

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERIA

ADVANTAGES AND DISADVANTAGES

OF ASPECT ORIENTED DESIGN IN AN

ENTERPRISE ENVIRONMENT

 PELAYO J. BESA

 Thesis submitted to the Office of Research and Graduate Studies in

partial fulfillment of the requirements for the Degree of Master of

Science in Engineering.

Advisor:

YADRAN ETEROVIC

 Santiago de Chile, (July, 2011)

 2011, Pelayo Besa Vial

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERIA

ADVANTAGES AND DISADVANTAGES OF

ASPECT ORIENTED DESIGN IN AN

ENTERPRISE ENVIRONMENT

 PELAYO JOSÉ BESA VIAL

 Members of the Committee:

YADRAN ETEROVIC

ANDRÉS NEYEM

NELSON BALOIAN

IGNACIO LIRA

 Thesis submitted to the Office of Research and Graduate Studies in partial

fulfillment of the requirements for the Degree of Master of Science in

Engineering.

 Santiago de Chile, (July, 2011)

ii

This thesis is dedicated to my

parents.

iii

ACKNOWLEDGEMENTS

I would like to thank Yadran Eterovic for his support and pacience during this

endeavour.

INDEX

Pág.

DEDICATION ... ii

ACKNOWLEDGEMENTS .. iii

INDEX OF TABLES ... v

INDEX OF FIGURES .. vi

RESUMEN ... vii

ABSTRACT .. viii

1. INTRODUCTION .. 1

2. RELATED WORK ... 3

3. DESCRIPTION OF THE APPLICATION’S ORIGINAL OO DESIGN 6

3.1. The dispatcher’s order handler component .. 8

3.2. The worker’s task capturing proxy .. 10

3.3. The worker’s processing parser pool ... 12

4. CRITERIA FOR COMPARING THE OO DESIGN WITH THE AOD

(RE)DESIGN ………………………………………………………………….14

5. ANALYSIS OF AN ASPECT ORIENTED (RE)DESIGN OF THE APPLICATION

DESIGN ………………………………………………………………16

5.1. Accounting in the dispatcher .. 16

5.2. Backing up the captured data ... 20

5.3. Persistent storage throughout the application .. 24

5.4. More possibilities for an AOD (re)design .. 29

6. AOD STRENGTHS AND WEAKNESSES FOR ITS ADOPTION IN AN

ENTERPRISE .. 33

6.1. AOD strengths .. 34

6.2. AOD weaknesses ... 39

7. CONCLUSIONS ... 41

REFERENCES ... 43

v

INDEX OF TABLES

Pág.

Table 1 – Accounting reusability comparison: AOD provides an improvement when

compared to the OO design. ... 19

Table 2 – Accounting evolution comparison: although AOD provides separation of

concerns it also introduces the problem of obliviousness. 19

Table 3 – Backup reusability comparison: the AOD design separates concerns making it

easier to reuse when compared to the OO designs. .. 23

Table 4 – Backup evolution comparison: although evolution is improved in the AOD,

obliviousness can create an issue when making modifications. 24

Table 5 – Order storage reusability comparison: although AOD creates a separation of

concerns it can be harder to understand. .. 28

Table 6 – Order storage ease of evolution comparison: AOD adds complexity but

separates concerns, making the modules more flexible. .. 29

Table 7 – Innovation attributes that are analyzed by companies when deciding on

adopting a new technology: these attributes focus on the technology’s future, its

benefits and its complexity. ... 33

Table 8 – Organization characteristics that are analyzed by companies when deciding on

adopting a new technology: these characteristics focus on the company’s current

status and how it faces new technologies in general. ... 34

Table 9 – Costs and benefits of using AOD in an industry as obtained from our analysis

in section 5: when comparing OO design to AOD, developers obtain a series of

benefits when using AOD but there are still issues such obliviousness that need to

be resolved. .. 35

vi

INDEX OF FIGURES

 Pág.

Figure 1: The dispatcher’s components and their relationships with the customer and

worker. ... 7

Figure 2: The worker’s components and their relationships with the dispatcher and the

internet.. 8

Figure 3: Order Handler class diagram – responsible for processing orders that come in

from the application’s customer API and splitting them into individual tasks. 9

Figure 4: Proxy class diagram – responsible for receiving tasks, capturing their data

through the IPManager and storing the captured data on the capture buffer. 11

Figure 5: Parser Pool class diagram – responsible for parsing the data in the capture

buffer and storing the resulting information in the results buffer. 12

Figure 6: Accounting OO design – responsible for checking permissions and quotas on

receiving and processing orders through an accounting singleton........................... 17

Figure 7: Accounting AOD (For AOD diagrams we will use the notation proposed in

(Bustos et al, 2007)) – allows checking permissions and quotas without the order

processor and storage being intervened, creating a separation between the two

concerns.. 18

Figure 8: Backup OO design alternative 1 – although it requires developing an external

application to backup the capture buffer it does create a separation of concerns. ... 20

Figure 9: Backup OO design alternative 2 – although it does not require the development

of an external application, the backup is now entangles with the task processor’s

concerns.. 21

Figure 10: Backup AOD design – provides the best of both OO designs, allowing for

separated concerns without the disadvantages of a separate application. 22

Figure 11: Order storage OO design – responsible for providing persistent storage for an

Order in the application. ... 26

Figure 12: Order storage AOD design – allows for lazy loading and saving and also for

more fine grain storage control without intervening in the application. 27

Figure 13: AOD design of SLA capturing – this aspect allow the application to capture

SLA results without the application knowing it is being intervened, although

obliviousness can cause problems when intervening certain classes. 30

Figure 14: AOD of exception handling in OrderProcessor – this aspect allows for

varying degrees of exception handling, from broad application-wide issues to

specific case-by-case control.. 31

vii

RESUMEN

El diseño orientado a aspectos permite separar conceptos transversales que surgen en un

diseño orientado a objetos y que no son adecuadamente modularizados por este. A pesar

de su gran avance y sofisticación teórica, su aplicación en proyectos industriales sigue

baja. En este trabajo se buscaron algunas razones de por qué esto no se ha dado.

Para ello, primero se diseñó un sistema en una empresa real, consistente en una

plataforma distribuida de captura de datos. Luego, se extrajo y se determinó una serie de

aspectos, rediseñándose la aplicación para incluirlos. Por último, se compararon los dos

diseños, tanto desde el enfoque técnico (cómo mejoró el sistema en adquirir buenas

caracteristicas de diseño), como desde la organización y el proceso de desarrollo de

software.

Se concluyó que, a pesar de que la orientación a aspectos presenta grandes ventajas en

términos de facilitar la reusabilidad y evolución de los módulos, también manifiesta

algunos problemas, como posibles impedimentos para el trabajo en equipos y costos

relacionados con entrenamiento.

Palabras Claves: orientación a aspectos, ingeniería de software, diseño de software,

desarrollo de software

viii

ABSTRACT

Aspect oriented design aims at separating crosscutting concerns that aren't adequately

modularized by object oriented design. Despite the important advances made in its

theory its application in an enterprise setting remains low. In this work searched for

reasons why this hasn't occurred.

