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ABSTRACT Multi-agent pathfinding (MAPF) is the problem of finding k non-colliding paths connecting
k given initial positions with k given goal positions on a given map. In its sum-of-costs variant, the total
number of moves and wait actions performed by agents before they definitely reach the goal is minimized.
Not surprisingly, sinceMAPF is combinatorial, a number of compilations to Boolean Satisfiability (SAT) and
Answer Set Programming (ASP) exist. In this article, we describe in detail the first family of compilations
to ASP that solve sum-of-costs MAPF over 4-connected grids. Compared to existing ASP compilations,
a distinguishing feature of our compilation is that the number of total clauses (after grounding) grow linearly
with the number of agents, while existing compilations grow quadratically. In addition, the optimization
objective is such that its size after grounding does not depend on the size of the grid. In our experimental
evaluation, we show that our approach outperforms search-based sum-of-costs MAPF solvers when grids
are congested with agents. We also show that our approach is competitive with a SAT-based approach when
follow conflicts are taken into account. We also explore the potential of our solver when finding makespan-
optimal solutions, in which makespan is minimized first and then cost is minimized. Our results show that
makespan-optimal solutions are slightly suboptimal in most benchmarks. Moreover, our MAPF solver, when
run in that mode, is faster and scales better.

INDEX TERMS Answer set programming, multi-agent pathfinding.

I. INTRODUCTION
Multi-agent pathfinding (MAPF) is the problem of finding
k non-conflicting paths connecting k given initial positions
with k given goal positions on a given map. MAPF has many
applications. It is key for the implementation of automated
warehouses, in which crowds of robots usually share lim-
ited space, and multi-agent videogames, in which sometimes
hundreds of agents need to move in crowded areas [1]. But
it may also become increasingly relevant in other important
applications such as underground mining and airport ground
control [2].

MAPF is a hard computational problem. Unlike single-
agent pathfinding, in which a path being sought should just
avoid collisions with obstacles, in MAPF collisions between
moving agents. Indeed, when the map is represented as a
graph, finding a solution to MAPF that optimizes either total
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cost or makespan (i.e., last arrival time) are computationally
difficult. Indeed, the decision problem associated to both
optimizations are NP-complete [3], [4]. This should not be
surprising. When viewed as a standard AI search problem,
it is straightforward to notice that the branching factor of
MAPF is exponential on the number of agents, since at each
moment in time each agent can perform a number of actions,
relatively fixed.

Several variants of MAPF have been considered in the
literature. The simplest case, which is the focus of our paper,
models the maps as 4-connected grid, in which some of the
cells in the grid are marked as obstacles. Agents may move in
parallel, in the sense that at each time instant we assume all
agents can move from their current cell to any of the obstacle-
free neighbor cells. A conflict is produced when two agents
visit the same cell at the same time instant or when they
traverse the same graph edge at the same time.

MAPF over 4-connected grids does not consider the
kinematic constraints or physical dimensions of the agents
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(e.g., [5]), and considers a rather limited range of motion for
agents. This does not make this problem less relevant for the
robotics community. Indeed, MAPF over grids can be used
as the base solver for solutions to full-fledged multi-robot
motion planning with dynamic constraints [6].

Even though a number of approaches to MAPF over grids
have been proposed, two classes of solvers are most relevant
for the research we report here. First, search-based solvers
(e.g., [7]), which use heuristic search as the main component.
A state-of-the-art search-based approach is Conflict-Based
Search (CBS) [8]–[10], which uses A* at its core. A second
class is compilation-based solvers; for example, compilers
from MAPF to Satisfiability Testing (SAT) (e.g., [11]–[13]),
and Answer-Set Programming (ASP) [14]–[16].

When seeking for an optimal solution for MAPF, different
objective functions can be considered. Under sum-of-costs,
the most popular variant of MAPF, the objective is to mini-
mize the moves agents perform before stopping at the goal.

In this article, we continue to explore the potential of ASP
solvers for MAPF, and propose the first compilation that
solves MAPF optimally under the sum-of-costs assumption.
A second contribution consists of proposing the first compi-
lation from MAPF to ASP that grows linearly with the num-
ber of agents, unlike existing compilations to ASP that are
quadratic on the number of agents. In addition, we propose
an optimization which uses information drawn from a search
algorithm that is run as a preprocessing step to make the
encoding more compact.

We evaluate our approach on synthetic square grids
and warehouse grids with an increasing number of agents.
We compare against MDD-SAT [11], SMT-CBS [17] two
state-of-the-art compilation-based solvers, and to ICBS-
H [9], a representative of the state-of-the-art in search-
based MAPF. We observe that our approach outperforms
search-based solvers when agent congestion is high. Specif-
ically, our approach has a greater coverage as the number of
agents increase.When follow conflicts are considered, that is,
when agents can only move to a previously unoccupied cell,
our approach slightly outperforms MDD-SAT. In addition,
we investigate the performance of our solver when finding so-
called makespan-optimal solutions; that is solutions in which
makespan is minimized first and then cost is minimized.

We conclude that ASP is a viable approach to solving
MAPF problems. Another interesting conclusion is that ASP
also provides a very compact and elegant representation of
sum-of-costs MAPF. Indeed, all of the code needed to solve
a MAPF instance is included in this article. We conclude
in addition that finding makespan-optimal solutions allows
ASP-based solvers to find solutions more quickly and to
scale better, by sacrificing less than 1% average solution
quality. This is important since it suggests that focusing on
cost-optimal solutions instead of makespan-optimal solutions
might not be a practical approach.

This article is a journal version of a previous AAAI-20
publication [18]. The following items describe material not
included in the previous publication.

• The full details of the MAPF to ASP encoding, some of
which were omitted from the conference publication.

• A proof of Theorem 1, which was not included in the
conference publication.

• An extended experimental analysis, which allows us to
draw additional conclusions. Specifically,

– We analyze the performance of our solver over an
extended set of grids with different sizes, and estab-
lish new relations between the relative performance
of our solver and existing solvers.

– We include an analysis of our solver configured to
find makespan-optimal solutions. The conclusions
we draw from these experiments are important: a
solver that is makespan-optimal scales better and
finds solutions that are only slightly suboptimal in
terms of cost.

– Finally, we include an analysis of grounding time
versus execution time.

The rest of the paper is organized as follows. We start with
a detailed description of MAPF and an introduction to ASP.
Then we present a basic encoding to ASP, and we continue
introducing the elements that allow the translation to be linear
on the number of agents. We continue with our empirical
analysis, and end with conclusions.

