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Abstract 

A Finite Energy QCD sum rule at non-zero temperature is used to determine the qa- and the T-dependence of the prrrr 
vertex function in the space-like region. A comparison with an independent QCD determination of the electromagnetic pion 
form factor F?7 at T # 0 indicates that Vector Meson Dominance holds to a very good approximation at finite temperature. 
At the same time, analytical evidence for deconfinement is obtained from the result that gF(q2, T) vanishes at the critical 
temperature T,, independently of q2. Also, by extrapolating the p?z?r fotm factor to (i’ = 0, it is found that the pion radius 
increases with increasing T, and it diverges at T = T,. @ 1997 Elsevier Science B.V. 

One of the popular reactions proposed for probing 
the quark-gluon plasma is dilepton production in high 
energy heavy ion collisions [ 1 I. An important piece 
of information required to calculate the dilepton pro- 
duction rates, in the hadronic phase, is the tempera- 
ture variation of the electromagnetic pion form fac- 
tor, F,(q2). In these calculations it has been usually 
assumed that Vector Meson Dominance (VMD) re- 
mains valid at non-zero temperature and, with a few 
exceptions [ 21, that the rho-meson mass and width are 
temperature independent. It has been argued long ago, 
though, that all hadronic widths should increase with 
increasing temperature, and presumably diverge at the 
critical temperature for deconfinement [ 2-41. This is 

expected to hold also for particles which are (hadron- 
ically) stable at T = 0, e.g. nucleons and pions. Actual 
calculations in various frameworks do support such a 
scenario [5,6]. In this sense, the imaginary part of 
a hadronic Green’s function, i.e. the width, may be 
viewed as a phenomenological signal for the occur- 

rence of deconfinement. In addition, a QCD sum rule 
determination of the pion form factor at finite temper- 
ature clearly shows that it depends on Tin such a way 
that it vanishes at the critical temperature, while the 
pion radius diverges there [ 71. This determination of 
F,( Q2, T) does not rely on any form of VMD, as it 
is based on the three-point function associated to the 
electromagnetic current and two axial-vector currents, 
thus projecting directly the electromagnetic pion form 
factor (in the space-like region q2 = -Q2 < 0). 

In this paper we study Finite Energy QCD sum rules 
(FESR) at T z 0 for the three-point function in- 
volving the rho-meson interpolating current plus two 
axial-vector divergences. This allows us to determine 
the Q2- and the T-dependence of the p?r?r coupling, as 
well as to gauge the validity of VMD at finite tempera- 
ture. We begin with the determination of gPfl( Q2) at 
zero temperature (for an earlier analysis using Laplace 
sum rules see [ 8]), in order to establish normaliza- 
tions, as well as to check VMD here. This can be ac- 
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complished by using g,,,,(Q*) determined from the 
sum rules, together with VMD, and comparing the re- 
sulting pion form factor with the data. At finite tem- 
perature, we can also compare it with the direct deter- 
mination [ 71, i.e. with a theoretical result not relying 
on VMD. 

Since the latter does fit the data very well at T = 0, 
we can adopt it as the benchmark &(Q2,T) in the 
absence of experimental data at T f 0. Agreement be- 
tween the two expressions could be taken as evidence 
in support of VMD at finite T. 

We consider first the T = 0 correlator 

&(q) = i* 
ss 

d4xd4ye-iq.reip’.x 

x (OIT(j~(x)J~(?l)j,(0))10) 

= n, (q2)P, + ~2(4*hlfi 9 (1) 

where J$(.Y) = i : [U(Y)Y,U(Y) - d(r)rPd(u>l:, 

j,(x) = (nz,, +mL/) : d(x)W(x):, qfi = (P’ -P),, 
and Pp = (p’ + p),. Calculating the imaginary part 
of the above three-point function in perturbative QCD 
to leading order in CY,~ and the quark masses gives the 
result 

Im IIfi]ocb = 3 
( rn,, + tnd ) 2 

4 [(~+s’+Q~)*-44ss’]~/~ 

x [ -Q2ss’Pp + ss’( s - s’)q,] , (2) 

where s = p*, s’ = p/2, and Q* = -q* 2 0. The 
hadronic counterpart of this correlator may be obtained 
after saturation with the pion intermediate state, and 
using the current-field identity 

M* 
jz = -LIP; 

fP 
(a= 1,2,3) > (3) 

where j; is the isospin current, pz is the rho-meson 
field, and the experimental value of the coupling is 
f, = 5.0 f. 0.1, as obtained from the decay rate of the 
rho-meson into e+e- [ 9 1. The result for the hadronic 
spectral function, e.g. Im n 1 is 