Towards this goal, we first designed a software system in a real company, a distributed

data capture platform. We then extracted and determined a series of aspects and

redesigned the application to include them. Finally, we compared these two designs

from a technical standpoint (how the system was enhanced by obtaining better design

characteristics) and from a organization and development process standpoint.

We concluded that, although aspect oriented design presents important advantages by

facilitating reuse and evolution of modules, it also presents some problems, such as

certain impediments to teamwork and costs related to training.

Keywords: aspect orientation, software engineering, software design, software

development

1

1. INTRODUCTION

When designing a software system using a purely object oriented (OO) approach we are

often left with concerns that appear throughout the system and cannot be encapsulated in

a cohesive module. Aspect oriented design (AOD) is a design paradigm that aims at

separating and modularizing these crosscutting concerns.

AOD achieves its purpose through the use of aspects. These are units of code composed

of a join-point and an advice. The join-point defines a point in the OO system’s

execution in which the advice —a set of statements— should be executed. This allows

the system to execute without knowledge of the aspect’s existence, which facilitates

more cohesive and less coupled modules. A more detailed description of AOD can be

found in (Kiczales et al, 1997).

Aspect orientation is not new. Over the past 10 years, aspect-oriented programming and

design, and aspect mining have made important advances as described in textbooks and

papers, presented at conferences or published in journals. In spite of this (Weise et al,

2007) observed the fact that then, 2007, AOD hadn’t disseminated as successfully as it

should have. More recently, (Laddad, 2009) notes that AOD has followed a standard

Gartner Hype Cycle as determined by (Fenn, 1995) for new technology. Laddad

determines that AOD is currently on the slope of enlightenment. In this phase users

begin to use and experiment with the technology. During this period the technology

must grow in acceptance or die out.

It is in this light that we present this work. Its main objective is to show AOD in an

actual industry setting. Although AOD has recently begun to penetrate the industry, few

case studies have been presented. Most studies focus on theory and analyze simple

examples such as logging and tracing instead of real-world applications. For project

managers and developers to realize the benefits that AOD brings to a project, actual case

studies that show its costs and benefits must be published.

2

In this paper we show the advantages and disadvantages of implementing an AOD

solution in a real-world setting, both directly on the application but also the impact on

the development process.

We start with an object-oriented design of a real application, in which we apply all

applicable design patterns. This application strikes a balance in complexity to both

allow us to apply AOD in non-trivial ways and determine the impact it has on the project

as a whole, while being simple enough to isolate the costs and benefits to be assured that

they are a product of AOD and not the complexity of the program. Then, we analyze the

design to find design features that decrease the application classes’ cohesion or that

increase their coupling. Next, we redesign the application trying to separate those

design features into aspects. Finally, we compare the resulting aspect-oriented design

with the original object-oriented one and analyze the benefits that this brings.

3

2. RELATED WORK

The reasons behind why AOD hasn’t been widely adopted are still being studied. In

(Wiese et al, 2007) reviewed the steps that must be taken in order to convince the

industry to use AOD. These steps included the availability of tools to facilitate the use of

AOD, disseminating the virtues of AOD and presenting positive case studies and

successful implementations of important applications. Since then, AOD tools have been

implemented for a multitude of programming systems and papers have continued

studying and refining AOD.

In spite of these advances AOP was still not widely adopted in 2009, when (Muñoz et al,

2009) analyzed 38 open source projects to determine how AOP was being utilized and

concluded that AOP was implemented in the projects for basic scenarios only. They

presented various possible reasons for this situation, such as a lack of knowledge and

skill in extracting cross-cutting concerns, lack of trust in AOP because of security

concerns, and the possibility that the tools (AspectJ in this study) were not flexible

enough. Unfortunately, since the study focused on open source projects, their results

can’t be directly applied to the enterprise environment.

(Pohl et al, 2008), from SAP Research, present their findings when studying a SAP

environment. They overview a few non-trivial aspects and determine difficulties they

observed when developing and implementing AOD in their company. Our work

confirms how some of the observed difficulties, such as the maintenance issues created

by obliviousness and the cost of training developers under a new paradigm, present new

challenges to promote the use of AOD in an industry setting and also reviews the

advantages AOD delivers to a project.

The following studies focus on some of the specific issues that impede AOD adoption

and try to design and develop solutions to address them. One task that these papers

consider important towards the adoption of AOD in the industry is the presentation of

4

AOD success-stories, stories in which AOD has improved the software development

project.

Throughout the years one of the areas in which papers have been published announcing

successful implementations has been in software development frameworks. This appears

to be one of the areas where AOD has been more widely employed in an enterprise

setting. For example, (Yao et al, 2005), (Urban et al, 2010), and (Mortensen et al, 2006)

present frameworks that implement aspects and also facilitate AOD development. They

present interesting use case scenarios and success stories, but do not address the impacts

of AOD on a project. (Yao et al, 2005) is a C++ AOD implementation taking advantage

of C++ language constructs for said implementation, allowing the use of generic C++

compilers and systems. A similar work can be found in (Urban et al, 2010) which

presents a case study on PUMA, a framework to develop applications that analyze and,

optionally, transform C or C++ code. Although they present a successful case, they do

not look into the impact of using AOD on a project’s team or company. When

comparing designs to demonstrate an improvement on the side of AOD, they focus

solely on empiric OO code based metrics and not on AOD ones. These same problems

are present in (Mortensen et al, 2006), which investigates the use of AOP specifically in

C++ frameworks. They report a reduction of code and an improvement in modularity

although their analysis is highly code driven and focuses on code refactoring more than

initial design. Although in this publication they briefly mention the obliviousness issue,

the authors find that it does not apply to them and don’t go into more details about it.

Another interesting area is proving of the usefulness of AOP in terms of metrics. (Ortiz

et al, 2008), (Cui et al, 2009), and (Narendra et al, 2007) present case studies to validate

the impact of AOP on the software. To compare OOP and AOD they focus mostly on

standard OO code metrics such as LOCs and NOCs. An analysis on the separation of

concern or a design perspective, such as the one shown in this paper, is missing. Another

missing analysis is the impact on business and team development, which we emphasize

in this work. (Cottenier et al, 2007), a project in Motorola focusing mostly on design in a

5

business context, reach the same conclusions by simple inspection, but unfortunately, an

analysis on the impact on development processes is missing here as well.

How AOP reacts to changes in real-world projects is also a subject that requires

investigation before the industry is convinced to adopt it. (Greenwood et al, 2007) and

(Nunes et al, 2008) use a real test case and on it apply different scenarios that a project

could face during a normal development cycle. These papers utilize metrics imported

from OO analysis such as LOCs and NOCs and new metrics specifically developed to

determine separation of concerns. In (Greenwood et al, 2007) the authors present the

―ripple effect‖ of making changes on the code and note how this affects different

modules. The issue of obliviousness appears but they do not recognize it as such. In

(Nunes et al, 2008) the authors conclude that AOP has better modularization than OO

design but a larger code size which, they determine, would increase the difficulty of

understanding the module.

