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Landscape components can affect all the important biological processes of invertebrate populations, including their harvest quality, yet they are
rarely considered in fisheries management frameworks. Here, we explore landscape, economic and ecologic variables to demonstrate that landscape
metrics can be a valuable component in the management of sessile invertebrate fisheries. We developed a map-derived model that links landscape
variables with the quality of a fishing resource, using five topographical variables—coastal convexity, orientation, complexity, exposure, and dis-
tance from the coast—all but the latter were tested at 23 different spatial scales. The model was ground-truthed using the case study of the goose-
neck barnacle fishery in Asturias (N. Spain). Distance from the coast, coastal convexity on a scale of 25 km and exposure on a scale of 1 km appear to
be driving the quality of the resource. Our model can predict high-quality gooseneck barnacle fishing zones with 72% accuracy. Moreover, we used a
10-year time-series of gooseneck barnacle landings and sales to analyse the impact of quality on the fishery. Fishers have a bias towards harvesting
high-quality gooseneck barnacles, which are sold at higher market values. Thus, quality directly affects landings and sales. Our results highlight
the interest of incorporating landscape metrics in fisheries management to generate and support spatially explicit conservation and exploitation
policies.
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Introduction
Marine and coastal systems are profoundly impacted by anthropo-
genic activities (Halpern et al., 2008), particularly by overfishing
(Jackson et al., 2001). This overexploitation is reducing large long-
lived fish while simultaneously increasing invertebrate populations
(Pauly et al., 2002). This trend has also been accompanied by
increased harvest of invertebrates (FAO, 2012) and the development
of new marine invertebrate fisheries (Perry et al., 1999). Nevertheless,
invertebrate fisheries have not received the attention they deserve.
Stock assessments and management models for invertebrates con-
tinue to lag behind those developed for finfish (Orensanz and
Jamieson, 1998). Paradoxically, invertebrate demand and market
value continue to increase, jeopardizing their sustainability (Castilla

and Defeo, 2001). The economic value of invertebrates is generally
dependent on morphological traits that determine their market
desirability [e.g. mussels (Kunz, 1893; Dolmer and Frandsen, 2002),
sea urchins (McBride et al., 2004) and sea cucumbers (Conand and
Byrne, 1993)]. These traits can be referred to as quality of the resource.

Fisheries managers have recognized the importance of habitat on
yield and quality of the resource (Taylor et al., 2002). This is particu-
larly important for invertebrate sedentary species where all the main
processes of the fisheries tend to have a spatial component (Caddy,
1989) that influences their distribution, abundance (Underwood
and Chapman, 1996), and quality (Caddy and Defeo, 2003).
Furthermore, fishing strategy will also be influenced by landscape
features, since areas with higher densities (Caddy, 1989) or larger
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size classes (Caddy, 1972) will receive more fishing pressure.
Therefore, the inclusion of landscape ecology in invertebrate fisher-
ies may represent a step towards integrated ocean management
(Kappel et al., 2012).

Nonetheless, the incorporation of landscape metrics in the
aquatic and coastal realm is not up to par with terrestrial systems
(Pittman et al., 2011), particularly in directly linking habitat prefer-
ences and landscape effects to fisheries management. The effect of
habitat on species abundance, diversity and productivity has been
incorporated in fisheries research through typifying habitats, iden-
tifying areas of primary productivity, determining oceanographic
structures (such as currents, upwelling, and eddies) and identifying
the effects of human activity (Taylor et al., 2002). However, due to
technological difficulties even typifying these landscapes continues
to be a costly endeavour (Zajac, 2008). Thus, it is imperative for
researchers to develop simple, low cost tools that can facilitate the
incorporation of landscape metrics in fisheries management.

