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ABSTRACT

Localization is a key issue a mobile robot must solve. Achieve a robust and efficient

localization method is not a trivial task, as an increase in robustness usually leads to an

impoverishment in efficiency and viceversa. One way to improve the localization process

is the introduction of an active localization strategy. Several of these strategies have been

developed, but in general these active localization strategies make use of the robot movement

in order to achieve the desire behavior.

In this work, we propose a localization strategy using visual active sensors and infor-

mation theory. Our strategy separates the movement action from the observation action. To

achieve this separation, we need to introduce a new step, in which the robot is able to select

the best possible observation action to perform. To carry out this selection, we make use of

information gain, in other words, we search for the most informative observation actions to

the localization process. Another important point is that we use the facts that our visual sen-

sor detect landmarks, and the we use of a particle filter (a Monte Carlo method) for localizing

the robot, to carry out an efficient selection of the observation action to perform.

After performed several test on both, simulated and real environments, we show that the

introduction of our strategy of active localization, yields improvements on the localization

process of the robot, getting better estimates of the its real position.

Keywords: mobile robot, robot localization, active localization, active perception.
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RESUMEN

La localización es un problema clave para la robótica móvil. Lograr una localización

eficiente y robusta no es una tarea fácil, dado que un incremento en la robustez, implica

una caı́da en la eficiencia y viceversa. Una forma de mejorar el proceso de localización

es mediante la introducción de una estrategia de localización activa, en donde varios de los

trabajos desarrollado se basan en la utilización del mismo movimiento del robot para lograr

el comportamiento deseado.

En este trabajo proponemos una estrategia de localización con sensores visuales activos.

En nuestra propuesta separamos la acción de desplazamiento, de la acción de observación del

robot. Para lograr esta separación, necesitamos la introducción de una etapa donde el robot

sea capaz de seleccionar la mejor acción de observación posible, recurriendo a la ganancia de

información para realizar la búsqueda de las posibles acciones. Ası́, la selección se plantea

como la búsqueda de la acción más informativa para el proceso de localización. Otro punto

importante es que aprovechamos el hecho que nuestro modelo de percepción visual se basa

en la detección de hitos (landmarks), y a la utilización un filtro de partı́culas (un método de

Monte Carlo) para llevar a cabo la localización del robot, para realizar una selección eficiente

de la acción de observación a ejecutar.

Después de llevadas a cabo varias pruebas tanto en ambiente simulados como reales,

vemos que la introducción de nuestra estrategia para lograr una localización activa, genera

una mejora en el proceso de localización del robot, obteniendo estimaciones más acertadas

sobre la posición real del éste.

Palabras Claves: robots móbiles, localization de robots, localización activa, percepción

activa.
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1. INTRODUCTION

1.1. Introduction

The problem of obtaining an accurate estimation of the position of a mobile robot within

its environment, task known as localization, is one of the key issues a mobile robot must

solve. Achieving a robust and efficient localization method is not a trivial task, as an increase

in robustness usually leads to an impoverishment in efficiency and viceversa. This stresses

the need to focus the perceptual resources on the most informative parts of the environment.

At present, the state of the art solutions to indoor robot localization are mainly based

on Bayesian techniques, such as the Extended Kalman Filter (EKF) or the Particle Filter

(PF) (Thrun, Burgard, & Fox, 2006). These techniques have three main basic steps: i) A

prediction step, where the robot uses its last position and self-motion information to predict

its new position, ii) An observation step, where the robot senses its environment, and finally,

iii) A position refinement step, where the robot updates the estimation of its new position

using the new observations from the environment. Figure 1.1.a shows a schematic view of

these 3 steps.

Predict

Odometry

Observe

Update

x−t

zt

x+
t

Predict

Odometry

Select observation action

x−t

Observe

Observation action

Update

x−t

zt

x+
t

FIGURE 1.1. Steps of the localization process. a) Right diagram, main steps of robot
Localization using Bayesian techniques. b) Left diagram, proposed framework
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A particular feature of the previous Bayesian scheme is that the observation step does

not consider the possibility of actively controlling the sensors in order to direct them to the

most informative parts of the environment. In effect, most current localization techniques

consider fix sensors usually mounted on the robot. These sensors provide observations about

the part of the environment that is local to the current robot position. In this work, we use

concepts from information theory and planning under uncertainty to develop a sound strategy

for actively controlling the robot sensors.

As a test bed, we use a differential drive wheeled robot, provided with an odometer on

each wheel and a color camera mounted on a pan-tilt system. By using the odometer, the

robot is able to track its motions. By using the video camera and suitable computer vision

algorithms, the robot is able to distinguish a set of visual landmarks that represent the map

of the environment. As our focus is the localization problem, we assume that the map of

the environment is known in advance, see (Thrun et al., 2006) for a description of relevant

mapping techniques.

