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Abstract

RR Lyrae variables are widely used tracers of Galactic halo structure and kinematics, but they can also serve to
constrain the distribution of the old stellar population in the Galactic bulge. With the aim of improving their near-
infrared photometric characterization, we investigate their near-infrared light curves, as well as the empirical
relationships between their light curve and metallicities using machine learning methods. We introduce a new,
robust method for the estimation of the light-curve shapes, hence the average magnitudes of RR Lyrae variables in
the Ks band, by utilizing the first few principal components (PCs) as basis vectors, obtained from the PC analysis
of a training set of light curves. Furthermore, we use the amplitudes of these PCs to predict the light-curve shape of
each star in the J-band, allowing us to precisely determine their average magnitudes (hence colors), even in cases
where only one J measurement is available. Finally, we demonstrate that the Kg-band light-curve parameters of
RR Lyrae variables, together with the period, allow the estimation of the metallicity of individual stars with an
accuracy of ~0.2-0.25 dex, providing valuable chemical information about old stellar populations bearing
RR Lyrae variables. The methods presented here can be straightforwardly adopted for other classes of variable
stars, bands, or for the estimation of other physical quantities.
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1. Introduction

RR Lyrae variables are tracers of the old stellar populations
of galaxies, conveniently identifiable due to their characteristic
light curves and well-defined mean brightnesses. The near-
infrared (near-IR) light curves of RR Lyrae stars are dimin-
ished in amplitude and contain fewer features than at optical
wavelengths, making them challenging to discover. This is
especially true of first-overtone (RRc) and double-mode (RRd)
subtypes. Therefore, in this study, we are only investigating the
near-IR properties of fundamental-mode RR Lyrae variables
(RRab subtype, from here on RRLs). Nevertheless, the lower
absorption in the infrared bands, as well as the slightly lowered
effect of metallicity on the absolute magnitudes, makes near-IR
observations a tempting option for the determination of the
properties of old stellar populations. The reduced dependence
on metallicity in the near-IR is, however, still a subject of some
debate. In particular, the reduction is not seen in the
calculations by Marconi et al. (2015, see their Table 6),
whereas it is clearly present in the relations provided by
Catelan et al. (2004). Note that in the latter study, evolutionary
effects were fully taken into account, using synthetic horizontal
branch modeling; indeed, it is shown that one of the main
advantages of the near-IR regime is the reduced dependence on
evolutionary effects, which become increasingly more impor-
tant as one moves toward bluer bandpasses.

Generally, to derive distances to these variables, their mean
apparent magnitudes in at least two bands have to be
determined, allowing the estimation of the line-of-sight
extinction toward each star. For classical radial pulsators, such
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as Cepheids and RRLs, it is customary to fit the light curves
with a truncated Fourier series (see, e.g., Simon & Lee 1981),
and to use the intercept of this fit as a measure of the mean
apparent magnitude. The lower amplitudes and relatively high
scatter of near-IR photometry present a challenge for this
technique; in time-series with a limited amount of measure-
ments, there are not enough data to accurately determine the
coefficients of the high-order truncated Fourier series needed to
describe sharp features, such as the region of the minimum
light of the light curves. Alternatively, light-curve templates,
such as those of Jones et al. (1996), could be used as model
representations of the time-series. However, this approach has
drawbacks: the Jones et al. (1996) templates only cover the
K band, and the J-band light curves of fundamental-mode
RR Lyrae are markedly different; with only four RRL
templates, not all possible light-curve shapes are represented.

Although the effect of metallicity on the absolute magnitudes
is lessened in the near-IR compared with the optical (e.g., Bono
et al. 2003; Catelan et al. 2004), knowledge of individual RRL
metallicities can still provide valuable insight into the star
formation histories of the oldest populations of the Milky Way
in parts not accessible by optical spectroscopy and/or
photometry. Relationships between the light-curve shape,
period, and the iron abundance [Fe/H], such as the widely
used relation of Jurcsik & Kovéacs (1996), provide a convenient
estimate in the optical regime. Despite their obvious usefulness,
no such relation has been established so far in the near-IR
bands.

The main motivation for the current study is the VISTA
Variables in the Via Lactea (VVV) ESO Public Survey
(Minniti et al. 2010), an extensive Kg-band variability survey,
also including YZJH imaging, conducted with the VIRCAM
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near-IR camera at the VISTA 4.1 m telescope at Paranal
Observatory, Chile. As it surveys the most crowded regions of
the Milky Way, the Galactic bulge and southern disk, VVV has
the capability of uncovering previously uncharted parts of our
Galaxy, utilizing different stellar tracers, such as Cepheids and
RRLs. For example, RRLs identified by the Optical Gravita-
tional Lensing Experiment variability survey (OGLE;
Soszyriski et al. 2011) have been combined with VVV
photometry to determine the distance of the Galactic bulge
and to constrain the spatial distribution of its old component
(Dékédny et al. 2013). Due to the limiting factor of the
diminished amplitudes, searches for new RRLs in the VVV
fields have been generally limited to RRab variables.
Notwithstanding, directed searches have already led to the
discovery of new RRLs (Gran et al. 2015, 2016; Minniti
et al. 2017a) in the VVV. These have also led to the discovery
of a new Galactic globular cluster by the spatial clustering of
RRLs in the VVV disk fields (Minniti et al. 2017b). The need
for the reproducible, automatic classification of RRLs has led
to the development of a machine-learned classifier for finding
RRab variables in the Kg-band (Elorrieta et al. 2016), which
enables the discovery of thousands of new RRLs among the
hundreds of millions of stellar sources of the VVV survey.

In this article, we introduce several new methods, motivated
by the desire of making maximum use of the RRLs in the VVV
survey, for the analysis of variable stars in general, and for the
near-IR light curves of RRLs in particular. Utilizing a high-
quality RRL sample (Section 2.1), we apply principal
component analysis (PCA) to the Kg-band light curves with
the aim of decreasing the parameters required to accurately
describe the various light-curve shapes of RRab variables
(Section 2). We demonstrate how the J-band light-curve shape
can be approximated, utilizing the Ks-band principal comp-
onent amplitudes, allowing the determination of the J-band
average magnitudes, even from a single observation
(Section 2.4). Utilizing the first few principal components as
basis vectors, we describe a robust nonlinear fitting technique
(Section 3). Finally, we demonstrate, on a selected sample of
OGLE-IV RRLs, that the light-curve shapes of RRLs in the Kg
band, together with the pulsation period, can be used to
estimate their metallicities, similar to their optical light curves
(Section 4). The methods developed here are utilized in an
accompanying paper (Dékdny et al. 2018) for the characteriza-
tion of the RRL population of the VVV disk fields.

2. Model Representation of Near-IR RRab Light Curves

We have elected to utilize PCA to give a compact
representation of the near-IR RRL light curves. PCA is a
widely used dimensionality reduction procedure to transform
an original set of variables by an orthogonal transformation into
a new set of linearly uncorrelated variables called principal
components (PCs). Generally, the first few PCs contain most of
the variation in the original data. The procedure was first
described more than a century ago by Pearson (1901), and then
rediscovered and named by Hotelling (1933). PCA has two
main uses for data analysis: (1) reducing the number of
dimensions of a data set by keeping only the most significant
PCs and (2) identifying hidden trends in the data. As
astronomical data sets are inherently multidimensional (e.g.,
images, spectra, individual element abundances of stars, etc.),
PCA has been adopted for both purposes by the astronomical
community. A non-exhaustive list of PCA applications
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includes spectral classification of galaxies (Galaz & de
Lapparent 1998), stars (Singh et al. 1998), and quasars (Yip
et al. 2004); modeling systematics in light curves (Jordan
et al. 2013); removal of galaxies from images with the aim of
finding gravitionally lensed background galaxies (Paraficz
et al. 2016); analysis of galaxy velocity curves (Kalinova
et al. 2017); as well as looking for correlations between diffuse
interstellar band features (Ensor et al. 2017).

In the context of variable stars, the most important
applications of PCA for the study of Cepheids and RR Lyrae
stars were done by Kanbur et al. (2002), Kanbur & Mariani
(2004), Tanvir et al. (2005), and Bhardwaj et al. (2017), while
Deb & Singh (2009) analyzed a range of variable star classes
with the aim of evaluating PCs as a metric for light curves in
large databases.