The gooseneck barnacle (Pollicipes pollicipes) fishery in Asturias
(N. Spain) provides an ideal case study to examine landscape effects
on resource quality and its influence on the fishery. The gooseneck
barnacle is a cirripede that inhabits intertidal cliffs with high wave ex-
posure (Barnes, 1996). This fishery has been successfully co-managed
for the past 20 years (Rivera et al., 2015). Economic returns for high-
quality individuals of the species in the area have reached values of
over 250 euros/kg (Rivera et al., 2014). Similar high market values
have been known to drive luxury species close to extinction (Purcell
et al., 2014). Therefore, it is important to assess the effects of
quality on the gooseneck barnacle exploitation rate and the drivers
for these differences. Population analyses have found no significant
genetic differences among low- and high-quality phenotypes
(Campo, 2006; Quinteiro et al., 2006). Thus, the source of this
variability continues to puzzle scientists. Previous studies in the
Cantabrian Sea have observed an effect of wave exposure on goose-
neck barnacle biomass (Borja et al., 2006). We hypothesize that land-
scape metrics can help pinpoint the causes of variability in gooseneck
barnacle phenotypes.

We used a simple, map-based, low cost method to measure five
landscape properties (coastal orientation, convexity, complexity,
distance, and exposure) at 23 different spatial scales and assessed
their relationship with the quality of gooseneck barnacles. These
data were used to formulate and validate a predictive model of
gooseneck barnacle quality. We then examined a 10-year time-series
of gooseneck barnacles landings and sales in Asturias to appraise the
socio-economic value of quality differences on the fishery. Here, we
test the efficacy of landscape metrics in predicting gooseneck bar-
nacle quality and consider the management implications of the
results as a way to highlight the importance of landscape metrics
in the management of invertebrate fisheries.

Material and methods
Study area
The gooseneck barnacle co-management system in Asturias (N.
Spain) is located between the Eo estuary (7.035831 W, 43.529291
N) and Cape Peñas (5.770935 W, 43.689880 N), covering a coastline
of roughly 200 km along the Cantabrian Sea (Figure 1). The fishery
has been co-managed for the past 20 years by the fishers’ associations
and the local government (Rivera et al., 2014). The system is divided
into seven management regions known as plans, which are subdi-
vided into 256 fishing zones categorized according to the quality
of barnacles they render (Figure 1).

We used a regional, 1:5000 coastline cartography (Cartografı́a
base del Principado de Asturias) to estimate the topographic vari-
ables. This cartography was reprojected from the European
Datum 1950 (ED50) to the World Geodetic System (WGS 84)
using the rgdal package (Keitt et al., 2011) in R computing software
(R Development Core Team, 2012).

Gooseneck barnacle quality
A characterization of gooseneck barnacle quality and size was given
by Molares et al. (1987). Barnacles with an elongated peduncle are
categorized as a low-quality resource and those with a short and
wide peduncle are considered of high quality. Since the inception

Figure 1. Map of the Asturian gooseneck barnacle co-management system. High-, intermediate-, and low-quality fishing zones are represented by
black, light grey, and white circles, respectively. The management regions (plans) are represented by squares.
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of the gooseneck barnacle fishery in Asturias, the quality for each
fishing zone was classified in three ranks (high, intermediate, or
low). This classification was determined through fishers’ knowledge
based on the economic value of the barnacles yielded by each fishing
area. Scientists systematized fishers’ knowledge of fishing site
quality, using a GIS system and information from experts in the
area (i.e. fishers and surveillance officers). This was incorporated
into the Principado de Asturias Coastal and Marine Geographic
Information System (Alcázar-Álvarez et al., 2008). We corroborated
these differences by sampling 990 individuals of commercial size
[13.7 mm rostro-carina length (Cruz et al., 2010)] in high-,
intermediate-, and low-quality zones. We used a Kruskal–Wallis
one-way analysis of variance by ranks test to detect significant differ-
ences in rostro-carina length among qualities. For post hoc compar-
isons, a Dunn’s test was applied.

