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Abstract
We discuss the quantization of delta gravity, a two symmetric tensors’ model
of gravity. This model, in cosmology, shows accelerated expansion without
a cosmological constant. We present the δ̃ transformation which defines the
geometry of the model. Then, we show that all delta-type models live at one
loop only. We apply this to general relativity and we calculate the one-loop
divergent part of the effective action showing its null contribution in vacuum,
implying a finite model. Then, we proceed to study the existence of ghosts in
the model. Finally, we study the form of the finite quantum corrections to the
classical action of the model.

PACS numbers: 04.50.Kd, 04.60.Gw

1. Introduction

In the 20th century, two major revolutions in physics changed forever the way in which we
understand nature and the world. One of these refers to quantum mechanics which bares its
form to physicists like Niels Bohr, Werner Heisenberg, Erwin Schroedinger and Paul Dirac to
name a few. This framework has been used successfully to describe the physics of the small, i.e.
from atoms to quarks, their forces and interactions. The second one is Einstein’s general theory
of relativity [1] which describes the physics of the very large, from the motion of planets in
the solar system to the motion of galaxies in the Universe, that is, the gravitational interaction.
General relativity, or GR in short, is an excellent classical theory as it agrees with the classical
tests of GR [2] and it provides a beautiful geometric interpretation of gravity. However, in
spite of their individual successes, there is a problem. In fact, GR is not renormalizable. This
means among other things that we cannot compute quantum corrections to the classical results,
black hole thermodynamics cannot be understood in statistical terms (we cannot count states)
and near the Big Bang, GR breaks down, i.e. quantum effects dominate the evolution of the
Universe and perhaps this could explain inflation. To solve these problems, physicist have tried
to find a unified theory that can encompass all phenomena in all scales and, in the particular
case of the gravitational interaction, a quantum theory of gravity.
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For the first half of the past century, practically no one worked on such a thing, but in the
second half, increasing amounts of people began to address the problem of finding a theory
of quantum gravity. The oldest approaches to quantized gravity were methods developed by
people like Gerard ’tHooft [3] and Bryce DeWitt [4] such as the path integral quantization
and canonical quantization, respectively. Recently, the results of these efforts have resulted in
different theories which stand like candidates to solve the problem of quantum gravity. These
are, among others, superstring theory [5, 6], loop quantum gravity (LQG) [7], twistors [8] and
non-commutative geometry [9], but until now none of the above has produced satisfactory
results that can single out one from the others.

The prime candidate for a consistent description of quantum gravity is string theory
[5, 6]. Strings appeared around 1970 to explain the confinement of quarks inside hadrons.
But later it was realized that in a closed string theory, a spin 2 particle that can be identified
with the graviton naturally appears. Even in an open string theory, higher order computations
will involve closed strings as intermediate states, so the inclusion of gravity in string theory is
not only natural but may also be unavoidable. Moreover, the finiteness of string models make
the assertion plausible that the model so formulated provides a consistent theory of quantum
gravity. But string theory has a plethora of consistent vacua, so unique phenomenological
predictions are difficult to obtain [10].

A second candidate to quantize gravity has been developed in recent years. It is called
LQG, where a canonical treatment of GR is implemented [7]. New variables (loops) are
introduced, in order to exploit the analogy with non-Abelian Yang–Mills fields. They
automatically solve some of the constraints of the theory. In a suitable Hilbert space (spin
network states), it is possible to diagonalize geometrical objects such as volume and area,
implementing its quantization. This recent progress has permitted the computation of the
black hole entropy using purely combinatoric methods [11], up to an arbitrary real number,
the Barbero–Immirzi parameter. In this formalism, the semiclassical limit is difficult to obtain
[12].

Less widely explored, but interesting possibilities, are the search for non-trivial ultraviolet
fixed points in gravity (asymptotic safety [13]) and the notion of induced gravity [14]. The
first possibility uses exact renormalization-group techniques [15], and lattice and numerical
techniques such as Lorentzian triangulation analysis [16]. Induced gravity proposed that
gravitation is a residual force produced by other interactions.

In a recent paper [17], a two-dimensional field theory model explore the emergence of
geometry by the spontaneous symmetry breaking of a larger symmetry where the metric is
absent. Previous work in this direction can be found in [18], [19] and [20].

Nevertheless, coming back to the original approaches, which are still pursued today, via
direct path integral quantization it is known that, to one loop, the Einstein–Hilbert theory is,
in vacuum and without a cosmological constant, finite on-shell [3, 21], but at two loops or
more is non-renormalizable [22–24]. This means that if we truncate the theory to one loop
and evaluate in the equations of motion, what we will have is a finite model of gravitation. But
how can we achieve this?