2.1. The Light-curve Training Set

We have collected high-quality Ks and J-band photometry
available from the literature for 101 RRLs. Table 1 summarizes
the training set. The available data can be categorized into three
main types: near-IR photometry taken with the aim of Baade-
Wesselink analysis of RRLs (Barnes et al. 1992; Cacciari et al.
1992; Fernley et al. 1989, 1990; Jones et al. 1987a, 1987b,
1988, 1992; Liu & Janes 1989; Skillen et al. 1993); serendi-
pitous observations of RRLs in the 2MASS (Szabé et al. 2014)
and WFCAM (Ferreira Lopes et al. 2015) calibration fields;
and the extensive J and Ky variability study of w Centauri by
Navarrete et al. (2015). There are other sources of near-IR time-
series photometry available in the literature for RRLs (see, e.g.,
Angeloni et al. 2014), but we decided to utilize only
photometry where the phase coverage and quality of the
observations are adequate for the accurate determination of the
near-IR light-curve shapes, at least in the Kg band.

Examining Table 1 reveals that the variables in the field of
w Centauri (Navarrete et al. 2015) dominate the sample.
Although this could introduce a heavy bias toward a particular
metallicity, wCen contains multiple stellar populations (e.g.,
Valcarce & Catelan 2011; Gratton et al. 2012, and references
therein), with two contributing to the RRL sample (Sollima
et al. 2006, and references therein). These two populations have
[Fe/H] ~ —1.2 and ~—1.7. The variables utilized from the
photometry of Ferreira Lopes et al. (2015) are all members of
the globular cluster M3, with a metallicity of ~—1.5 (Carretta
et al. 2009). Furthermore, the field RRLs have a wider
metallicity distribution, allowing us to cover the physical
parameter space of RRLs.

As for the period distribution, the sample covers most of the
possible period range of RRLs, from 0.39 to 1.01 days. While
very metal-rich RRLs can have periods as short as about
0.35 days, their optical light-curve shapes are not drastically
different from those with periods around 0.4 days. Therefore,
we can surmise that the present data set can be considered
representative of RRLs and their light-curve shapes.

2.2. Data Preparation

To apply PCA to our data outlined in Section 2.1, we have to
describe their phase-folded light-curve shape. As mentioned in
Section 1, it can be hard to accurately represent the near-IR
RRL light curves as a Fourier series. Furthermore, our light
curves have vastly different numbers of data points: NSV 660
has almost 3000, while for the RRL found in w Centauri,



Table 1

Collection of RR Lyrae near-IR Photometric Observations

ID* Period® J Reference  [Fe/H] ID* Period® J Reference  [Fe/H]* ID? Period® J Reference ~ [Fe/H]*
AV Peg 0.390375 + 10 +0.08 w Cen V055 0.581724 + 11 w Cen V041 0.662942 + 11
V445 Oph 0.397020 + 4 +0.01 w Cen V181 0.588370 + 11 w Cen Vo013 0.669039 + 11
w Crt 0.412012 + 12 —0.45 w Cen V025 0.588500 - 11 w Cen V114 0.675307 + 11 —1.61
AR Per 0.425549 + 10 —0.14 w Cen V045 0.589116 + 11 w Cen V149 0.682728 + 11
SW And 0.442262 + 1,9, 10 —0.06 w Cen Vi25 0.592888 + 11 —1.81 w Cen V046 0.686971 + 11
RR Leo 0.452390 + 10 —1.30 w Cen V108 0.594458 ... 11 —1.63 w Cen V088 0.690211 + 11
w Cen V112 0.474359 + 11 RV Phe 0.596400 + 2 w Cen V102 0.691396 + 11 —1.65
BB Pup 0.480532 + 12 —0.35 TT Lyn 0.597436 + 10 —1.50 w Cen V097 0.691898 + 11 —1.74
w Cen V130 0493250 - 11 w Cen V033 0.602324 + 11 —1.58 w Cen V007 0.713026 + 11
WVSC 054° 0.501267 + 5 —1.50 w Cen V090 0.603404 + 11 —1.78 VY Ser 0.714094 + 4,8
w Cen V074 0.503209 + 11 w Cen V049 0.604650 + 11 w Cen V116 0.720074 - 11 —1.11
w Cen NV457  0.508619 + 11 uuU Cet 0.606074 + 2 w Cen V034 0.733967 + 11
w Cen V023 0.510870 + 11 —1.35 w Cen V079 0.608276 + 11 w Cen V172 0.738049 .- 11
w Cen V107 0.514102 + 11 w Cen V118 0.611618 + 11 —2.04 w Cen V085 0.742758 + 11
WVSC 055¢ 0.514810 + 5 —1.50 w Cen V020 0.615559 + 11 —1.52 w Cen V109 0.744098 + 11 —1.70
w Cen V005 0.515274 .- 11 —1.24 w Cen V027 0.615680 + 11 —1.16 w Cen V111 0.762905 + 11 —1.79
WVSC 047° 0.519611 + 5 —1.50 w Cen V062 0.619770 + 11 w Cen V099 0.766181 11 —1.91
w Cen V008 0.521329 + 11 wCen  NV458  0.620326 + 11 w Cen V054 0.772915 + 11 —1.80
WVSC 046° 0.529820 + 5 —1.50 w Cen V032 0.620347 - 11 w Cen V038 0.779061 + 11 —1.64
w Cen V120 0.548537 + 11 —1.15 w Cen Vo018 0.621689 + 11 w Cen V026 0.784720 + 11 —1.81
WVSC 050° 0.551535 + 5 —1.50 w Cen V096 0.624527 + 11 w Cen V057 0.794402 + 11
w Cen V100 0.552745 + 11 SS Leo 0.626344 + 4 —1.56 w Cen Vol15 0.810642 + 11 —1.68
RR Cet 0.553038 + 10 —1.29 w Cen V004 0.627320 + 11 w Cen V268 0.812922 + 11 —~1.76
TU UMa 0.557648 + 1 —1.15 w Cen V115 0.630469 + 11 —1.64 w Cen V063 0.825943 + 11
w Cen V067 0.564446 .- 11 —~1.19 w Cen V146 0.633092 - 11 w Cen V128 0.834988 + 11
w Cen V044 0.567545 + 11 —1.29 w Cen V040 0.634072 + 11 —1.62 w Cen V144 0.835320 + 11
w Cen V056 0.568023 11 w Cen Vi22 0.634929 + 11 —1.79 w Cen V003 0.841258 + 11
SW Dra 0.569670 + 7 —0.95 NSV 660 0.636985 + 13 —1.31 w Cen V411 0.844880 + 11
w Cen V106 0.569903 11 —1.90 w Tuc 0.642230 + 2 —1.37 w Cen V104 0.866308 + 11
RV Oct 0.571163 + 12 —1.08 w Cen V086 0.647844 + 11 —1.99 w Cen V091 0.895225 + 11 —1.81
w Cen V113 0.573375 + 11 X Ari 0.651180 + 3,6 —2.10 w Cen V150 0.899367 + 11
w Cen V051 0.574152 + 11 —1.84 w Cen V134 0.652903 + 11 wCen  NV455  0.932517 + 11
WY Ant 0.574341 + 12 —1.39 w Cen V069 0.653195 .- 11 w Cen V263 1.012158 + 11 -1.73
w Cen V073 0.575215 + 11 w Cen V132 0.655656 11
Notes.

 Unique identifier of the variable.

® Period in days.

€ Flag whether the J-band data are present and utilized in Section 2.4.

9 Sources of the iron abundances: w Cen stars: Sollima et al. (2006); M3 stars: Carretta et al. (2009); NSV 660: Szabd et al. (2014); all other stars: Jurcsik & Kovacs (1996).
¢ The variables WVSC 054, 055, 047, 046, and 050 are V83, V116, V108, V55, and V40, respectively, from the globular cluster Messier 3 (Clement et al. 2001; Ferreira Lopes et al. 2015).
References. (Photometric system): 1—Barnes et al. (1992) (CIT), 2—Cacciari et al. (1992) (ESO), 3—Fernley et al. (1989) (AAO), 4—Fernley et al. (1990) (SAAO), S—Ferreira Lopes et al. (2015) (WFCAM),
6—1Jones et al. (1987a) (CIT), 7—Jones et al. (1987b) (CIT), 8—Jones et al. (1988) (CIT), 9—Jones et al. (1992) (CIT), 10—Liu & Janes (1989) (CIT), 11—Navarrete et al. (2015) (VISTA), 12—Skillen et al. (1993)
(SAAO), 13—Szabd et al. (2014) (2MASS). For the definitions of the photometric systems, we refer to Gonzalez-Fernandez et al. (2018, VISTA), Hodgkin et al. (2009, WECAM), Carpenter (2001), and references
therein (all other systems).
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Navarrete et al. (2015) only acquired a total of 100 and 42
epochs in the Kg and J bands, respectively.

