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The 2� 1 black hole coupled to a Maxwell field can be charged in two different ways. Besides a
Coulomb field, whose potential grows logarithmically in the radial coordinate, there also exists a
topological charge due to the existence of a noncontractible cycle. The topological charge does not
gravitate and is somehow decoupled from the black hole. This situation changes if one turns on the Chern-
Simons term for the Maxwell field. First, the flux integral at infinity becomes equal to the topological
charge. Second, demanding regularity of the black hole horizon, the Coulomb charge must vanish
identically. Hence, in 2� 1 topologically massive electrodynamics coupled to gravity, the black hole
can support holonomies only for the Maxwell field. This means that the charged black hole is constructed
from the vacuum by means of spacetime identifications.
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The consistency of general relativity with quantum me-
chanics is still one the most important problems of theo-
retical physics. Since the problem was first formulated
several decades ago, it became clear that black holes would
play a key role as a tool to explore quantum gravity. Two
striking properties of these particular solutions of Einstein
equations—which have driven most of the work on black
hole quantum mechanics for many years—are Hawking
radiation and the so called ‘‘no hair’’ theorems.

The no hair theorems (see [1] for a review) imply that
black holes are described only by their mass, angular mo-
mentum, and charge. In string theory, for example, charged
objects have played a key role in recent developments.
D-branes and most extended objects are supported by
p-form fields carrying some conserved charge. Black holes
on these branes are also known, and, in fact, they have been
the first examples for which an statistical description of the
Bekenstein-Hawking entropy is available [2].

Black holes [3] also exist in the simpler setting of three-
dimensional gravity [4], and they share most of the prop-
erties of the higher dimensional ones. Even though 2� 1
gravity does not contain gravitational waves, it is now clear
that it encodes a number of interesting properties [5]. To
quote some examples, we mention the discovery by Brown
and Henneaux [6] of a centrally extended asymptotic con-
formal algebra, and its Chern-Simons formulation [7].

In this Letter, we are interested in the charged version of
the Banados-Teitelboim-Zanelli (BTZ) [3] black hole. In
2� 1 dimensions, the action describing the Maxwell field
can be generalized to contain a Chern-Simons (‘‘topologi-
cal mass’’) term [8]. We consider then the action
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We stress that both the Maxwell and the Chern-Simons
terms are quadratic in A and gauge invariant. There is thus
no a priori reason to exclude one in favor of the other.
Furthermore, the ‘‘massive’’ character of the Chern-
Simons term implies that the Brown-Henneaux [6] sym-
metry still applies in this theory, as opposed to pure
Maxwell theory.

In 5 and 11 dimensions, Chern-Simons terms arise as a
consequence of supersymmetry. Black hole solutions for
the five-dimensional version of (1) have been found re-
cently in [9]. As we shall see, in three dimension there are
some surprises.

Particular black hole solutions to (1) are known in
various cases. For � � 	 � 0, one finds the uncharged
BTZ black hole [3],

ds2 � �N2�r�dt2 �
dr2

N2�r�
� r2

�
d’�

J

2r2
dt
�
2
; (2)

where

N2�r� � �M� r2 �
J2

4r2
: (3)

The asymptotic charges for this solution are M and J. The
geometry is regular for all positive values of r, and there is
a regular event horizon provided M> jJj.

If � � 0 but still 	 � 0, one finds a more complicated
set of equations whose solution has been found in [10] (this
system was not fully solved in [3]). The black hole is now
described by three asymptotic conserved chargesM, J, and
the charge C. If J � 0, the charged metric has the form (2)
with N2�r� � �M� r2 � C2 log�r�.

If � � 0 and 	 � 0, the Abelian field decouples from
gravity. Globally, however, the gauge field can feel the
presence of the black hole by developing a nonzero hol-
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onomy around the noncontractible loop. The general solu-
tion in this case is the vacuum black hole (2) supplemented
with the constant value for the gauge field,

A’ �
Q
2�

)
I
A � Q: (4)

The ‘‘topological charge’’ Q cannot be eliminated by a
well-defined gauge transformation because ’ is compact
[11]. Furthermore, for � � 0 and 	 � 0, Q is equal to the
electric charge of the system, defined as the conserved
quantity associated with nontrivial asymptotic gauge trans-
formations. It can also be represented as the zero mode of
the infinite-dimensional asymptotic U�1� Kac-Moody al-
gebra. We shall prove in this Letter that this configuration
is stable against the incorporation of the Maxwell term that
is turning on the coupling �.