II. BACKGROUND
In this section we describe MAPF and ASP. Our definition of
MAPF follows closely that of [19].

A. MULTI-AGENT PATHFINDING
A MAPF instance is defined by a tuple (G,A, init, goal),
where G = (V ,E) is a graph, A is the set of agents, and
init : A → V and goal : A → V are functions used to
denote the initial and goal vertex for each of the agents.

At each time instant each agent at vertex v can either move
to any of its successors inG or notmove at all.When the graph
G is a 4-connected grid, as we assume in the rest of the paper,
at each time instant each agent can perform an action in the set
{up, down, left, right,wait}. The wait action leaves the agent
in the same position whereas the others move them in one of
the four cardinal positions. A path over G is a sequence of
vertices in V , v1v2 . . . vn, where either vi = vi+1 (i.e., a wait
action is performed) or (vi, vi+1) ∈ E (i.e., a non wait action
is performed) for every i ∈ {1, . . . , n−1}. Given a path π we
denote by π [i] the i-th element in π , where i ∈ {1, . . . , |π |}.
A solution to MAPF is a function sol : A → V ∗, which

associates a path to each of the agents, such that the first and
last vertices of sol(a) are, respectively, init(a) and goal(a).
Without loss of generality, henceforth we assume that all
paths in sol have the same size, since wait actions may be
used at the end of any action sequence to remain on the same
vertex. Below we denote by T the set {1, . . . ,M}, where M
is the size of any of the paths in sol. We also refer to M − 1
as the makespan of the solution.
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In addition, sol must be conflict-free, which means that if
π and ρ are the paths in sol followed by two different agents,
none of the following conflicts should arise.

• Vertex Conflict. Two agents cannot be at the same ver-
tex at the same time instant. Formally, there is a vertex
conflict if and only if π [i] = ρ[i], for some i ∈ T .

• Swap Conflict. Two agents cannot swap their positions.
Intuitively, this conflict is justified by that fact that we
assume that size of the agents prevent the connection
between two vertices in opposite directions. Formally,
there is a swap conflict if and only if (π[i], ρ[i]) =
(ρ[i+ 1], π[i+ 1]), for some i ∈ {1, . . . ,M − 1}.

• FollowConflict. An agent cannot occupy the position of
an agent that has just moved away from such a position;
that is, it cannot follow another agent. Formally there is
a follow conflict if and only if π [i+ 1] = ρ[i].

Most of the literature in MAPF (e.g., [8]), considers vertex
conflicts and swap conflicts. Fewer solvers consider follow
conflicts. In our translation to ASP we show how to model all
three types of conflicts but our experimental section focuses
on the first two.

A standard assumption in MAPF is that all actions cost one
unit except for waits performed at the goal when no other
action is planned in the future. Note that this means wait
actions do have a cost of 1 unless the agent performs such a
wait at the goal, and does not move away from the goal in the
future. Thus, the cost of path π for agent a is written as |ρ|,
when ρ is the shortest sequence such that π = ρ(goal(a))k ,
for some k . The cost of a solution sol, denoted by c(sol),
is defined as

∑
a∈A c(sol(a)).

A solution sol is optimal under sum-of-costs, or sim-
ply cost-optimal, if no other solution sol ′ exists such that
c(sol ′) < c(sol). A solution sol is makespan-minimal if no
other solution exists whose makespan is smaller than the
makespan of sol. Amakespan-minimal solution ismakespan-
optimal if no other makespan-minimal solution sol ′ exists
such that c(sol ′) < c(sol). The class of cost-optimal solutions
is not equal to the class of makespan-optimal solutions. This
is illustrated in Figure 1.
In the rest of the paper, the notion of a solution that relaxes

all conflictswill be relevant to obtain costs-optimal solutions.
These solutions are such that swap and vertex conflicts are
not considered and thus can be efficiently computed running
any single-agent pathfinding algorithm. Below we use the
notation c∗a to refer to the number of steps required by agent
a to reach the goal under the assumption that all (vertex and
swap) conflicts are relaxed.

B. ANSWER-SET PROGRAMMING
ASP [20] is a logic-based framework for solving optimization
problems. For space limitations, here we describe a subset of
an ASP standard that is relevant to this article. An ASP basic
program is a set of rules of the form:

p← q1, q2, . . . , qn. (1)

FIGURE 1. A MAPF instance in which an increase of makespan allows a
solution of lower cost. The problem has 3 agents: a0, who needs to go
from (0,1) to (3,1). Agents a1 and a2, located at (1,1) and (2,1),
respectively, are at their goal cell. The makespan-optimal solution has a
makespan of 3 and a cost of 8, and it involves a1 and a2 moving away
from their goal to let a0 move straight towards its goal. In contrast, the
cost-optimal solution has a cost of 5 and a makespan of 5, and only
moves agent a0.

where n ≥ 0, and p, q1, . . . , qn are so-called atoms. The intu-
itive interpretation of this rule is as follows ‘p is true/provable
if so are q1, q2, . . . , q′n. When n = 0 rule (1) is considered
to have an empty body. Such rules are called facts and are
usually written as ‘p’ instead of ‘p←’.

A model of an ASP basic program is a set of atoms
M that intuitively contains all and only the atoms that are
provable. Formally, M is a model of basic program 5 if and
only if M is the subset-minimal set such that for every rule
p← q1, q2, . . . , qn ∈ 5 such that {q1, . . . , qn} ⊆ M , then
p ∈ M .

An important syntactic element relevant to our paper is the
so-called negation as failure. Rules containing such negated
atoms look like:

p← q1, q2, . . . , qn, not r1, not r2, . . . , not rk . (2)

Intuitively, rule (2) should be interpreted as ‘p is provable
if q1, . . . qn are provable a none of r1, . . . , rk are provable’.
The semantics of programs that include negation as failure is
simple but a little more involved, requiring the introduction
of so-called stable models, whose formal definition we omit
from this article. We direct the interested reader to [21].

Another relevant type of rule for our paper is:

|{p1, p2, . . . , pn}| = k ← q1, q2, . . . , qm,

where k is an integer. Intuitively here we say that if
q1, q2, . . . , qm are all provable, then k of the elements in
{p1, p2, . . . , pn} must appear in a model. This definition
allows programs to have multiple models.1 For example, the
program {s, |p, q, r| = 1← s} has threemodels: {p, s}, {q, s},
and {r, s}.

Another type of rule that is relevant to our translation is:

← p1, p2, . . . , pn, (3)

which is a constraint that prohibits the occurrence of
{p1, p2, . . . , pn} in the model. Technically these rules are a

1Technically, negation as failure alone also allows the user to create
programs with multiple models, but in our translation we define multiple
models exploiting this type of rule.