As an alternative, folded light curves can be described as the
linear sum of a series of different basis functions of choice,
such as Gaussians, which can be aligned to the phased light-
curve points with ordinary least squares (OLS) regression. We
have chosen to adopt the Gaussian sum fitting example of
Figure 8.4 of Ivezi¢ et al. (2014), to the K5 and J-band RRL
light curves. As RRL light curves are strictly periodic, we have
decided to replace the Gaussians with their periodic analog, the
circular normal (also called Von Mises) distributions of the
form

er cos(x— )

f(x)zm,

(1)
where p is the measure of location (analogous to the mean of
the Gaussian distribution), ~ is the measure of concentration
(where 1/k is analogous to the variance, o2 ofa Gaussian), and
Iy(k) is the modified Bessel function of order 0. To model the
light-curve shapes, we define the sum of 100 of these basis
functions, distributed evenly between phases 0 and 1:

99 et cos2m( — )]

LC=m+ Ai——m, 2)
; 271']0(/’%)

where A; are the individual amplitudes of the circular normal
distributions, and m is the intercept of the fit. Although we
could use OLS to find the amplitudes of Equation (2), most of
the light curves have less than 100 points available, leading to
an underdetermined problem. In such cases, regularization can
be introduced to penalize the magnitude of independent
parameters (in our case, the amplitudes A;), by modifying the
loss function. We do so by utilizing the least absolute shrinkage
and selection operator (LASSO or L1 regularization; Tibshirani
1996), which adds the sum of absolute values of the regression
coefficients multiplied by a regularization parameter o to the
loss function. We note that by utilizing LASSO, generally most
coefficients end up being zero.°

We have utilized the linear regression routines of scikit-learn
(Pedregosa et al. 2011) to fit the folded K and J light curves of
each RRL with Equation (2) utilizing LASSO regularization.
Our fit has two hyperparameters: x and o. We have utilized both
cross validation (leave-one-out for stars with few light-curve
points, N-fold otherwise) and manual inspection of the resulting
light-curve fits to determine the optimal values of these
parameters. High values for the concentration parameter
grants our model the ability to fit sharp features, such as the
rising branches of certain variables, but can cause an overfit in
phase ranges with few points. Conversely, at low values of x the
model cannot fit sharp features. We have found that a numerical
value of x = 6 is optimal for our model for both the K5 and
J-band light curves of RRLs. As for the regularization parameter
a, our cross validation resulted in different optimal values for
different stars, typically in the range between 10~ * and 107>, As
visual inspection did not reveal significant differences when

®  Another popular choice for these kinds of problems is the Tikhonov
regularization, also known as L2 regularization or Ridge regression, where the
sum of the squares of the fit coefficients times « is added to the loss function. In
contrast to LASSO, Ridge regression does not result in sparse solutions (i.e.,
most parameters do not end up being zero), making the interpretation of the
results of the fit harder to interpret.
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changing the regularization parameter between these two values,
we have adopted an intermediate value of 10~*° for all of our
stars.

Figure 1 illustrates the quality of the light curves and their
fits. During our fitting process, some outlying points have been
removed manually and the periods of some variables have been
revised, when tension existed between different photometric
sources. Table 1 contains the revised periods for all variables.
Figure 2 compares our fit with Fourier series of different orders.
As can be seen, our method provides a better representation for
variables with light-curve gaps.

The utilized light curves had been obtained in a variety of
photometric systems, as detailed in Table 1. Therefore, the
resulting light-curve fits were all transformed to the photo-
metric system of VISTA. For variables not in the VISTA,
WFCAM, or 2MASS systems, first they were transformed to
the system of 2MASS utilizing the updated transformation
formulae’ of Carpenter (2001). Then, the 2MASS and
WFCAM photometry was transformed to the VISTA system
with the help of the CASUVERS 1.4 transformations given by
the Cambridge Astronomical Survey Unit (CASU).8

2.3. Application of PCA on the Ks-band Light Curves

To apply PCA, we sample our light-curve fits on a grid of
100 phase points, evenly distributed phases from 0.0 to 0.99. In
the analysis of pulsating variables, it is customary to set
the light-curve maxima at phase 0.0; however, inspecting the
Ks-band light curve examples of Figure 1 reveals that the
maxima of RRLs in the Kg band are ill defined: the timing of
the maxima of the light curve depends heavily on the strength
of the bump on the rising branch. Therefore, we have chosen to
align our light curves by the much sharper feature of the light-
curve minima (similar to the case of eclipsing binaries).
Furthermore, in PCA, the sample values (the magnitudes in our
case) are usually normalized to a mean of 0 and scatter of 1
along each dimension (phase). As our goal is to describe the
light-curve shapes of RRLs in the Kg band as a linear
combination of PCs, we have chosen to normalize each light
curve independently to have a mean of 0 and scatter of 1. These
aligned, normalized input light curves can be seen in Figure 3.

We carry out PCA by utilizing singular value decomposition,
adopted from the PCA module of scikit-learn (Pedregosa
et al. 2011). Figure 4 shows the first six PCs, according to our
decomposition. As we have chosen not to normalize in each
phase point, the first PC contains the average light-curve shape
of the normalized light curves. Including further components to
describe the light curves modifies this average shape, and this
can be easily understood in the context of the individual light
curves, for PCs of low order: the second component can make
the bump at the end of the rising branch (around phase 0.15)
more or less pronounced, while the third component is
important to reproduce the double-peaked light curves
displayed by some of the variables.

" hitp:/ /www.astro.caltech.edu/ ~jmc /2mass /v3 /transformations/

& hup: //casu.ast.cam.ac.uk /surveys-projects/ vista/technical /photometric-
properties. The transformations between the VISTA and WFCAM systems
were carried out using the relations updated on 2014 July 30. Very recently,
updated transformations were provided by Gonzilez-Ferndndez et al. (2018).
We have checked that the changes in the resulting magnitudes are less than
0.005 mag. In addition, because this only affects the five stars from Ferreira
Lopes et al. (2015), none of the results in this paper are significantly affected by
the choice of transformation equations between these two systems.
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Figure 1. Typical folded Kj (top, blue points) and J-band (bottom, orange points) light curves of our RRL sample. Each light curve is modeled with a sum of periodic
Gaussian (von Mises) basis functions, following Equation (2). As we utilize LASSO regularization, most periodic Gaussians have zero amplitudes. The individual
periodic Gaussians with non-zero amplitudes are illustrated by the faint gray lines for each band and variable, while the green and purple curves illustrate the light
curve fit (sum of the individual periodic Gaussians) in the Kg and J-band, respectively.

Ks + offset

6th order

0.75 1.00 1.25 1.50 1.75
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0.50 2.00

Figure 2. Comparison between our fit with the circular normal distributions
(Equation (2), continuous lines), and Fourier series of different orders (dashed
lines).

The power of the PCA lies in the fact that generally the first
few PCs, together with their amplitudes, are sufficient to
describe the original input data, and the rest of the PCs can be
discarded. The number of significant PCs can be decided by
examining the fraction of the variance explained by the

components. As is obvious, the first PC dominates the
explained variance, because we normalized each light curve
individually instead of normalizing the magnitudes along each
dimension (phase). If we look at the variance explained by the
rest of the PCs, they explain 3.68, 1.39, 0.96, 0.72, etc. percent
of the total variance, or 88.8, 3.4, 2.3, 1.7, etc. percent of the
residual variance, when the variance explained by the first PC
is subtracted from the total variance. On the basis of these
values, we deem the first four PCs are sufficient for describing
the Ks-band light-curve shapes of RRab stars.

We applied the PCA method on the normalized light curves
of our sample of variables to emphasize the light-curve shape
differences among RRLs in the Kg band, instead of the
different pulsation amplitudes of each variable. Consequently,
the individual amplitudes (also called eigenvalues) of the first
four PCs, uyj;, upj, us; and ugyj, where j = 1..101 is the index of
the variables, carry no amplitude information on the original
light curves. By multiplying these amplitudes with the
normalization constants used to normalize each of the light
curves, or by utilizing OLS to directly align the PCs to the light
curves, we can determine the PC amplitudes Uy;, Uy, Us; and
U,; for each star in our sample. The sum of the PCs multiplied
with these amplitudes recover the original light-curve shapes
(and amplitudes) with high accuracy.