+f3s-s0)8(s’-s~)Im ~I(s,s',Q*)IQCD, (4) 

where f?r = 93.2 MeV and gP,( MS) = 6.06 If 0.03 
[ 91. In principle, gplrn is a form factor, i.e. a func- 
tion of q*. In the simpler version of VMD, i.e. sin- 
gle rho-meson dominance, this coupling would be 
strictly constant. However, there are radial excitations 
of the rho-meson (the p( 1450), p( 1700)) etc.) which 
make a non-negligible contribution and turn the cou- 
pling into a form factor. For instance, naive VMD ap- 
plied to the electromagnetic pion form factor predicts 

&z-lrl.fP = 1, while the experimental value is 20% 
higher. Hadronic models, such as e.g. the dual mode1 
[ lo], account for this difference by incorporating the 
rho-meson radial excitations; this gives gPp,JO) / fp = 
1, but g,,,,( M;) / fp N 1.2, in agreement with exper- 
iment. At the same time, naive VMD does not fit the 
data too well in the space-like region [ lo] ; much bet- 
ter fits are obtained by allowing for a q*-dependence 
of gPfllr. In addition to the pion pole contribution in 
Eq. (4)) there are additional terms from the pionic ra- 
dial excitations, the al meson, etc. However, we shall 
include these in the hadronic continuum, which is sup- 
posed to be well approximated by the perturbative 
QCD expression Eq. (2), provided that the thresholds 
so N sh > l-3 GeV2. 

At this point one can invoke Cauchy’s theorem 
which leads to Finite Energy Sum Rules (FESR); the 
one of lowest dimension in the present case is 

so 4 

ss Im IIl(s,~‘)]t-t~bdsds’ 

0 0 

so s; 

= 
JS 

ImlIt(s,s’)}qc&sds’, 

0 0 

(5) 

where SO, sb, are the continuum thresholds, i.e. the 
onset of perturbative QCD. After substitution of the 
QCD and hadronic spectral functions in the FESR one 
obtains 

gpmSQ*) 
fP 

(6) 

where 

Z(Q*) = z(3 + $) 

+$~~o+~Q2)l~(Q2~22,)9 (7) 
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and use was made of the Gell-Mann, Oakes and Ren- 
ner (GMOR) relation [ 1 I] 

f;P; = -(mu + ml) (44). (8) 

The result for I (Q*) above was obtained after a dou- 
ble integration in the s, s’ plane. The region of in- 
tegration is a triangle in this plane, but use of other 
shapes doesn’t introduce appreciable differences in the 
numerical results for gPlrT(Q2). An advantage of us- 
ing FESR as opposed to e.g. Laplace transform QCD 
sum rules, is that the latter requires knowledge of the 
vacuum condensates of all dimensions. In contrast, at 
most one condensate contributes to a FESR of a given 
dimension. In the present case, since the dimension 
of II] is d = 2, there are no condensates appearing 
in the lowest dimensional FESR. Invoking now Ex- 
tended Vector Meson Dominance (EVMD) , i.e. VMD 
but with allowance for a possible Q2-dependence of 
g,,, leads to a well known expression for the elec- 
tromagnetic pion form factor 

MQ*)IEvMD = 

Substituting the 
gives 

% spm(Q*> 
$+Q* fp ’ (9) 

FESR result Eq. (6) into Eq. (9) 

F&Q*) IEVMD = &-$Q*[$(3 + $) 

+ $(SO + iQ*) ln (Q2y2so)] . (10) 

This result can be compared with that based on a three- 
point function involving the electromagnetic current 
and two axial-vector currents [ 121, which projects the 
pion form factor directly, and hence makes no use of 
VMD, i.e. 

F&Q*) = ‘1 43 
167r* f?, ( 1 + Q*/24)* ’ 

(11) 

Although Eqs. ( 10) and ( 11) look structurally very 
different, they are numerically very similar for Q2 > 
0.5 GeV*, if so N 2.18 GeV*, and sI, 21 1 GeV*. 
The latter value leads to a very good fit of the data 
above 1 GeV* [ 121. On the other hand, with SO 2i 
2.18 GeV2, the extrapolation of Eq. (6) to Q* = 0 
gives gpnn( 0) / fP N 1. It should be stressed that the 
onset of the continuum need not be the same in the 
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Fig. 1. The electromagnetic pion form factor at T = 0, deter- 
mined from the QCD-FESR, Eq. ( 11) , i.e. without invoking VMD 
(dashed curve (a) ), compared with the result of the independent 
QCD-FESR for g,, plus VMD, Eq. ( 10) (solid curve (b) ). 
Experimental data is from [ 201. 

two cases, as the correlators are different. A priori, all 
one knows is that so ($,) should roughly be in the 
region where the resonances loose prominence, and 
the hadronic continuum takes over, i.e. somewhere in 
the interval l-3 GeV*. On the other hand, the extrap- 
olation to Q* = 0 of any of the above results should 
not be taken too seriously, as the Operator Product 
Expansion, the backbone of QCD sum rules, diverges 
at the origin. The good numerical agreement between 
Eqs.(10)and(11),asshowninFig.1,maybeseen 
as a reflection of the validity of EVMD. In any case, 
our main purpose here is not another fit to the data at 
T = 0, but rather the non-zero temperature behaviour 
of the p7rr form factor. Since it is actually the ra- 
tio g,,( Q*, T)/g,,(Q”, 0) which counts, modestly 
reasonable T = 0 results are normally sufficient. 