Consider then the case � � 0 and 	 � 0. In what fol-
lows, we set � � 1. Self-dual [13], particlelike solutions to
this system were first discussed in [14] and further ana-
lyzed in [15]. Our interest will be focused on black holes
solutions.

We start by writing the equations of motion. For our
purposes it will be convenient to use the following parame-
trization for the black hole ansatz:

ds2 �
dr2

h2 � pq
� pdt2 � 2hdtd’� qd’2; (5)

where p; q; h are functions of r only. For the gauge field,
we write

At�r� � ��r�; (6)

A’�r� �
Q
2�

� ��r�: (7)

We have isolated the constant part of A’ (holonomy), and
assume that both ��r� and ��r� vanish at infinity (this is
true only for 	 � 0).

Inserting (5)–(7) into Einstein equations coupled to the
Maxwell field and taking appropriate combinations, we
find the remarkable simple set of equations (prime indi-
cates radial derivative)

h00 � ��0�0; (8)

p00 � ��02; (9)

q00 � ��02: (10)

The equations also imply �h2 � pq�00 � h02 � p0q0 � 4
(recall that we are using 	 � �1). It is direct to see, how-
ever, that (8)–(10) imply �h2 � pq�000 � �h02 � p0q0�0, and
hence we can omit this extra equation provided we fix the
integration constant as 4.

The Maxwell-Chern-Simons equations become

h�0 � p�0 � 2	�; (11)
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q�0 � h�0 � 2	�: (12)

These equations are first integrals of the original ones. The
two integration constants are the holonomy, Q=2�, repre-
sented by the constant part of A’, and a constant added to
At which is trivial and can be gauged away.

The reduced set of Eqs. (8)–(12) admits a Lagrangian
representation [14],

L �
1

4
Tr��02� � 	 
AA0 � 2	2 
A��1A; (13)

where the functions h; p; q and �; � are collected in the
SL�2;<� matrix � and ‘‘spinor’’ A,

� �
h �p
q �h

� �
; A �

�
�

� �
: (14)

The ‘‘Dirac conjugate’’ is defined as 
A � Ati � ��;���
where i is the real antisymmetric matrix in two dimensions.
Equations (8)–(10) and (11) and (12) take the form �00 �
�A0 � 
A0 and �A0 � 2	A, respectively, and can be de-
rived by extremizing (13).

The Lagrangian (13) is invariant under SL�2;Re� rota-
tions [this symmetry is implicit in the ansatz (5)]

� ! U�1�U; A! U�1A; 
A! 
AU; (15)

where U is a constant matrix with det�U� � 1. The corre-
sponding Noether charge, satisfying K0 � 0, is given by

K �
1

2

�;�0� � 	A � 
A: (16)

The Lagrangian (13) is also invariant under constant trans-
lations in the radial coordinate r! r� a and the associ-
ated Noether charge is the ‘‘energy,’’

E �
1

4
Tr��02� � 2	2 
A��1A: (17)

This integral is not, however, an arbitrary constant, but it is
fixed by Einstein equations. In fact, it is direct to prove that
2E � �h2 � pq�00 � �h02 � p0q0�. Hence, according to the
discussion after Eq. (10), we must fix E � 2.

The vacuum solution (BTZ black hole) in this represen-
tation is given by � � 0 � �, and

h�r� � J; p�r� � 4�M� r�; q�r� � r: (18)

In fact, replacing (18) in (5) and making the radial redefi-
nition r! r2, one obtains (2).

We would like to add charge to (18). We first study the
asymptotic structure of the charged solution. Setting (18)
as the background, we develop a series expansion in
powers of 1=r for the solution. This can be done to any
desired order. We display here the first few terms,
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Here, C is an integration constant, which will be called
‘‘Coulomb charge.’’

There exists another solution whose gauge field diverges
as r	, and hence we discard it. We assume 	> 0. Note that
the C log�r� structure arising in pure Maxwell theory has
been replaced by C=r	. This is a consequence of the
massive character of the Chern-Simons term.

The asymptotic solution is thus characterized by four
parameters, the massM, angular momentum J, topological
charge Q, and Coulomb charge C. Let us prove that the
associated electric charge is equal to Q.