Modelling fishing zone quality
Landscape metrics
Our hypothesis, based on fishers’ knowledge, was that wave-beaten
areas would render higher quality barnacles. Therefore, we chose to
analyse five quantitative, map-derived, coastal topography metrics
that affect an areas’ exposure to wave action, these are: distance
from the coast, orientation, convexity, exposure, and complexity
(using the fractal dimension of the coastline as a proxy). These
metrics were analysed for the 256 fishing areas. Choosing a fixed
spatial dimension to analyse landscape variables can be arbitrary,
due to their heterogeneous nature. Therefore, we considered these
variables at multiple scales (Wu and Qi, 2000). Thus, orientation,
convexity, exposure, and complexity were assessed at 23 different
spatial scales: 0.2, 0.3, 0.5, 0.6, 0.75, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12,
15, 17.5, 20, 22.5, 25, 27.5, and 30 km based on the extent of our
study area. The scale with the best fit was incorporated into the
full model selection. The first step was to find the centroid (centre
of mass) for each area. We calculated the distance from the centroid
to its nearest neighbour on the coastline using a kd-tree (Arya et al.,
1998) and included it as a continuous variable in our analyses. If the
area was an island, the nearest point on the mainland was selected
(using the same nearest neighbour methodology) to calculate the
other landscape metrics. A circle was generated around the centroid,
with a diameter corresponding to the scale of choice. Next, we
selected the two intersection points between the circumference
and the coastline (A and B) and a straight line was drawn between
them (line A–B; see Supplementary Figure S1). The orientation of
the area is determined by the angle between the perpendicular to
line A–B and the E–W line; angles of 1808 and 08 indicate a
purely westward or eastward orientation, respectively. The convex-
ity of an area is estimated by the difference between the total surface
of land above the A–B line minus the total surface of water between
the A–B line and the coastline; convex coastlines are indicated by
positive values and concave coastlines by negative values.
Exposure was estimated as the total area of water surrounding the
centroid for each fishing area (considering islands or coastline).

We used fractal dimension as a proxy for coastal complexity. The
fractal dimension is a ratio that captures the change in perimeter
length and detail in a pattern of an object as a function of the scale
of measurement (Mandelbrot, 1967), hence the larger the fractal di-
mension the greater the complexity of the coast. We determined the
fractal dimension of each fragment of coastline through the box-
counting methodology employed in Wahl et al. (1994). First, a
2000 × 2000 matrix was generated from a raster layer of the

fragment of coastline at each spatial scale. Second, a regular grid
made up of boxes of size R was superimposed on the matrix. We
used a matrix instead of a two-dimensional image to ensure repro-
ducibility of our analyses. The number of boxes that include the
coastline (N) was counted. The procedure is repeated the
maximum number of times admissible for our chosen matrix size
(20) with boxes of decreasing size. A linear regression is carried
out with the results of our box-counting repetitions using the
formula:

log Ni = a+ log
1

Ri
b+ 1i, (1)

where N is the number of boxes, R is box size,b is the fractal dimen-
sion of our coastline fragment, a is the intercept, and e is the error.

All sampling metrics were continuous variables. These were pro-
grammed using R 2.15.3 computing software (R Development Core
Team, 2012).

Statistical analyses
Fishing zone quality was analysed using a proportional-odds logistic
multiple regression model with R packages rms (Harrell, 2013) and
MASS (Venables and Ripley, 2002). The proportional odds model
can be written as

log
Pi

j

1 − Pi
j

( )
= aj + bXi, (2)

where Pi
j

is the probability of a fishing site i being in rank category j
or lower, a is the intercept which determines the cut-off point
between rank categories of j and b is the slope for explanatory
variables X, of fishing zone quality, for each fishing site i
(Xi = Xi

1 + Xi
2 + · · · + Xi

n). Thus, intercepts depend on j but
slopes are all equal. The proportional-odds assumption was tested
by a likelihood ratio test of equal slopes with the package ordinal
(Christensen, 2012). Multicollinearity between variables was also
assessed.

