, is also possible. Blending degrades the quality of part of 

the collected milk, as the blended product is classified as its lowest quality 

component, which reduces the firm‘s revenue. However, the savings in 

transportation cost exceed the reduction in revenue and ultimately increase profit. 

Blending is a common practice. GLH Incorporated (2014), in a report for the 

United States‘ Food and Drug Administration (FDA), explicitly declares that ―It 

is a common practice in some states, including two large milk production states, 

that bulk milk pickup tankers pick up milk from both Grade ‗A‘ and non-Grade 
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‗A‘ milk producers on the same tanker. Then, these loads are delivered to non-

Grade ‗A‘ processing facilities.‖ New York regulations allow commingled milk 

in trucks (New York SDAM, 2003). A plant in the south of Chile, which is this 

paper‘s case study, also uses blending. The common use of blending makes this a 

relevant practice that, to the best of the authors‘ knowledge, has never been 

analyzed in the literature. 

Note that blending does not violate any regulations, as long as the resulting milk 

is correctly classified at the processing facility. Therefore, this procedure could 

be extended to wherever the grading of milk or dairy products is performed by 

bacterial limits and somatic cell count, or by fat content. Examples of countries 

with such regulations, among others, are the United States (Chite, 1991; U.S. 

DHHS, 2009), Canada (CDIC, 2005), Bolivia (UNIA, 2011), Mexico (INIFAP, 

2011), Panama (Pinzón, 2015), and India (MHFW, 2015). This procedure also 

applies when the industry imposes such a classification, as in the case of the 

Murray Goulburn Co-operative in New South Wales and Sydney, Australia 

(Devondale Murray Goulburn, 2014).  

The blending of different products or product qualities in the same vehicle also 

applies to other industries. Bing et al. (2014) solve a waste collection problem, in 

which collection is either performed after separating some recyclables at 

collection points, or by loading different classes of waste in the same truck and 

classifying them at the processing site. These are also possible applications for 

this study‘s approach. 

Finally, yet importantly, Sethanan & Pitakaso (2016) state that the mixing of raw 

milk from different collection centers in the same compartment would be a 

valuable extension of their research, as they do not use blending, and this would 

―add to the ability of (their) technique to model real world problems.‖ 
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An optimization of the blending procedure is proposed, as this is of practical 

relevance, and has not been previously addressed. This study‘s contributions are 

several. First, the Milk Collection Problem with Blending (MB) is introduced 

which, rather than an algorithmic contribution, describes and solves an 

innovative milk collection method. For each truck in a heterogeneous fleet, the 

MB solution indicates what farms each truck must visit, and the route it must 

follow, to deliver all produced milk to the plant. This also specifies whether it is 

more convenient to perform blending in the trucks or at the plant. The objective 

is to maximize the firm‘s profits. Second, a mixed integer formulation for the 

problem is proposed, as well as a branch-and-cut algorithm, using a new cut and 

known cuts to solve medium-sized instances optimally. Third, a heuristic 

procedure is designed to solve large instances, which partitions the set of farms 

into clusters or areas, each with a fewer number of farms. Solving the problem by 

clustering is non-trivial, as there are milk quotas to be fulfilled and a given truck 

fleet; therefore, trucks and milk quotas must be efficiently assigned to clusters.  

Finally, the problem is solved for each cluster using the branch-and-cut 

algorithm. 

Test instances of up to 100 nodes are solved, and a real instance is solved that 

includes 500 farms. The solutions obtained using this new approach are then 

compared to the solutions currently implemented by the firm, and with the 

solutions obtained by collecting each quality of milk separately, using the vehicle 

routing problem (VRP) for each. Managerial insight is provided. Finally, 

solutions for trucks with and without compartments, and with and without 

blending are compared, which demonstrates that blending dominates all 

solutions. 

Note that the problem is NP-Hard, as for one quality of milk, it reduces the VRP, 

which is NP-Hard (Irnich et al., 2014; P Toth & Vigo, 2002). 
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The remainder of the chapter is organized as follows: subsection 2.2 presents the 

literature review. Subsection 2.3 describes the milk collection problem with 

blending. Subsection 2.4 details the development of the mixed integer 

programming (MIP) model, the valid cuts, and their separation algorithms. 

Subsection 2.5 illustrates a procedure for solving large instances. Subsection 2.6 

is devoted to numerical experience, with the test instances, the actual case, and 

the full heuristic. Different alternative approaches are compared in this section, 

including the use of compartments. Section 2.7 concludes. 

2.2. Literature review 

The literature provides a large number of articles studying the VRP, considering 

different variants, applications and solution methods (Golden, Raghavan, & 

Wasil, 2008; P Toth & Vigo, 2001; Paolo Toth & Vigo, 2014). A relevant variant 

of the VRP is the Multi-Product Vehicle Routing Problem (MPVRP). The 

MPVRP allows to reduce costs, by consolidating different products in a same 

vehicle (Liu, Lei, & Park, 2008). This variant has been addressed in different 

ways. Some authors consider as the main concern the inventory management 

over a time horizon (L C Coelho, Cordeau, & Laporte, 2012; Huang & Lin, 

2010; Moin et al., 2011; Zhalechian, Tavakkoli-Moghaddam, Zahiri, & 

Mohammadi, 2016; Zhang, Qi, Miao, & Liu, 2014) or dimension constraints for 

products with different weight and volume, e.g. boxes, furniture, etc. (Junqueira 

et al., 2013; Russell et al., 2008; Viswanathan & Mathur, 1997). Other studies 

solve the MPVRP using trucks with compartments for liquids, avoiding product 

blending in a same compartment (Caramia & Guerriero, 2010; Fallahi et al., 

2008; Henke et al., 2015; Lahyani et al., 2015; Lai, Crainic, Di Francesco, & 

Zuddas, 2013; Mendoza et al., 2010; Reed et al., 2014; Sethanan & Pitakaso, 

2016). In all those cases, the products are loaded on a same vehicle but remain 

separable, so they can also be unloaded separately.  
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Product collection, specifically, has also been profusely addressed in a broad 

range of fields, going from blood collection from donors (Gunpinar & Centeno, 

2016) to waste collection from islands (Miranda, Blazquez, Vergara, & Weitzler, 

2015), to cite extreme examples. None has used different product blending. In 

terms of milk collection, there are different variants, as well as a number of 

solution methods, none of which include blending. Sankaran & Ubgade (1994) 

were the first to address milk collection as a special case of the VRP. They 

designed collection routes to minimize transportation costs, using a Decision 

Support System (DSS) to solve a 70-farm case in Etah, India, obtaining yearly 

savings of USD $15,000. Igbaria et al. (1996), Prasertsri & Kilmer (2004) and 

Butler et al. (2005) solved similar real problems using a DSS tool. 

Butler et al. (1997) solve a milk collection problem in which some producers 

must be visited twice, while the milk from the rest of the farms is collected only 

once a day. Basnet et al. (1999) propose an exact model and a heuristic procedure 

for assigning trucks to predefined routes in New Zealand, the goal of which is to 

minimize the time at which the last truck delivers its load to the plant. Hoff & 

Løkketangen (2007) solve a real case in Norway, using the model defined by 

Chao (2002) for a truck and trailer routing problem. Claassen & Hendriks (2007) 

address a goat milk collection problem in the Netherlands. The producers are 

visited according to individual frequencies, rather than daily. The authors 

minimize the deviations, whether surplus or deficit, between collection and 

production. Dayarian, Crainic, Gendreau & Rei (2013) and Dayarian, Crainic, 

Gendreau & Rei (2015b) solve a milk collection and distribution problem over 

multiple periods, considering significant seasonal production variations over a 

tactical time horizon. Dayarian, Crainic, Gendreau & Rei (2015a) introduce a 

routing problem with multiple depots, a heterogeneous fleet, and time windows, 

motivated by a real milk collection problem in Canada. They solve an integer 

programming formulation using column generation and a branch-and-price 

algorithm. 
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Other authors examine the collection of different qualities of milk. Dooley et al. 

(2005), in a New Zealand application, classify the milk into two qualities. Each 

quality of milk is collected separately, and the transportation cost is minimized. 

Caramia & Guerriero (2010) address a problem with four qualities of milk, which 

are not allowed to be blended. They use trucks with compartments and apply a 

local search heuristic, which first allocates producers to truck compartments to 

minimize the number of trucks. The routing problem is solved in the second 

stage, with the goal of minimizing travel distance. Lahrichi et al. (2015) 

addressed a case in Canada, in which trucks with two compartments start their 

route at a single depot in multiple periods and collect three qualities of milk, 

which are not allowed to be blended. The milk is transported to a set of plants, 

and the trucks travel back to the depots, at a minimum travel cost. The authors 

solve the problem using a tabu search heuristic. Sethanan & Pitakaso (2016) 

determine the milk collection routes for a set of milk collection centers. They 

consider the use of different qualities of milk without blending, as they use trucks 

with compartments. The article suggests, as a future work, the blending of milk 

from different collection points in the same compartment. Masson et al. (2015) 

study an annual dairy transportation problem, inspired by a Canadian milk 

collection problem. They generalize the problem proposed by Lahrichi et al. 

(2015), which considers variations on a basis of daily demand.  

Literature also handles the collection of fresh agricultural products, in terms of 

related problems. A review of this literature is provided in the work of Shukla & 

Jharkharia (2013). The trucks in that case are not usually equipped to maintain a 

product‘s freshness; therefore, delivery time constraints are required.  
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2.3. Milk collection with blending 

Farms in this study‘s version of the problem produce three qualities of milk with 

decreasing revenues; quality A is better than B, which is better than C. Quotas 

for each quality must be satisfied at the plant. Blending of the different qualities 

of milk is allowed in the trucks along the route to save transportation costs, and 

at the plant to satisfy its minimum requirements. Blending makes the problem 

non-separable by quality of milk. In the numerical tests, all routes end at the 

plant, but they can begin anywhere, and the trucks are heterogeneous. For 

example, Figure 2-1 illustrates a five-node network, in which the node marked 

― ‖ is the plant. In this example, the routes start and end at the plant, and the 

number beside each arc is the transportation cost. The quota for each quality of 

milk is 200 liters, and the unit revenues per liter of milk are 1.0, 0.7, and 0.3 

monetary units (MU) for milk A, B, and C, respectively. The capacity of each 

truck is 220 liters. 

If no blending occurs, the problem becomes a separable VRP for each milk 

quality. The solution requires three trucks. The transportation cost is 280, 

following the routes 0-1-2-4-2-0 (milk A), 0-2-0 (milk B), and 0-3-0 (milk C), 

while the revenue is 420, with a total profit of 140. If blending is allowed, the 

MB requires the same three trucks. The optimal routes are 0-1-0 (milk A), 0-2-4-

2-0 (milk B, resulting from the blending of milks B and A), and 0-3-0 (milk C) at 

a cost of 220 and a revenue of 414. The total profit is 194, or 39% higher than the 

profit obtained without blending. The revenue in the latter case is reduced by 6 

units, while costs are reduced by 60 units.  

Note that at the beginning of each season, or with a frequency that depends on 

the regulations (e.g., FDA, 2015), each farm‘s production line is inspected and a 

grade or quality, and consequently, a unit price, is assigned to that producer‘s 

milk for that season. The farmer is paid for the volume of milk he delivers, at the 
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price set during the last inspection. Both volume and price are known a priori. 

Consequently, the total payment is a fixed amount, not possible to optimize, 

which does not depend on whether or not it is blended. Hence, payment is not 

included in the objective. The plant bears the cost of the reduction in revenue 

because of blending. 

 

Figure 2-1. Network for comparing MB and VRP solutions 

The model allows for the blending of different qualities of milk at the plant, as 

this is sometimes profitable, as noted in the following example. Producers 1, 2, 

and 3 in Figure 2-2 each produce 100 liters of milk B, and producers 4 and 5 

each produce 200 liters of milk A. The quotas at the plant are 350 liters of milk B 

and 200 liters of milk A. The capacity of each truck is 500 liters, and two trucks 

are required for collecting all the milk. In Figure 2-2a), blending at the plant is 

not allowed. Truck 1 follows the route shown as a continuous line, and truck 2 

follows the dotted route; truck 1 collects 500 liters of milk B, while truck 2 

collects 200 liters of milk A. The revenue is 550 units, the cost is 330 units, and 

the profit is 220 units. Figure 2-2b) displays the optimal solution when blending 

at the plant is allowed, with truck 1 collecting 300 liters of milk B, and truck 2 

collecting 400 liters of milk A. At the plant, 50 liters of milk A are blended with 

milk B to satisfy the milk B quota. The revenue is 595 units, and the cost is 320 

units. The final profit is 275 units, which is 55 units higher than the solution 

illustrated in Figure 2-2a). 
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a) b) 

Figure 2-2. Effects of blending at the plant 

Note that to satisfy the quotas for the three qualities of milk, the following 

relations must hold:  

 
A Aq P           (2.1) 

            A A B Bq P q P     (2.2) 

              A A B B C Cq P q P q P       (2.3) 

where qA, qB, and qC are the total production of milk A, B, and C, respectively, 

and PA, PB, and PC are the minimum quotas at the plant for milk A, B, and C, 

respectively. 

It can be observed that blending can also be applied to trucks with compartments; 

that is, each compartment in such a truck can carry blended milk. 

2.4. Mixed integer model 

Let G(N, A) be a complete graph, with N as the set of nodes representing 

producers, and A as the set of arcs, or roads. N0 is defined as N {0}, where 0 is 

the node that identifies the plant location. A
0
 defines the set of arcs connecting 
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the plant with the producers. K is the set of trucks, and T is the set of qualities of 

milk. N
t
 identifies the producers of milk quality tT; D

t
 = {milk quality r| blend 

of r and t results in r. Includes r = t}. IT is the set of ordered pairs (i, t) of 

producer i and milk quality t, as each client produces only one quality of milk. 

However, it is easy to generalize the model by making one copy of each farm for 

each quality of milk it produces, with all copies sited in the same location. Q
k
 is 

the capacity of truck k; qi
t
 is the amount of milk t produced by farm i; cij

k
 the 

travel cost of truck k over the arc (i, j) A  A
0
; α

t
 is the revenue per unit of milk 

quality t; and P
t
 is the quota for milk quality t at the plant. 

The notation from the work of Yaman (2006) is used for the heterogeneous truck 

fleet. Let Ki = {kK: tT, qi
t 
 Q

k
 t} be the set of trucks that can visit producer 

i and, for each arc (i, j)  A  A
0
, let the truck set Kij = {kK: qi

t
 + qj

t
  Q

k
 t} 

be those trucks that can travel from producer i to producer j, collecting all milk 

from both producers without exceeding truck capacity. Node 0k is the node at 

which truck k starts its trip, which ends at the plant. Finally, the set AK = {(i, j, 

k): (i, j)A A
0
, k  Kij} is defined. 

Decision Variables  

1 If truck  travels directly from node  to node 

0 otherwise

k

ij

k i j
x


 


 

1 If truck  loads milk type  from producer 

0 otherwise

kt

i

k t i
y


 


 

1 If truck  delivers milk type  to the plant

0 otherwise

kt
k t

z


 


 

=ktw  Volume of milk quality t that truck k delivers to the plant. 
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trv   Volume of milk of quality t delivered to the plant, blended for its use as 

milk of quality r. 

The formulation of the MB problem is as follows: 

 
 , ,

r tr k k

ij ij

t T r T i j k AK

Z Max v c x
  

    (2.4) 

Subject to 
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           1
i

kt

i
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x
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Objective (2.4) maximizes profit, which is the revenue from the milk received at 

the plant, minus the transportation cost. Recall that the price paid to the farmers 

is not included in the objective because it is constant. Constraints (2.5) limit the 

capacity of each truck. Constraints (2.6) require collection of the milk of each 

farm by exactly one truck. Constraint (2.7) imposes one route at most for each 

truck, which must start at some node 0k for each truck k. Constraints (2.8) are 

flow balance equations for each node and each truck. The route of truck k, by 

virtue of constraints (2.9), must stop at node i, if it collects the milk from that 

node. Constraints (2.10) avoid a truck loading milk of a quality lesser than t if it 

is delivering milk quality t to the plant. Constraints (2.11) require a truck k to 

contain only one quality of milk, possibly blended. The relationship between 

continuous variables w
kt
, or volume of milk t, and the binary variables z

kt
, or the 

assignment of milk quality t to truck k, is set by constraints (2.12). Constraints 

(2.13) measure the volume of milk A, B or C arriving at the plant in truck k. 

Note that constraints (2.10) - (2.13) set the blending rules, and different rules 

could be included by changing these constraints. Constraint (2.14) forces the 

transportation of all the produced milk to the plant. Constraints (2.15) balance the 

amount of each quality of milk arriving at the plant, and the amount of remaining 

milk of each quality after blending at the plant. Constraints (2.16) enforce the 

plant‘s quotas. Constraints (2.17) avoid prohibited blends. Constraints (2.18) 

prevent unwanted sub-tours for each truck. Finally, constraints (2.19) - (2.21) set 

the variables‘ domain. 

The agreement between the firm and the cooperative stipulates collection of all 

produced milk, for this study‘s real case. However, visiting some low-

production, distant farms could be more expensive than the profit obtained from 

collecting their milk. In this case, if the agreements between the members of the 

cooperative allow for this practice, these farms could be paid for their milk, but 

not visited. This case is a variant of the Price Collecting Routing Problem (Balas, 
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1989; Tang & Wang, 2006). This study‘s model can be easily modified to solve 

this problem, replacing constraints (2.6) and (2.14) with the following 

constraints:  

            1
i

kt
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y

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It is also easy to modify the model to represent a situation in which trucks have 

compartments, each of which can carry blended milk. Each compartment in this 

modified model is treated as if it was a single truck. However, all the ―trucks,‖ 

representing compartments of the same actual truck, are forced to travel together. 

The following constraints replace the original constraints in the model: 
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Constraint (2.24) now states that the number of compartments that depart from 

node 0k is at most the highest number |C| of compartments in any truck, and 

constraint (2.25), as opposed to requiring exactly one truck visiting farm i, allows 

all compartments belonging to the same truck visiting that node, if one or more 

of its compartments collects milk there. Finally, the following constraint is 

added: 

            k s

ij ijx x  ( , ) , ( , )i j A k s CM    (2.26) 

where CM is the set of compartments k and s in the same truck. The constraint 

(2.26) forces all compartments in the set CM to follow the same route. 
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The production of a farm P can exceed the compartment size C. In that case, we 

make /P C    copies of the farm, located at the same point. For example, if P = 

3.5C, there will be four copies of the farm, with three of them producing C, and 

one producing 0.5C.  

This model is solved using the same cuts as in the case with no compartments. 

2.4.1. Valid Inequalities 

The following cuts are used in the branch-and-cut procedure. 

Proposition 1 

The cut 

       k k

ij jh

h i

x x


                          0, : , 0 ,i j A A i j k K      (2.27) 

is valid for the MB. 

Proof: Dror, Laporte & Trudeau (1994). Note that constraints (2.5)–(2.9) and 

(2.18) are a model for a capacitated VRP, for each truck. The cut in Proposition 

1, proven to be valid for the VRP by Dror et al. (1994), works together with these 

constraints, uses only the VRP variables, and performs exactly the same function 

as in that problem.  