26888 VOLUME 9, 2021



R. N. Gómez et al.: Compact ASP Encoding of MAPF

particular case of (1), but we treat them separately here to
make the presentation simpler.

Finally, ASP programs may contain variables to represent
rule schemas. As such, a rule like:

p(X )← q(X ), (4)

where uppercase letters represent variables. Intuitively a vari-
able occurring in a program5 can take any value among the
set of terms of 5. As such, rule (4) represents that when c
is a term and q(c) is provable, so is p(c). Intuitively a term
represents an object that can be named in the program. The
set of terms for a program is syntactically determined from
the program using the constants mentioned in it. The set of
terms has a theoretical counterpart, the so-called Herbrand
base, whose definition we omit here, since it is not key for
understanding the rest of the paper.

In the process of finding a model for a program, an initial
step that is carried out is grounding. Grounding instantiates
rules with variables, effectively removing all variables from
the program. Since there are plenty of optimizations that
solvers employ during grounding, it is not easy to describe
the grounding process with complete precision here, and
therefore we will just describe it intuitively. For example, the
grounded version of program:

{q(a), q(b), p(X )← q(X )} (5)

may be

{q(a), q(b), p(a)← q(a), p(b)← q(b)}

or {q(a), q(b), p(a), p(b)},

depending on the optimizations applied at grounding time.
What is however unavoidable is that grounding generates two
instances for the rule p(X ) ← q(X ) because the number of
objects that satisfy predicate q is two. Thus, if we had declared
n objects satisfying qwe would expect the grounding process
to generate n instances for p(X ) ← q(X ). As we will see in
the rest of the paper, the size of the grounded version of the
program is key for performance.

III. A BASIC TRANSLATION OF MAPF TO ASP
We are now ready to describe our compilation of sum-of-costs
MAPF to ASP. As we have mentioned above, this is the first
compilation to ASP that handles sum-of-costs. Besides that
aspect of novelty, the basic compilation that we present here is
similar inmany aspects to the compilation of [14] toASP, and,
in some aspects similar to the MAPF-to-SAT compilation of
[22]. Below we are specific about these similarities.

As most compilations of planning problems into SAT/ASP,
the makespan of the compilation is a parameter, which below
we call T.

A. ATOMS
We use the following atoms:

• agent(a): to express that A is an agent,

• goal(a, x, y): specifies that the goal cell for agent a is
(x, y),

• obstacle(x, y): specifies that cell (x, y) is an obstacle,
• at(a, x, y, t): specifies that agent a is at (x, y) at time t ,
• exec(a,m, t): specifies that agent a executes action m at
time t ,

• at_goal(a, t): specifies that agent a is at the goal at time
t ,

• time(t): t is a time instant,
• action(m): m is an action,
• cost(a, t, c): specifies that agent a executes an action of
cost c at time t ,

• delta(m, x, y, x ′, y): specifies that the cell (x ′, y′) is
reached when performing action m at cell (x, y).

Finally, we use atoms rangeX (x) and rangeY (y) to specify
that (X ,Y ) is within the limits of the grid.

B. INSTANCE SPECIFICATION
To specify a particular MAPF instance, we define facts for
atoms of the form agent(a), for each a ∈ A, obstacle(x, y) for
each (x, y) that is marked as an obstacle in the grid, rangeX (x)
for each x ∈ {1, . . . ,w}, where w is the width of the grid, and
rangeY (y) for each y ∈ {1, . . . , h}, where h is the height of the
grid. Additionally, we define the initial cells for each agent,
adding one fact of the form at(a, xa, ya, 0) for each agent a ∈
A, where (xa, ya) = init(a). Furthermore, we add an atom
of the form time(t) for every t ∈ {1, . . . ,T}. The number
of rules needed to encode a MAPF instance is therefore in
2(|A| + T+ |V |).

C. EFFECTS
To encode the effects of the five actions, we use a single rule
written as follows:

at(A,X ,Y ,T ) ← exec (A,M ,T − 1),

at (A,X ′,Y ′,T − 1),

delta (M ,X ′,Y ′,X ,Y ). (6)

which specifies that if agent A is at position (X ′,Y ′) at time
instant T − 1, then it will be in position (X ,Y ) in time
instant T if and only if (X ,Y ) and (X ′,Y ′) satisfy predicate
delta. Auxiliary predicate delta is used to establish a relation
between (X ,Y ) and (X ′,Y ′) given a certain action M in the
following way:

delta(right,X ,Y ,X + 1,Y ) ← rangeX (X ), rangeY (Y ).

delta(left,X ,Y ,X − 1,Y ) ← rangeX (X ), rangeY (Y ).

delta(up,X ,Y ,X ,Y + 1) ← rangeX (X ), rangeY (Y ).

delta(down,X ,Y ,X ,Y − 1) ← rangeX (X ), rangeY (Y ).

delta(wait,X ,Y ,X ,Y ) ← rangeX (X ), rangeY (Y ).

(7)

A grounding time predicate delta results in 5 rules per each
position of the grid. This defines that the total number of
grounded instances for rule (6) is proportional to the size
of the grid, the number of agents and the number of time
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instants. The total number of instances for rules of the form
(6) and (7) is in 2(|A| · |V | · T).

D. PARALLEL ACTION EXECUTION
We need to encode that each agent performs exactly one
action at each time instant. To do this we write the following
rule:

|{exec(A,M ,T − 1) : action(M )}|

= 1← time(T ), agent(A). (8)

Upon grounding, the number of instances of this rule is in
2(|A| · T).

E. LEGAL POSITIONS
We need to express that the agents move through the vertices
in the graph; that is, they cannot exit the grid or visit an
obstacle cell. We do so using the following three rules:

← at(A,X ,Y ,T ), not rangeX (X ),

← at(A,X ,Y ,T ), not rangeY (Y ),

← at(A,X ,Y ,T ), obstacle(X ,Y ). (9)

The total number of grounded rules for the rules of form (9)
is in2(|A| · |V | ·T), since it depends on the number of atoms
of the form at , obstacle, rangeX , and rangeY .

F. VERTEX CONFLICTS
To express that no agents can be at the same vertex we use
the following constraint, which is similar to those used in the
encodings to ASP of [14], [15] and [11]:

← at(A,X ,Y ,T ), at(A′,X ,Y ,T ), A 6= A′. (10)

The number of instances for rule (10) after grounding is
2(|A|2 · |V | · T). Note that this is the first rule so far whose
instantiation is quadratic on the number of agents. This moti-
vates the improvement we present in the following section.

