
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

DEEP LEARNING METHODS FOR

INTELLIGENT CYBER-PHYSICAL

SYSTEMS

SAÚL ALBERTO LANGARICA CHAVIRA

Thesis submitted to the Office of Graduate Studies

in partial fulfillment of the requirements for the degree of

Doctor of Science in Engineering

Advisor:

FELIPE NÚÑEZ

Santiago de Chile, March 2023

© 2023, SAÚL ALBERTO LANGARICA CHAVIRA

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

DEEP LEARNING METHODS FOR

INTELLIGENT CYBER-PHYSICAL

SYSTEMS

SAÚL ALBERTO LANGARICA CHAVIRA

Members of the Committee:

FELIPE NÚÑEZ

ALDO CIPRIANO

HANS LÖBEL

MARCOS ORCHARD

ELEONORA AIELLO

IGNACIO LIRA

Thesis submitted to the Office of Graduate Studies in partial fulfillment of the

requirements for the Degree Doctor in Engineering Sciences

Santiago de Chile, March, 2023

Gratefully to God

ACKNOWLEDGEMENTS

First and foremost, I would like to thank God because He is the one who has made all

this possible. He has been the one who has blessed me with the family I was born into,

the one who has guided and supported me in every decision I have made, as the decision

to continue doing what I love and continue my postgraduate studies. And He is the one

who has always provided me with all the means and health to be able to accomplish this

important goal of my life.

To my beautiful wife who has given me unconditional support in every decision, has

been with me in everything and motivates me to always move forward to continue building

our family.

To my parents for all the support given in this long process, for never letting me give

up and always encouraging me to give my best and continue in spite of everything that

might be happening around us.

To my supervisor Felipe Núñez for all his support, teachings, advice, patience and

guidance throughout this arduous research process, and especially for encouraging me to

always strive for excellence.

To Frank J. Doyle III for receiving me at Harvard University for my international

internship and letting me work with him and other amazing researchers in his lab, from

whom I learned a lot. This incredible experience opened my mind to new future research

directions and helped me to conclude this thesis with the paper we wrote together.

Finally, I would like to thank to the Agencia Nacional de Investigación y Desarrollo

(ANID) that through their many grants have made this work possible. Thanks to the

grant ANID/PFCHA/Doctorado Nacional/2020-21200565 I was able to pay for my costs

of living during this research, and thanks to the project ANID PIA ACT192013, I had

everything I needed to continue with my research.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF FIGURES viii

LIST OF TABLES x

ABSTRACT xii

RESUMEN xiv

1. Introduction 1

1.1. Motivation . 1

1.2. Hypothesis, Objectives and Contributions 5

1.3. Organization . 7

1.4. Notation and Basic Definitions . 7

2. Contrastive Blind Denoising Autoencoder for Real Time Denoising of (Industrial)

IoT Sensor Data 9

2.1. Context . 9

2.2. Related work . 11

2.2.1. Time series denoising with neural networks 12

2.2.2. Blind denoising with neural networks 13

2.3. Theoretical background . 14

2.3.1. Autoencoders and Denoising Autoencoders 14

2.3.2. Noise contrastive estimation . 15

2.4. Process data denoising using a Contrastive Blind Denoising Autoencoder . 17

2.4.1. General setup . 17

2.4.2. Problem formulation . 18

2.4.3. Blind Denoising . 20

2.5. Experimental Evaluation . 26
v

2.5.1. Simulated example . 26

2.5.2. Application to an industrial paste thickener 32

2.6. Discussion . 35

3. A Meta-Learning Approach to Personalized Blood Glucose Prediction in Type 1

Diabetes 37

3.1. Context . 37

3.2. Related work . 40

3.3. Meta-Learning for personalized models in glucose prediction 42

3.3.1. Background on Meta-Learning . 42

3.3.2. Meta-Learning for glucose prediction 44

3.3.3. Proposed architecture . 46

3.3.4. Proposed Out-Of-Distribution testing procedure 48

3.4. Experiments . 50

3.4.1. Data-set . 50

3.4.2. Baselines . 51

3.4.3. Evaluation metrics . 53

3.4.4. Training details . 55

3.4.5. Experimental Results . 56

3.5. Probabilistic extension . 59

3.5.1. Related work . 62

3.5.2. Model design . 66

3.5.3. Experiments . 71

3.6. Discussion . 78

4. Neuroevolutive Control of Industrial Processes Through Mapping Elites 80

4.1. Context . 80

4.2. Background . 83

4.2.1. Model-based Reinforcement learning 83

4.2.2. Value and Policy approximation methods 84
vi

4.2.3. Evolutionary Algorithms . 85

4.2.4. Illumination algorithms and Map Elites 86

4.3. Neuroevolution for process control . 89

4.3.1. Problem statement . 89

4.3.2. Map Elites for control of dynamical systems 89

4.3.3. Compression and Mutation . 91

4.3.4. Fitness Function . 92

4.3.5. Handling of hard constraints . 94

4.3.6. Replacement . 94

4.4. Case Studies . 95

4.4.1. Baselines for performance evaluation 95

4.4.2. Evaluation metrics . 96

4.4.3. Neuroevolutive control of a pH neutralization process 96

4.4.4. Neuroevolutive control of an industrial paste thickener 103

4.4.5. Performance of compression algorithm 105

4.5. Discussion . 107

5. Conclusions and Future Work 109

5.1. Concluding Remarks . 109

5.2. Directions for Future Research . 111

REFERENCES 112

vii

LIST OF FIGURES

2.1 Simple Autoencoder architecture . 15

2.2 Blind denoising with a recurrent Autoencoder with no regularization 19

2.3 Control scheme with CBDAE . 20

2.4 Data preprocessing for the CBDAE . 26

2.5 Training iteration and proposed network architecture of the CBDAE 27

2.6 CBDAE results for the quadruple tank simulated system 31

2.7 Two-dimensional latent space trajectories obtained with PCA for the different

BDAE networks . 32

2.8 Process and instrumentation diagram of the paste thickener used for the

experiments . 33

2.9 CBDAE results when blind denoising the output solids concentration of the

paste thickener . 34

2.10 CBDAE results when blind denoising the input solids concentration of the

paste thickener . 35

2.11 Two-dimensional latent space trajectories obtained with PCA for the different

BDAE networks . 35

3.1 Training process of the personalized model 46

3.2 Proposed network architecture of the personalized model 47

3.3 Proposed Out-Of-Distribution data-split for glucose prediction 49

3.4 Simulator patients’ glucose response to an insulin bolus of one unit 58

3.5 Box plots of RMSEavg for different models with patients of group G4 59
viii

3.6 Transfer-learning performance versus meta-learning 60

3.7 Original Recurrent Kalman Network with external input 65

3.8 Proposed Recurrent Kalman Network with input estimation 71

3.9 Glucose output distribution when meal input is uncertain 73

3.10 Calibration error for different probabilistic models 77

3.11 Example prediction of the proposed probabilistic model 78

4.1 Multivariable pH neutralization process . 97

4.2 15 steps-ahead predictions of the encoder-decoder model with attention

mechanism . 99

4.3 Set-point tracking for pH2 and Stabilization for the rest of the variables with

the Map Elites controller . 100

4.4 Disturbance Rejection for pH2 with two abrupt changes in the unmeasured

disturbances . 101

4.5 Feature space grid of the Map Elites controller 103

4.6 Experimental setup used for controlling the thickener over the internet using

OPC-UA . 104

4.7 Real disturbances applied to the thickener simulator 105

4.8 Set-point tracking and disturbance rejection for output solids concentration

with the Map Elites controller . 106

4.9 Performance of the NN compression algorithm 108

ix

LIST OF TABLES

2.1 Comparison of denoising results in terms of the average RMSE for all the tank

levels . 30

2.2 Execution time of different denoising methods on the specified hardware . . . 31

3.1 Distributions of the randomized scenario 51

3.2 Meal randomization details . 51

3.3 Data-split used for the experiments . 52

3.4 Hyper-parameters of the proposed architecture 55

3.5 OOD evaluation results for different horizons 61

3.6 RMSEavg for each patient in group G4 . 62

3.7 Predictions falling in Zone A of the C-EGA plot for each patient in group G4 62

3.8 OOD evaluation results for probabilistic glucose prediction 76

4.1 Parameters of the simulator for the first experiment of the controller 97

4.2 Parameters of the encoder-decoder model 98

4.3 Set-point tracking and Disturbance rejection performance for the different

controllers in terms of TE and ISE . 101

4.4 Results for set-point tracking in terms of ISE when changing the frequency of

the optimization . 102

4.5 Results in terms of ISE and TE when taking controllers from specific cells on

the grid . 103
x

4.6 Set-point tracking and Disturbance rejection performance for the different

controllers in terms of TE and ISE when controlling the thickener simulator . 106

xi

ABSTRACT

Cyber-physical systems (CPSs) have emerged in recent years as a new paradigm that

merges several technologies to allow the interface between the physical and the cyber-

netic world. This has opened the door to the use of artificial intelligence (AI) techniques

to interact with the physical world in real time. However, interaction with real physical

systems imposes a number of challenges that were absent in the application domains for

which these data-driven techniques were originally designed, and the creation of a new set

of models and methods specifically designed to address these difficulties becomes neces-

sary. This has limited a wider adoption of AI methods in CPSs and instead, many have

opted for classical filtering, modeling and control methods for the development of new

CPSs.

In this thesis it is shown how CPSs can be highly benefited at different levels of their

architecture by the incorporation of intelligent data-driven methods, in particular deep

learning methods, when they are carefully designed to deal with the inherent difficulties

imposed by the interaction with real physical systems. In particular, it is shown that deep

learning methods can endow CPSs with new capabilities that cannot be achieved with

classical techniques, and that these AI methods have better performance than their classical

counterparts in different domains, when using several application-specific metrics. Thus,

showing how deep learning techniques contribute to unleash the full potential of CPSs,

transforming them into better performing, more efficient and intelligent systems, namely

“Intelligent” CPSs or iCPSs.

To this end, three methods for iCPSs, materialized in three different applications,

namely, a general purpose learning-based data-cleaning method, an adaptative deep-learning

model based on meta-learning, and a neuroevolutive controller with learning capabilities

and great flexibility during the optimization process, are proposed.

xii

Results show superiority of the proposed methods when compared to other data-driven

and classical methods across the different domains our techniques are applied. It is ex-

pected that the results of this research will encourage the development of more suitable

intelligent data-driven methods for iCPSs.

Keywords: Cyber-Physical Systems, Deep Learning, Contrastive Learning, Meta-Learning,

Recurrent Kalman Networks, Neuroevolution, Reinforcement learning, Glucose predic-

tion, Artificial Pancreas, Model Predictive Control
xiii

RESUMEN

Los sistemas ciberfı́sicos (CPSs) han surgido en los últimos años como un nuevo

paradigma que fusiona varias tecnologı́as para permitir la interfaz entre el mundo fı́sico

y el cibernético. Esto ha abierto la puerta al uso de técnicas de inteligencia artificial (AI)

para interactuar con el mundo fı́sico en tiempo real. Sin embargo, la interacción con sis-

temas fı́sicos reales impone una serie de desafı́os que estaban ausentes en los dominios de

aplicación para los que se diseñaron originalmente estas técnicas basadas en datos, y se

hace necesario la creación de un nuevo conjunto de modelos y métodos especı́ficamente

diseñados para hacer frente a estas dificultades. Esto ha limitado una adopción más amplia

de los métodos de AI en los CPSs y en cambio, muchos han optado por métodos clásicos

de filtrado, modelado y control para el desarrollo de este tipo de sistemas.

En esta tesis se muestra cómo los CPSs pueden verse altamente beneficiados en difer-

entes niveles de su arquitectura al incorporar métodos inteligentes basados en datos, en

particular, métodos de aprendizaje profundo cuidadosamente diseñados para lidiar con las

dificultades inherentes que impone la interacción con sistemas fı́sicos reales. En concreto,

se muestra cómo los métodos de aprendizaje profundo pueden dotar a los CPSs de nuevas

capacidades que no se pueden lograr con técnicas clásicas, y que estos métodos de AI

logran un mejor rendimiento que sus homólogos clásicos en diferentes dominios cuando

se utilizan diversas métricas especı́ficas de la aplicación. Por lo tanto, mostrando cómo

las técnicas de aprendizaje profundo contribuyen a liberar todo el potencial de los CPSs,

transformándolos en sistemas de mejor rendimiento, más eficaces e inteligentes, a saber,

en CPS “inteligentes” o iCPS.

Para ello, se proponen tres métodos para iCPSs, materializados en tres aplicaciones

diferentes, a saber, un método de limpieza de datos basado en aprendizaje por contraste, un

modelo de aprendizaje profundo adaptativo basado en meta-aprendizaje, y un controlador

xiv

neuroevolutivo con capacidad de aprendizaje y gran flexibilidad durante el proceso de

optimización.

Los resultados muestran la superioridad de los métodos propuestos cuando se com-

paran con otros métodos clásicos y otros métodos basados en datos en los diferentes do-

minios en los que se aplican nuestros métodos. Se espera que los resultados de esta inves-

tigación fomenten el desarrollo de más métodos inteligentes adecuados para los iCPS.

Palabras Claves: Sistemas Ciberfı́sicos, Aprendizaje profundo, Inteligencia Artificial,

Aprendizaje por Constraste, Meta-Aprendizaje, Redes Recurrentes de Kalman, Apren-

dizaje reforzado, Predicción de Glucosa, Pancreas Artificial, Neuroevolución, Control

Predictivo por Modelos.
xv

1. INTRODUCTION

1.1. Motivation

Recent technological advances in terms of sensors, instrumentation, networking, em-

bedded computing, and artificial intelligence, have enabled the development of systems

and applications that have changed virtually every aspect of our lives and will continue to

do so. Automated insulin delivery pumps, home automation systems, self-driving cars, and

security drones, are just few examples of these modern systems that effectively integrate

the physical world and the cyber space, in the form of the so-called cyber-physical sys-

tems (CPSs). A number of developed countries such as Germany, the US and Japan have

already pushed forward initiatives to advance in this line of research (Serpanos, 2018), and

it is expected that several application domains, originally coming either from the cyber or

physical world, join to this new combined framework.

Formally, CPSs are feedback control systems that focus on the interconnection of

physical components and the use of complex software entities to establish new network

and systems capabilities (Oks et al., 2017). In terms of implementation, a CPS is a dis-

tributed, highly scalable, interoperable, and efficient system that relies on information and

communication technologies (ICT) principles, particularly, pervasive sensing, informa-

tion integration, and data-driven decision making, to supervise and control its surrounding

physical world (Oks et al., 2017). Even though the CPS concept is closely related to other

popular terms, both in industry and in academia, such as the Internet of things (IoT), In-

dustry 4.0., or machine to machine (M2M), the term CPS is more foundational and durable

(Lee, 2015a) since it does not reference either implementation approaches (like “Internet”

in IoT) nor particular applications (like the “Industry” in Industry 4.0), but rather it fo-

cuses on the fundamental problem of integrating the engineering principles that govern

both cyber and physical systems.

From an architectural point of view, a CPS can be abstracted as a system formed by

three levels (Cheng et al., 2018; Colombo et al., 2017), each of them areas of ongoing

1

research: i) field or physical, ii) connectivity or fog, and iii) cloud. Both the physical and

connectivity levels of a CPS are closely related to the IoT, which focuses more on inter-

connectivity, interoperability, and integration of physical components to a network, with

the objective of gathering information from different sources for further processing (Lee,

2015a). On the other hand, the cloud level is more related to the upper layers of classi-

cal control architectures (supervisory control, planning and management) and computer

science technologies, and focuses on data-driven decision making (Munir et al., 2017) .

The integration of control principles with computer science technologies in this context

represents an attractive opportunity to develop data-driven algorithms and applications for

supervision, modeling, and control (Yin et al., 2014; Y. Jiang et al., 2018). In particular, in

the computer science domain, data-driven techniques capable of processing large amounts

of data of different nature have experienced a major breakthrough in recent years. Among

them, deep learning (DL), a set of machine learning techniques that use multiple layers

to progressively extract higher-level features from raw inputs (Munir et al., 2017), has

emerged as a disruptive paradigm, which has led to substantial improvements in many

fields when compared to traditional techniques (Singh et al., 2017; G. Guo & Zhang,

2019; Lundervold & Lundervold, 2019).

One of the major advantages of DL over traditional mathematical models or typical

machine learning methods is that these techniques are able to find meaningful features

from raw data without the necessity of designing first-principles models or hand-crafted

features, that may require the establishment of strong assumptions, simplifications, prior

knowledge of the task at hand, and a long trial and error process to decide which features

may be useful, a methodology that may be prohibitive in complex applications. In fact,

according to (Munir et al., 2017), one of the major contributions that academia can make

to industry is the development of accurate models of physical processes to be used in

control applications. This need arises from the fact that most real processes are extremely

complex to be fully understood and methods involving first-principle-based mathematical

2

models or hand-crafted features may be limiting the performance of these systems (Munir

et al., 2017).

However, although promising, the integration of CPSs with artificial intelligence (AI)

techniques, in the form of the so-called Intelligent Cyber-Physical Systems (iCPSs) (King,

2021), is far from being trivial and requires overcoming several hurdles that are intrinsi-

cally attached to the problem of interacting with real physical systems in real time. Some

of these challenges are not present in the original application domains of AI techniques

and hence, represent a concrete limitation for unleashing the full potential of iCPSs. In-

deed, several authors agree that combining CPSs with AI demands its own models and

methods (NSF, 2022; Lee, 2015b; Pirani et al., 2021; Kravets, 2022), and to keep pace

with the rapid advances in CPSs devices and to create more effective and better-performing

systems, there is a need to accelerate the development of these new methods across ap-

plication domains (NSF, 2022). This is especially critical in those domains where current

automation practices are reaching their limit (Leitão et al., 2016) and using CPSs repre-

sents an opportunity for improvement.

Among the fundamental challenges that must be addressed in order to unleash the

full potential of iCPSs are the following, (Lee, 2015b; Pirani et al., 2021; Kravets, 2022;

M. Xu et al., 2021; Núñez et al., 2020; Yao et al., 2018; Mohammadi et al., 2018):

(i) Data quality: The poor quality of process data captured in real time, usually cor-

rupted by noise, outliers or missing values, precludes using directly intelligent data-driven

decision making algorithms, and makes it necessary to develop or include a real-time data-

cleaning and reconciliation algorithm in the lower layers of the iCPS, so any data-driven

application built on top can operate at its full potential.

(ii) Uncertainty estimation: Real data is full of uncertainties caused by unmeasured

disturbances, partial observability of the environment, human interventions or human er-

rors, and other unexpected phenomena. Therefore, any intelligent decision making method

3

included in an iCPS should consider the different sources of uncertainty and try to estimate

their impact in order to make uncertainty-aware decisions.

(iii) Adaptability or personalization: Personalization of systems and adaptation to

different circumstances is one of the most attractive and expected features of an iCPSs

(Serpanos, 2018) and is probably the most significant difference from traditional control

systems. However, gathering a large enough amount of data of a particular instance or

operating condition to train DL models that achieve an acceptable performance, is usually

unfeasible, time-consuming, or expensive. Hence, models to be used in an iCPS should be

equipped with a mechanism to rapidly adapt or personalize with a small amount of data

and with low risk of overfitting.

(iv) Constraints satisfaction: Since iCPSs are intended to interact with the real world,

there are hard constraints that should be considered at the moment of designing an intel-

ligent decision-making algorithm, especially in safety critical applications as healthcare

or industrial processes. In this regard, trial and error-based techniques as vanilla rein-

forcement learning (RL) are not suitable for iCPSs, instead, techniques that ensure the

satisfaction of these constraints should be considered.

(v) Real-time operation and hardware considerations: Finally, since the models and

methods on iCPSs are hardware dependent and are subject to time constraints, a general

solution should flexible enough to be able to scale or de-scale depending on the avail-

able hardware or the available computational resources at the moment, in order to always

satisfy the real-time operation constraints.

Even though, some of these challenges could be addressed, at least partially, incor-

porating classical control, filtering and modeling techniques at different levels of a CPS,

and some successful works have done so (Liu et al., 2020; Brown et al., 2019). In this

thesis it is argued that intelligent methods, especially those based on DL, when carefully

designed, can successfully address the aforementioned challenges, giving the CPS new

capabilities, and achieving superior performance than classical methods across different

4

application domains. Therefore, contributing to unleash the full potential of iCPSs in the

form of more effective and better-performing systems.

To validate this claim, in this thesis three different DL methods for iCPSs, material-

ized in three different applications, are proposed, their capabilities and novel features are

analyzed, and they are compared with several classical and other intelligent approaches

using multiple application-specific performance metrics. Results show the superiority of

the proposed methods across different domains where the aforementioned challenges are

present. It is expected that the results of this thesis will promote the development of new

intelligent data-driven methods for iCPSs.

1.2. Hypothesis, Objectives and Contributions

The driving hypothesis of this work is that CPSs benefit from the incorporation of

intelligent learning-based data-driven methods. In particular, from DL methods carefully

designed to address three specific and relevant areas for CPSs: data-cleaning, adaptive and

probabilistic modeling, and control of complex nonlinear systems. Concretely, DL meth-

ods can i) provide CPSs with new functional capabilities in these areas, e.g., personaliza-

tion, learning, and automatic features extraction; and ii) achieve better performance than

classical techniques, when using application-specific metrics, such as root-mean-squared

error for time series denoising, mean absolute relative difference for deterministic model-

ing, calibration error for probabilistic modeling, and integral squared error or total energy

for control performance.

Consequently, the main objective of this work is to design, implement and evaluate

three intelligent DL general methods for data-cleaning, adaptive and probabilistic mod-

eling, and nonlinear multivariate control, methods that could be used in different iCPSs

applications and across different levels of the architecture. These methods will be de-

signed to address the main challenges faced by this kind of systems that interact with the

5

real world and will be compared to other intelligent approaches and classical techniques

that try to address the same problems.

Accordingly, the following specific objectives are derived from the foregoing:

• To develop an intelligent general purpose data-cleaning method to be used in

the lower layers of a CPS, capable of improving data quality in real-time and

thereby enabling other data-driven applications to operate on the upper layers of

the CPS.

• To develop an adaptive learning-based model capable of adapting to different in-

stances with minimal amount of additional data and with low risk of overfitting.

Additionally, this model should be able to estimate the inherent uncertainties of

the target application.

• To develop a learning-based data-driven controller capable of scaling or de-

scaling on demand based on the available computational resources. Additionally,

this controller should have a mechanism to enforce both soft and hard constraints

during the learning process and during real-time operation.

In the achievement of the specific objectives, this thesis makes the following contribu-

tions:

• A novel learning-based data-cleaning method based on an autoencoder architec-

ture and a noise contrastive regularization, which forces the network to exploit

the temporal structure of the data and cross-correlations between input variables

in order to produce a clean version of the input signals in real-time.

• An adaptative model that is used for the task of real-time glucose prediction

for patients with type 1 diabetes (T1D). The model is able to adapt, by using

meta-learning, to different patients with a minimal amount of patient-specific

data and with low risk of overfitting. Additionally, an extension of this model is

proposed to estimate the uncertainty produced by the user’s misspecification of

meals (time and size), a very common problem in T1D modeling and control.

6

• Finally, a novel model-based neuroevolutive controller with learning capabilities

based on the map elites optimization algorithm is proposed. At each optimiza-

tion step, the controller not only takes proper control actions, but also gradually

learns how to control the system, so that, optimization at each step can even-

tually be avoided. Additionally, the controller is flexible enough to change its

computational burden on demand and has an intuitive and simple way to enforce

hard constraints during the optimization process.

1.3. Organization

The rest of this thesis is organized as follows1. In the remainder of this chapter no-

tation and basic definitions used throughout the thesis will be established. In chapter 2

the proposed learning-based data-cleaning method to be used in lower layers of an iCPS

is described in detail. Chapter 3 presents the implementation of the adaptative model for

glucose prediction and its probabilistic extension. Then, chapter 4 presents the proposed

neuroevolutive controller and its evaluation in different industrial processes. Finally, chap-

ter 5 states concluding remarks and directions for future research.

1.4. Notation and Basic Definitions

In this thesis, the following notation will be adopted. R denotes the real numbers, Z≥0

denotes the nonnegative integers, RN denotes the Euclidean space of dimension N , and

RN×M denotes the set of N ×M matrices with real coefficients. For a, b ∈ Z≥0 we use

[a : b] to denote their closed interval in Z≥0. Matrices and vectors are denoted in bold fonts,

the former also capitalized. For a vector v ∈ RN , vi denotes its ith component, and [v⊕u]

denotes its concatenation with another vector u ∈ RN . For a matrix A ∈ RN×M , [A]i

denotes its ith column and [A]i its ith row. For an N-dimensional real-valued sequence

1This thesis follows the “3-paper format” of the Pontificia Universidad Católica de Chile, in which the thesis
is the compendium of three research articles written by the student. Although redundant material between
chapters has been minimized, some redundancy is unavoidable since removing material affects the flow of
the articles in the compendium.

7

α : Z≥0 → RN , α(n) ∈ RN denotes its nth element, and α[a:b] denotes its restriction

to the interval [a : b], i.e., a sub-sequence. Similarly, α∼r[a:b] denotes a sub-sequence

of length r whose elements are randomly chosen from α[a:b]. For a sub-sequence α[a:b],

M(α[a:b]) ∈ RN×(b−a+1) is a matrix whose ith column is equal to α(a + i − 1), with

i ∈ [1 : b − a + 1]. Given an N-dimensional (sub-)sequence α, we define its T -depth

window as a matrix-valued sequence β : Z≥0 → RN×T , where β(n) = M(α[n−T+1:n]).

Given a finite set of random samples X , and a continuous function f : X → R, EX [f(·)]

denotes the expectation of f from X .

8

2. CONTRASTIVE BLIND DENOISING AUTOENCODER FOR REAL TIME

DENOISING OF (INDUSTRIAL) IOT SENSOR DATA

This Chapter deals with the development of an intelligent data-cleaning method to be

used in the lower layers of an iCPS. Although this is a general method, in this chapter the

focus is on an Industrial Internet of Things application 1.

2.1. Context

The incorporation of Industrial Internet of Things (IIoT) technologies to modern in-

dustrial facilities enables the real-time acquisition of an enormous amount of process data,

typically in the form of time series, which represents an opportunity to improve perfor-

mance by using data-driven algorithms for supervision, modeling and control (Langarica

et al., 2020; Langarica & Núñez, 2021).

Data-driven techniques, as statistical or machine learning algorithms, are capable of

dealing with the multivariate and intricate nature of industrial processes; however, they

rely on the consistency and integrity of the data to work properly (Núñez et al., 2020).

This imposes a limitation on the application of these algorithms in real facilities, since

IIoT sensor data is often highly corrupted with outliers and noise caused by multiple fac-

tors, as environmental disturbances, human interventions, and faulty sensors (Núñez et

al., 2020). As a result, the vast majority of successful data-driven case studies use offline

preprocessed data, simulations or databases generated in a controlled environment, and

applications in real industrial environments are scarce.

A common practice for dealing with noisy process data is the use of smoothing filters

(S. Xu et al., 2015), like discrete low-pass filters, the Savitsky-Golay (SG) filter or ex-

ponential moving average (EMA) filters. The main drawback of these techniques is their

univariate nature, which causes that redundancy and correlations among variables are not

1The material in this chapter has been published in (Langarica & Núñez, 2023) and a preliminary version of
this method in (Langarica et al., 2020)

9

exploited for denoising. Multivariate denoisers, which can exploit cross-correlation be-

tween signals, are a natural improvement to univariate filters. Approaches like Kalman or

particle filters are common techniques used in industry; however, they require the selection

of a suitable model and an a-priori estimation of parameters, as the covariance matrices in

the Kalman filter, which could be very hard to estimate accurately.

The use of transforms, like Wavelets (Donoho, 1995) or Gabor (Nezamoddini-Kachouie

& Fieguth, 2005), is also a typical approach that exploit statistical properties of the noise,

so the signal can be thresholded in the transformed domain to preserve only the high-

valued coefficients, and then, by applying the inverse transform, obtain a cleaner signal. A

limitation of this kind of techniques is the difficulty of knowing a-priori the best basis for

representing the signals and without knowledge of the noise nature, is hard to determine

where to threshold.

Classical learning-based denoising algorithms, like principal component analysis (PCA),

Kernel PCA, or dictionary learning (Shao et al., 2014), solve some of the problems of fixed

transforms by learning a suitable representation of the data in a transformed space. These

approaches are also multivariate in nature, hence exploit spacial correlations between in-

put signals; nevertheless, they were designed for static data and, consequently, important

information from temporal correlations are not exploited at all.