Proposition 2 

 
, :c

k k

ij hm

i S h S m S h j

x x
   

 

            

, ,cS N j S k K     (2.28) 

is a valid cut for the MB. 
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Proof. This inequality follows from the balance constraints (2.8): for a set S  N, 

if a truck k uses an arc (i, j) with i  S and j  S
c
  N\S, there must be another arc 

(h, m) with m  S; otherwise, there is no continuity in the route. It must hold that 

h  j, since otherwise, there will be a sub-tour including node j and nodes 

belonging to S.  

 

Figure 2-3. Sub-graph of a non-integer solution that shows the use of cut (2.28) 

Cut (2.28) is a tighter extension of the connectivity constraint in the work of 

Drexl (2014). Figure 2-3 displays part of a non-integer solution of the problem 

with two routes, in which the route for the truck k = 1 is the continuous line, and 

the route for truck k = 2 is the dashed line.  

Truck routes originate at the plant. The reader can be convinced that the 

connectivity constraint from the work of Drexl (2014) holds for any set S. 

However, cut (2.28) does not. For example, with S = {1, 2}, i = 1, j = 3, k = 1, 

1 1 1

1,3 2,3 0,10.3 0.7 0.7x x x     .  
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Proposition 3 

The following ―multi-star inequality‖ 
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 (2.29) 

is valid for the MB. 

Proof: Yaman (2006). Each vehicle k traveling from node iS
c
 to node jS must 

have enough capacity to carry the production of incoming node i, the production 

of visited nodes in set S, and the production of the subsequent node m.  

Proposition 4 

The following inequality 

 
,c

k kt

ij h

t Ti S j S

x y
 

                  , ,S N h S k K   
 

(2.30) 

is a valid cut for the MB. 

Proof: Toth & Vigo (2002). If a farmer hS with milk tT must be visited by a 

vehicle k, such that yh
kt 

= 1, then the route of vehicle k must visit the set S, from a 

node iS
c
 to a node jS, that is, xij

k
=1.  

Constraints (2.18) cannot be directly used in the model, as there is an exponential 

number of them. These constraints, and the integrality constraints (2.19) - (2.20), 

are relaxed to solve this relaxed problem. If the solution found by the relaxed 

formulation is not a feasible integer optimum, a constraint (2.18) is added, as 

well as cuts (2.27) - (2.30) as required, and solve again. Separation algorithms 

are used for each cut to find what constraints and cuts to add at every iteration. 
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Once new cuts are no longer found, the procedure continues with a branch and 

bound step, after which the separation algorithms are applied again, and so on. 

The branch and bound used is the standard procedure in the CPLEX software 

package, using standard options. 

2.4.2. Separation algorithms 

Once a solution is found, its supporting graph GS
k
(N

k
, AS

k
) is built for each truck 

kK, where AS
k
={(i, j)AA

0
: xij

k
 > 0}; that is, the graph includes all arcs for 

which the associated decision variables are nonzero in the solution. Three 

independent separation algorithms exist, corresponding to different cuts. 

2.4.2.1. Separation algorithm for (2.27) 

This algorithm searches for arcs (i, j) of the supporting graph, such that i ≠   and 

j ≠  , that is, the arc does not begin or end at the plant and, for each such arc, 

verifies the violation of cut (2.27). Note that cut (2.27) could have been added to 

the main model, generating |K|·|N|
2
 new constraints; however, this would increase 

the solution time. The order of this algorithm is O(|K|·|N|
2
). 

2.4.2.2. Separation algorithm for (2.28) and (2.29) 

This algorithm analyzes all arcs belonging to the supporting graph and not 

connected to node 0, or the plant. For each arc (i, j) in the sub-graph 

corresponding to truck k of the supporting graph, the set S of nodes connected to 

j, or the head of the arc, is found. After a node is added to the set, the violation of 

cut (2.28) is checked and the cut is added as required. If a cut is added, the 
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process continues with the next truck k+1. The order of this algorithm is 

O(|K|·|N|
4
). 

For cut (2.29), the sets S that are just found are used, as well as the greedy 

randomized algorithm proposed in the works of Augerat et al. (1995) and 

Baldacci, Hadjiconstantinou & Mingozzi (2004). This procedure starts from a 

known set S. Let t S
c
 be a node, such that

\
max( )k k

tj ij
i N S

j S j S

x x


 

  . If cut (2.29) is 

violated for S‘ = S{t} in the supporting graph, then a cut is added to the 

problem. This procedure is repeated while there are remaining nodes to add to S‘. 

The order of this algorithm is O(|K|·|N|
3
). 

2.4.2.3. Separation algorithm for (2.30) and (2.18) 

A set S’ is built, starting from node 0. All nodes connected to S’ through an arc 

(i, j)  AS
k
 (i.e., arcs corresponding to truck k) are added one by one until no 

more connected nodes are found. Then, a set S in S’
c
 is built using the same 

procedure, starting with any node l S’
c
. A cut is added for each node hS. The 

process is repeated for each truck k. The order of this algorithm is O(|K|·|N|
2
). 

Finally, the same sets S are analyzed for the violation of the constraint (2.18).  

2.5. A three-stage heuristic for large instances  

Solving an instance larger than 100 farms using the branch-and-cut method 

would be time consuming and, given the available tools, impractical. Some trial 

runs were conducted to solve the problem, using both VRP, or separate trucks for 

different qualities of milk, and the formulation presented in subsection 2.3. 
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Instances of up to 80 – 100 nodes and five to ten vehicles could be solved in both 

cases.  

A three-stage heuristic (TSH) is proposed that divides the large instances into 

smaller sub-problems, and solves each sub-problem separately.  

A set of farms is partitioned into clusters in the first stage. Cluster formation is 

the subject of an extensive body of literature; for a comprehensive review, see 

the work of Xu & Tian (2015). Any known method could be used for the 

problem at hand, provided the amount of milk in each cluster can fill the smallest 

truck available, and the maximum number of farms in each cluster does not 

exceed 100, which is the maximum number of farms the blending procedure can 

manage at this time.  

As a clustering procedure, k-means (MacQueen,  967; Žalik,    8) is a fast, 

efficient method. K-means locates k virtual ―mean‖ points and allocates each 

farm to its closest mean, considering distances over the road network, in such a 

way as to minimize the sum of the farm-mean distances. Each group of farms 

around a virtual mean, or cluster, provides shape to an area of the partition. The 

value of k is chosen heuristically, so that each cluster results in a manageable 

instance for the method in subsection 2.3. Note that as the number of clusters 

increases, the sub-problems become easier, but the quality of the global solution 

decreases. Further details on the implementation of k-means can be found in the 

work of Hartigan & Wong (1979). 

The k-means is a general procedure that can be applied to any large instance. 

However, this does not explicitly use any information that may be available 

regarding the geographical region, such as the existence of natural barriers that 

vehicles cannot cross as highways, rivers, or mountains. As information exists in 

this case study regarding these natural and fabricated barriers, it is used to 

perform an ad-hoc heuristic (―geographical‖) clustering, which leads to improved 
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results. The use of such a method must be evaluated on a case-by-case basis. In 

this study‘s real case, this geographical partition works more efficiently than k-

means, as further discussed in the subsection regarding computational results.  

The second stage consists of assigning milk quotas to each cluster, which 

guarantees a priori the global quota of each quality of milk required at the plant, 

and allocating trucks to each cluster. These tasks are performed using a Mixed 

Integer Programming (MIP) formulation. 

Let C be the set of clusters or areas, and ASIG the set of producer-cluster pairs (i, 

c). Let T be the lower bound of the number of trucks per cluster. This lower 

bound is computed as the minimum number of trucks required to collect all the 

milk in the cluster, if all the milk had the same quality. Let also T be the upper 

bound of the number of trucks per area. This bound is computed as the number of 

trucks required to collect all the milk without the use of blending, which is 

solving a VRP for every milk quality in the cluster. The variables are: 

1   If truck  is allocated to cluster 
ˆ

0  otherwise
ck

k c
y


 


  

trku   Volume of milk of quality t delivered to the plant by truck k, blended for 

its use as milk of quality r, used to satisfy the minimum milk volume 

requirements at the plant. 

trku   Volume of milk of quality t delivered to the plant by truck k, blended for 

its use as milk of quality r, not used to satisfy the minimum milk volume 

requirements at the plant (surplus). 

The formulation of the model that assigns trucks and allocates milk quotas to 

each cluster is as follows: 
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Subject to 

(2.5) - (2.6), (2.10) - (2.15), and (2.18) 
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               ˆ 0,1cky   ,c C k K    (2.39) 

The model maximizes the revenue from the milk received at the plant (31). The 

constraints (2.5) - (2.6), (2.10) - (2.15), and (2.18) guarantee truck capacity 

feasibility, and measures the volumes of milk delivered to the plant. Constraints 

(2.32) and (2.33) require all the milk collected by every truck being delivered to 

the plant, and used to satisfy the minimum requirements, and possibly some extra 

amount. Constraints (2.34) force the allocation of every truck to an area. 

Constraints (2.35) allocate the correct number of trucks to every area, while 

constraints (2.36) assure that the allocated truck capacity is sufficient. 

Constraints (2.37) relate the decision variables, forcing that if a truck visits a 
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producer, it is assigned to the area in which the producer is located. Finally, 

(2.38) - (2.39) state the domain of decision variables. 

The third stage of the heuristic involves the branch-and-cut method from 

subsection 2.4.  

2.6. Computational Results 

2.6.1. Test instances 

The model is first applied to 40 test instances, which range from 23 to 101 nodes. 

Nine of these instances (eil22–eil101, att48) belong to the TSPLib set (Reinelt, 

1991). The instances (a32-a80) are taken from the work of Augerat et al. (1995). 

The instances (tai75A – tai75D and c50-c75) belong to the work of Taillard 

(1999). Instances f45 and f72 are taken from the work of Fisher (1994). In all 

instances, the coordinates and the production (or demand) of the nodes are 

known. 

The branch-and-cut method is used with CPLEX Version 12.5 and AMPL 

version 20130109. All experiments were run on a PC Intel i7-2600, 3.4 GHz, 

16GB RAM, and Ubuntu Server 12.04 LTS. 

Three heterogeneous trucks are used in these instances, and the total capacity is 

sufficient to transport all the milk. The networks are symmetric; that is, cij = cji. 

The transportation cost on each arc (i, j)  A is equal to the Euclidean distance dij 

between the end nodes of the arc, that is, cij = dij. Distances have been 

approximated to their closest integer value. The income per liter is 1.0, 0.7, and 

0.3 units for qualities A, B, and C, respectively. The milk produced at each farm 

is equal to the demand in each node of the test instances, multiplied by a scale 
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factor f, which is used for all test results to have the same order of magnitude. 

Qualities are assigned to farms using the following rule, which makes a cyclic 

assignment, that is: node 1 produces milk A, node 2 produces milk B, node 3 

produces milk C, node 4 produces milk A, and so on.  

The quotas of milk are defined arbitrarily and, in the test instances, are the same 

for all qualities of milk. Equations (1) – (3) are followed to fix the minimum 

amounts. 

Table 2-1, Table 2-2 and Table 2-3 and display the results. Net indicates the 

instance. The notation Q[*,*;*] indicates the capacity for each truck in thousands 

of liters. P[*,*,*] is the quota of milk A, B, and C, respectively, in thousands of 

liters. |N0| is the number of nodes in the network, including the plant. Each truck 

starts and ends its route at the plant. Z is the optimal profit, in monetary units. 

VA, VB, and VC are the amounts of milk of each quality (liters) after delivery and 

blending at the plant. T is the CPU time in seconds, TB indicates if there are 

blends in the trucks, and PB indicates if there are blends at the plant.  

Note that blending is used in more than half of the cases, improving profit over 

the alternative of a separate collection. Running times are reasonable, and these 

are the summation of the times taken by all four processors of the computer. 

Therefore, clock time is approximately one quarter of the times shown in the 

Tables. 
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Table 2-1. Results for test instances, (Reinelt, 1991) 

Net Q P |N0| f Z VA VB VC T TB PB 

eil22 [10;15;20] [6;5;4] 22 1 15,947 9,800 7,200 5,500 12 no no 

eil23 [6;7;8] [1; 1.5; 2] 23 1 7,207 6,100 2,009 2,080 6 no no 

eil30 [5;5.5;6] [2.2;2.4;2.6] 30 1 7,117 2,400 6,000 4,350 99 yes no 

eil31 [55;50;40] [10;5;8] 31 1 60,080 28,300 34,800 27,200 66 no no 

eil33 [20;20;15] [8;7;6] 33 1 20,409 11,200 11,690 6,480 58 no no 

eil51 [25;30;35] [22;23;24] 51 1 50,128 22,400 29,600 25,700 154 no no 

eil76 [45;48;51] [45;43;40] 76 1 91,461 46,800 46,700 42,900 1,700 no no 

eil101 [50;55;60] [47;48;49] 101 1 96,115 48,800 48,000 49,000 66,843 yes yes 

att48 [50;45;40] [38;34;30] 48 1 17,452 40,000 37,500 40,000 284 yes no 
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Table 2-2. Results for test instances, Augerat et al. (1995) 

Net Q P |N0| f Z VA VB VC T TB PB 

a32 [10;15;20] [12;10;8] 32 1 26,660 16,200 10,000 14,800 23 no yes 

a33 [15;20;25] [15;8;6] 33 100 29,417 17,600 11,400 15,600 62 no no 

a34 [20;20;25] [10;12;14] 34 100 30,496 15,900 16,000 14,000 40 no yes 

a36 [20;15;15] [10;12;14] 36 100 29,233 16,000 14,200 14,000 110 no yes 

a37 [20;15;10] [10;8;6] 37 100 24,837 10,000 16,200 14,500 45 yes no 

a38 [20;20;10] [10;15;15] 38 100 28,596 10,000 20,000 18,100 570 yes no 

a39 [20;20;20] [10;12;14] 39 100 30,808 14,600 17,300 16,600 110 no no 

a44 [25;20;15] [20;16;12] 44 100 38,771 23,400 16,000 17,600 101 yes yes 

a45 [25;20;20] [20;18;18] 45 100 40,282 23,300 18,000 18,000 136 yes no 

a46 [30;25;20] [16;17;18] 46 100 40,696 22,400 19,900 18,000 66 no no 

a48 [30;25;20] [20;20;20] 48 100 39,800 20,100 20,000 22,500 230 yes yes 

a53 [30;30;30] [20;20;20] 53 30 46,662 23,490 24,870 23,250 183 no no 

a54 [15;15;15] [5;5;5] 54 50 22,414 12,600 11,650 9,200 304 no no 

a55 [15;15;20] [5;10;15] 55 50 24,694 11,900 12,250 17,800 270 no no 

a60 [20;10;20] [8;12;16] 60 50 25,041 11,800 13,650 16,000 3,565 yes yes 

a61 [35;35;35] [30;20;10] 61 100 60,644 30,400 34,600 23,500 561 no no 

a62 [15;15;15] [10;11;12] 62 50 22,917 12,500 11,000 13,150 1,022 yes no 

a63 [20;20;20] [5;10;20] 63 50 24,447 10,050 13,600 20,000 2,930 yes yes 

a64 [20;20;20] [5;10;20] 64 50 24,100 11,750 10,650 20,000 5,395 yes yes 

a65 [15;15;15] [10;12;14] 65 50 28,046 14,350 15,000 14,500 478 yes no 

a69 [20;20;20] [10;15;15] 69 50 25,822 11,750 15,500 15,000 1,552 yes no 

a80 [20;20;20] [16;10;16] 80 50 29,977 16,250 14,650 16,200 5,626 no no 
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Table 2-3. Results for test instances, Taillard (1999) and Fisher (1994) 

Net Q P |N0| f Z VA VB VC T TB PB 

c50 [35;30;30] [15;30;26] 51 100 49,803 21,700 30,000 26,000 84 yes yes 

c75 [40;50;50] [40;45;50] 76 100 86,677 40,000 46,400 50,000 13,760 yes yes 

tai75A [25;30;35] [10;15;20] 76 5 65,477 21,980 15,000 31,800 4,806 yes yes 

tai75B [30;30;30] [20;25;25] 76 5 48,238 24,530 25,000 25,000 15,056 yes yes 

tai75C [15;20;25] [5;10;15] 76 5 25,906 13,085 10,000 24,515 4,537 yes yes 

tai75D [20;35;30] [15;15;20] 76 5 65,477 20,935 19,880 30,060 2,645 no no 

f45 [20;15;10] [5;10;5] 45 5 23,705 9,760 18,020 8,320 80 yes no 

f71 [50;50;50] [25;20;10] 72 1 72,864 26,865 49,998 37,977 3,483 yes no 

f72 [60;60;60] [20;30;40] 72 1 72,072 26,861 47,979 40,000 3,659 yes yes 

 

 

The optimal solution was found for all test instances. Although the main 

objective of Tables 2-1, 2-2 and 2-3 is to show that the problem is solvable for 

medium size instances, a difference can be noticed between the three sets of 

instances: the number of instances in each set requiring blending is different. 

This suggests that the convenience of blending depends on the structure of the 

network, and the model will choose not blending if such choice is the best. 

2.7. Real Case 

This study‘s methodology is applied to a real case, and its performance is 

compared with the VRP and with the result of the current procedure used by the 

firm, located in the south of Chile. The firm uses trucks with no compartments. 

An expert planner designs the routes by hand, and there is occasional heuristic 

blending of small amounts of milk in the trucks. The firm collects milk from 500 

farms spread across a geographical region of approximately 9,600 square 

kilometers. The average daily production of the farms ranges from 57 to 25,000 

liters, as illustrated in Figure 2-4. Note that 53.2% of farmers produce less than 

2,326 liters.  
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Of these 500 farms, 313 produce milk of quality A – in short, milk A; 159 

produce milk B; and 28 produce milk C. The volume of milk is 1,435,168 liters 

of milk A, 268,564 liters of milk B, and 74,475 liters of milk C. The quotas for 

milk A, B, and C at the plant are 1,250,000, 300,000, and 100,000 liters, 

respectively. The current criterion is maximizing the amount of milk A. The 

revenue, in monetary units per liter of milk, is 1.5·10
-2

, 1.05·10
-2

, and 4.5·10
-3

 for 

milk A, B, and C, respectively. 

 

 

Figure 2-4. Production histogram of actual farms 

The fleet is composed of 100 trucks, whose capacities are as follows: 15 15,000-

liter trucks; 20 20,000-liter trucks; 15 25,000-liter trucks; and 50 30,000-liter 

trucks.  

As this is too large to use the procedure described in subsection 2.4, the region is 

partitioned into areas, or clusters. First, this study takes advantage of such 

geographical barriers as rivers, lakes, mountains, and highways to form the 

clusters. The road network is tree-like, rather than meshed. Consequently, the 
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network distance between producers can be long, even if the Euclidean distance 

is short. Figure 2-5 displays an example. The dotted line in Figure 2-5a) notes the 

19 km route from farm 66 to farm 140, separated by a Euclidean distance of 2 

km. The solid lines are rivers. The dotted line in Figure 2-5b) indicates the 

shortest route between farms 71 and 181, partially using the solid line, which is a 

highway. The route distance is 21 km, while the Euclidean distance is 4 km. 