The novelty of our localization approach resides in actively using the pan-tilt mechanism

to direct the visual sensor to the parts of the environment where the robot expects to obtain

the most useful information. We understand the most useful information, as the one that

helps the robot to achieve the best localization. The idea is that by selecting the most suitable

perceptual action, the robot can see the most informative landmarks in its local surrounding,

being able to achieve a better estimation of its current location.

We accomplish this by adding a new step between the prediction and observation steps

of Figure 1.1.a. This new step selects the best observation-action in terms of the expected

value of the information the robot anticipates to receive from the environment. To estimate

this best perceptual action the robot uses the prediction of its current position and the map of

the environment. Figure 1.1.b shows the new scheme.

We propose an approach where the robot assigns a score to each possible perceptual ac-

tion based on how much information we expect they provide to the robot localization process.

We use these scores to perform an action selection step, where the robot searches through its

2



set of possible perceptual actions looking for the best action to perform. This allows the

robot to bias its perception and maximize the expected information of the observation step.

Our experiment indicates that using this approach; we are able to substantially improve the

localization estimation of our robot, obtaining more accurate and less uncertain estimation.

The previous idea is closely related to recent applications of computational models of vi-

sual attentional mechanisms than combine top-down information with bottom-up data (Naval-

pakkam & Itti, 2006) (Espinace, Langdon, & Soto, 2008). In our case, the map of the envi-

ronment and the current estimation of the robot position give the top-down information. The

bottom-up information is given by the images acquired by the video camera according to its

current field of view. The idea is to use the top-down information to bias the perception of the

robot. This generates adaptive behaviors in the perceptual system of the robot that increase

the efficiency and accuracy of the robot position estimation.

This document is organized as follows. Section 1.2 describes related previous work.

In Chapter 2 presents background theory that we later use in Section 2.4, which presents

the proposed method and relevant implementation details. Chapter 3 presents our empirical

results using simulations and a real case. Finally, Chapter 4 presents the main conclusions of

this work and future avenues of research.

1.2. Previous work

In this section we review some of the work done on using information theory or entropy

on action selection for different robot task. We also review work done on visual attentional

systems that work as foundation to our work. The use of entropy, or information gain, as

criteria to select actions by a robot has already been used in several works with different

problems. Also biasing the perception of visual information has been done in some very

interesting works on perception.

In (Mitsunaga & Asada, 2006), they develop a framework to chose the best robot action

based directly on perception and on information criteria, without requiring first localize the

robot. They manually train the robot, so it can later select the best action to perform based

3



on the expected information of actions, how useful the robot expect the action to be. In

(Stachniss, Grisetti, & Burgard, 2005) they use the information gain criteria to create an

exploration plan for the SLAM process that balance exploring new areas and improving the

estimation on the map and the robot localization. The implementation is done using a Rao-

Blackwellized particle filter. In our work we use a similar approach to estimate the values of

information gain of actions to be performed by the robot, taking in consideration that we are

on a localization context.

One of the first works related to active localization was (Roy & Thrun, 1999), where they

implement a partially observable Markov decision process (POMDP) to find a route between

two points in a map. Finding a solution to a POMDPs is in PSPACE-complete, therefore to

have a real time system, first they augmented the state representation adding explicitly the

uncertainty, as entropy of the system, and use some pre-calculated information to speed-up

the process. The behavior that was generated with the use of the POMDP was a coastal

navigation: the robot first moves near a wall or objects it could use to localize itself and then

it moves along the walls to reach the target position, minimizing the probability of getting

lost. In (Burgard, Fox, & Thrun, 1997), they use entropy minimization to create an active

localization strategy. This active localization strategy has two parts: where to move and where

to look. The first part allows the robot to move to different locations where, by reaching these

locations, the robot would improve its localization. The second part select from the array of

sonars, which one use to sense the environment. They define general strategy for minimizing

the entropy using occupancy grids as representation of the robots current position. But the

main focus is on active navigation instead of active perception. The biggest different of the

previous mentioned works with our approach, is that we focus solely on active perception;

we assume that the navigation is controlled by an external system, that guides the robot to the

completion of a goal.