G. SWAP CONFLICTS
No pair of agents can swap their positions. We express this
avoiding horizontal and vertical swaps using, respectively, the
following constraints.

← at(A,X + 1,Y ,T − 1), at(A′,X ,Y ,T − 1),

at(A,X ,Y ,T ), at(A′,X + 1,Y ,T ). (11)

← at(A,X ,Y + 1,T − 1), at(A′,X ,Y ,T − 1),

at(A,X ,Y ,T ), at(A′,X ,Y + 1,T ). (12)

The number of ground rules for (11) is in 2(|A|2 · |V | · T).

H. FOLLOW CONFLICT
An agent cannot occupy in t + 1 the position an agent had at
time t .

← at(A,X ,Y ,T ), at(A′,X ,Y ,T + 1), A 6= A′. (13)

The number of instances for rule (13) after grounding is
2(|A|2 · |V | · T), hence quadratic on the number of agents.

I. GOAL ACHIEVEMENT
We specify using a constraint expressing that no agent is away
from its goal at time T, using the following two rules:

at_goal(A,T ) ← at(A,X ,Y ,T ), goal(A,X ,Y ). (14)

← agent(A), not at_goal(A,T). (15)

The number of instances for rules (14) is 2(A · |V | · T).

J. SIZE OF THE BASIC ENCODING
After grounding, it follows that the size of the total encoding
is in 2(|A|2 · |V | · T). That is, it is quadratic in the number
of agents, linear in the size of the grid, and linear in the
makespan parameter T.

IV. SUM-OF-COSTS IN ASP
The encoding we presented in the previous section still does
not produce cost-optimal solutions. Indeed, once fed into an
ASP solver, it will return a model only if a solution with
makespan T exists. In this section we present how we can
obtain solutions for sum-of-costs MAPF.

There is a natural way to encode sum-of-costs minimiza-
tion: to minimize the number of actions performed by each
agent before stopping at the goal. We noticed, however,
that this yields an encoding whose size grows linearly with
the size of the grid, |V |. This motivated us to look for a
more compact encoding which would not depend on |V |.
Even though, as we see in our empirical evaluation below,
the grid-independent encoding performs better in practice,
we describe both approaches here since the grid-dependent
encoding is more natural and is a contribution on its own since
sum-of-costs had not been encoded in ASP before.

A. GRID-DEPENDENT ENCODING
This encoding is similar to the approach used in MDD-
SAT [11]: the idea to minimize the actions performed by
the agent at each cell before stopping at the goal. At a first
glance one might think that we just need to count every action
performed away from the goal and minimize this number.
This approach, however does not work because a wait at the
goal at time t should be counted if the agent will move away
from the goal at some instant t ′ greater than t .

To identify time instants at which we know the agent will
not move away from the goal, we introduce the predicate
at_goal_back(a, t), which specifies that agent a has reached
the goal at time t and will not move away in the future:

at_goal_back(A,T) ← agent(A).

at_goal_back(A,T − 1) ← at_goal_back(A,T ),

exec (A,wait,T − 1).

Nowwe define predicate cost , such that there is an atom of
the form cost(a, t, 1) in the model whenever agent a performs
an action at time t before stopping at the goal. First we
express that moving an agent from a cell that is not the goal
is penalized by one unit:

cost(A,T , 1)← at(A,X ,Y ,T ), not goal(A,X ,Y ).
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Second, moving an agent away from the goal is also penalized
by one:

cost (A,T , 1) ← at (A,X ,Y , t), goal (A,X ,Y ),

exec(A,M , t), M 6= wait.

Third, if an agent performs a wait at the goal, but moves at a
later time instant, then this is also penalized:

cost(A,T , 1) ← at (A,X ,Y , t), goal (A,X ,Y ),

exec(A,wait,T ),

not at_goal_back (A,T ).

Finally, via an optimization statement, we minimize the
number of atoms of the form cost(A,T , 1) in the model:

#minimize {C,T ,A : cost(A,T ,C)}.

After grounding, the number of rules is in2(|A| · |V | · T).

B. GRID-INDEPENDENT ENCODING
For this encoding, we define the atom optimal(a, ca), for each
agent a ∈ A, where ca corresponds to the cost of the optimal
path from init(a) to goal(a) ignoring both vertex and swap
conflicts. In other words, ca is the result of solving a relax-
ation of the problem that ignores other agents. We compute
such a value using Dijkstra’s algorithm, before generating the
encoding.

In contrast to the first encoding, we maximize the slack
between the makespan T and the time instant at which an
agent has stopped at the goal, by simply adding:

penalty(A,T , 1)← optimal(A,C), T > C,

at_goal_back(A,T − 1).

Note that since no reference to the grid cells is made, the
grounding generates a number of rules in2(|A| · T). Finally,
we use the following maximization statement.

#maximize {P,T ,A : penalty(A,T ,P)}.

C. FINDING COST-OPTIMAL SOLUTIONS
The encoding proposed so far can find the minimum sum-of-
cost solution for a given makespan. We still need to define
how to find a true cost-optimal solution.

Following the approach used for SAT encodings for plan-
ning [23], in our approach we attempt to solve instances for
increasing makespan T, until a solution, say solmin, is found.
Two observations with this process are important. First, we do
not need to start increasing T from 1. As mentioned above,
at preprocessing time, for each agent we compute cost the cost
c∗a which ignores other agents. The makespan of any solution
must be at least maxa∈A c∗a so this can be the inferior limit of
our iteration.

Second, let solmin be the solution that is found first. Unfor-
tunately, solmin is a makespan-optimal solution but not neces-
sarily a cost-optimal solution. Now, we can compute a bound
for the largest makespan Tmax at which the cost-optimal
solution is found, using the following theoretical result first

proposed by [11]. Below we state the theorem and provide a
different proof.
Theorem 1: Let solmin be the makespan-optimal solution

for MAPF problem P, let sol− denote a cost-optimal solution
to P that ignores all conflicts, and let T− denote its makespan.
Then the makespan of the cost-optimal solution is at most at
Tmax = T− + c(solmin)− c(sol−)− 1.

Proof: Let solmin be a makespan-optimal solution for P
such that there is no other solution with the same makespan
and lower cost. Let sol− be a solution for P that ignores
all agent conflicts. For this solution, c(sol−) =

∑
a∈A c

∗
a.