The distribution of the amplitudes Uj; is illustrated in
Figure 5. The shapes of the light curves of RRLs, represented
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decomposition of the Ks-band RRL light curves.

Pulsation phase

Oosterhoff 1939; see Catelan & Smith 2015, for a recent

by the amplitudes of these first few PCs, potentially contain review and references). As these groups at least partly correlate
information on the physical properties of the variables with metallicity, we are going to explore the possibility of
themselves, when the pulsation periods of the stars are taken estimating the metallicity of individual RRLs when their
into account. The first amplitude, U, (from now on, we omit Ks-band light curves are described by the PC amplitudes U, in
the j index for simplicity), can be viewed as an analog to the Section 4.

total amplitude in amplitude-period (also called Bailey)
diagrams. As described before, additional PCs modify the

light-curve shape. Keeping this in mind, it is immediately 2.4. Approximation of the J-band Light-curve Shape

obvious that, at a given period, the amplitudes U, and U, The light-curve shapes and amplitudes of pulsating variables
separate two sequences, which we can associate with the vary among bandpasses, due to the difference in the relative
Oosterhoff type 1 and II groups of variables (Oo; contribution of the change of radius and photospheric
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temperature during the pulsation cycle to the emitted flux at
different wavelengths (Catelan & Smith 2015, and references
therein). Comparing the Kg and J-band light curves in Figure 1
clearly demonstrates this.

During the course of the VVV survey, each field has been
observed only a few times in the J-band. To determine accurate
mean J magnitudes for the RRLs, it is necessary to describe the
light-curve shapes of the stars in the J-band, i.e., the deviation
of the J-band magnitude from its average in each phase of the
pulsation cycle. Usually, the difference between the light-curve
shapes is ignored, and the Kg-band light-curve shape is used to
estimate the average J-band magnitude. However, this method,
depending on the light-curve phases of the observations,
introduces additional scatter in the derived magnitudes.

As the PC amplitudes U; provide a concise description of the
Ks-band light-curve shapes, we can evaluate whether the
J-band light-curve shapes can be approximated with their
use. Besides these amplitudes, we consider the period as a
possible additional parameter, to assess its effect on variables
that otherwise possess the same light-curve shapes in the Kg

band.

The w Centauri photometry of Navarrete et al. (2015) contains
only 42 epochs in the J-band; therefore, depending on their
periods, some variables have gaps in their J-band light curves at
critical phases. A few other stars possess photometric anomalies in
their light curves, preventing us from obtaining a good light-curve
fit for them in this band. We decided to omit these stars, marked in
Table 1, and continue with the analysis of the remaining 87 RRLs.
These J light curves are first sampled in the same 100 phase
points, as has been done for the Ks-band light curves in
Section 2.3, where phase 0.0 is the phase of the Kg-band light-
curve minimum for each of the variables.” These curves are
aligned to have a mean of 0, but in contrast to the PCA analysis of
the Ks-band light curves, they are not normalized.

The training set of J-band light curves is shown in Figure 6. We
are searching for the ideal set of variables to describe these light-
curve shapes, e.g., the deviations from the mean in each phase.

® We could reach an incorrect solution if the photometry presented in Table 1
would have Kg and J-band photometries combined from different epochs, as an
incorrect period or (slow) period change could affect the phases. However, as
all stars have simultaneous photometry in these two bands, this is not a problem
in our case.

Hajdu et al.

We can consider this as a separate problem at each light-curve
phase for which we are looking for a linear model description, as a
combination of yet to be determined parameters as the basis. The
connection between the J magnitudes in different light-curve
phases is that these linear models should depend on the same
parameters. Our candidate parameters are the period P, the four
PC amplitudes of the Ks-band light curves U,, U,, Us, and Uy, as
well as their polynomial combinations up to the third order
(P?, PU,, PU,, PUs, PU,, U2, etc.).

We performed an exhaustive search for the best parameter
combination, where we considered various permutations
containing up to six candidate parameters. As our sample size
is fairly small, we have chosen not to utilize a hold-out set, nor
N-Fold Cross Validation for the validation of our results, as the
exact (random) choice of the hold-out set or the N-Folds could
lead to heavily biased results (for example, if all the short
period variables are selected to be in one fold). Therefore, for
each candidate parameter set, we have opted to perform Leave-
One-Out Cross Validation (LOOCYV) the following way:

1. we evaluate 87 separate sub-cases, where we omit the
light curve of each of the 87 variables;

2. in each case, we optimize a linear solution using OLS for
the J-band magnitudes, using the candidate parameter set
as basis;

3. with these solutions, we approximate the J-band light
curve of the omitted variable, and calculate the
residuals; and

4. for each candidate parameters set, we assess the total root
mean square error (RMSE) as a performance metric.

We have found that out of all the possible parameter
combinations, by only considering the PC amplitudes of the
Ks-band light curves U,, U,, U;, and U, we reach a total
RMSE of our linear prediction of just 0.012 mag. Although this
value can still be lowered by including combinations with the
period, such as PU;, we noticed that this mainly decreases the
errors for variables coming from w Centauri, where multiple
stars have very similar periods and Kg and J light-curve shapes,
while the errors for other RRLs, especially the short period
ones, increase drastically. Figure 7 illustrates the residuals both
as a function of the pulsation phase (top panel) and for
individual stars from the LOOCV (bottom panel).

Based on our analysis, we conclude that the J-band light-curve
shapes of RRLs can be estimated using their Ks-band PCA
amplitudes with high precision. Figure 8 illustrates this process by
comparing the Ks-band PCs derived in Section 2.3 (left-hand
panel) with the coefficients found by OLS for the prediction of the
J-band light-curve shape (right-hand panel), when all of the 87
RRLs with good J light curves are considered.

3. Robust Fitting of RRL Kg-band Light Curves

Our goal is to provide an accurate and convenient method for
determining the light-curve shapes, periods and average
magnitudes of RRLs in the VVV survey. As we have seen in
Section 2, the PC amplitudes U; provide a compact description
of the Ks-band light-curve shape; furthermore, the J-band light-
curve shapes can also be approximated using the same U;
coefficients as obtained from the Kg-band data.

The PCs themselves have been utilized before by Tanvir
et al. (2005) in the case of Cepheids, to produce a series of
realistic template light curves in the optical, which could be
used to determine specific parameters, such as the periods or
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the magnitude at maximum light, from relatively scarce
photometry. In contrast to the study of Tanvir et al. (2005),
we implement a method to fit the PCs directly to the VVV
Ks-band light curves. In Section 2.3, we determined the PCs on
a grid of light-curve phases. However, to fit a target light curve,
we have to discern their PC amplitudes U,, using the PCs as
basis functions. As PCs are not continuous functions, we
transform them to a Fourier representation of the form

12
Fpci(x) = Y [Ay sin(2mkx) + By sin(2mkx)], 3)
k=1
where x is the light-curve phase, using OLS fitting of the
individual PCs. The continuous lines on the left panel of
Figure 8 demonstrate the transformed PCs. These new
representations can be used as basis functions to describe the
light-curve shapes of RRLs as

4 t—E
LCW = mo + 30| Ui x Fre | =22 | @)

i=1

where ¢ is the Julian Date, and the free parameters are the PC
amplitudes U;, the magnitude average my, the period P and the
zero epoch Ej.

The light-curve representation proposed by Equation (4) is not
a linear function; therefore, we have to use nonlinear regression.
We developed a method to adjust these seven free parameters, and
the model presented in Equation (4), to the light curves of RRLs
in the VVV survey. Unfortunately, in the more crowded fields and

Hajdu et al.

near bright stars, VVV photometry tends to contain a fraction of
outlying points. Traditionally, iterative threshold rejection is
utilized to omit outlying measurements in massive time-series
analysis. However, in cases of unfortunate data distribution, and
due to the fact that in the first iteration erroneous observations can
have a large effect on the fit, this can result in the flagging of good
data as outliers. To avoid this problem, we replace the normally
used squared error loss with the Huber loss function (Huber 1964)
of the form

SO = fO) for |y — f(x) < 6|

Ls(y, f(x)) = | ,
Sy — f(x)| — 562 otherwise.