In the presence of the Chern-Simons term, the definition
of electric charge has some subtleties. This problem was
first studied in [16]. See [17] for recent discussions. For the
case at hand, the electric charge of the system is [16]

Z
%
��F� 2	A�; (19)

where the integral encloses the origin r � 0 and it is
assumed to be outside sources. As usual, the value of the
integral does not depend locally on %. We choose the curve
to be a circle of a large radius at some constant time. From
the above ansatz, we find �F& � �q�0 � h�0, and hence
the charge becomes

Z
d&

�
�q�0 � h�0 � 2	

�
Q
2�

� �
��

� 2	Q; (20)

where we have used the equation of motion (12). We thus
find that the electric charge of the system is proportional to
the topological charge Q. The Coulomb charge C is not
related to an asymptotic symmetry, and it would appear as
‘‘hair’’ in the corresponding black hole solution.

We now turn to the problem of finding black hole
solutions to (8)–(12), satisfying the asymptotic conditions
found above. To analyze the horizon geometry, we rewrite
the ansatz (5) in its ‘‘Arnowitt-Deser-Misner’’ form

ds2 � �
h2 � pq

q
dt2 �

dr2

h2 � pq
� q

�
d’�

h
q
dt
�
2
:

(21)

From here, we see that the structure of horizons is
controlled by the function
02110
f�r� � h2 � pq: (22)

A point r � r� satisfying the following three conditions:
(i) f� � 0, (ii) the horizon area q� is not zero, and (iii) the
angular velocity of the horizon h�

q�
is not singular, defines a

regular event horizon. Here and below, a subscript� means
the corresponding function evaluated at the horizon.

Although the system (8)–(12) does not look too com-
plicated, its solution for all values of r has escaped us. (See
[14] for a particular solution describing ‘‘particles.’’)
Nevertheless, without knowledge of the exact solution,
we shall be able to prove that a regular horizon can exist
if and only if the Coulomb charge vanishes identically,

C � 0: (23)

To this end, we first prove that the function q must be
positive for all r > r�. Since q� is the horizon area, we
have q� > 0. From (10) we observe that q00 is negative for
all r. If q0� < 0, then q�r� would eventually become nega-
tive, in contradiction with its asymptotic value given
above. Thus, q0� must be positive and, as a consequence,
q is positive for all r > r�.

In a similar way, we now prove that p must be negative
for all r > r�. First, we note that one can always choose
the angular velocity at the horizon to be zero, that is, h� �
0. This is achieved by the transformation ’! ’� wt,
which, acting on (21), has the effect of shifting h=q!
h=q� w [18]. From now on, we work on this frame. Next,
we note that since h2� � p�q� � 0 and q� is finite, it
follows that p� � 0. This implies that

f0� � 2h�h0� � p0
�q� � p�q0� � �p0

�q�: (24)

The function f is positive for r > r� and vanishes at r �
r�. This implies that f0� � 0, and since q� > 0, we find
that p0

� must be negative or zero. From Eq. (9) we see that
p00 is negative for all r. We conclude that p0 must be
negative all the way from r� to infinity. Since p vanishes
at the horizon, this means that p must be negative for all
r > r�.

We now analyze the behavior of the gauge field. First,
we note that �� � 0. This follows directly from Eq. (11),
with 	 � 0. On the other hand, from the asymptotic series
displayed above, we see that both functions � and � vanish
as r! 1. Then, the function * � �� vanishes both at the
horizon and at infinity. (We assume here that �� is finite,
which is required for regularity of the horizon [19].) Since
* must be continuous, we find that either * is zero every-
where or has an extremum at some value r � r0. If the
latter is true, then the derivative of * at each side of r0 has
different sign, and therefore there must be a region where
*0 is negative. But this is a contradiction to the equation of
motion. In fact, multiplying Eq. (15) by �0 and Eq. (16) by
�0, and adding them together, one obtains

q��0�2 � p��0�2 � 2	*0: (25)
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The left-hand side of this expression is non-negative, be-
cause p < 0 and q > 0 for all r > r�. Therefore *0 cannot
take negative values. We conclude that * must be identi-
cally zero everywhere, and thus either � or �must be zero.
By inspection of the asymptotic solution, this imply that C
must vanish.

To summarize, we have shown in this Letter that BTZ
black holes coupled to Maxwell-Chern-Simons electrody-
namics can support holonomies for the gauge field, but not
for a local electromagnetic field. The charged black hole
thus reduces to the BTZ metric plus the holonomy (4). A
star could support a local field characterized by C, and we
have found its explicit asymptotic form. Upon gravitational
collapse, however, the field must be expelled before a
regular horizon could be formed. We hope to come back
to this problem in the future. A more detailed analysis of
the results presented here will be presented elsewhere.
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