Recently, denoising autoencoders (DAEs) (Yu & Zhao, 2020) have emerged as a

learning-based denoising technique that is multivariate in nature and is capable of learn-

ing complex nonlinear structures and relationships between variables. Originally, DAEs

emerged for image denoising, but with the use of recurrent neural networks, their appli-

cation in denoising dynamical data has been successful (Chaitanya et al., 2017). Unlike

PCA, dictionary learning or fixed transforms techniques, DAEs are not blind in the sense

that for learning to denoise a signal, the clean version of the signal (the target) has to be

known beforehand. In addition, information about the characteristics of the noise affecting

the signal is required to create realistic training examples. This is an important drawback

10

for using DAEs in real-world applications, where the clean version of the signal and the

noise characteristics are usually unknown.

In this chapter, inspired by: i) the results in (Lehtinen et al., 2018), which show that,

under mild conditions, it is possible to recover clean observations by only looking at cor-

rupted ones; and ii) the recent advances in self-supervised learning (Liu et al., 2020), we

propose a novel blind denoising autoencoder for real-time denoising of IIoT sensor data,

called Contrastive Blind Denoiser Autoencoder (CBDAE).

The proposed CBDAE uses noise contrastive estimation (NCE) (Gutmann & Hyvärinen,

2010) as a regularization technique over the latent space of a recurrent autoencoder to

achieve blind denoising of multivariate time series. The CBDAE preserves all the advan-

tages of DAEs, i.e., it is multivariate and purely data-driven, and additionally, it eliminates

the need during training of the clean version of the signals and prior knowledge of the

noise characteristics, i.e., it achieves blind denoising.

Consequently, the concrete contributions of this chapter are three-fold. First, as main

contribution, we introduce a novel technique, the CBDAE, which uses NCE as a temporal

regularization over the latent space. Second, we present a methodology for finding hard

negative examples, which is an active field of research in contrastive learning, to train the

CBDAE more efficiently. Finally, we show that using NCE regularization induces smooth,

meaningful and compact representations of input sequences, which can be used for other

downstream tasks such as fault detection or prediction in the latent space.

2.2. Related work

Numerous learning-based denoising techniques that use neural networks have been

proposed recently, which have consistently shown a superior performance than classical

techniques as Kalman filters or Wavelets. However, most of these efforts are not directly

applicable in online real applications since they: i) require the clean version of the signal

to compute the loss; or ii) include non-causal filters that require the entire signal at once

11

for denoising. In this context, the relevant state of the art can be divided into efforts that

use neural networks to denoise time series and efforts that achieve blind denoising using

neural networks but not necessarily targeting time series.

2.2.1. Time series denoising with neural networks

In the context of industrial applications, (Liu et al., 2019) proposes a 1-D convolutional

autoencoder for denoising measured signals from rotating machines as a preprocessing

step before using a classifier for intelligent fault diagnosis. The proposed denoising au-

toencoder requires the clean version of the signal for training; therefore, although an in-

teresting proof of concept, it has no practical use. In (C. Jiang et al., 2019), a mixed neural

network architecture is proposed consisting in two GRU layers followed by two LSTM

layers for denoising data from a micro-electro-mechanical system inertial measurement

unit (MEMS-IMU), which is the core component in navigation systems. In this case, only

static data was used and no regularization nor constraint was imposed over the identity

loss function. Even though this approach seems effective, it solely relies on the neural ar-

chitecture and the summarizing capabilities of recurrent networks, and as it will be shown

in section 4.1, if the size of the network is not carefully tuned for the specific application

and data, this could lead to over-fitting the noise as well.

In a different setting where time series denoising is also of utmost importance, several

works have targeted ECG data denoising. For example, (Arsene et al., 2019) compares

a LSTM with a convolutional neural network (CNN) for this task. Even though both

show similar performance, the CNN requires less parameters and trains faster. A related

approach is presented in (Frusque & Fink, 2022), where the threshold for wavelet coef-

ficients are learned using a neural network and then the transformation is applied to the

signal for denoising. Although of interest, both of these approaches require the clean tar-

gets for training, and thus are not applicable in real environments where this information

is not available.

12

2.2.2. Blind denoising with neural networks

Since the breakthrough of (Lehtinen et al., 2018), where it is shown that a neural net-

work can be trained to denoise its inputs by only using the corrupted versions as a target,

i.e., blind denoise, as long as the noise is zero-mean and some kind of regularization is

applied, many works have targeted blind denoising using neural networks in image-related

applications. Most of these approaches have taken advantage of image-specific assump-

tions, as spatial smoothness, similarity across patches of the same image, and sparsity

(Batson & Royer, 2019). For example, based on the sparsity assumption, a naive but

still effective approach is to use the bottleneck of an autoencoder to learn a compressed

representation of an image, leaving out uncorrelated and unimportant information as noise

(Laakom et al., 2022); however, this requires extensive experimentation to find the optimal

size of the network for a particular dataset. In this same line, (Majumdar, 2019) proposed

a more sophisticated approach based on an autoencoder network to learn a dictionary de-

composition of an image for denoising. Even though this approach does not require a clean

target nor extensive hyper-parameter tuning, it is an iterative procedure that requires opti-

mization for every instance; therefore, is unsuitable for online applications. Other works

have exploited the spatial smoothness assumption by randomly masking the input images

by zeroing out random pixels or replacing them by a function of their neighboring pixels

(Batson & Royer, 2019; Krull et al., 2018; Lecoq et al., 2021). Although these works have

been successful, it is not clear what percentage of the input pixels should be masked out

for optimal performance and what kind of mask should be used for a specific application;

therefore, extensive trial and error experimentation is required (Lecoq et al., 2021).

Similar to image-related blind denoising methods, the proposed CBDAE is inspired

by the results in (Lehtinen et al., 2018) to achieve blind denoising. However, in this

case we rely on the temporal smoothness of time series measured from an underlying

dynamical system, to regularize the latent space of an autoencoder using our proposed

NCE loss. The CBDAE not only successfully achieves blind denoising with minimal

hyper-parameter tuning, but also is applicable to online real industrial applications and

13

is especially suitable for other data-driven control applications built in top, where data

quality is of utmost importance (Das Sharma et al., 2021; Zamfirache et al., 2022b, 2022a;

Precup et al., 2022).

2.3. Theoretical background

2.3.1. Autoencoders and Denoising Autoencoders

Autoencoders (AEs) (Hinton & Salakhutdinov, 2006) are unsupervised neural net-

works trained to reconstruct their inputs at the output layer, passing through an intermedi-

ate layer usually of lower dimension than the inputs.

Formally, given an N -dimensional sequence y, the AE maps an input vector y(n) ∈

RN to a latent representation z ∈ RM , with M < N , using a function fθE , which in the

simplest case is a linear layer with σ as an arbitrary activation function, namely,

z = fθE = σ(Ey(n) + b), (2.1)

where E ∈ RM×N and b ∈ RM are trainable parameters of the network. In more complex

approaches, fθE can be chosen to be any type of layer, like recurrent or convolutional

layers, or even a stack of multiple layers.

After encoding, the latent vector is mapped back to the input space by a second func-

tion gθD known as the decoder:

ŷ(n) = gθD = σ(Dz+ e), (2.2)

where D ∈ RN×M and e ∈ RN .

During training, the parameters of the AE are found by solving the optimization prob-

lem in (2.3) using gradient descent and the back-propagation algorithm,

θ∗ = arg minθ||ŷ(n)− y(n)||2, (2.3)

14

y(n)1

y(n)2

...

y(n)N−1

y(n)N

fθE

...

z
ŷ(n)1

ŷ(n)2

...

ŷ(n)N−1

ŷ(n)N

gθD

Figure 2.1. Simple AE architecture where fθE encodes the input vector
y(n) to a latent representation z and then, gθD decodes z to reconstruct the
input as ŷ(n).

where θ accounts for all the trainable parameters. Fig. 2.1 illustrates a simple AE network.

When the input of the AE is corrupted with noise and the target output is clean, the

resulting latent space is more robust, contains richer features, and the AE learns how to

denoise corrupted inputs (Vincent et al., 2008). This is the working principle of the so

called Denoising Autoencoders (DAEs), and has led to many denoising applications in

static data, as images (Creswell & Bharath, 2019), and with the use of recurrent AEs

(Chaitanya et al., 2017) this technique has also been effectively applied to dynamic data.

However, DAEs work under the assumption that the clean version of the input data is

available (since is used as the target during training), as well as information about the

noise. This fact limits the application of DAEs to IIoT sensor data where, in general, none

of these requirements are fulfilled.

2.3.2. Noise contrastive estimation

Noise contrastive estimation (NCE) (Gutmann & Hyvärinen, 2010) is a learning method

for fitting unnormalized distributions that has been adapted for different machine learning

tasks, such as natural language processing (NLP) (A. Mnih & Kavukcuoglu, 2013), time

series feature extraction (Hyvarinen & Morioka, 2016) and semi-supervised image and

audio classification (Chen et al., 2020; van den Oord et al., 2018). The basic idea of NCE

15

is to estimate the parameters of the model by learning to discriminate between samples

from the target distribution and samples from an arbitrary noise distribution, transform-

ing complex density estimation tasks into probabilistic binary classification ones. NCE is

based on “learning by comparison” and thus, falls under the family of contrastive learning

methods (Liu et al., 2020).

Mathematically, let y ∈ RN be an input data vector belonging to one of L possible

classes. Denote as y+ and y− positive and negative examples of y, respectively, meaning

that y+ and y are of the same class, and y− belongs to a different class. Consider a

generic nonlinear learnable transformation with parameters θ, fθ : RN → RM , which

takes elements from the input data space and projects them to another space (for example,

an encoder). The NCE loss can be formulated as:

LNCE = Ey,y+,y−

[
− log

(
efθ(y)

T fθ(y
+)

efθ(y)T fθ(y+) + efθ(y)T fθ(y−)

)]
. (2.4)

The NCE loss has the property of maximizing a lower bound of the mutual information

between y and y+ (van den Oord et al., 2018). However, as noted by (Sohn, 2016), the

NCE loss with only one negative example per update yields to slow convergence and is

prone to getting stuck in a local optima. Therefore, the NCE loss is modified by (Sohn,

2016) to use multiple negative examples, yielding a formulation known as the InfoNCE

loss (van den Oord et al., 2018):

LNCE = EY

[
− log

(
efθ(y)

T fθ(y
+)∑

ȳ∈Y e
fθ(y)T fθ(ȳ)

)]
, (2.5)

where Y is a finite set of samples containing only one positive example, y+, and multiple

negative ones. However, even if multiple negative examples are used, slow convergence

might still be a problem, particularly when negative examples are far from positive ones,

which produces a near-zero loss and very small gradients early in training. How to select

the so-called hard negative examples (those very close to the target but still further than

positive examples) is still an open problem in the literature.

16

Other proposals have been made to improve performance of the NCE loss, as using

other similarity functions, e.g., cosine similarity, and introducing a temperature parameter

(Chen et al., 2020).

2.4. Process data denoising using a Contrastive Blind Denoising Autoencoder

In this work, we aim to transfer the blind denoising results obtained for images in

(Lehtinen et al., 2018) and (Majumdar, 2019) to time series by using a recurrent AE. The

use of a recurrent AE seems natural given its ability to process sequential data, and its

proven summarizing capabilities that can be useful for denoising (C. Jiang et al., 2019). In

particular, in (Lehtinen et al., 2018) it was shown that a neural network can be trained to

denoise its inputs by only using corrupted versions as a target, i.e., blind denoise, as long

as the noise is zero-mean. Nonetheless, it was also shown that when an AE with enough

capacity is used, at some point it not only learns high level features, which is fundamental

for data-based denoising, but also overfits the data and reproduces noise as well. Fig. 2.2

shows this effect when training a vanilla recurrent AE to denoise time series.

To solve this issue, we propose to use NCE regularization to transfer temporal smooth-

ness from the input time series to the latent space of the AE. Our application of the NCE

regularization forces the latent space vectors to encode the underlying shared information

between different parts of the input signals, i.e., dynamical characteristics of the process,

leaving out low-level information, as noise (van den Oord et al., 2018). Additionally, the

NCE regularization contributes to obtaining meaningful and compact representations of

the input time series, which can be used for other downstream tasks, as it has been shown

in prior works (Wang & Gupta, 2015).

2.4.1. General setup

Consider a multi-input multi-output dynamical system, which is sampled periodically

by an IIoT system with period τ . From the IIoT system perspective, the process can be

17

modeled as a discrete-time system given by

x(n+ 1) = F (x(n),w(n)), (2.6)

where n denotes the time step, x(n) ∈ RW , with W the order of the system, denotes the

current value of the internal state, x(n+1) is the future value of the state, w(n) ∈ RQ de-

notes process inputs, and F : RW × RQ → RW is a smooth nonlinear mapping governing

the dynamics of the system.

The measurement (observation) process is given by

ỹ(n) = C(x(n),v(n)), (2.7)

where ỹ(n) ∈ RN denotes the measurements vector generated by the IIoT system, C is

the output mapping, and v(n) represents measurement noise. For a noise-free condition,

we denote the noise-free (unknown) measurements vector at time step n as:

y(n) = C(x(n),0). (2.8)

Under this setup, the measurement process generates a sequence ỹ : Z≥0 → RN ,

where, without loss of generality, N ̸= W , therefore:

ỹ(n) = [ỹ1(n), ỹ2(n), . . . , ỹN(n)]T ∈ RN , (2.9)

where each ỹi(n) represents a real-valued measurement of the ith system output at time

step n.

2.4.2. Problem formulation

Let Ỹ(n) be the T -depth window of ỹ, i.e.,

Ỹ(n) = [ỹ(n− T + 1), ỹ(n− T + 2), . . . , ỹ(n)] ∈ RN×T , (2.10)

18

Figure 2.2. Blind denoising with a recurrent AE with no regularization.
The light blue line represents the loss calculated using the output of the AE
and the noisy signal, i.e., blind denoising, while the orange line represents
the loss calculated using the output of the AE and the clean version of the
signal (not available for training), which is the real objective we would
like to minimize, but in practice is not possible to calculate. The network
learns to denoise the signal at some point, as is shown in the left subplot
in which the AE cleans the signal successfully, (red curve represents the
clean version of the signal and the dark blue curve the autoencoder output),
but as training continues it begins to overfit, reproducing noise as well, as
shown in the right subplot.

hence [Ỹ(n)]k ∈ RN is a column vector containing the N measurements at time instant

n − T + k, and [Ỹ(n)]k ∈ RT is a row vector containing the last T measurements of the

k-th output.

At each time step n, the CBDAE uses Ỹ(n) to generate an estimate of y(n), denoted

as ŷ(n). Since the CBDAE is a dynamical system itself that processes data sequentially

(due to the use of recurrent neural networks) to accomplish this task, two timescales should

be introduced in the formulation. The process time refers to the time scale at which (2.6)

evolves, which is ruled by τ and indexed by n, while the CBDAE time refers to the internal

time of the CBDAE, which is ruled by a host computer’s processor time step and is indexed

by j for each fixed n.

Since the objective of the CBDAE is to operate in real-time, the CBDAE timescale

has to be fast enough to process the data in Ỹ(n) before another set of measurements,

generated at the process timescale, becomes available. Hence, we have two dynamical

19

Controller

CBDAE

Plant

SensorWindow
Creation

Figure 2.3. Control scheme that incorporates the proposed CBDAE to de-
noise corrupted signals measured by the sensor. y(n) denotes the real value
of the output signals at time n; ỹ(n) denotes the measured signal by the
sensor; Ỹ(n) represents the T -depth window of measurements, which is
the CBDAE input; and ŷ(n) denotes the output of the CBDAE, which ap-
proximates y(n).

systems at work, the slow system (the process) and the fast system (the CBDAE), which

at each process time step gets triggered and iterates itself a number of steps depending on

the size of Ỹ(n) and the CBDAE architecture.

Hence, summarizing, the problem to be solved is to generate in real time an esti-

mate ŷ(n) of the noise-free measurement vector y(n) by processing Ỹ(n). Unlike typical

DAEs, in this case we do not have access to y(n); therefore, denoising must be done in a

blind manner. To illustrate the potential of the proposed approach, Fig. 2.3 illustrates how

the CBDAE can be incorporated in a data-driven control scheme.

2.4.3. Blind Denoising

The working principle of the proposed blind denoising technique will be divided in

three steps, which are detailed in the following.

20

2.4.3.1. Autoencoder network

As mentioned, due to its recurrent nature the autoencoder network is a dynamical sys-

tem itself; hence, in the following is formulated in dynamical terms, stressing the (local)-

time dependence of its internal variables. First, at process time n, the encoder generates

a latent representation hL of Ỹ(n), which is a QL-dimensional finite-length sequence of

length T + 1 (an initial condition plus one element for each column of Ỹ(n)), by feeding

the network iteratively with the columns of Ỹ(n) and then recursively feeding back the

internal state of the network, namely:

hL(j) = fenc([Ỹ(n)]j,hL(j − 1)), j ∈ [1 : T], (2.11)

where fenc represents a recurrent network, with L layers and Ql neurons in each layer

l ∈ [1 : L], that in our case is composed by Gated Recurrent Units (GRU) (Cho et al.,

2014). The (sequential) operations at each GRU layer are given by:

zl(j) = σ(Wzlpl(j) +Uzlhl(j − 1) + bzl)

rl(j) = σ(Wrlpl(j) +Urlhl(j − 1) + brl)

nl(j) = tanh(Wnl
pl(j) + rl(j) ◦ (Unl

hl(j − 1) + bnl
))

hl(j) = (1− zl(j)) ◦ nl(j) + zl(j) ◦ hl(j − 1),

(2.12)

where hl(j) ∈ RQl is the hidden state of layer l at CBDAE time j, rl, zl and nl are Ql-

dimensional finite-length sequences representing the value of reset, update and new gates

of layer l respectively. σ and tanh are the sigmoid and the hyperbolic tangent activation

functions, ◦ is the Hadamard product and pl(j) is the input of layer l at CBDAE time j.

For the first layer (l = 1) the input, p1(j) is given by the input of the network [Ỹ(n)]j ,

and for the subsequent layers the input is given by hl−1(j), which is the current hidden

state of the previous layer (this stresses the sequential nature of the CBDAE).

Finally, the latent representation of Ỹ(n) is selected to be hL(T) ∈ RQL , which is the

last hidden state of the last layer. This vector will be denoted as h(T) from now on by

dropping L for the sake of clarity.

21

After the final latent representation is obtained, the decoder takes the final hidden state

of each encoder layer hi(T) as the initial hidden state of each of its recurrent layers, which

implies an equal number of layers, and begins to decode the sequence as

dL(j) = fdec(pj,dL(j − 1)), j ∈ [1 : T] (2.13)

where pj ∈ RN is the input for each decoding step of the network. The first input (j = 1)

is given by the first element of the target sequence [Ỹ(n)]1, while for subsequent steps

the input is given either by the delayed target [Ỹ(n)]j−1 or the previous network esti-

mate [Ŷ(n)]j−1, based on a strategy that will be explained in the following. The network

estimates are calculated by projecting dL(j) using a linear transformation odec as

[Ŷ(n)]j = odec(dL(j)) = WoutdL(j) + bout, (2.14)

where Wout ∈ RN×QL and bout ∈ RN are trainable parameters. Then, the final output of

the CBDAE corresponds to ŷ(n) = [Ŷ(n)]T . Note that the decoder starts its processing

once h(T) is available, which involves T previous iterations of the encoder at CBDAE

time. Therefore, careful should be taken when interpreting the local time of the decoder.

Two modifications are proposed to this vanilla version of the recurrent AE to enhance

its denoising capabilities. First, it was found that scheduled sampling (Bengio et al., 2015)

is beneficial for denoising. This technique consists in using at early training stages the

target at j − 1 ([Ỹ(n)]j−1) as the input of the decoder to predict the target at j, and as

training progresses, increasingly using the network estimates ([Ŷ(n)]j−1) to estimate the

target at j. This shift is controlled by a probability pd, that in our case is increased linearly

as

pd = min(1, kd + cde), (2.15)

where kd and cd are parameters and e is the training epoch.

Shifting gradually from using the target as the input in each step to using the net-

work’s own estimates improves the stability of the training process, specially when the

decoded sequence is long. Moreover, it forces h(T) to retain all the information of the

22

input sequence in a compressed manner, since the entire sequence has to be recovered

from it. This helps to retain only important information about the sequence, leaving out

non-relevant information as noise.

The second modification to the recurrent AE, is the incorporation of an additional

transformation that maps h(T) to another space, where the contrastive loss is applied.

This transformation is given by

z(T) = g(h(T)) = Wg2σ(Wg1(h(T))) ∈ RG, (2.16)

where Wg1 ∈ RG1×QL and Wg2 ∈ RG×G1 are trainable parameters and σ represents the

Relu activation function. According to (Chen et al., 2020), using this additional trans-

formation is beneficial since the contrastive loss induces invariance of the representation

between positive examples, hence applying it directly in the latent space could be detri-

mental for downstream tasks, where it is desirable that positive examples have similar but

not equal representations.

2.4.3.2. Selection of hard negative examples for NCE loss

As mentioned before, the incorrect selection of negative examples makes the network

to exhibit sub-optimal performance and slow convergence (Wu et al., 2020). Therefore, is

vital to develop an effective method for obtaining them, in the context of time series.

Although still an open problem, a typical approach for finding hard negatives is to

randomly sample a batch of B negative examples, calculate the score of each element and

select the K elements with higher loss values for the training step (Wang & Gupta, 2015).

Instead, we propose a hybrid scheme that takes advantage of the temporal consistency

of the time series for selecting hard negatives. To this end, given a training database in the

form of a finite length sequence Ỹ of length T̄ , for a given index k, define a batch Bc as a

sub-sequence of length C as Ỹ[k−C+1:k], i.e., a sub-sequence of consecutive data matrices

chained in time. Similarly, define a batch Br as a sub-sequence of R randomly chosen

23

matrices Ỹ∼R[0:T̄−1]. In each training iteration a batch is formed by concatenating both

batches (sub-sequences) as (see Fig. 2.4)

B = Bc ⊕Br, (2.17)

where ⊕ denotes the concatenation operator. For each element of B the following oper-

ations are performed: i) a forward pass of the encoder; ii) transformation g to the latent

vector; and iii) concatenation of the resulting projections to obtain the following matrix

Z = [Zc ⊕ Zr] ∈ RG×(C+R) (2.18)

Since consecutive columns of Zc are obtained by processing consecutive elements from

Ỹ, the rationale is that their representations should be similar and very close in the latent

space of the CBDAE. However, because of the temporal structure of the time series, it is

desirable that [Zc]j±1 is closer to [Zc]j than [Zc]j±2, and [Zc]j±2 is closer than [Zc]j±3,

and so on. Therefore, when iterating through the batch, we can select [Zc]j±1 as a positive

example of [Zc]j to increase the mutual information of consecutive representations, thus

helping to transfer the dynamic characteristics of the underlying system to the latent space

of the CBDAE. On the other hand, all the other representations [Zc]k ̸=j±1 are selected as

negative examples to push them further from [Zc]j than [Zc]j±1. These representations are

inherently hard negatives because they will remain close due to the dynamical structure

the space is learning. Similarly, Zr representations are always used as negative examples.

Note that using only Bc with subsequent and highly correlated examples for training

could damage learning since the batch is also used to train the autoencoding part (Bengio,

2012). Also, as pointed out by (Wu et al., 2020), randomly selected samples could be

beneficial in different stages of training when using contrastive losses, particularly in early

stages. Therefore, we consider beneficial to use a combination of randomly selected and

consecutive samples.

24

2.4.3.3. Loss calculation

After processing the batch and obtaining Z, similar to (Chen et al., 2020), the NCE

loss is calculated using

l(i, j, q) = − log

(
exp(sim([Z]i, [Z]j))∑C+R

k=1 1k ̸=i,q exp(sim([Z]i, [Z]k))

)
, (2.19)

where sim stands for the cosine similarity, although, any similarity measure can be used,

and 1k ̸=i,q is an indicator function evaluating to 1 if k ̸= i and k ̸= q and zero otherwise.

To obtain the final NCE loss LNCE , l(i, j, q) is computed across all pairs (j, j + 1) and

(j+1, j) (since the NCE loss is not symmetric), where j ∈ [1, c−1] because only columns

in Zc are considered as positive pairs. Special attention should be given to index q, which

is used to exclude examples from the loss calculation and is selected equal to j − 1 when

the loss is calculated for the pair (j, j + 1) and equal to j + 2 when the pair is (j + 1, j).

This is because when calculating the loss around [Z]j with [Z]j+1 as positive example, all

other examples in Z are considered as negatives. However, we want the representation of

[Z]j−1 to remain as close to [Z]j as [Z]j+1, therefore [Z]j−1 has to be excluded from the

list of negatives. The same occurs when calculating the loss around [Z]j+1, where [Z]j+2

has to be excluded from the list of negatives.

Given this, the complete loss for each training batch consists in two elements, the

autoencoding loss given by

LAE =
1

(C +R)NT

∑
Ỹ(k)∈B

N∑
i=1

T∑
j=2

|[Ŷ]ij(k)− [Ỹ]ij(k)|, (2.20)

and the NCE loss

LNCE =
1

2(C − 1)

C−1∑
j=1

(l(j, j + 1, j − 1) + l(j + 1, j, j + 2)) , (2.21)

which are combined to form the batch loss,

L = LAE + βLNCE, (2.22)

25

Sliding windows
creation

Batch
creation

Batch
creationRandomizer

Figure 2.4. Data processing for training the CBDAE. First, each of the N
signals to be denoised is split in a sliding window fashion to simulate a
real-time processing. Then, each of these univariate windows of depth T
are combined to form multiple multivariate windows Ỹ(n) ∈ RN×T in
which the temporal dimension is synchronized. Finally, multiple Ỹ(n) are
combined to form two different kind of batches; a batch Bc of consecutive
Ỹ(n) (e.g. n = 1, 2, 3, etc) and a batch Br of randomly selected Ỹ(n).
Both Bc and Br are transformed by the CBDAE and their respective repre-
sentations are used for the calculation of LNCE (see section 4.3.2).

where β is a trade-off parameter between both terms. Finally, network parameters are

iteratively optimized during training to minimize the complete loss L, using the back-

propagation-through-time (BPTT) algorithm, which is suitable for training recurrent ar-

chitectures. Then, during operation, parameters are fixed and the network only needs

forward passes to estimate the clean version of the signals.

Figs. 2.4 and 2.5 illustrate the roles that all the elements presented in this section play

in the training and architecture of the CBDAE. The complete training algorithm of the

proposed technique is presented in Algorithm 1.

2.5. Experimental Evaluation

2.5.1. Simulated example

As a proof of concept, we use the CBDAE in a simulated industrial process, the

well-known quadruple tank process (Johansson, 2000), which is a nonlinear multi-input

26

GRU

Encoder Decoder

GRU GRU GRU Linear

Linear Linear

Figure 2.5. Training iteration and proposed network architecture of the
CBDAE. Both the encoder and the decoder are composed by two GRU
recurrent layers, with the decoder having a final linear projection to pro-
duce the outputs from which the reconstruction loss (LAE) is calculated.
The batch of latent space vectors h(T) is transformed by two linear layers
to obtain Z(T), which is then used to calculate the regularization term of
the loss LNCE . Finally, both terms are combined to calculate the final loss
of the network.

multi-output system that can switch between minimum phase and non-minimum phase be-

haviour. For all our experiments we used the non-minimum phase configuration to make

the dynamics more challenging. Inputs are the voltages applied to the pumps, which vary

in the range 0 to 1 volts. We assume that only the real value of the inputs (manipulated

variables) are known, i.e., clean signals, which are normally available in any control sys-

tem. The outputs are the four levels of the tanks that vary between 0 and 50 centimeters

and are affected by noise. Both inputs and outputs are sampled to generate Ỹ and are

given to the CBDAE.

To gather data for training, the system is excited with multiple steps, then noise with

different characteristics is added to the outputs. Finally, the CBDAE is trained to denoise

the signals, following Algorithm 1.

All the experiments were conducted on a 2.4GHz Intel Core i5-9300H machine with

16GB of RAM and an NVIDIA GeForce GTX 1650 graphics card with 4GB of RAM.

Also, for all the experiments the following parameters were used: a window depth of

27

Algorithm 1 Blind Denoising Autoencoder Training
1: Input: Batch size C + R, number of training epochs E, training iterations per epoch W ,

training database size T̄ , number of measurements N , window depth T , autoencoder trans-
formations fenc, g, fdec and odec, scheduled sampling parameters pd, kd and cd, and loss
parameter β.