In [25] a modified non-Abelian Yang–Mills model is shown, which from now on will be
refer to as δ̃ Yang–Mills. It is a natural and almost unique extension of non-Abelian Yang–Mills
theory whose main characteristics are that it preserves the classical equations of the original
model at the quantum level, introduces new symmetries, which are a natural extension of the
former symmetry, is renormalizable, preserves the property of asymptotic freedom and lives
at one loop in the sense that higher loop corrections are absent. An important point is that the
quantum correction result is the double of the usual case.
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Taking from the δ̃ Yang–Mills case and knowing the finiteness on-shell for GR at one
loop, the questions we raise are: Can we apply the approach of δ̃ Yang–Mills to GR? Will
it live at one loop? Will it give a finite model of quantum gravity? The answer to the first
question is yes (see [26]) and in the case of δ̃ GR, we have a natural and almost unique
extension of GR that has two tensor fields. These are the graviton field gμν which transforms
as a rank 2 covariant tensor under general coordinate transformations (GCTs), plus g̃μν which
transforms as a two covariant tensor under GCTs and under an extra symmetry. The classical
aspects of the model were explored in [26], where it is shown that δ̃ GR preserve the classical
equations of the former metric gμν . The equations of motion for both fields are second order,
the Newtonian limit is compatible with experiments, the equivalence principle is satisfied and,
in cosmology, the accelerated expansion of the Universe is obtained without introducing a
cosmological constant.

In this work, we show that all delta theories live at one loop. We fix the gauge using the
Becchi–Rouet–Stora–Tyutin (BRST) method. We compute the divergent part of the effective
action and it results the double of what was found in [3]. As the model lives at one loop, this
is the exact effective action. Since the equation for the original field is preserved, this means
that the quantum corrections of the model are on-shell in the gμν fields so that the divergent
part of the effective action vanishes. This implies that in our model, the effective action at one
loop is exact and finite in vacuum so that it does not need to be renormalized.

The problem that this model has is the apparently inevitable appearance of ghosts. Due
to them, it may not be unitary or stable. This in turn implies difficulties with the quantization
of the model, but in [27–31], phantom fields are used to explain the accelerated expansion of
the Universe as an alternative to the cosmological constant and quintessence, a feature that
our model presents [26] and that our model seems to introduce in a natural way. It would
be possible that our ghosts could be related to phantom fields in δ̃ GR. This connection may
be far reaching because the phantom idea has gained great popularity as an alternative to
the cosmological constant. The present model could provide an arena to study the quantum
properties of a phantom field, since the model has a finite quantum effective action. Moreover,
the advantage of being a gauge-type model opens the possibility of fixing a gauge in which the
model is unitary or impose a condition to restrict the physical Hilbert space in such a way that
the model defined on this subspace is unitary. On the other hand, as [30] mentions, a choice
could be made of having either ghosts or instabilities. There the author explains that in order to
save unitarity we are forced to choose instabilities which would imply having a Hamiltonian
not bounded from below.

Naturally, a theory of gravitation without matter is incomplete, but it serves as a motivation
for future works where the research on these types of models can lead us to more realistic
results. A possible solution is to use δ̃ supergravity models that contain matter fields [32] and
could cure the phantom instability.

In section 2, we give the definition of δ̃ transformation, present the GCTs and its
corresponding extensions and define the new gauge transformations and the generalizations
of the covariant derivative. Then, in section 3, we show the general form of the invariant
action for general δ̃ theories, present and demonstrate the invariance of δ̃ gravity action and
give the general form of the classical equations of motion for general fields. In section 4, we
compute the effective action for a generic δ̃ model and show that all of them live at one loop.
Section 5 is the most important section of this work; here we applied what was seen
in the previous sections to the particular case of Einstein–Hilbert theory. We show the
classical equations of motion for the two fields and give solutions for the particular cases of
Schwarzschild and Freedman–Robertson–Walker (FRW) metrics. We apply the background
field method (BFM) and give the relevant quadratic total Lagrangian. We also calculate
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the divergent part of the effective action at one loop using an algorithm developed in [21].
In section 6, using the gauge fixing of the previous section, we explore the Hamiltonian
formalism, redefine the fields, the creation and annihilation operators and see the existence
of ghosts. Finally in section 7, we analyze the form of the finite quantum corrections to the
effective action and we show the modification of the equations of motion due to the simplest
type of corrections [33–36].