To avoid overfitting, only the most representative scale for each
variable was selected. We carried out regression models for each
scale, using a single explanatory variable, and a null model that
only includes an intercept, which reflects no dependence of goose-
neck barnacle quality on the explanatory variable. We explored
the fit of the regression models using the estimated generalized R2

(Nagelkerke, 1991). A Bonferroni correction was applied to avoid
type I error. Model selection was performed using Akaike information
criterion (AIC) and Akaike weights (AICWt; Burnham and Anderson,
2002). The most suitable scale was then incorporated into a model se-
lection using all explanatory variables. Once the optimal model using
all explanatory variables was selected, the spatial autocorrelation of the
residuals was analysed using Moran’s I coefficient for equal distance
classes. The fitted category probabilities (Fox, 2009) of each term in
the optimal model were calculated. All graphical displays were
plotted using the ggplot2 package (Wickham, 2009).

Model validation
The apparent performance of our optimal model was assessed by
fitting a prediction model with the rms package (Harrell, 2013)
using the entire dataset. We looked at R2 and Somers’ Dxy rank cor-
relation coefficient (Somers, 1962) as summary measures of the
model’s performance.

1572 A. Rivera et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/73/6/1570/2459092 by guest on 24 D
ecem

ber 2020

http://icesjms.oxfordjournals.org/lookup/suppl/doi:10.1093/icesjms/fsw029/-/DC1


To address the predictive accuracy of the model, we employed
Ten-fold cross-validation. Ten-fold cross validation (Geisser,
1975) was carried out by splitting our dataset into 10 random
groups (folds) that preserved the overall class distribution. In each
fold, 90% of the data were used to generate a predictive model
and the other 10% were used to evaluate the model estimates.
Confusion matrices, a matrix that cross-tabulates information on
the actual values against the predicted classifications (Kohavi and
Provost, 1998), were generated for each fold using the caret
package (Kuhn et al., 2012). A total confusion matrix was calculated
by adding the values in the individual matrices. The total confusion
matrix identified the true positive rate (sensitivity), true negative
rate (specificity), balanced accuracy (average between sensitivity
and specificity for each class), and total accuracy (proportion of
correct predictions).

Effects of barnacle quality on the fishery
To understand the effect of quality on landings, yearly landings data
for 2001–2011 were analysed for 222 fishing zones in the Asturias
gooseneck barnacle co-management system. Landings were sepa-
rated according to their quality and were standardized based on
their coast length. A one-way analysis of variance (ANOVA) was
used to test for differences between gooseneck barnacle qualities
in landings per kilometre.

Daily gooseneck barnacle sales data for the 17 main fish markets
in Asturias were collected from 2001 to 2011. The mean yearly price
per kilogram range and its standard error was calculated, consider-
ing daily minima and maxima. The spread of daily values in price per
kilogram is attributed to the quality of the resource.

Results
Corroboration of gooseneck barnacle’s fishing site quality
classification
We tested the quality classifications established using fishers’ knowl-
edge by analysing the differences in rostro-carina length among
qualities. Significant differences related to quality were found
(Kruskal–Wallis; x2: 14.46, d.f.: 2, p , 0.0001). According to post
hoc Dunn’s tests, these differences were more pronounced between
the high and low classes and intermediate and low classes (both
p , 0.001) than between high and intermediate (p: 0.07). Therefore,
the classification into three different qualities appears reliable.

Modelling fishing zone quality
We analysed the individual effect of five landscape variables (dis-
tance to the coast, exposure, convexity, complexity, and orientation)
on gooseneck barnacle quality. The scale on which four of these

variables (exposure, convexity, complexity, and orientation) could
affect quality was unknown. Thus, we tested their effect at 23 differ-
ent scales. AIC model selection showed that optimal scales were
1 km for exposure (AICWt: 0.38; R2: 0.21; p , 0.0001), 25 km for
convexity (AICWt: 0.71; R2: 0.05; p: 0.02), and 30 km for complexity
(AICWt: 0.78; R2: 0.06; p: 0.004). For more information on the co-
efficient of determination for the different scales, see Supplementary
Figure S2. There was no effect of orientation over quality since the
null model was selected as the best model. We used these three vari-
ables at their corresponding scales and distance from the coast for
our global model selection.