This loss function behaves identically to the squared error loss for
data points with residuals smaller than ¢. For residuals bigger than
o, the loss grows linearly with increasing residuals. Therefore,
outlying points weigh less than they would, if squared error loss
was utilized, a convenient feature in the case of outliers.

The distribution of PC amplitudes of our PCA sample
(Figure 5) gives us a priori information on the possible shapes
of RRL light curves, if we accept the sample analyzed in
Section 2 as representative of RRLs. We utilize this
information as follows. We require the first PC amplitude to
be in the range U € Uy max + Ov;, Uimin — 6u,l, Where Uy max
and U) min are the largest and smallest U; amplitudes of the
PCA training sample (see Section 2.3), respectively, and
0v, = (Ui max — Uimin)/10. In other words, we limit the U,
amplitudes to not be larger or smaller than the largest or
smallest U; amplitude in the PCA sample, £10% of the total
range of U, amplitudes given by the PCA. As for the other
amplitudes, we require their relative values, U, /U, Us /U, and
U,/ U, to adhere to analogous requirements on their ranges.
These requirements ensure that the fit light curves have shapes
that are similar to those in the PCA sample.

The following steps have been implemented to ensure that the
light-curve shapes and JHKg average magnitudes are derived with
the highest possible accuracy, based on the VVV data:

1. all Ks-band light-curve points brighter than 9 mag, fainter
than 20 mag, as well as points farther than £0.5 mag from
the median are discarded;

2. the remaining light-curve points are fit with the light-
curve model of Equation (4), while utilizing the Huber
loss function in the form of Equation (5), with
6 = 0.05 mag, and the constraints on the ranges of U,
and U, 34/U,, as described above;

3. we omit points with a residual larger than 3.50, where o
is determined from the absolute median deviation of the
fit from step 2;

4. the fit is repeated on the remaining data in the same way
as described in step 2;

5. as the light-curve shapes of RRLs are very similar in the
H and Kg bands (e.g., they are the same with a scatter of
~0.02 mag, depending on the pulsation phase; see
Figures 1 and 2 of Barnes et al. 1992), we use the Ky
light-curve shapes to determine the average magnitudes
by fitting them directly to the H-band measurements; and

6. the J-band light-curve shapes are predicted using the U;
magnitudes, as described in Section 2.4, and these are fit
to the J-band measurements to determine the mean
J magnitude.
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Figure 9. Examples of the near-IR light-curve fitting methods implemented in Section 3. OGLE IDs and periods are shown on the top of the panels. Top: Ks-band
light curves and their fits using the first four PCs derived in Section 2. Bottom: J-band light-curve points and the approximations of the J-band light-curve shapes from
the PC amplitudes, as described in Section 2.4. Variable no. 12385 (left panel) illustrates the case of a single large gap in the folded light curve, a challenge for
traditional Fourier fitting. No. 09161 has an unusually large number of J-band light-curve points, allowing us to demonstrate the quality of the predicted J light curve.
No. 12502 has a much more symmetric light-curve shape, but our method is flexible enough to find a good fit for it.

The principal outputs of this procedure are the Ks-band light-
curve parameters, as well as the robust magnitude estimates of
the target RRLs in the JHKg bands. Figure 9 illustrates the
VVV Ks-band fits (top), as well as the predicted J-band light
curves of three RRLs from the OGLE bulge RRL sample of
Soszyniski et al. (2014). The implementation of all these steps
in a single, convenient routine is available on GitHub."’

10 https: //github.com/gerhajdu /pyfiner

4. Metallicity Estimation from Kg-band Photometry

The idea of estimating the metallicity of RRLs from their
Fourier light-curve parameters originates from Kovics &
Zsoldos (1995). Their original method was substantially
improved by Jurcsik & Kovics (1996), who found a simple
linear relationship between the iron abundances of RRLs, their
periods and the epoch-independent Fourier phase differences
@4, (=05 — 3¢,, where ¢5 and ¢, are the Fourier phases of the
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third and first harmonics of the light curve, respectively; Simon
& Lee 1981) of their V-band light curves. Their formula was
calibrated by spectroscopic measurements and corresponds to a
metallicity scale established by high-dispersion spectroscopy
(Jurcsik 1995). Following the example set by Jurcsik & Kovécs
(1996), Smolec (2005) developed similar formulae for the
Cousins /-band, notable as the band in which most observations
of the OGLE surveys are being carried out (Udalski
et al. 2015). Smolec (2005) gave two alternative formulae for
the derivation of the iron abundance, a 2- and a 3-term formula,
and he argued that the latter, which also includes the amplitude
of the second Fourier harmonic, provided better results. We
emphasize that both the V- and /-band formulae have a residual
scatter of only ~0.14 dex, which is similar to the accuracy
of spectrophotometric methods, such as the AS method
(Preston 1959), and are on the same metallicity scale defined
by Jurcsik (1995).

A similar calibration between [Fe/H] and the near-IR light-
curve parameters has long been lacking, despite that with the
advent of large time-domain near-IR photometric surveys, such
as the VVV and the VISTA Survey of the Magellanic System
(Cioni et al. 2011), among others, such an empirical calibration
is of key importance, as a large fraction of the newly
discovered distant RRL stars along the Galactic plane are
beyond the faint magnitude limit of optical surveys. In the
following, we are going to detail our calibration of such a
relationship, utilizing the overlapping RRLs found by the
OGLE project (Soszyriski et al. 2014) and observed by the
VVV survey.

4.1. VVV Photometry of Bulge RR Lyrae Variables

We employed our light-curve fitting method described in
Section 3 to determine the Kg-band light-curve parameters of
RRab variables listed in the OGLE-IV bulge RR Lyrae catalog
(Soszyniski et al. 2014). Toward this end, we made use of the
data processed by the VISTA Data Flow System (VDFS;
Emerson et al. 2004), provided by the CASU. The aperture
photometry of detector frame stacks (pawprints) was extracted
using the Starlink Tables Infrastructure Library (STIL;
Taylor 2006) at the coordinates of the OGLE RRLs. This
process has resulted in near-IR light curves for 24217 RRLs.

The VDEFES provides photometry in circular apertures of
different radii, but due to the source crowding in the Galactic
bulge fields, the adopted radii have to be chosen carefully.
Generally, smaller apertures provide better photometry for
dimmer objects, but in relatively uncrowded cases, this does
not always hold true. Furthermore, variables found in over-
lapping regions of tiles and pawprints can have different offsets
between them, but generally the best aperture also minimizes
this offset. Therefore, for each star, the optimal aperture has to
be chosen on a case-by-case basis.

We utilized our fitting procedure described in Section 3 on
the five smallest apertures provided by the VDFS for each
OGLE RRL. It has been found that the final value of the Huber
cost function divided by the number of data points after the
3.50 clip is a good indicator of the quality of the photometry
obtained with a given aperture with respect to the others.
Hence, in this section we are going to utilize the PC amplitudes
determined for each star using the aperture for which this value
is the smallest.

10
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4.2. Unbiased Photometric Metallicities from the RR Lyrae
I-band Light Curves

Due to the large number of RRLs with both OGLE-IV and
VVV photometry, we decided to search for correlations
between the abundances determined on the former, and the
light-curve shapes of the latter. As the main bulge population of
RRLs have spectroscopic iron abundances of [Fe/H] ~ —1
(Walker & Terndrup 1991), this component is expected to be
dominant in the calculated photometric metallicities as well.

The OGLE-IV (or OGLE-III, if the former was not available)
I'band light curves of RRLs in the common OGLE/VVV
sample were fit with a sixth-order Fourier series to calculate the
Fourier parameters necessary for the metal abundance formulae
of Smolec (2005).

As our goal is to provide a method for estimating metallicity
based on the near-IR light-curve parameters, we eliminate all
variables where either estimate is uncertain.

By far, the most common reason for the elimination of
variables was the presence of the Blazhko effect, which leads to
distorted light-curve shapes in RRLs, which are never
equivalent to those of non-modulated RRLs (Jurcsik
et al. 2002). Prudil & Skarka (2017) studied the Blazhko
effect on a subsample of bulge RRLs in the OGLE sample, and
found an incidence rate of 40%. We have inspected each /-band
light curve and its fit visually to reveal the presence of the
Blazhko effect. In dubious cases, we have inspected the
Discrete Fourier Transform of the residual light curve for signs
of the characteristic side peaks of modulation in the Fourier
domain. We opted to eliminate all variables from our selection
where inspection of the light curve gave hints of the Blazhko
effect, which accounted for approximately the same fraction of
stars as found by Prudil & Skarka (2017). Furthermore, this
inspection revealed some dubious RRL light curves, as well as
many light curves where the Fourier parameters cannot be
determined with high accuracy (faint variables, too few light-
curve points, gaps in the folded light curve, etc.), which were
also removed in order to preserve the purity of the sample.