Next, we reconsider the above FRSR at finite tem- 
perature. Thermal corrections to II* (q*) IQcD can be 
calculated in the standard fashion [ 13-151, and we 
find for the imaginary part 

Imnl(s,s’,Q*,T) 

=Imll~(s,s’,Q~,O)F(s,s’,Q*,T), 

where 

(12) 

F( s, s’, Q*, T) = 1 - nt - n2 - n3 

+nln:!+nln3+nzns, (13) 

(14) 
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113 = nF (I (15) 

IIF = ( I + e”)-’ is the Fermi thermal factor, and 

x = s + s’, Y = s - s’. On the hadronic side, both fr 

and (&) will develop a temperature dependence, and 
SO will SO. The latter follows from the notion that as 

the resonance peaks in the spectral function become 
broader, the onset of the continuum should shift to- 

wards threshold [ 14-l 61. The temperature behaviour 

of this asymptotic freedom threshold has been ob- 

tained from the lowest dimension FESR associated to 

the two-point function involving the axial-vector cur- 

rents [ 14-161, with fn( T) as a known input (for a 

recent updated discussion see [ 17 ] ) . For temperatures 

not too close to the critical temperature T,, say T < 
0.8T,, the following scaling relation has been found to 
hold to a very good approximation [ 17] 

(16) 

We shall make use of this relation in the sequel, to- 

gether with the results of [ 181 for f,(T) and ((?q)T, 

in the chiral limit, as well as for m, # 0. In addi- 
tion, we shall invoke the GMOR relation at finite T, 
which only gets modified at next to leading order in 

the quark masses [ 171. 
The T # 0 FESR now reads 

g,AQ2, T) 

fP 

3 f*(T) Q* =- “---_(Q2 + M;)I(Q~J-), 
87~~ (442, M:, 

(17) 

where 

.x1(T) x 

l(Q*,T) = t 
s .I 

dx dy 
(x2 - Y2) 

(Q4 + 2xQ* + y2J3/* 
0 -1 

x F(x,y,Q*.T) > (18) 

and the integration in Eq. (18) must now be done 
numerically. The rho-meson mass was assumed to 
be temperature independent; the modest increase 
of M, near T, as obtained from QCD sum rules 
[ 191, and other methods [6], does not change qual- 
itatively the conclusions. The results for the ratio 
gp,,(Q2,T)/gp,,(Q2,0) are shown in Fig. 2 for 

“n 06. 
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Fig. 2. The ratio of the p”rr form factors at finite and zero tem- 
peratures as a function of T/T,. Curve (a) uses f,(T), (&4)(T), 

and so(T) in the chiral limit, and curve (b) away from this limit 
( mg # 0). Both curves are for Q* = 1 GeV*, while other values 
of Q* give essentially the same ratios. 

f,(T) and k&4) r in the chiral limit (curve (a)), as 

well as for mq # 0 (curve (b) ) . Although Q* = 
1 GeV2 was used in this figure, higher values of Q2 
give similar results. Particularly, and importantly, the 

vanishing of the ratio at or near the critical temperature 

is basically Q*-independent. This provides analytical 
evidence for deconfinement. The good agreement be- 

tween the pion form factor using g,,,& Q*) plus VMD 

and that obtained directly without invoking VMD, 

persists at T f 0. An extrapolation of these results to 

Q2 = 0 allows for a determination of the p7r7r root 
mean squared radius. Although this is divergent at 
any temperature because of mass singularities, the ra- 

tio (r2>(T)/(~2)(0) is well defined; it increases with 

increasing T until the critical temperature where it 
becomes infinite, thus signalling deconfinement. The 
temperature behaviour of this ratio is shown in Fig. 3. 

To conclude, we obtained direct evidence support- 
ing Extended VMD at T = 0 from a comparison of 

the prr vertex function determined from QCD sum 

rules and the experimental data on the electromagnetic 
pion form factor. At finite temperature, and in the ab- 
sence of data, we compared our determination with a 
benchmark pion form factor obtained from indepen- 
dent QCD sum rules and not using VMD. The close 
agreement found between the two expressions may 
be interpreted as supportive of (Extended) VMD at 
T # 0. At the same time, our determination provides 
additional analytical evidence for deconfinement, as 
gplr,r( Q*, T) decreases with T, vanishing at the criti- 
cal temperature, while the ratio of the PVT root mean 
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Fig. 3. The ratio of the (strong) pion radius at finite and at zero 
temperatures as a function of T/T,. 

square radii (r2) (T) / (r2) (0) increases with tempera- 

ture and becomes infinite at T = T,. 
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