Different trucks will likely visit these pairs of farms.  

Using these barriers as boundaries, the region was divided into 25 areas, 

containing clusters of between 3 and 39 farms each, as displayed in Figure 2-6 

(―geographical‖ partition). 

 
 

a)  b)  

Figure 2-5. Natural barriers in the area 

Once the set of farms was partitioned into clusters, the model in subsection 2.5 

was used to assign trucks and allocate milk requirements to clusters, or the 

second stage of the heuristic. This stage takes 5,103 seconds of CPU time.  
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The collection problem was then optimally solved for each cluster, using the 

branch-and-cut algorithm, or the third stage of the heuristic. Table 2-4 notes the 

results of the three-stage heuristic, and compares it with VRP, or the optimized 

routes for trucks collecting each quality of milk separately, solved for each 

cluster independently, and the firm‘s current procedure. 

 

Figure 2-6. Partition of the region into 25 independent areas. A diamond denotes 

the plant location. 

The VRP model presented by Irnich et al. (2014) was employed, using the 

objective (1) with the same cuts used in MB. The MB solution in this case does 

not require blending at the plant, while VRP requires large amounts of milk 

being blended at the plant to satisfy the quotas. Using the current procedure, 627 

liters of milk B are used to complete the milk C quota. Note that although the 
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MB requires more blending in the trucks, which seems counterintuitive, the profit 

is significantly higher. 

The reported CPU time is the sum of all CPU times required to solve the 25 

clusters. As a 4-core computer was used, the clock time was 1.65 hours. Note 

that all the milk must be collected daily from all farms belonging to the 

cooperative. However, the routes‘ programming does not need to be performed 

on a daily basis, as the production volume in each farm changes slightly; this 

only occurs in exceptional situations owing to meteorological variations, cattle 

nutrition changes, or cattle diseases (Dayarian et al., 2015b). Rather, the 

production changes follow a seasonal cycle. 

Table 2-4. Results for the real case for a region partitioned into 25 clusters. Profit 

denoted in boldface. 

 MB VRP 
Current 

procedure 

Trucks 81 99 100 

Revenue [MU] 23,266 24,273 22,804 

Costs [MU] 10,093 12,319 18,659 

Profit [MU] 13,173 11,954 4,145 

Milk A [l] 1,278,815 1,435,168 1,051,791 

Milk B [l] 306,060 268,564 627,043 

Milk C [l] 193,332 74,475 99,373 

A → B [l] 0 31,436 - 

A → C [l] 0 25,525 - 

B → C [l] 0 - 627 

CPU time 23,836 6,241 - 

Table 2-4 provides some interesting managerial insight. The VRP solution 

increases the profit over the firm‘s current procedure in  .8 times, and it is 

obtained in 26 minutes. However, it requires roughly the same number of routes 

(trucks). When blending is allowed, the transportation costs decrease to roughly 
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one-half of the current transportation costs, and the profit is 3.2 times that of the 

current procedure and 10% higher than that of VRP. Although the difference 

between profits using MB and VRP may not seem too significant, it must be 

noted that MB saves 18 routes over VRP, which could mean significant 

additional savings and administrative burden because of the reduced number of 

required trucks. These gains are obtained at the expense of a longer run time (1 

hour and 40 minutes, approximately).   

Figure 2-7a) illustrates area 5 of the real case and its collection routes (Figures 

7b, 7c, 7d) as an example of how the MB uses blending. The two first routes 

collect 49,762 liters of milk A, while the third route collects a blend of 10,455 

liters of milk A, B, and C, resulting in 10,455 liters of C milk. The transportation 

costs of routes 1, 2, and 3 are 83, 49, and 105 monetary units, respectively. The 

total cost is 237 monetary units. The profit in this area is 556 monetary units. The 

VRP requires four routes, with at least two vehicles collecting milk A, one 

collecting milk B, and one collecting milk C. The total amount of milk collected, 

before blending, is 52,551 liters of milk A, 2,285 liters of milk B, and 5,381 liters 

of milk C. The transportation costs for the VRP solution are 361 monetary units, 

the revenue 836, and the profit 475 monetary units. 
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a) Area 5, 20 farms b) Route 1: 0-385-386-388-119-315-0 

 
 

c) Route 2: 0-135-199-391-275-442-145-

187-0 
d) Route 3: 0-186-238-237-142-170-264-372-

371-0 

Figure 2-7. Area 5 and collection routes 

The effect of using different partitions is also explored. A second partition was 

defined, with 13 larger areas, by aggregating some of the 25 areas in the 

―geographical‖ partition. Contiguous areas were aggregated for, as the natural 

barriers were the easiest to cross. Third and fourth partitions were also 

constructed, with 19 and 25 areas using k-means. 

Table 2-5 shows the results using different partitions.  

As expected, the trucks‘ utilization is more efficient for larger areas, and fewer 

vehicles are required to collect the milk. In the limit, using just one area would 

lead to the best of all solutions and would not require the full heuristic but only 

the mixed-integer formulation, but it could be intractable in terms of the required 

run time for large instances. As the number of areas increases, the quality of the 

solution decreases but the run time does too. A manager should decide what the 
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best quality-time trade-off in the particular instance she needs to solve is and, 

before applying the method, trials should be run with different numbers of 

clusters, to arrive at the best choice.   

Increasing milk quotas for the highest quality milk also has an effect on revenue 

and CPU time. Table 2-6 displays the results of two runs for the 25-area 

geographical partition, in which the required amounts of milk A were 1,200,000 

and 1,300,000 liters, while the requirements for milk B and C were the same as 

previously, or 300,000 and 100,000 liters. 

Table 2-5. Different partitions. Profits and CPU time are indicated in boldface. 

# of Areas 25 (geographical) 25 (k-means) 19 (k-means) 13 (geographical) 

Trucks 81 88 72 72 

Revenue [UM] 23,266 23,652 23,205 23,719 

Costs [UM] 10,093 10,776 9,256 9,564 

Profit [UM] 13,173 12,876 13,949 14,155 

A [l] 1,278,815 1,315,653 1,262,638 1,330,337 

B [l] 306,060 315,702 324,208 295,110 

C [l] 193,332 146,852 191,361 152,760 

A→B [l] 0 0 0 4,890 

A→C [l] 0 0 0 0 

B→C [l] 0 0 0 0 

CPU Time [s] 23,836 18,491 61,142 57,962 
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Table 2-6. Tests with different milk quotas. Profits are indicated in boldface. 

Milk A 1,200,000 1,300,000 

Trucks 77 84 

Revenue [UM] 21,904 23,572 

Costs [UM] 9,946 10,794 

Profit [UM] 13,348 12,778 

A [l] 1,235,361 1,397,757 

B [l] 217,204 213,699 

C [l] 325,642 166,571 

A→B [l] 82,796 86,301 

A→C [l] 0 0 

B→C [l] 0 0 

CPU Time [s] 24,537 35,267 

 

The solutions in Table 2-6 indicate that the profit could decrease for increasing 

requirements of milk A because this necessarily incurs a higher cost of 

transportation and increases the number of required trucks.  
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2.8. Prize-collecting version 

Some of the clusters in the real case were used to demonstrate that implementing 

a prize-collecting version of the problem, that is, replacing constraints (2.6) and 

(2.14) by (2.23) and (2.24), increases the profit. Table 2-7 displays how the 

optional collection, or the prize-collecting version, dominates the implementation 

in which all farms must be visited. 

Table 2-7. Results for three clusters using the prize-collecting version 

  Optional visit Must visit all 

Net Q, P [Ml] Profit Revenue Cost Profit Revenue Cost 

Cluster 

16 

Q = [30;15;15]; P = [20;5;2] 319 625 306 187 662 475 

Q = [30;15;15]; P = [20;10;10] 256 561 305 180 650 470 

Q = [30;15;15]; P = [43;0;11] 151 702 551 141 705 564 

Cluster 

2 

Q = [30;30;20;15]; P = [74;0;0] 389 1,115 726 252 1,212 960 

Q = [30;30;20;15]; P = [74;9;0] 284 1,208 924 252 1,212 960 

Q = [30;30;20;15]; P = [30;30;23] 105 875 770 104 876 772 

Cluster 

20 

Q = [30;30;30]; P = [45;0;0] 553 868 315 470 894 424 

Q = [30;30;30]; P = [57;0;6] 470 894 424 470 894 424 

Q = [30;30;30]; P = [30;10;10] 403 718 315 386 807 421 

 

The results of Table 2-7 indicate that a profit-increasing strategy for the firm 

would be not to collect the milk from unprofitable farms (in terms of amount and 

quality), even paying for it. Naturally, the firm could negotiate a lower price in 

those cases, as the farms keep the milk and can even resell it. A different and 

complementary strategy for the firm would be to encourage some low-quality-

milk farms to enhance their production quality.  
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2.9. Blending and the use of trucks with compartments 

Tests were performed on some of the case study‘s original clusters (clusters  , 7, 

10, 11, 16, 17, 23, and 24), as shown in Table 2-8, to demonstrate that blending is 

convenient even with compartmentalized trucks. Different settings are compared 

in these tests: single-compartment trucks using VRP (VRP), single-compartment 

trucks with blending (MB), and different compartment-sized multiple-

compartment trucks without (TC) and with (MBTC) blending. Truck capacities 

are noted in the first column. It is considered that all compartments have the 

same size in each test, and two compartment capacities (CC) were attempted: 

10,000 and 15,000 liters. The figures in bold font in the table indicate the best 

solutions found for the case.  

An analysis of the results in Table 2-8 yields the following conclusions: 

- Blending versus compartments: Generally, the solutions using blending 

and those using compartments do not dominate one another, although the 

compartment solutions in the instances tested lead to a higher profit in 

most cases; an exception is case 2, with cluster 24. The dominance of 

each of these solutions depends on the size of the compartments and the 

milk volume from each farm. However, while not illustrated in the table, 

the use of compartments generally requires larger numbers of trucks, and 

trucks with compartments are more expensive. 

- Blending versus not blending: Solutions with blending dominate 

solutions without blending, whether with or without compartments. Note 

that the number of trucks with blending is less than the number of trucks 

without blending. 
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Table 2-8. Profits for different truck configurations 

Truck 

Capacities 

[liters] 

Solutions 
Cluster 

4 

Cluster 

7 

Cluster 

10 

Cluster 

11 

Cluster 

16 

Cluster 

17 

Cluster 

23 

Cluster 

24 

30,000 

30,000 

30,000 

VRP 
307.56 

(3) 

-136.22 

(3) 
- 

-95 

(3) 
- 

581.10 

(3) 
298.83 

(2) 

162.6  

(3) 

MB 
336.74 

(2) 

-51.34  

(2) 

523.56 

(3) 

-5.83 

(2) 

206.67 

(3) 

581.10 

(3) 
298.83 

(2) 

255.94 

(2) 

TC  

(CC = 10,000) 
365.89 

(2) 

101.22 

(1) 

535.98 

(3) 

56.68  

(2) 

302.56 

(2) 
665.54 

(2) 

298.83 

(2) 

286.87 

(2) 

TC  

(CC = 15,000) 

360.27 

(2) 

-6.42 

(2) 

535.12 

(3) 

52.19  

(2) 

249.13 

(2) 

607.11 

(3) 

138.69 

(3) 
291.05 

(2) 

MBTC  

(CC = 10,000) 
365.89 

(2) 

101.22 

(1) 

564.95 

(2) 

124.56 

(1) 

364.00 

(2) 

665.54 

(2) 

298.83 

(2) 

286.87 

(2) 

MBTC  

(CC = 15,000) 

361.88 

(2) 

47.98  

(1) 

535.12 

(3) 

52.19  

(2) 

342.87 

(2) 

607.11 

(3) 

138.69 

(3) 
291.05 

(2) 

30,000 

20,000 

10,000 

VRP 
307.56 

(3) 

-136.22 

(3) 
- 

-95 

(3) 
- - 

159.22 

(3) 

162.6  

(3) 

MB 
336.74 

(2) 

-51.34  

(2) 

523.56 

(3) 

-5.83 

(2) 

206.67 

(3) 

490.98 

(3) 
159.22 

(3) 

255.94 

(2) 

TC  

(CC = 10,000) 
363.10 

(2) 

101.22 

(1) 
- 

56.68 

(2) 
- - 

159.22 

(3) 

171.6  

(3) 

MBTC  

(CC = 10,000) 
363.10 

(2) 

101.22 

(1) 

528.32 

(3) 

124.56 

(1) 

276.12 

(2) 

494.96 

(3) 

159.22 

(3) 

229.86 

(2) 

30,000 

30,000 

VRP - - - - - - 
298.83 

(2) 
- 

MB 
336.74 

(2) 

-56.99  

(2) 

371.65 

(2) 

-5.83 

(2) 

197.71 

(2) 

524.93 

(2) 
298.83 

(2) 

255.94 

(2) 

TC  

 (CC = 10,000) 
365.89 

(2) 

101.22 

(1) 
- 

56.68  

(2) 
- - 

298.83 

(2) 

286.87 

(2) 

TC  

(CC = 15,000) 

360.27 

(2) 

-6.42 

(2) 
- 

52.19  

(2) 
- - - 

291.05 

(2) 

MBTC (CC = 

10,000) 
365.89 

(2) 

101.22 

(1) 

564.95 

(2) 

124.56 

(1) 

364.00 

(2) 

543.67 

(2) 

298.83 

(2) 

286.87 

(2) 

MBTC (CC = 

15,000) 

361.88 

(2) 

47.98  

(1) 

511.14 

(2) 

52.19  

(2) 

342.87 

(2) 
- - 

291.05 

(2) 

 

- Solution feasibility: Some solutions using the VRP are infeasible, as the 

truck fleet is limited. The use of compartments improves the situation, but 

infeasible problems still exist. However, in all tested instances, blending 

makes solutions fully feasible. Conversely, note that if the size of the 

compartments is inadequate, the solution can again be infeasible even 

when blending is used. This is especially important when the farms and 

amounts of milk produced change over time. 
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- Compartment size: A smaller compartment size in the instances tested 

results in improved solutions in most clusters, except for cluster 24. Note 

that in a majority of the clusters analyzed, the farms produce between 

1,000 and 3,000 liters; see also Figure 2-4. 

- General conclusion: Blending improves solutions in all cases in terms of 

feasibility, profit, and efficiency in the use of trucks. 

2.10. Conclusions 

This study introduced the MB, motivated by the milk collection procedure 

currently used in several places. Small amounts of milk of different qualities are 

blended to reduce transportation costs. The procedure prescribes a set of farms to 

be visited by each vehicle, the route, and the blending pattern, and defines 

whether there is a need for blending at the plant to satisfy the quotas for each 

quality of milk. This model can be useful for other kinds of products, in which 

the mixing of different qualities of products in the same truck changes the truck‘s 

status. 

The MIP model is solved using a branch-and-cut method, for which a model is 

proposed using both known cuts and a new cut. Polynomial separation 

algorithms are defined, and the procedure is tested on known test instances of up 

to 101 nodes. A three-stage heuristic procedure is then designed to solve the real 

case, involving 500 farms scattered over a large region. The region under study is 

partitioned in the first stage. A mathematical model is used in the second stage 

designed to set each partition‘s requirements and select the truck fleet allocated 

to each partition. The real case is solved in the third stage, obtaining favorable 

results in comparison with the current collection system. As the problem is new, 

there are no further efficient ad-hoc heuristic methods. This study‘s goal, in any 
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case, was to design a heuristic that would provide favorable results within the 

time limits, given how frequently the problem needs to be solved, rather than 

aiming for faster times. Time is not critical, as routing does not change daily, but 

in a 4-core desktop computer, the solution takes 1.65 hours. 

Different approaches are also compared as follows: single compartment trucks 

with and without blending, multiple-compartment trucks with and without 

blending, and optional and mandatory collection; several instances are solved for 

these comparisons. The results indicate that, in the instances that were solved, 

blending always dominates unblended milk collection. Additionally, in most 

cases, using multiple-compartments trucks is better than using single-

compartment trucks with blending. However, if multiple-compartment trucks are 

available, blending in the compartments always dominates. Furthermore, 

blending enables feasibility in all cases, and selecting an incorrect compartment 

size can make the problem infeasible. Finally, using the actual single-

compartment truck fleet and blending, significantly improves profit for the actual 

case, primarily due to the savings in transportation cost. 

If the farms in the compartment case exceed the size of a compartment, neither 

the size of the farm subdivisions nor the truck compartments‘ size are optimized, 

although different compartment sizes may lead to different results. This is a 

compelling future extension. 

Other many possible extensions of this work include the location of milk 

collection points to accumulate milk from small and distant farmers. 

Additionally, another extension involves the consideration of the random nature 

of each producer‘s daily milk availability. Other extensions of interest involve 

speeding up solutions by using heuristics that solve the whole problem at once by 

not requiring subroutines, and the analysis of different blending rules that are less 

conservative than the current rules used at the actual firm. 
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3. THE BLENDED MILK COLLECTION PROBLEM USING MILK 

COLLECTION POINTS 

A novel problem for the collection of raw milk from a network of farms supplying a 

dairy is specified and solved. The proposed approach incorporates milk blending and the 

delivery of production to collection points by small, distant farms. The milk is collected 

by, and blended in, a homogeneous fleet of trucks and classified according to the lowest 

quality product included in the blend. Optimization criteria are used to determine where 

the collection points should be located and which producers are allocated for delivery to 

them, with all other production picked up directly at the farm. The approach is built 

around an integer programming model and two implementation strategies, one using a 

branch-and-cut algorithm for small instances and the other a heuristic procedure 

combining both exact and approximated methods to handle large instances within a 

practical time period. A real case study involving 500 farms and 112 possible collection 

points is solved and the results compared. The impact on the solutions of dividing the 

real instance into zones is also explored.  

This chapter was formatted as a manuscript titled ―The Blended Milk Collection 

Problem using Milk Collection Points‖, and submitted for review to Computers and 

Electronics in Agriculture in May, 2016. 
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3.1. Introduction 

This chapter presents, models and solves a real-world raw milk collection 

problem facing a dairy products company in southern Chile. The company must 

collect the milk from a set of producer farms distributed across a wide 

geographical area and transport it to a dairy processing plant. All the milk 

produced must be collected given that the farms all belong to a cooperative.  

Since different farms produce different qualities of milk, their collection by 

tanker trucks is normally carried out using either different vehicles or the same 

vehicles but with segregated compartments. In Paredes-Belmar et al. (2016), 

however, it is assumed the various qualities of milk can be mixed in one 

compartment of a single truck. Upon arriving at the plant, the mixed product is 

then classified according to the lowest quality milk included in it, thus reducing 

its commercial value and therefore revenue on the final products. On the other 

hand, combining different qualities in this way considerably lowers transport 

costs, thereby increasing profit. 

The simplest method of collecting the milk is for the trucks to visit each producer 

directly at the farm (door-to-door collection). If the collection routes are long and 

have multiple stops, transport costs will tend to be high. Direct truck pickup may 

therefore be inefficient in cases where there are many small producers located far 

from the dairy processing plant, especially with segregated collection of different 

milk qualities. In such situations, the collection process would be facilitated by 

setting up collection points where the output of small producers located far from 

the plant could be stored in tanks (Anquez & Tiersonnier, 1962; Bylund, 2003). 