For the global model selection, 21 models were considered
(Supplementary Table S1). The model with the highest explanatory
power takes into account distance, convexity, and exposure without
any interactions (AICWt: 0.31; R2: 0.39 and p , 0.0001). No signifi-
cant spatial autocorrelation was detected. Exposure at a 1 km scale
was very variable and no clear spatial patterns can be observed
(Figure 2). Convex zones at a 25 km scale are generally found
towards the eastern zone of our study area in Cape Peñas. On the
contrary, concave zones were observed in the western and central
areas of the coast (Figure 2).

According to our model, areas that are convex, highly exposed
and further from the coast will have a greater probability of being in
the higher quality rank and concave, protected areas on the coastline
are more likely to hold gooseneck barnacle of a lower quality rank
(Figure 3; Table 1). The probability of observing intermediate zones
decreases in convex, exposed areas separated from the coast butthis de-
crease is not as pronounced as in lower quality areas. Additionally,
intermediate areas exhibit concave coastlines (Figure 3A).

The model was supported and statistically significant (p , 0.0001)
according to cross-validation analysis. The confusion matrix of pre-
dicted vs. actual classes is presented in Supplementary Figure S3.
The overall accuracy was 0.56 with 95% confidence intervals of 0.5
and 0.62. Sensitivity estimates were higher for the intermediate and
high-quality ranks and specificity was higher for the low and high
ranks (Table 2). The model displays predictive capacity for all ranks
(balanced accuracy .0.6), in particular the high-quality rank
(balanced accuracy: 0.72; Table 2).

Effect of barnacle quality on the fishery
Seasonal landings per quality were standardized by kilometre to
homogenize the productivity of all areas. Standardized landings
were analysed for 222 fishing zones in the Asturian gooseneck bar-
nacle co-management system. Significant differences where found
among the three qualities (one-way ANOVA F2: 103.5, p , 0.001;

Figure 2. Map of the Asturian coast showing values for exposure at a 1 km scale (upper panel) and convexity at a 25 km scale (lower panel).
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Figure 4A). Most landings are obtained from high-quality fishing
zones, followed by intermediate and low-quality zones, indicating
fishers concentrate their effort in high-quality areas. Furthermore,
daily landings data for all fish markets showed an ample price per
kilogram range, with a daily difference of 147.85E per kilogram in
2001 up to 265.2E in 2007 (Figure 4B). Therefore, quality of the re-
source exerts an effect upon market value and effort distribution.

Discussion
Our results show how gooseneck barnacle quality can be modelled
using five landscape metrics, which were assessed at 23 different
spatial scales. Our model indicates that higher gooseneck barnacle
qualities will be present in areas that are highly exposed at a small,
1 km scale, convex at a 25 km scale, and further away from the
coast. Additionally, we analysed a 10-year time-series of gooseneck
barnacle landings and sales in Asturias. Both datasets appear affected
by the quality of the individual barnacles, indicating the importance
of this attribute in the effort placement and revenue of the fishery.

These findings may bear important implications for the sustainable
management of this and other invertebrate fisheries, such as the
need for spatially explicit ban and effort distribution.

Phenotypic plasticity and scale
Our model reflects the influence of landscape variables on goose-
neck barnacle quality. There is a 75% probability of encountering
high-quality barnacles in exposed and convex areas (Figure 3B).
Furthermore, in our study area, fishing zones located at a distance
of ca. 700 m or more from the coast will coincide with high-quality
gooseneck barnacles. All variables are likely reflecting the effect of
wave action on gooseneck barnacle morphology. To our knowledge,
this is the first time the effect of topography is directly modelled for
gooseneck barnacle quality. Nevertheless, Parada et al. (2012)
observed a relationship between gooseneck barnacle typologies
and type of coastline. It is not uncommon to relate wave exposure
to a species’ biomass or distribution (Borja et al., 2006; Burrows
et al., 2008). Many of these models use complex simulation tools
to determine marine climate parameters such as wave propagation,
fetch, and wind intensity. Wind direction and intensity were
not accounted for in our study, which could improve our model’s
accuracy. Nonetheless, considering the 1 km scale on which exposure
affects anareas’ quality it isunlikely that the effect of thewindwillhave
a profound influence on the outcome of the model. Furthermore,
wind characteristics are more complex to model and data are not
always available. Instead, the use of simple map-derived variables,
such as the ones used here, will facilitate the assimilation of landscape
metrics inpublicmanagementagencies for thisand other invertebrate
fisheries.