6

3. DESCRIPTION OF THE APPLICATION’S ORIGINAL OO DESIGN

In this section we describe the OO design of the application used as a basis for this

work. First we describe its structure in general and then we focus on some of the

components to which we will refer to in later sections. This application, a distributed

data capture platform, is both complex enough to present non-trivial aspects and simple

enough to allow us to associate arising issues that occur to vices caused by cross-cutting

concerns and not to the complexity of the problem.

The platform must be able to connect to certain web sites on the Internet, download the

corresponding web page, analyze it to extract specific information, and store the

information for later retrieval and processing. This job must be performed thousands of

times per day, which adds complexity in terms of bandwidth, processing, and interaction

with the sites. These interactions pose the main architectural challenge for the platform.

Since it can interact thousands of times a day with a single site, care must be taken so

that the sites do not identify the platform as a non-human user; otherwise, the chances of

the platform being blocked and denied access to the web pages are high. To solve this

problem we can use an IP cool down: a waiting period between requests at the cost of

fewer requests made by the platform to that website through the same IP. To counter

this reduction in the number of requests per unit of time we can simply add more IPs.

This is where the distributed nature of the platform comes into play.

The platform’s high-level design follows a standard producer/consumer architectural

pattern, with a dispatcher producing batches of tasks, which the workers must perform.

Once a worker performs a batch of tasks, it sends the results back to the dispatcher and

requests more tasks.

Following the flow in [Figure 1] and [Figure 2], we can see that the platform’s customer

submits an order to the Order Handler, which splits it into several tasks, which are

handed over to the Task Queue Manager. Any free worker will request tasks from the

dispatcher, which will pack a batch of these and send them to the worker. The worker

7

will capture and process the data, according to the tasks, and return the results to the

Receiver. Finally, the Receiver will pack all the results for one customer in a report, and

will make the package available for the customer to request.

In the following sections we will provide a more in-depth look at some of the

components of the application.

Figure 1: The dispatcher’s components and their relationships with the customer and

worker.

8

Figure 2: The worker’s components and their relationships with the dispatcher and the

internet.

 The dispatcher’s order handler component

The Order Handler is in charge of receiving an order and converting it into the

appropriate tasks. The order is composed of a header, which contains the parameters

necessary to process it, and a payload, which will be processed to create tasks.

[Figure 3] is a class diagram for the Order Handler. The Order Handler receives an order

at the OrderReceiver, which passes it off to the OrderProcessor. This class splits the

order into its header and its payload and sends both to the PluginHandler. This allows

the PluginHandler to select the correct plug-in to process the payload. The

PluginHandler is a factory that creates an instance of the correct plug-in, parses the

payload with said plug-in, and returns a number of tasks. These tasks are returned to the

OrderProcessor who finally forwards the tasks off to the TaskReceiverHandler in the

Task Queue Manager.

9

Figure 3: Order Handler class diagram – responsible for processing orders that come in

from the application’s customer API and splitting them into individual tasks.

To keep these figures simple, we have excluded from the diagram the following

modules: Logging, Monitoring, Tracing, and Accounting. We can see the specific

classes where each of these mechanisms intervenes by taking notice of the letters

representing each one. We will review the Accounting mechanism with greater depth

ahead.

This design has beneficial properties. Firstly and on a more general note, having one

tight module – isolated from the rest of the application, with only one ―entry‖ point and

one ―return‖ – allows for separation and reusability. With very few modifications we

may use this module in any other application where we might need to process different

types of data and pass on that data to another module.

10

Secondly, the use of a plug-in system allows us to easily develop plug-ins for different

types of orders without even stopping the application’s execution. Another benefit is that

having the splitter in its own class gives us the ability to redesign the order system by

modifying only one specific class. Finally, having the receiver separated from other

classes allows us to modify the reception mechanism and abstract it from any processing

the may be done on the order. If we want to switch the reception mechanism or modify it

in any way then we only need to modify one class.

All these design benefits give us lower coupling between classes and higher cohesion,

which translates into more reusable and better evolving modules.

 The worker’s task capturing proxy

The Proxy [Figure 4] is in charge of receiving a task, capturing the web page indicated

by the task’s request through one of its many IPs, and storing the web page on a buffer

for later processing.

Internally, the TaskReceiver receives a task, creates a TaskProcessorThread and hands

off the task to it. The TaskProcessorThread will extract the request from the task and

hands it off to the IPManager. The IPManager is a singleton that controls a pool of IPs,

each one with a cool down period for each domain. To maintain the Cooldown class

separated from the IP class we use a wrapper class that merges the two, leaving the

IPManager to actually manage a pool of IPWrappers. The IPManager selects an IP that

has already been cooled down for the specific domain in the request and makes the

request, returning the captured page to the TaskProcessorThread that made it.

That TaskProcessorThread then passes the resulting capture on to the CaptureBuffer and

ends its execution. The CaptureBuffer is a singleton in charge of receiving the captures,

storing them and keeping track of which captures have already been processed by the

parsers. To maintain this information and to separate the Capture class from the

11

―processed/unprocessed‖ state we use a wrapper, joining the Capture with its boolean

state.

This design persues a series of benefits. Requests on the proxy are parallelized. This

allows the proxy to maximize the amount of requests and not be hindered by connection

issues. If one request is slow the impact on the rest of the captures should be minimal.

This same reason explains the use of a buffer, to separate the capture and the processing

process from each other. If the module that processes the captured web page is slow for

any reason, this should not impact the capture process.

Figure 4: Proxy class diagram – responsible for receiving tasks, capturing their data

through the IPManager and storing the captured data on the capture buffer.

Taking a closer look at this design we can detect a series of key features that fulfill the

objectives that developers look for in a good OO design. Firstly, just as we observed in

the Order Handler, the reception of the tasks is separated from the processing. This

allows us to separate components, for example by placing the proxy on its own machine

or reused on a different project altogether. Secondly, the use of wrappers, both for IPs

and Captures, ensure that they can be reused in other projects. They also allow us to

modify behaviors without editing the core components. For example, if in a future

12

requirement there is the need for another condition for an IP to be marked as available to

be used, developers would not need to modify the IP or the Cooldown classes. The only

necessary modification would be to add the requirement to the IPWrapper. Finally the IP

and Capture classes obtain a greater cohesion since they are now separated from their

states, making them more easily reusable and easier to evolve.

 The worker’s processing parser pool

The Parser Pool [Figure 5] is in charge of getting a capture from the CaptureBuffer,

processing it with the appropriate plug-in and writing the result onto the ResultsBuffer.

It does this through the use of multiple, independently threaded RequestHandlers.

Figure 5: Parser Pool class diagram – responsible for parsing the data in the capture

buffer and storing the resulting information in the results buffer.

13

Each RequestHandler operates on its own thread. The amount of threads is constantly

being optimized according to the amount of unprocessed captures, CPU workload and

ParserPool trends.

This design provides various benefits. Firstly, the use of plug-ins allows modifying the

parsing process without stopping the system. Similar to the Order Handler, if a new

requirement appears, for example the need to parse a page differently, writing a new

plug-in and, using the integrated versioning system, deploying it without stopping the

capture and parsing process improves the application’s speed. Secondly, the pool of

CaptureHandlerThreads permits fast and independent processing. Using independent

threads allows the captures to be processed without being delayed if one process is

slowed down. Using a thread pool allows the ParserPool to manage the threads

according to environmental and external variables. Through this, the ParserPool can add

and remove threads as needed to maximize the speed with which the captures are parsed.