In addition, let T− = maxa∈A c∗a be the makespan of sol−,
and let solopt be the sum-of-costs optimal solution for P,
where Topt is its makespan.
Because makespan is always an integer, we prove that

Topt < T− + c(solmin) − c(sol−), which is equivalent to
the statement of the theorem. We do so by contradiction,
assuming that:

Topt ≥ T− + c(solmin)− c(sol−) (16)

Because Topt is the makespan of solopt there exists one
agent, say ai, that is such that c(solopt (ai)) = Topt , therefore:

c(solopt ) = Topt +
∑
a∈A\ai

c(solopt (a)) (17)

Because c∗a ≤ c(solopt (a)), for every a ∈ A:

c(solopt ) ≥ Topt +
∑
a∈A\ai

c∗a (18)

Now we use (16) to obtain:

c(solopt ) ≥ T− + c(solmin)− c(sol−)+
∑
a∈A\ai

c∗a (19)

Since c(solmin) > c(solopt ), we substitute with (19) to write:

c(solmin) ≥ T− + c(solmin)− c(sol−)+
∑
a∈A\ai

c∗a. (20)

Canceling c(solmin) in (20), we obtain:

c(sol−) > T− +
∑
a∈A\ai

c∗a = c(sol−),

which is a contradiction.
Thus, after we find the first solution solmin, we run the

solver again for makespan Tmax given by Theorem 1, as spec-
ified by Algorithm 1. We assume that function Solve invokes
an ASP solver for the given ASP program, and returns a
model, if one exists, and unsatisfiable otherwise. The
approach implemented by Algorithm 1 was recently evalu-
ated by [13] for their Picat-based MAPF solver.

V. A LINEAR ENCODING
The encoding we have proposed is quadratic in the number of
agents. In this section we show how to make it linear by intro-
ducing new atoms to the encoding. Specifically, we introduce
the following atoms:
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Algorithm 1 Sum-of-Costs MAPF via ASP
Input: A MAPF instance I = (G,A, init, goal)

1 T−← max
a∈A

c∗(a)

2 T← T−

3 C−←
∑

a∈A c∗(a)
4 while true do
5 P← Encode I with makespan T
6 M ← Solve P
7 if M 6= unsatisfiable then
8 C ← cost of the solution given byM
9 1← C − C− − 1 // bound of Thm. 1
10 if T− +1 ≤ T then
11 return solution given by M
12 else
13 P← Encode I with makespan T− +1
14 M∗← Solve P
15 return solution given by M∗

16 T← T+ 1

• rt(x, y, t) (resp. lt(x, y, t)) which specifies that the edge
between (x, y) and (x+1, y) was traversed by some agent
at time t from left to right (resp. from right to left).

• ut(x, y, t) (resp. dt(x, y, t)) which specifies that the edge
between (x, y) and (x, y + 1) was traversed upwards
(resp. downwards) by some agent at time t .

• st(x, y, t), indicates that some agent stayed at (x, y), that
is, it performed a wait action at time t .

The dynamics of these atoms are defined using one rule
with variables for each one of the possible move directions:

rt(X ,Y ,T ) ← exec(A, right,T ), at(A,X ,Y ,T ),

lt(X − 1,Y ,T ) ← exec(A, left,T ), at(A,X ,Y ,T ),

ut(X ,Y ,T ) ← exec(A, up,T ), at(A,X ,Y ,T ),

dt(X ,Y − 1,T ) ← exec(A, down,T ), at(A,X ,Y ,T ).

(21)

while the rule for st is:

st(X ,Y ,T )← at(A,X ,Y ,T ), exec(A,wait,T ). (22)

It is easy to verify that these rules do not mention pairs
of different agents, unlike (10) and (11), and as such after
grounding we end with 2(|A| · |V | · T) rules, and therefore
the resulting encoding is linear in |A|.

A. VERTEX CONFLICTS
Using these predicates we now express the fact that a cell
cannot be entered at the same time instant by two different
agents. This requires six rules each of which corresponds to
a pair of actions in {right, left, up, down}. For example, the
following rule expresses that (X ,Y ) cannot be entered by
an agent performing a down action at the same time that is

entered by another agent performing up :

← lt(X ,Y ,T ), dt(X ,Y ,T ). (23)

Finally, we express that if an agent enters a cell, then another
agent could have not stayed at that cell. We do this with the
following rules:

← st(X ,Y ,T ), lt(X ,Y ,T ). (24)

← st(X ,Y ,T ), rt(X − 1,Y ,T ). (25)

← st(X ,Y ,T ), ut(X ,Y − 1,T ). (26)

← st(X ,Y ,T ), dt(X ,Y ,T ). (27)

B. SWAP CONFLICTS
For swap conflicts we simply express that a single edge
cannot be traversed in two different directions. We do this
using the following rules:

← rt(X ,Y ,T ), lt(X ,Y ,T ).

← ut(X ,Y ,T ), dt(X ,Y ,T ).

After grounding the encoding of vertex and swap conflicts is
2(|V | · T).

C. FOLLOW CONFLICTS
To encode follow conflicts we prevent an agent entering a cell
at time t which was occupied by another agent, also at time t ,
using the following rules:

← at(A,X ,Y ,T ), rt(X − 1,Y ,T ). (28)

← at(A,X ,Y ,T ), lt(X ,Y ,T ). (29)

← at(A,X ,Y ,T ), ut(X ,Y − 1,T ). (30)

← at(A,X ,Y ,T ), dt(X ,Y ,T ). (31)

Observe that, under follow conflicts, some vertex conflicts are
implicit, and it is not necessary to include rules (24)-(27), nor
(22). After grounding, follow conflicts expand into 2(|A| ·
|V | · T) rules.

VI. USING SEARCH TO REDUCE THE ATOMS
We can exploit our run of Dijkstra’s algorithm during pre-
processing time to generate an even smaller encoding by
replacing rule (6) by the following rule.

at(A,X ,Y ,T ) ← at (A,X ′,Y ′,T − 1),

exec (A,M ,T ),

delta (M ,X ′,Y ′,X ,Y ),

cost_to_ go(A,X ,Y ,C),

T + C <= T. (32)

where cost_to_go(A,X ,Y ,C) specifies that C is the mini-
mum number of actions needed to go from (X ,Y ) to the goal
of agent A. This way we can ignore the generation of rules to
positions that will not reach the goal, generating a much more
compact encoding. This idea is related to the use of MDDs
graphs inMDD-SAT [11], but does not require the generation
of the MDD, so it is conceptually simpler.
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FIGURE 2. An example MAPF instance.