The influence of wave action on gooseneck barnacle quality is not
surprising considering their quality is determined by the amount of
mass in their peduncle (Molares et al., 1987). This would imply that
barnacles require short and wide peduncles to withstand wave
action. A similar response is observed in alpine plants, which grow
shorter when affected by persistent winds (Billings and Mooney,
1968). Furthermore, barnacles develop shorter cirri in wave-beaten
areas possibly as a means to prevent damage (Marchinko and
Palmer, 2003). According to fishers’ knowledge in the Canadian

Figure 3. Model estimated fitted category probabilities for convexity at a 25 km scale (a), exposure at 1 km scale (b), and distance to coast (c). Black,
grey, and white lines represent high, intermediate, and low classes of barnacle quality, respectively.

Table 1. Predictor variables in the best model with their coefficient
and significance.

Predictor Coefficient P(x)

Quality
aIntermediate|High¼ 6.50 Convexity 0.0082 0.022
aLow|Intermediate¼ 4.21 Distance 7.5893 ,0.0001

Exposure 13.85 ,0.0001

The variable a indicates the cut-point between classes.

Table 2. Sensitivity, specificity, and balanced accuracy for each class
of fishing zone quality based on the cross-validation of the optimal
model.

Sensitivity Specificity Balanced accuracy

Low 0.32 0.92 0.62
Intermediate 0.66 0.54 0.6
High 0.6 0.84 0.72
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Pollicipes polymerus fishery, body shape and size in this species could
vary with wave exposure. Seeing that no genetic differences among
phenotypes were found (Campo, 2006; Quinteiro et al., 2006) this
would indicate a phenotypic plasticity in the species, a characteristic
which has been linked to the resilience of fished populations
(Healey, 2009).

It is important to highlight that exposure and convexity affect the
gooseneck barnacle quality at different spatial scales (1 and 25 km,
respectively; Figure 2). The 25 km scale coincides with the geo-
graphical feature of Cape Peñas (Figure 2). Thus, the effect of the
variables in our model may be context specific. Perhaps the magni-
tude of their effect will differ in other management areas, which is
why it is important to test these effects at multiple scales as was per-
formed in this study. A similar multi-scale effect of exposure was
observed on reef fish abundance and biomass (Gust et al., 2001).
Notwithstanding varying magnitudes, the processes and variables
analysed here will likely exert an effect upon gooseneck barnacle
quality in other areas.

Ecological phenomena, including the effect of topographic
features on a species morphology (Figure 2), do not occur at a
single scale (Levin, 1992). Therefore, multi-scale analyses are essen-
tial to understand the dynamics of a species. A mismatch in scales
between ecological phenomena and management institutions can
compromise the resilience of a socio-ecological system (Cash
et al., 2006). For example, in areas where gooseneck barnacles are
managed at large spatial scales, the small-scale quality variability is
not being considered, which could generate a systematic depletion
of the high-quality areas. Fortunately, these multi-scale effects

can be detected by incorporating landscape metrics through our
simple map-based approach for coastal species, or through seabed
mapping for benthic species, and scale appropriate policies can be
generated.