Another similar work is (Davison & Murray, 2002), where they use Extended Kalman

Filter SLAM (EKF-SLAM) for calculating the robots position estimation, and define a way

to search where the robot must fixate its camera to have better readings of its environment. To

perform this active perception, they manually created a policy on how to look for landmarks:

4



they look for landmark that is the hardest to predict. Because they already have defined what

action to do, they need to rate landmarks using the information provided by the Kalman Fil-

ter. They do not create a navigation plan; they assume that an external goal-directed module

controls the navigation. Asides from the fact that they attack the problem of active visual

perception over SLAM and no localization, the main difference is that model the active per-

ception as a landmark rating an action search, and we do it as an action search.
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2. THEORY AND DEVELOPMENT

In this section we provide the main details of our approach. First, we briefly describe the

main features of the particle filter, the technique that we use to keep a probabilistic estimation

of the robot position. Then, we describe the main details of the motion and perception models

used by our implementation of the particle filter. Afterwards, we describe our criterion to

search the space of possible perceptual actions. Finally, we show how we implement this

criterion using a particle filter.

2.1. Particle filter

The particle filter is a useful non-parametric technique to perform sequential state esti-

mation via Bayesian inference. It provides great efficiency and extreme flexibility to approx-

imate any functional non-linearity. The key idea is to use samples, also called particles, to

represent the posterior distribution of the state given a sequence of sensor measurements. As

new information arrives, these particles are constantly re-allocated to update the estimation

of the state of the system.

In Bayesian terms, the posterior distribution of the state can be expressed by:

p(st|o1:t) = β p(ot|st) p(st|o1:t−1) (2.1)

Where β is a normalization factor; st represents the state of the system at time t; and o1:t

represents all the information collected until time t. Equation (2.1) assumes that st totally

explains the current observation ot.

The particle filter provides an estimation of the posterior in Equation (2.1) in 3 main

steps: sampling, weighting, and re-sampling. The sampling step consists of taking samples

(particles) from the so-called dynamic prior p(st|o1:t−1). Next, in the weighting step, the

resulting particles are weighted by the likelihood term p(ot|st). Finally, a re-sampling step

is usually applied to avoid the degeneracy of the particle set. The key point that explains the

efficiency of the filter comes from using a Markovian assumption and expressing the dynamic

6
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st−1

ω
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∆

FIGURE 2.1. Motion model. From initial position st−1 = (xt−1, yt−1, θt−1), the
robot rotates an angle αt, then moves a distance ∆t, and finally rotates an angle ωt to
reach its final state st = (xt, yt, θt).

prior by:

p(st|o1:t−1) =

∫
p(st|st−1) p(st−1|o1:t−1)dst−1. (2.2)

This provides a recursive implementation that allows the filter to use the last estimation

p(st−1|o1:t−1) to select the particles sit−1 for the next iteration. These particles are then propa-

gated by the dynamics of the process p(st|sit−1) to obtain the new set of particles that estimate

the state at time t. In this way, at all time the state of the system is estimated by the set of

weighted samples:

St = {〈s(i)
t , ω

(i)
t 〉|i = 1, . . . , n}, (2.3)

Where each weight ω(i)
t is a factor called importance weight, and altogether they sum up

to one.

In the area of robot localization, the particle filter was first used in (Dellaert, Fox, Bur-

gard, & Thrun, 1999). Since then, it has become one of the favorite tools for robot localiza-

tion and also for the related problem of constructing maps of the environment (Thrun et al.,

2006). According to the generic scheme of Figure 1.1, the key steps of the particle filter are

the prediction step, given by p(st|sit−1), and the observation step, given by p(ot|st). In terms

of robot localization, these steps are given by the so-called motion and perception models,

respectively. We discuss these probabilistic models next.
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2.2. Motion model

As usual in mobile robotics, we assume a point model for the robot. Also, to simplify our

analysis, we consider only the case of planar motions, although, the extension to the 3D case

is straightforward. Accordingly, the position of the robot at time t is given by the state vector:

st = (xt, yt, θt). Following (Araneda, Fienberg, & Soto, 2007), our motion model assumes

that to move from st−1 to st, the robot performs three independent actions, as represented

in Figure 2.1. First, the robot rotates an angle αt to face the direction of the translation.

Afterwards, it translates a distance ∆t to reach (xt, yt). And finally, the robot rotates again,

an angle ωt, in order to face its final orientation θt.

The set of actions that moves the robot from st−1 to st are δt = (αt,∆t, ωt), and are

estimated from the robot’s odometers, in our case using the kinematics of a differential drive

robot. Given the values of the movement action δt, our motion model is given by:


xt

yt

θt

 =


xt−1 + ∆t cos (θt−1 + αt)

yt−1 + ∆t sin (θt−1 + αt)

θt−1 + αt + ωt

 (2.4)

In the implementation we add some white noise to the movement values. Let δ̂t =

(α̂t, ∆̂t, ω̂t) be the noisy values of the movement δt, we assume that the uncertainty in this

values corresponds to Gaussian models with zero mean and known variance, as given by:

α̂t ∼ N(αt;φ
2
α)

∆̂t ∼ N(∆t;φ
2
∆)

ω̂t ∼ N(ωt;φ
2
ω)

(2.5)
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2.3. Perception model

Our perception model is based on the detection of visual landmarks that are modeled

as 2D points. For each landmark, our visual detection system can sense range and bearing

with respect to the robot’s local frame of coordinates. In this planar context, we limit our

analysis to control only the panning motion of the robot camera. The extension to the 3D

case, considering an azimuth angle, is straightforward, although, as we discuss below, there

is an increase in the computational complexity.