A. REPRESENTING AN INSTANCE
To represent a MAPF instance, we define predicates at for
time instant 0, and predicates goal and obstacle. Figure 2
shows an example of an instance which is represented using
the following rules.

at(a0, 2, 1, 0),

at(a1, 3, 3, 0),

goal(a0, 0, 0),

goal(a1, 2, 2),

obstacle(2, 3).

Amodel returned by the solver contains exec predicates, from
where the solution can be extracted. In our example, a model
of the program may contain:

exec(a0, left, 0),

exec(a0, left, 1),

exec(a0, down, 2),

exec(a1, right, 0),

exec(a1, up, 1).

VII. EMPIRICAL EVALUATION
The objective of our empirical evaluation was to compare
the performance of the different variants of our transla-
tion against representatives of search-based and SAT-based
solvers. We compared to the publicly available SAT-based
solver MDD-SAT [22] (enc = mdd), the SMT compilation-
based solver SMT-CBS [17], and the search-based solver
ICBS-h [9]. Our evaluation is focused on relatively small
grids since grounding time grows too much for larger grids
(e.g., 512× 512), making the approach impractical.
It is important to note that both MDD-SAT and SMT-CBS

are solvers that do respect follow conflicts, while the search-
based solver ICBS-h does not. Since most part of the solvers
proposed in the MAPF literature do not take into account
follow conflicts, in the first part of our analysis (Subsections
VII-A–VII-D) we evaluate our solver considering vertex and
swap conflicts only. Thus the performance of MDD-SAT and

SMT-SAT should be considered as a reference; a version of
these solvers without follow conflicts is not available. In Sub-
section VII-E, we compare our solver with follow conflicts
activated, to MDD-SAT.

We compared different encodings based on each of our
improvements: ASP-basic is the basic encoding that uses
quadratic conflict resolution and grid-dependent penalties.
To name the non-basic variants of our solver, we use ASP
followed by some of the identifiers GI, LC, and CG. GI refers
to the use of grid-independent penalties. LC refers to the use
of our linear conflict encoding. Finally, CG refers to the use
of Dijkstra’s algorithm as seen on rule (14).

The code used for our implementation was written in
Python 3.7 using Clingo 5.3 [24] for the ASP solver. Clingo
was run with 4 threads in parallel mode, and using USC as the
optimization strategy, unless otherwise stated. All algorithms
we compared with were obtained from their authors.

All experiments were run on a 3.40GHz Intel Core
i5-3570K with 8GB of memory running Linux. We set a
runtime limit of 5 minutes for all problems.

A. N × N GRIDS WITH RANDOM OBSTACLES
First, we experimented on 8×8 and 20×20 randomly gener-
ated problems with 10% obstacles. For 8× 8 (resp. 20× 20)
we generate 150 (resp. 260) problems with the number of
agents in {4, . . . , 18} (resp. {20, 22, . . . , 70}), where for each
number of agents we generate 10 instances. Success rates—
defined as the proportion of instances that can be solved
within the runtime limit—and number of problems solved
versus time for the 20 × 20 are shown in Figure 3. We omit
the results for 8× 8 since they look very similar to those for
20× 20.
In the 8 × 8 grids, as the number of agents increase, all

our encodings outperform the other algorithms in terms of
success rate. We also observe that our modifications to the
basic encoding pay off substantially. We observe a substan-
tial difference between our grid-dependent encoding and our
grid-independent encoding.

For 20 × 20 grids, we observe that our linear encoding
solves almost all problems and substantially outperforms our
quadratic (basic) encoding. We do not observe in this case an
important impact of the grid-dependent encoding over grid-
independent encoding. In contrast, it is interesting to see the
benefits of using the CG mode as a way to generate a smaller
encoding, as shown in Figure 3 CG greatly improves the
solving time. In fact we found that the average solving time is
a factor of 1.74 smaller using ASP-GI-LC-CG in comparison
to ASP-GI-LC. Also we found a decrease by a factor of
1.98 on the average runtime of the grounding process when
using CG.

To understand the influence of the number of obstacles on
the grid, we experimented on 20 × 20 randomly generated
problems with 20 agents. We evaluated the best-performing
configuration of the previous experiments using 1 and 4
threads. We generate 100 problems by varying the per-
centages of obstacles in {0%, 5%, 10%, . . . , 50%} (for each
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FIGURE 3. Success rate and number of instances solved versus time on 20 × 20 grids.

FIGURE 4. Success rate and number of instances solved versus time on 20 × 20 grids. ASP-T1 is the best configuration (ASP-GI-LC-CG) ran
with 1 thread, and ASP-T4 is ASP-GI-LC-CG ran with 4 threads.

percentage we generate 10 random instances). Figure 4 shows
the results. Again our ASP formulations outperform other
algorithms as the number of agents increases. In addition,
no significant differences are observed between the 1- and
4-thread variants.

B. WAREHOUSE EXPERIMENTS
We experimented with a 9 × 21 warehouse grid used in the
MAPF literature (e.g., [9]), shown in Figure 6. We selected
random initial and goal locations over the left and right
borders of the grid. We generated 10 instances for each
number of agents in {4, . . . , 20}. In this experiment we only
used ASP-GI-LC-CG, the encoding with best results on the
grid experiments. Also, because clingo offers two optimiza-
tion strategies: Branch-and-bound (BB) [25] based optimiza-
tion and unsatisfiable-core (USC) based optimization [26],
we wanted to test our encoding on both of them to analyze the
effects. Success rates, and number of problems solved versus
time are shown in Figure 5.
Results show the benefits of our approach on this type

of grids, where we outperform substantially the planners we

compare with. Given the limited amount of free space on
these grids, |V | is smaller and thus our encoding is rather
compact. These results also illustrate that our approach scales
better than other approaches when the number of potential
conflicts grow.

Regarding USC versus BB. USC starts with a minimum
cost solution that does not necessarily satisfy the constraints
given in the ASP program. If the program has no model, USC
attempts to find a higher cost solutions incrementally, until
one is found. BB, on the other hand, finds a solution and uses
the cost of this solution to prune the search. We observe that
USC is the best approach for cost-optimal MAPF.

We also experimented with warehouses with sizes 18×21,
27× 21, 36× 21, 9× 39, 9× 57, and 36× 57. In the largest
warehouse (36×57) our approach is slightly outperformed by
ICBS-h, whereas on the rest of the warehouses, our approach
exhibits a tendency similar to that of Figure 5.

C. MAKESPAN-OPTIMAL SOLUTIONS
Most of the MAPF literature has focused on finding cost-
optimal solutions, and thus the main contribution of this
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FIGURE 5. Success rate and number of instances solved versus time on the Warehouse problem.