That way, the trucks could collect the total production from a group of such 

producers, whether of one or more milk qualities, in one single stop, thus 

reducing the time and cost of transport. 



55 

 

 

This alternative is addressed in the present chapter, which generalizes an earlier 

problem formulated and solved in Paredes-Belmar et al. (2016) by incorporating 

the task of specifying the location of milk collection points. A model is 

developed that determines the number and location of these storage centres 

where farms can deliver their production. The general aim is to cut the tanker 

trucks‘ route lengths, which will result in lower truck fleet operating costs to the 

benefit of the dairy company. Our formulation also includes an access cost 

reflecting the expense to the producer of delivering to a collection point, part of 

which is refunded by the dairy. This cost is considerably smaller than the 

transport cost of serving small, distant producers.  

To the best of our knowledge, defining the milk collection problem to include the 

twin factors of mixed milk qualities and milk collection points, although clearly 

of significant utility to many agents in the dairy industry, has not previously been 

undertaken in the specialized literature. Our first contribution in this paper is 

therefore to introduce what we call the milk blending with collection points 

problem (MBCP) and design a mixed integer linear programming model for 

solving it. We use both new and known cuts with their respective separation 

algorithms and present a branch-and-cut algorithm to solve small instances of up 

to 40 nodes (farms or collection points). For each truck serving this network, the 

model determines the farms and collection points to be visited, the sequence of 

the visits and the amount of milk delivered to the points by small farms without 

truck visits.  

Our second contribution is to develop an ad hoc three-stage procedure that solves 

the MBCP for large instances. This algorithm is applied to the real case of a 

Chilean dairy company collecting milk from 500 producers with a fleet of 80 

trucks and 112 candidate collection points. The first of the three stages optimally 

solves a covering problem that allocates small producers to collection points; the 

second stage generates feasible routes using the ant colony metaheuristic; and 



56 

 

 

finally, the third stage chooses the best routes from those generated by the 

metaheuristic for direct visits to farms and collection points.  

The objective of the proposed formulation is to maximize profit from the milk 

collection operation on the basis of: (i) revenue obtained from the milk delivered 

to the plant, (ii) truck transport cost, (iii) collection point cost (i.e., operating plus 

pro-rated installation cost), and (iv) farms‘ collection point access cost. Since 

with a single milk quality the MBCP reduces to the Capacitated m-Ring-Star 

problem, which is known to be NP-hard (Baldacci, Dell‘Amico,   Gonz lez, 

2007), the MBCP must be NP-hard as well. 

Note also that although the milk must be collected every day, variations in daily 

production due to weather, cattle disease, etc. are relatively insignificant 

(Dayarian et al., 2015a). Collection routes do not therefore have to be 

rescheduled on a daily basis. 

The remainder of this chapter is organized into four sections. Subsection 3.2 

reviews the related literature, subsection 3.3 formally introduces our proposed 

problem and sets out its mathematical formulation, subsection 3.4 discusses 

various solution approaches to the problem, subsection 3.5 reports on a case 

study, and finally, subsection 3.5 presents our conclusions and some suggestions 

for future research. 

3.2. Literature review 

This survey of the literature is divided into two parts: other milk collection 

problems and problems having a similar structure to our proposed problem. 
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3.2.1. Milk collection problems 

Sankaran & Ubgade (1994), Igbaria et al. (1996), Butler et al. (1997) , Basnet et 

al. (1999), Prasertsri & Kilmer (2004), Butler et al. (2005), Hoff & Løkketangen 

(2007), Claassen & Hendriks (2007), Dayarian et al. (2013), Dayarian et al. 

(2015a), Dayarian et al. (2015b) and Masson et al. (2015) report on real-world 

milk collection instances with a single quality of milk. Dooley et al. (2005), 

Caramia & Guerriero (2010), Lahrichi et al. (2015) and Sethanan & Pitakaso 

(2016) study cases with more than one milk quality. In none of these cases is 

mixing of different milk qualities in the same truck or truck compartment 

permitted.  

Recently, Paredes-Belmar et al. (2016) presented a milk collection problem for a 

real instance in Chile with three milk qualities that the dairy allows to be blended 

in the same truck provided it has a positive impact on company profit. The article 

discusses the benefits of blending and reports increases in profit. The results are 

compared with the dairy‘s current collection procedure and with segregated 

collection by quality (no blending), demonstrating major improvements. As was 

noted here in the introduction, the present study departs significantly from 

Paredes-Belmar et al. (2016) in that as well as considering the blending of milk 

qualities, it addresses the collection point number and location decision. The 

resulting formulation thus combines a routing problem with an allocation 

problem and a location problem, and in this sense both the model and the 

solution method for different-sized instances are quite novel. 

Mumtaz, Jalil & Chatha (2014) present a routing and location problem for the 

collection of a single milk quality. Their model determines the dispatch points 

that mark the start and end of the routes travelled by the trucks to pick up milk 

exclusively at collection centres where it must be dropped off by the producers. 

The model then decides the collection centre sequence for each truck collecting 
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milk from these centres. The milk is brought to the dispatch points from where it 

is brought to the dairy plant in larger capacity tankers. The authors develop a 

heuristic to solve the collection problem for small instances. 

3.2.2. Problems with a similar structure 

The milk collection problem with collection points is a particular case of the 

location-routing problem (LRP) with assignment decisions and multiple product 

types. A number of surveys of the LRP literature have appeared in recent years. 

Laporte & Rodríguez-Martin (2007) review problems of locating cycles in 

transport networks. Nagy & Salhi (2007) give an extensive overview of the LRP. 

Current & Schilling (1994) introduce the median tour problem (MTP) and the 

maximal covering tour problem (MCTP). Two other similar problems, the ring 

star problem (RSP) and the median cycle problem (MCP), are studied by Labbé 

et al. (2004) and Labbé et al. (2005). Moreno-Pérez et al. (2003), Renaud et al. 

(2004), Liefooghe, Jourdan, Basseur, Talbi & Burke (2008), Kedad-Sidhoum & 

Nguyen (2010) and Calvete, Galé & Iranzo (2013) propose exact and 

approximate methods for solving the MCP and the RSP. 

Baldacci et al. (2007) develop an extension of the RSP known as the Capacitated 

m-Ring-Star problem (CmRSP). They design m routes for visiting a set of 

customers who supply/demand a single product. Customers not located on the 

routes are assigned to customers who belong to some route. The maximum 

number of customers visited and assigned limits the maximum capacity of each 

route. The solution approach minimizes the cost of the m routes and the 

assignment costs of the customers not visited. Other authors such as Hoshino & 

de Souza (2009), Naji-Azimi, Salari & Toth (2010), Baldacci & Dell‘Amico 

(2010), Berinsky & Zabala (2011) and Naji-Azimi, Salari & Toth (2012) suggest 
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different solution methods for the CmRSP, some of them approximate and others 

exact. 

A problem with a structure similar to MCBP for transporting a single product 

type is the vehicle routing-allocation problem (VRAP), introduced by Beasley & 

Nascimento (1996). It consists in identifying routes for a number of vehicles that 

must service a subset of customers. Those not visited can either be assigned to a 

customer who is, or simply excluded but with a penalty. The solution minimizes 

the routing costs for the customers visited and the assignment costs and penalties 

for those not on the routes. Vogt et al. (2007) study the single vehicle routing-

allocation problem (SVRAP), a particular case of the VRAP, using a tabu search 

to solve large instances. Ghoniem et al. (2013) present a distribution problem for 

a food bank based on the VRAP. Vehicles transport the food to a set of 

distribution points that the patrons of the service must travel to. The model 

minimizes the vehicle transport and patrons‘ travel cost. Extensions of the VRAP 

are applied to school bus routing, where the problem is to assign students to stops 

and design the stop sequence of each bus so as to minimize such factors as the 

number of bus routes, total route length, load variation, and total walking 

distance to the nearest stop over all students (Bowerman et al., 1995; Riera-

Ledesma & Salazar-González, 2012; P Schittekat et al., 2006; Patrick Schittekat 

et al., 2013). 

3.3. The blended milk collection problem with collection points  

The milk blending with collection points problem (MBCP) as developed here 

accommodates any number of qualities of raw milk, although in the examples we 

use three qualities, classified as A, B and C in decreasing order of quality. The 

product of any mix of different qualities is discrete. Thus, if quality A is mixed 

with quality C, the result is classified as quality C regardless of the two quality‘ 



60 

 

 

respective proportions in the blend. This classification rule is set by the dairy and 

reflects the requirements of the processing plant‘s final products. Each farm 

produces a single milk quality and is paid accordingly. Thus, the unit cost of each 

quality is constant and does not influence the modelling. The tanker trucks are 

homogeneous and do not have segregated compartments. 

As noted in the introduction, the milk producing area in our problem has a 

network of collection points with storage tanks to improve the efficiency of 

collection. Producer farms in remote locations often deliver their production to 

these points and charge the haulage to the dairy. This expense, which we call 

access cost, is included in the modelling. As might be expected, this delivery 

system is used if and when it is cheaper than a direct visit to the producer by a 

tanker truck; if this is not the case, a truck picks up the milk directly at the farm. 

Since the trucks do not have compartments, all the milk collected is necessarily 

mixed in the trucks, never at the collection points.  

A quantitative example illustrating the potential advantage of the proposed 

approach compared to others, existing models is shown in Figure 3-1. The 

network in the example has 8 nodes representing six farms numbered 1 to 6; the 

dairy, numbered 0; and a collection point denoted CP. Indicated above or below 

each farm node is the amount (in litres) and quality of milk produced. The links 

connecting up the nodes are labelled according to the cost of travelling them in 

monetary units. In the case of links (CP,5) and (CP,6) between the collection 

point and nodes 5 and 6, two cost figures are shown: 50 for the truck cost and 10 

for the producer access cost. The unit revenue by milk quality is 1.0, 0.7 and 0.3 

units for qualities A, B and C, respectively. There are three trucks, each with a 

load capacity of 520 litres. As many collection problems, this problem is solved 

over an auxiliary, fully connected network, whose arcs have the length of the 

shortest routes between every pair of nodes.   
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Figure 3-1. Numerical example to compare the solutions of the CVRP, MB, 

CmRSP and MBCP. An octagonal shape denotes milk A, a circle milk B, and a 

square, milk C. 

If neither blending nor collection points are permitted, separate trucks for each 

milk quality must be used. The resulting situation is similar to the capacitated 

vehicle routing problem (CVRP) (Irnich et al. 2014). There are three truck 

routes: 0-1-2-4-2-5-6-3-0 (quality A, collection sequence: 1-4-5-6), 0-2-0 

(quality B) and 0-3-0 (quality C). Total truck transport costs in this case are 680 

units while revenues are 720 units, thus producing a profit of 40 units. If 

blending is permitted but not collection points, we have the simple milk blending 

problem (MB). Three trucks are needed for this case and the routes are 0-1-0 

(quality A), 0-2-4-2-5-6-3-0 (quality B, collection sequence 2-4-5-6) and 0-3-0 

(quality C). One of the trucks collects and mixes 200 litres of quality A milk and 

120 litres of quality B milk, which according to the blending rule counts as 320 

litres of quality B at the plant. Total truck costs are 480 units, revenues are 684 

units and profit is 164 units.  

If collection points are permitted but not blending, the problem is similar to the 

CmRSP (Baldacci et al. 2007). The three truck routes are in this case are 0-1-2-4-

CP-4-2-1-0 (quality A, collection sequence 1-2-CP), 0-2-0 (quality B) and 0-3-0 

(quality C). Total truck transport costs for this situation are 560 units while 
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revenues are 720 units, for a profit of 160 units. Finally, under our MBCP 

approach with both blending and collection points, the 3 routes are 0-1-0 (quality 

A), 0-2-4-CP-4-2-0 (quality B, collection sequence 2-4-CP) and 0-3-0 (quality 

C). This means transport costs of 400 units and revenues of 684 units. Thus, the 

profit is 284 units, which is 120 units higher than with blending alone, 124 

higher than CmRSP and 204 higher than CVRP. 

As we noted earlier, our approach is a generalization of other problems in the 

literature. If, for example, there is little advantage in milk blending, the MBCP 

solution will be the same as that of the CmRSP. And if under MBCP the access 

and collection point costs are high, the solution will reduce to the MB approach, 

that is, milk blending but not collection points. Finally, if neither collection 

points nor blending is advantageous, the solution of MBCP will be the same as 

that generated by the CVRP. 

The proposed problem thus attempts to find the collection point sequence for 

each truck setting out from and returning to the dairy plant in such a way as to 

maximize profit on the milk collection while satisfying all of the conditions 

indicated above. 

3.4. Mixed integer programming model 

We now formulate our proposed mixed integer linear programming model for 

solving the MBCP. Let N be the set of all nodes in the milk collection network 

excluding the dairy plant, and let  0 0N N  , where 0 is the plant node, be the 

set of all nodes including the plant. Also, let  0 ,G N A  be a complete graph of 

the network where A  is the set of links defined by   0 0{ , | }A i j N N i j    . 

The set of milk qualities is T and according to the classification rule stated 
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earlier. The set of producer farm nodes are denoted :tN t T . The milk quality 

as delivered to the dairy is { | a blend of   and   gives  . Includes  }tD r T r t r r t   . 

The candidate collection points belong to set CP. Thus, t

t T

N N CP


 
  
 

. Also, 

K is the set of available trucks; IT is the set of ordered pairs (i,t) that associates 

node i N  with milk quality t T ; CN N  is the set of farms that are 

candidates for delivering their milk to collection points instead of truck visits for 

direct pickup, either because of their low production volume or their closeness to 

at least one candidate collection point; tCN CN  is the set of farms in CN that 

produce quality t milk; AP is the set of links that connect collection points CP 

and the candidate farms CN such that AP A ; t

iq  (i,t)IT is the quantity of 

quality t milk produced by farm \i N CP ; Q is the load capacity of each truck; 

ijc  is the truck transport cost of travelling link  ,i j A ; 
t  is the unit revenue 

for quality t milk; ij  is the access cost to farm i CN  for delivering milk to 

collection point located at node j CP  such that  ,i j AP ; and Ci is the 

collection point cost of node i CP .  

Decision variables 

 1 If truck    travels directly from node   to node  : ,

0 otherwise

k

ij

k i j i j A
x

 
 


 

 1 If truck    loads milk quality   from node   : ,

0 otherwise

kt

i

k t i i t IT
y

 
 


 

 1 If the farm    delivers  milk   to point   : , , visited by truck 

0 otherwise

kt

ij

i t j i j AP k
g

 
 

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1 If truck    delivers milk   to the plant

0 otherwise

kt
k t

z


 


 

Volume of milk   that truck   delivers to the plantktw t k  

The problem itself can now be specified, beginning with the objective function 

(3.1): 

          
0,

t kt k kt kt

ij ij ij ij i i

t T k K i j N k K i CN k K t T j CP i CP t T k K

Max w c x g C y 
          

        
(3.1) 

The objective (3.1) maximizes profit earned on milk collection, deducting from 

revenue the transport, access and collection point costs. 

The constraints are as follows: 

          
 

t kt t kt

i i i ij

t T i CP t T i CN j CP

q y q g Q
    

      
k K   (3.2) 

          1kt

i

k K

y


  
 

 

\ ,

: ,

i N CN CP

t T i t IT

 

 
 (3.3) 

          
0

k kt

ij j

i N

x y


   

 

, \ ,

: ,

k K j N CN CP

t T j t IT

  

 
 (3.4) 

          0

0

1k

j

j

x


  
k K   (3.5) 

        
0 0

k k

ij jh

i N h N

x x
 

   
0,k K j N    (3.6) 

        
,

1k

ij

i S j S

x S
 

   ,S N k K    (3.7) 

The first six constraints, (3.2) - (3.7), are those typically found in some form in 

traditional vehicle routing problems. Constraint (3.2) sets the load capacity of the 
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individual tanker trucks for milk collected either at the farm gate or at collection 

points. Constraints (3.3) impose a single visit to each node as long as it is neither 

a collection point nor a candidate farm for allocation to a collection point. 

Constraints (3.4) require that if a truck k visiting a farm node j that produces 

quality t has travelled there from any node i, the truck collects all of the quality t 

milk produced at node j. Constraints (3.5) ensure that for every truck there must 

be only one route starting from the origin node. Constraints (3.6) are the flow 

conservation constraints for each farm and truck. Constraints (3.7) eliminate any 

subtours that may appear in a given solution. 

           1kt kr

iz y   
, , ,

, \t

k K i N t

r T r D t

  

 
 (3.8) 

           1kt

t T

z


  k K   (3.9) 

           
kt ktw z Q  ,k K t T    (3.10) 

           
: :

\ \

r r

r r

kt r kr r kr

h h h hj

j CPr t D r t D

h N CP h N CP

w q y q g
 

 

     
,k K t T    (3.11) 

           
 ,

kt t

i

k K t T i t IT

w q
  

   
 (3.12) 

The next five constraints, (3.8) - (3.12), establish the rules related to milk 

blending. Constraint (3.8) ensures that every truckload of milk delivered to the 

dairy is counted as having a quality no higher than the lowest quality collected by 

the truck, reflecting the milk quality classification rule. Constraint (3.9), also 

reflecting this rule, imposes that each truck can deliver only one quality of milk 

to the plant. Constraints (3.10) impose that truck k delivers quality t milk to the 

dairy whenever a decision to collect that quality of milk is made. Constraints 

(3.11) counts the amount of milk collected from farms and collection points and 

delivered at the plant by each truck. Constraint (3.12) guarantees that the 

available trucks collect all of the milk produced by the farms.  
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         1kt

i

k K

y


   , : ,i CP t T i t IT     (3.13) 

         1kt kt

i ij

k K k K j CP

y g
  

     , : ,i CN t T i t IT     (3.14) 

         
0

kt k

ij hj

h N

g x


    , , ,  ,  ,k K i CN j CP t T i j AP       (3.15) 

        1kt

ij

j CP

g


   , , , ,k K i CN t T i j AP      (3.16) 

         , , 0,1kt kt kt

i ijy z g    , , , ,  ,k K i j N t T i j AP      (3.17) 

         0,1k

ijx    0, , , ,k K i j N i j A     (3.18) 

        0ktw   ;k K t T    (3.19) 

Constraint (3.13) is explained below. Constraints (3.14) stipulate that each farm 

can be either allocated to a collection point or directly visited by a truck. 

Constraints (3.15) ensure that a truck visits each collection point. Constraints 

(3.16) impose that a candidate farm for assignment to a collection point can be 

allocated to only one such point. Finally, constraints (3.17), (3.18) and (3.19) 

define the nature of the variables. 

Note here that every candidate collection point is expanded to three nodes, each 

one representing a storage tank for a quality of milk and all three having the same 

geographical coordinates. Constraint set (3.13) imposes that each of the three can 

be visited only by one truck.  

The number of variables and constraints in the model depends on the number of 

nodes and trucks in the network. A small instance with 20 farms of which 10 are 

candidates for producer delivery to collection points ( 10CN  ), 6 collection 

points to be located by the model (i.e., 2 collection points with 3 tanks each, as 

just explained), 3 qualities of milk and 3 trucks would have 2,571 variables and 

720 constraints. 
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3.5. Solution approaches 

Two solution approaches are proposed. The first one is based on a branch-and-cut 

algorithm using new as well as known cuts to solve small instances; the second 

one consists of a procedure that combines exact routines and heuristics to solve 

large cases. 