If we denote, respectively, as rlt and βlt, the range and bearing measurements that we

expect to read from our sensor for a given landmark l a time t, and we denote by (xt, yt, θt)

the robot position, the perception model can be expressed by:

 rlt

βlt

 =

 √
(xt − lx)2 − (yt − ly)2

tan−1(ly − yt, lx − xt)− ρt − θt

 (2.6)

Where (lx, ly) is the position of landmark l and ρt is the panning angle of the camera.

Similar as the motion model, we use a Gaussian models to quantify the uncertainty in the

sensor measurements. Let olt = (r̂lt, β̂
l
t) be the noise values detected of the landmark l from

the camera, then:

r̂lt ∼ N(rlt;φ
2
r)

β̂lt ∼ N(βlt;φ
2
β)

(2.7)

2.4. Scoring of perceptual actions

To evaluate the expected benefit of each possible perceptual action, we use the concept of

information gain. We use mutual information, I(X;Y ), that measure how much information

of random variable X we get by knowing the random variable Y , and entropy, H(X), that
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measure the uncertainty around random variable X . For more details on definitions and

properties see Appendix A.

Our intuition is to use a score that allow us to evaluate the level of uncertainty between

the estimation of the robot position with and without considering the information provided

by the target perceptual action. We can express this intuition in terms of information gain by:

Θ(ot, a) = I(st|o1:t−1,m; st|o1:t−1,m, ot, a) (2.8)

Which can also be written as

Θ(ot, a) = H(st|o1:t−1,m)−H(st|o1:t−1,m, ot, a) (2.9)

Where st is the estimation of robot position, ot is the observation at time t (what landmark

is seen at time t), a is the observation action, and m is the map. From now on, we will omit

m and o1:t−1 in the equations because they are constant to all terms.

In Equation (2.9), only the right term of the right hand side depends on the perceptual

action. As we show in Appendix B by using the definition of entropy and Bayes theorem, we

can express this term as a function of p(st|a) and p(ot|st, a).

In terms of p(st|a), each possible perceptual action a does not affect the knowledge that

we have about the position st, therefore, p(st|a) = p(st). In terms of p(ot|st, a), we know

the map and the field of view (FOV) of the robot’s camera, therefore, at each position st we

know deterministically the landmarks that are visible. To estimate p(ot|st, a), we consider a

constant probability Pz > 0 of sensing each of the visible landmarks and a null probability

of sensing landmarks that are out of the FOV. We also assume that landmarks are observed

independently. In this way:

Θ(ot, a) = H(st)− log p(ot|a) +
Pz

p(ot|a)

∫
FOV

p(st) logPzp(st)dst (2.10)

Where:

p(ot|a) =

∫
p(ot|a, st)p(st|a)dst = Pz

∫
FOV

p(st)dst (2.11)
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Now that we have an approximation to the value of (2.9), we have to search for the

optimum action to perform. We achieve this by searching over the space of possible actions,

the action that provides the highest expected Θ. As a further refinement, we also consider in

our model the cost associated with executing different perceptual actions. This cost can be

related to the difficulty to perform the action or the time needed to complete it. Considering

this type of costs, our function to select perceptual actions is given by :

a = arg max
a
{E[Θ(ot, a)]ot|a − α · cost(a)}

= arg max
a

∑
i

p(ot = i|a)Θ(ot, a)− α · cost(a)

Where α is a weighting factor that trades-off the expected Θ and cost of each possible

perceptual action. This factor also takes care of differences in the units, nats or bits for Θ and

seconds for the cost.

In our case, we use a pan-tilt unit to execute perceptual actions. We defined our cost

function proportional to the angle that the pan-tilt has to move to reach the target position.

Empirically, we set the weighting factor α = 0.1, as a good compromise between the degree

of panning and the time to wait for the action to be completed.