FIGURE 6. Warehouse problem example.

article is to propose a cost-optimal approach to MAPF using
ASP. Notwithstanding, finding makespan-optimal solutions
(which, as seen above, are not cost-optimal) requires less
time. Indeed, Algorithm 1 incrementally runs the ASP solver
for increasing makespan values until one first solution is
found. After that, it uses the bound of Theorem 1 to find
another solution, with larger makespan, which is guaranteed
to be cost-optimal. Because this last run requires uses a larger
makespan, the encoding is also larger, which has an impact
over runtime. This raises a number of questions regarding
the difference between finding makespan-optimal and cost-
optimal solutions. How much solving time would we save
if we simply computed makespan-optimal rather than cost-
optimal solutions? What is the suboptimality of makespan-
optimal solutions compared to cost-optimal solutions? We
attempt to answer these questions here.

For the first experiment, we use the same set of
20 × 20 grids of the previous section, but since
we noted the makespan-optimal solver scales better,
we extended the percentage of obstacles to include values in
{50%, 55%, . . . , 70%}. We record the time taken to find the
makespan-optimal solution, and its makespan.

For the analysis of the results, first we focus on the subopti-
mality of makespan-optimal solutions. We define percentage
suboptimality as the percentage of the difference between the
cost of both solutions with respect to the cost of the cost-
optimal solution. Tables 1 and 2 show the average percentage
suboptimality, respectively, when the number of agents is

TABLE 1. Average percentage suboptimality of the makespan-optimal
solution and percentage of instances in which makespan-optimal and
cost-optimal solutions have the same cost, for obstacle-free 20 × 20 with
10%-obstacle grids in which we vary the number of agents.

increased and when the percentage of obstacles is increased.
Finally, Table 3 shows the average percentage suboptimality
of the warehouse map of Figure 6 when the number agents is
increased.

We observe that average percentage suboptimality very
low in general: for most configurations is less than 0.5%, and
its maximum value is only 1.668% on a 20× 20 with a rela-
tively high number of obstacles. This means that makespan-
optimal and cost-optimal solutions are very similar in general,
and almost always equivalent.

The next question we address is how is performance
affected when we configure the solver to find makespan-
optimal solutions instead of cost-optimal solutions. Figures 7,
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TABLE 2. Average percentage suboptimality of the makespan-optimal
solution and percentage of instances in which makespan-optimal and
cost-optimal solutions have the same cost, for 20-agent 20 × 20 grids in
which we vary the percentage of obstacles.

TABLE 3. Average percentage suboptimality of the makespan-optimal
solution and percentage of instances in which makespan-optimal and
cost-optimal solutions have the same cost, on the warehouse map of
Figure 6.

8, and 9 show the performance of ASP-makespan, our ASP
encoding configured to return makespan-optimal solutions,
versus ASP-cost, our cost-optimal solver. We compare the
performance of both solvers over the same scenarios in which
we compared above (warehouses with varying number of
agents and 20× 20 grids with varying number of agents and
obstacle rates).

We observe that ASP-makespan scales substantially better
than ASP-cost when the number of agents or the obstacle rate
is increased. Indeed, in the 20× 20 grid experiment when we
vary the number of agents, ASP-makespan solves 46 more
instances than ASP-cost (a 24% increase), in the 20×20 grid
experiment where we vary the obstacle rate, ASP-makespan
solves 31 more instances than ASP-optimal (a 44% increase),
and, finally, in the warehouse experiment, where we vary the
number of agents, ASP-makespan solves 19 more instances
than ASP-cost (a 28% increase).

Both ASP-cost and ASP-makespan invoke the ASP solver
iteratively increasing the makespan until one solution is
found. While ASP-makespan returns the first solution found,
ASP-cost needs to run the solver one more time for an encod-
ing with makespan T−+1 (Line 14; Algorithm 1). The value
1 is given by the theoretical bound of Theorem 1.
Given that ASP-cost is outperformed quite significantly by

ASP-makespan, a natural question that arises is how tight is
such a bound. To answer this question, let us define δ as T−+
1 − T, that is, the difference between the makespan of the
last and the makespan used in the second-last call to the ASP
solver. Hence, intuitively, δ is a proxy to the ‘‘extra effort’’
that the ASP-solver needs to make in order to find the last
solution (recall that the encoding is linear on the makespan).
Furthermore, let us define δoracle as the difference between

TABLE 4. Average δ and average δoracle which are, respectively, proxies to
the actual and ideal additional effort needed to find the cost-optimal
solution. The number of solved instances is also shown for reference.
We experiment over a 20 × 20 grid with a 10% obstacle rate and an
increasing number of agents.

the makespan of the cost-optimal solution and the makespan
used in the second-last run of ASP-cost. That is, intuitively,
δoracle is a the minimum possible extra effort that ASP-cost
would need to make to find the optimal solution if we had an
oracle for the makespan of the cost-optimal solution.

Tables 4, 5, and 6 show the average δ and δoracle for the
grid and warehouse benchmarks. We observe that δ tends
to be higher than δoracle. Moreover, the growth rate of δ is
higher than that of δoracle. This suggests that there is sig-
nificant potential for the improvement of ASP-cost. A key
improvement factor would come from finding a bound better
than that given by Theorem 1.

D. OBSTACLE-FREE N × N GRIDS
In the experiments presented above on a 20 × 20 grid,
we observed that success rate drops as the number of agents
increases. Indeed, in Figure 7 it can be observed that when
we solve instances with 58 agents we obtain a success rate of
50%, but whenwe attempt to solve larger problems, we obtain
lower success rates. Therefore one could argue that for 20×
20, 58 agents is the point at which problems start becoming
hard. In other words, given that the area of the 20 × 20
grid is 400, we say that problems become harder when the
occupation rate is around 58/400 or 14.5%.

We wanted to understand for which occupation rate we
observe that success rate drops below 50% as a function of
grid size. To do this we designed a new set of experiments
in which we use obstacle-free grids of size N × N with N ∈
{8, 16, 32}. For grids of size 8×8 we set the number of agents
to a number in {2, 4, . . . ,N 2

− 2}, and generated 10 random

26896 VOLUME 9, 2021



R. N. Gómez et al.: Compact ASP Encoding of MAPF

FIGURE 7. Success rate and number of solved instances as the number of agents is varied on a 20 × 20 grid with 10%
obstacle rate. ASP-makespan finds a makespan-optimal solution whereas ASP-cost finds a cost-optimal solution.