2: procedure CBDAE TRAINING
3: Initialize fenc, g, fdec and odec weights randomly
4: for e in E do
5: its = 0
6: while its ≤ W do
7: Sample C consecutive data matrices from the database to form batch Bc

8: Randomly sample R data matrices to form Br

9: B = Bc ⊕Br

10: Initialize Z as empty matrix and B̂ as empty sequence, which will be used to hold
the autoencoder’s latent representations and estimates, respectively

11: for each i in [0 : C +R− 1] do
12: Process B(i) iteratively with fenc as in (2.11) to obtain h(T)
13: Use g to obtain z(T) from h(T) as in (2.16) and save this representation in [Z]i
14: Initialize state of the decoder as d(1) = h(T) and its first input as the first

element of the sequence [B(i)]1
15: for j in [2 : T] do
16: Select random number ϵd ∈ [0, 1]
17: SS = True If ϵd ≤ pd Else False
18: if SS = True then
19: d(j) = fdec([B̂(i)]j−1,d(j − 1)) (use past estimates)
20: else
21: d(j) = fdec([B(i)]j−1,d(j − 1)) (use past target)
22: end if
23: [B̂(i)]j = odec(d(j))
24: end for
25: end for
26: Calculate LAE with all the elements of B and B̂ as in (2.20)
27: Calculate LNCE with elements of Z as shown in (2.19)
28: L = LAE + βLNCE

29: Update fenc, g, fdec and odec to minimize L using BPTT algorithm.
30: its = its+ 1
31: end while
32: pd = min(1, kd + cde)
33: end for
34: Return fenc, g, fdec and odec that minimize L

35: end procedure

T = 60, batch size C = 32, R = 32, two hidden layers in the encoder and the de-

coder, and a hidden size of 80 in each layer. The additional transformation dimension

was selected as dim(z(T)) = 20 and the trade off parameter in the loss β = 1.5. Adam

28

optimizer was used for optimization and Pytorch as the deep learning framework. Finally,

the RMSE between the original (clean) signal and the output of the different models is

used as performance indicator for evaluation.

To evaluate blind denoising, the output signals are corrupted using a combination of

white and impulsive noise, which is typically seen in real industrial processes. The noise

power is varied from moderate (σ = 0.5) to very strong noise (σ = 4). To illustrate the

advantages of the proposed CBDAE, we compare it against multiple classical data-driven

and model-based baselines typically used in the industry, as well as against other BDAE

networks trained with different variations of Algorithm 1, this to highlight the positive

effects of using the NCE loss.

As for the classical data-driven baselines, a Savitsky-Golay filter with a polynomial

order of 2, an EMA filter with α = 0.33 and typical mean and median filters were tested

with different window sizes. For the classical model-based techniques, a Kalman Filter,

a Particle Filter, and an Extended Kalman filter, all using the real process matrices, were

implemented as well. Finally, in the case of the different BDAE variations, we used a

recurrent AE without any type of regularization (BDAENoReg) but trained as described

in subsection 4.3.1. A recurrent AE with L1 regularization instead of NCE regulariza-

tion (BDAEL1), which has been found to be useful for denoising (Thanh et al., 2020),

with βL1 = 1 × 10−6 (the weight of the L1 regularization term) and a CBDAE without

the transformation g (CBDAEh), meaning that in this case NCE regularization is applied

directly on h(T).

Table 2.1 shows the denoising results in terms of RMSE for the different methods. In

the table, it can be seen that all BDAE methods clearly outperform both classical data-

driven and model-based denoisers. In the case of data-driven denoisers, surprisingly the

Savitsky Golay filter had the worst results. This is most likely due to the high frequency

preservation property of this filter, which is specially harmful when the input signal is

corrupted with “salt and pepper” noise. As for model-based denoisers, their poor perfor-

mance may be due to the fact that these type of filters have major difficulties when faced

29

Table 2.1. Comparison of denoising results in terms of the average RMSE
[cm] for all the tank levels. For classical data-driven techniques wi rep-
resents the length of the window that delivered the best results. For each
noise power, the best result is highlighted in bold.

Method / Noise Power σ = 0.5 σ = 1 σ = 1.5 σ = 2 σ = 2.5 σ = 3 σ = 3.5 σ = 4

Original Noisy input 2.165 2.406 2.572 2.850 3.121 3.515 3.929 4.277
Mean F. (w5) 1.254 1.269 1.381 1.475 1.634 1.777 1.911 2.115
Median F. (w5) 0.803 0.917 1.117 1.337 1.583 1.785 2.019 2.173
Savitsky Golay F. (w30) 1.303 1.313 1.473 1.560 1.757 1.907 2.04 2.207
EMA F. 1.244 1.264 1.375 1.469 1.630 1.773 1.913 2.089
Kalman F. 2.005 2.108 2.176 2.259 2.324 2.445 2.548 2.581
Particle F. 1.708 1.774 1.986 2.088 2.334 2.560 2.797 3.026
Extended Kalman F. 1.773 1.846 1.956 2.041 2.187 2.342 2.497 2.603
BDAENoReg 0.671 0.502 0.577 0.638 0.663 0.647 0.779 0.641
BDAEL1 0.668 0.572 0.58 0.587 0.588 0.668 0.566 0.620
CBDAEh 0.392 0.313 0.326 0.445 0.521 0.569 0.741 0.602
CBDAE 0.276 0.318 0.355 0.394 0.407 0.518 0.489 0.542

with a non-minimum phase system (Ansari & Bernstein, 2019). Regarding the different

BDAE methods, it can be seen that the CBDAEh and the CBDAE, the two methods that

use NCE regularization, achieve the best results in all cases. It is interesting to note that

the CBDAE clearly outperforms the CBDAEh for high values of σ, which is probably due

to transformation g which helps the CBDAE to better preserve the dynamical information

of the input signals in another set of vectors different from those used for decoding.

Fig. 2.6 shows the denoising results of the CBDAE when applied to denoise one of

the quadruple tank signals. It can be seen that indeed the CBDAE is able to successfully

recover the clean version of the signal, as suggested by the numerical results presented

in Table 2.1. Additionally, to explore the feasibility of implementing the CBDAE in real

time, we analyze its computational complexity when denoising a multivariate sequence

using the hardware detailed above. Table 2.2 shows the execution time of the CBDAE and

other classical methods. It can be seen that classical filters have considerably lower exe-

cution times than the CBDAE, which is expected due to their simplicity; however, model-

based nonlinear techniques present higher execution times, a difference that becomes more

significant when using a GPU accelerator. The execution times of other neural-based de-

noisers are omitted since they are very similar to the ones of the CBDAE. The results in

30

C

(Ground truth)

Figure 2.6. CBDAE results when blind denoising one of the quadruple
tank sensors corrupted with white and salt and pepper noise with σ = 3.

Table 2.2. Execution time of different denoising methods on the specified
hardware.

Method Time [ms]

Mean F. (w5) 0.36
Median F. (w5) 0.42

Savitsky Golay F. (w30) 0.37
EMA F. 0.21

Kalman F. 5.42
Particle F. 167.58

Extended Kalman F. 281.64
CBDAE (CPU) 23.15
CBDAE (GPU) 10.82

Table 2.2 indicate that the CBDAE is fast enough for real time implementations and that

it can be implemented in modern edge devices as part of a control system pipeline.

Finally, Fig. 2.7 shows the latent space trajectories obtained for the different BDAE

networks when two different but similar trajectories are given for denoising, after using

PCA as dimensional reduction technique to project the latent space to two dimensions. It

can be seen in the figure that the CBDAE latent space is much more ordered, smooth and

predictable than the latent space of the other BDAE networks. It is also interesting to note

that the principal components of the CBDAE latent space present two lobes that match

with the first-order information of the input signals. When the tanks are being filled, the

latent space trajectory is on the right-side lobe, and when the tanks are being emptied,

the latent space trajectory is on the left-side lobe. This dynamically smooth and ordered

31

C C

Figure 2.7. Two-dimensional latent space trajectories obtained with PCA
for the different BDAE networks when the process follows two similar tra-
jectories for σ = 3. In the upper graphs, the red line represents the latent
trajectory when the tank levels follow the lower left-hand graph trajectories
and the orange line in the upper graphs represents the same for the lower
right-hand graph.

structure acquired by the latent space, as a result of using NCE regularization, could be

further exploited for other downstream tasks as prediction and fault detection.

2.5.2. Application to an industrial paste thickener

As a second experiment, the CBDAE was applied to denoise the signals of a real in-

dustrial paste thickener. This process is considerably more challenging than the quadruple

tank process, since the thickener is subject to many unmeasured disturbances and we only

have access to a reduced number of measurements. Is worth mentioning that since in this

experiment we are working with real process data, we do not have access to the clean

version of the signals and therefore, we cannot evaluate the results of the CBDAE quanti-

tatively. A detailed description of the IIoT infrastructure used to generate the data of the

industrial paste thickener can be found in (Núñez et al., 2020).

2.5.2.1. Thickening process description

Thickening is the primary method in mineral processing for producing high density

tailings slurries. Thickening generally involves a large tank (see Fig. 2.8) with a slow

32

Flocculant

Centrifugal
Pump

Feed

Tailings
Discharge

Thinning

Stand-by

Mass Flow
Measurement

Volumetric Flow
Measurement

Volumetric Flow
Measurement

Density
Measurement

Density
Measurement

Hydrostatic
Pressure

Measurement

Positive
Displacement

Pump

Centrifugal
Pump

Centrifugal
Pump

· Clarity
· Interfase
· Mud

Figure 2.8. Process and instrumentation diagram of the paste thickener
used for the experiments. Time series are available for the following vari-
ables: feeding and discharge rates, flocculant addition rate, feeding and
discharge density, internal states of the thickener (mud, interface and clar-
ity levels).

turning raking system. Typically, the tailings slurry is added to the tank after the ore

extraction process, along with a sedimentation-promoting polymer known as flocculant,

which increases the sedimentation rate to produce thickened material discharged as under-

flow (Núñez et al., 2020).

Due to its complexity and highly non-linear dynamics, deriving a first-principles-based

mathematical model is very challenging. Therefore, an appealing approach is to use data-

driven modeling techniques. However, sensors in charge of providing data are exposed to

strong disturbances and noise and an effective online preprocessing technique is needed.

Hence, the thickener is an interesting real process to test the proposed CBDAE.

The CBDAE was trained with 12 months of real operational data from the industrial

thickener, and following the guidelines of (Núñez et al., 2020), we selected 8 key variables

33

Figure 2.9. CBDAE results when blind denoising the output solids con-
centration, one of the key variables of the thickener for control purposes.

that have been used to model this process with data-driven techniques. Namely, the floc-

culant flow, the output flow (manipulated variables), the input solids concentration, input

flow (measured disturbances), the bed level, the rake torque, the hydrostatic pressure and

output solids concentration (process outputs).

Figs. 2.9 and 2.10 show the denoising results of the CBDAE for the output solids

concentration and the input solids concentration, which are two of the most important

signals for control purposes. It can be seen in Fig. 2.9 that the CBDAE successfully

learns to ignore the spikes in the signal, which clearly do not belong to the dynamics

of the system. Similarly, in Fig. 2.10, it can be seen that the CBDAE is capable of

filtering the strong noise affecting the input solids concentration. It is also interesting to

note that the resulting delay is minimum, which could be critically important for control

applications built in top. Analogous to Fig. 2.7, Fig. 2.11 shows the trajectories in the

latent space for two similar trajectories in the input space. Note that both the CBDAE and

the CBDAEh show smooth and similar trajectories, unlike the networks that do not use

NCE regularization, which show an erratic and totally unpredictable behavior.

34

Figure 2.10. CBDAE results when blind denoising the input solids con-
centration, a measured disturbance with one of the most corrupted sensors.

C

C

Figure 2.11. Two-dimensional latent space trajectories obtained with PCA
for the different BDAE networks when the thickening process follows two
similar trajectories.

2.6. Discussion

In this chapter, an intelligent general purpose data-cleaning method to be used in the

lower layers of a CPS is proposed. The two experiments presented here showed the effec-

tiveness of the CBDAE to improve data quality of multivariate time series by exploiting

35

the temporal smoothness and cross correlation of different variables of physical systems.

Also, it was shown how the NCE regularization transferred some of the temporal smooth-

ness of the input signals to the low-dimensional latent space of the CBDAE, which could

be exploited for other downstream tasks.

Results showed the superiority of the CBDAE when compared to classical techniques

commonly used in industry and other neural network approaches. In future work the

CBDAE will be tested on an edge device for real time data cleaning of a real process, and

the latent space of the network will be further investigated for its use in other downstream

applications.

36

3. A META-LEARNING APPROACH TO PERSONALIZED BLOOD GLUCOSE

PREDICTION IN TYPE 1 DIABETES (T1D)

This Chapter focuses on the design of an adaptive model in the context of model per-

sonalization for real-time glucose prediction in patients with T1D. Additionally, a proba-

bilistic extension that targets glucose uncertainty estimation under meal specification er-

rors on part of the patient, is proposed 1.

3.1. Context

Type 1 diabetes is a chronic autoimmune disease characterized by an increased blood

glucose concentration due to a deficiency in the secretion of insulin, a hormone produced

by pancreatic beta cells (Kahanovitz et al., 2017). Insulin promotes glycogenesis (a pro-

cess that synthesizes glycogen from circulating glucose to be stored in the liver and muscle

cells) and also inhibits the secretion of glucagon, a hormone that increases the concentra-

tion of glucose in the bloodstream by converting the stored glycogen back into glucose,

by alpha cells (Vergari et al., 2019).

Insulin and glucagon are part of a larger system, called glucoregulatory hormones,

which are responsible for keeping glucose levels in a relatively narrow range. If glucose

in the bloodstream decreases below a certain threshold (e.g., in a fasting state or prolonged

intense exercise), alpha cells secrete glucagon, increasing glucose concentration. On the

other hand, if the concentration rises above the normal level, due to intestinal absorption

of food or other causes, beta cells produce insulin, decreasing glycemia. This regulation

process is called glycemic homeostasis. However, in people with T1D, the immune system

destroys the beta cells and therefore, the body loses the capacity for homeostasis.

T1D patients can regulate their glucose by constantly injecting a proper amount of

insulin; however, doing it manually is difficult, and if not done correctly, it can have several

negative consequences. On the one hand, high blood glucose levels (> 180 mg/dL) can

1Part of the material in this chapter has been accepted for publication in the journal Control Engineering
Practice (Langarica et al., 2023)

37

lead to long-term complications such as poor blood circulation, cardiovascular problems

and blindness among others, and on the other hand, low glucose levels (< 70 mg/dL) can

lead to severe short-term complications such as dizziness, fainting or even death (De Bois

et al., 2022).

Thanks to the introduction of continuous glucose monitoring devices (CGMs) and

insulin pumps, it is now is possible to rely on automatic glucose management systems,

also called artificial pancreas (AP) systems, which alleviate patients from the burden of

having to control their glucose levels manually. Numerous clinical trials have validated

these systems, showing that automatic control techniques have the potential to improve

life conditions of people that suffer from T1D (Brown et al., 2019; Pinsker et al., 2022;

Carlson et al., 2021).

Among the different control approaches that have been used in this context, model

predictive control (MPC) is one of the most promising, with excellent results both in vivo

and in silico (Shi et al., 2019; Gondhalekar et al., 2018). The MPC approach relies on a

dynamical model of glucose behaviour to find, via an optimization problem, the amount

of insulin that, when delivered, results in the desired level of glucose. Therefore, the more

accurate the model is, the better closed-loop performance is achieved. In fact, as pointed

out in a recent review on modern MPC applications (Schwenzer et al., 2021), model accu-

racy is one of the major factors that can limit the effectiveness of MPC approaches. In the

context of T1D, due to the nonlinear, time-varying and subject-specific behaviour of glu-

cose in the human body (Herrero et al., 2017), obtaining a sufficiently accurate model that

can be used for control purposes is extremely difficult, especially when deriving it from

first principles. Consequently, most of current MPC approaches for glucose control use

simple linear models that allow only a minor degree of personalization (van Heusden et

al., 2012) and try to compensate modeling errors with the receding horizon characteristic

of MPC and by adding task-specific constraints to the optimization problem (Laguna Sanz

et al., 2017).

38

Enabled by the significant improvements in hardware technologies, many application

fields are moving towards generating more complex and accurate models using data-driven

approaches, despite the fact that more complex models generally imply a higher compu-

tational burden in the optimization step. In this context, several works have attempted to

generate more accurate models for glucose prediction by leveraging the increasing amount

of data obtained from AP clinical trials or from the FDA-accepted UVA/PADOVA simula-

tor (Man et al., 2014). These efforts include classical data-driven techniques as AR, ARX

or ARMAX models (Turksoy et al., 2013), and machine learning (ML) models as multi-

layer perceptrons (MLP) (Pérez-Gandı́a et al., 2010), support vector regression (SVR)

(Reymann et al., 2016) and random forest (RF) (Georga et al., 2012) (see (Woldaregay et

al., 2019) for a thorough review of ML techniques for glucose prediction). Nevertheless,

the performance of most of these techniques is limited, since they impose a fixed structure

to the model, instead of letting the model decide its own structure throughout the training

process.

Recently, deep learning approaches have emerged as a more flexible and better per-

forming alternative to classical ML techniques in many fields, including glucose predic-

tion (Zhu et al., 2021). However, these techniques require large amounts of data in order

to perform well (Sun et al., 2017), which limits its range of action to population models

that, indeed, have shown very promising results (Li et al., 2020; Mohebbi et al., 2020; Sun

et al., 2018); However, obtaining a personalized model is infeasible since a large enough

amount of data of a particular patient is very hard to obtain. This issue is a serious one

given that the large inter-subject variability that characterizes glucose behaviour in T1D

patients leads to population models that may not be safe nor accurate enough to develop a

reliable MPC scheme (van Heusden et al., 2012).

To address this issue, in this chapter we propose a meta-learning-based approach

(Hospedales et al., 2020) for fitting accurate individualized glucose prediction models

along with a probabilistic extension, to also target uncertainty estimation in the presence

of meal specification errors on the part of the patient.

39

Our proposed model is able to learn relevant cross-subject features from population

data and then adapt a subset of its parameters to fit a new patient, with very few data,

few training iterations, and with low risk of over-fitting. Also, we show that our model,

achieves better performance on the FDA-accepted UVA/Padova simulator (Man et al.,

2014) than state-of-the-art population models when faced to new patients never seen dur-

ing training, even when they are fine-tuned to a particular patient using transfer-learning,

an approach recently proposed to develop personalized models for glucose prediction (Seo

et al., 2021). Additionally, when considering the probabilistic extension, we show how our

model is able to correctly estimate the uncertainty produced by meal specification errors

on part of the patient, achieving better performance on several probabilistic metrics when

compared to other neural network approaches and a Gaussian Process model, a very strong

baseline in probabilistic modeling.

Accordingly, the main contributions in this chapter are three-fold: i) we propose a

novel framework to use meta-learning for developing personalized models for glucose

prediction. To the authors’ knowledge, this is the first work that uses meta-learning for

this task, transferring some of the recent success of this approach (Hospedales et al., 2020)

to the T1D research field; ii) we propose a probabilistic model based on Recurrent Kalman

Networks to estimate the uncertainty produced by meal specification errors on part of the

patient, a very common problem in T1D modeling and control; and iii) we propose a

new out-of-distribution evaluation strategy to compare prediction models when different

knowledge about patient data is available, and we present a thorough comparison of dif-

ferent data-driven approaches using this strategy.

3.2. Related work

The importance of personalized models have been widely recognized in the AP re-

search community (see, e.g., (Oviedo et al., 2016)). Indeed, most of the successful MPC

implementations have demonstrated that personalized models help in achieving better and

safer control policies (van Heusden et al., 2012; Haidar, 2016). In this sense, DL is an

40

appealing alternative due to its recent success in many fields as a modeling tool, and by

the fact that is able to learn from any kind of data, as patient-specific data. However, this

tool has not been widely exploited for this purpose.

The lack of DL-based efforts is due to the fact that is very difficult to obtain large

enough amounts of data of a particular patient to fit an accurate DL model (Daniels et

al., 2022b). If the amount of data is insufficient there is a high risk of over-fitting, which

causes a poor generalization and, consequently, results in poor performance. Nonetheless,

recently, some techniques from areas such as text and image processing have been used

for model personalization.

For example, (Seo et al., 2021) proposes the use of transfer-learning for fitting person-

alized models, i.e., using the weights of a pre-trained population model and then fine-tune

them on patient-specific data. The authors use a large data-set of n = 114 patients with

T1D to train a CNN. The fine-tuned model was compared against a population model,

trained using CGM readings of 85 patients, and a network trained from scratch using only

patient specific data. Results show that the fine-tuned network is (slightly) better than the

other alternatives.

In the same line, (Mohebbi et al., 2020) presents a similar approach based on a Long-

short-term-memory (LSTM) network. The data-set consists in 14 consecutive days of

CGM readings from n = 50 real patients in free-living conditions. In this case the popula-

tion model, trained using 35 patients, shows better performance than the fine-tuned model

using transfer-learning. The authors claim that the lower performance of the fine-tuned

network is probably due to the small amount of training data used in the fine-tuning stage,

even though they use half of the data from each patient for this purpose.

A different approach is presented in (Armandpour et al., 2021), where the authors pro-

pose the use of an embedding layer in conjunction with an encoder-decoder network with

attention mechanism to learn embedding vectors that encode patient-specific information.

During testing, the embedding vectors are indexed to inform the network which patient

41

the predicted signals belong to. Although the model shows promising results in a database

of n = 38 T1D patients, the authors do not compare their approach to any other DL pop-

ulation or personalized model. Furthermore, since the patient-specific vectors are learned

during training and then are kept fixed, this approach cannot be extended to new patients

unless the whole network is trained again.

Finally, and more related to our proposed approach, in (Daniels et al., 2022b) the au-

thors propose a multitask network consisting in a CNN combined with an LSTM network

and multiple patient-specific feed-forward layers. The CNN and the LSTM network are

shared among all patients to learn cross-subject features, while patient-specific layers learn

features relevant for a particular subject. The model shows better results than a fine-tuned

population model and a model trained using only patient-specific data; however, since

patient-specific layers are jointly trained with cross-subject layers, this model cannot be

extended to new patients unless the networks are trained again.

3.3. Meta-Learning for personalized models in glucose prediction

3.3.1. Background on Meta-Learning

Meta-learning is a long-standing problem of interest in ML, which consists in enabling

artificial agents to efficiently learn new tasks by learning to learn. These algorithms lever-

age data from previous learned tasks and use this knowledge to quickly adapt to new tasks

that are assumed to belong to the same task distribution, also called meta-distribution

(Raghu et al., 2019). A common example to illustrate the concept and power of meta-

learning, is the sine waves regression problem (Finn et al., 2017). This problem consists

in training the network with multiple sine waves with different amplitudes and phases

(different tasks or child distributions) and then, testing the network in regressing a new

sine wave by showing it only few points. In this case, instead of teaching the network to

regress a particular sine wave (child distribution), as done in typical supervised-learning

42

approaches, the network is trained to learn the underlying sine form (meta-distribution)

and then to particularize to an instance with very few data.

Among the different meta-learning algorithms, the model agnostic meta-learning (MAML)

(Finn et al., 2017) has been highly successful in different applications, including modeling

of dynamical systems with time-varying characteristics (Clavera et al., 2018) and few-shot

classification (Finn et al., 2017). At a high level, the MAML algorithm finds a suitable

initialization for a NN so that new tasks can be learned with very few samples and with-

out over-fitting. This is done via two optimization loops, namely, i) an outer loop that

updates the initialization of the network; and ii) an inner loop that performs adaptation or

fine-tuning to new tasks using k gradient updates.

Formally, given a network fθ with learnable parameters θ and a partially observable

task distribution ρ(T), let {T1, · · · ,TB} be a batch of B tasks, where for each task Tn

the data is divided into a support set STn , which is used for the inner loop updates, and a

target set RTn , which is used for the outer loop updates. Now, let θni be the parameters of

the network after i gradient updates for task Tn, and let θn0 = θ. Each update in the inner

loop follows

θnk = θnk−1 − α∇θnk−1
LSTn

(fθnk−1
), (3.1)

where LSTn
(fθnk−1

) is the loss on the support set of Tn after k − 1 inner loop updates and

α is the inner-loop learning rate.

As for the outer loop, the meta-loss is given by

Lmeta(θ) =
B∑

n=1

LRTn
(fθnk), (3.2)

where LRTn
(fθnk) is the loss on the target set of Tn after the k inner-loop updates using

STn . The outer loop updates follow

θ = θ − β∇θLmeta(θ), (3.3)

where β is the outer-loop learning rate.

43

In this work, we use the variation of the algorithm proposed in (Raghu et al., 2019).

This modification consists in using only the “head of the network” (the last few layers)

during the inner loop updates, instead of the whole network as it was originally proposed.

In (Raghu et al., 2019), it was shown that with this modifications, similar results can be

obtained at a fraction of the computational cost.

3.3.2. Meta-Learning for glucose prediction

In our proposed approach, a key observation is that the underlying dynamical system

of glucose behaviour is basically the same for all T1D patients (Man et al., 2014). Hence, a

natural application of MAML in the context of personalized models for glucose prediction,

is to consider each patient-specific measurements as one task or child distribution drawn

from the meta-distribution that governs glucose behavior, and then split the patient data

into a support set STn and a target set RTn , for the inner and outer optimization loops,

respectively.

However, typically, T1D data-sets contain only a limited number of patients; hence,

this naive approach will result in few tasks and, consequently, a poor generalization and

poor estimation of the meta distribution ρ(T) (Clavera et al., 2018).

To avoid this issue, in this work we propose to define a task as a pair of randomly

chosen meal events of the same patient. To this end, a meal event is defined as

MEi
n = Yn

[ti
mealn

−∆i:t
i
mealn

−∆i+D]
,∈ RD×m (3.4)

where MEi
n represents the i-th meal event of patient n, Yn represents the measurements

of patient n, which include CGM measurements, and (possibly) insulin controls and an-

nounced meals (m signals). timealn
is the estimated or user-reported time of meal i, ∆i is

the time difference between the start of the meal event and the reported meal time timealn
,

and D is the duration of the event. In this work we choose ∆i as a random number drawn

from a uniform distribution U(0.5, 3.5)[h] and D = 8[h] to cover the entire response to

44

the meal, even when other meals may overlap. Consequently, each task is defined as

Tij
n = [MEi

n;MEj
n], (3.5)

where MEi
n and MEj

n are taken as the support and target set respectively.

This definition of a task is motivated by several considerations. First, using pairs of

meal events from a patient instead of the whole sequence of measurements, allows us to

increase the number of tasks considerably, and also provides a natural way to perform

task augmentation during training, by shuffling the support and target sets of meal events

within and between them. Furthermore, when shuffling the patient-specific support and

target meal events, we force the network not to associate any particular pair of meals with

one another, but to extract the characteristic features of the underlying patient’s glucose

behaviour from the support meal event to predict the randomly chosen target meal event.

This is further illustrated in Section IV, where we show that even when using only one

training meal event, there is a general performance improvement in predicting future glu-

cose for a patient not seen during training.

Another reason why this task definition is advantageous is that a meal event captures

the most relevant and rich information of glucose dynamics, as the system is excited by an

external input, leaving out less relevant information as quasi-steady state information that

could reduce the effectiveness of the learning process. A natural extension of these ideas

could be to define every out-of-range excursion as an event and pair it with another one to

form a task, however, this is left as future work.

A complete scheme of our proposed meta-learning-based training procedure is shown

in figure 3.1.

45

Patient 1

Patient 2

Patient 3

Patient n

Task
Generator

Meal Event
Detector

,

Figure 3.1. Complete schematic of the proposed approach. First, the meal
event detector separates every meal event in each patient time-series, fol-
lowing equation 3.4. This is done without mixing data from different pa-
tients. Then, the task generator pairs two randomly chosen meal events
from a particular patient to form a task Tij

n , following equation 3.5. Fi-
nally, at each iteration, a number of tasks coming from each patient are
sampled to form a batch of tasks. Each element of the batch is then used
for the inner loop updates (see equation 3.1) and for the outer loop updates
by computing LRT

nij
(f

θn
ij

k
) for each patient (see equation 3.3). The light

blue background represents the processes that are executed only once dur-
ing the training procedure, the light red background the processes executed
at every epoch, and the light green background, the processes executed at
every iteration.

3.3.3. Proposed architecture

To address the glucose prediction problem, we propose the network architecture de-

picted in figure 3.2, which is divided in two parts, namely, the Base and the Head. Follow-

ing the approach presented in (Raghu et al., 2019), the parameters of the Base, consisting

of two feed-forward layers and a Kronecker LSTM (Jose et al., 2017), are learned dur-

ing training and then are kept fixed during testing, thus being shared by all the patients.