2.5. Implementation

Given that there is not a close solution to Equation 2.9, we use a Monte Carlo approx-

imation, and employ the samples provided by the particle filter. First, we approximate the

term H(st)(as in (Stachniss et al., 2005)) by

H(st) ≈ −
∑
k

ωk logωk (2.12)

Similarly, we approximate the entropy H(st|ot, a) of equation 2.9, as follow:

H(st|ot, a) ≈ log p(ot|a)− Pz
p(ot|a)

∑
j

ωj logPzωj (2.13)

11



with p(ot|a) = Pz
∑

j ωj , and the j index, in this equation as well in equation 2.13, goes over

all particles, that can detect the seen landmark. One of the advantages of our approach is that

it is easy to perform the approximation, it is done in a single iteration over the set of particles,

performing sums and log-sums of particles weight. More details on the implementation can

be seen on Appendix C.

In our implementation, the estimation of equation 2.9, is performed using all the samples

provided by the particle filter. This approach yield good results, but at the cost of a decrease

on the complete process performance. In section 3.2 we show that the total overhead in-

troduced by having the ability to select landmarks, in the real robot, is mainly produced by

waiting the observation action to conclude, in our case, wait the pan-tilt unit to reach the de-

sired pan angle. If the main reason for lost of performance was produced by the calculations

made, we could increase the performance not using all the available particles, and sampling

a small fixed number of particles from the total pool, making the estimation less exact but

reducing the time needed to perform the calculations.

From the complexity point of view, the computation needed to estimate equation 2.8 us-

ing the O notation, with a naive implementation, is O(|A|ln), with n being the number of

particles used in the estimation, l the number of landmarks in the map and |A| the cardi-

nality of the actions space (or action space partition as in our case). The complexity shown

here comes form a very naive implementation, we use all available particles to perform the

estimation of equation 2.8.
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3. SIMULATIONS AND TESTING

In this section we show tests results of the proposed strategy on two different environ-

ments. First a simulated robot using MATLAB R© that uses our approach to select where

to look. Later, using CARMEN (Montemerlo, Roy, & Thrun, 2003) we implemented our

approach to select where to point a camera on a real robot. Expected results are to get an

improvement on the robot position estimation while maintaining a rather low overhead.

3.1. Simulation

In order to test the performance of the proposed strategy, we simulated a robot using

MATLAB, which uses our approach to select where to point a simple simulated sensor. This

sensor always detects landmarks wherever they are placed in the robot FOV . The outputs

of the sensor are: detected landmark with its range and bearing both with some white noise

(as the model presented in equation 2.5). The simulated robot provides us with movement

information composed by: initial rotation, traveled distance and final rotation, all values with

white noise (as the model presented in equation 2.7). The values of used deviation are 0.17

for the rotations and 0.4 for the traveled distance.

To compare the effect of introducing a perceptual action selection to the localization

process, we carry out simulations of the robot with different observation action selection

strategies. First a static sensor always looking in the same direction (in our case looking

straight). Then an active sensor that looks at random places (uniform angles over the circle),

and finally selecting the optimum angle given by our strategy.

A simulation consists on taking a map and a path within the map for the robot to follow,

then odometry and perception data are generated. To simulate odometry we took the relative

movement between two consecutive points on the real path, adding white noise to obtained

values. In order to simulate a perception measure, at every position of the robot, we search

for detected landmarks, then we calculate range and bearing of each one of them using: the

known map, robot position and observation action selected by the robot (as equation 2.6). In

a similar manner as we simulate odometry, we add withe noise to detection measurement.
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FIGURE 3.1. In the localization process with action selection on simple map a) Top-
left graph, expected information of landmarks. b) Top-right graph, polar graph of
expected information on the action space. c) Bottom graph, robot position estimate.

Figure 3.1 shows a complete status of the simulated system on a simple environment.

In this step, the robot is located next to the fourth landmark looking downwards. This is

due that the maximum information gain is reached with an observation action of rotating

approximately −90◦ (which gives a real angle of 270◦ approximately). Within a normal

localization process, the robot does not have the ability to detect that particular landmark,

the robot pose and the sensor configuration make that particular landmark fall out the robot

FOV .

Figure 3.2 shows another example. In this case it is possible to compare the difference

in the robot simulation status with and without the ability to select an observation action. In

the figures the blue clouds of points represent the estimation that the particle filter has on the

robot position. Looking at the different estimates of the robot position, we see that in figure

3.2.b the cloud is smaller and it encloses better the real robot position than the estimate at

figure 3.2.a. By comparing the graphs we can see the improvement introduced by having the

ability of active sensing.
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FIGURE 3.2. Step on the simulation. a) Left graph, localization without action se-
lection. b) Right graph, localization using our strategy as action selection

FIGURE 3.3. Mean square error along a simulated path

To have a more rigorous analysis of the robot behavior and the robot position estimation,

we run the simulation several times on one of our maps (map from figure 3.2), and calculate

the mean square error on the position estimate along the path. As mentioned before, we sim-

ulated different action selection strategies: active sensing with our optimum action selection,

random action selection, and no action selection (look straight). Figure 3.3 shows the mean

15



square error along the simulated path, and that the lower error, in general, is obtained with our

approach. The worst results are obtained when the simulated robot has a fixed observation

action.