FIGURE 8. Success rate and number of solved instances as the obstacle rate is varied on a 20 × 20 grid
with 20 agents. ASP-makespan finds a makespan-optimal solution whereas ASP-cost finds a cost-optimal
solution.

TABLE 5. On a 20 × 20 grid with 20 agents and an increasing obstacle
percentage, the average δ and average δoracle are shown, which are,
respectively, proxies to the actual and ideal additional effort needed to
find the cost-optimal solution. The number of solved instances is also
shown for reference.

problems for each number of agents. For the 16 × 16 and
32 × 32 grids we set the number of agents to a value in
{5, 10, . . . , 150} and also generate 10 random problems.

Figure 10 allows us to make two observations.

1) The point at which the success rate crosses 50% is
approximately 31 agents (48% occupation) for 8 × 8,
66 agents (25% occupation) for 16× 16, and 70 agents

TABLE 6. On a warehouse map, with an increasing number of agents, the
average δ and average δoracle are shown, which are, respectively, proxies
to the actual and ideal additional effort needed to find the cost-optimal
solution. The number of solved instances is also shown for reference.

(1.7 % occupation) for 32 × 32. Thus the occupation
rate at which problems become harder drops quickly as
the size of the grids increase.

2) On 8 × 8 and 16 × 16 grids our solver outperforms
ICBS-h, but it does not do so on 32× 32 grids.

Together these two observations may seem to indicate that
our solver does not scale well for larger grids. We argue that
this is not necessarily the case. Indeed, what happens is that
problems are becoming much harder when the grid size is
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FIGURE 9. Success rate and number of solved instances as the number of agents is varied on the warehouse map of
Figure 6. ASP-makespan finds a makespan-optimal solution whereas ASP-cost finds a cost-optimal solution.

FIGURE 10. Success rate of our solver versus ICBS-h on obstacle-free grids of different sizes.

FIGURE 11. Success rate on a 20 × 20 grid with 10% obstacle rate, where
timeout per instance is set to 15 seconds, and the number of agents
varies.

increased and thus they require more time. The apparent drop
in performance is therefore due to the fact that we did not
increase the runtime limit (set for 300 seconds for every run).

To test this hypothesis, we use our 20× 20 data and show
how would success rate would look like if the runtime limit

had been set to 15 seconds (Figure 11). We observe that given
just 15 seconds per instance, ICBS-h outperforms our solver.

Another piece of evidence suggesting that 32 × 32 grids
require more execution time per instance comes from the
form of the average runtime curves. Figure 12 shows the
total runtime and grounding time (i.e., the time spent on the
grounding phase) on a logarithmic scale. In both the 8 × 8
and the 16× 16 grids, using a logarithmic scale, we observe
that the runtime curve is essentially a straight line, showing
that average runtime grows exponentially with the number of
agents. For the 32× 32 grids, curves resemble a logarithm.
Interestingly, when we limit the runtime to 15 seconds on

our 20×20 grid we also obtain a logarithmic-like curve (Fig-
ure 13). Our ASP encodings grow linearly with the number
of agents and the fact that runtime grows exponentially is
consistent with that fact. But since runtime on our 32 × 32
grid experiments does not exhibit this tendency, we conclude
that more timeout is needed per instance. More research is
necessary to establish whether or not in any setup it is the case
that a linear rather than an exponential increase in runtime is
due to a time limit set too low.
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FIGURE 12. Execution time and grounding time required for the instances on obstacle-free grids of different sizes.

FIGURE 13. Total solving and grounding time for the 20 × 20 grid with
10% obstacle rate, where timeout per instance is set to 15 seconds, and
the number of agents varies.

E. INCORPORATING FOLLOW CONFLICTS
As we mentioned above, follow conflicts are not taken into
account by many of the solvers in the literature. In this
Section, however, we compare our approach, with follow con-
flicts turned on, to MDD-SAT, a solver that natively supports
these conflicts.

Figure 14 shows results obtained for the 8× 8 and 20× 20
grids described in Section VII-A. We observe that in 8 × 8
grids the performance of both solvers is very similar, while in
20×20 grids our approach seems to scale slightly better than
MDD-SAT.

VIII. SUMMARY AND PERSPECTIVES
In this article we proposed the first compilation of MAPF
to ASP for sum-of-costs optimization. We started off by
proposing a basic encoding that is quadratic on the number of
agents, just like existing approaches to MAPF via ASP (e.g.
[14], [16], [24], [27]), and like the encoding of MAPF to SAT
ofMDD-SAT [11], a state-of-the-art SAT-based sum-of-costs
MAPF solver. Second, we proposed an encoding that grows
linearly with the number of agents, and show how we can
benefit by running Dijkstra’s algorithm during preprocessing
time to generate a more compact encoding.

In our empirical evaluation we used square grids with
increasing number of agents/obstacles, and a warehouse
map. We observed that our linear encoding outperforms
our quadratic encoding, solving substantially more instances
given the same amount of time, leading to a higher success
rate. Moreover, our approach outperforms the search-based
solver ICBS-h, and is competitive with the SAT-based solver
MDD-SAT when follow conflicts are considered. We con-
clude that the compilation of MAPF to ASP is a competitive
approach for solving highly congested MAPF instances.

In the second part of our empirical evaluation, we studied
the performance of our approach for finding makespan-
optimal solutions, that is, solutions in which, lexicograph-
ically, makespan is minimized first and cost is minimized
second. We observe that this approach outperforms the
original approach substantially in terms of solving time
and success rate, while only sacrificing optimality slightly;
indeed, makespan-optimal solutions are often less than 1%
suboptimal. This suggests that from a practical perspective,
in applications in which there is high congestion, makespan-
optimal solutions may be preferable to cost-optimal
solutions.

Our approach, like other compilation approaches, does not
scale to large grids. Indeed, in such grids grounding time
becomes exceedingly large, making our approach impracti-
cal. An open line of research is to incorporate our ideas to
distributed, non-optimal compilation-based approaches, that
scale to much larger grids. An example of such an approach is
[27], which can scale to grids of size 100×100withmore than
1,000 agents. In its core, [27] uses a quadratic compilation of
MAPF to ASP, which could bemade linear—and hence likely
faster—using our ideas.

Another interesting line of research is to construct linear
MAPF-to-SAT encodings, were, based on the improvements
seen with ASP, we would expect significant improvements
in performance. An important observation, however, is that
ASP compilations are more elegant than SAT compilations
since grounding in ASP is carried out starting from a lifted
representation.
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FIGURE 14. A comparison of our approach with follow conflicts and MDD-SAT on 8 × 8 and 20 × 20 grids, with 10% obstacles and an increasing
number of agents.
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