This leads to another benefit: the use of a ResultBuffer.

The ResultBuffer separates the capture parsing with any subsequent jobs that need to be

executed on the result. It manages a pool of ResultWrappers that separate the Result

from any state variables that need to be associated to it.

14

4. CRITERIA FOR COMPARING THE OO DESIGN WITH THE AOD

(RE)DESIGN

For a long time, software engineers —researchers and practitioners alike— have been

studying what characterizes a well-designed application. (Eder et al, 1994) stress the

importance of achieving two objectives, currently considered design principles: low

coupling and high cohesion. Designs that obey these principles result in modules,

components and classes that are easier to understand, change, correct and maintain.

For many years object orientation has been the predominant paradigm for designing and

developing software, and studies, such as (Chidamber et al, 1994), have been made to

measure the extent to which a particular object-oriented design follows the principles.

For AOD things are not as developed. Studies such as (Wampler et al, 2007), (Zhao et

al, 2004) and, (Zakaria et al, 2003) focus on developing metrics for AOD, but most of

these studies focus on code analysis, leaving design analysis to a secondary position.

Since AOD design is based on OO design and aims to solve problems such as

crosscutting concerns and classes with high coupling or low cohesion it is safe to say

that the main objectives we pursue with our AOD code are also to strive for low

coupling and high cohesion while keeping a high level of understandability.

Using the Goal/Question/Metric approach by (Basili et al, 1994), (Sant’ Anna et al,

2003) propose asking a series of questions to predict the maintainability, reusability and

understandability of systems (and system components). In their most general form, these

questions may be stated as follows:

1. How easy is it for the system to evolve?

2. How easy is it to reuse the system elements?

15

For both of these questions Sant’ Anna et al. propose the same sub questions:

1. How easy is it to understand the system?

With this question we are asking:

 • How concise is the system (number of components, attributes and methods)?

 • How well are concerns localized (analysis of scattering and entanglement)?

 • How high is the coupling in the system?

 • How high is the cohesion in the system?

2. How flexible is the system?

With this question we are asking:

 • How well are the concerns localized (analysis of scattering and entanglement)?

 • How high is the coupling in the system?

 • How high is the cohesion in the system?

By responding these questions we should be able to see the answers to the more global

queries.

These queries are essential for motivating the use of AOD. If the system is easy to

understand then its maintenance costs in time and training for new developers will be

lower. If the evolution and reuse of the system and its elements is improved that effort

and money can be saved in other company projects.

AOD allows for these improvements by modularizing crosscutting concerns.

If we analyze our AOD design in light of these objectives and, in the case of our

questions we leave code analysis to a secondary, more speculative, position we can

compare an OO design with an AOD one and determine the benefits that AOD imparts

on a projects.

16

5. ANALYSIS OF AN ASPECT ORIENTED (RE)DESIGN OF THE

APPLICATION

Our AOD approach is based on finding aspects in the original OO design. These aspects

are obtained by searching for crosscutting concerns and classes with low cohesion or

high coupling at the design level. In the following sections, we examine several points

where AOD could be included in the original OO design. The objective in this section is

to show how the AOD design fares against the OO design keeping in mind the

objectives previously mentioned and commenting the additional efforts that would be

necessary to maintain an AOD project over an OO design project in a ―real-world‖

company.

 Accounting in the dispatcher

When a customer sends an order, certain checks must be made; for example: Is the

number of tasks sent by the customer within his/her quota? Does the customer have

permission to execute the plug-ins he/she requires? Furthermore, the requests must also

be logged, so the customer can be charged later. This situation repeats itself when the

customer requests a package with results: Is it his/her package? Does the request

comply with the customer’s quota?

17

Figure 6: Accounting OO design – responsible for checking permissions and quotas on

receiving and processing orders through an accounting singleton.

In the OO design [Figure 6], the OrderProcessor in the dispatcher invokes the

Accounting module, passing the required parameters to perform the checks. This creates

two problems. First, it couples the OrderProcessor module with the Accounting module.

Second, the OrderProcessor is concerned with some accounting responsibilities:

calculating accounting parameters.

These problems can be solved via an Accounting aspect [Figure 7]. This aspect is in

charge of obtaining all the necessary data required by the Accounting module and then

invoking said module. This decouples the OrderProcessor from the Accounting module,

and increases its cohesion.

18

Figure 7: Accounting AOD (For AOD diagrams we will use the notation proposed in

(Bustos et al, 2007)) – allows checking permissions and quotas without the order

processor and storage being intervened, creating a separation between the two concerns.

When comparing the AOD and the OO design we can observe that the AOD has the

benefit of having lower coupling and higher cohesion. In it, the accounting concern also

presents less scattering and entanglement than in the OO design. In the latter the

accounting concern is entangled in both the Accounting module and in the

OrderProcessor while in the AOD the concern is localized solely in the Accounting

module.

Following the criteria presented in Chapter 4, we compare reusability and evolution in

both designs. From this comparison we observe that reusability [Table 1] improves in

the AOD with respect to the OO design. The former benefits from the lack of entangled

and scattered concerns as well as from the existence of a clear separation of the modules.

19

Evolution [Table 2] presents a similar situation. In the AOD, evolution of the

Accounting module also benefits from a clear separation of the modules making it easy

to modify and understand. Flexibility presents issues on both systems. Evolving the

modules in the OO design requires dealing with the entangled and scattered code. The

AOD design is free of this issue but presents a problem when modifying the

OrderHandler. Because of obliviousness any modification on the OrderHandler may

potentially modify the join points that the Accounting aspect uses causing the aspect’s

advice not to execute or to execute improperly.

Table 1 – Accounting reusability comparison: AOD provides an improvement when

compared to the OO design.

 OO design AOD

Understandability Impaired by entanglement and

scattering in both modules.

Elements are clearly separated

and understandable.

Flexibility OrderHandler must be cleaned

up prior to reuse.

Both modules can be easily

reused.

Table 2 – Accounting evolution comparison: although AOD provides separation

of concerns it also introduces the problem of obliviousness.

 OO design AOD

Understandability Impaired by entanglement and

scattering.

Elements are clearly separated

and understandable.

Flexibility Extensions to the modules

require working around the

entangled design.

Obliviousness impairs easy

OrderHandler modifications.

20

 Backing up the captured data

As we mentioned in section 3.3, whenever the proxy captures a web page’s HTML, this

is added to a buffer for parsing. If this parsing fails in any way and this is not noticed

immediately, then a backup of that day’s HTML capture is necessary for reprocessing.

Two possible ways to solve this problem in an OO environment are:

1. Have another thread/program observing the buffer periodically copying the

HTML captures that have not been backed up [Figure 8]

2. Have the buffer or proxy write to a different backup buffer when it receives a

captured HTML [Figure 9]

Both of these methods have drawbacks. OO design alternative 1 involves implementing

a completely new application or thread in the current program. This new application

will have to keep track of which HTML files have been backed up, either in the backup

system or in the buffer, while coordinating with the buffer to avoid concurrency

problems. OO design alternative 2 lowers cohesion and raises coupling.