3.5.1. Branch-and-cut approach for small instances 

For this approach we employ the model presented in subsection 3.1. Given that 

the number of individual constraints in (3.7) grows exponentially with the size of 

the instance, the model cannot be used directly with this constraint set. We 

therefore relax (3.7) as well as the integrality constraints (3.17)-(3.18). Once the 

solution is found, a support graph  ,k k k

s sG N A  is constructed for each truck k 

that includes every link whose associated variables in the solution are different 

from zero, that is, 0k

ijx   and 0kt

ijg  . Ad-hoc separation algorithms are used to 

detect violated cuts in the support graphs. 

We propose the following cuts in the branch-and-cut algorithm: 

Proposition 1 

The cut 

           
k k

ij jh

h i

x x


     , : , 0 ,i j A i j k K     (3.20) 

is valid for the MBCP. Proof: Dror et al. (1994)  
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In the support graph, the separation algorithm searches for each link (i,j) related 

to the variables 0k

ijx    such that , 0i j  . For each link it checks for violation of 

cut (3.20). The order of the algorithm is O(|K||N|
3
). 

Proposition 2 

The cut 

            

:

c

k k

ij hm

i S h S

m S h j

x x
 

 

    , , 0 ,cS N j S j k K      (3.21) 

is a valid cut for the MBCP.  

Proof: For a set of nodes S N , if a truck k uses a link (i,j) where 

,  \ci S j S N S   , there must exist a link (h,m) where m S . Otherwise, there 

would be no connectivity in the route of k. Note that h j ; if this were not the 

case, there would be a subtour including j and the nodes in S.  

For each link (i,j) in every support graph, the algorithm finds the set of nodes S 

that are connected to j. After a node is inserted in S, the algorithm checks for a 

cut violation (3.21) and adds a cut if necessary. The order of the algorithm is 

O(|K||N|
4
). 

Proposition 3 

The following inequality: 

         
,c

k kt

ij h

i S j S

x y
 

   , , , : ,S N h S k K t T h t IT       (3.22) 

 

  

is a valid cut for the MBCP. Proof: Toth & Vigo (2001)  
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The algorithm constructs a set S , starting with node 0. All of the nodes 

connected to S  through a link in the support graph are added one by one until no 

more connected nodes are found. A set S in 
cS  is then constructed using the 

same procedure, starting with any node l cS . The order of the algorithm is 

O(|K||N|
2
). 

Proposition 4 

The following inequality: 

           
\

:

kt k

ji hl
h N Si S

l S h j

g x


 

    , , 0 , ,cS CP j S CN j k K t T        (3.23) 

is a valid cut for the MBCP.  

Proof: If a link (j,i) is used by a producer to deliver milk from farm  j to 

collection point i, that is, 1kt

jig   where node i S , then i must be on the route of 

truck k. Since set S does not include node 0, there must be a link (h,l) that enters 

S, that is, 1k

hlx  . This link cannot be (j,i  

We use the same separation algorithm as in Proposition 3. 

3.5.2. Approach for large instances 

An MBCP with more than 50 nodes is difficult to solve to optimality due to its 

size and complexity. In such cases, therefore, we propose a heuristic procedure 

(HP) that produces good quality solutions. This approach in fact combines 

heuristics with mathematical programming models, consisting of a meta-heuristic 

stage followed by two stages of exact optimization. A flowchart of the three HP 

stages is shown in Figure 3-2.  

0.3 
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0.3 
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The procedure begins with the collection points location-allocation stage, which 

locates the collection points and identifies the farms allocated to them using an 

ad hoc covering model. The farms so assigned are eliminated from the instance 

and their milk aggregated at their corresponding collection points. These points 

thus become the equivalent of farm nodes in the simple MB problem (which has 

no collection points), but with three milk qualities and a ―production‖ equal to 

the sum of the milk produced by the farm nodes allocated to them. The resulting 

set of nodes is the union of the set of farms and the located collection points. 

Then, in the feasible route generation stage of the procedure, an ant colony 

metaheuristic identifies feasible routes. Finally, in the route selection stage, the 

best routes are chosen for the definitive solution. 

 

Figure 3-2. Flowchart of the proposed heuristic procedure (HP). 
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3.5.2.1. Collection points location-allocation stage 

The inclusion of the candidate collection points increments the size of the 

problem. We therefore choose a limited set of points using the solution of the 

following covering problem: 

1 if collection point   is located

0 otherwise
j

j CP
L


 


 

1 if node    is allocated to   :

0 otherwise

i

ij

i CN j CP j N
A

  
 


 

E: Maximum production that can be allocated to a collection point. 

 
 ,

: , , t

i ij i

i t IT

N j CP d B i CN if q E


      

B: Maximum allocation distance. 

The problem is formulated as follows: 

         
:

0
i

i

j j ij ij
i CNj CP j N

N

Min C L A
 



   (3.24) 

        1
i

ij

j N

A


  i CN   (3.25) 

        ij jA L  ,ii N j CP    (3.26) 

         0,1jL   j CP   (3.27) 

         0,1ijA   ,ii N j CP    (3.28) 
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The objective function (3.24) minimizes the sum of collection point costs and 

access costs. Constraints (3.25) ensure that every candidate node is allocated to a 

single collection point. Constraints (3.26) ensure the candidate node allocations 

are made only to points the procedure has already located. Lastly, (3.27) and 

(3.28) define the domains of the decision variables.  

3.5.2.2.  Feasible route generation stage: The Ant Colony System 

algorithm 

This stage of the HP generates a set of reasonable routes R‘. The method 

employed is ant colony optimization (ACO), a ―meta-heuristic algorithm that 

mimics the communication between ants through pheromones that allow them to 

find better ways from their nest to the food sources‖ (Dorigo & Stützle, 2004). 

An ACO algorithm known as the ant colony system (ACS) has been used for 

discrete optimization with considerable success in routing applications given the 

similarity between them and the problem ―solved‖ by ants searching for and 

carrying food (Bell & McMullen, 2004; Bullnheimer et al., 1999; Donati, 

Montemanni, Casagrande, Rizzoli, & Gambardella, 2008; Mazzeo & Loiseau, 

2004; Montemanni et al., 2005; Yu et al., 2009). Applied to a routing problem, 

each trip by an ant corresponds to a route of a vehicle. The heuristic is used to 

generate feasible routes.  

The method begins with a representation of the problem by a graph. The first step 

is to update the level of pheromone laid down by the ants, emulating its 

evaporation. The ants travel on the graph, generating one or more solutions. 

Optionally, these solutions can be improved using a local search procedure. The 

pheromones are then deposited on the links in the improved route, thus 

increasing the probability of obtaining good quality solutions. This cycle is 
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iterated until a stopping criterion is satisfied. The pseudocode for the procedure is 

set out in Figure 3-3. 

 

Initialize incumbent, ants and pheromone 

While (Stopping criteria not met) 

{ 

      Evaporate pheromone 

      Build Solutions 

      Calculate objective function value 

      Improve solutions 

      Store routes generated 

      Deposit pheromone 

      Update stopping status 

} 

Return Incumbent 

Figure 3-3. Pseudocode of the proposed procedure 

Each link begins with a quantity of pheromones IniPhero, which in our algorithm 

is a parameter. A lower bound (LB) for the objective function value (profit) is set 

at the level at which one truck serves each node. The main computation cycle to 

generate the solutions and update the pheromone level then begins. Every time a 

new feasible route is found, it is properly stored. The result of this heuristic is a 

set of R‘ routes. Each step of the heuristic is detailed in the Appendix. 
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3.5.2.3. Route selection stage based on the reformulation of MB 

Let there by F identical trucks. Then MB can be reformulated as a route selection 

problem for a set of feasible routes. The notation for the necessary parameters 

and variables is as follows:  

R: set of feasible routes for MB  

iS : set of routes that include i N  as a stop 

ru : net benefit of selecting route r R . 

Decision variables: 

1 route   is selected in the solution of MB

0 otherwise
r

r R



 


 

MB can now be formulated as follows: 

          r r

r R

Min u 


  (3.29) 

          1
i

r

r S




  i N   (3.30) 

          r

r R

F


   (3.31) 

           0,1r   r R   (3.32) 

This model generates a large number of variables . Given that in the preceding 

stage we can construct a subset R’R of feasible routes, we solve a ―truncated‖ 

version of (3.29)–(3.32) for R’ to obtain the lower bound of the optimal value. 
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We then execute the route selection stage to obtain a feasible solution for the MB 

equivalent problem. 

3.6. Case study  

In our real case study, a dairy collects milk from 500 producer farms spread out 

over an area of 9,600 km
2
. Of these farms, 313 produce quality A milk, 159 

produce quality B and 28 quality C. Total production ranges anywhere from 60 

and 25,000 litres per day, the average being 3,556 litres. The output of more than 

half of the producers is less than 2,500 litres. The dairy has a homogeneous fleet 

of 80 tanker trucks, each with a load capacity of 30,000 litres. The network is 

symmetric in the sense that transport costs ij jic c . These costs are proportional 

to the real distance ijd  between each node pair  ,i j A , such that ij ijc d . A 

total of 112 candidate sites is added to locate the collection points. Site selection 

is based on the density of the geographical distribution of the farms, their 

distance from highways, and the location of highway intersections. A map of the 

area showing the distribution of the farms is shown in Figure 3-4a) and the same 

map displaying the network of candidate collection points is given in Figure 

3-4b). On both maps the dairy plant is marked with a diamond.  
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a) b) 

Figure 3-4. Distribution of farms and collection point network. 

To estimate the access cost for producer deliveries to collection points we used 

the ACOTRAM software, provided by the Spanish government‘s road transport 

authority (Dirección General de Transporte Terrestre de España, 2014). The 

software estimated that the transport cost per kilometre for a direct farm visits by 

a tanker truck is 5 times the cost to a producer of making collection point 

deliveries using a typical farmer‘s pickup truck. In other words, the access cost 

for a farm i CN  delivering to a collection point j CP  is  1
5ij ija c . This 

calculation is conservative given that in any given case draught animals, a 

tractor, etc. may actually make delivery from small farms. Note also that since 

collection point costs are small in relation to truck transport costs expressed in 

daily terms, we fixed the collection point costs at a baseline value of 1 unit.  
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To prevent spoilage, milk delivery to collection points must be carried out 

promptly after milking (Draaijer, 2002). With this in mind, the farms allocated to 

a given collection point are restricted to those situated within a radius of no more 

than 10 km. In addition, we assume that it is unlikely (and impractical) that a 

producer would be willing to deliver more than 2,000 litres per day to a 

collection point. Thus, for farms producing more than that amount, the only 

option is direct pickup by tanker truck. 

Note that the problem would be similar if refrigerated centres were installed at 

the collection points. The associated costs would, however, be higher (due to the 

higher initial installation costs, although these would normally be pro-rated over 

various years) and storage capacity would be limited (Pérez, Maino, Agüero, & 

Pittet, 1994). 

The results obtained in our case study are presented in the following two 

subsections for a small instance consisting of a subset of the 500 farms and a 

large instance that includes the complete set. The small instance is solved with 

the branch-and-cut algorithm, which we coded in AMPL version 20130109 and 

ran on a CPLEX 12.6.0 solver. As regards the large instance, models (3.24)-

(3.28) and (3.29)-(3.32), that is, stages 1 and 3 of the heuristic procedure, were 

also executed using AMPL and CPLEX while stage 2, the ACS algorithm, was 

implemented in C++. The experimental parameters for the heuristic are detailed 

in the Appendix. All of the case study experiments were carried out on a PC with 

an Intel Core i7-2600 3.4 GHz processor and 16GB of RAM running the Ubuntu 

Server 12.04 LTS operating system. 
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3.6.1. Small instance (subset of farms) 

The problem solved here is an instance consisting of a subset of 23 producer 

farms out of the 500 in the complete network. The idea is to contrast the 

efficiency of our MBCP model with the other solution approaches. We also 

compare the approximate solution of the HP, normally intended for large 

instances, to those of the other solutions, all of which are exact. The parameters 

for the instance are set out in  Table 3-1. Node 0 is the dairy plant. Four trucks are 

available, each with a load capacity of 3 ,    litres. The farms‘ milk production 

is 43,706 litres of quality A, 6,426 litres of quality B and 5,014 litres of quality 

C. Revenue for qualities A, B and C is 0.015, 0.0105 and 0.0045 monetary units, 

respectively. For each farm i and milk quality t, the table indicates the quantity q 

produced. CN = {99,162,258,107,133,140,403,367} is the set of candidate farms 

that can be allocated to a maximum of 5 collection points. They are indicated in 

bold quality on the graph of the physical node network in Figure 3-5.  
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 Table 3-1. Farm parameters for small instance. 

 

 

 

 

 

 

 

 

 

Figure 3-5. Farms and collection points for small instance. 

 

 

 

i t q i t q 

0 - - 258 A 1,407 

76 A 3,918 99 B 87 

126 A 2,185 107 B 205 

162 A 1,972 133 B 324 

288 A 3,595 140 B 362 

320 A 539 230 B 2,354 

368 A 209 286 B 2,634 

404 A 9,998 403 B 460 

484 A 298 367 C 791 

81 A 13,296 369 C 879 

106 A 1,428 370 C 600 

163 A 4,861 402 C 2,744 
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Figure 3-6. Truck routes for small instance. 

When this instance is solved to optimality with the parameters just indicated, 

three truck routes are obtained as shown in Figure 3-6 by the solid, dashed and 

dotted lines, numbered 1, 2 and 3, respectively. Thus, three of the four available 

vehicles are required, the truck on routes 1 and 3 collecting milk of quality A and 

the truck on route 2 collecting quality C (blended with milk quality B).  

The number of truck stops in this solution is 2 less than the stops required by the 

methods without collection points (CVRP and MB). Farm deliveries to these 

points by quality of milk are as follows: CP-1: 324 litres of quality B; CP-2: 791 

litres of quality C; CP-3: 1,972 litres of quality A; CP-4: 205 litres of quality B; 

and CP-5: 822 litres of quality B. The total cost is 342 units and revenue is 705 

units, generating a profit of 353 units. 

The complete results for our model are displayed in Table 3-2 (column MBCP) 

where they are compared to those obtained for the same network with the other 

solution approaches mentioned earlier. With the exception of HP.MBCP, these 

solutions are optimal for their respective approaches and were obtained using the 

branch-and-cut algorithm. For CVRP, the results are for milk collection without 

Milk A

Milk B

Milk C

Collection Point
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blending or collection points, meaning different trucks for each milk quality. MB 

allows blending but not collection points while CmRSP represents the opposite 

(collection points but no blending). The HP.MBCP results are for the HP with 

both blending and collection points. All of the approaches use objective function 

(1). 

Table 3-2. Results for small instance with different solution approaches. 

  

 

 

 

 

 

 

 

 

As can be seen in the table, 4 trucks were required for the approaches that did not 

allow blending (CVRP and CmRSP). Profit under MBCP (353 units) is much 

higher than with CVRP (32 units). Blending and the consequent lowering of 

transport costs resulted in greater profit for both MBCP and MB, but the effect 

was much stronger for MBCP due to the additional cost reduction achieved by 

using collection points.  

 CVRP MB CmRSP HP.MBCP MBCP 

No. of trucks used 4 3 4 3 3 

Revenue 745 684 745 705 705 

Transport cost 714 473 458 364 342 

Access cost - - 8.5 12 5.4 

Collection point cost - - 5 5 5 

Profit 32 211 274 324 353 

Milk A 

(Milk A) 

43,706 

(43,706) 

41,525 

(43,706) 

43,706 

(43,706) 

43,497 

(43,706) 

43,497 

(43,706) 

Milk B 

(Milk B) 

6,426 

(6,426) 

0 

(6,426) 

6,426 

(6,426) 

0 

(6,426) 

0 

(6,426) 

Milk C 

(Milk C) 

5,014 

(5,014) 

13,621 

(5,014) 

5,014 

(5,014) 

11,649 

(5,014) 

11,649 

(5,014) 

Km per truck (mean) 179 158 115 121 114 

% load (mean) 62 83 62 83 83 

No. of stops 24 24 18 14 22 

No. of coll. points used - - 3 5 5 

Total milk, coll. Points - - 7,091 9,561 4,114 

CPU time 50 60 1,500 3 4,737 
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In Table 3-2, there are two sets of results for the different milk qualities. The 

lower figures in parentheses refer to the actual amounts produced and collected. 

The upper figures are the quantities delivered at the plant and are different 

wherever blending is allowed due to the rule on quality classification of blended 

milk. In the case of CVRP, the absence of blending means no downgrading of the 

classification and therefore higher revenues, but as noted above, transport costs 

are also high. With MB, blending results in a reduction of quality A milk at the 

plant, the difference (2,181 litres) being mixed with 6,246 litres of quality B and 

5,014 litre of quality C, but transport costs are lower. Under CmRSP, revenue is 

the same as with CVRP but the use of collection points reduces the cost of 

transport. 

Quality A milk delivered at the plant under our model is 43,497 litres, or 1,972 

litres more than MB. All of this excess is from farm 162 (see  Table 3-1), given 

that with the ability to use collection points, this producer‘s output can be picked 

up from CP-3. The 11,649 litres of milk classified quality C at the plant are the 

result of collecting and blending 6,426 litres of quality B, 5,014 litres of quality 

C and 209 litres of quality A. As these figures show, blending combined with 

collection points results in higher profit. 

Although the use of collection points for CmRSP and MBCP is optional, Table 

3-2 shows that while CmRSP uses only 3 points, MBCP uses 5, thus cutting 

mean truck distance travelled in kilometres from 179 to 114. Due primarily to 

blending, MB, MBCP and HP.MBCP achieve better average truck loads (83%) 

than CVRP and CmRSP (62%).  

Finally, the solution time for MBCP is significantly longer than that required by 

CVRP. This is due to the former‘s greater complexity in terms of the numbers of 

variables and constraints. Also note that under HP.MBCP, profit was only 8.2% 

lower than MBCP‘s optimal value despite having a much shorter CPU time.   
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3.7. Complete instance 

We now turn to the complete instance of our case study, with all 500 producer 

farms and 112 candidate collection points. Since finding an optimal solution 

within a reasonable time would be very difficult, we attempt to solve it by using 

a zone division strategy. Under this approach, the farm network is divided into 25 

small zones based on geographical features such as rivers, lakes and roads as 

natural divisions. Each zone contains 10 to 40 farms.  

For comparison purposes the results obtained with this strategy are set out in 

Table 3-3 for three methods: the HP approach without zone divisions 

(HP.MBCP), the HP approach for each zone separately (Z.HP.MBCP) and the 

branch-and-cut algorithm for each zone separately solved to optimality 

(Z.MBCP). 

Table 3-3. Results for complete instance with different solution approaches. 