This part of the network is responsible for learning cross-subject features that explain the

underlying dynamical system, i.e., the blood glucose mechanics. On the other hand, the

Head, consisting of three feed-forward layers, is trained to learn patient-specific features

by adapting its parameters using a support meal event in k training iterations, following

equation 3.1. Consequently, the parameters of the Head are able to adapt, with few data,

to an arbitrary number of patients, even if they were not seen during training.

46

FC KR FC FC FC FC

Figure 3.2. Proposed network architecture. The Base includes the param-
eters that are learned during training and then kept fixed during testing.
Here, the Kronecker LSTM layer allows to account for the temporal re-
lations in the input data but with a fraction of the parameters of a typical
LSTM. The Head contains the parameters of the network that adapt to an
arbitrary number of different patients, under the assumption that all come
from the same task distribution ρ(T). Four sliding windows of length τ are
used as inputs to the network, namely, past CGM measures (yCGM [t−τ :t]),
past insulin (xInsulin[t−τ :t]), past ingested carbohydrates (xCHO [t−τ :t]) and
the time of the day (xTOD [t−τ :t]). The objective is to produce one-step
ahead predictions, which are repeatedly fed-back as inputs in future steps
to produce a sequence of predictions of length p (ŷCGMt [1:p]).

The inputs of the network are sliding windows of length τ containing past informa-

tion, which in our case are four signals usually available in T1D studies: delivered insulin,

measured by an insulin pump; the carbohydrates content of the meal, which should be

entered manually by the patient; the blood glucose concentration, which is measured by a

CGM sensor; and the time of day, which is added to help the network infer the periodic

variability of insulin sensitivity (Toffanin et al., 2013). At each step, the network performs

a one step ahead prediction, which is then appended to the corresponding sliding window

to predict the next value. In the case of the exogenous inputs, during training, at each step

the next real value of the signal is appended to its corresponding sliding window, instead

of keeping them at a constant value. This prevents the network to become auto-regressive

and unresponsive to the inputs and, in case the network is used in an MPC scheme, allows

47

simulating different future scenarios. This process is repeated until a sequence of p pre-

dictions is produced. Finally, given the complete sequence of predictions, the training loss

is calculated against the CGM measurements as

L(t) =
1

p

p∑
n=1

(yCGM(t+ n)− ŷCGMt(n))
2, (3.6)

where yCGM(t+n) is the CGM measurement at time t+n and ŷCGMt(n) is the n-th value

of the predicted sequence considering past measurements up to time t.

Unlike other approaches, we train the network to generate a sequence of future predic-

tions for a particular horizon, instead of just predicting one value into the future, since we

want the network to be useful for control purposes. However, for the sake of comparison

with other works, both average metrics of the predicted sequence as well as point metrics

for different horizons are presented in the evaluation section.

3.3.4. Proposed Out-Of-Distribution testing procedure

The practical value of any ML or DL approach is related to its ability to general-

ize beyond its training set, specially in safety critical applications (Berend et al., 2020).

In this context, out-of-distribution (OOD) testing is an increasingly popular method for

evaluating a model’s ability to generalize (Teney et al., 2020; Setlur et al., 2021). OOD

testing consists in training a model with data drawn from a source distribution and then,

testing it with data drawn from a different distribution that shares some semantic sim-

ilarities with the source distribution (i.e., two child distributions drawn from the same

meta-distribution). For example, training a model to classify pictures, and then testing it

on drawings. Models that are optimized with OOD testing are particularly robust to dis-

tributional shifts (Berend et al., 2020), robustness, that we argue, is particularly useful for

model personalization in the context of T1D.

Even though OOD testing is a natural way for assessing how well a meta-learning

model has learned the meta-distribution of the data given only partial information, there

48

Training Validation Testing

G1

G2

G3

G4

Figure 3.3. Proposed Out-Of-Distribution data-split for glucose prediction.
A data-set with n patients, which represents four different distributions,
is divided in four different groups. Each group has a different degree of
membership to the train, validation and test set, so that the model can be
evaluated with different degrees of distributional shifts.

are very few works that use this kind of evaluation (Setlur et al., 2021). This is mostly

due to the fact that in many tasks is not completely clear how to divide the data to perform

OOD testing (Arnold & Sha, 2021).

In this work, we propose a task-specific out-of-distribution testing procedure to eval-

uate the ability of an arbitrary glucose prediction model to generalize to unseen patients

during training. The proposed procedure is formulated under the assumption that, since

blood glucose behaviour is slightly different for each patient, each patient’s CGM readings

represent different child distributions drawn from the same meta-distribution, and when

grouping different patients together, we can cover different parts of the meta-distribution

space.

In concrete, our approach consists in dividing the data-set containing n patients in four

different groups, namely G1, G2, G3 and G4. G1 is formed by ng1 patients, whose data is

split between training and validation sets with rg1train > rg1val , where rg1train corresponds

to the fraction of the data used for training, and rg1val to the fraction used for validation.

G2 is formed by ng2 patients, whose data is also split between training and validation sets;

however, in this case rg2train < rg2val . G3 is formed by ng3 patients, and in this case all the

data belongs to the validation set (rg3val = 1). Finally, G4, formed by ng4 patients, is used

as the test set (rg4test = 1). This is graphically represented in figure 3.3.

49

This particular data splitting is motivated by the fact that, as pointed out in (Teney et

al., 2020), in general, there is a trade-off between in-distribution (ID) and OOD perfor-

mance; therefore, to keep the model’s ability to perform well in ID data and to allow it

to generalize to OOD data, the validation set should contain both ID and OOD examples.

Also, this data splitting gives us a natural way to test model’s performance using varying

degrees of knowledge about data from different patients, i.e, varying degrees of distribu-

tional shifts. For instance, G1 can be considered as ID data since is mostly learned in

training and, to a lesser extent, implicitly learned in validation (model uses validation data

to optimize its performance). G2 can be considered ID data as well, but to a lesser extent,

since most of its data belongs to the validation set and a small fraction to the training set.

On the other hand, G3 can be partially considered OOD data but not completely, since it is

implicitly learned in validation, and G4, can be completely considered OOD data, as it en-

tirely belongs to the test set, and thus unknown during the training process. Therefore, we

can evaluate performance on each group’s validation (test) subset for measuring model’s

generalization capabilities at different degrees. Finally, patients belonging to each set can

be shuffled in a cross-validation fashion to obtain more robust results. The specific patient

data splitting used in this work is detailed in the next section.

3.4. Experiments

To illustrate the potential of the proposed meta-learning approach, we evaluate and

compare it against other DL and classical ML baselines.

3.4.1. Data-set

For evaluation purposes, a data-set was generated using the FDA-accepted UVA/-

PADOVA simulator (Man et al., 2014) that features a cohort of 10 virtual adult patients,

which we use for our experiments. For each patient, 120 days were simulated with ran-

domized meal sizes, meal times and meal occurrences, according to the distributions

shown in Table 3.1. Additionally, to make the simulation more realistic, other sources

50

Table 3.1. Distributions of the randomized scenario. Here, Ber(p) stands
for a Bernoulli distribution with parameter p, and Norm(µ, σ) represents a
normal distribution with its corresponding mean and standard deviation.

Meal Prob. of occurrence Meal size [g] Meal time [h]
Breakfast Ber(0.95) Norm(45, 10) Norm(7, 1)
Snack 1 Ber(0.3) Norm(10, 5) Norm(9.5, 0.5)
Lunch Ber(0.95) Norm(70, 10) Norm(12, 1)

Snack 2 Ber(0.3) Norm(10, 5) Norm(15, 0.5)
Dinner Ber(0.95) Norm(80, 10) Norm(18.5, 1)

Table 3.2. Meal randomization details. MS and MT represent the true
value of the meal size and meal time, respectively. Both values are ob-
tained by sampling from their corresponding distribution shown in table
3.1.

Parameter Distribution
Meal duration (MD) [min] max(min(MS/7 + Norm(0, 3), 2), 20)

Meal size specification [g] Uniform(0.8MS, 1.2MS)
Meal time specification [h] MT + Uniform(−0.15,MD/60)

of randomness, that are usually present in real life were introduced for each meal, such as

variable meal duration, and meal size and time misspecifications by the patient, the details

of which are shown in Table 3.2. Furthermore, insulin sensitivity for each patient was

varied throughout the day, following the profile suggested by (Toffanin et al., 2013).

The data-set was then divided into train, validation and test sets, following the OOD

data splitting introduced above, with rg1train = 0.85, rg1val = 0.15, rg2train = 0.15, and

rg2val = 0.85. For our experiments, we used a 5-fold cross-validation scheme, where G1,

formed by the first five virtual adult patients, was kept fixed, and the remaining groups

varied according to table 3.3.

3.4.2. Baselines

As for the baselines, we consider several successful DL and ML architectures that have

been presented in previous studies, some of which have reached promising results for the

task of glucose prediction. As for the DL architectures, in the following we provide a brief

51

Table 3.3. Data-split used for the experiments.

k G1 G2 G3 G4
1 Adult#001 - #005 Adult#006 Adult#007,#008 Adult#009,#010
2 Adult#001 - #005 Adult#007 Adult#006,#010 Adult#008,#009
3 Adult#001 - #005 Adult#008 Adult#009,#010 Adult#006,#007
4 Adult#001 - #005 Adult#009 Adult#006,#008 Adult#007,#010
5 Adult#001 - #005 Adult#010 Adult#007,#009 Adult#006,#008

summary of each one of them and we refer the reader to the original papers for additional

details.

3.4.2.1. CNN-LSTM

(Li et al., 2020) This architecture is composed by four convolutional layers, each of

them followed by a max-pooling operator. Then, a modified LSTM layer is used to capture

the temporal relationships of the features extracted by the convolutional part, and finally,

three Feed-Forward layers are used to produce the prediction.

3.4.2.2. LSTM

(Mohebbi et al., 2020) This is a two-layer LSTM architecture followed by a feed-

forward layer to transform the output of the LSTM and produce the predictions.

3.4.2.3. Bi-LSTM

(Sun et al., 2018) In this case, a LSTM layer is used first, followed by a bidirectional

LSTM to capture the context of the features produced by the LSTM in both directions.

Finally, four feed-forward layers are used to produce the output at each step.

52

3.4.2.4. FFN

In this case, a feed-forward network with the exact same architecture than our proposed

network, but with a feed-forward layer instead of the Kronecker layer is implemented.

This is done to compare our approach with a commonly used FFN.

As for the classical ML baselines, SVR with linear kernel (SVRL), a SVR with ra-

dial basis kernel (SVRRB), random forest (RF) and an ARX model with the same hyper-

parameters recommended by (Xie & Wang, 2020) were used. Additionally, a XGBOOST

model with 300 estimators was used as well due to its recent success in several tasks,

outperforming even DL models.

Finally, is worth mentioning that for all DL architectures, their size was modified in

order to have a comparable number of parameters with the proposed architecture, that is

∼ 47,000 parameters. Also, the same inputs, window sizes, loss and prediction horizon

where used for all the baselines.

3.4.3. Evaluation metrics

Several evaluation metrics were used to test the performance of the proposed approach.

Average and point root mean squared error (RMSE) and mean absolute relative difference

(MARD) were used as primarily indicators of model’s accuracy. The average RMSE is

given by

RMSEavg =
1

p

p∑
k=1

√√√√ 1

N

N∑
t=1

(yCGM(t+ k)− ŷCGMt(k))
2

 , (3.7)

Similarly, the average MARD is given by

MARDavg =
1

p

p∑
k=1

(
100

N

N∑
t=1

|yCGM(t+ k)− ŷCGMt(k)|
yCGM(t+ k)

)
, (3.8)

where p is the length of the predicted sequence. Likewise, the point versions of these

metrics (RMSEp and MARDp) are given by evaluating the average versions at a particular

53

horizon. Even though these metrics are standard indicators of model’s accuracy, they

are limited in the clinical insight they provide, therefore task-specific metrics were used as

well, such as temporal gain (TG) (Facchinetti et al., 2011) and the Clark error grid analysis

(C-EGA) (Clarke et al., 1987).

The temporal gain is defined as the average time gained for early detection of a poten-

tial hypo/hyper glycemia event and is given by

∆ = argmin
i∈[0,p]

(
1

N − p

N−p∑
t=1

(yCGM(t)− ŷCGMt(i))
2

)
, (3.9)

TG = (p−∆)Ts, (3.10)

where Ts represents the sampling rate. Here, ∆ measures the temporal shift that minimizes

the distance between the prediction and the actual CGM value. A larger TG indicates an

earlier detection of a potential adverse event, and a TG= 0 indicates no temporal advan-

tage of using the model and therefore, a model with TG= 0 would be useless from a

clinical perspective.

On the other hand C-EGA (Clarke et al., 1987), which was originally developed to

evaluate the clinical acceptability of CGM devices, considers the clinical significance of

the difference between the real and the predicted blood glucose values generated by a

model. This is done by defining a grid between both quantities, and dividing it in five

different zones (A, B, C, D, E) with their corresponding clinical interpretation. Zone A

corresponds to clinically accurate predictions, which would led to a correct treatment.

Predictions that fall in Zone B are considered clinically acceptable and would led to be-

nign treatment. Zone C predictions would led to an over-correcting treatment. Zone D

predictions represent a failure to detect (and in consequence to treat) hypoglycemic or hy-

perglycemic events. Finally, predictions in Zone E would lead to an erroneous or opposite

treatment given the real values of blood glucose and thus, predictions falling in this zone

are clinically unacceptable.

54

Table 3.4. Hyper-parameters of the proposed architecture (parameters with
an asterisk are shared by all the models).

Parameter Value
N° neurons 100-300-100 50-50-1

N° parameters 47,520
α (inner loop Lr) 1× 10−2

β (outer loop Lr) 1× 10−3

τ* 30 (2.5 hours)
Ts* (sampling rate) 5 min

p* 30 min, 60 min, 90 min

For our evaluation, we will rank the models according to whether they maximize the

membership of their predictions to Zone A and to Zones A + B (overall clinically ac-

ceptable predictions) and minimize the membership to Zone C + D, which could lead

to a deficient treatment. Additionally, membership to Zone E can be calculated from the

aforementioned results considering that all memberships add up to 100%. A model with a

positive membership to Zone E should be immediately red-flagged and eliminated.

3.4.4. Training details

For the implementation of all the models, Python was used as the main programming

language. DL models were implemented using Pytorch as the main library, and Scikit-

learn was used for the ML models. Additionally, the learn2learn (Arnold et al., 2020)

implementation of the MAML algorithm was used for our meta-learning network.

All the DL models were optimized using Adam optimizer. For the baselines, a learning

rate of 1× 10−3 was used in the initial training stage, and a learning rate of 1× 10−5 was

used for fine-tuning. Other training details are shown in table 3.4, which shows both

hyper-parameters specific to our meta-learning network and hyper-parameters shared by

all the implemented models.

55

3.4.5. Experimental Results

For the subsequent discussion we report the results of our proposed model in two ways,

namely MetaL and MetaL1. MetaL is the proposed model without adapting the head, so

it can be considered as a population model, and MetaL1, which is as MetaL but with the

head adapted using only one meal event per patient.

3.4.5.1. OOD evaluation results

Table 3.5 shows the results of our proposed OOD evaluation procedure. Each sub-

column under the respective evaluation metric shows the value of that metric when the

model was trained for different prediction horizons, namely p = 30[min], p = 60[min]

and p = 90[min].

From the table, it can be seen that the ARX model presents worse results than all

other models in virtually all metrics, difference that is accentuated for longer horizons and

larger distributional shifts. These results are consistent with those of other studies, such as

(De Bois et al., 2022), which also show how more complex ML and DL models surpass

other linear techniques.

As for the ML models, only XGBOOST and SVR with linear kernel (SVRL) achieve

comparable performance to the DL models; however, their performance tends to degrade

faster as the prediction horizon increases. Also, is worth mentioning that tree-based mod-

els, as XGBOOST and random forest (RF), although may have acceptable and even great

performance on average (as in the case of XGBOOST), they tend to have large errors for

extreme values, produced for example by a large meal. This is evidenced in figure 3.5

where the XGBOOST error box plots tend to have the largest extreme values, and by the

fact that both the RF and XGBOOST are the only models which produce predictions that

fall in Zone E in the C-EGA plot (not shown in the table), which is clinically unacceptable.

This may be due to the averaging nature of these models, where the effect of accurate trees

56

might be smoothed or cancelled out by other less accurate trees, producing a low-pass filter

effect for extreme values.

Regarding the DL models, with the only exception of the FNN network, all show very

strong performance in every metric. In particular, the Bi-LSTM network is the best per-

forming model when evaluating in group G1 (ID data). However, as the distributional shift

increases, its performance degrades much faster than our proposed meta-learning model,

which maintains a robust performance in every metric across all prediction horizons and

different degrees of distributional shifts, being the best performing model when evaluat-

ing on groups G2, G3 and G4. It is worth noting that even without adaptation (MetaL),

our approach performs better than other population models when there is a high degree of

distributional shift, showing that training models with meta-learning produces models that

generalize better and may be useful in real environments where distributional shifts may

be high.

Finally, we compare the results with other works as (Li et al., 2020), where a similar

data-set is generated with the same adult cohort of the the UVA/PADOVA simulator. They

obtained a punctual RMSE value at horizon p = 60[min] with the CNN-LSTM architec-

ture of 18.87 [mg/dl], using the same patients for training and testing. This is considerable

higher than the results obtained in this work with the same network architecture in groups

G1 and G2, which represent a similar setting (9.43 [mg/dl] and 14.23 [mg/dl], respec-

tively). This performance improvement may be due to the meal event separation in our

data-set for training the models, which eliminates quasi-steady state information from the

data-set and a causal relationship between inputs and outputs is enforced. However, this

research question is out of the scope and must be left for future work.

3.4.5.2. Personalized model results

Tables 3.6 and 3.7 show how well the best performing models from table 3.5 compare

when evaluated with data of different patients from group G4 (patients never seen during

training) in terms of average RMSE (table 3.6) and predictions falling in Zone A (table

57

Figure 3.4. Patients’ glucose response to an insulin bolus of one unit [U]
when their nominal insulin sensitivity is used. The y-axis represents the
glucose values in [mg/dl] minus each patient’s fasting blood glucose value.
The minimum of each curve indicates how sensitive the respective individ-
ual is to insulin.

3.7). We can see that while MetaL and MetaL1 achieve the best results for most patients at

different horizons, these differences are more pronounced for Adult#006 and Adult#007 at

long prediction horizons, which are the least and most insulin sensitive patients among the

group (see figure 3.4). This demonstrates the generalization capabilities of the proposed

approach and how MetaL1 is capable of extracting important information from a single

meal event to improve the performance even further.

Additionally, figure 3.5 shows the error distribution of each model for a prediction

horizon p = 60[min]. As mentioned before, we can see that even though XGBOOST has

a low average error in general, it produces the largest extreme values among the models,

which could be unsafe in real-life scenarios. On the other hand, both LSTM and Bi-

LSTM tend to have tighter distributions than the other baselines even when their average

performance is not significantly better. However, unlike other models, MetaL and MetaL1

tend to a tighter error distributions and a low average error for all patients, which are good

indicators of the superiority of the proposed models.

3.4.5.3. Transfer-Learning vs Meta-Learning

Finally, we evaluate how well a DL model trained with meta-learning and adapted with

just one meal event and five training iterations (MetaL1), compare with fine-tuned models

58

Adult#006 Adult#007 Adult#008 Adult#009 Adult#010
0

20

40

60

80

RM
SE

 [m
g/

dl
]

CNN-LSTM
LSTM
BiLSTM
SVRL
XGBOOST
MetaL
MetaL1

Figure 3.5. Box plots of RMSEavg for different models with patients of
group G4. The black dot inside the box represents the mean and the orange
line the median. The limits of the box are given by quartiles 25 (Q1) and
75 (Q3), the position of the whiskers is given by Q1 − 1.5(Q3 − Q1) and
Q3 + 1.5(Q3 − Q1), and the points above the upper whisker represent the
statistical outliers or extreme values.

on patients never seen during training when there is an increasing amount of available data

and an unlimited number of training iterations (in this case an early stopping strategy is

followed).

From figure 3.6 we can see that both FNN and CNN-LSTM never surpass the per-

formance of MetaL1, even with 20 times more data from a particular patient. On the

other hand, LSTM and Bi-LSTM perform increasingly better when fine-tuned with more

and more meal events. However, it takes about 6 times more data and thus, it would be

six times slower for these models to outperform MetaL1, which may not be fast enough to

adapt to other eventual real-life perturbations like exercise or sleep quality the night before

(Porter, 2020).

3.5. Probabilistic extension

Even though, an accurate and personalizable predictive model could be very useful for

the AP, there are some challenges that remain, especially for hybrid control approaches in

59

Figure 3.6. Transfer-learning performance versus meta-learning. The
dashed black line represents the performance of the proposed network
when the head is adapted with only one meal event. The other traces repre-
sent the performance of the DL baselines when fine-tuned with a variable
number of meal events with an unlimited number of training iterations, us-
ing and early stopping criterion to stop training. For fine-tuning a learning
rate of 1× 10−5 and a training-validation ratio of 0.8 were used.

which a meal announcement and the carbohydrate content of a meal is expected from the

user (Shi et al., 2019).

The need for user intervention introduces important uncertainties to the problem, that

when are not considered, lead to sub-optimal outcomes of the controller (Daniels et al.,

2022a). In fact, multiple studies have shown that individuals with T1D tend to have sig-

nificant rates of late meal insulin boluses (20-45% of the meals) (Robinson et al., 2021)

and meal size estimation errors between 20% and 59% (Brazeau et al., 2012; Meade &

Rushton, 2016), which leads to higher glucose variability and decreased time with glucose

values in a desirable range (80 mg/dl - 180 mg/dl) (Brazeau et al., 2012).

This motivates the design and implementation of a probabilistic model which can es-

timate the uncertainties produced both by late meal announcements and by meal size mis-

specifications.

For this purpose, we follow exactly the same data prepossessing mentioned above,

with multiple tasks, and each of them divided in a support and a target set to allow person-

alization. However, a new model architecture for probabilistic modeling is proposed, since

60

Table 3.5. OOD evaluation results for different horizons: p = 30[min] |
p = 60[min], | p = 90[min]. Numbers in bold represent the best result for

each metric at a specific horizon.

G1

Model RMSEavg [mg/dl] RMSEp [mg/dl] MARDavg [%] MARDp [%] TG [%] Zone A [%] Zone A+B [%] Zone C+D [%]

Bi-LSTM 3.69 5.76 6.77 5.06 7.79 9.33 2.36 3.71 4.31 3.23 5.13 6.3 100.0 99.0 98.89 99.87 98.53 96.77 99.96 99.44 98.88 0.04 0.55 1.11

LSTM 3.99 6.14 7.21 5.55 8.39 9.8 2.56 3.98 4.65 3.55 5.58 6.68 98.67 97.67 97.33 99.84 98.13 96.67 99.98 99.36 98.92 0.02 0.66 1.08
CNN-LSTM 4.89 7.15 8.3 6.39 9.43 11.23 3.11 4.57 5.31 4.09 6.25 7.66 98.0 97.0 97.33 99.6 97.25 94.73 99.92 99.17 98.5 0.09 0.82 1.5

MetaL 4.12 6.28 7.79 6.12 9.69 11.77 2.64 4.07 5.09 3.92 6.51 8.24 95.55 97.33 97.78 99.72 97.37 94.32 99.95 99.16 98.42 0.05 0.84 1.57

MetaL1 3.78 5.73 7.19 5.56 8.71 10.73 2.44 3.70 4.57 3.57 5.82 7.23 96.3 97.17 97.11 99.77 98.03 95.69 99.97 99.39 98.91 0.02 0.61 1.09

FNN 10.36 11.66 15.3 12.48 13.66 12.81 7.06 8.03 8.72 8.55 9.84 11.31 93.32 97.0 98.67 94.65 92.14 89.15 97.18 93.05 96.33 2.53 2.86 3.66

ARX 8.15 14.43 18.82 14.51 24.16 28.45 5.13 9.3 12.38 9.2 16.6 20.91 33.33 17.33 15.33 90.79 69.97 59.7 98.44 96.31 36.16 1.56 3.67 4.14

RF 7.34 12.67 16.62 12.72 20.99 25.37 4.33 7.32 9.54 7.29 12.12 15.32 51.33 47.67 59.33 94.55 83.44 74.99 99.68 98.66 97.55 0.33 1.34 2.43

SVRL 5.29 8.78 11.0 9.13 13.86 16.09 3.41 5.84 7.39 6.0 9.62 11.44 82.0 93.67 96.89 97.87 92.28 87.95 99.63 98.14 97.07 0.38 1.87 2.94

SVRRB 6.72 10.02 12.02 10.59 14.9 16.54 3.9 5.94 7.15 6.29 9.16 10.47 90.67 96.0 97.33 97.26 91.19 88.2 99.81 99.35 98.90 0.2 0.66 1.1

XGBOOST 4.58 7.33 9.59 7.7 11.98 14.84 2.67 4.36 5.69 4.44 7.36 9.44 86.68 93.67 97.11 98.68 95.64 91.4 99.87 99.2 95.86 0.13 0.8 1.49

G2

Model RMSEavg [mg/dl] RMSEp [mg/dl] MARDavg [%] MARDp [%] TG [%] Zone A [%] Zone A+B [%] Zone C+D [%]

Bi-LSTM 5.32 8.33 10.12 7.55 11.92 14.49 3.49 5.59 6.85 4.92 8.35 10.74 83.33 93.30 96.67 99.14 93.72 87.92 99.72 98.03 96.6 0.28 1.96 3.4

LSTM 5.4 8.88 10.8 7.75 12.92 15.6 3.6 6.05 7.5 5.14 9.24 11.86 86.66 93.32 94.44 99.12 92.36 85.64 99.74 98.04 96.34 0.28 1.98 3.64

CNN-LSTM 6.69 10.39 12.31 9.09 14.23 16.87 4.29 6.91 8.36 5.82 10.04 12.68 80.0 91.67 94.44 98.4 89.76 82.42 99.66 97.86 96.18 0.32 2.16 3.82

MetaL 5.23 8.25 10.47 7.93 13.0 15.48 3.43 5.42 6.97 5.17 8.9 11.47 90.0 91.67 95.56 99.34 92.98 86.06 99.86 98.2 97.0 0.12 1.76 3.0

MetaL1 4.88 7.76 9.48 7.35 12.16 14.36 3.22 5.17 6.33 4.81 8.47 10.41 90.33 92.17 95.56 99.38 93.7 88.91 99.9 98.45 97.40 0.1 1.55 2.62
FNN 12.17 15.86 17.6 14.81 19.37 21.93 8.95 11.57 12.83 10.96 14.90 17.48 86.64 93.83 95.56 88.18 77.74 71.48 94.64 93.82 92.8 5.36 6.2 7.24

ARX 8.96 16.4 21.77 16.2 28.26 33.79 6.09 11.38 15.57 11.17 21.11 27.4 33.33 18.33 16.67 86.38 59.08 47.04 96.78 92.32 91.64 3.26 7.62 8.38

RF 8.11 14.77 19.45 14.08 25.13 30.04 5.09 8.93 11.84 8.57 15.33 19.48 50.0 48.33 57.78 92.18 76.1 67.82 99.08 96.52 94.48 0.92 3.4 5.2

SVRL 5.55 9.46 12.14 9.69 15.35 18.34 3.77 6.67 8.76 6.7 11.48 14.36 73.33 90.0 94.44 97.02 86.74 79.88 99.26 96.2 94.14 0.72 3.84 5.84

SVRRB 7.67 11.33 13.74 11.43 16.61 19.12 4.49 7.06 8.69 7.01 11.1 13.27 86.60 93.34 94.44 96.24 86.28 81.0 99.5 97.84 96.86 0.5 2.12 3.12

XGBOOST 5.45 9.04 11.87 9.09 15.07 18.51 3.17 5.4 7.14 5.24 9.25 12.05 83.33 90.0 96.69 97.28 91.72 85.46 99.52 98.4 96.92 0.46 1.64 3.04

G3

Model RMSEavg [mg/dl] RMSEp [mg/dl] MARDavg [%] MARDp [%] TG [%] Zone A [%] Zone A+B [%] Zone C+D [%]

Bi-LSTM 6.91 11.17 13.44 9.85 15.97 18.73 4.32 7.21 8.88 6.15 10.92 13.81 81.67 90.0 95.0 97.67 87.23 78.75 99.46 97.48 95.94 0.53 2.5 4.06