Figure 8: Backup OO design alternative 1 – although it requires developing an external

application to backup the capture buffer it does create a separation of concerns.

21

Figure 9: Backup OO design alternative 2 – although it does not require the development

of an external application, the backup is now entangles with the task processor’s

concerns.

Using AOD we can avoid these issues altogether by creating a point cut such that every

time a capture is made an aspect creates a thread that backs up the HTML on the backup

buffer. This eliminates the need to keep track of which captures have already been

backed up potentially saving a substantial amount of time and processing power [Figure

10].

22

Figure 10: Backup AOD design – provides the best of both OO designs, allowing for

separated concerns without the disadvantages of a separate application.

Using the criteria from Chapter 4 we compared the reusability of all three designs [Table

3]. Contrasting the understandability and flexibility of the three designs we reach the

conclusion that the AOD is easier to reuse. OO design alternative 1 has a higher

complexity and the backup program is easy to reuse only if the buffers are similar. OO

design alternative 2 is impaired by entanglement and scattering, suffering both in

understandability and flexibility because of the fact. The AOD suffers from none of

these issues since its elements are clearly separated and understandable.

23

Table 3 – Backup reusability comparison: the AOD design separates concerns making it

easier to reuse when compared to the OO designs.

 OO design

alternative 1

OO design

alternative 2

AOD

Understandability Increased

complexity.

Impaired by

entanglement and

scattering.

Elements are clearly

separated and

understandable.

Flexibility Backup program is

easy to reuse only if

the buffer is similar.

Requires removing

the entangled and

scattered elements.

Modules can be

easily reused.

Comparing the evolution of the designs [Table 4] has similar results. OO design

alternative 1 suffers from increased complexity, although expanding everything but the

CaptureBuffer is easy and straightforward. OO design alternative 2 suffers from

entanglement and scattering. Finally, the AOD’s elements are clearly separated and

understandable but evolution of the TaskProcessor could potentially break the aspects’

point cuts.

24

Table 4 – Backup evolution comparison: although evolution is improved in the AOD,

obliviousness can create an issue when making modifications.

 OO design

alternative 1

OO design

alternative 2

AOD

Understandability Increased

Complexity.

Impaired by

entanglement and

scattering.

Elements are clearly

separated and

understandable.

Flexibility Easy to expand,

except on the

Capture Buffer.

Reuse of the

TaskProcessor

requires working

around the entangled

and scattered

elements.

Backup only requires

rewriting the point

cuts.

Obliviousness

impairs

TaskProcessor

evolution.

 Persistent storage throughout the application

As in most applications there is a need for persistent storage. Two of options to handle

this task in the application are to use an ORM or custom code. Given that the application

will need to handle millions of objects, using an ORM is not an option given its

overhead. Custom code will allow us to tweak and optimize the handling of objects in

ways that are simply not possible otherwise.

Also, because of the variable size of some objects such as orders and captures which can

range from a few kilobytes to several megabytes, storing some of these objects

completely in a relational database is impractical. To solve this, a module in charge of

persistence might choose to distribute object storage throughout various systems. For

example, it may store the order information in a relational database but the payload in a

file system.

25

Another necessary feature is to control when and how much information is obtained

from the database. Certain attributes of an object might be necessary at different

moments of the application’s execution. At these times we only want to load necessary

data. For example, in the case of the Order, we might only want to know which customer

owns it. Loading the full Order, payload included, would waste resources. By obtaining

and handling only the pertinent information the objects are smaller and easier to handle

and there is less traffic with the storage system. An extreme example of this is ―lazy-

loading‖, where data is not loaded until it is necessary which lowers memory usage and,

if not abused, I/O or network traffic by loading less information.

Since most ―non-trivial‖ storage situations will be similar, we will analyze the Order and

OrderStorage classes to compare their designs.

In the OO design [Figure 11] the Order class calls methods from OrderStorage to obtain

and save data from storage. Implementing lazy-loading in the Order class requires

modifying its getters to obtain the information from storage in case they haven’t been

already obtained. One problem is if the order has many attributes to obtain it will make

many requests thus lowering performance. To solve this issue the application needs to

load different subsets of attributes at different moments in time. This requires that the

attributes or subsets of attributes be available through specific methods. Finally, the

Order class needs to implement a method to save the object into storage. Lazy storage

could be implemented in some classes, by intervening the class’s setter methods, but in

most cases it is desirable to store the objects completely and not partially.

26

Figure 11: Order storage OO design – responsible for providing persistent storage for an

Order in the application.

One big problem that this design has is that the storage concern is now entangled

throughout the application. Any class that needs the order or needs to save an order must

call the storage mechanism through the Order class. Because of this, changes in the

saving mechanism might require extensive modifications in other classes.

Using AOD [Figure 12] we can solve some of these issues. By weaving an aspect

between the Order and the storage classes we can cleanly separate the Order from the

storage allowing ―lazy-loading‖ without having the Order even know it. This allows the

application developers to focus on the main flow of the program and not worry about the

loading portion of the objects.

Saving an object presents a problem, though. What happens if a developer requires an

object to be saved at a specific moment? For example, if the developer designing a part

of the application needs an Order to be saved a certain time, how can he ensure this to

27

happen? One solution is to set a note somewhere, external from the application,

reminding the OrderStorage aspect developer that he needs the Order to be saved at said

point. The obvious problem with this solution is that this is a soft requirement. The

compiler will not enforce this requirement and the application may be compiled without

the need being fulfilled.

Figure 12: Order storage AOD design – allows for lazy loading and saving and also for

more fine grain storage control without intervening in the application.

A hard requirement would be a method call to the Order’s ―save‖ method. In this case

the OrderStorage aspect could have a pointcut on the method call and execute a ―save

advice‖. The drawback to this solution is the entanglement and scattering problems it

produces. Though less than in the OO design the same negative side effects are present.

Yet another solution to this problem would be to create an ―Aspect Contract‖ which

includes all the necessary point-cuts that the aspect, in this case the OrderStorage aspect,

must implement. This would allow the point-cut requirements to be defined externally

from the class while permitting them to be enforced.

28

When comparing the designs in terms of reuse [Table 5] the AOD presents advantages

except when saving objects. Each of these solutions to the storing problem (method call,

―aspect contract‖, etc.) present disadvantages either in entanglement or

understandability.

Evolution of the modules [Table 6] also demonstrates the advantages of AOD. Although

saving can be difficult to understand, the separation of concerns allows for easy

development of the design.

Table 5 – Order storage reusability comparison: although AOD creates a separation of

concerns it can be harder to understand.

 OO design AOD

Understandability Impeded by entanglement

and scattering.

Elements are clearly separated and

understandable.

Saving can be difficult to understand.

Flexibility Order needs to be cleaned

up.

OrderStorage might can

be too dependant on the

application.

Although the OrderStorage could be

reused, the aspect that links it to the

application would need to be

rewritten.

29

Table 6 – Order storage ease of evolution comparison: AOD adds complexity but

separates concerns, making the modules more flexible.