Effect of barnacle quality on the fishery
Our standardized catch dataset indicates a clear selectivity towards
high-quality barnacles (Figure 4A). Considering, barnacles have a
maximum population size driven by space-limited recruitment
(Roughgarden et al., 1985; Karlson and Levitan, 1990), we standar-
dized landings per fishing site length to ensure they reflect the effort
placed in these areas and not yield. Additionally, the gooseneck bar-
nacle fishery in Asturias applies an individual total allowable catch
per fisher of either 6 or 8 kg (depending on the management
region) per day during the fishing season (Rivera et al., 2014); there-
fore, landings are independent from the productivity of each area.
Thus, the bias towards high-quality individuals is probably linked
to the extreme range across qualities in gooseneck barnacle
market prices (Figure 4B). The daily spread in gooseneck barnacle
prices can vary up to 265.2 E kg21 (Figure 4B). Therefore, by
improving the quality of their product, fishers can increase their
revenue (Grafton et al., 2000), this can be achieved by focusing
their daily catch limit exclusively to high-quality zones.

Management implications
The incorporation of landscape metrics in fisheries management can
aid in both economic and conservation objectives, through the devel-
opment of spatially explicit management policies (Table 3). The

Figure 4. Landings and sales differences in quality for 2001–2011. (a) Seasonal landings per kilometre divided by quality classes high (black),
intermediate (grey), and low (white). (b) Range in price per kilogram. Bottom hinge represents the minimum value and top hinge the maximum
value. The total difference between these values is presented at the right of each bar.
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categorization of fishing zones in qualities can help fishers optimize
their foraging strategy by selecting high-quality areas. This would
reduce harvesting time and costs and increase their economic yield,
since high-quality barnacles receive higher market prices (Figure 4).
Additionally, the increased selectivity in harvest can help reduce
bycatch (Worm et al., 2009). Other coastal invertebrate fisheries, par-
ticularly gooseneck barnacle, can also receive these benefits by incorp-
orating our simple landscape-metrics model to classify their fishing
sites by quality (Table 3).

One could argue that the economic benefits obtained through
the incorporation of landscape metrics will lead to localized harvest-
ing, in our case of the high-quality barnacles, which promotes the
overexploitation of the resource and might induce a stock collapse
(Hunt et al., 2011). This scenario is unlikely in the Asturian goose-
neck barnacle co-management system where the species’ ecological
processes, particularly larval dispersal scales, and local policies
prevent its overexploitation. Cantabrian populations of gooseneck
barnacles display larval dispersal scales of 10–50 km (Rivera et al.,
2013). Thus, high-quality zones receive a constant input of larvae
from neighbouring, less exploited low-quality areas, exhibiting
source-sink dynamics (Pulliam, 1988). Low-quality areas are natur-
ally protected from overexploitation due to their low economic
value (Figure 4). Therefore, by incorporating landscape metrics to
classify fishing zone quality managers can gain insight on areas
that can be population sinks or sources. This knowledge can be inte-
grated into management policies by creating a network of no-take
marine protected areas (MPA) along the Asturian coastline in
low-quality zones (Table 3). This would ensure the persistence of
the resource, repopulate high-quality areas and is likely to receive
public support considering their main source of income, high-
quality areas, remains open.

Besides the implementation of MPAs, other spatially explicit man-
agement policies, such as small-scale, spatial, and temporal bans that
match the scale of topographic effects (Table 3), can help prevent the
overexploitation of the resource and allow the population to recover
(Horwood et al., 1998). This strategy is already being employed in
the Asturian gooseneck barnacle co-management system, where tem-
poral bans are placed on high-quality fishing zones (Rivera et al.,
2014). Moreover, when these closures match market cycles, they
can ensure the resource will receive the highest prices possible
(Rivera et al., 2014).

For spatially explicit management measures to be effective, they
must be carried out at the same ecological or topographical scale that
is exerting an effect on the species (Sanchirico and Wilen, 2005). In
Asturias, the plans are managed at a 10 s of km scale and manage-
ment of fishing zones through bans is done at a 100 s meter scale
(Figure 1), these match those reflected by our model (Figure 2).
Therefore, the spatially explicit bans they are currently employing
are accurate and can be an essential part to the sustainable catches
present in the system (Rivera et al., 2015). Spatially explicit manage-
ment measures can be included in other sessile invertebrate fisheries
through the use of simple map-derived landscape metrics.
Nevertheless, we must keep in mind that these small-scale measures
are easier to incorporate in co-management systems, where fishers
aid in the enforcement of regulations (Rivera et al., 2014).
Incorporating these measures in open access fisheries would incur
in high enforcement costs. However, these costs might be offset by
the financial benefits of increased abundance (Davis et al., 2015).