 

HP.MBCP 

(Approximate, 

without zones) 

Z.MBCP 

(Optimal, 

with zones) 

Z.HP.M BCP 

(Approximate, 

with zones) 

No. of trucks used 70 77 78 

No. of farms allocated 237 77 217 

No. of points used 75 35 67 

Revenues 24,312 23,501 23,201 

Transport cost 8,021 8,998 9,296 

Access cost 114 69 104 

Collection point cost 103 50 95 

Profit 16,074 14,384 13,706 

CPU time (hh:mm:ss) 23:55:14 34:10:57 00:01:45 

 

As these figures show, profit is highest for the HP solution without zone division. 

The approximate heuristic solution using zones (Z.HP.MBCP) averages a profit 
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level 4.71% lower than the optimal solution using zones (Z.MBCP), which in 

turn averages 10.5% less than the heuristic solution without zones. The superior 

result for HP without zones may be attributed to the fact that zone borders do not 

limit its truck routing and collection point allocation solutions. Zoning, on the 

other hand, by definition excludes cases where the most efficient solution for a 

farm situated near a zone border might be a route or collection point in a 

neighbouring zone. Thus, without zoning the HP solution is likely to have shorter 

routes and fewer stops and will therefore make better use of the trucks, which 

translates into lower transport costs and more profit.  

The solution time for HP with zones is far shorter than the times for the other two 

methods. Note that both HP approaches include execution times for the three 

stages of the heuristic procedure. With HP.MBCP, stage 1 takes less than one 

second, stage 2 (ACS) takes 238 seconds and stage 3 takes 85,875 seconds. Note, 

however, that HP without zones reaches an incumbent solution profit of 15,757 

after only 9 minutes, with an upper bound of 16,266 and a gap of 3.1%. This is a 

good feasible solution that can be used where time is of the essence.   

Not all of the 112 candidate collection points are used. The optimal MBCP 

solution only locates 35 while the HP with zones requires 67. The HP solution 

without zones uses 75 collection points, to which it allocates 237 farms. This 

means that 263 farms have direct truck visits and the trucks make 338 stops. 

Some examples of the truck routes generated by HP are shown in Figure 3-7. The 

solid lines are the routes while the dashed lines represent farm allocations to 

collection points. The use of points is particularly noticeable where farms are 

densely concentrated. In such cases, the truck routes are shorter and have fewer 

stops. In Figure 3-7a) the truck collecting quality B milk makes 8 stops versus 12 

for direct farm pickup only; in Figure 3-7b) the truck makes 6 stops collecting 
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quality C; in Figure 3-7c) the truck makes 5 stops blending all three qualities; 

and finally, in Figure 3-7d) the truck makes 6 stops for quality B.  

 

 
 

a) b) 

  
c) d) 

Figure 3-7. Some routes generated by the HP. 

3.7.1. Sensitivity analysis 

We conducted a sensitivity analysis to examine the behaviour of HP when certain 

of the parameters in the original case study are varied independently. The results 
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of the analysis are summarized in Table 3-4 for seven different scenarios 

involving parameter variations as indicated in the top rows of the table. The base 

case results are those obtained with the case study parameters, repeated here for 

convenience: fleet size of 80 available trucks with a load capacity of 30,000 litres 

each, access cost  1
5ij ija c , collection point covering within a maximum 

radius of 10 km, and a maximum production level of 2,000 litres for farms to be 

candidates for collection point allocation. As can be seen in the column headings, 

Scenario I increases access cost, Scenarios II and III vary the maximum 

collection point covering radius, Scenarios IV, V and VI increase the maximum 

production level for collection point allocation, and Scenario VII varies the truck 

fleet size and load capacity (the one farm with a production of more than 20,000 

litres is served exclusively by two trucks). 
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Table 3-4. Sensitivity analysis of selected parameters. 

  I II III IV V VI VII 

 

Base 

Case 

Access 

cost 

Collection point 

covering radius  

Maximum production for 

collection point allocation 

Fleet 

size and 

capacity 

 

aij= ½ cij 5 km 15 km 3,000 l 4,000 l 5,000 l 

100 

trucks – 

20,000 l 

No. of trucks 

used 
70 70 71 72 69 68 68 93 

No. of farms 

allocated 
237 237 219 240 281 327 355 237 

No. of points 

used 
75 82 74 75 82 88 91 75 

Revenues 24,312 24,332 24,237 24,364 24,372 24,361 24,167 24,354 

Transportation 

Cost 
8,012 8,182 8,258 8,070 8,110 8,102 8,031 10,097 

Allocation  

Cost 
114 245 80 123 137 154 173 114 

Collection  

point cost 
103 124 107 102 116 125 131 103 

Profit 16,074 15,781 15,792 16,069 16,009 15,980 15,832 9,880 

CPU time 23:55:14 23:54:15 23:52:58 23:56:12 23:56:53 01:53:03 02:03:51 23:54:09 

 

When access cost is increased, profit declines relative to the base case and more 

use is made of collection points. When the collection point covering radius is 

reduced to 5 km, profit again declines, access cost decreases but transport cost 

rises. If, on the other hand, the covering radius is enlarged, the number of farms 

allocated to collection points increases and transport cost falls.  

As for production levels, if farms producing up to 3000, 4,000 or 5,000 litres are 

allocable to collection points, more of them are assigned and the number of 

points located increases. This reduces transport cost and the number of farms 

with direct truck visits but access and collection point costs rise. In the 5,000 litre 

case, the number of farms allocated is 355, meaning only 145 are visited directly. 

The increase in farms allocated to collection points also reduces solution times 
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given that more milk is delivered to each point so there are fewer direct truck 

visits to farms and ACS in turn does not have to generate as many routes. 

Finally, if truck load capacity is lowered to 20,000 litres, profit declines due to 

the increase in transport cost since the individual vehicles cannot carry as much 

milk and more trucks will therefore be needed to collect total production in the 

network. 

3.8. Conclusions and future work 

A new approach was developed for solving a raw milk collection problem that 

arises in rural regions where there are many small producer farms scattered over 

a wide area and blending of different milk qualities is permitted. The proposed 

method reduces overall costs by locating collection points equipped with storage 

tanks where producers can deliver their milk for collection by tanker trucks if the 

cost of such producer deliveries is less than the cost of direct truck pickup at the 

farm. The problem, which we call the milk blending problem with collection 

points (MBCP), is solved using a mixed integer programming model. 

The model was tested on a real-world case involving a large number of 

producers. Given the size of the instance and its consequent complexity, the farm 

network was divided into many small zones. Two solution approaches were 

applied: a branch-and-cut algorithm solving the problem to optimality and a 

three-stage heuristic procedure that included an ant colony system. For 

comparison purposes, the heuristic was also applied to the instance without using 

zone division.  

The results showed that despite the division into zones, the algorithm was unable 

to solve the problem within a reasonable time period. Furthermore, the level of 

profit it generated on the milk collection operation was 10.5% less than the 
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heuristic without zones, which also solved the instance significantly faster. When 

zones were used with the heuristic, it found a solution in mere seconds, although 

profit was 4.7% less than in the optimal algorithm solution. However, the 

heuristic without zone division also found a very satisfactory incumbent solution 

in terms of profit in a matter of minutes and would thus be a good feasible 

solution where time is a factor.  

In addition, our case study findings further demonstrated that the use of 

collection points helps reduce transport costs and therefore boosts profit. If 

blending of different milk qualities is also allowed, the financial benefits are even 

greater.  

This study could be extended in several directions. From a methodological 

standpoint, new exact methods are needed to solve the problem for medium and 

large instances. A hierarchical system could be incorporated with tanker trucks of 

different load capacities. Another interesting angle would be to consider 

refrigerated collection points where large quantities of milk, perhaps more than a 

single day‘s production, could be stored. A small fleet of trucks at each point 

would then collect milk from small farms, replacing producer deliveries. Finally, 

the proposed approach could be applied to other situations where products are 

mixed while in transit aboard a vehicle, such as the collection/distribution of 

dangerous materials or different classes of waste in a recycling system.  

3.9. Appendix. Ant Colony System (ACS) Routines  

The Ant Colony System routines are described below. 

‘Evaporate pheromone’ Routine 
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Updates the pheromone levels on the graph edges in imitation of the way ants use 

pheromones in nature, reducing the levels by a proportion ρ where 0 < ρ < 1, that 

is,  

              1ij ij      ,i j A   (3.33) 

‘Build Solutions’ routine 

Constructs m solutions for MBCP. The solution procedure is as follows. First, the 

routine chooses truck k with a probability proportional to its spare load capacity 

to travel along a given edge. It then randomly chooses the node j the truck will 

travel to next with a probability given by  

             

i

ij ij

ij

iv ivv V

p

 

 

 

 





 
, ii N j V    (3.34) 

where i is the current node, Vi 
is the set of nodes that can be feasibly reached 

from i, j is a generic node in Vi, τij is the current amount of pheromone on edge (i, 

j), and ηij is a heuristic information parameter that represents the maximum 

revenue obtainable by travelling edge (i, j), that is, by visiting node j travelling 

from node i using only the information from those two nodes. In the case of a 

node representing a collection point, it is assumed that the milk production 

delivered there is the average level observed in the instance and that the rate of 

profit is given by the quality of milk delivered. Finally, α and β are parameters 

used to calibrate the search.  

Once the route of truck k is determined, the locations of all the trucks are 

updated. If a truck is fully loaded or cannot make any further visits, its route is 

―closed‖ and it returns to the plant, its probability of being chosen then reset to 

zero.  
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This procedure is repeated until either all of the nodes have been visited or there 

are no more trucks with spare capacity to visit them. Then all of the open routes 

(whose trucks have not returned to the plant) are closed and the value of the 

objective function is calculated. 

‘Calculate objective function value’ routine 

This routine simply calculates the objective function value given the truck routes. 

Profit is obtained by first determining the milk quality, which depends on the 

different nodes visited, and then multiplying the profit rate for that quality by the 

total production collected. Truck transport costs are obtained directly from the 

routes while the access and collection point costs are calculated directly from the 

instance. If the solution is infeasible, the objective function is penalized by a 

factor uD times either the production not collected or the excess over truck 

capacity.  

‘Improve solutions’ routine 

The solutions obtained by the previous routine can be improved by a further two-

stage routine. The first stage is a local intra-route search. For each truck route the 

routine identifies the collection points visited and then calculates the advantage 

of eliminating candidate farm nodes from the route and allocating them to 

collection points. If a point has no candidate farm nodes allocated to it, it is 

eliminated from the route. This stage is repeated until no further improvement to 

the current solution is possible.  

The second stage of the routine is a local inter-route search consisting of nTries 

random attempts at obtaining an improvement. Two routes r1 and r2 and 

respective non-endpoint nodes n1 and n2 on those routes are chosen at random 

from the current solution. Node n1 is then relocated immediately after n2. If this 

results in an improvement in the OF value, the change is adopted; if not, node n1 
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is relocated on route r2 and node n2 is relocated on r1. If this results in an 

improvement in the OF value, the change is adopted; if not, it is abandoned. If 

this search produces an improvement at least once, the order of the route is 

optimized again by solving the associated TSP.  

‘Store routes generated’ routine 

The heuristic creates a text file indicating the routes it has generated in a format 

readable by the next routine. The purpose is to specify the nodes on each feasible 

route in the order they are visited and the profit each route contributes to the 

global solution.  

‘Deposit pheromone’ routine 

Let Sk be the set of solutions obtained in iteration k, v(S) the objective function 

value of solution s and BKS the incumbent solution, that is, the best one obtained 

so far. For each solution sSk in iteration k, the routine follows the standard 

method of depositing (v(s)–LB) units of pheromone on the solution‘s edges to 

encourage exploration of new areas in the feasible space of the problem. Also, in 

each iteration (v(BKS)–LB) units of pheromone are deposited on the edges of 

the incumbent solution. This increases the probability the ants will explore 

solutions close to the incumbent. The γ and ε parameters determine the relative 

importance of the two aforementioned amounts of pheromone. In formal terms, 

           ij ij v s LB       , ,ks S i j s    (3.35) 

          ij ij v BKS LB       ,i j BKS   (3.36) 

‘Update stopping status’ routine 

The main computation cycle is interrupted once either maxIter consecutive 

iterations have been run or the best solution obtained has not changed after 
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maxUnsucIter consecutive iterations. This routine also updates the various 

counters needed to track these two conditions.  

Computational experiments were conducted using a matheuristic approach. After 

a brief preliminary tuning, the parameter values for the second stage of the 

heuristic procedure (i.e., the ACS) were set as follows: 2   (high weighting of 

pheromone information), 1   (medium weighting of heuristic information), 

0.2   (20% of pheromone evaporates at every iteration), 0.05   (weight 

factor controlling the amount of pheromone deposited at each iteration as 

determined by the incumbent solution), 0.01   (weight factor for pheromone 

deposited by each ant), 10m   (i.e., ten ants are used), max 1,000Iter  , 

max 1,000UnsucIter   (at most 1,000 iterations are run), 10iniPhero   (initial 

pheromone level), 1,000nTries  (each time the Improve Solutions routine is 

called, its second stage is run 1,000 times).   
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4. HAZARDOUS MATERIALS COLLECTION WITH MULTIPLE-

PRODUCT LOADING  

In this chapter we present a new hazardous material (HAZMAT) collection problem in 

which various industrial HAZMAT are transported using a homogeneous capacitated 

truck fleet. Different materials have different risk levels in terms of the size of exposed 

population. A truck can simultaneously carry different materials. The size of the 

population exposed to a loaded truck increases if a higher risk material is added to the 

load. We minimize the total exposed population and the total transportation cost. We 

present a case study in the City of Santiago in Chile to show practical application of our 

proposed approach. 

This chapter was formatted as a manuscript titled ―Hazardous materials collection with 

multiple-product loading‖, and submitted for review to Journal of Cleaner Production in 

December, 2015. It was accepted in September, 2016 and published (Paredes-Belmar, 

Bronfman, Marianov, & Latorre-Núñez, 2017). This chapter contains the modifications 

done to the manuscript.  

Complete reference: Paredes-Belmar G., Bronfman A., Marianov V., Latorre-Núñez G., 

(2017). Hazardous materials collection with multiple-product loading 141, 909-919. 

http://dx.doi.org/10.1016/j.jclepro.2016.09.163 
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4.1. Introduction 

Some industries located in urban or semi-urban areas require large amounts of 

hazardous materials (HAZMAT) as supplies on a daily basis, which must be 

transported from their production sites. In turn, multiple hazardous wastes 

produced by industries must be transported to their final treatment and disposal 

sites. A few years ago, four billion tons of HAZMAT were estimated to have 

been annually transported worldwide (Zografos & Androutsopoulos, 2004). 

The main risk of transporting HAZMAT or wastes comes from the possibility of 

accidents (fire, explosion, chemical leak, radiation, etc.) with significant 

consequences for human life and environment. Although the number of accidents 

may be low compared with the number of shipments of these materials, the 

danger to which the population is exposed can be very significant. This fact 

causes society to be particularly sensitive to HAZMAT transport and to clearly 

differentiate it from the shipment of other goods (Bianco, Caramia, Giordani, & 

Piccialli,    3; Leal Junior   D‘Agosto,     ; Tarantilis & Kiranoudis, 2001). 

The general concern about the consequences of an accident involving HAZMAT 

has motivated researchers to develop multiple mathematical models to identify 

low-risk routes (Erkut, Tjandra, & Verter, 2007; Zografos & Androutsopoulos, 

2008).  

Generally, using low-risk routes tends to result in a high transportation cost. In 

contrast, low-cost routes can be riskier in terms of the potential consequences of 

an accident. Therefore, most of the literature on HAZMAT transportation 

considers the joint minimization of cost and risk, aimed at offering a set of 

efficient alternatives to decision makers (Bronfman et al., 2015; Das, Mazumder, 

& Gupta, 2012; Giannikos, 1998; Kremer et al., n.d.; K. G. Zografos & 

Androutsopoulos, 2004).  
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We propose a new approach to multi-product HAZMAT transportation that 

reduces cost and risk, which involves loading different types of HAZMAT or 

wastes in the same truck. This approach has been used in practice. In fact, 

standards exist that deal with compatibility of different HAZMAT for 

transportation (e.g., GPO, 2016). However, to the best of our knowledge, our 

approach has never been presented in the literature. Although some authors deal 

with the transportation of different types of HAZMAT (e.g., Nema & Gupta, 

1999, 2003), they did not consider loading them on the same truck. 

Some definitions are required to properly describe the advantages of our 

approach. Different authors use the term risk to express different indicators. We 

follow Tarantilis & Kiranoudis (2001), who defined risk as the number of people 

exposed to a certain danger or hazard (population exposure risk). We consider 

the fact that the distance that can potentially be reached by the negative effects of 

an accident involving HAZMAT depends on the material being carried, and this 

distance has been estimated (U.S. Department of Transportation, 2012). As a 

consequence, the exposed population also depends on the material, and it is 

defined as the population within the area that can be reached by a HAZMAT 

accident for a certain material. The population exposed to negative consequences 

by specific material A is associated to what we denote here as material A risk. A 

ranking can be made of all materials according to their risk and reachable area. 

We note that the population exposed to a riskier material also includes the 

population exposed to a less risky material. 

By using our approach, both cost and risk decrease compared with the standard 

approach, which uses multiple trucks to carry a single material. The cost 

reduction comes from the economies of scope (different materials sharing the 

same trip), and the risk reduction is due to the fact that a truck loaded with 

multiple products exposes the same population that would similarly be exposed 

by the riskiest material being carried, in contrast to the condition when each 
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material is separately transported, in which, the total exposed population is the 

sum of all the populations exposed to each material. In other words, the truck risk 

involves the riskiest material being carried by the truck irrespective of how many 

less risky materials are being simultaneously carried. 

In our approach, a single truck risk varies along the route, and it is a function of 

the products transported by the truck on each section or link of the route. We 

assume that each customer or HAZMAT generator node produces HAZMAT 

with a single type of risk and that incompatible wastes or HAZMAT cannot be 

transported together. Because we deal with collection, the population exposed to 

a truck risk in successive sections of the route either remains the same or 

increases, depending on the risk associated with the last collected waste. 

We also design a methodology to optimize the application of the proposed 

approach to real-size instances. Given an available capacitated truck fleet, the 

solution prescribes the least number of trucks to perform the collection as well as 

the routes that each truck must follow to collect the HAZMAT at the minimum 

weighted sum of costs and risks. The method includes constructing an auxiliary 

graph of the network and formulating an integer programming (IP) model that is 

solved using commercially available software (CPLEX). To determine an 

approximate set of non-dominated solutions, we use the weighting method where 

both objectives are normalized. Finally, a real HAZMAT collection case in a 

transportation network in the City of Santiago, Chile, is solved. 

The remainder of the chapter is organized as follows. Subsection 4.2 contains the 

literature review. Subsection 4.3 provides more details on the approach, whereas 

subsection 4.4 describes the methodology. Subsection 4.5 presents the 

application to a real case in Santiago, Chile. Subsection 4.6 presents the 

conclusions and future work. 
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4.2. Literature review 

In the specialized literature, most of the articles address the problem of 

transporting a single HAZMAT or product. Jacobs & Warmerdam (1994) 

simultaneously considered the routing and location of dumping sites. Giannikos 

(1998) located treatment or final disposal facilities and defined the transportation 

of hazardous wastes, thus minimizing operational cost, risk, difference in risk 

between population centers, and difference in disutility caused by placement of 

facilities. Leonelli, Bonvicini & Spadoni (2000) selected HAZMAT 

transportation routes that minimize costs and risk. The arcs had limited capacity. 