 OO design AOD

Understandability Impaired by entanglement and

scattering in both modules.

Elements are clearly separated

and understandable.

Saving can be difficult to

understand.

Flexibility In the Order requires working

around the storage code.

Both modules are flexible.

The problems observed in extracting storage into its own aspect shine a light on an

important problem: when should a concern be extracted into an aspect? In this case, the

extraction of Order Storage into its own aspect presents a series of difficulties. The main

one is ensuring that the object is stored when necessary. Unless a solution can be

devised and implemented an aspect may not be the best choice The small number of use

cases where implementing it is helpful, may be in itself an important shortcoming of

AOD. Since AOD requires a specific training and preparation, management and

developers might see that the cost-benefit ratio is not beneficial to their company.

 More possibilities for an AOD (re)design

An important feature in an industry setting is the set of Service Level Agreements. These

help determining if the platform is capturing all the data it must and help in ensuring that

it is being properly processed. They have a broad reaching impact both internally, it can

be used for alarms and monitoring, and externally, it assures the customer that his data is

being captured and handled correctly for accounting and reporting purposes.

30

Throughout the platform many metrics should be calculated. For example, the ―correct

captures‖ metric must be calculated in the Receiver. Or in the OrderHandler, parser data

should be gathered to know how many tasks should be captured.

Figure 13: AOD design of SLA capturing – this aspect allow the application to capture

SLA results without the application knowing it is being intervened, although

obliviousness can cause problems when intervening certain classes.

In an OO design setting these metrics could be created in an external module and called

from the application lowering cohesion and raising coupling. Using AOD [Figure 13],

these SLA metrics can be condensed into a single, well-defined module instead of

dispersed throughout it, allowing for a more simple application with less dependencies

and highly focused and reusable classes.

In this work we are taking a look at an industry perspective of AOD, where subjects

such as documentation are important as they imply extra costs. In this light, AOD lowers

the need of a large amount of documentation. In the OO design for SLAs for example,

each metric must be carefully recorded, not just to only know what is being calculated,

but also where specifically in the program. Having the SLA calls distributed throughout

31

many modules requires larger amounts of documentation. By having all SLA code in

one place the need to specify exact call points in the documentation is eliminated. This

advantage of not having concerns spread throughout the design is replicated in a large

number of modules.

Another module that benefits from AOD is loading of configuration settings. Most of the

modules in the platform require external setup that must be specifically loaded, be it

from a flat file, a database, etc. In an OO design environment we would require a

configuration module to load these configurations and in many cases this configuration

module will need to be called from other classes, creating more entanglement. Using

aspects we can implement a lazy loading method as mentioned in 5.3 when analyzing

storage and keep the configuration module separated from the rest of the code.

This approach allows the design of modules without having the modules dealing with

specific loading mechanisms. These modules may take for granted that the variables

exist and are loaded, lowering coupling and raising cohesion. This facilitates evolution

and reuse at the expense of a slightly lower understandability.

Figure 14: AOD of exception handling in OrderProcessor – this aspect allows for

varying degrees of exception handling, from broad application-wide issues to specific

case-by-case control.

32

Another situation in which the use AOD is particularly beneficial is exception handling

[Figure 14]. Every time that an unexpected error occurs, the error must be caught and

appropriately handled. In an OO design solution the way to handle this is with a

―try/catch‖ block. This may cause a series of issues. First it clutters the code. Many

times the developer is faced with a large number of try/catch blocks that obscure the

code and paving the way for more errors. By reacting to exceptions through the use of

aspects, the code is greatly cleaned up and the main flow of the program is not entangled

with what are mostly seldom called pieces of code. A second advantage is that errors are

avoided. By using an appropriate aspect the developer can treat all exceptions of the

same kind in one, well-defined block. A final advantage is a drastic reduction in the

amount of necessary code. Since similar exception handlers can be grouped into a single

aspect the developer now needs to write, maintain and document less code.

33

6. AOD STRENGTHS AND WEAKNESSES FOR ITS ADOPTION IN AN

ENTERPRISE

In this section we will look at the problem from a software company’s viewpoint. To do

this we will take into account the work of (Cho et al, 2001), which presents a series of

attributes that companies should take into account when deciding to adopt a technology.

These variables are separated into two groups: Innovation attributes [Table 7] and

Organization characteristics [Table 8].

Innovation attributes are attributes directly related to the technology. They focus on its

probability of future successful adoption in the market, its current maturity, its relative

benefits with the existing technology, its compatibility with the current technology and

its perceived complexity.

Table 7 – Innovation attributes that are analyzed by companies when deciding on

adopting a new technology: these attributes focus on the technology’s future, its benefits

and its complexity.

Variable Operational definition

Expectation for market trend The degree of expectation that a technology will be

pervasively adopted in the future.

Maturity of technology The degree to which a technology is perceived as

mature in the IT industry.

Technology compatibility The degree to which a technology is perceived as

being consistent with the existing way of thinking,

procedure, experiences, skill, and needs of the

receivers.

Relative benefits The degree to which a technology is perceived as

being better than the current technology.

Complexity The degree to which a technology is perceived as

relatively difficult to understand and use.

34

Organization characteristics are related to the company that is evaluating the technology.

This includes an analysis of management’s receptiveness to new technologies, the

companies attitude towards training its staff on new technologies, the companies

satisfaction with the current technology and how engrained the current technology is

within the company as represented by the developer’s average years using it.

Table 8 – Organization characteristics that are analyzed by companies when deciding on

adopting a new technology: these characteristics focus on the company’s current status

and how it faces new technologies in general.

Variable Operational definition

Managerial innovativeness The degree of managerial receptivity of

technological change.

Intensity of new technology

education

The degree of importance put on educating staff on

new technology.

Satisfaction with existing

technology

The degree of satisfaction with the development

performance and product quality using current

technology.

Average years of IT professional

experience

Average years of IT professional experience of IS

staff.

 AOD strengths

AOD technology has been developing for already more than fifteen years. During this

time it has matured both on a theoretical and practical level. This maturity and academic

interest in the study of AOD apparently hasn’t translated into a rapid adoption rate.

According to (Laddad, 2009) AOD is on the slope of enlightenment in the Gartner Hype

Cycle (Fenn, 1995). This prediction indicates that, if it is adopted as a technology, its

usage will grow steadily.

35

AOD also benefits from a partial compatibility with the existing paradigm, OO design.

Since AOD works as a ―layer‖ that extends OO design, its barrier to entry is lowered.

Regardless of this ease, AOD still forces developers to be able to analyze and extract

concerns, which requires training and practice. Because of AOD’s short life, older

generations of developers, who are currently working in the industry, have not been

trained to use it. New developers recently entering the industry from a college or

university background may also not have been exposed to AOD. This forces a company

that actively seeks to implement AOD solutions to train its developers in designing and

programming with this new paradigm in mind.

When analyzing the relative benefits of AOD over the current technology, OO design,

we must first examine the problems in OO design that AOD looks to resolve. In the

following, we will review the lessons that could be obtained from the previous section

[Table 9].

Table 9 – Costs and benefits of using AOD in an industry as obtained from our analysis

in section 5: when comparing OO design to AOD, developers obtain a series of benefits

when using AOD but there are still issues such obliviousness that need to be resolved.