Besides requiring good-quality light curves in the /-band, the
Ks-band data were also subjected to the following quality cuts:
we discarded all variables where either the first PC amplitude,
U,, or the PC amplitude ratios U,/U,, Us/U,, or U,/U;
exceeded the limit described in Section 3, as these indicate
problematic photometry in the VVV data, such as severe
blending.

We utilized Equations (2) and (3) of Smolec (2005) to
calculate the metal abundances of the 6215 remaining
variables. The top panel of Figure 10 reveals a striking
systematic on top of the overall linear trend in the photometric
metallicity calculated with Equation (2) of Smolec (2005) as a
function of the pulsation period. In the main locus of stars,
denoting the Oosterhoff I population of the bulge RRLs,
longer-period RRLs seem to have systematically higher
metallicities than their shorter-period counterparts. Moreover,
a similar trend can be seen on the bottom panel: the lower-
amplitude stars have systematically higher metallicities.

In globular clusters, for both Oosterhoff groups of funda-
mental-mode variables, the amplitude decreases with increas-
ing periods. It is hard to conjure up a scenario where
systematically higher-metallicity RRLs would only populate
the lower-amplitude, longer-period part of the main locus on
this diagram, while the lower-metallicity variables occupy the
higher-amplitude, shorter-period part. Therefore, we conclude
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Figure 10. Photometric iron abundances calculated from the /-band light-curve
parameters with Equation (2) of Smolec (2005) as a function of the pulsation
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respectively. Both the bulge field and the M3 RRLs display a systematic bias
toward higher abundances as the pulsation period increases and the pulsation
amplitude decreases. Furthermore, at a given period or amplitude, the
metallicities derived for the Oo I and II stars in M3 (calculated from the
photometry of Jurcsik et al. 2017) at similar amplitudes are systematically
offset.

that the metal abundance formula described by Equation (2) of
Smolec (2005) suffers from a systematic bias as a function of
amplitude /period. This finding is confirmed by a demonstrably
monometallic data set: on both panels of Figure 10, empty and
filled circles illustrate the /-band photometric metallicities of
the Oosterhoff I and II variables in the globular cluster M3,
which is well known to be monometallic (Kraft et al. 1992;
Cohen & Meléndez 2005), highlighting the systematic offset
between these two groups of objects as well.

The second formula given by Smolec (2005) in the form of
Equation (3) gives much more consistent abundance estimates
as a function of the amplitude. However, to compare the
behavior of the calculated abundances of the two Oosterhoff
groups of variables, we have to separate them. This has been
done using the period—amplitude diagram, utilizing a cut that is
dependent on the calculated iron abundance, as illustrated by
Figure 11. Comparing the top and middle panels of Figure 12
indicates that there is still a slight trend for the Oosterhoff I
variables as a function of the amplitude, as well as an offset
with respect to the Oo II stars, which have a calculated average
[Fe/H] of —1.05 dex across the whole amplitude range. We
correct for this offset using the ridge of Oo I RRLs, derived
from a KDE of amplitude bins of the estimated abundances of
Oo I stars. The resulting rectified Oo I metallicity estimates are
consistent with the Oo II variables, as well as across the whole
range of RRL amplitudes (bottom panel of Figure 12).
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Figure 11. Iron abundance-dependent separation of Oosterhoff classes. Top:
the distribution of the amplitudes of the first harmonic of the /-band Fourier fits
of bulge RRLs as a function of the pulsation periods. The main ridge of Oo I
stars is localized using the kernel density estimate (KDE) maxima in different
amplitude bins (circles). These are fit with a third-order polynomial, illustrated
by the continuous line. Bottom: same as above, but as a function of the rectified
pulsation periods, calculated as the difference between the real pulsation period
and the position of the Oo I ridge of the top panel, as marked by the continuous
line. The RRLs in the abundance bin —1.2 < [Fe/H] < —1.1 are marked, and
the continuous line at the bottom shows their KDE distribution. The local
minima in the middle of the KDEs of different abundance bins change,
reflecting the metallicity dependence of the Oosterhoff phenomenon. We
classify RRLs as Oo I or II based on their position in this diagram, using a
criterion that is a linear function of their calculated iron abundance. The
decision criteria for [Fe/H] = 0.0 and —2.0 are marked by the vertical black
lines.

We do note that not only the iron abundance formulae of
Smolec (2005) suffer from obvious biases when applied on a
population of monometallic RRLs, nor is the problem limited
to the I-band. As a stopgap measure (until new, carefully
calibrated photometric abundance formulae become available)
we make available a routine on GitHub'' that implements the
procedure outlined here to rectify the [Fe/H] values of Oo I
RRLs calculated from Equation (3) of Smolec (2005), given the
period, as well as the /-band Fourier parameters A, A, and ¢5,.

4.3. Iron Abundance Estimation from the Kg-band Light-curve
Shapes

To assess whether it is possible to determine the iron
abundance of RRLs from the Kg band light-curve shapes, we
made use of the Kgs-band light-curve parameters of OGLE
RRLs in the VVV fields determined in Section 4.1, combined
with the photometric metallicities determined in Section 4.2.
As the RRL sample on which Smolec (2005) calibrated the
relation used to determine the initial [Fe/H] of the RRLs in

" https://github.com/gerhajdu/pyrime
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Figure 12. Photometric iron abundances (small blue points) calculated from the
I-band light-curve parameters with Equation (3) of Smolec (2005). Top: the
photometric metallicity estimates of Oosterhoff I variables. As can be seen,
these still display a dependency on the amplitude of the first Fourier harmonic,
albeit to a much smaller degree than found using Equation (2) of Smolec
(2005) (Figure 10). Red filled circles denote the average metallicities, as
calculated from the maximum value of a KDE of data points in different
amplitude bins. K-nearest regression (with K = 2, marked as a continuous
orange line) was utilized to generalize this effect, and this function was used to
rectify the individual abundance estimates. Middle: photometric metallicity
estimates of Oosterhoff II variables. The KDE estimates (red filled circles) of
the amplitude bins reveal no significant dependency on the estimated
metallicities. The contiguous orange line from the top panel is drawn for
comparison purposes. Bottom: the rectified metallicity estimates of the
Oosterhoff I RRLs. The KDE estimates from the middle panel (filled red
circles) are repeated for comparison purposes.

question only extends down to [Fe/H] = —1.7, using even the
rectified abundance estimates below this threshold is uncertain.
Nevertheless, because the typical abundance of Oo II globular
clusters bearing RRLs is about [Fe/H] ~ —2.2 dex, we are
only discarding the RRLs below this limit. This final cut results
in a final sample of 6193 RRLs.

Figure 13 shows the optical photometric metallicity as a
function of the period, and the first two PC amplitudes. Some
general trends are apparent; for example, as expected from the
form of Equation (3) of Smolec (2005), longer-period RRLs
have higher iron abundances, but even at the same period and
U,, stars of different U, have systematically different iron
abundances.
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Figure 13. Dependence of the rectified photometric (/-band) iron abundances
on the near-IR light-curve parameters. Top: comparison of the KDE of the
period distribution of the bulge (blue contiguous line) and the PCA training
sample (Table 1). Although the period distributions of the two samples are
different, the example light-curve fits of Figure 9 reveal that the method
described in Section 3 is well suited for fitting the bulge RRL light curves.
Middle: the iron abundances show a significant overlap when only the period
and the first PC amplitude are considered. Bottom: at a given period, and U,
amplitude stars with different [Fe/H] possess different U, amplitudes,
illustrating the iron abundance dependence of the near-IR light curve shape
parameters.

As additional features, we also consider Fourier parameters
for this regression problem. During the light-curve fitting, the
individual PCs are represented as Fourier series (Equation (3)),
and the total light curve is given as the sum of these series
multiplied by the PC amplitudes (Equation (4)). Therefore,
traditional Fourier parameters, such as the Fourier amplitudes
and epoch-independent phase differences (Simon & Lee 1981),
can be calculated straightforwardly. Of these, we have decided
to use the amplitude of the Fourier harmonics A;, A,, and A3, as
well as the epoch-independent phase differences ¢,; and ¢3;.
Together with the pulsation period, the total number of
independent variables is 10.