In figure 3.4 we see different results of the position estimation along the path. We also

show the selected observation action (angle to move the pan-tilt unit) of our approach. We

only show random action selection and our strategy because both are a lot superior to a fixed

action strategy (looking straight in our case). In this simulation, the robot starts approxi-

mately at position (−20,−40), and move counter-clockwise along the path. As we see, both

approaches have a decent estimation on the firsts steps, but the random action approach tends

to be less accurate than ours. For example, on the sub paths from (40,−40) to (40, 30),

or (10, 40) to (−40, 40) our approach tends to maintain the robot localized, while random

looking tends to get lost from time to time. Or when the robot arrives to the line between

(−40, 10) an (10, 10), our approach maintains a better estimate longer, but eventually get a

little lost (mainly because no landmark can be seen for some steps after that line). After that,

both approaches get back on track. Now by looking at the actions selected by our approach

(the different FOV on the graph) we can see that it select the correct looking angle in all but

one place, when it arrives to (−40,−10).

Now that we have seen that along the path, our strategy get better estimates than ran-

dom and fixed action selection, we want to compare the average error on the complete path

estimation. Table 3.1 shows the average mean square error (MSE) of the complete path esti-

mate after performing 50 simulations. We see that in average, the active localization strategy

proposed in this work, get lower error of the estimates than the other two approaches. This

improvement is generated when the robots detect a landmark that under normal conditions,

robot position and static sensor configuration or random looking, should not be able to detect.

But with an active localization strategy the restriction of a detector with a fixed configuration

is overcome, resulting on a improvement of the estimates of the robot position respect to a

normal localization.
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Averaged MSE Deviation
With selection 4.23 3.47

Without selection and straight looking 17.54 9.62
Without selection and random looking 6.09 3.06

TABLE 3.1. Average MSE and deviation, measured in pixels, of 50 simulations.

FIGURE 3.4. Example of estimated positions using different approaches. Also the
looking direction, shown as the FOV of our approach

3.2. Real robot

In the previous section we have seen that under simulated conditions the proposed strat-

egy produce an improvement on the robot position estimate. Now we show results of testing

our proposed strategy on real environment. We used a Pioneer-3 AT robot, equipped with

a Directed Perception PTU-C46 pan-tilt unit and a single Point Grey Dragonfly2 camera.

We only use the pan movement of the pan-tilt unit, moving the camera over the horizontal

plane only. We use CARMEN as an interface with the robot and the pan-tilt unit. To interact

with the camera we used the open-source library libdc1394 that give us direct access to the

camera. The environment where we ran the tests was an outdoor environment with synthetic

landmarks, composed of cylinders of different colors that are easy to detectable by the camera
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FIGURE 3.5. Pictures of the robot on the testing environment

(figure 3.5). In our implementation we use 2000 particles, and our action space is composed

of 60 different pan angles (the complete 360 degrees divided in 6 degrees steps).

Our perception system was composed by a single camera, that detects well-known land-

marks. These landmarks are built on black paper cylinders covered with two smaller patches
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FIGURE 3.6. Position estimation of the robot movements

of distinctive and easily detectable colors. We know the size and shape of each landmark,

allowing us to measure range, based on the detected landmark area, and bearing of detected

landmarks based on its horizontal position on the image. We use a detection probability

(P (zt = i|xt, a)) of 70% because our landmark detector misses some landmarks, changes

on lightning conditions and shadows (among others) made our detection engine miss a few

landmarks. This probability was estimated empirically by counting the times landmarks were

detected under different conditions.

The odometry model is the same as in the simulation. CARMEN provides us with a raw

estimation of the robot position; using them we calculate the initial rotation, traveled distance

and final rotation of each step. We do not add noise to the odometry or detector data, because

these values come with noise from the natural environment.

The test was carried out moving the robot in an open space where we placed six land-

marks, we also marked on the ground the path the robot should follow, these marked points

on the ground are our waypoints. On the real robot we tested two strategies: fixed pan an-

gle and the our active observation strategy. Measuring the accuracy of the position estimate
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is a lot more complex in this case. The robot performs a lot of computations while moves

between waypoints, this make it hard to match the robot position with a specific position in

the real path. Also there is a difference between using or not the active localization in terms

of computation per second (CPS), and therefore number of points on the estimated path.