Costs Benefits

Obliviousness issue impacts ease of

evolution and requires more communication.

Easier to understand modules.

Requires training Better reusability.

Lack of best practices/industry standards Better evolution in many cases.

 Less errors.

 Less development time.

Two elements that introduced costs to the project are scattered and entangled concerns.

These create several problems. First, they make both the design and the implementation

of the application less understandable. For example, in section 5.1 we saw how the

Accounting module was related to the OrderProcessor. In an OO setting, the developers

36

of the OrderProcessor module would have to understand sections of the Accounting

module and how it relates to them. Instead of focusing on just the concern of processing

the order to extract tasks, the developers will have to understand the variables and calls

required by the accounting concern.

Evolution and reusability suffer the same problem. To reuse modules they must be

cleaned up to eliminate unnecessary concerns. When evolving a scattered or entangled

concern problems may appear in unexpected sections. These two tasks can be difficult to

do and might require large amounts of time and effort. For example, in section 5.2 we

examined backing up the information captured in the TaskProcessor. In the second

proposed design, to reuse the TaskProcessor in another project, developers must now

clean up calls, references and variables that are required by the Backup module. These

may include error handling, data preparation, among others. When evolving the

TaskProcessor the entangled backup concern interferes. The code that required clean up

to be able to reuse the module interferes and must be worked around. Evolving the

backup module also might create problems. For example, if the backup team changes an

error that the backup module throws when failing a connection the TaskProcessor team

must now update their module to correctly handle the modified error. These

modifications may involve many different modules and may be difficult and lengthy to

implement. All of these problems create a burden on developers which impact on

development times and costs.

These problems can be countered with more documentation, which should explain

module interaction with greater detail. For example, understandability in the

OrderProcessor may be improved if the Accounting module contains exactly what it

requires from the OrderProcessor and what behaviors might be expected. The same

occurs with the evolution and reusability. If the backup module is correctly documented

the developers in charge of the TaskProcessor will know how to clean it up and how to

use the backup module. Documenting a simple, compact concern with low variability

may be a simple task, but if this concern is scattered across multiple modules the time

taken documenting changes can be important.

37

In spite of this, this type of static documentation has an important shortcoming: it has a

slow reaction to change. To counter a constantly changing project channels of

communication and alerts are required. When the backup team changes the error

definition in the Backup module the TaskProcessor team, and any other team that

depends on it, must be alerted in some fashion. This raises the cost of the project, adding

an entire structure to support interactions on teams that should be dealing with separate

concerns.

OO design separates and simplifies large portions of a project but some cross-cutting

concerns still remain, increasing complexity. AOD provides a series of benefits by

allowing developers to simplify the design by extracting crosscutting concerns into its

own modules.

One such benefit is that AOD increased understandability by reducing crosscutting

concerns and isolating, for the most part, these concerns into separate modules. For

example, the Accounting aspect extracts the task of reviewing permissions and quotas

from the OrderProcessor, simplifying both modules by condensing their concerns. This

results in lowering the amount of documentation necessary and also the required

communication between teams, if separate teams develop these modules. This ultimately

lowers design, development and debugging time and therefore costs.

The separation and decoupling of modules, which provides better understandability, also

provide better reusability and easier evolution. With higher reusability companies can

create a library of modules that can be easily reused in different projects. In an OO

setting many of the modules would require extensive cleaning up to be reused in

different and unrelated projects. This cleanup takes time, both from understanding the

module and removing the unnecessary code, and has the potential to introduce errors.

For example, in the Backup AOD, the only change necessary to reuse the Backup

module is rewriting the Backup point cut. Even this modification could be unnecessary

if proper company standards are in set, for example, using the same method name for all

transactions that require backup.

38

Evolution also benefits from AOD. The extraction of crosscutting concerns simplifies

evolution. In an OO setting developers must work around concerns that shouldn’t be in

an object’s scope. This forces developers to spend more time studying the module before

intervening and increases the potential for error. AOD extracts the concerns into separate

modules, isolating the locations where intervention is necessary. One such scenario is in

the realm of error handling. In our AOD solution error handling is extracted into an

aspect, which reacts appropriately; logging the error and sending warnings if necessary.

On adding a feature that throws an error this error must be added, if previous error

handling point-cuts don’t already handle the exception, to the aspect. This module is the

only point where the application must be modified to handle this error, focusing the

implementation and removing the error handling concern from the added feature’s code.

Another scenario in which evolution is improved is in measuring SLAs. Suppose we

need to add a new metric to the SLA. In an AOD design this SLA metric can be added

directly into the SLA module without modifying any other components. This aspect can

intervene in the appropriate join points without the intervened classes even knowing that

the aspect had intervened. The changes were focused on one module, simplifying

development and reducing the chance of errors.

39

 AOD weaknesses

As mentioned in the previous section, AOD still has unsolved issues. One problem is

obliviousness, which increases the possibility of error and also raises costs by requiring

more communication and care. By obliviousness we refer to the issue we observed when

trying to evolve the classes on which the aspects intervene, the base classes. Developers

working on the base classes may invalidate join points that an intervening aspect

requires. This can cause the aspect to execute incorrectly or even not to execute at all.

For example, in the AOD backup design, if the developers in charge of the

TaskProcessor change the method name for ―storeCapture‖ or even change the method

signature, then the Store point cut becomes invalid and the Backup aspect is never

executed. If such a change is made then the team in charge of the aspect must somehow

be alerted. As such, this problem requires a solid communication structure between

teams, which translates into more costs. In a project with one small team in charge of

maintaining both the aspect and the intervened classes then this is a small issue. In a

large company, where teams are separated to work on different components this issue

can have an important negative impact. This becomes even more patent in companies

where personal rotation is high.

Another attribute that can create problems for AOD is that it allows for a complete

modification of an applications flow. There are no limits on what an advice can do and

what it can modify. In a project this could lead to confusion and errors. For example,

writing an aspect that modifies a widely used method in a project. Since the original

developers expected a certain behavior this modification might break many, if not all,

the components that depend on it.

OO design is a mature and proven technology. Companies are satisfied with its

performance are confident when determining time and costs on projects that use it. This

entrenchment and security forms a barrier against new ideas and concepts that could

introduce uncertainty. OO design has been an industry standard for decades. According

to Cho et al., developers that have been using a technology for more time distrust new

40

technologies since they have, potentially, more to sacrifice. Although AOD does not

completely replace OO design it does require a new way of thinking and designing an

application, replacing certain techniques that more senior developers might dislike.

Another factor in a company’s culture that influences in AOD adoption is if a

company’s managers embrace new technologies. Placing emphasis on educating

developers and implementing these new technologies in projects will lower the difficulty

of trying to adopt AOD. If managers are not receptive to technological change or do not

invest in education of new technologies in the company then they will have a harder

time and require other arguments to finally embrace AOD.

All these points need to be taken into consideration for each company that’s thinking of

adopting AOD. From a technological standpoint AOD appears to be a technology worth

investing. From an organizational standpoint the risk of becoming and early adopter

depends on corporate culture with the enterprise.