LSTM 6.82 10.73 13.12 9.97 15.71 18.58 4.35 7.16 8.9 6.31 11.04 14.0 80.0 87.5 94.44 97.70 86.32 77.44 99.51 97.6 96.08 0.48 2.41 3.91

CNN-LSTM 8.11 12.29 14.41 11.13 16.57 19.28 4.96 7.91 9.5 6.82 11.44 14.27 73.33 87.5 92.22 96.45 85.55 77.33 99.47 97.36 95.89 0.54 2.6 4.1

MetaL 5.68 8.45 10.71 8.58 13.07 15.99 3.67 5.40 6.94 5.53 8.72 11.28 86.67 93.34 95.56 98.76 93.87 86.59 99.72 98.58 97.44 0.27 1.41 2.56
MetaL1 5.39 7.93 10.07 8.1 12.15 15.02 3.52 5.17 6.69 5.29 8.3 10.9 85.5 93.75 97.25 98.92 94.49 88.1 99.75 98.48 97.12 0.25 1.52 2.89

FNN 13.67 16.39 17.95 16.79 19.66 21.86 9.89 12.00 13.03 12.22 15.23 17.55 81.67 93.30 97.20 84.79 77.0 71.5 94.66 93.52 92.86 5.31 6.49 7.16

ARX 9.07 16.79 22.21 16.42 29.01 34.63 6.18 11.56 15.73 11.36 21.43 27.62 33.33 17.5 15.56 85.62 57.9 46.12 96.53 92.81 92.26 3.46 7.16 7.77

RF 8.51 15.5 20.46 14.87 26.53 32.06 5.4 9.71 12.92 9.25 16.84 21.74 51.67 44.17 48.89 90.45 72.13 61.53 98.55 96.24 94.53 1.43 3.64 5.23

SVRL 5.88 10.57 13.33 10.43 16.94 20.46 3.96 7.1 9.37 7.12 12.34 15.53 73.33 87.5 93.32 96.36 84.11 75.58 99.12 96.04 94.16 0.86 3.96 5.82

SVRRB 10 14.81 17.95 14.96 21.69 24.53 5.85 9.12 11.38 9.33 14.52 17.39 76.67 89.17 92.22 90.99 75.81 68.94 98.79 97.38 96.16 1.23 2.61 3.8

XGBOOST 6.18 10.92 14.64 10.54 18.58 23.4 3.77 6.65 9.0 6.42 11.66 15.58 75.0 82.5 91.11 96.4 86.18 75.18 99.14 97.61 96.15 0.88 2.41 3.82

G4

Model RMSEavg [mg/dl] RMSEp [mg/dl] MARDavg [%] MARDp [%] TG [%] Zone A [%] Zone A+B [%] Zone C+D [%]

Bi-LSTM 7.29 11.27 13.61 10.39 16.07 18.95 4.46 7.23 8.9 6.35 10.88 13.73 78.33 88.33 94.44 97.13 86.85 78.73 99.57 97.46 95.97 0.43 2.55 4.14

LSTM 7.19 11.21 13.61 10.44 16.21 18.97 4.41 7.25 8.92 6.37 11.03 13.73 76.67 89.17 95.0 97.3 86.6 78.87 99.56 97.48 96.04 0.45 2.52 3.98

CNN-LSTM 8.23 12.99 15.19 11.23 17.45 20.18 5.04 8.38 9.98 6.91 12.02 14.75 78.33 91.67 95.0 96.62 83.97 76.15 99.38 97.27 96.13 0.62 2.74 3.88

MetaL 5.9 8.93 11.34 8.94 13.86 16.95 3.76 5.67 7.32 5.67 9.18 11.92 85.0 92.5 95.56 98.82 92.34 84.85 99.77 98.39 97.19 0.24 1.62 2.83

MetaL1 5.5 8.41 10.49 8.28 12.97 15.62 3.54 5.46 6.87 5.31 8.82 11.16 85.3 94.16 95.0 98.94 92.79 86.90 99.74 98.16 97.29 0.26 1.85 2.71
FNN 13.22 17.11 18.89 16.15 20.67 23.15 9.83 12.43 13.56 12.14 15.84 18.17 80.0 91.67 97.22 86.32 74.66 68.89 94.27 93.67 93.31 5.74 6.32 6.69

ARX 9.1 16.63 22.15 16.45 28.76 34.46 6.13 11.54 15.63 11.27 21.41 27.31 33.33 19.17 16.11 85.9 58.0 45.96 96.76 92.34 92.48 3.26 7.67 7.54

RF 8.59 15.3 20.23 14.99 26.14 31.56 5.34 9.45 12.58 9.15 16.42 21.01 50.0 44.17 48.89 90.67 72.91 62.67 98.93 96.54 94.9 1.06 3.32 4.94

SVRL 5.92 10.28 13.49 10.51 17.03 20.81 3.97 7.12 9.48 7.16 12.42 15.7 73.33 85.83 93.89 96.31 84.18 75.24 99.15 96.05 94.35 0.86 3.96 5.63

SVRRB 9.9 14.77 17.85 14.96 21.75 24.58 5.87 9.34 11.57 9.39 14.92 17.65 78.33 86.65 91.67 90.49 75.45 69.64 98.83 97.12 96.17 1.19 2.82 3.81

XGBOOST 6.39 10.72 14.25 10.86 18.3 22.72 3.99 6.72 9.0 6.84 11.9 15.63 76.67 83.33 93.30 95.8 85.89 76.27 99.07 97.05 95.71 0.93 2.98 4.28

it was seen in practice that the proposed meta-learning model tends to be overconfident

with its predictions when meal misspecifications occur (see section 3.5.3.4), which is not

acceptable for safety critical applications.

61

Table 3.6. RMSEavg[mg/dl] for each patient in group G4 at horizons
p = 30[min] | p = 60[min], | p = 90[min]. Numbers in bold represent

the best result at each prediction horizon.

RMSEavg[mg/dl]

Model Adult#006 Adult#007 Adult#008 Adult#009 Adult#010
Bi-LSTM 10.96 15.58 18.5 8.5 13.88 16.7 6.61 10.62 13.17 5.41 8.69 10.6 4.98 7.61 9.09

LSTM 10.6 15.01 17.83 8.17 13.51 16.29 6.6 10.28 12.92 5.51 9.25 11.34 5.07 8.01 9.69
CNN-LSTM 10.97 17.23 19.42 9.66 15.23 17.73 7.91 12.96 15.61 6.43 10.22 12.40 6.19 9.31 10.8

MetaL 7.41 10.48 13.16 6.73 10.65 13.45 5.74 8.77 11.37 4.75 7.23 9.34 4.87 7.51 9.38
MetaL1 7.01 9.79 12.24 6.33 10.61 12.18 5.11 7.60 10.08 4.23 6.81 8.50 4.82 7.25 9.46
SVRL 6.67 12.15 16.3 6.04 10.82 14.38 5.79 9.63 12.48 5.43 9.36 12.23 5.69 9.44 12.08

XGBOOST 8.19 12.92 16.81 7.7 12.52 16.77 5.05 9.13 12.49 5.73 9.73 13.13 5.28 9.28 12.04

Table 3.7. Predictions falling in Zone A of the C-EGA plot for each
patient in group G4 at horizons p = 30[min] | p = 60[min], |

p = 90[min]. Numbers in bold represent the best result at each prediction
horizon.

Zone A[%]
Model Adult#006 Adult#007 Adult#008 Adult#009 Adult#010

Bi-LSTM 91.8 77 67.05 97.1 81.5 73.3 99.55 94.49 87.4 99.0 91.2 82.7 98.2 90.05 83.2
LSTM 92.9 77.85 69.05 97.55 82.45 75.1 99.5 94.94 88.95 98.6 88.55 78.75 97.95 89.2 82.5

CNN-LSTM 92.0 72.3 64.75 96.65 80.65 73.05 99.4 90.9 82.85 97.55 86.7 76.65 97.5 89.3 83.45
MetaL 97.95 91.15 83.05 98.5 89.95 81.85 99.6 96.65 89.94 99.4 93.4 85.4 98.65 90.55 84.0
MetaL1 98.3 91.35 84.50 98.57 89.65 85.85 99.79 97.85 93.8 99.53 94.3 87.75 98.52 90.80 82.6
SVRL 94.55 75.25 66.1 97.3 85.9 76.2 98.1 93.4 86.85 96.5 83.85 74.45 95.2 82.5 72.6

XGBOOST 91.5 78.45 67.1 96.3 84.6 74.2 98.8 94.4 87.3 96.45 86.8 74.15 95.95 85.2 78.6

The proposed probabilistic model is inspired in the ideas of (Becker et al., 2019; Shaj

et al., 2020, 2022; Gillijns & De Moor, 2007).

3.5.1. Related work

In (Becker et al., 2019), the integration of deep time-series modeling with Kalman Fil-

ters is proposed for uncertainty estimation under the name of Recurrent Kalman Networks

(RKN). Unlike other similar approaches, that require the use of approximate inference

techniques due to nonlinear approximations, such as variational inference, in (Becker et

al., 2019) locally linear models are used to propagate uncertainty using Kalman equations

over the latent space of a neural network. This has the advantage of obtaining closed form

solutions for the posterior distributions, so that, approximation errors are avoided, and

by the use of factorized state representations, the Kalman updates are simplified to scalar

62

operations that avoid the hard to backpropagate, computational heavy and potentially un-

stable matrix inversions.

Concretely, in (Becker et al., 2019) the authors propose to learn a mapping from the

input space I to an observation space W = Rm by the use of an observation encoder.

This encoder outputs both the transformation of the observation at time t, given by ŵ(t),

and a vector r̂(t), representing the diagonal of the measurement noise covariance matrix

R(t) ∈ Rm×m. On the other hand, the latent state space Z = Rn, with n > m, is related to

the observation space by the linear latent transformation C = [Cu0] ∈ Rm×n with 0 a zero

matrix in Rm×(n−m) and Cu a diagonal matrix in Rm×m, with associated vector cu ∈ Rm,

containing its diagonal values. This choice for C, naturally divides the state in two parts,

namely, zu(t) ∈ Rm which carries information that can be directly extracted from the

observations, and zl(t) ∈ Rn−m which holds information inferred over time, similar to

velocities or other derivatives in state space representations of physical processes. By

convenience, the authors used n = 2m and cu = 1m, the m-dimensional 1 vector.

As for the transition matrix A(t) ∈ Rn×n, to obtain a locally linear transformation,

the authors proposed to learn K constant transition matrices A(k) and combine them using

state dependent coefficients α(k)(z̃(t − 1)), obtained by using a linear learnable transfor-

mation with softmax activation function, i.e.

A(t) =
K∑
k=1

α(k)(z̃(t− 1))A(k) (3.11)

Where z̃(t−1) is the estimated state after the update step of the Kalman filter at time t−1.

For the process noise covariance matrix Q ∈ Rn×n, a diagonal structure is considered

with q ∈ Rn a learnable constant vector containing the digonal values of Q. And for the

state covariance matrix Σ̂(t) ∈ Rn×n, it is proposed the use of a block structure of the

form:

63

Σ̂(t) =

Σ̂u(t) Σ̂s(t)

Σ̂s(t) Σ̂l(t)

 (3.12)

Where each of Σ̂u(t), Σ̂s(t), Σ̂l(t) ∈ Rm×m is a diagonal matrix with associated vec-

tors σ̂u(t), σ̂s(t) and σ̂l(t) which contain the diagonal values of their respective matrices.

After applying the Kalman equations to this simplified structure, the one-step ahead

prediction and an uncertainty estimate can be obtained by transforming back the state

ẑ(t+1) and the uncertainty estimates σ̂u(t+1), σ̂s(t+1) and σ̂l(t+1) to the input space, by

the use of an output decoder. Finally, the network can be trained in an end-to-end manner

by minimizing any type of probabilistic loss, as the negative Gaussian log-likelihood loss,

which gives:

Ly(t+ 1) = − logN (y(t+ 1)|ŷ(t+ 1), σ̂(t+ 1)) (3.13)

Authors showed the superiority of RKNs over other approaches in probabilistic mod-

eling of time-series in several tasks. Figure 3.7 shows a simplified scheme of a RKN when

adding an external input (Shaj et al., 2020). The reader is referred to the original paper

for further details on the simplified Kalman equations and its implementation on a neural

network.

Additionally, (Shaj et al., 2022) proposed an extension of the work of (Becker et al.,

2019) and (Shaj et al., 2020), by adding a Bayesian Context Aggregation (BCA) (Volpp

et al., 2021) to the RKN architecture, in order to allow the adaptation of the network

to changing dynamic scenarios. The BCA consists in inferring a latent variable ln ∼

N(ln|µln, diag(σln)) from a context set Cln = Yn[j−τc:j] by using the Bayes rule. The

observation model is a factorized Gaussian model of the form p(rin|ln), where:

rin = encr(Yn(j − i)) (3.14)

σin = encσ(Yn(j − i)) (3.15)

64

Figure 3.7. Recurrent Kalman network architecture proposed in (Becker et
al., 2019) and updated in (Shaj et al., 2020) to incorporate an external input.
In this architecture, both past target data represented by y(t) and an exter-
nal input represented by u(t), are combined using the Kalman equations
on the latent space of a neural network to generate the next step prediction
y(t+1) and a confidence level represented by σ̂(t+1). In this case, is not
possible to incorporate context data for adaptation or personalization.

With encr and encσ as two encoders. Then, given a prior for ln, p0(ln) = N(ln|µ0, diag(σ0)),

the posterior distribution for ln can be obtained by the application of the Bayes rule, which

by Gaussianity assumption simplifies to:

σ2
ln =

1(
1
σ2
0
+
∑τc

i=0
1

σ2
ln

) (3.16)

µln = µ0 + σ2
ln

τc∑
i=0

(rin − µ0)
2

σ2
in

(3.17)

Once obtained, µln and σln are integrated in the prediction step of the Kalman equa-

tions in the following way:

65

ẑ(t+ 1) = A(t)z̃(t) + fb(u(t)) + fµ(µln) (3.18)

Σ̂(t+ 1) = A(t)Σ̃(t)AT (t) + Fσ +Q (3.19)

Where fb and fµ are nonlinear learnable transformations to incorporate the influence

of the external input u(t) (Shaj et al., 2020), and the task information, respectively. Also,

Fσ is a diagonal matrix with the values of fσ(σln) in its diagonal, with fσ also a nonlinear

learnable transformation.

The authors compared several approaches, including meta-learning, for adaptation to

changing dynamics in uncertain scenarios. BCA was found superior in this context and

faster to train.

Following (Shaj et al., 2022), is possible to use a RKN for probabilistic glucose pre-

diction, and by the incorporation of BCA, patient information can be extracted from past

data, in order to achieve model personalization. However, one challenge remains: how to

inform the network that the meal input is uncertain. One option is to use BCA to infer the

latent distribution of the meals, however, since the meal input signal is mostly constant at

zero with only few spikes, this would produce mode collapse of the distribution towards a

constant value (Lucas et al., 2019). Other option is to use a variational approximation of

the posterior distribution, but that would invalidate the uncertainty propagation with the

Kalman equations. Additionally, is also possible to just treat the meal input as determinis-

tic, as a naive application of RKN with BCA would do it. However, in this work we argue

that this limits the performance of the model and some knowledge about the uncertain

nature of the meal input should be incorporated.

3.5.2. Model design

In the same line of (Becker et al., 2019) and (Shaj et al., 2022), our approach consists

in the integration of a Kalman filter with a neural network to propagate the uncertainty

66

on the latent space of the network. Also, the use of BCA for model personalization with

Yn = MEi
n (the support meal) and all the simplifications in the matrices structures are

followed. However, in this case to make the network aware about the uncertain nature of

the meal signal, we propose the use of an input and state estimation Kalman filter (ISRKN)

(Gillijns & De Moor, 2007) in the latent space of the network, so that, the meal signal is

treated as a noisy output whose distribution is to be estimated rather than as an input. This

has the advantage that any probabilistic loss to estimate the meal distribution can be used,

and due to the use of back-propagation, the uncertain nature of the meals will be encoded

in the filter parameters.

The input and state estimation Kalman filter that will be used in our model, has the

following form (Gillijns & De Moor, 2007):

d̂(t− 1) = M(t) (y(t)−Cẑ(t)) (Input estimation), (3.20)

z̃∗(t) = ẑ(t) +G(t)d̂(t− 1) (State update P.1), (3.21)

z̃ = z̃∗(t) +K(t) (y(t)−Cz̃∗(t)) (State update P.2), (3.22)

ẑ(t+ 1) = A(t)z̃(t) +B(t)(u(t)) (State prediction), (3.23)

where d̂(t−1) ∈ Ra, is the estimated disturbance at time t−1, G(t) ∈ Rn×a the interaction

matrix between the disturbance and the state, and M(t) ∈ Ra×m and K(t) ∈ Rn×m the

two time-varying matrices to be estimated by the filter. A sufficient condition for the

existence of an unbiased state estimator for this filter, is that rank(CG) = rank(G) = a,

which implies that n ≥ a and a ≥ m.

We choose a = m, since in this particular case, it can be demonstrated that K(t) =

0∀t, and therefore, z̃(t) = z̃∗(t)∀t (Abooshahab et al., 2022), and thus, the filter is greatly

simplified, only needing one state update. Also, similar to (Becker et al., 2019) we choose

n = 2m.

67

Additionally, since we can choose the size and structure of G(t), we chose it as a block

constant matrix composed of two diagonal matrices of size m×m, namely,

G =

Gu

Gl

 ,∈ Rn×m (3.24)

This, in order to satisfy the sufficient condition by construction, given that we maintain

the same diagonal structure for C than (Becker et al., 2019). These diagonal matrices have

associated vectors gu,gl ∼ N(g|µgn, σgn), with:

µgn = fgµ(µln) (3.25)

σgn = fgσ(σln) (3.26)

Where, fgµ and fgσ are nonlinear learnable transformations and g = [gu ⊕ gl]. This

particular dependence on µln and σln, is motivated by the fact that these vectors carry

information about a past meal response of the particular patient, and thus, can help to

estimate this gain.

3.5.2.1. Input estimation

For the input estimation (equation 3.20), it can be shown that M(t) is given by the

following expression (Gillijns & De Moor, 2007):

M(t) =
(
FR̃(t)F

)−1

FT R̃−1(t) (3.27)

With,

F = CG (3.28)

R̃(t) = CΣ̂(t)CT +R(t) (3.29)

68

Which with the proposed simplifications, simply leads to a diagonal matrix with asso-

ciated constant vector mu, given by:

mu =
1

cugu

(3.30)

Introducing this result in equation 3.20, gives us the following expression for d̂(t− 1)

d̂(t− 1) =
ŵ(t)− cuẑu(t)

cugu

(3.31)

With respective variance given by
(
FT (t)R̃−1(t)F(t)

)−1

, which in our case leads to:

σ̂d̂(t− 1) =
cuσ̂u(t) + r̂(t)

(cugu)2
(3.32)

Once estimated, both d̂(t − 1) and σ̂d̂(t − 1) are transformed back to the original

space by an input decoder, so that any probabilistic loss (in our case the negative Gaussian

log-likelihood loss) can be used to estimate the input meal distribution. That is,

m̂(t− 1) = decd̂(d̂(t− 1)) (3.33)

σ̂m̂(t− 1) = decσ̂d̂
(σ̂d̂(t− 1)) (3.34)

Lmeal(t) = − logN (m(t− 1)|m̂(t− 1), σ̂m̂(t− 1)) (3.35)

3.5.2.2. State update

As for the state update (equation 3.21), the state equation is simplified to:

z̃u(t) = ẑu(t) + gud̂(t− 1) (3.36)

z̃l(t) = ẑl(t) + gld̂(t− 1) (3.37)

69

On the other hand, the state covariance update has the following form (Gillijns & De Moor,

2007):

Σ̃(t) = (In −GM(t)C) Σ̂(t) (In −GM(t)C)T +GM(t)RMT (t)GT (3.38)

Which in our case, gives us the following expressions for the associated vectors of the

block covariance matrix (see equation 3.12):

σ̃u(t) =
r̂(t)

c2u
(3.39)

σ̃s(t) =
glr̂(t)

c2ugu

(3.40)

σ̃l(t) =
g2
l

g2
u

(
r(t)

c2u
+ σ̂u(t)

)
− 2

gl

gu

σ̂s(t) + σ̂l(t) (3.41)

3.5.2.3. State prediction

For the state prediction (equation 3.23), this filter leads to the same equations than

(Shaj et al., 2022), that is, equations 3.18 and 3.19. The respective simplifications of

which, can be found in (Shaj et al., 2022).

3.5.2.4. Loss calculation

Just as in the deterministic case, the inputs of the network are sliding windows of

length τ that are processed iteratively by the filter up to time t. Then, to produce p-step

ahead predictions, at each step, the output of the network is sampled and iteratively fed

back as a new observation to produce the next-step ahead prediction, that is:

ỹ(t+ k) ∼ N (ỹ(t+ k)|ŷ(t+ k), σ̂(t+ k)) (3.42)

y(t+ k) ≈ ỹ(t+ k),∀k ∈ [1, p] (3.43)

70

Figure 3.8. Proposed recurrent Kalman network with input estimation (IS-
RKN). In this case the input estimation step produce two vectors, namely,
d̂(t − 1) and σ̂d̂(t − 1), which are transformed by the input decoder, such
that the meal distribution can be estimated.

Then, the final loss is given by:

L =
1

p

p∑
k=1

Ly(t+ k) +
1

p+ τ

p∑
k=1−τ

γ(t+ k)Lmeal(t+ k) (3.44)

Where the meal loss is calculated over all the steps of the filter, and the target loss only

over the predictions. Also, γ(t + k) is a weight function with γ(t) = η,∀t ∈ [t̂meal − δ̂t :

t̂meal + δ̂t], where t̂meal is the time of the meal announced by the patient and δ̂t is chosen

as 20 minutes. For the rest of the sequence, γ(t) = η
100

with η = 1. This structure was

followed in order to account for the meal time uncertainties.

Finally, figure 3.8 shows the structure of the proposed model for probabilistic glucose

prediction with all the elements described above.

3.5.3. Experiments

For the experiments, exactly the same data preprocessing than in the deterministic case

is followed (see figure 3.1), since it was seen that led to better personalization performance.

71

However, in the case of the RKN models, the support meals are processed in the BCA, and

no inner loop updates are required.

Also, the proposed Out-Of-Distribution testing procedure was used to test the gener-

alization capabilities of the proposed model, but using probabilistic performance metrics.

3.5.3.1. Data-set generation

The data-set was generated following the same procedure described in section 3.4.1.

However, in this case the only sources of randomness were related to the meal time, and

meal size misspecifications by the patient, following the distributions found by (Robinson

et al., 2021) and (Brazeau et al., 2012). That is, a meal time misspecification occurred

with a probability of 0.45, and when occurred, the following uniform distribution for the

delay δt was used (Robinson et al., 2021):

δt ∼ Uniform(−5, 20)[min] (3.45)

Therefore, the time of the meal announced by the patient is given by:

t̂meal = tmeal + δt (3.46)

Where tmeal is the real time of the meal, which is given as an input to the simulator, and

t̂meal is the time of the meal announced by the patient, which is given to the network in the

input data.

On the other hand, for the meal size misspecification, the following error distribution

was used (Brazeau et al., 2012):

|emeal| ∼ max(N (0.209, 0.097), 0) (3.47)

signe =

1 s ∼ Bernoulli(0.38) > 0

−1 s ∼ Bernoulli(0.38) = 0
(3.48)

72

0 2 4 6 8 10 1280
100
120
140
160
180

[m
g/

dl
]

BG mean
±
±2

0 2 4 6 8 10 12
Time [Hours]

80
100
120
140
160
180

[m
g/

dl
]

CGM mean
±
±2

Figure 3.9. Glucose distribution for Adult#003 when the meal input is
uncertain. In this case a meal of size Ms = 60[gr] is given at time
tmeal = 2[Hours]. However, the insulin bolus is given at t̂meal (equation
3.46) and calculated using M̂s (equation 3.49). The upper graph shows
how BG (unmeasured) is distributed and the lower graph shows how CGM
(measured) is distributed. The experiment is repeated 120 times to approx-
imate the moments of the distribution.

With this, the meal size estimated by the patient is given by:

M̂s =Ms(1 + signe|emeal|) (3.49)

Where Ms is the real size of the meal, which is given as the input to the simulator, and

M̂s is the meal size estimated by the patient, which is used to calculate the insulin bolus

introduced in the simulator and is the meal size given to the models.

Figure 3.9 shows how BG and CGM vary for one of the patients of the simulator when

these distributions are used to model meal uncertainty.

3.5.3.2. Baselines

The chosen baselines for this task are the following:

• MetaL1prob: As the first baseline, we used the deterministic personalizable

model based on meta-learning proposed above, but with an uncertain meal input.

In this case, the training procedure remains the same, however, during testing we

73

assume that the meal input distribution is known, so that different meal values

are sampled from this distribution and the obtained predictions are used to ap-

proximate the glucose output distribution.

• RKNBA: In this case, we used the model proposed by (Shaj et al., 2022) which

includes BA for model personalization and the meal signal as an external input

along with the insulin. This model is used to compare how our model performs

against a similar model which treats the meal input as deterministic.

• RKNBANM: This model is similar to RKNBA, however, in this case the meal

signal is ignored and only the insulin is given as the external input.

• Gaussian Process (GP): Finally, a Gaussian process regressor is used to com-

pare our model with a strong classical probabilistic model. The GP is trained

from scratch for each patient, both with population training data and all the sup-

port data of the corresponding patient in order to personalize.

3.5.3.3. Evaluation metrics

As for the probabilistic evaluation metrics, the main metric considered was the Ex-

pected calibration error (ECE), which according to several authors is the most important

metric for evaluating probabilistic models (C. Guo et al., 2017). The ECE is the expected

difference between the confidence predicted by the model and the real percentage of the

data that falls on the predicted boundaries. Mathematically,

ECE =
1

B

B∑
b=1

|αb − P σ̂
αb(D)| (3.50)

Where αb is a chosen level of confidence and P σ̂
αb(D) is the probability that the ground

truth data falls inside the boundaries established by the confidence level αb and the pre-

dicted standard deviation σ̂. In our case, we chose ten different values of confidence from

0% to 100%, separated by 10%, and the predicted boundaries are obtained by assumming

a Gaussian distribution of the error.

74

The second metric used for the evaluation is the Maximum Calibration Error (MCE)

(C. Guo et al., 2017), which is important in high-risk applications where we may wish to

minimize the worst case-deviation. The MCE is the maximum deviation of the averaged

terms in the ECE, that is,

MCE = max
b∈[1,B]

|αb − P σ̂
αb(D)| (3.51)

A third metric is the sharpness (SHA), which refers to the concentration of the pre-

dictive distributions. The more concentrated the predictive distributions are, the sharper

the predictions, and the sharper the better, subject to calibration (Gneiting et al., 2007). In

practice, the sharpness is measured as the length of the interval between the boundaries

established by a confidence level and a predicted uncertainty. In our case, sharpness will

be measured only at two levels of confidence, namely 68% (±σ̂) and 95% (±2σ̂).

The fourth metric is the average RMSE (see equation 3.7) to measure how far the

predicted mean of the distribution is from the ground truth data.

Finally, the average negative Gaussian log-likelihood (NGLL) of the predicted se-

quences will be also used, which considers both the predicted mean and the predicted

uncertainty. Mathematically,

NGLL =
1

T

T∑
t=1

1

p

p∑
k=1

1

2

(
log (σ̂(t+ k)) +

(ŷ(t+ k)− y(t+ k))2

σ̂(t+ k)

)
(3.52)

3.5.3.4. Experimental results

Table 3.8 shows the results of the OOD evaluation procedure for probabilistic glu-

cose prediction. In this case, all the experiments were conducted for only one prediction

horizon p = 60[min].

From the table, is possible to see that all the Recurrent Kalman Network models are far

superior than the other baselines. On one hand, the MetaL1prob, even when is very accurate

in terms of RMSEavg, tends to be overconfident of its predictions, which translates in very

75

Table 3.8. OOD evaluation results for probabilistic glucose prediction at
horizon p = 60[min]. Numbers in bold represent the best result for each

metric.