That’s why for the real robot, we measure the uncertainty of the estimation, as variance on

the position estimate, while the robot moves around the map.

Figure 3.6 shows the result on one of the tests on the real robot. The robot moves from

left to right in the figure. In this test, none of the robot path estimates are perfect, but we

can see an improvement with the active localization. In the last steps both approaches tested

fail because the robot fails detect some landmarks. This makes our strategy, that had a better

estimate before, work better than the fixed angle strategy.

Figure 3.7 shows the variance on the robot position estimate of the different tested strate-

gies. We see a lower variance using the proposed strategy than not using the active perception

at all. The decrease in the variance can be explained because the robot have access to detect

landmarks from poses were normally could not do it without the active perception, it not only

had an improvement on lower average mean square error than the non-active version, but also

decreased the uncertainty (measured as the variance) of his estimated position.

Test Mean Deviation
1 1.35 1.12
2 1.78 1.10
3 1.49 1.06
4 1.73 1.00

TABLE 3.2. Average waiting time in seconds

Besides the impact that our strategy have on the robot position estimates, we analyze the

introduced overhead of the needed calculations. Using the logs we generated from the real

robot experiment, we have the total time we ran the experiment, the number of calculation

steps performed and the waiting times for the pant-tilt unit to reach the desired position,

among others. With these data first we estimate the calculations per seconds, CPS, the

robot perform with and without the introduction of the observation action selection strategy,
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FIGURE 3.7. Variance of the real robot position estimation

results are shown in table 3.3. The introduction of perceptual action selection, under the same

conditions, creates a decrease of 71% on the performance compared to localizing without

selecting an observation action. This diminution has two main reasons: the introduction of

more calculations to the process, and the waiting time on the observation action to finish.

Table 3.2 shows the average waiting times of the pan-tilt unit to reach the desired position

with its deviations. We see that the waiting times are relative high values taking into account

that our localization implementation, without selecting observations actions, perform around

1cps. To have a better estimation of the overhead introduced by the calculations itself, we

perform an average CPS assuming there is no waiting time for the observation action to

conclude. This assumption gives us an expected CPS of 1.07cps, only 21% decrease on

performance. We show the grouped results in table 3.3. With this results in mind, we conclude

that much of the performance lost is due the waiting time on the pan-tilt unit to conclude the

observation action.
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Without landmark selection
With landmark selection

Base-case Waiting time to 0
1.37 0.39 1.07
TABLE 3.3. Calculations per seconds
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4. CONCLUSION AND FUTURE RESEARCH

Several strategies for active localization of mobile robots have been developed. In gen-

eral terms these strategies make use of the robot movements in order to achieve the desired

behavior. In this work, we have proposed, implemented and tested, an active localization

strategy, using visual active sensors as well as a particle filter, with the assumption that the

observation action is independent from the robot movements. In this strategy, we introduce

an additional step into the normal localization process, in which we select the observation

action. In order to select this action, we use the information gain to rate the possible actions

also taking into account the cost of performing such actions. Since we use a particle filter for

localization, the approximations used reduce the equations involved to sums and log-sums of

particles weight, and can be calculated in an efficient way.

To test our proposed strategy, we performed simulations and carry out an implementa-

tion phase on a real robot. After the analysis of the results obtained from the different tests

performed on both environments, we confirm that our proposed strategy for active visual

localization yields better estimates of the current robot position.

Concerning the overhead introduced by the proposed strategy on the real robot, we iden-

tify that the main source of overhead is due to the waiting time arising from the selected

observation action to be concluded. This waiting time appears from the use of a pan-tilt

unit that moves the camera, this movement constituting our observation action. Estimation

of overhead, assuming no waiting time, i.e. overhead is only due to calculation process, re-

sults in a rather low overhead, only 21% compared to the 71% from the base-case analysis

considering waiting time. From a complexity point of view, implementation of the proposed

strategy can be done in O(|A|ln), with |A| the cardinality of the action space, l the number

of landmarks and n the number of samples, or particles, used to do the estimates.

Improvement to the present work can be achieved in several ways. For instance, expand-

ing the active observation to SLAM, considering not only the uncertainty on the localization,

but also the uncertainty on the map estimation in a way that is still simple to calculate. Also,
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the use of a topological map in conjunction with the position estimate of the robot could re-

sult in a simplification and fastening of the calculations, further reading on topological maps

on (Remolina & Kuipers, 2004).