We explored the regression routines implemented in
scikit-learn (Pedregosa et al. 2011) with the aim of finding a
relation to determine the iron abundance from some combina-
tion of the considered parameters. We found that regardless of
the parameters, the underlying relation is nonlinear and
multimodal due to the systematic offset between the Oo I
and II variables. Additionally, the heavy excess of bulge RRLs



THE ASTROPHYSICAL JOURNAL, 857:55 (16pp), 2018 April 10

Table 2
Parameters of Our Hyperparameter Grid Search
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Table 3
Number of RR Lyrae Variables in Different Metallicity Bins

Hyperparameter Candidate Parameter Value [Fe/H] Bin Number of RRLs
(20), (50), (100) [-0.2, +0.2] 47
Hidden layers® (20, 20), (20, 50), (20, 100) [—0.4, —0.2] 102
(50, 20), (50, 50), (50, 100) [—0.6, —0.4] 225
(100, 20), (100, 50), (100, 100) [—0.8, —0.6] 295
1010, 1005, 10%0. 1005, 10~ 10 (1.0, -0.8] 487
b ,’1 5 ’,2() ; _25 : ~3.0 [7127 710] 3888
o 107, 1077, 107, 107 (=14, —12] 628
10735 10740, 10+, 10-50 < L
’ ’ ’ [-1.6, —1.4] 375
Activation function® logistic, tanh, relu [-1.8, —1.6] 84
[-2.2, —1.8] 62

Solver® Ibfgs, sgd, adam
P, U4
P, Uy.3, $31
Independent variables P, Uy 3, ¢21, ¢31
P, Ay.3, 21, $31

P, Uy .4, A1.3, $21, 31

Notes.
# Number of neurons of hidden layers of the neural network.

Regularization parameter.
¢ Activation function and solver of optimization; see the scikit-learn
documentation for description at http://scikit-learn.org/stable/modules/
generated /sklearn.neural_network. MLPRegressor.html.

with metallicities around [Fe/H] = —1 dex biases any kind of
regression without resampling or weighting the input data.

The best results were achieved using the MLPRegressor
routine, implementing a multilayer perceptron regressor, a type
of neural network. Artificial neural networks are inspired by
and modeled after biological neural networks, and have been
used in many branches of science as well as in commercial
applications for their ability to learn highly nonlinear relations
inherent in many types of data (see Haykin 2011 for a general
description of neural networks).

Neural networks have many different parameters that have to
be decided (hyperparameters) before the training of the
network. As these can vastly influence their performance, we
decided to train the MLPRegressor with a grid of different
hyperparameter values, and use cross validation to determine
the best combination of hyperparameters. The grid of
considered hyperparameter values is documented in Table 2.
This grid only contains possible neural network architectures
up to two hidden layers of neurons; although adding more
hidden layers increases the flexibility of the neural network,
doing so did not significantly improve the performance in our
tests. Besides the parameters of the network, we considered
different combinations of the 10 independent variables as an
additional hyperparameter.

Due to the heavily biased nature of the bulge photometric
metallicity distribution (most stars have abundances [Fe/H] ~
—1), we implemented a special sampling method. We grouped
observations in ten 0.2 dex wide bins (Table 3). Because there
are only a few variables with [Fe/H] above 0 and below
—2 dex, these were merged with neighboring bins. In each bin,
10 stars were selected randomly to be part of the validation
sample. Of the remaining stars, 80 variables were selected
randomly with replacement to be part of the training sample,
resulting in a training set of 800 data points. As there are less
than 90 stars in the most metal-poor and metal-rich bins, some
variables at the extremes of the [Fe/H] distributions are
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selected multiple times due to the selection with replacement.
The variables that were not selected for training were added to
the cross-validation sample. In case of an uneven distribution
of stars between the two extremes in a metallicity bin, the bin
was split into sub-bins to guarantee a more even sampling as a
function of metallicity.

This separation into training and cross-validation samples
guarantees that the training set is large enough for the training
of neural networks; the training set is balanced on the total
range of possible abundances; by repeating this separation,
variables in bins with few stars get selected for the cross-
validation sample at least a few times.

This separation was repeated 40 times, resulting in 40
training and cross-validation samples. The neural networks
were trained on all 40 training samples with all combinations of
the possible hyperparameters detailed in Table 2. In all cases,
the predictions of the trained neural networks were calculated
for the corresponding cross-validation samples. Finally, for
each star and for each hyperparameter combination, the
predictions were averaged over the 40 repeats. Every star
appeared at least six times in the cross-validation samples.

Due to the imbalanced data set, neural networks with the
highest R* score (also called the coefficient of determination)
calculated on the complete sample of averaged predictions is
heavily biased toward solutions predicting [Fe/H] ~ —1,
irrespective of the values of the independent parameters.
Therefore, we have instead selected the best hyperparameter
combination by using the sum of the R* scores calculated
separately for each of the abundance bins for the averaged
cross-validation predictions. The cross-validation result with
the highest score is illustrated by the top panel of Figure 14,
with features P, A, A,, As, ¢, and ¢s;; hyperparameters
a = 100; two hidden layers with 100 and 20 neurons;
activation function relu; and solver Ibfgs.

After determining the optimal hyperparameters, 100 new
training samples were drawn by randomly selecting 80 stars
with replacement from each metallicity bin, but without
withholding any stars for cross validation. The MLPRegres-
sor was trained on each of these samples, and the predicted
metallicity is the average of these 100 trained regressors. The
code estimating the iron abundance using these neural networks
from the Kg-band light-curve parameters is available on
GitHub."

12 https: //github.com/gerhajdu/pymerlin


http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
https://github.com/gerhajdu/pymerlin

THE ASTROPHYSICAL JOURNAL, 857:55 (16pp), 2018 April 10

0.0} Bulge sample (CV) :
B -os}
[¢°]
£
» —1.0f
(3]
o=} ci e
o —1.5} .ol
s sty
_20 3 . M
« Jurcsik (1995) scale
0.0l Field stars ' ' b7
A
g 05} + T -
[¢°]
£ * \
I
= J* *
T —-1.5F +
a + ‘
_20 L
Jurcsik (1995) scale
0ol w Cen and M3 stars )
T -o.5}
IS
£
% —-1.0f |
2 [} 2P
ox} L, J[E
£—15 7 =T e
5.
—2.0} i ]
Carretta et al. (2009) scale
-2.0 -1.5 -1.0 -0.5 0.0

[Fe/H] independent

Figure 14. Top: cross-validated (CV) average Ks-band abundance estimate for
6193 RRLs in the OGLE/VVYV sample against the rectified I-band photometric
abundance estimates (Section 4.2). The dashed orange curve represents
equality between the compared abundance estimates. Middle: comparison of
estimated photometric abundances of field RRLs (circles) with their spectro-
photometric (AS-based) abundances from Table 1 of Jurcsik & Kovécs (1996)
and the star NSV 660 (red square), the field variable with a spectroscopic
SEGUE metallicity estimate (Lee et al. 2011; Szabd et al. 2014). Individual
errors are estimated as the quadratic sum of the scatter of the 100 abundance
estimates (Section 4.3) and a fixed uncertainty term of 0.2 dex. Bottom:
comparison of the estimated photometric abundances of stars in the clusters
w Cen (blue dots) and M3 (black open squares) with the individual
spectroscopic measurements (Sollima et al. 2006) and the overall cluster iron
abundance (Carretta et al. 2009), respectively.

4.4. Validation of the Metallicity Estimates

To provide an unbiased evaluation of the performance of a
regression model, it is important to test the performance on a
test data set not used during the fit for either training or
validation. In this case, the model was used to predict the iron
abundance from the shape parameters determined directly from
the PCA analysis for the variables in Table 1. Then, these
predictions can be compared to independent determinations of
their abundances from the literature.

The cross-validation results in the top panel of Figure 14
indicate that the method described in Section 4.3 gives
reasonable photometric abundance estimates with a scatter of
~0.22 dex in the —1.7 < [Fe/H] < 0.0 abundance range. The
estimated iron abundance is biased for stars below —1.7 toward
higher values, probably caused by the combination of
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overestimation of the /-band photometric abundances, as well
as contamination of the parameter space of low-abundance
stars with those of higher estimated abundances, due to the
higher relative photometric errors in low-amplitude, long-
period stars (see Figure 13).