G1

Model ECE [%] MCE [%] NGLL SHA0.68 [mg/dl] SHA0.95 [mg/dl] RMSEavg [mg/dl]
MetaL1prob 44.01 71.76 128.30 1.78 3.50 7.05

GP 8.19 14.07 4.29 45.57 89.81 26.05
RKNBA 5.31 8.31 3.64 22.37 44.09 10.45

RKNBANM 4.68 7.26 3.64 21.64 42.66 10.36
ISRKN 1.90 3.29 3.56 18.3 36.07 9.83

G2

Model ECE [%] MCE [%] NGLL SHA0.68 [mg/dl] SHA0.95 [mg/dl] RMSEavg [mg/dl]
MetaL1prob 47.38 77.48 300.47 1.49 2.94 9.35

GP 7.75 14.97 4.81 50.14 98.83 33.87
RKNBA 1.96 3.75 3.85 23.99 47.29 13.01

RKNBANM 2.67 7.15 3.81 23.13 45.59 12.55
ISRKN 1.09 2.47 3.69 18.99 37.44 11.5

G3

Model ECE [%] MCE [%] NGLL SHA0.68 [mg/dl] SHA0.95 [mg/dl] RMSEavg [mg/dl]
MetaL1prob 47.56 78.3 785.19 1.59 3.14 10.99

GP 7.5 13.69 4.82 50.49 99.51 34.01
RKNBA 3.46 5.96 3.92 24.41 48.11 14.57

RKNBANM 2.21 4.14 3.88 23.04 45.41 13.66
ISRKN 1.97 3.69 3.78 20.6 40.6 12.51

G4

Model ECE [%] MCE [%] NGLL SHA0.68 [mg/dl] SHA0.95 [mg/dl] RMSEavg [mg/dl]
MetaL1prob 47.73 78.76 749.09 1.59 3.12 10.79

GP 7.47 13.68 4.83 50.38 99.3 34.13
RKNBA 3.43 5.78 3.94 24.11 47.51 14.42

RKNBANM 2.9 5.05 3.92 23.32 45.97 14.02
ISRKN 2.71 4.56 3.87 20.58 40.56 13.26

narrow prediction distributions (see SHA0.68 and SHA0.95) but a very high ECE, MCE and

NGLL. In fact, when plotting the calibration error for the different confidence values (see

figure 3.10), it is possible to see how far the MetaL1prob predicted distribution is from the

empirical distribution of the data. On the other hand, the GP even when it has low ECE,

MCE and NGLL values, tends to be very under-confident of its predictions (see figure

3.10), which translates in a very wide predicted distribution, and also, the mean tends to

be very far from the ground-truth data, as it can be seen from the RMSEavg metric.

As for the RKNBA and RKNBANM both models have very good performance across

all metrics, with RKNBANM being slightly better than RKNBA. This shows that handling

the uncertain meal signal as a deterministic input could harm model performance, and is

better to just ignore it. However, it is worth noting that the insulin input already contains

some information of the estimated meal size, since the insulin bolus is calculated using this

76

20 40 60 80 100
Model Confidence [%]

20
40
60
80

100
Em

pi
ric

al
 V

al
ue

 [%
]

Ideal
MetaL1prob

20 40 60 80 100
Model Confidence [%]

20
40
60
80

100

Em
pi

ric
al

 V
al

ue
 [%

]

Ideal
GP

20 40 60 80 100
Model Confidence [%]

20
40
60
80

100

Em
pi

ric
al

 V
al

ue
 [%

]

Ideal
ISRKN

20 40 60 80 100
Model Confidence [%]

20
40
60
80

100

Em
pi

ric
al

 V
al

ue
 [%

]

Ideal
RKNBA

Figure 3.10. Calibration error for the different probabilistic models using
data from one patient in G4. The x-axis shows the confidence of the model
that the ground-truth data fall within the boundaries associated to the es-
timated standard deviation of the predicted distribution. The y-axis is the
percentage of the ground-truth data that actually fall inside those bound-
aries.

value. Therefore, is possible that the RKNBANM is extracting all the necessary information

from the insulin and past data, and the uncertain meal input becomes unnecessary.

Regarding the ISRKN, it is observed that this model is superior to all others in all

probabilistic metrics for all groups. Only MetaL1prob is superior in terms of RMSEavg

and in SHA0.68 and SHA0.95, but this last two metrics are subject to a valid calibration,

therefore their values are discarded for this model. From the table and from figure 3.10

it is possible to see that the proposed model is the one that better estimates the empiri-

cal distribution of the data, also is the model with tighter predicted distributions and has

competitive performance in terms of RMSEavg when compared to the MetaL1prob.

Finally, figure 3.11 shows a prediction of the ISRKN for a randomly selected meal.

It can be seen that the model is able to accurate predict the glucose signal with its cor-

responding distribution, and is able to correctly estimate the time and size of the meal,

even when this is just a secondary task. This shows that the network is able to extract

more meaningful information from the meal uncertain input when treating it as an uncer-

tain output whose distribution is to be estimated, instead of as a deterministic input or just

ignore it . Also, this shows that the ISRKN could eventually be used to estimate the meal

77

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [Hours]

120

140

160

180
G

lu
co

se
le

v
e
l
[m

g
/d

l]

yCGM
±

±2

yCGM

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [Hours]

0

10

20

30

40

50

60

70

M
e
a
l
S

iz
e
 [

g
r]

mreal

m

Figure 3.11. Example prediction of the ISRKN for an arbitrary patient in
group G4. The solid and the dashed lines are the ground-truth data and the
predictions of the network, respectively. The white background indicates
the context data given to the network, that is, data for a time k ≤ t (see
equation 3.44) and the light-red background indicates the prediction time
(k > t).

characteristics from the glucose signal and some meal labels, which could help to fully

automate the AP, but this is left as future work.

3.6. Discussion

In this chapter and adaptative-learning based model capable of personalizing to differ-

ent T1D patients with minimal amount of additional data and with low risk of overfitting

by the use of meta-learning is presented first. This model not only showed superior perfor-

mance than other ML or DL population models trained with the same amount of data, but

also it was shown how our model achieves better performance with less patient-specific

data than other adaptative methods as transfer learning. This is important in safety critical

applications as T1D prediction and control in which low predictive performance at any

point could be fatal.

Additionally, a novel probabilistic model is proposed to estimate the uncertainty pro-

duced by the user’s misspecification of meal time and size, a very common problem in

T1D that limits the performance of modern APs. The model is based on a Recurrent

Kalman network along with an input and state estimation Kalman Fiter, such that the meal

78

input is considered as an uncertain output variable whose distribution is to be estimated

by the filter. Results show that this model achieves superior performance than other tech-

niques in several probabilistic metrics and can correctly estimate the output distribution of

the glucose.

Future work includes using both modeling approaches along with a model-based con-

troller in closed loop, and possibly performing clinical trials with these data-driven sys-

tems.

79

4. NEUROEVOLUTIVE CONTROL OF INDUSTRIAL PROCESSES THROUGH

MAPPING ELITES

This Chapter focuses on the development of a neuroevolutive controller with learning

capabilities and great flexibility during training and during execution, meant to be used in

a wide range of iCPSs applications 1.

4.1. Context

Among the different techniques used in process control, model-based control has seen

increasing usage in the last decades, in particular model predictive control (MPC), show-

ing great success in oil, paper and pulp, and mining processes (Qin & Badgwell, 2003). A

traditional MPC setup involves three elements (Rawlings & Mayne, 2009): i) a dynamic

model of the process used to predict the effect of the inputs on the process outputs; ii) an

optimizer in charge of calculating a control sequence to drive the output to a desired ref-

erence, based on a cost function involving the inputs, the outputs and their set-points; and

iii) the use of the receding horizon strategy, which consists in applying only the first ele-

ment of the control sequence and repeating the optimization at each time-step. In typical

MPC approaches the search for control sequences is done directly in the subspace spanned

by the manipulated variables, which represents a high computational burden, particularly

when using a complex nonlinear model.

Recently, learning-based techniques that instead of calculating a control sequence look

to generate a controller in the form of a parameterized function have shown important

progress. These techniques perform an optimization over the subspace spanned by the

parameters of a candidate function, and their main advantage over typical model-based

approaches is that when a good-performing controller is found, there is no need to conduct

continuously the optimization process, in fact, in the limit, optimization can be stopped,

1The material in this chapter has been published in the journal IEEE Transactions On Industrial Informatics
(Langarica & Núñez, 2021).

80

which significantly reduces the computational cost. Two popular techniques from this

class are Reinforcement Learning and Neuroevolution (NE).

RL refers to a set of goal-oriented algorithms inspired in how agents learn by interact-

ing with the environment and repeating actions that result in a high reward, while avoiding

actions that lead to punishments. RL algorithms have been known for decades; however,

since the work in (V. Mnih et al., 2015) RL has gain attention in the scientific commu-

nity. In (V. Mnih et al., 2015), RL agents were trained to play challenging Atari games by

only receiving video frames as input. As a result, they were able to defeat human experts.

The success of (V. Mnih et al., 2015) is due to the use of complementary techniques as

experience replay (O’Neill et al., 2010) and a deep neural network (DNN) as a nonlinear

approximator of the action-value function, despite it was thought that this was not feasible

because of stability issues (Tsitsiklis & Van Roy, 1997).

Since the reported success in (V. Mnih et al., 2015), many other works combining

RL algorithms with DNNs have appeared, giving rise to a new research area called Deep

Reinforcement Learning (DRL). Most of these works focus on new techniques for training

DRL agents for playing and solving Atari games (van Hasselt et al., 2015), board games

(Silver et al., 2016) and robotic control tasks (Lillicrap et al., 2015). Despite the great

success of DRL in these complex tasks, its adoption for solving real-world problems is still

limited, mainly due to three major challenges: i) temporal credit assignment with long time

horizons; ii) lack of diverse exploration; and iii) brittle convergence properties (Khadka &

Tumer, 2018). The first may lead to the agent not being able to find an optimal solution, the

second to the agent getting stuck in a local optima, and the last may produce the system to

go unstable, which is not acceptable in real control applications. Recently, efforts from the

RL community to address these challenges have been made, as (Puigdomènech Badia et

al., 2020), that uses novel techniques like Never give up (Badia et al., 2020), and (Kamthe

& Deisenroth, 2017) which also addressed optimality and stability.

An alternative effective approach to address these challenges (Khadka & Tumer, 2018)

is the use of evolutionary algorithms (EA) (Spears et al., 1993), in particular NE, which

81

consists in training DNNs using EA for finding optimal policies directly in the subspace

spanned by the weights of a DNN (Gomez, 2003). NE helps solving the aforementioned

challenges by: i) using a fitness metric that consolidates returns across time, making

EA indifferent to the sparsity of the reward (Salimans et al., 2017); ii) implementing a

population-based approach that intrinsically allows diverse exploration, when a proper

technique for maintaining diversity in the population is used (Lehman & Stanley, 2011);

and iii) exploiting the redundancy in a population, which results in more robust and better

convergence properties (Ahn & Ramakrishna, 2003) and potentially improves stability in

a control application. Thanks to these favorable properties, NE algorithms have been ap-

plied successfully in different RL tasks (Salimans et al., 2017; Gangwani & Peng, 2017;

Conti et al., 2017).

Nonetheless, there are still two major issues that have to be addressed when applying

NE to real-world problems. First, NE algorithms do not solve the high sample complexity

that DRL algorithms have, which means that multiple interactions with the environment

are still needed to learn a good policy, which is not always possible in real world applica-

tions. Secondly, these algorithms need to maintain a large population to ensure diversity

and avoid getting stuck in local optima, which is a potential disadvantage and represents

a huge memory requirement since each individual represents a neural network (NN) with,

possibly, thousands or millions of parameters.

In this work, we propose a control strategy that combines elements from MPC, DRL,

and NE. The outputs of our main algorithm are optimized neural controllers that use a

quadratic fitness function. To tackle existing implementation problems several contribu-

tions are made. First, to reduce sample complexity, we propose to use a neural model

of the process, supported by the evidence that model-based RL substantially improves

sample efficiency of DRL algorithms (Kaiser et al., 2019). Secondly, to maintain a large

population of individuals without increasing computational load, we propose a novel com-

pression algorithm for DNNs based on the ideas of (Petroski Such et al., 2017), improved

with the use of a modification of the linear congruential generator algorithm (Bolte, 2011),

82

which allows representing a DNN of arbitrary size with only three parameters. Using this

compression algorithm, we can maintain large populations of neural agents in a desktop

computer, and by using the Map Elites evolutionary optimization algorithm (Mouret &

Clune, 2015), we can ensure diverse populations.

Consequently, the main contributions of this chapter are three-fold: i) a model-based

RL algorithm suitable for real industrial process control is proposed; ii) a novel compres-

sion algorithm for DNNs is developed; and iii) a modified version of the Map Elites opti-

mization algorithm, suitable for real industrial process control applications is presented.

4.2. Background

4.2.1. Model-based Reinforcement learning

Model-based RL considers the use of a model to simulate the interactions between the

environment and the agent. The idea behind using a model is to reduce the number of

interactions with the real environment an agent needs to learn a good policy. If the model

is reliable, model-based RL results in faster learning, since there is no need to wait for the

environment to respond, instead, interactions are simulated.

A well-known model-based RL algorithm is Dyna (Sutton, 1991), which consists in a

RL agent that interacts with the real environment and a model of it. At each iteration, the

agent first interacts with the model several times to accumulate experience and improve

its policy, and then faces the real environment using the learned policy. Experience from

the real interaction is transferred indirectly by the periodic update of the model with this

information. For Dyna to work properly, the sampling period of the real environment has

to be much larger than the time each simulated interaction takes.

83

4.2.2. Value and Policy approximation methods

RL algorithms can be classified in two major families: value and policy approximation

methods. The first family of algorithms focuses on finding the optimal policy by estimat-

ing the value function, which tabulates how good is for an agent to be in a given state or

how good is to perform a given action in a given state (in action-value functions) (Sutton

& Barto, 2014).

The value of a state s under a policy π is the expected discounted return when starting

in s and following π thereafter. Mathematically,

vπ(s) = Eπ

[
∞∑
k=0

γkRt+k+1|St = s

]
, (4.1)

where, Eπ is the expected value operator given that the agent follows a policy π, γ stands

for the discounted factor and R is the reward that the agent receives for being in state s. In

practice, in value approximation methods, the action-value function is used, this function

represents the value of taking an action a in a state s under a policy π and is given by,

qπ(s, a) = Eπ

[
∞∑
k=0

γkRt+k+1|St = s, At = a

]
. (4.2)

Q-learning (Sutton & Barto, 2014) is probably the most popular value approximation

method, which tries to approximate q(s, a) with a parametric function q̂θ(s, a) with learn-

able parameters. Q-learning has been used successfully in many applications (V. Mnih et

al., 2015; van Hasselt et al., 2015), however, due to its cost, is limited to discrete action

spaces, which limits its applicability in control-oriented tasks.

The second family of RL methods focuses on directly approximating the policy π

by using a parametric function π̂θ. The function π̂θ directly approximates the mapping

between state and actions, which can be continuous. Hence, these methods can deal with

continuous and stochastic action spaces, which is ideal for control purposes. However,

when using gradient-based methods, like backpropagation, to optimize π̂θ, it is necessary

84

to use a second approximator for q(s, a) that allows to map gradients from rewards to

actions and only then, gradients can be backpropagated to π̂θ. Therefore, there is a trade-

off between the advantages of policy approximation algorithms and the computational

burden of maintaining and optimizing two function approximators. Actor-critic methods

are an example of policy approximation algorithms (Lillicrap et al., 2015).

NE algorithms are a natural extension of policy approximation methods that exploit the

fact that EA do not need to use gradients for optimization, which eliminates the necessity

of a second approximator. However, maintaining a large population of policy approxima-

tors can be prohibitive in terms of memory.

4.2.3. Evolutionary Algorithms

EA are a set of black-box optimization methods used for solving optimization prob-

lems involving functions that are either non-differentiable or cannot be expressed in closed

form (Mouret & Clune, 2015). EA have been used extensively in engineering systems due

to its simplicity and effectiveness (Antonio & Coello, 2018; Choi et al., 2016).

In its basic form, these algorithms evolve a population P of N individuals. In case

of NE, each individual represents a NN with parameter vector θ, often called genotypes.

At each generation, each individual is evaluated and a fitness score, which is intended to

be maximized, is associated to each individual. From these, a fraction E of the highest

performing individuals passes to the next generation directly (called the elites). A fraction

M suffers a process called mutation, that generally involves perturbing the parameters with

noise. A fraction C suffers a cross-over, which is a permutation of parameters between

two individuals called the parents. To complete the set passing to the next generation,

individuals are chosen randomly with a probability proportional to their fitness score. This

procedure is repeated until a stopping criterion is reached. This basic EA is presented in

Algorithm 2.

85

Algorithm 2 Basic Evolutionary Algorithm
1: Given P : Population, N :Population size, E: Percentage of Elites, M : Percentage of mutated

individuals, σ: Mutation level, C: Percentage of cross-over individuals F : fitness function
and ∆ termination criterion.

2: function EVOLUTIONARY ALGORITHM(N , E, M , C, σ, F , ∆)
3: Initialize Population P of N individuals with parameters θi randomly.
4: Initialize next generation list L as an empty list of individuals.
5: while ∆ is not reached do
6: Empty list L
7: for θi in P do
8: fi = F (θi)
9: end for

10: Select % E of individuals and save them in L for the next generation
11: Select % M of individuals, perturb its parameters with θi = θi + ϵ, where ϵ N(0, σ)

and save them in L.
12: Select % C pairs of individuals and randomly change some of its parameters θi,r =

θj,r, θj,r = θi,r, where θi,r is the parameter at position r of individual i.
13: while Length of L < N do
14: Select an individual θi with probability p α F (θi) and save it in L
15: end while
16: P = L
17: end while
18: Return θbest = argmaxθF (L)

19: end function

4.2.4. Illumination algorithms and Map Elites

Classic EA are designed to return a small subset of high performing solutions that are

optimal for the optimization objective, represented by the fitness function. In (Mouret

& Clune, 2015) a more general type of algorithms, called illumination algorithms, are

introduced. These algorithms are designed to return the highest-performing solution at

each point in a feature space, thus illuminating the fitness potential of each region of this

space. Here, each feature can be any measurable characteristic, related or not to the fitness

function. In particular, in (Mouret & Clune, 2015), an illumination algorithm called Map

Elites is proposed, which has as its major advantage over EA and other illumination algo-

rithms that it is designed to facilitate the visualization of the optimization in the feature

space. Map Elites allows viewing how fitness is distributed over a feature space that is

low-dimensional and meaningful by design. With this information not only the best so-

lution in terms of fitness can be chosen, but also a high performing solution with desired

86

characteristics depending on the application. In terms of process control, a more aggres-

sive or mild controller can be selected without re-tuning the fitness function, facilitating

controller design.

In Map Elites, as in other EAs, first, a fitness function F (θi) has to be chosen to

evaluate each individual θi. Next, T dimensions of variation representing the selected

features have to be chosen to define the feature space. Then, each dimension of variation

is discretized. Given a particular discretization, Map Elites will search for the highest

performing solution for each cell in the feature space grid. It should be noted that the

search for solutions is done in the subspace containing the genotypes of each individual,

that is, the parameters that represent each individual and then, by evaluating the selected

features, each individual is positioned in the feature space.

The algorithm starts by generating G initial individuals, measuring the features and

positioning each one in the corresponding cell on the grid. Then, the following steps are

repeated until the termination criterion is reached: i) take a fraction M + C of individ-

uals from the population and produce a fraction of M new individuals by mutation and

a fraction C by cross-over. ii) Measure the features of each new gene and place it in its

corresponding cell if it is empty and replace the current occupant of the cell only if the

new gene has better performance. Algorithm 3 presents the Map Elites algorithm.

As shown in (Mouret & Clune, 2015), Map Elites performs better than other EA in

terms of performance, reliability, precision and coverage.

87

Algorithm 3 Map Elites Algorithm
1: Given G: initial number of genes, T : Dimensions of variation F : fitness function, B: features

function, M : Fraction of individuals taken for mutation, σ: Mutation level, C: Fraction of
new individuals created by Cross-over . ∆ termination criterion.

2: function MAP ELITES ALGORITHM(G, T , F , B, n, m, σ, M , C,∆)
3: Create a T -dimensional map of elites E
4: Create L as an empty list of genes
5: Generate G initial genes θi and save them in L
6: for θi in L do
7: bi = B(θi) ▷ Calculation of features
8: fi = F (θi) ▷ Calculation of fitness
9: Place θi in position Ebi according to its features bi

10: end for
11: Empty L
12: while ∆ is not reached do
13: Select a fraction M of individuals and create new genes by perturbing parameters with

θi = θi + ϵ, where ϵ N(0, σ) and save them in L.
14: Select a fraction C of individuals and create new genes by randomly changing some

of its parents parameters θi,r = θj,r, θj,r = θi,r, where θi,r is the parameter at position r of
individual i and save them in L

15: for θi in L do
16: bi = B(θi) ▷ Calculation of features
17: fi = F (θi) ▷ Calculation of fitness
18: if The position in the grid Ebi is empty then
19: Place θi in position Ebi
20: else if The position in the grid Ebi is occupied by gene θj with fitness fj then
21: if fi > fj then
22: Place θi in position Ebi
23: else if fi ≤ fj then
24: Retain θj in position Ebi and discard gene θi
25: end if
26: end if
27: end for
28: end while
29: return E

30: end function

88

4.3. Neuroevolution for process control

4.3.1. Problem statement

Consider a generic non-linear time-invariant system Σ:

Σ :

ż = f(z,u), z ∈ Z ⊆ RK ,u ∈ U ⊆ RM

y = h(z,u), y ∈ Y ⊆ RN

, (4.3)

where f and h are smooth non-linear mappings. Assume a sampling process exists where

inputs u and outputs y are sampled at constant period τ to generate the M -dimensional

input sequence u and the N -dimensional output sequence y.

We aim to find the parameters of a controller θt that produces anM -dimensional output

sequence ûθ given by

ûθ(t) = θt(U(t− 1),Y(t)), (4.4)

where U and Y areNu-depth andNy-depth windows of u and y respectively, so that when

applying ûθ to Σ, the controlled variables y are headed towards a reference sequence.

Assuming that an accurate enough model

ŷ(t+ 1) =Mt(U(t),Y(t)) (4.5)

of the real system Σ exists, so that ŷ(t + 1) effectively approximates y(t + 1), we will

optimize the controller parameters using the model and a modified version of Map Elites.

4.3.2. Map Elites for control of dynamical systems

When applying Map Elites for controlling dynamical systems, some modifications to

the original formulation have to be done, mainly because of the involvement of time.

Consider a grid G, that for simplicity and without loss of generality will be taken as a

two-dimensional grid I × J , and a population P (t) of individuals at sampling time t, in

89

this case NNs, represented by θk, where k ∈ Z≥0 represents the number of mutations the

original θ1 network has suffered. The output of θk at time t is given by

ûθk(t) = θk(U(t− 1),Y(t)). (4.6)

Then, the prediction of model Mt using ûθk(t) as input will be denoted as

ŷθk(t+ 1) =Mt(Ûθk(t),Y(t)), (4.7)

where

Ûθk(t) = [u(t−Nu + 1), · · · ,u(t− 1), ûθk(t)]. (4.8)

We can then define

Ŷθk(t+ 1) = [y(t−Ny + 2), · · · ,y(t), ŷθk(t+ 1)]. (4.9)

And then give these matrices as input to θk in the following step. Repeating this process

for arbitrary horizons, which for simplicity and without loss of generality will be chosen

in the following as Ny and Nu for Ŷθk and Ûθk , will generate

Ŷθk(t+Ny) = [ŷθk(t+ 1), · · · , ŷθk(t+Ny)], (4.10)

and

Ûθk(t+Nu − 1) = [ûθk(t), · · · , ûθk(t+Nu − 1)]. (4.11)

It should be noted that necessarilyNy ≥ Nu; therefore, to produce the remaining elements

of Ŷθk(t+Ny), the last element of Ûθk(t+Nu − 1) must be repeated Ny −Nu times.

These two matrices will be used to calculate the fitness and the features that represent

network θk in the Map Elites algorithm. The fitness is calculated as

fθk = V (Ûθk(t+Nu − 1), Ŷθk(t+Ny)), (4.12)

where V : RM×Nu × RN×Ny → R is an arbitrary mapping. Similarly, features are calcu-

lated as

bθk = B(Ûθk(t+Nu − 1), Ŷθk(t+Ny)), (4.13)

90

where B : RM×Nu × RN×Ny → R2 is an arbitrary mapping, not necessarily related to

mapping V .

Given the features bθk representing θk, a function W : R2 → I×J maps each network

to its corresponding position (i, j) in the gridG. A network after being assigned a position

in the grid will be denoted by

θk(i,j) = W (bθk), (4.14)

and its fitness and features by fθk
(i,j)

and bθk
(i,j)

.

4.3.3. Compression and Mutation

EAs that use NNs generally store all the parameters of each network in the popula-

tion. This causes a huge memory demand, since each network may have thousands of

parameters, and also the population has to be large enough to ensure diversity. To address

this issue, we propose a new compression algorithm for NNs that achieves state of the art

performance. However, it can compress only networks evolved with EA.

Our compression algorithm is inspired by the ideas in (Petroski Such et al., 2017),

where each network is compressed by storing only the random seeds used to generate its

parameters. Then, when a mutation takes place, a recursive strategy is used:

θk = ψ(θk−1, τ kθ) = θk−1 + σϵ(τ kθ), (4.15)

where ϵ ∼ N(0, I) and τ kθ is the random seed for the mutation operation k. In this al-

gorithm, for compressing θk, k seeds must be stored and then, to recover the network

parameters, (4.15) has to be applied forwards.

Our compression algorithm instead of storing each seed for each mutation operation,

uses the linear congruential generation algorithm (Bolte, 2011) to generate the seeds for

each mutation. Therefore, each seed is generated as

τ kθ = (aθτ
k−1
θ + cθ) mod m, (4.16)

91

where aθ and cθ are random numbers generated only once when k = 1 and m is a big

number typically set as 232. Then, with the generated τ kθ , (4.15) is applied forwards as

in (Petroski Such et al., 2017). Hence, instead of storing k random seeds for the k-th

mutation, we just have to store three parameters for each network θk: aθ, cθ and k.

4.3.4. Fitness Function

The fitness function takes the form of a generic quadratic objective function as typi-

cally used in MPC. Hence, instead of maximizing the fitness function, as usually done in

RL, our objective is to minimize it. Specifically, the fitness function is given by:

V (Ûθk , Ŷθk) :=

Nsp∑
i=1

Vspi(Ŷ
i
spθk)

+
Nst∑
i=1

Vsti(Ŷ
i
stθk) +

M∑
i=1

Nu−1∑
j=0

Rk

sk
(∆Ûi

θkj
)2, (4.17)

where we are omitting the explicit temporal dependence of Ŷθk and Ûθk to avoid over-

loading the notation. Here, Nsp is the number of controlled variables used for set-point

tracking, Nst is the number of controlled variables to be stabilized (Nsp + Nst = N),

∆Ûi
θkj

= Ûi
θkj+1

− Ûi
θkj

, M is the number of manipulated variables and Ŷspθk and Ŷstθk are

submatrices formed by extracting the entries corresponding to controlled variables used

for set-point tracking and stabilization, respectively. Moreover,

Vspi(Ŷ
i
spθk) =

Ny−1∑
j=1

Qi

li
(êispj)

2 +

Ny∑
j=1

ϵij
li
Λi

+ βi

(
Ŷi

spθkNy

− yi
spss

)2
. (4.18)

92

On the other hand Vsti(Ŷ
i
stθk

), is equal to

Vsti(Ŷ
i
stθk) =

Ny−1∑
j=1

Qi

li
(∆Ŷi

stθkj
)2 +

Ny∑
j=1

ϵij
li
Λi

(4.19)

• Ny and Nu are the prediction and control horizon, respectively.

• êispj := wi
sp(j) − Ŷi

spθkj
is the predicted error for the controlled variable i, with

respect to the respective reference sub-sequence wi
sp.

• yi
spss is the steady-state target for controlled variable i.

• ϵij is a binary on-off variable that takes into account the violation of a constraint

for the controlled variable i at predicted step j.

• Qi, Rk, βi,Λi ≥ 0 are positive weights.

• li and sk are normalization coefficients.

• ∆Ŷi
stθkj

= Ŷi
stθkj+1

− Ŷi
stθkj

are incremental variations to be minimized when

stabilizing.

Expression (4.17) considers incremental MV values ∆Ûθk as usual in most predictive

control applications (Rawlings & Mayne, 2009).

Finally, constraints are included involving both controlled and manipulated variables.

• Controlled Variables Constraints: Outputs must remain bounded by process lim-

its:

yi ≤ Ŷi
θkj

≤ yi ∀j, ∀i = 1, ..., N (4.20)

These constraints will be softened through their inclusion in the objective func-

tion as expressed in (18).