Tarantilis & Kiranoudis (2001) mitigated population exposure by designing the 

HAZMAT distribution routes. Zografos & Androutsopoulos (2002) presented 

two heuristics to solve the routing problem using time windows for HAZMAT 

distribution and studied the optimum deployment of emergency facilities for an 

adequate response in case of an accident. Shih & Lin (1999) and Shih & Lin 

(2003) studied the problem of infectious medical wastes in Taiwan. Zografos & 

Androutsopoulos (2004) defined the HAZMAT distribution problem as the 

vehicle routing and sequencing problem using time windows. Pradhananga et al. 

(2010) presented an ant colony algorithm to solve the HAZMAT transportation 

problem using time windows. Androutsopoulos & Zografos (2012) studied the 

HAZMAT distribution problem as a bi-objective vehicle routing and sequencing 

problem using time windows. Siddiqui & Verma (2015) proposed a linear IP 

model to route and sequence a heterogeneous fleet of ships for transportation of 

oil, thereby minimizing the cost and risk. Bronfman et al. (2015) proposed a new 

HAZMAT routing problem using a single type of product in an urban area 

between pre-selected origin and destination points. 

Multiple products have been considered by many authors. Abkowitz & Cheng 

(1988) minimized risk and cost in HAZMAT transportation, and they focused on 

risk estimation. The levels of risk depended on the type of material, and each 
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material was separately transported. Alternate routes to transport products 

between origin–destination pairs were established. Hu et al. (2002) presented a 

model to minimize costs for a reverse logistics system for several hazardous 

wastes. The model considered operational and governmental limitations in the 

design of an efficient and safe system. Ahluwalia & Nema (2006) developed a 

model for a multi-objective reverse logistics problem for the collection of several 

types of computational wastes. The costs and risks were minimized. Waste 

quantities varied with time, and these quantities were estimated using Monte 

Carlo simulation. Sheu (2007) developed a management system for the treatment 

of three types of hazardous wastes from multiple sources as a reverse logistics 

problem. The logistical costs and risk were minimized. The risk depended on the 

quantity of products being transported. The volume of wastes varied with time. 

Verter & Kara (2008) solved a network design for HAZMAT distribution by 

choosing among previously known paths. They considered various types of 

HAZMAT (gasoline, oil, petroleum, tar, and alcohol) that carried different levels 

of risk. Similar to our model, the risk imposed by a link of the route was 

estimated by the number of exposed people and depended on the type of 

material. No HAZMAT combinations were allowed in a truck. Samanlioglu 

(2013) determined the location of different technology treatment centers, 

recycling facilities, and disposal centers. The model was strategic and prescribed 

the total flow of waste between HAZMAT generators and the different types of 

facilities. The routes between generators and facilities and among facilities were 

preset, rather than designed for minimum risk and cost. Different types of wastes 

were transported in separate trucks. Nema & Gupta (1999) proposed a multi-

objective integer model to optimally solve the problem of collection, treatment, 

and disposal of several hazardous wastes. Truck capacities were not considered. 

The risk imposed by each material depended on the volume of waste being 

transported, the hazard associated with it, the probability of an accident, and the 

exposed population. The model minimized costs and risk. Interactions among 
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materials or the predominance of material risks was not considered. The authors 

applied the model to a test instance with 16 nodes and 20 arcs. Nema & Gupta 

(2003) improved the model proposed by Nema & Gupta (1999) using a goal 

programming model. Hamdi-Dhaoui, Labadi & Yalaoui (2010) studied the 

problem of routing and sequencing by transporting different compatible materials 

in a single truck but without considering the risk; only the transportation cost was 

minimized. They proposed a local search heuristic to solve the problem. Hamdi-

Dhaoui, Labadi & Yalaoui (2011) continued the work of Hamdi-Dhaoui et al. 

(2010) by incorporating two heuristics: Iterated Local Search and greedy 

randomized adaptive search procedure–Evolutionary Local Search.  

In contrast to the described models, the approach presented in the present paper 

allows loading different materials in the same vehicle, which considers the 

vehicle capacity, costs, and population exposure that varies with the truck risk. 

The inclusion of capacity adds additional complexity because more than one 

vehicle is needed to satisfy all the customer demands. For each truck, the 

methodology determines the customers to be visited and the sequence to be 

followed in such a manner that all the products are collected. We note that the 

problem is NP-hard because for a single type of waste, the problem is reduced to 

a vehicle routing problem (VRP), which is NP-hard (Toth & Vigo, 2001). 

4.3. Hazardous collection problem with multiple-product loading 

Different hazardous wastes must be collected from a set of customers located in 

an urban area and transported to a single depot site. All wastes must be collected, 

and a customer must have all its wastes collected by one truck in one visit. The 

transportation network of the urban area is modeled as graph G(N, A). The set N 

of nodes includes the depot, customers, and street intersection nodes. Set A of 

arcs represents the streets. Each customer generates a single type of hazardous 
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waste. However, if a customer produces more than one type of waste, replicas of 

the node can be created: one for each type of waste. All replicas are co-located.  

A fleet of trucks with equal capacities collects all the wastes, starting and ending 

their trips at the depot. The objective of the problem is to minimize both the 

exposed population and the transportation cost. The risk model is based on the 

population exposure (Giannikos, 1998; Wyman & Kuby, 1995). Each hazardous 

waste has an associated risk that corresponds to a maximum radius of reach in 

case of an accident, which is defined by the Emergency Response Guidebook 

(U.S. Department of Transportation, 2012). The population within reach of an 

accident that could happen on an arc in the route is considered as exposed, and its 

size depends on the risk of the waste being carried over that arc. Figure 4-1 

shows this concept of arc (i, j).  

  
a) b) 

Figure 4-1. Computation of exposed population within each arc of the 

transportation network 

The polygons shown in Figure 4-1a) represent census blocks with uniform 

population densities, as indicated by the gray shades. Figure 4-1b) shows the 

exposure zone (―stadium‖) around arc (i, j) based on a material with a known risk 

and its corresponding radius of reach. The total population inside the stadium is 

exposed if arc (i, j) is in the route of a truck. The size of the stadium depends on 
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the risk of the material transported over the arc; for a riskier material, the size of 

the stadium increases and so does the exposed population. We note that the total 

exposed population is overestimated as the stadiums of successive arcs in the 

route intersect with one another. However, because this is not the focus of this 

study, we do not consider this error, which can be easily corrected as described in 

Kara, Erkut & Verter (2003).  

Because the truck risk consists of the collected product with the highest risk, as 

the truck collects the wastes from a series of customers, its risk after each 

collection either remains the same or increases in discrete steps. Figure 4-2 

shows an example of an instance and its solution for a single truck in which only 

the population exposure objective is minimized (and not the transportation cost). 

Figure 4-2a) shows the transportation network. The square (node 0) represents 

the depot, the circles represent the customers, and the framed letters show the 

risk of the material requiring collection at every customer node. The trucks can 

travel only over the arcs (streets). Three compatible materials are considered, 

namely, A, B, and C, with risk A < risk B < risk C. Because the truck risk 

represents the riskiest product in the truck, A + B = B, A + C = C, B + C = C, 

and A + B + C = C.  
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a)                                                                b)  

 
c) 

Figure 4-2. a) Transportation network. b) Sequence of customer node visits. c) 

Actual truck path. 

Figure 4-2b) shows the sequence in which the customer wastes must be collected 

for minimum population exposure, and Figure 4-2c) shows the route over the 

actual transportation network that a truck must follow to collect the HAZMAT 

following the sequence shown in Figure 4-2b). The continuous arrows in Figure 

4-2b) show the collection sequence, and the arcs in Figure 4-2c) represent the 

actual truck routes. Their thickness and the italics letters show the risk in which 

the population is exposed to in that particular step in the sequence or arc of the 

network. Each link (i, j) of the sequence in Figure 4-2b) must be implemented as 

the ―best‖ path between successive customer nodes i and j shown in Figure 4-2c). 

By ―best,‖ we mean the path over the actual network that, among all possible 

paths between nodes i and j, contributes the most to minimize the objective, as 

will be explained in the next subsection.  
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We note that, to follow the optimal sequence shown in Figure 4-2b), the path 

over the actual transportation network [Figure 4-2c)] must visit some nodes twice 

without necessarily collecting waste, e.g., nodes 9 and 15. The hazardous waste 

in node 9 is collected on the first visit, whereas the reason for the second visit is 

that, among all possible paths between nodes 12 and 5 over the transportation 

network, the best one includes node 9. The same reason applies for node 15, 

whose HAZMAT is loaded on the second visit because if they were loaded on 

the first visit, the total exposed population would be much bigger. We note also 

that the truck travels along arcs (3, 11) and (11, 3). We consider risk A when the 

truck travels over arc (3, 11) and risk B when it travels over arc (11, 3) because 

the truck passes through these arcs at different times in its journey and causes 

exposure to different population sizes during each pass (some population is 

exposed twice). 

To expose a smaller number of people to risk, the truck is loaded first with the 

least hazardous products (A) and later with the most hazardous ones (C) 

whenever possible. However, in some cases, loading the less dangerous products 

later in the route is convenient (such as in the case of node 13). 

4.4. Proposed methodology 

4.4.1. Description of the method 

We initially assume that the least cost collection route is sought and that the 

travel cost over an arc is not necessarily proportional to its length. Such route 

could be found by solving a traveling salesman problem (TSP). The usual 

method consists of first constructing an auxiliary fully connected graph G’(N’,A’) 

whose node set N’ contains the depot and the customers. For each and every pair 
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of nodes i, j  N’, arc (i, j)‘ A‘ exists with the same cost as the least cost path 

between i and j over the original graph G(N, A). TSP is applied to this auxiliary 

graph, and the collection sequence is determined. This sequence is then 

transformed to a route over the original network by following the same collection 

sequence and replacing each arc (i, j)‘  A‘ by the corresponding least cost path 

between i and j. 

We now assume that the population exposure is minimized, instead of the cost, 

and that all materials have the same risk. In this case, the truck risk remains the 

same along the route after the first customer waste has been collected. Again, 

TSP can find the solution, and the procedure will be the same except that in this 

case, instead of the cost, each arc (i, j)‘ A‘ will have the same population 

exposure as the least population exposure path between i and j over the original 

graph G(N, A).  

By now assuming that the materials have different risks, the population exposure 

of each arc is not known beforehand compared with the preceding case, and it 

depends on the materials that have been collected by the truck up to the time it 

reaches the arc. Consequently, it depends on the route between the depot and the 

node through which the arc is entered. The TSP cannot be applied, unlike that in 

the previous condition, and we propose a different procedure. By considering the 

same example shown in Figure 4-2, each arc has three possible population 

exposures corresponding to material risks A, B, and C. To solve this problem, we 

construct auxiliary graph ( , )G N A  in the same manner as that in the preceding 

case (least population exposure paths) except that for each pair of nodes i and j, 

three ―least exposure‖ arcs ( , )
m

i j that connect them are now possible, one for 

each material risk m. Once the auxiliary graph is constructed, an IP model will 

find the route, where arc ( , )
m

i j that corresponds to the risk m of the truck that 
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travels from node i to j is chosen for each pair of nodes i, j. This auxiliary graph 

can be constructed for any number of material risks. 

Finally, if the population exposure and cost are minimized, the procedure is 

similar except that the least exposure paths between node pairs now become the 

―least contribution to the objective‖ paths. Computing these paths is possible 

only if the full expression of the objective is known. Because the problem is bi-

objective (cost and exposure objectives), the objective is known only if the 

problem is solved using the weighting method, i.e., minimizing a linear 

combination of population exposure and cost, with known weighting factors α 

and (1 - α) respectively. The objective would then be expressed as 

(1 )   Z EP C        (4.1) 

where EP is the total exposed population, C is the total cost, and   ≤ α ≤   is the 

weight of the population exposure objective.  

4.4.2. Steps of the method 

We now formally define the following sets, parameters, and variables. 

Sets and parameters 

R Set of risks or waste types 

K  Set of trucks 

N, N  Sets of nodes of the original and auxiliary graphs 

CN  \{0}CN N , i.e., the set of nodes including customers only 

A, A   Set of arcs of the original and auxiliary graphs 

IR  Set of ordered pairs (i, m), meaning that customer i generates a 

material with risk m 
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D
m 

 Set of risks r such that the mixture of r and m is equal to r. It includes 

r = m 

COM  Set of pairs (m, r) such that products with risks m and r are 

compatible 

0  Depot node 

α Weight of the population exposure objective 

m

lhEP  Exposed population by a truck with risk m traveling over arc (l, h)  

A  

lhc  Travel cost over arc (l, h)  A 

m

lhc  Contribution of arc (l, h)  A to the objective; (1 )   m m

lh lh lhc EP c  

P
m
(i, j) Least objective value path between i and j  A for a truck with risk m 

( , )
m

i j  Arc of the auxiliary graph between i and j used for the route when the 

truck risk is m 

m

ija  Attribute (weight) of arc ( , )
m

i j  

qi Amount of hazardous waste generated by customer I  V. Note that 

q0 = 0 

Q Capacity of a truck 

Decision Variables 

k

ijx  
1 If truck  goes from node  to node : ,

0 otherwise

  



k K i j i j N
 

k

iy  
1 If truck  loads product from customer 

0 otherwise

 



k K i V
 

km

ijw  

1 If truck  transports material with maximum risk 

between nodes ,

0 otherwise

k K m R

i j N

 






 

Ci
k
:  Amount of waste transported by truck k  K before visiting node i  

N . C0
k
 = 0 



108 

 

 

First step 

The first step of the solution approach consists in constructing auxiliary graph 

( , )G N A  as follows: 

Initialization. N  = {customers, depot node 0}. A , the empty set. Pick a 

value for α. 

i. For every possible risk m, compute the contribution of each arc (l, h)  A 

to the objective; (1 )   m m

lh lh lhc EP c . 

ii. For every pair of nodes (i  N , j  N ) and every risk m  

a. Find path P
m
(i, j)  G(N, A) between i and j that contributes the least to 

the objective value for a truck with risk m. Use any shortest path 

algorithm with m

lhc  as the attribute of arc (l, h)  A. 

b. Add arc ( , )
m

i j  to the set of arcs A  whose attribute 
m

ijz  is the contribution 

of path P
m
(i, j) to the objective;

( , ) ( . )

 
m

m m

ij lh

l h P i j

a c . 

Once the first step is finished, a fully connected auxiliary graph is obtained.  

 

Second step 

Solve the IP problem over ( , )G N A .   

 

             0 0

,      

    
C C

m km m km

ij ij j j

i N j N m R k K j N m R k K

Min Z a w a w  (4.2) 
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C

k

i i

i N

y q Q k K


    (4.3) 

             1 : ( , )k

i C

k K

y i N i m IR


     (4.4) 

            0 1
C

k

j

j N

x k K


    (4.5) 

             ,k k

ij jh

i N h N

x x k K j N
 

      (4.6) 

             , : ( , )k k

hi i C

h N

x y k K i N i m IR


        (4.7) 

            
\ \

1 , , , : \
C

km kr m

ij hi C

j N i h N i

w w k K i N m r R r D m
 

         (4.8) 

            \

1 , , ,

: \ , ( , )

km k

ij i C

j N i

m

w y k K i N m r R

r D m i r IR



     

 



 

(4.9) 

             , ,km k

ij ij

m R

w x k K i j N


     
(4.10) 

             1 , ,km

ij

m R

w k K i j N


   
 

(4.11) 

            1 , , , ( , )k k

i j Cy y k K i j N m r COM     

 

(4.12) 

            (1 ) , ,k k k

j i i ij CC C q Q x k K j N i N       

 

(4.13) 

             , , 0,1 , , ,k k km

ij i ijx y w k K i j N m R    

 

(4.14) 

             0 ,k

jC k K j N         (4.15) 

Objective function (4.2) minimizes the exposed population and the total transport 

cost, weighted by α and (  − α), respectively. Constraints (4.3) – (4.7) and (4.13) 

are capacitated VRP constraints. Constraint (3) limits the capacity of each truck. 

Constraint (4.4) indicates that each customer is attended to using a single truck. 

Constraint (4.5) indicates that each active truck only leaves the depot once. We 

note that the equality in constraint (4.5) would force all trucks being used even if 

not needed. The forced use of all trucks in any situation could result in a sub-
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optimal solution in terms of population exposure and cost. Constraint (4.6) 

establishes the flow balance in all nodes and all trucks. Constraint (4.7) indicates 

that if truck k travels from node h to node i, then a load is added to the truck, 

which comes from customer i.  

Constraints (4.8) – (4.11) allow following and updating the risk associated with 

the trucks along the arcs and nodes in their route over ( , )G N A . Because the 

truck risk can only increase when collecting HAZMAT, if truck k exits node i 

with risk m, constraint (4.8) indicates that the same truck could not have entered 

node i with a risk higher than m. We note that none of the constraints preclude a 

truck from loading a product with lower risk m at node j if the truck goes from i 

to j with higher risk r. Constraint (4.9) guarantees that if a truck loads a product 

with a type r risk from a customer, then the risk of the next arc cannot be lower 

than risk m, i.e., the truck cannot leave node i with a risk lower than r. 

Constraints (4.10) and (4.11) indicate that if truck k goes from node i to node j, 

its load will only have one type of risk. Constraint (412) avoids incompatible 

material combinations. Constraint (4.13), also known as the Miller–Tucker–

Zemlin constraint (Miller, Tucker, & Zemlin, 1960), records the volume of 

products after each customer collection of the truck and avoids the appearance of 

sub-tours; Constraints (4.14) and (4.15) define the nature of the decision 

variables. 

If p is the number of hazardous wastes, n is the number of nodes (including the 

depot), and k is the number of trucks, then the model has (n
2
k(1 + p) – nkp + n), 

i.e., O(n
3
kp) decision variables and (k + np + 2kn + kp

2
 (2(n – 1) + (n

2
 – 1)) + 

3k(n
2
 – n)) = O(n

3
k

2
) constraints, excluding domain constraints (4.14) and (4.15). 

Instead of using the absolute values of the exposure and cost objectives fE and fC, 

respectively, we normalize them so that they become comparable. We use the 

normalization in Bronfman et al. (2015). 
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where Zi is the normalized objective (cost or population exposure), fi is the 

objective function before normalization, Ii is best value of fi, and AIi is its worst 

value. 

We use the following ad hoc cuts to tighten the model and accelerate the problem 

solution. 

     
,

, , ( , )
 

    
m

m r

i ij C

j N r D

y w k K i N i m IR  (4.17) 

Constraint (4.17) indicates that if truck k collects a type m product from customer 

i, the outgoing arc can only have a risk that is the same or higher than that from 

customer i.  

Third step 

The solution of the IP formulation is a sequence of arcs ( , )
m

i j  for each truck k 

(described by variables 1km

ijw ) that prescribes the order in which the customer 

waste must be collected to minimize the objective. The third step consists of 

finding the route over the actual transportation network, represented by graph 

G(N, A), which is found by replacing each arc ( , )
m

i j  with its corresponding path 

P
m
(i, j)  G(N, A).  