Other possibility could be the changing of the observation action to a bias on the image

perception, as in (Frintrop, Backer, & Rome, 2005) or (Navalpakkam & Itti, 2006). This

type of observation action would allow the mixing of top-down with bottom-up knowledge,

we could mix the top-down information as in this proposed strategy, with the bottom-up,

data driven information arising from the image, similar to work at (Rasolzadeh, Björkman,

& Eklundh, 2006). Once the observation action is changed, the waiting time for the action

to conclude could be neglected; this implies the need to find ways for improving the overall

strategy performance. One possibility to explore could be the use of a fixed sampling set to

estimate the value of equation 2.9, as discussed in section 2.5.
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APPENDIX A. INFORMATION THEORY

We use tools from information theory to be able to work under uncertainty. This tools

we use are two, entropy and mutual information.

The entropy of a random variable X with probability mass function p(X) is defined as

follow:

H(X) =

∫
p(X) log p(X)dX (A.1)

Entropy measure an average uncertainty in the random variable X . Using log with base 2,

we get a measure of the number of bits average needed to describe the random variable X .

The mutual information of two random variables X and Y and joint mass function

p(X, Y ) is defined as follows:

I(X;Y ) = H(X)−H(X|Y ) =

∫ ∫
p(x, y) log

p(x, y)

p(x), p(y)
dxdy (A.2)

The mutual information is a measure of dependence of two random variables. The mutual

information is non-negative, symmetric on both X and Y , and equal to 0 if and only if X and

Y are independent random variables.

More details on information theory and properties of entropy and mutual information can

be found at (Cover & Thomas, 2006).
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APPENDIX B. EQUATIONS

Here we show the detail of how we got equation 2.10. First, by the definition of entropy

and applying Bayer theorem we get:

H(st|ot, a) =

−
∫
P (st|ot, a) logP (st|ot, a)dst

= − 1

P (ot|a)

(∫
P (ot|a, st)P (st|a) logP (ot|a, st)P (st|a)dst

− logP (ot|a)

∫
P (ot|a, st)P (st|a)dst

)
First, the value of P (ot|a, st) is 0 if the the landmark is outside the FOV of st (because

then it simply can not be seen), so every integral only need to be evaluated over the places

where the landmark can be seen.

By the law of total probabilities P (ot|a) =
∫
P (ot|a, st)P (st|a)dst. We also assumed

P (ot|a, st) as a constant, Pz. And as we mentioned, the distribution of the position is inde-

pendent on the action performed, so P (st|a) ca be changed to P (st)in the equations.

H(st|ot, a) =

≈ − 1

P (ot|a)

(∫
FOV

PzP (st) logPzP (st)dst − P (ot|a) logP (ot|a)

)
= logP (ot|a)− Pz

P (ot|a)

∫
FOV

P (st) logPzP (st)dst

Where FOV are the places s from which the landmarks can be observed.

Finally, the missing value, P (ot|a) can be calculated as follow:

P (ot|a) =

∫
P (ot|a, st)P (st|a)dst = Pz

∫
FOV

P (st)dst (B.1)
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APPENDIX C. IMPLEMENTATION DETAILS

We introduce 2 new operations to the normal loop of the filter. First, we search within the

action space the best action to perform with he known information finally we tell the robot to

perform the action. This is shown in the code below.

FILTER-WITH-OBSERVATION-ACTION(xt−1, O,M) :

x−t ← PREDICT(xt−1, O)

a← GET-BEST-ACTION(x−t ,M)

PERFORM-ACTION(a)

S ← SENSE()

xt ← UPDATE(x−t , S)

To search for the best action we do an exhaustive search over the action space.

GET-BEST-ACTION(x−t ,M) :

max inf ← −∞

for a ∈ Actions

do info ← EXPECTED-INFORMATION(x−t , a,M)

if info > max inf

then max inf ← info

best action ← a

return best action

The Monte-Carlo method for EXPECTED-INFORMATION(x−t , a,M) is shown next.
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EXPECTED-INFORMATION(x−t , a,M) :

total inf ← 0

hx ← 0

entropy ← FALSE

for m ∈M

do pm ← 0

plogFOVm ← 0

plog¬FOVm ← 0

for ρ ∈ x−t
do ρ′ ← SIMULATE-ACTION(ρ, a)

if ρ′ ∈ FOVm
then pm ← pm + ωρ

plogFOVm ← plogFOVm + ωρ logωρ

else

plog¬FOVm ← plog¬FOVm + ωρ logωρ

if ¬entropy

then hx = −(plogFOVm + plog¬FOVm )

entropy ← TRUE

I ← 0

if 0 < pm ≤ 1

then I ← hx − (log pm − plogFOV
m

pm
)

elseif pm = 0

then I ← R

else I ← 0

total inf ← total inf + pm · I

return total inf

Wtih R the constant entropy when resampling is done.

Finally SIMULATE-ACTION(a, ρ) just change the θ component of the particle ρ, simu-

lating action performed by the pan-tilt.
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