Finally, our topographic model would not have been possible
without the incorporation of fishers’ knowledge (Rivera et al.,
2014). Our models balanced accuracy, the average accuracy obtained
for each class, was higher for low and high than for intermediate
quality zones (Table 2). High and low qualities might be easier to dif-
ferentiate by the fishers but intermediate qualityareas are likely a black
box for areas whose quality cannot be easily defined. Therefore, our
model is likely reflecting this variability. Still, the model is effective
from a management perspective where harvest and revenue are
focused on high-quality areas (Figure 4), which were correctly iden-
tified in our model 72% of the times. This highlights the importance
of incorporating fishers’ and scientific knowledge in an integrated
resource management (Mackinson, 2001). The gooseneck barnacle
fishery in Asturias incorporates landscape, biological, and socio-
economic factors within its management frameworks.This integrated
approach aids in the ecological and economic sustainability of the
fishery (Rivera et al., 2015).

Conclusions
Through the simple, map-based landscape metrics model presented
in this study gooseneck barnacle fisheries can obtain a general ap-
proximation of the distribution of high-quality zones which will
be much more efficient temporally and economically than a pains-
taking and costly in situ identification of the individual zones.

Table 3. Management implications of our map-based landscape metrics model for the gooseneck barnacle and other invertebrate fisheries.

Context Management implications

Local gooseneck barnacle
fishery

Continue to promote the incorporation of fishers’ knowledge in management frameworks
Continue to protect high quality areas from overexploitation through bans and catch limits
Continue to match the opening of banned high-quality areas with periods of high market demand
Continue to increase selectivity of high-quality areas to reduce bycatch
Create a network of no-take MPAs in areas of low economic relevance (low quality)

Regional and global
invertebrate fisheries

Use map-based methodology to identify different fishing sites according to quality
Classify their management area into fine-scale fishing sites
Match the scale of the topographic effects with the management scale
Increase selectivity of high-quality areas to reduce bycatch
Reduce harvesting costs
Increase value per unit effort
Establish spatially explicit bans and catch limits in high-interest areas
Establish temporally explicit bans and catch limits of high-interest areas so they will coincide with periods of high market

demand
Coupled with species dynamics the model can help determine the location of MPAs in areas of low economic and high

ecologic relevance
Integrate fishers’ knowledge in management frameworks
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Nonetheless, these classifications should also be accompanied by
management policies to protect areas from overexploitation.
Regulations could include the establishment of MPAs and/or
spatial and temporal closures (Rivera et al., 2014). Landscape
metrics have proved to be a useful tool in determining the scales
and drivers of gooseneck barnacle quality. These findings could
have a direct application in the spatial management of the resource.
Incorporating landscape concepts in sedentary invertebrate fisher-
ies management frameworks is a promising research field, which
should continue to be explored in future research.

Supplementary data
Supplementary material is available at the ICESJMS online version
of the manuscript.
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Revisión cartográfica de las zonas de percebe en Asturias. Centro de
Experimentación Pesquera. Gijón, Spain.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y.
1998. An optimal algorithm for approximate nearest neighbor
searching fixed dimensions. Journal of the ACM (JACM), 45:
891–923.

Barnes, M. 1996. Pedunculate cirripedes of the genus Pollicipes.
Oceanography and Marine Biology: An Annual Review, 34:
303–394.

Billings, W. D., and Mooney, H. A. 1968. The ecology of arctic and alpine
plants. Biological Reviews, 43: 481–529.

Bivand, R., Keitt, T., and Rowlingson, B. 2014. Rgdal: bindings for the
Geospatial Data Abstraction Library. R package version 0.9–1.
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