93

• Manipulated Variables Constraints: Actuator limits were established. Also, rate

constraints where considered for the MVs.

ui ≤ Ûi
θkj

≤ ui ∀j, ∀i = 1, ...,M (4.21)∣∣∣∆Ûi
θkj

∣∣∣ ≤ δiu ∀j, ∀i = 1, ...,M (4.22)

Typically, the optimization problem is solved at every time-step, giving a NN whose

outputs minimize the objective function. This NN is selected as the controller for that

time-step and only its first output is applied to the system, following the receding horizon

principle. However, since NE gives a family of well trained NNs for controlling the sys-

tem, their outputs could be used in multiple time-steps. Hence considerably reducing the

computational burden of online optimization.

4.3.5. Handling of hard constraints

In case a particular application demands the addition of a hard constraint during the op-

timization process, there are several methods proposed in the literature for EA (Chehouri et

al., 2016; Ponsich et al., 2008) that could be implemented in our controller. However, the

simple elimination of infeasible individuals, also called the death penalty method, works

well in practice and is used here when necessary.

4.3.6. Replacement

In the original Map Elites algorithm, if an individual ϕr
(i,j) is assigned to the position in

the grid that θk(i,j) occupies, then their respective fitness fϕr
(i,j)

and fθk
(i,j)

are compared and

the individual with the higher fitness takes the position in the grid, while the other is dis-

carded. However, in this case, each individual represents a NN that we want to generalize

as much as possible, to control the system in different operational points. Similar to the

situation when Stochastic Gradient Descent (SGD) is used to train NNs, in NE, because of

its random nature, the updates of the weights can be erratic producing that a network with

good performance at an specific input may present poor results at others, especially when

94

the fitness function is evaluated at each time-step. To tackle this problem, instead of using

the fitness function at a particular point in time, as presented above, we use an exponential

moving average (EMA) (Alexander et al., 2016) with parameter α to take into account pre-

vious operational states and to force the population to have good performance in a broad

operating range. This, in the same spirit of the momentum technique (Sutskever et al.,

2013) used in SGD. Therefore, instead of comparing fϕr
(i,j)

and fθk
(i,j)

when optimizing,

we compare their EMA versions f̄ϕr
(i,j)

and f̄θk
(i,j)

, where f̄ϕr
(i,j)

= αfϕr
(i,j)

+ (1− α)f̄ϕr
(i,j)

.

4.4. Case Studies

4.4.1. Baselines for performance evaluation

4.4.1.1. Deep deterministic policy gradients

DDPG (Lillicrap et al., 2015) is a policy gradients controller consisting in two net-

works, an actor, that given the state of the system calculates an action, and a critic, which

evaluates the actions taken by the actor by estimating the Q-value function. DDPG was

designed for tasks with continuous action spaces and has excelled in control tasks (Qiu et

al., 2019).

4.4.1.2. Evolutionary algorithm

We consider the algorithm presented in (Petroski Such et al., 2017), which is similar

to ours but uses a standard genetic algorithm to optimize the population.

4.4.1.3. Linear MPC

A linear MPC is considered since this type of controller is typically used in real indus-

trial control applications including pH neutralization processes (Hermansson & Syafiie,

2015). Linear MPCs have strong performance when the state of the system is around the

equilibrium point.

95

4.4.1.4. Multivariable PID

As MPC controllers, PID controllers are typically used in industrial applications. In

this case, a multivariable PID controller tuned using Particle Swarm Optimization (Mezura-

Montes & Coello, 2011) is considered as baseline.

4.4.2. Evaluation metrics

To evaluate performance of the different controllers, two commonly used metrics are

used, the integral squared error (ISE) and the total energy (TE), defined as

ISE =

Ny−1∑
j=0

(wi
j − Ŷi

θkj
)2, TE =

M∑
i=1

Nu∑
j=0

(∆Ûi
θkj
)2 (4.23)

4.4.3. Neuroevolutive control of a pH neutralization process

For a first set of experiments, the multivariable pH neutralization process presented in

(Hall & Seborg, 1989) is used. This system consists in two stirred tank reactors with an

acid-base neutralization reaction taking place in each reactor, as shown in Fig. 4.1. The

system has four controlled variables: the level and pH of each stirred tank reactor (inferior

tanks); four manipulated variables: acid and base flowrates; and two flowrates that act as

disturbances. This process is highly nonlinear, with long delays and time varying char-

acteristics due to the inherit nonlinearity associated with pH and the shifts in the titration

curve (Hall & Seborg, 1989).

This system has eight state variables: the four water levels and the two reaction invari-

ants (WaTi
, WbTi

) as defined in (Hall & Seborg, 1989) for each reactor. Then, to obtain the

pH value from the state variables, the following nonlinear mapping is used:

WaTi
= [H+]− Kw

[H+]
−WbTi

Ka1/[H
+] + 2Ka1Ka2/[H

+]2

1 +Ka1/[H+] +Ka1Ka2/[H+]2
, (4.24)

where Kw, Ka1 and Ka2 are the equilibrium constants of the reactions and [H+] is the

hydrogen ion concentration, which is the variable we want to obtain from the equation.

96

T3
T4

T1

T2

Q1

Q1e

Q2

Q3

Q4

Q5

Q6
Q4e

pH1
pH2Q7

Q9

Q8

LT1

LT2T1

T2

T3 T4

Figure 4.1. Multivariable pH neutralization process.

Table 4.1. Parameters of the simulator. Wai, Wbi are the initial value of the
reaction invariants. Ki are the equilibrium constants of the reactions and
Hmaxs , HmaxI

are the maximum height of the superior and inferior tanks
respectively.

Parameters of the simulator
Wa1 = 3× 10−3 M Wa4 = 4× 10−3 M Ka1 = 4.47× 10−7

Wb1 = 0 M Wb4 = 2× 10−6 M Ka2 = 5.62× 10−11

Wa2 = −0.02 M Wa5 = −0.01 M Kw = 1× 10−14

Wb2 = 0.024 M Wb5 = 0.01 M Hmaxs = 20 cm
Wa3 = −0.028 M Wa6 = −0.014 M HmaxI

= 40 cm
Wb3 = 0.028 M Wb6 = 0.014 M

Finally, to obtain the pH , the following equation must be used:

pH = −log10[H+] (4.25)

Simulations were conducted using the parameters presented in Table 4.1, on a 3.2GHz

Intel Core i7-8700 machine with 32 GB of RAM and an NVIDIA RTX 2080-TI graphics

card.

97

Table 4.2. Parameters of the encoder-decoder model.

Parameter Value
N◦ of GRU units 20
N◦ of layers in encoder 2
N◦ of layers in decoder 2
Sequence length 20
Dropout prob 0.3
Learning Rate 1× 10−4

4.4.3.1. Model identification

As stated in Section III, for the proposed Map Elites algorithm an accurate model

is needed. To generate a model, the simulator is excited at different operational points

and an encoder-decoder recurrent NN with attention mechanism and GRU units is trained

with these signals. This type of model was selected due to its good performance for mul-

tiple step-ahead predictions and its proven efficacy in industrial applications (Núñez et

al., 2020). The network was trained to predict the controlled variables taking as inputs a

sliding window of past manipulated variables and past controlled variables, leaving dis-

turbances as unmeasured variables. Adam optimizer was used and MSE as loss function.

Other parameters of the model are presented in Table 4.2 and 15 step-ahead predictions

are presented in Fig. 4.2 with the corresponding RMSE.

Because of the time-varying nature and strong disturbances present in industrial sys-

tems, the weights of the model are updated at each time-step, following the Dyna algo-

rithm. However, due to stability issues when training deep architectures, it is better to

decorrelate the training signals at each update. Therefore, a buffer of past signals is main-

tained, similar to what is done in DRL applications with experience replay.

4.4.3.2. Controller design

The controller considers as agents recurrent encoder-decoder NNs with 2 GRU layers

of 30 units at both encoder and decoder, yielding 18,484 parameters for each agent, which

98

Figure 4.2. 15 steps-ahead predictions of the encoder-decoder with at-
tention mechanism. The RMSE for each signal is h1rmse = 1.16 cm,
h2rmse = 1.5 cm, pH1rmse = 0.088, pH2rmse = 0.034

are compressed using the algorithm proposed in Section III. To evaluate the fitness, pa-

rameters were set as: Ny = 15, Nu = 10. For evolving the population, the following were

used, a mutation parameter ϵ = 0.2, M = 30, C = 0 individuals taken for mutation and

cross-over, and EMA parameter α = 2
tema+1

where tema = 20 is the length of the moving

average window for fitness values. The population evolves through multiple generations

until the termination criterion ∆ = 5 seconds, equal to the sampling time of the system,

is reached. For simplicity, only three features, in this case related to the fitness function,

were selected: set-point tracking error (sp), control effort (∆u), and constrains soft viola-

tion (Λ). Hence, a three-dimensional grid was used with, arbitrary, dimension 8×8×8. It

should be noted that while optimizing, in each iteration the grid is reset, nnew = 100 new

individuals are created and are evaluated with the old ones using the arriving input signals.

4.4.3.3. Results for Set-point tracking and Stabilization

In this case, the control objective is primarily to track the pH set-point in the second

stirred tank and, secondarily, to stabilize the rest of the controlled variables. To make the

99

Figure 4.3. Set-point tracking for pH2 and Stabilization for the rest of the
variables with the Map Elites controller.

simulation more realistic, noise was introduced to measured variables and unmeasured

disturbances. However, for this test, the mean value of the disturbance signals remained

constant.

Fig. 4.3 shows the performance of the Map Elites controller in set-point tracking

and stabilization. It can be seen that the controller is able to drive pH2 to the desired

set-point but with some complications due to the unmeasured disturbances. Table 4.3

shows a comparison with the baselines in terms of TE and ISE. The Map Elites controller

outperforms all the baselines.

4.4.3.4. Results for Disturbance Rejection

For this test, unmeasured disturbances were drastically changed to evaluate the ability

of the controllers to maintain pH2 at its set-point.

Fig. 4.4 shows both pH2 and the disturbance signals when the Map Elites controller is

used. It can be seen that the controller successfully rejects the strong disturbances. Table

4.3 indicates that the Map Elites controller is the best performer in terms of ISE, however

the PID and MPC controllers have lower TE.

100

Figure 4.4. Disturbance Rejection for pH2 with two abrupt changes in the
unmeasured disturbances

Table 4.3. Set-point tracking and Disturbance rejection performance for
the different controllers in terms of TE and ISE

Map Elites EA controller DDPG Linear MPC PID

S.T. ISE 0.7674 2.073 6.25 4.004 4.335
TE 30.447 51.881 102.284 16.343 7.190

D.R. ISE 0.1439 0.819 8.027 0.456 0.222
TE 22.285 14.915 7.878 2.253 5.459

4.4.3.5. Results changing the optimization frequency

One of the benefits of learning-based controllers is that the minimization of the ob-

jective function not only produces manipulated variables for driving the system to the

set-point, but also the controller learns the dynamics of the system. This means that at

some point the controller should be able to produce appropriate manipulated variables

without optimizing at each step, thus, considerably reducing the computational load.

To test the learning ability of the learning-based controllers, after the first 50 steps of

learning, we reduce the frequency of the optimization by different amounts. For the Map

Elites and the EA controller, when no optimizing, the controller with best fitness among

all was selected in each step. For DDPG, the actor produced manipulated variables at

each step without optimizing its weights, and for the linear MPC, prediction and control

101

Table 4.4. Results for set-point tracking in terms of ISE when changing the
frequency of the optimization after training each controller in the first 50
steps.

Optimizing each 20 steps 30 steps 50 steps
Map Elites 1.354 1.358 2.0475
DDPG 3.321 3.475 4.342
EA controller 2.196 4.8119 5.645
Linear MPC 3.497 2.106 4.246

horizons are set equal to the number of steps without optimizing and the entire control

sequence is used.

Table 4.4 shows the results of this test. It can be seen that the Map Elites controller

shows the best performance, followed by the EA controller, both with learning capabilities.

On the other side, the DDPG and the linear MPC show the worst results. Even though the

DDPG controller has learning capabilities, it learns too slow, in comparison to the other

learning-based controllers. This reinforces what was pointed out in (Petroski Such et al.,

2017), that EAs find good solutions much faster than RL techniques.

4.4.3.6. Using the features of the grid

To show how controllers from different cells of the grid produce different responses,

without changing the fitness function, tests were conducted restricting the cell from which

the controller is taken.

Table 4.5 shows the results. Here, the sp-axis was fixed and ∆u-axis was varied all

over the grid in different simulations. It can be seen that as ∆u increases, the TE increases

dramatically and the ISE remains relatively constant, showing that this has a similar effect

as varying the relative weights of the error and energy terms in the fitness function. A

similar approach can be taken with all the features used to construct the grid, which are

not necessarily related with the fitness function.

A visualization of the feature space is shown in Fig. 4.5 from where it can be seen the

different zones of the grid with high performing individuals that present different features.

102

S
p

du

Fi
tn

e
ss

Figure 4.5. Feature space grid. Most of the high performing individuals
(low fitness) are near sp = 1, du = [1 : 5].

Table 4.5. Results in terms of ISE and TE when taking controllers from
specific cells on the grid.

∆u TE ISE
∆u1|sp1 20.561 1.0878
∆u3|sp1 298.032 1.0462
∆u5|sp1 316.938 1.6947
∆u7|sp1 329.756 2.0747

4.4.4. Neuroevolutive control of an industrial paste thickener

For a second set of experiments, a pseudo-real setup involving an industrial paste thick-

ener is used. Paste thickeners are the primary method for producing high density tailings in

mineral processing. The thickener receives the tailings slurry along with a sedimentation-

promoting polymer known as flocculant, which increases the sedimentation rate, and pro-

duces a high density material as underflow. Thickening is a slow process, with response

times in the order of several hours, highly nonlinear, multi-input multi-output (MIMO),

and subject to multiple disturbances(Núñez et al., 2020). The control objective is to drive

the output solids concentration to a desired set-point, typically between 68% and 70%,

while stabilizing the internal states and minimizing flocculant consumption.

103

OPC client OPC server

Controller"Thickener"

Public Internet

Figure 4.6. Experimental setup used for controlling the thickener over the
internet using OPC-UA.

4.4.4.1. Experimental Setup

Inspired by the work in (Núñez et al., 2020), a pseudo-real environment was setup.

In (Núñez et al., 2020) a model was obtained using real operational data, which closely

represents the behavior of the real system. To evaluate the performance of the proposed

controller, in this work we run the model from (Núñez et al., 2020) in a remote machine

that communicates over the public Internet via OPC-UA to a local machine where the

neuroevolutive controller is hosted. The local machine is the same used in the previous

experiments, while for the remote machine we use a 2.7GHz Intel Core i7-7500U with 16

GB of RAM and an NVIDIA GeForce 940MX graphics card. The experimental setup is

shown in Fig. 4.6. It should be noted that the unreliable nature of communications over

the public Internet makes the experiments more meaningful since it mimics the situation

in a real industrial facility.

4.4.4.2. Model identification

The model needed for NE, is generated using encoder-decoder recurrent neural net-

works, following the scheme presented in (Núñez et al., 2020). It should be noted that

the model used for NE is simpler than the model hosted in the remote machine, which

represents the thickener.

104

Figure 4.7. Real disturbances applied to the thickener simulator.

4.4.4.3. Controller design

The controller considers recurrent encoder-decoder NNs as agents and uses exactly the

same parameters as in Section IV.C, except for the termination criterion ∆, which is set

equal to the sampling time of the thickener: 1 minute.

4.4.4.4. Results for Set-point tracking and disturbance rejection

The objective is to regulate the output solids concentration to a desired set-point, while

rejecting the strong disturbances (real data) at the input shown in Fig. 4.7. Results for the

Map Elites controller are presented in Fig. 4.8. It can be seen that the controller is able to

regulate the output to the desired set-point.

Table 4.6 presents the results for all the evaluated controllers. It can be seen that the

Map Elites controller achieves the lowest ISE yet the highest TEu2, which suggests that

the controller uses a strategy based mainly on manipulating the output flow to control

the output solids concentration and the flocculant to reject disturbances. As observed for

human operators (Núñez et al., 2020).

4.4.5. Performance of compression algorithm

The compression algorithm is one of the highlights of the proposed controller. To

demonstrate the advantages an analysis regarding memory savings and decompression

105

Figure 4.8. Set-point tracking and disturbance rejection for output solids
concentration with the Map Elites controller.

Table 4.6. Set-point tracking and Disturbance rejection performance for
the different controllers in terms of TE and ISE. TEu1 denotes flocculant
flow and TEu2 output flow.

Map Elites EA controller DDPG Linear MPC PID

S.T.
ISE 6033 7589 30534 20935 26001
TEu1 88.4 82.7 93.2 102.4 100.8
TEu2 278681 100422 75732 56251 96403

time is conducted. All the experiments were executed in the 3.2GHz Intel Core i7-8700

machine previously introduced.

4.4.5.1. Memory savings

The biggest advantage of the proposed compression algorithm is memory savings since

NNs of arbitrary size can be compressed using only three parameters. Therefore, the

required amount of memory only increases linearly with the population size. Fig. 4.9(a)

shows the memory required to maintain different populations of encoder-decoder NNs,

for different hidden sizes, using and not using the compression algorithm. For the sake of

clarity, only the curve when compressing 300 NNs is shown in the figure.

106

For an experiment similar to the ones shown in the case studies (300 genes on average

and a hidden size of 30) the memory usage when using the compression algorithm is only

2.536×10−3 MB, as opposed to 66.413 MB when storing all the networks parameters in a

traditional manner. This yields a reduction factor of 26188, which increases exponentially

with the hidden size of the networks.

4.4.5.2. Time required for decompression

Compression algorithms present a trade-off between memory savings and decompres-

sion time. The user has to decide, based on the system requirements and the available

hardware, which aspect should be prioritized. Since the proposed compression algorithm

is recursive, decompression time not only depends on the hidden size of the networks and

the population size, but also on the number of mutations k the original gene has suffered.

Fig. 4.9 (b) and (c) show how decompression time varies as a function of the hidden and

population size for different values of k. It can be seen that the decompression time for

30 networks of hidden size 30, is about 0.025 s, which represents about one tenth of the

time required to run all the operations needed (see Algorithm 2) in each generation when

optimizing.

This analysis also gives some insights on some simple modifications that can be done

to the algorithm on the run, depending on the available computational resources at the mo-

ment in order to always meet the time constraints of a particular application. For example,

number of new individuals nnew at each optimization step could be varied, a limit on the

number of mutations k for each individual could be set, hidden size of new individuals

could be limited, or the grid size and grid granularity could be modified on demand.

4.5. Discussion

In this chapter a learning-based data-driven controller with flexible computational

workload and the capacity to easily enforce both soft and hard constraints is presented.

107

(a) (b) (c)

Figure 4.9. (a) Required memory for maintaining a population of NNs as
a function of the hidden size of the individuals. (b) Decompression time as
a function of the hidden size of the individuals. A constant population size
of 30 is considered. (c) Decompression time as a function of the population
size. A constant hidden size of 30 neurons is considered.

The controller is based on the map-elites optimization algorithm and with a novel com-

pression algorithm is able to optimize several neural networks simultaneously in a desk-

top computer. Experiments showed the novel capacities of the map-elites controller and

its superiority to other classical and learning-based approaches. Future work includes

implementing the controller in a real process and analyzing the benefits of incorporating

application-specific features in the map.

108

5. CONCLUSIONS AND FUTURE WORK

5.1. Concluding Remarks

In this thesis, three deep learning methods for iCPSs designed to deal with the inherent

difficulties that real systems impose on data-driven learning techniques were designed,

implemented and evaluated, namely, a contrastive blind denoising autoencoder for data-

cleaning, an adaptative model for glucose prediction with a probabilistic extension, and a

neuroevolutive controller with learning capabilities and flexible computational workload.

As for the data-cleaning method, experimental results show that the CBDAE outper-

forms classical data-driven and model-based denoising techniques typically used in the

industry, as well as other state-of-the art neural networks. The use of the NCE regulariza-

tion enables the CBDAE to capture high-level information, i.e., dynamical information, in

the latent space of the network leaving out irrelevant information, as noise. Additionally,

it was shown that NCE regularization induces a smooth and meaningful structure in the

latent space, which can be eventually used for other downstream tasks as fault detection

or control.

In the case of the adaptative model, a Meta-Learning based approach is proposed for

producing personalized deep-learning models that can potentially be used in an MPC ap-

plication for the artificial pancreas. It was shown that by using this approach, models

require less data, fewer training iterations and have a lower risk of over-fitting when adapt-

ing to a particular patient if compared to other personalization approaches, like transfer-

learning. Results show that the proposed model is superior to other strong baselines in

standard accuracy metrics and task-specific metrics, difference that is accentuated for

longer horizons and higher degrees of distributional shifts. Also, a probabilistic extension

based on recurrent Kalman networks, to estimate the uncertainty produced by meal spec-

ification errors by the patient, is proposed. This probabilistic model demonstrates better

109

performance than other approaches in the task, and it is shown how it can correctly esti-

mate the propagated uncertainty on the glucose signal. Additionally, the generalization ca-

pability of the two proposed models is tested with a novel task-specific out-of-distribution

evaluation procedure.

Finally, a new learning-based neural controller that combines elements of neuroevo-

lution, reinforcement learning and model predictive control is introduced along with an

efficient compression algorithm for neural networks evolved with evolutionary algorithms

that allows to reduce the computational burden of maintaining big populations of deep

neural networks. Multiple tests against strong baselines in two complex multivariable

nonlinear systems show that, in addition to good performance, the proposed controller can

reduce the computational burden of optimizing at each time-step, as classical controllers

do, thanks to its learning capabilities. The use of a population of trained neural networks as

candidate controllers provides an intuitive method to tune the control loop without mod-

ifying the weights of the fitness function and a simple way to adapt the computational

workload of the controller.

Fulfillment of the objectives of this thesis through the design, implementation and

evaluation of the aforementioned methods in different CPSs applications, evidences how

properly designed DL methods are not only superior to classical techniques across differ-

ent CPSs application domains, but also endow CPSs with new capabilities as personalioza-

tion, feature extraction, and learning. Thus, showing how CPSs can be highly benefited

by the incorporation of DL methods at different levels of its architecture, and how these

learning-based techniques can help to unleash the full potential of these complex systems.

It is expected that the results of this research will encourage the development of more

intelligent data-driven methods for iCPSs.

110

5.2. Directions for Future Research

Even though, the results in this thesis are encouraging and show that DL-based meth-

ods are able to improve the performance of different iCPSs across different application

domains, there are still several concrete actions drawn from this work that can be taken to

continue unlocking the full potential of this type of systems, namely,

• Exploring the latent space of the CBDAE in order to use it for different appli-

cations, such as reconstruction, fault detection or even control, where a latent

vector could be used as an informative feature of the state of the system.

• Implementing a probabilistic extension of the CBDAE, in order to account for

the inherent uncertainties of the underlying physical process and the measure-

ment process.

• Enhancing the proposed models with expert knowledge in the form of neural

differential equations or penalty terms in the respective losses. This could help

improving generalization, explainability, and reliance of the models.

• Implementing a probabilistic extension of the neuroevolutive controller in order

to effectively incorporate a probabilistic model in its design so that uncertainty-

aware decisions can be made.

• Performing a stability analysis of the neuroevolutive controller using Lyapunov

functions or, similarly to other approaches, incorporating Lyapunov conditions

in the construction of the controller to synthesize a provably stable controller.

• Integrating the three proposed methods in a unique iCPS and test it on a real

process.

111

REFERENCES

Abooshahab, M. A., Alyaseen, M. M., Bitmead, R. R., & Hovd, M. (2022). Simultaneous

input state estimation, singular filtering and stability. Automatica, 137, 110017.

Ahn, C. W., & Ramakrishna, R. S. (2003, Aug). Elitism-based compact genetic algo-

rithms. IEEE Trans. Evol. Comput., 7(4), 367-385.

Alexander, B., Ivan, T., & Denis, B. (2016, May). Analysis of noisy signal restoration

quality with exponential moving average filter. In 2016 international siberian con-

ference on control and communications (sibcon) (p. 1-4).

Ansari, A., & Bernstein, D. S. (2019). Input estimation for nonminimum-phase systems

with application to acceleration estimation for a maneuvering vehicle. IEEE Trans.

Control Syst. Technol., 27(4), 1596-1607.

Antonio, L., & Coello, C. (2018, Dec). Coevolutionary multiobjective evolutionary algo-

rithms: Survey of the state-of-the-art. IEEE Trans. Evol. Comput., 22(6), 851-865.

Armandpour, M., Kidd, B., Du, Y., & Huang, J. Z. (2021, June). Deep Personalized Glu-

cose Level Forecasting Using Attention-based Recurrent Neural Networks. arXiv

e-prints, arXiv:2106.00884.

Arnold, S. M. R., Mahajan, P., Datta, D., Bunner, I., & Zarkias, K. S. (2020). learn2learn:

A library for meta-learning research. CoRR, abs/2008.12284.

Arnold, S. M. R., & Sha, F. (2021, April). Embedding Adaptation is Still Needed for

Few-Shot Learning. arXiv e-prints, arXiv:2104.07255.

Arsene, C. T., Hankins, R., & Yin, H. (2019). Deep learning models for denoising ecg

signals. In 2019 27th european signal processing conference (eusipco) (p. 1-5).

Badia, A. P., Sprechmann, P., Vitvitskyi, A., Guo, D., Piot, B., Kapturowski, S., . . . Blun-

dell, C. (2020). Never give up: Learning directed exploration strategies. In Inter-

national conference on learning representations.

Batson, J., & Royer, L. (2019). Noise2self: Blind denoising by self-supervision. CoRR,

abs/1901.11365.
112

Becker, P., Pandya, H., Gebhardt, G. H. W., Zhao, C., Taylor, C. J., & Neumann, G.

(2019). Recurrent kalman networks: Factorized inference in high-dimensional deep

feature spaces. CoRR, abs/1905.07357.

Bengio, S., Vinyals, O., Jaitly, N., & Shazeer, N. (2015, Jun). Scheduled Sam-

pling for Sequence Prediction with Recurrent Neural Networks. arXiv e-prints,

arXiv:1506.03099.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep archi-

tectures. CoRR, abs/1206.5533.

Berend, D., Xie, X., Ma, L., Zhou, L., Liu, Y., Xu, C., & Zhao, J. (2020). Cats are not fish:

Deep learning testing calls for out-of-distribution awareness. In 2020 35th ieee/acm

international conference on automated software engineering (ase) (p. 1041-1052).

Bolte, J. (2011). Linear congruential generator. Wolfram Demonstrations

Project.. Retrieved from https://demonstrations.wolfram.com/

LinearCongruentialGenerators/

Brazeau, A. S., Mircescu, H., Desjardins, K., Leroux, C., Strychar, I., Ekoé, J. M., &

Rabasa-Lhoret, R. (2012, November). Carbohydrate counting accuracy and blood

glucose variability in adults with type 1 diabetes. Diabetes Res Clin Pract, 99(1),

19–23.

Brown, S. A., Kovatchev, B. P., Raghinaru, D., Lum, J. W., Buckingham, B. A., Kudva,

Y. C., . . . Beck, R. W. (2019). Six-month randomized, multicenter trial of closed-

loop control in type 1 diabetes. New England Journal of Medicine, 381(18), 1707-

1717.

Carlson, A. L., Sherr, J. L., Shulman, D. I., Garg, S. K., Pop-Busui, R., Bode, B. W.,

. . . Vigersky, R. A. (2021, November). Safety and glycemic outcomes during the

MiniMed™ advanced hybrid Closed-Loop system pivotal trial in adolescents and

adults with type 1 diabetes. Diabetes Technology Therapeutics, 24(3), 178–189.

Chaitanya, C. R. A., Kaplanyan, A. S., Schied, C., Salvi, M., Lefohn, A., Nowrouzezahrai,
113

https://demonstrations.wolfram.com/LinearCongruentialGenerators/
https://demonstrations.wolfram.com/LinearCongruentialGenerators/

D., & Aila, T. (2017, July). Interactive reconstruction of monte carlo image se-

quences using a recurrent denoising autoencoder. ACM Trans. Graph., 36(4), 98:1–

98:12.

Chehouri, A., Younes, R., Perron, J., & Ilinca, A. (2016). A constraint-handling technique

for genetic algorithms using a violation factor. CoRR, abs/1610.00976.

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020, February). A Simple

Framework for Contrastive Learning of Visual Representations. arXiv e-prints,

arXiv:2002.05709.

Cheng, Y., Zhang, Y., Ji, P., Xu, W., Zhou, Z., & Tao, F. (2018, Jul 01). Cyber-physical

integration for moving digital factories forward towards smart manufacturing: a

survey. The International Journal of Advanced Manufacturing Technology, 97(1),

1209-1221.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., &

Bengio, Y. (2014, October). Learning phrase representations using RNN encoder–

decoder for statistical machine translation. In Proceedings of the 2014 conference

on empirical methods in natural language processing (EMNLP) (pp. 1724–1734).