The middle panel of Figure 14 compares the photometric
abundances of 17 stars from our Table 1 to the abundances
listed in Table 1 of Jurcsik & Kovécs (1996). Additionally, the
photometric abundance of NSV 660 is compared with the
[Fe/H] = —1.31 value determined from the SDSS spectra of
the SEGUE Stellar Parameter Pipeline (Lee et al. 2011; Szabd
et al. 2014). The two values for this sample of stars generally
agree. We note, however, that there is a hint that the
abundances of high-metallicity RRLs are slightly under-
estimated. Furthermore, the [Fe/H] of the most metal-poor
star is overestimated, in concordance with the cross-validation
results. The abundances of two stars, RR Cet and RR Leo, are
overestimated by 0.5 and 0.6 dex, respectively. As there is a
single source of photometry for both stars, we believe that the
original Kg-band photometry of both stars is affected by
systematic trends on their rising branches, causing the
estimated light-curve shapes to be deformed, resulting in the
overestimation of their abundances.

The bottom panel of Figure 14 compares the Kg-band
photometric abundances of the RRLs in w Cen with their
spectroscopic measurements by Sollima et al. (2006). The
photometric abundances for five variables from the globular
cluster M3 are also compared to the average cluster abundance,
[Fe/H] = —1.5dex, given by Carretta et al. (2009). We do
note that so far all abundances were on the metallicity scale
defined by Jurcsik (1995). To compare the Kgs-band photo-
metric abundance estimates of the w Cen and M3 variables in a
consistent way to their spectroscopic determinations, we
convert them to the metallicity scale established by Carretta
et al. (2009). The conversion between the two scales can be
determined by comparing the common clusters with measured
abundances in Table 1 of Jurcsik (1995, J95) and Table Al of
Carretta et al. (2009, C09) (neglecting the cluster NGC 5927,
where the difference between the two sources is almost
0.8 dex):

[FG/H]C(]g = 1044[FC/H]]95 — 0037, (6)
with a residual scatter of 0.1 dex. Furthermore, the iron
abundances of Sollima et al. (2006) are also converted to the
Carretta et al. (2009) scale by shifting them by —0.02 dex,
following Braga et al. (2016).

The photometric abundances of w Cen stars reproduce the
bimodal distribution of iron abundances (Sollima et al. 2006).
When taking into account the uncertainties of individual
measurements made by Sollima et al. (2006), there is no offset
for the metal-rich group at —1.2 dex. For the metal-poor group
of variables, there is a hint that our method systematically
overestimates abundances by about 0.1 dex, similarly to the
results on the top and middle panels of the Figure 14. As for
the M3 RRLs, their average Ks-band photometric abundance
estimate is [Fe/H] = —1.33 dex, only 0.17 dex higher than the
cluster metallicity given by Carretta et al. (2009).

During the calibration of the abundance prediction, we
discarded Blazhko variables, as their modulated light curves
lead to systematic biases in their calculated photometric
abundances (see, e.g., Figure 4 of Jurcsik & Kovacs 1996).
Nevertheless, a significant fraction of the total population of
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RRLs suffers from this light-curve modulation. The nature of
the Blazhko effect in the near-IR has not been established until
very recently, due to the lack of well-populated light curves
covering sufficiently long time spans. In Jurcsik et al. (2018),
we show that the modulation is indeed present in the Kg-band
light curves, but with diminished amplitudes. We have no
abundance estimates for the 22 Blazhko RRLs studied in
Jurcsik et al. (2018), but we surmise that the majority of them
must come from the bulge population of RRLs. We calculated
the abundances based on their individual Ks-band mean light
curves, for which we get a mean of [Fe/H] = —1.11 dex with a
standard deviation of 0.28 dex. These values are in agreement
with those of the original bulge sample, where the mean and
standard deviation are [Fe/H] = —1.06dex and 0.26dex,
respectively. Therefore, we surmise that the iron abundances
of RRLs should not show systematic biases when estimated
with the parameters of the complete, long-term near-IR light
curves, even when the Blazhko effect is present.

In summary, the Ks-band light-curve parameters allow the
estimation of the iron abundance of RRLs to an accuracy of
0.20-0.25 dex, with slight hints of systematic trends (at the
<0.05 dex level) in the range of —1.7 < [Fe/H] < 0 (under-
estimation for high abundances, overestimation for low ones),
but abundances lower than this range are systematically
overestimated. To establish better relations, one will need
high-quality Ks-band observations of a large sample of RRLs
in globular clusters covering a wide metallicity range, and/or
Ks-band observations of the hundreds of bright RRLs in the
Solar neighborhood, and/or spectroscopic iron abundances for
the OGLE field RRLs, with emphasis on the high and low-
abundance extremes.

5. Summary

In this study, we have analyzed the near-IR light-curve
properties of RRab variables. The principal component analysis
of the Ks-band light curves of a sample of 101 RRLs revealed
that their varied shapes can be described as a linear
combination of a low number of PCs. It has to be stressed
that compared with most previous studies involving PCA of
light curves, we decided to phase our variables by the light-
curve minimum, as the near-IR maxima of most RRLs is nearly
flat and hard to localize. We advocate the exploration of
alternatives to phasing the light curves of pulsating variables by
their maxima, even for studies in the optical. Possibilities
include, among others, phasing by the light-curve minima, as
was done here; by the middle of the rising or descending
branches; or by the phase of the first harmonic of a Fourier
series.

The comparison of the Kg-band light curve parameters and
the J-band light curves of 87 variables led to the conclusion
that the former can be used to reliably predict the light-curve
shape in the J band. This finding is of great interest for time-
series surveys where most data points are taken in a single filter
(as is the case of the VVV survey), as the accurate
approximation of the light-curve shape in a different band
can greatly reduce the number of observations needed to
determine accurate mean magnitudes in complementary bands,
hence truly representative colors. This can be especially useful
for the estimation of the amount of foreground reddening
toward individual stars.

We developed a method to fit the RRL light-curve shapes in
the Kg band with the PCs as basis vectors, while also taking
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into account some of the peculiarities of the VVV data. The
routine takes advantage of the robustness of the Huber loss
function to decrease the effect of outliers in VVV light curves.
The J-band light-curve shapes are also approximated from the
PC amplitudes, resulting in accurate mean magnitudes in the
JHKg bands.

The possibility of deriving metallicities from the Ks-band light
curve parameters, analogous to what was done in the optical
(Jurcsik & Kovacs 1996), was explored with the help of RRLs in
common between the VVV and OGLE surveys. The PC
amplitudes of these stars were determined using our fitting
method on the VVV light curves. However, the photometric
metallicities of these variables, as calculated using Equation (2) of
Smolec (2005) on the I-band light-curve parameters, revealed a
systematic trend with the period/amplitude of the main locus of
variables, representing the RRL population of the Galactic bulge.
The same trend is also seen in other populations, as demonstrated
by Figure 10 for the RRLs of the monometallic globular cluster
Messier 3. This problem with photometric metallicities is
especially worrying in view of their prevalent use when tracing
old populations with RRLs. Therefore, we emphasize the
necessity of calibration and validation of such relations on stars
spanning the whole range of possible amplitudes, periods, light-
curve shapes and iron abundances of RRLs.

The relation presented by Smolec (2005) in the form of
Equation (3) has a smaller, but still detectable trend as a
function of the amplitude, which we have corrected for. These
rectified photometric iron abundance estimates were used to
look for relations between [Fe/H] and the Kg-band light-curve
shapes of the bulge RRL sample. As the apparent relations are
nonlinear, and the data set is unbalanced, we have decided to
use the aggregate of many separate neural networks trained on
balanced sub-sets of the total data set. The resulting accuracy
for the determination of individual iron abundances based on
the Kg-band light curves is about 0.20-0.25 dex.

The methods developed in this work are utilized in a
companion paper (Dékdny et al. 2018) to characterize the RRL
population of the disk area of the VVV survey, allowing the
estimation of the metallicity distribution function of RRL stars
in that area. Some of these approaches could be adopted
relatively easily for the exploration of other sources of time-
series photometry, for example where the small number of data
points or the disparate amount of multiband observations do
not lend themselves well to traditional (i.e., Fourier based, in
the case of pulsating stars) methods. Naturally, in order to
utilize such prior knowledge, a high-quality (as well as
preferably expansive) training sample is needed to characterize
the population of variable stars in question.
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