Figure 4-2b) and Figure 4-2c) show this concept. Figure 4-2b) shows the visit 

sequence of a truck (arcs ( , )
m

i j ), whereas Figure 4-2c) shows the corresponding 

route over the original transportation network. 
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Finally, the total transportation cost is the sum of the costs of all arcs in the 

routes, and the total exposed population is the sum of all exposed populations in 

all routes.  

4.4.3. Other Mixing Rules 

Some particular cases exist in which combining the transport of different types of 

hazardous wastes can generate risks that are different from that associated with 

the most hazardous waste. Usually, these combinations are prohibited by 

incompatibility restriction (4.12). However, our model can also solve this special 

situation by adding new constraints. For example, if the mixture of a risk A 

material with a risk B material results in a type C risk (which may have a higher 

or lower risk level than type B), the constraints take the following form: 

 
\ \

1 ,
 

     
C

kB kA

ij hi C

j N i h N i

w w k K i N  (4.18) 
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(4.19) 
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(4.21) 

Constraint (4.18) indicates that if a truck travels along arc (h,i) carrying risk A 

wastes, then the same truck cannot leave node i with risk B because although it 

loads a type B material at node i, the combination of A and B does not result in 

risk B. Constraint (4.19) states that a truck that loads a type A material at node i 

cannot exit that node carrying a type B material because if the truck has entered 

node i carrying a type A material, the output risk would be A; if it has entered i 

carrying a type B material, the output risk would be C. Constraint (4.20) 

establishes that if a truck travels along arc (h,i) with risk B and collects a risk A 
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material at node i, then the truck will leave that node with a type C risk. The 

same idea is replicated in constraint (4.21). 

4.5. Case Study 

4.5.1. Description 

We applied the proposed methodology to a hypothetical case based on a network 

of streets, roads, and industrial areas in Santiago, Chile. The city has an area of 

641 km
2
. The transportation network has 6,231 arcs and 2,205 nodes; in other 

words, this is a very large network. We must mention that the city has a high 

population density, reaching 446.9 inhabitants per square kilometer (INE, 2010). 

Without losing generality, we assumed that cost cij of using arc (i, j)  A is 

proportional to its length. Of the sample 3,500 industries in the Metropolitan 

Region of Santiago, as reported by Cisternas-Véliz (2003), we selected 167 

factories whose industrial activities correspond to manufacturing of chemical 

substances and products. The factories are distributed throughout the city. Five 

types of wastes with risk notations A, B, C, D, and E were considered based on 

the production activity in the sample of selected industries. The types and 

quantities of wastes generated from each factory were randomly assigned.  

Article 87 of the Chilean legislation concerning the handling of hazardous wastes 

(MINSAL, 2004) stipulates that certain wastes cannot be transported in a single 

vehicle because they may produce violent reactions such as explosions or fire. 

We defined 14 groups of hazardous wastes, designated A-1 to A-7 and B-1 to B-

7. The wastes included in these groups were corrosive liquids, explosives, 

pesticides, alcohols, and other chemicals.   
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Table 4-1 lists the detailed information of the five types of hazardous wastes. It 

was created based on information from the following sources: Chilean Code 382 

Hazardous Substances—Terminology and General Classification (INN, 1998), 

Decree 298 on the Regulation of Hazardous Shipments through Streets and 

Roads in Chile (MINTRATEL, 1995), Decree 148 on the Regulation of Safe 

Handling of Hazardous Wastes in Chile (MINSAL, 2004), and the Emergency 

Response Guidebook (ERG) (U.S. Department of Transportation, 2012). The 

first column in the table lists the identifier for HAZMAT types. A is an aqueous 

waste, B is a hydride, C is a mineral acid, D is a waste derived from chloride, and 

E is a metallic waste. The second column determines the compatibility group of 

the wastes for transportation and storage. The third column indicates the number 

of emergency response guide (ERG number) for each material. The information 

in the ERG considers inherent potential risks of the material in terms of fire, 

explosion, and health effects and information about immediate isolation of the 

incident location and evacuation distances for small and large spills, as well as 

emergency response actions, including first-aid activities. Finally, the fourth 

column shows the isolation distances (hazard radius) established in case of spill 

incidents involving small quantities of the materials during daytime. 

Table 4-1. Initial isolation and protective action (U.S. Department of 

Transportation, 2012) 

Id. 
Compatibility  

group 
ERG number 

 Hazard radius 

(m) 

A A-4 129 50 

B B-4 137 100 

C B-7 131 200 

D A-7 156 300 

E B-4 156 400 
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For this case study, we considered that the five waste classes are transported 

during a single day. lists the risk dominance and compatibility of the five types of 

waste being studied when these were transported by a single truck. To determine 

the risk when two or more different risk levels were transported together in a 

same truck, we used both Table 4-1 and Table 4-2. 

Table 4-2. Waste–waste compatibility rules and risk dominance 

Id\Id A B C D E 

A A - C D - 

B - B C D E 

C C C C - E 

D D D - D E 

E - E E E E 

The region was divided into eight collection zones (see Figure 4-3). Zone 8 is a 

residential area with no factories. This regional division is frequently used to 

distribute products in the City of Santiago because the neighborhoods grouped in 

Figure 4-3 have similar municipal regulations. Table 4-3 lists the regional 

information. #H is the number of factories in each zone, and qA, qB, qC, qD, and qE 

are the quantities of waste types A, B, C, D, and E, respectively, generated in 

each of the zones. Each zone has two trucks with sufficient capacity to carry the 

wastes from each subdivision. The problem is independently solved for each 

zone. 
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Figure 4-3. Collection zones in Santiago, Chile 

Table 4-3. Detailed information on the study zones 

 #H qA qB qC qD qE 

Zone 1 32 7640 6680 3040 4260 5720 

Zone 2 36 5440 10890 14420 20540 11740 

Zone 3 16 8040 2170 4170 4120 1970 

Zone 4 30 12440 1840 3560 5940 3390 

Zone 5 21 1560 4370 1820 2760 2810 

Zone 6 21 5600 3270 6060 2310 3770 

Zone 7 11 3840 2490 2170 4980 2230 
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4.5.2. Results 

The case study was solved using the commercial solver CPLEX Version 12.6 and 

coded with AMPL version 20130109 on a PC with Intel processor i7-2600, 3.4 

GHz, 16-GB RAM, and an Ubuntu Server 12.04 LTS. 

Figure 4-4 shows the solutions for minimum cost and minimum exposed 

population when the wastes from the 36 customers in Zone 2 are collected. The 

route of each truck is separately shown. The population density is indicated by 

shades; darker shades indicate higher population density. Figure 4-4a) and Figure 

4-4b) show the routes that result in minimum exposed population for the two 

trucks used (disregarding transportation costs). 

Figure 4-4a) shows that the truck begins its route unloaded at the depot until it 

loads hazardous product A (indicated by the thinnest line). The truck then 

collects type A wastes from several customers (indicated by segmented line 

sections). Finally, it loads type D wastes, indicated by changes in the type and 

thickness of the line (continuous double lines). The truck risk remains at D until 

it reaches the depot. We note that in the last section, the truck also collects type 

A wastes, with the dominance between A and D being maintained. Figure 4-4b) 

shows that the truck begins its route at the depot. It then loads risk B products 

followed by C products, changing the truck risk from risk B to risk C. The truck 

risk remains constant (indicated by segmented lines) until it loads risk E 

products. The truck risk remains at E on the return trip to the depot (indicated by 

continuous double lines). Figure 4-4c) and Figure 4-4d) show the minimum cost 

routes for both trucks. In these two figures, the line thickness is the same for all 

routes given that there is no interest in counting the exposed population or the 

change in risk of the trucks. Figure 4-4 shows that the solutions for the minimum 

exposed population tend to be longer and therefore costlier. These routes avoid 

transit through areas with high population densities. On the other hand, the routes 
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with the minimum cost are shorter but expose a larger population. In both sample 

cases (cost and exposed population), incompatibility conditions are observed. 

Figure 4-4a) shows how special care is taken regarding the loading of type D risk 

wastes at the end of the route to avoid exposure of the population to higher risk. 

Similarly, Figure 4-4b) shows that the collection of type E wastes is done at the 

end of the route. 

If transportation cost is the objective, HAZMAT loading order is not a concern, 

except in not loading incompatible materials on the same truck. Therefore, Figure 

4-4c) shows that the first truck collects type A and D wastes from 14 customers, 

and Figure 4-4d) shows that the second truck collects types B, C, and E wastes 

(22 customers), both in any order. 

We study the effects of changing the relative weights of both objectives, i.e., 

changing the value of α, and obtaining an approximation to the Pareto-optimal 

(or non-inferior) solution set. Table 4-4 and Table 4-5 list the non-inferior 

solutions obtained for each in the study zones. In the tables, Z1 is the value of the 

exposed population, Z2 is the transportation cost, and T is the CPU time in 

seconds. The tables show a conflict between the two objectives. For example, in 

Zone 1, when the value of total risk Z1 is optimized, the distance covered by both 

trucks is 307,576 km, which is 1.96 times the distance covered when Z2 is 

minimized. In addition, the exposed population measured in terms of the total 

number of people exposed by the routes is 482,214, which is approximately half 

of the extreme solution that minimizes cost. This effect is observed in all the 

study zones. 
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a) b) 

  

c) d) 

Figure 4-4. (a) and (b) Minimum risk solutions and (c) and (d) minimum cost 

solutions in Zone 2 
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Table 4-4. Non-inferior solutions: Zones 1 to 4 

 
Zone 1 Zone 2 Zone 3 Zone 4 

α Z1 Z2 T Z1 Z2 T Z1 Z2 T Z1 Z2 T 

0.0 903547 155629 306 1402070 126354 14 623614 89565 1 1061540 98155 14 

0.1 833642 157974 23973 1241740 127333 16 494322 89919 2 1047880 98184 7 

0.2 801631 160202 8737 1188350 129013 31 442571 91277 2 997973 99136 17 

0.3 599435 177142 50875 1113960 130272 38 388960 93681 2 932783 101475 34 

0.4 529482 189183 6514 1039610 134074 50 352480 96819 7 810527 111129 43 

0.5 527862 190300 3875 995684 138140 411 352480 96819 4 807328 112124 43 

0.6 527861 190300 1545 985787 140171 288 330726 98466 7 805208 112602 33 

0.7 521715 197604 13601 940303 151982 14656 330726 98466 8 805208 112602 23 

0.8 518628 201312 9481 939033 154250 2239 330726 98466 9 805208 112602 100 

0.9 491501 239727 3767 931954 165060 23456 330726 98466 7 804982 118679 29 

1.0 482214 307576 3894 926804 166340 24836 325137 106926 15 795138 129177 27 

 

We can also see that the computation times are higher in Zones 1 and 2 because 

the associated graphs are highly asymmetrical and there are many solutions with 

the same objective value. In these two zones, a wider spectrum of efficient 

solutions is present given the large differences in the magnitude of their extreme 

solutions. We note that the model is particularly sensitive to the number of nodes 

in each zone. 
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Table 4-5 Non-inferior solutions: Zones 5 to 7 

 Zone 5 Zone 6 Zone 7 

α Z1 Z2 T Z1 Z2 T Z1 Z2 T 

0.0 1314110 91416 52 506311 76038 20 528548 73727 1 

0.1 750240 93549 93 465917 76492 14 308804 74024 1 

0.2 667934 94980 57 441919 77395 4 177098 74747 1 

0.3 658548 95595 32 441241 77461 4 173410 74971 1 

0.4 637343 96600 37 441241 77461 4 160615 76052 1 

0.5 618596 97714 18 440194 77574 5 160615 76052 1 

0.6 618596 97714 26 432915 79370 4 154897 77119 1 

0.7 618596 97714 16 432915 79370 4 150658 79311 1 

0.8 604930 104584 31 428229 82316 5 127131 84378 1 

0.9 603127 107253 19 426224 89092 11 127131 84378 1 

1.0 580803 148435 16 425712 98510 13 125158 90324 1 

 

Figure 4-5 shows the efficient boundary (Pareto optimal solutions) for each of 

the first two zones. In each case, we see the same conflict of objectives. Each 

point in the figures represents a different combination of weights of the 

objectives and a different route configuration. 

  

a)

 

b)

 

Figure 4-5. Trade-off curve of the first two zones 
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Because this is the first time that a problem of multi-product collection with 

mixed load on the same truck is dealt with, no other method is available for 

comparison with our works. Any comparison would mean simplifying the 

problem in such a manner that our approach would not make sense anymore. 

However, the results can be compared with those using separate trucks for each 

material, which is the problem solved in the literature. Using five available trucks 

in all cases, Table 4-6 list the comparison of a single product with multiple-

product loading in two extreme cases: minimization of exposed population only 

and minimization of cost only.  

The results are shown in terms of the number of required trucks, exposed 

population objective (EP), and cost objective (Cost). The results listed in Table 

4-6 show how the solutions with multi-product loading completely dominate 

those of the separate loading in the sense that both objectives are better (by far, in 

most cases) when multiple-product loading is used, irrespective of what objective 

is being minimized. The only exception is Zone 5 where, when the cost is 

minimized, the exposed population increases compared with that of the single-

product loading. However, by slightly changing the weights of the objectives, a 

solution that dominates the single-product solution is found with a cost of 96,732 

and an exposed population of 732,601. Further, the number of trucks is always 

smaller: at most four in one case, three in three cases, and two in three cases.  
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Table 4-6. Comparison between the single and multiple product loading 

  Zone 1 (min EP) Zone 1 (min cost) 

 
Zone 2 (min EP) Zone 2 (min cost) 

  Single  Multiple  Single Multiple  
 

Single  Multiple  Single Multiple  

#Trucks 5 2 5 2 
 

5 2 5 2 

EP 616045  482214  1237880  903547  

 
1069150  926804  1587930  1402070  

Cost 511759  307576  312198  155629  

 

333838  166340  263279  126354  

      

  Zone 3 (min EP) Zone 3 (min cost) 

 
Zone 4 (min EP) Zone 4 (min cost) 

  Single  Multiple  Single Multiple  

 

Single  Multiple  Single Multiple  

#Trucks 5 2 5 2 

 

5 3 5 2 

EP 460922  325137  790990  623614  
 

1074320  790773  1479860  1061540  

Cost 227717  106926  202895  89565  

 
245761  162004  210350  98155  

      

  Zone 5 (min EP) Zone 5 (min cost) 

 
Zone 6 (min EP) Zone 6 (min cost) 

  Single  Multiple  Single Multiple  

 

Single  Multiple  Single Multiple  

#Trucks 5 3 5 2 
 

5 3 5 2 

EP 754824  575217  1170300  1314110  

 
509814  405792  671858  506311  

Cost 232946  173088  194901  91416  

 

197635  125485  159891  76038  

        

  Zone 7 (min EP) Zone 7 (min cost) 

       Single  Multiple  Single Multiple  

     #Trucks 5 4 5 2 

     EP 153917  114281  183309  174312  

     Cost 110789  92182  103743  73727  

     

4.6. Conclusions 

We have proposed a new approach to solve the problem of hazardous waste 

collection in a transportation network. The proposed work minimizes the risk of 

exposure of the population, expressed quantitatively as the total population 

affected by the route in case of an accident, and minimizes transportation costs. 

In contrast to other contributions in the literature, we propose loading multiple 

products in the same trucks, which reduces both the cost and the exposed 

population. We design a methodology to appropriately use the multi-product 

loading, which includes precomputation of the best paths among all relevant 

nodes in the network for different waste risks and the formulation of an IP model 

that monitors risks along the route followed by the capacitated trucks, keeping 
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track of the changes in the risk that each truck exposes the population to as new 

waste is added. The risk associated with each truck tends to increase when 

products with higher risk are loaded. We suggest an extension of the model that 

considers other mixing conditions. 

The model is applied to HAZMAT collection over the transportation network in 

Santiago, Chile. The results indicate significant differences between the extreme 

minimum cost and minimum risk solutions. Therefore, determining a set of 

intermediate non-dominated solutions that allow decision makers to select the 

best alternative becomes necessary. 

This study can be extended to several directions. From the multi-objective 

perspective, we could incorporate criteria such as exposure time, total hazard, 

expected consequence, and other factors. Although a distribution model can be 

trivially formulated as a variant of the collection model, a model of pickup and 

delivery would be an interesting extension in which the risk associated with the 

trucks may increase or decrease when the customers supply or require 

HAZMAT. Preliminary tests with such a model indicate that designing an 

efficient heuristic would be necessary to solve large instances in short times. 
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5. CONCLUSION 

This thesis develops a new vehicle routing problem considering product mixing in the 

case in which there are interactions between the different products loaded in the same 

vehicle or truck compartment. Three real applications are addressed, modeled and 

solved. The contributions are both theoretical and practical. 

In Chapter 2 we state, formulate and solve a new milk-blending problem. A firm has to 

collect raw milk to manufacture final products. The firm has a heterogeneous truck fleet. 

There is a set of farms spread in a large rural area. There are three qualities of milk and 

each farm produces a single quality of milk. The farms are grouped as a cooperative, so 

all milk must be collected on a daily basis. Minimum amounts to each quality of milk 

need to be met at the plant. The blending of different qualities of milk is allowed, but the 

quality of resulting blending becomes equal to the lesser quality loaded. We optimize 

this approach using an integer programming model to solve small instances with a 

branch-and-cut algorithm.  

A real instance we use as a case study has 500 farms and it is hard to solve. So, we 

develop an approximate procedure with three stages: 1) Build clusters to divide the large 

area into districts; 2) Allocate trucks and minimum amounts of each quality of milk to 

satisfy the quotas; 3) Solve the small areas with the integer model. 

The results show that the milk blending is convenient in terms of the profit, when is 

compared with both the current intuitive procedure and the use of exclusive trucks 

(VRP). 

In Chapter 3, the blended milk collection problem using collection point is addressed. 

We allow milk collection points to accumulate milk produced by small and distant 

farms. The vehicles can collect milk from big farms and from the collection points. We 

formulate the problem with an integer programming model, and we solve it with a 

heuristic procedure. This procedure has three stages: 1) solve optimally an ad-hoc 
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covering problem, to allocate the small and distant farmers to a collection points; 2) 

generate feasible routes with an Ant Colony meta-heuristic and 3) select optimally the 

best routes with a set-partitioning formulation.  

The results emphasize the advantage of the milk collection allowing blending and 

collection points. The vehicles travel lesser distances and the number of stops is 

decreased, saving costs and time. The profit is better using our procedure when is 

compared with other approaches in the literature. 

Finally, in Chapter 4, a new HAZMAT collection problem is presented, modeled and 

solved. In this case, a set of hazardous wastes needs to be collected using a 

homogeneous truck fleet. Each waste has his exposure radius. We count the total 

population exposed by trucks considering that the exposed population changes when 

new and different waste is added to the truck. 

We solve an instance in the city of Santiago, Chile using the commercial software 

CPLEX. We compare our results with the use of exclusive trucks for each type of waste. 

The results show the effectiveness of the proposed approach. There are economies of 

scope when different products are transported together in a same truck.  

Future work along this line includes the construction of more sophisticated heuristics to 

solve the different instances of the problems in short time. Another extension consists in 

the development of a general framework to analyze and solve the vehicle routing 

problem with product mixing, addressing any type of mix in the vehicles.  
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