41

7. CONCLUSIONS

AOD presents distinct advantages in lowering coupling and raising cohesion in a real

world project and is gaining acceptance in the industry (is on the ―slope of

enlightenment‖ in the Gartner Hype Cycle). Although it has important advantages in

reusability and separation of concerns, it also has various shortcomings that need to be

addressed before it can be widely adopted, especially in large projects.

In particular we recognized the problems caused by obliviousness in classes intervened

by aspects. Since a developer can’t know exactly where an aspect is intervening and

what information it will need, the modification of a join point used by the aspect may

cause unwanted results. We observed various occasions where this impeded evolution

and reuse.

Another is the difficulty of convincing management to adopt AOD. This comes from

organizations recognizing voids created by the current paradigm, OO design, and of the

organization’s attitude towards change and new technologies. Is the high coupling and

low cohesion that is sometimes inherent in an OO design a source of concern to the

company or is it a minor issue? Are the possible applications for AOD abundant in the

company’s projects? Is the company open to new technologies? Do they educate their

developers in the latest techniques? These are a few of the questions that a manager

evaluating AOD must think of.

This work also presents an initial stepping-stone for future work. Firstly, can the

conclusions reached here be generalized to other projects and applications? Another

possible track is the determining the real costs of AOD in a real-world project. Can an

actual cost-benefit analysis be determined?

Another proposal is an actual study on AOD industry penetration. Although AOD is

touted as beginning to be widely adopted in the industry, no such studies have been

made to determine this claim. Is the industry adopting AOD? For what use cases is it

42

regularly used? Are colleges and universities teaching AOD? A study to answer these

questions would allow for better direction when promoting AOD and its benefits. From

this study success stories could be discovered which would also impulse AOD adoption.

Another possible study and important study could be into AOD best practices. When is it

appropriate to extract a concern into an aspect? As seen in this work, not all scenarios

are suitable for aspect extraction. Answering this question would allow valuable insight

on how far AOD should penetrate a software project. Also, when is a point-cut

beneficial and what practices should be avoided? AOD allows ample flexibility to

modify an application, but many modifications of the application’s flow may have

negative side effects. A set of principles to avoid these scenarios would facilitate

development and drive AOD further.

43

REFERENCES

Basili, V., Caldiera, G., Rombach, H. The Goal Question Metric Approach.

Encyclopedia of Soft. Eng. Vol. 2, pp. 528-532, 1994

Bustos, A., & Eterovic, Y. Modeling aspects with UML's class, sequence and state

diagrams in an industrial setting, Proceedings of the 11th IASTED International

Conference on Software Engineering and Applications, pp. 403-410, 2007

Chidamber, S., & Kemerer, C. (1994). Metrics suite for object oriented design. IEEE

Transactions on Software Engineering, pp. 476-493, 1994

Cottenier, T., van den Berg, A., & Elrad, T. The Motorola WEAVR: Model weaving in a

large industrial context. In Proc. of the 6th Int. Conf. on Aspect-Oriented Software

Development (AOSD’07), 2007

Cui, Z. and Wang, L. and Liu, H. and Li, X. Computational error handling as aspects: a

case study. Proceedings of the 1st workshop on Linking aspect technology and

evolution. pp. 7-11. 2009.

Eder, J., Kappel, G., & Schrefl, M. Coupling and cohesion in object-oriented systems.

Technical Reprot (University of Klagenfurt), 1994

Fenn, J. When to leap on the Hype Cycle, Gartner Group Vol. 1, 1995

Greenwood, P. and Bartolomei, T. and Figueiredo et al. On the impact of aspectual

decompositions on design stability: An empirical study. ECOOP, pp. 176-200, 2007

I.Cho, Y. Kim Journal of Management Information Systems / Winter 2001–2002, Vol.

18, No. 3, pp. 125–156.

Kiczales, G., Irwin, J., Lamping, J., Lopes, C., Maeda, C., Mendhekar, A., et al. Aspect-

oriented programming. Proceedings of the 1997 11th European Conference on Object-

Oriented Programming, ECOOP, pp. 220, 1997

Laddad, R. AspectJ in Action: Practical Aspect-Oriented Programming, Manning

Publications Co., Greenwich, CT, pp. xxxvii-xl, 2009

M. Mortensen, S. Ghosh. Using aspects with object-oriented frameworks. AOSD ’06:

5th International Conference on Aspect- Oriented Software Development, 2006.

Muñoz, F. and Baudry, B. and Delamare, R. and Le Traon, Y. Inquiring the usage of

aspect-oriented programming: An empirical study, IEEE International Conference on

Software Maintenance, 2009. pp. 137-146, 2009

N. Narendra, K. Ponnalagu, J. Krishnamurthy and R. Ramkumar, Run-Time Adaptation

44

of Non-functional Properties of Composite Web Services Using Aspect-Oriented

Programming, Service-Oriented Computing (ICSOC 2007), Volume 4749, pp. 546-557,

2007

Nunes, C. and Kulesza, U. and Sant'Anna, C. and Nunes, I. and Lucena, C. On the

modularity assessment of aspect-oriented multi-agent systems product lines: a

quantitative study, SBCARS, pp. 122–135, 2008

Ortiz, G. and Bordbar, B. and Hernandez, J. Evaluating the use of AOP and MDA in

web service development, Third International Conference on Internet and Web

Applications and Services, 2008. pp. 78-83, 2008

Pohl, C., Charfi, A., Gilani, W., Göbel, S., Grammel, B., Lochmann, H., et al. Adopting

Aspect-Oriented Software Development in Business Application Engineering,

Proceedings of the Aspect-Oriented Software Development (AOSD'08), pp. 1-10, 2008

Sant’Anna, C., Garcia, A., Chavez, C., Lucena, C., & Von Staa, A. On the reuse and

maintenance of aspect-oriented software: An assessment framework. Proceedings of

Brazilian Symposium on Software Engineering, pp. 19-34, 2003

Urban, M. and Lohmann, D. and Spinczyk, O. The aspect-oriented design of the PUMA

C/C++ parser framework Proceedings of the Eighth International Conference on Aspect-

Oriented Software Development, pp. 217-221. 2010

Wampler, D. Aspect-oriented design principles: Lessons from object-oriented design.

Sixth International Conference on Aspect-Oriented Software Development (AOSD’07),

2007

Wiese, D., Hohenstein, U., & Meunier, R. How to convince industry of AOP.

Proceedings of the 6th International Conference on Aspect-Oriented Software

Development (AOSD'07), 2007

Yao, Z., Zheng, Q., Chen, G. AOP++: A generic aspect oriented programming

framework in C++. Generative Programming and Component Engineering Conference

(GPCE). Lecture Notes in Computer Science, pp. 94–108, 2005

Zakaria, A. A., & Hosny, H. (2003). Metrics for aspect-oriented software design. Proc.

Third International Workshop on Aspect-Oriented Modeling, AOSD, 2003

Zhao, J., & Xu, B. Measuring aspect cohesion. Fundamental Approaches to Software

Engineering, pp. 54-68, 2004

Zhao, J. Measuring coupling in aspect-oriented systems. Proc. of the 10th International

Software Metrics Symposium (METRICS), 2004