Choi, K., Jang, D., Kang, S., Lee, J., Chung, T., & Kim, H. (2016, March). Hybrid

algorithm combing genetic algorithm with evolution strategy for antenna design.

IEEE Trans. Magn., 52(3), 1-4.

Clarke, W. L., Cox, D., Gonder-Frederick, L. A., Carter, W., & Pohl, S. L. (1987, 09).

Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose.

Diabetes Care, 10(5), 622-628.

Clavera, I., Nagabandi, A., Fearing, R. S., Abbeel, P., Levine, S., & Finn, C. (2018).

Learning to adapt: Meta-learning for model-based control. CoRR, abs/1803.11347.

Colombo, A. W., Karnouskos, S., Kaynak, O., Shi, Y., & Yin, S. (2017). Industrial cyber-

physical systems: A backbone of the fourth industrial revolution. IEEE Industrial

Electronics Magazine, 11(1), 6-16.

Conti, E., Madhavan, V., Petroski Such, F., Lehman, J., Stanley, K. O., & Clune,
114

J. (2017, Dec). Improving Exploration in Evolution Strategies for Deep Rein-

forcement Learning via a Population of Novelty-Seeking Agents. arXiv e-prints,

arXiv:1712.06560.

Creswell, A., & Bharath, A. A. (2019, April). Denoising adversarial autoencoders. IEEE

Trans. Neural Netw. Learn. Syst., 30(4), 968-984.

Daniels, J., Herrero, P., & Georgiou, P. (2022a, January). A deep learning framework

for automatic meal detection and estimation in artificial pancreas systems. Sensors

(Basel), 22(2).

Daniels, J., Herrero, P., & Georgiou, P. (2022b). A multitask learning approach to person-

alized blood glucose prediction. IEEE Journal of Biomedical and Health Informat-

ics, 26(1), 436-445.

Das Sharma, K., Chatterjee, A., Siarry, P., & Rakshit, A. (2021). A novel disturbance

rejection factor based stable direct adaptive fuzzy control strategy for a class of

nonlinear systems. Expert Systems, 38(3), e12651.

De Bois, M., Yacoubi, M. A. E., & Ammi, M. (2022, Jan 01). Glyfe: review and bench-

mark of personalized glucose predictive models in type 1 diabetes. Medical & Bio-

logical Engineering & Computing, 60(1), 1-17.

Donoho, D. L. (1995, May). De-noising by soft-thresholding. IEEE Trans. on Inf. Theory,

41(3), 613-627.

Facchinetti, A., Sparacino, G., Trifoglio, E., & Cobelli, C. (2011, February). A new index

to optimally design and compare continuous glucose monitoring glucose prediction

algorithms. Diabetes Technol Ther, 13(2), 111–119.

Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast adapta-

tion of deep networks. CoRR, abs/1703.03400.

Frusque, G., & Fink, O. (2022, June). Robust Time Series Denoising with Learnable

Wavelet Packet Transform. arXiv e-prints, arXiv:2206.06126.

Gangwani, T., & Peng, J. (2017, Nov). Policy Optimization by Genetic Distillation. arXiv

e-prints, arXiv:1711.01012.

Georga, E. I., Protopappas, V. C., Polyzos, D., & Fotiadis, D. I. (2012). A predictive
115

model of subcutaneous glucose concentration in type 1 diabetes based on random

forests. Annual International Conference of the IEEE Engineering in Medicine and

Biology Society, 2012, 2889–2892.

Gillijns, S., & De Moor, B. (2007). Unbiased minimum-variance input and state estima-

tion for linear discrete-time systems. Automatica, 43(1), 111-116.

Gneiting, T., Balabdaoui, F., & Raftery, A. E. (2007). Probabilistic forecasts, calibra-

tion and sharpness. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 69(2), 243-268.

Gomez, F. J. (2003). Robust non-linear control through neuroevolution (Unpublished

doctoral dissertation). The University of Texas at Austin.

Gondhalekar, R., Dassau, E., & Doyle, F. J. (2018, May). Velocity-weighting & velocity-

penalty MPC of an artificial pancreas: Improved safety & performance. Automatica,

91, 105-117.

Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On calibration of modern neural

networks. In Proceedings of the 34th international conference on machine learning

- volume 70 (p. 1321–1330). JMLR.org.

Guo, G., & Zhang, N. (2019). A survey on deep learning based face recognition. Computer

Vision and Image Understanding, 189, 102805.

Gutmann, M., & Hyvärinen, A. (2010, 13–15 May). Noise-contrastive estimation: A new

estimation principle for unnormalized statistical models. In Y. W. Teh & M. Titter-

ington (Eds.), (Vol. 9, pp. 297–304). Chia Laguna Resort, Sardinia, Italy: JMLR

Workshop and Conference Proceedings.

Haidar, A. (2016). The artificial pancreas: How closed-loop control is revolutionizing

diabetes. IEEE Control Systems Magazine, 36(5), 28-47.

Hall, R. C., & Seborg, D. E. (1989, June). Modelling and self-tuning control of a multi-

variable ph neutralization process part I: Modelling and multiloop control. In 1989

american control conference (p. 1822-1827).

Hermansson, A., & Syafiie, S. (2015). Model predictive control of ph neutralization

processes: A review. Control Engineering Practice, 45, 98-109. Retrieved
116

from https://www.sciencedirect.com/science/article/pii/

S0967066115300162 doi: https://doi.org/10.1016/j.conengprac.2015.09.005

Herrero, P., Bondia, J., Adewuyi, O., Pesl, P., El-Sharkawy, M., Reddy, M., . . . Geor-

giou, P. (2017, Jul). Enhancing automatic closed-loop glucose control in type 1

diabetes with an adaptive meal bolus calculator - in silico evaluation under intra-day

variability. Computer methods and programs in biomedicine, 146, 125-131.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with

neural networks. Science, 313(5786), 504–507.

Hospedales, T. M., Antoniou, A., Micaelli, P., & Storkey, A. J. (2020). Meta-learning in

neural networks: A survey. CoRR, abs/2004.05439.

Hyvarinen, A., & Morioka, H. (2016, May). Unsupervised Feature Extraction by Time-

Contrastive Learning and Nonlinear ICA. arXiv e-prints, arXiv:1605.06336.

Jiang, C., Chen, Y., Chen, S., Bo, Y., Li, W., Tian, W., & Guo, J. (2019). A mixed deep

recurrent neural network for mems gyroscope noise suppressing. Electronics, 8(2).

Jiang, Y., Fan, J., Chai, T., Li, J., & Lewis, F. L. (2018). Data-driven flotation industrial

process operational optimal control based on reinforcement learning. IEEE Trans-

actions on Industrial Informatics, 14(5), 1974-1989.

Johansson, K. H. (2000, May). The quadruple-tank process: a multivariable laboratory

process with an adjustable zero. IEEE Trans. Control Syst. Technol., 8(3), 456-465.

Jose, C., Cisse, M., & Fleuret, F. (2017, May). Kronecker Recurrent Units. arXiv e-prints,

arXiv:1705.10142.

Kahanovitz, L., Sluss, P. M., & Russell, S. J. (2017). Type 1 diabetes–a clinical perspec-

tive. Point of care, 16(1), 37.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R. H., Czechowski, K., . . .

Levine, S. (2019, Mar). Model-Based Reinforcement Learning for Atari. arXiv

e-prints, arXiv:1903.00374.

Kamthe, S., & Deisenroth, M. P. (2017, June). Data-Efficient Reinforcement Learning

with Probabilistic Model Predictive Control. arXiv e-prints, arXiv:1706.06491.
117

https://www.sciencedirect.com/science/article/pii/S0967066115300162
https://www.sciencedirect.com/science/article/pii/S0967066115300162
https://doi.org/https://doi.org/10.1016/j.conengprac.2015.09.005

Khadka, S., & Tumer, K. (2018, May). Evolution-Guided Policy Gradient in Reinforce-

ment Learning. arXiv e-prints, arXiv:1805.07917.

King, A. (2021). What are cyber-physical systems? Retrieved from https://www

.rmit.edu.au/news/c4de/what-are-cyber-physical-systems

Kravets, A. G. (2022). Cyber-physical systems: Intelligent models and algorithms (1st

ed.). Springer Nature.

Krull, A., Buchholz, T.-O., & Jug, F. (2018, November). Noise2Void - Learning Denoising

from Single Noisy Images. arXiv e-prints, arXiv:1811.10980.

Laakom, F., Raitoharju, J., Iosifidis, A., & Gabbouj, M. (2022, February). Reducing

Redundancy in the Bottleneck Representation of the Autoencoders. arXiv e-prints,

arXiv:2202.04629.

Laguna Sanz, A. J., Doyle, F. J., & Dassau, E. (2017, May). An enhanced model predictive

control for the artificial pancreas using a confidence index based on residual analysis

of past predictions. Journal of diabetes science and technology, 11(3), 537-544.

Langarica, S., & Núñez, F. (2021). Neuroevolutive control of industrial processes through

mapping elites. IEEE Trans. Ind. Informat., 17(5), 3703-3713.

Langarica, S., & Núñez, F. (2023). Contrastive blind denoising autoencoder for real

time denoising of industrial iot sensor data. Engineering Applications of Artificial

Intelligence, 120, 105838.

Langarica, S., Pizarro, G., Poblete, P. M., Radrigán, F., Pereda, J., Rodriguez, J., & Núñez,

F. (2020). Denoising and voltage estimation in modular multilevel converters using

deep neural-networks. IEEE Access, 8, 207973-207981.

Langarica, S., Rodriguez, M., Núñez, F., & Doyle III, F. J. (2023). A meta-learning

approach to personalized blood glucose prediction in type 1 diabetes. (Accepted in

the Control Engineering Practice Journal)

Langarica, S., Rüffelmacher, C., & Núñez, F. (2020). An industrial internet application for

real-time fault diagnosis in industrial motors. IEEE Trans. Autom. Sci. Eng., 17(1),

284-295.

Lecoq, J., Oliver, M., Siegle, J. H., Orlova, N., Ledochowitsch, P., & Koch, C. (2021,
118

https://www.rmit.edu.au/news/c4de/what-are-cyber-physical-systems
https://www.rmit.edu.au/news/c4de/what-are-cyber-physical-systems

Nov 01). Removing independent noise in systems neuroscience data using deepin-

terpolation. Nature Methods, 18(11), 1401-1408.

Lee, E. A. (2015a). The past, present and future of cyber-physical systems: A focus on

models. Sensors, 15(3), 4837–4869.

Lee, E. A. (2015b). The past, present and future of cyber-physical systems: A focus on

models. Sensors, 15(3), 4837–4869.

Lehman, J., & Stanley, K. O. (2011). Abandoning objectives: Evolution through the

search for novelty alone. Evolutionary Computation, 19(2), 189-223.

Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., & Aila,

T. (2018). Noise2noise: Learning image restoration without clean data. CoRR,

abs/1803.04189.

Leitão, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., & Colombo, A. W. (2016).

Smart agents in industrial cyber–physical systems. Proceedings of the IEEE, 104(5),

1086-1101.

Li, K., Daniels, J., Liu, C., Herrero, P., & Georgiou, P. (2020). Convolutional recurrent

neural networks for glucose prediction. IEEE Journal of Biomedical and Health

Informatics, 24(2), 603-613.

Lillicrap, P., Hunt, J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., . . . Wierstra, D.

(2015, Sep). Continuous control with deep reinforcement learning. arXiv e-prints,

arXiv:1509.02971.

Liu, X., Zhang, F., Hou, Z., Wang, Z., Mian, L., Zhang, J., & Tang, J. (2020, June). Self-

supervised Learning: Generative or Contrastive. arXiv e-prints, arXiv:2006.08218.

Liu, X., Zhou, Q., Zhao, J., Shen, H., & Xiong, X. (2019). Fault diagnosis of rotat-

ing machinery under noisy environment conditions based on a 1-d convolutional

autoencoder and 1-d convolutional neural network. Sensors, 19(4).

Liu, Y., Chen, Y., Li, M., & Wan, Z. (2020). Mpc for the cyber-physical system with

deception attacks. In 2020 chinese control and decision conference (ccdc) (p. 3847-

3852).

Lucas, J., Tucker, G., Grosse, R., & Norouzi, M. (2019). Understanding posterior collapse

119

in generative latent variable models. Retrieved from https://openreview

.net/forum?id=r1xaVLUYuE

Lundervold, A. S., & Lundervold, A. (2019). An overview of deep learning in medi-

cal imaging focusing on mri. Zeitschrift für Medizinische Physik, 29(2), 102-127.

(Special Issue: Deep Learning in Medical Physics)

Majumdar, A. (2019). Blind denoising autoencoder. IEEE Trans. Neural Netw. Learn.

Syst., 30(1), 312-317.

Man, C. D., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., & Cobelli, C. (2014, Jan).

The UVA/PADOVA type 1 diabetes simulator: New features. Journal of diabetes

science and technology, 8(1), 26-34.

Meade, L. T., & Rushton, W. E. (2016, July). Accuracy of carbohydrate counting in

adults. Clin Diabetes, 34(3), 142–147.

Mezura-Montes, E., & Coello, C. A. (2011). Constraint-handling in nature-inspired nu-

merical optimization: Past, present and future. Swarm and Evolutionary Computa-

tion, 1(4), 173 - 194.

Mnih, A., & Kavukcuoglu, K. (2013). Learning word embeddings efficiently with noise-

contrastive estimation. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,

& K. Q. Weinberger (Eds.), Advances in neural information processing systems 26

(pp. 2265–2273). Curran Associates, Inc.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., . . .

Hassabis, D. (2015). Human-level control through deep reinforcement learning.

Nature, 518, 529–533.

Mohammadi, M., Al-Fuqaha, A., Sorour, S., & Guizani, M. (2018). Deep learning for

iot big data and streaming analytics: A survey. IEEE Communications Surveys

Tutorials, 20(4), 2923-2960.

Mohebbi, A., Johansen, A. R., Hansen, N., Christensen, P. E., Tarp, J. M., Jensen, M. L.,

. . . Mørup, M. (2020, February). Short Term Blood Glucose Prediction based on

Continuous Glucose Monitoring Data. arXiv e-prints, arXiv:2002.02805.

Mouret, J.-B., & Clune, J. (2015, Apr). Illuminating search spaces by mapping elites.
120

https://openreview.net/forum?id=r1xaVLUYuE
https://openreview.net/forum?id=r1xaVLUYuE

arXiv e-prints, arXiv:1504.04909.

Munir, M. T., Udugama, I. A., Boiarkina, I. A., Yu, W., & Young, B. R. (2017). Beyond the

theory — how can academia contribute to the advanced process control of industrial

processes? In 2017 6th international symposium on advanced control of industrial

processes (adconip) (p. 541-546). doi: 10.1109/ADCONIP.2017.7983838

Nezamoddini-Kachouie, N., & Fieguth, P. (2005, May). A gabor based technique for

image denoising. In Canadian conference on electrical and computer engineering,

2005. (p. 980-983).

NSF. (2022). Cyber-physical systems (cps). National Science Foundation.

Retrieved from https://beta.nsf.gov/funding/opportunities/

cyber-physical-systems-cps

Núñez, F., Langarica, S., Dı́az, P., Torres, M., & Salas, J. C. (2020). Neural network-based

model predictive control of a paste thickener over an industrial internet platform.

IEEE Trans. Ind. Informat., 16(4), 2859-2867.

Oks, S. J., Fritzsche, A., & Möslein, K. M. (2017). An application map for industrial

cyber-physical systems. In S. Jeschke, C. Brecher, H. Song, & D. B. Rawat (Eds.),

Industrial internet of things: Cybermanufacturing systems (pp. 21–46). Cham:

Springer International Publishing.

O’Neill, J., Pleydell-Bouverie, B., D.Dupret, & Csicsvari, J. (2010). Play it again: reac-

tivation of waking experience and memory. Trends in neurosciences, 33(5), 220 -

229.

Oviedo, S., Vehı́, J., Calm, R., & Armengol, J. (2016, October). A review of personalized

blood glucose prediction strategies for T1DM patients. Int J Numer Method Biomed

Eng, 33(6).

Petroski Such, F., Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., & Clune, J. (2017,

Dec). Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative

for Training Deep Neural Networks for Reinforcement Learning. arXiv e-prints,

arXiv:1712.06567.

Pinsker, J. E., Dassau, E., Deshpande, S., Raghinaru, D., Buckingham, B. A., Kudva,
121

https://doi.org/10.1109/ADCONIP.2017.7983838
https://beta.nsf.gov/funding/opportunities/cyber-physical-systems-cps
https://beta.nsf.gov/funding/opportunities/cyber-physical-systems-cps

Y. C., . . . Eggerman, T. (2022). Outpatient randomized crossover comparison of

zone model predictive control automated insulin delivery with weekly data driven

adaptation versus sensor-augmented pump: Results from the international diabetes

closed-loop trial 4. Diabetes Technology & Therapeutics (Ahead of print). (PMID:

35549708)

Pirani, M., Dragoni, A. F., & Longhi, S. (2021). Towards sustainable models of com-

putation for artificial intelligence in cyber-physical systems. In Iecon 2021 – 47th

annual conference of the ieee industrial electronics society (p. 1-8).

Ponsich, A., Azzaro-Pantel, C., Domenech, S., & Pibouleau, L. (2008). Constraint han-

dling strategies in genetic algorithms application to optimal batch plant design.

Chemical Engineering and Processing: Process Intensification, 47(3), 420-434.

(10th French Congress on Chemical Engineering)

Porter, J. W. (2020). Sleep, exercise, and insulin sensitivity (Thesis). University of

Missouri–Columbia.

Precup, R.-E., Roman, R.-C., & Safaei, A. (2022). Data-driven model-free controllers.

CRC Press.

Puigdomènech Badia, A., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo,

D., & Blundell, C. (2020, March). Agent57: Outperforming the Atari Human

Benchmark. arXiv e-prints, arXiv:2003.13350.

Pérez-Gandı́a, C., Facchinetti, A., Sparacino, G., Cobelli, C., Gómez, E., Rigla, M., . . .

Hernando, M. (2010). Artificial neural network algorithm for online glucose pre-

diction from continuous glucose monitoring. Diabetes Technology & Therapeutics,

12(1), 81-88.

Qin, S., & Badgwell, T. A. (2003). A survey of industrial model predictive control

technology. Control Eng. Pract., 11(7), 733 - 764.

Qiu, C., Hu, Y., Chen, Y., & Zeng, B. (2019, Oct). Deep deterministic policy gradient

(DDPG)-based energy harvesting wireless communications. IEEE Internet Things

J., 6(5), 8577-8588.

Raghu, A., Raghu, M., Bengio, S., & Vinyals, O. (2019). Rapid learning or feature reuse?
122

towards understanding the effectiveness of MAML. CoRR, abs/1909.09157.

Rawlings, J. B., & Mayne, D. Q. (2009). Model predictive control: Theory and design.

Nob Hill Pub. Madison, Wisconsin.

Reymann, M. P., Dorschky, E., Groh, B. H., Martindale, C., Blank, P., & Eskofier, B. M.

(2016, August). Blood glucose level prediction based on support vector regression

using mobile platforms. Annual International Conference of the IEEE Engineering

in Medicine and Biology Society, 2016, 2990–2993.

Robinson, S., Newson, R. S., Liao, B., Kennedy-Martin, T., & Battelino, T. (2021, Oc-

tober). Missed and mistimed insulin doses in people with diabetes: A systematic

literature review. Diabetes Technol Ther, 23(12), 844–856.

Salimans, T., Ho, J., Chen, X., Sidor, S., & Sutskever, I. (2017, Mar). Evolution

Strategies as a Scalable Alternative to Reinforcement Learning. arXiv e-prints,

arXiv:1703.03864.

Schwenzer, M., Ay, M., Bergs, T., & Abel, D. (2021, Nov 01). Review on model pre-

dictive control: an engineering perspective. The International Journal of Advanced

Manufacturing Technology, 117(5), 1327-1349.

Seo, W., Park, S.-W., Kim, N., Jin, S.-M., & Park, S.-M. (2021). A personalized blood glu-

cose level prediction model with a fine-tuning strategy: A proof-of-concept study.

Computer Methods and Programs in Biomedicine, 211, 106424.

Serpanos, D. (2018). The cyber-physical systems revolution. Computer, 51(3), 70-73.

Setlur, A., Li, O., & Smith, V. (2021). Two sides of meta-learning evaluation: In

vs. out of distribution. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, &

J. W. Vaughan (Eds.), Advances in neural information processing systems (Vol. 34,

pp. 3770–3783). Curran Associates, Inc.

Shaj, V., Becker, P., Buchler, D., Pandya, H., van Duijkeren, N., Taylor, C. J., . . . Neu-

mann, G. (2020). Action-conditional recurrent kalman networks for forward and

inverse dynamics learning. CoRR, abs/2010.10201.

Shaj, V., Büchler, D., Sonker, R., Becker, P., & Neumann, G. (2022). Hidden parameter

recurrent state space models for changing dynamics scenarios. In International

123

conference on learning representations.

Shao, L., Yan, R., Li, X., & Liu, Y. (2014, July). From heuristic optimization to dictionary

learning: A review and comprehensive comparison of image denoising algorithms.

IEEE Trans. Cybern., 44(7), 1001-1013.

Shi, D., Dassau, E., & Doyle, F. J. (2019). Adaptive zone model predictive control

of artificial pancreas based on glucose- and velocity-dependent control penalties.

IEEE Transactions on Biomedical Engineering, 66(4), 1045-1054.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., . . .

Hassabis, D. (2016, Jan 27). Mastering the game of Go with deep neural networks

and tree search. Nature, 529, 484-489.

Singh, S. P., Kumar, A., Darbari, H., Singh, L., Rastogi, A., & Jain, S. (2017). Machine

translation using deep learning: An overview. In 2017 international conference on

computer, communications and electronics (comptelix) (p. 162-167).

Sohn, K. (2016). Improved deep metric learning with multi-class n-pair loss objective. In

D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances

in neural information processing systems 29 (pp. 1857–1865). Curran Associates,

Inc.

Spears, W. M., De Jong, K. A., Bäck, T., Fogel, D. B., & de Garis, H. (1993). An

overview of evolutionary computation. In P. B. Brazdil (Ed.), Machine learning:

Ecml-93 (pp. 442–459). Berlin, Heidelberg: Springer Berlin Heidelberg.

Sun, C., Shrivastava, A., Singh, S., & Gupta, A. (2017, July). Revisiting Unreasonable

Effectiveness of Data in Deep Learning Era. arXiv e-prints, arXiv:1707.02968.

Sun, Q., Jankovic, M. V., Bally, L., & Mougiakakou, S. G. (2018). Predicting

blood glucose with an LSTM and Bi-LSTM based deep neural network. CoRR,

abs/1809.03817.

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013, 17–19 Jun). On the impor-

tance of initialization and momentum in deep learning. In Proceedings of the 30th

international conference on machine learning (Vol. 28, pp. 1139–1147). PMLR.

Sutton, R. S. (1991, July). Dyna, an integrated architecture for learning, planning, and
124

reacting. SIGART Bull., 2(4), 160–163.

Sutton, R. S., & Barto, A. G. (2014). Reinforcement learning: An introduction. The MIT

Press.

Teney, D., Abbasnejad, E., Kafle, K., Shrestha, R., Kanan, C., & van den Hengel, A.

(2020). On the value of out-of-distribution testing: An example of goodhart's law.

In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, & H. Lin (Eds.), Advances in

neural information processing systems (Vol. 33, pp. 407–417). Curran Associates,

Inc.

Thanh, D. N. H., Thanh, L. T., Hien, N. N., & Prasath, S. (2020). Adaptive total variation

l1 regularization for salt and pepper image denoising. Optik, 208, 163677.

Toffanin, C., Zisser, H., Doyle, F. J., & Dassau, E. (2013, Jul 01). Dynamic insulin on

board: incorporation of circadian insulin sensitivity variation. Journal of diabetes

science and technology, 7(4), 928-940.

Tsitsiklis, J., & Van Roy, B. (1997, May). An analysis of temporal-difference learning

with function approximation. IEEE Trans. Autom. Control, 42(5), 674-690.

Turksoy, K., Bayrak, E. S., Quinn, L., Littlejohn, E., & Cinar, A. (2013). Adaptive

multivariable closed-loop control of blood glucose concentration in patients with

type 1 diabetes. In 2013 american control conference (p. 2905-2910).

van den Oord, A., Li, Y., & Vinyals, O. (2018, July). Representation Learning with

Contrastive Predictive Coding. arXiv e-prints, arXiv:1807.03748.

van Hasselt, H., Guez, A., & Silver, D. (2015, Sep). Deep Reinforcement Learning with

Double Q-learning. arXiv e-prints, arXiv:1509.06461.

van Heusden, K., Dassau, E., Zisser, H. C., Seborg, D. E., & Doyle III, F. J. (2012).

Control-relevant models for glucose control using a priori patient characteristics.

IEEE Transactions on Biomedical Engineering, 59(7), 1839-1849.

Vergari, E., Knudsen, J. G., Ramracheya, R., Salehi, A., Zhang, Q., Adam, J., . . . others

(2019). Insulin inhibits glucagon release by sglt2-induced stimulation of somato-

statin secretion. Nature communications, 10(1), 1-11.
125

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and com-

posing robust features with denoising autoencoders. In Proceedings of the 25th

international conference on machine learning (pp. 1096–1103).

Volpp, M., Flürenbrock, F., Grossberger, L., Daniel, C., & Neumann, G. (2021). Bayesian

context aggregation for neural processes. In International conference on learning

representations. Retrieved from https://openreview.net/forum?id=

ufZN2-aehFa

Wang, X., & Gupta, A. (2015). Unsupervised learning of visual representations using

videos. In 2015 ieee international conference on computer vision (iccv) (p. 2794-

2802).

Woldaregay, A. Z., Årsand, E., Walderhaug, S., Albers, D., Mamykina, L., Botsis, T., &

Hartvigsen, G. (2019, July). Data-driven modeling and prediction of blood glucose

dynamics: Machine learning applications in type 1 diabetes. Artif Intell Med, 98,

109–134.

Wu, M., Zhuang, C., Mosse, M., Yamins, D., & Goodman, N. (2020). On mutual infor-

mation in contrastive learning for visual representations.

Xie, J., & Wang, Q. (2020). Benchmarking machine learning algorithms on blood glucose

prediction for type I diabetes in comparison with classical time-series models. IEEE

Transactions on Biomedical Engineering, 67(11), 3101-3124.

Xu, M., Peng, J., Gupta, B. B., Kang, J., Xiong, Z., Li, Z., & El-Latif, A. A. A. (2021).

Multi-agent federated reinforcement learning for secure incentive mechanism in in-

telligent cyber-physical systems. IEEE Internet of Things Journal, 1-1.

Xu, S., Lu, B., Baldea, M., Edgar, T. F., Wojsznis, W., Blevins, T., & Nixon, M. (2015).

Data cleaning in the process industries. Reviews in Chemical Engineering, 31(5),

453 - 490.

Yao, S., Zhao, Y., Zhang, A., Hu, S., Shao, H., Zhang, C., . . . Abdelzaher, T. (2018). Deep

learning for the internet of things. Computer, 51(5), 32-41.
126

https://openreview.net/forum?id=ufZN2-aehFa
https://openreview.net/forum?id=ufZN2-aehFa

Yin, S., Ding, S. X., Xie, X., & Luo, H. (2014). A review on basic data-driven ap-

proaches for industrial process monitoring. IEEE Transactions on Industrial Elec-

tronics, 61(11), 6418-6428.

Yu, W., & Zhao, C. (2020). Robust monitoring and fault isolation of nonlinear industrial

processes using denoising autoencoder and elastic net. IEEE Trans. Control Syst.

Technol., 28(3), 1083-1091.

Zamfirache, I. A., Precup, R.-E., Roman, R.-C., & Petriu, E. M. (2022a). Policy iter-

ation reinforcement learning-based control using a grey wolf optimizer algorithm.

Information Sciences, 585, 162-175.

Zamfirache, I. A., Precup, R.-E., Roman, R.-C., & Petriu, E. M. (2022b). Reinforcement

learning-based control using q-learning and gravitational search algorithm with ex-

perimental validation on a nonlinear servo system. Information Sciences, 583, 99-

120.

Zhu, T., Li, K., Herrero, P., & Georgiou, P. (2021). Deep learning for diabetes: A system-

atic review. IEEE Journal of Biomedical and Health Informatics, 25(7), 2744-2757.

127