In appendix A, we describe the gauge fixing procedure for the modified model of GR and
obtain the Faddeev–Popov for this case using the BRST method in detail [37]. In appendix B,
we give a review of the background field method following [38]. Finally, in appendix C, we
give a brief review of the algorithm developed in [21] for the computation of the divergent
part of the effective action at one loop and we indicate the values of the parameters used in
our case.

It is important to note that we work with the δ̃ modification to general relativity, based on
the Einstein–Hilbert theory. From now on, we will refer to this model as δ̃ gravity.

Motivated by simplicity, we will use the cosmological constant � = 0. We will use the
Riemann tensor given in [21]:

Rα
βμν = ∂μ�νβ

α − ∂ν�μβ
α + �μγ

α�νβ
γ − �νγ

α�μβ
γ (1)

with the Ricci tensor Rμν = Rα
μαν , the Ricci scalar R = gμνRμν and

�μν
α = 1

2 gαβ (∂νgβμ + ∂μgνβ − ∂βgμν ). (2)

2. δ̃ Transformation

In this work, we will study a modification of models that consist in the application of a variation
that we will define as δ̃. This variation will produce new elements that we define as δ̃ fields.
We take throughout our work the convention that a tilde tensor is equal to the δ̃ transformation
of the original tensor associated with it when all its indices are covariant. We raise and lower
indices using the metric g.

In this form we will have

S̃μνα... ≡ δ̃(Sμνα... ) (3)

and, for example

δ̃ (Sμ
να... ) = δ̃(gμρSρνα... )

= δ̃(gμρ )Sρνα... + gμρδ̃(Sρνα... ). (4)

It is known that δ(gμν ) = −δ(gαβ )gμαgνβ , so

δ̃ (Sμ
να... ) = −g̃μρSρνα... + S̃μ

να.... (5)

2.1. General coordinate transformation

With the previous notation in mind, we can work out the general transformations δ̃ for any
tensor with all its indices covariant (for mixed indices, please see (5)). We begin by considering
GCTs or diffeomorphism in its infinitesimal form

x′μ = xμ − ξ
μ

0 (x)

δx′μ = − ξ
μ

0 (x), (6)
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where δ is the GCT. Now, we define

ξ
μ

1 (x) ≡ δ̃ξ
μ

0 (x). (7)

Moreover, we postulate that δ̃ commutes with δ. Now we see some examples.

(I) A scalar �(x):

�′(x′) = �(x)

δ�(x) = ξ
μ

0 �,μ; (8)

noting that δ̃ commutes with δ, we can read the transformation rule for �̃ = δ̃�:

δ�̃(x) = ξ
μ

1 �,μ +ξ
μ

0 �̃,μ . (9)

(II) A vector Vμ(x):

δVμ(x) = ξ
β

0 Vμ,β + ξα
0,μVα; (10)

therefore, using (5), our new transformation will be

δṼμ(x) = ξ
β

1 Vμ,β + ξα
1,μVα + ξ

β

0 Ṽμ,β + ξα
0,μṼα. (11)

(III) Rank 2 covariant tensor Mμν :

δMμν (x) = ξ
ρ

0 Mμν,ρ + ξ
β

0,ν
Mμβ + ξ

β

0,μ
Mνβ (12)

and for M̃μν ,

δM̃μν (x) = ξ
ρ

1 Mμν,ρ + ξ
β

1,ν
Mμβ + ξ

β

1,μ
Mνβ + ξ

ρ

0 M̃μν,ρ + ξ
β

0,ν
M̃μβ + ξ

β

0,μ
M̃νβ . (13)

We can define the new GCTs so that δ0 is the transformation in ξ0 and δ1 in ξ1. This new
transformation is the basis of this type of model.

2.2. Symmetry, algebra and gauge

2.2.1. Gauge transformations. In gravitation, we have a model with two fields. The first is
just the usual gravitational field gμν (x) and a second one g̃μν (x) which corresponds to the δ̃

variation of the first. We will have two gauge transformations associated with the GCT given
by (12) and (13):

δgμν (x) = ξ0μ;ν + ξ0ν;μ (14)

δg̃μν (x) = ξ1μ;ν + ξ1ν;μ + g̃μρξ
ρ

0,ν
+ g̃νρξ

ρ

0,μ
+ g̃μν,ρξ

ρ

0 , (15)

where ξ
μ

0 (x) and ξ
μ

1 (x) are infinitesimal contravariant vectors of the gauge transformations.
Studying the algebra of these transformations, we see

[δξ 0
, δξ0 ]gμν (x) = ζ0μ;ν + ζ0ν;μ = δζ0 gμν (16)

with

ζ λ
0 = ξ̄ λ

0,ρξ
ρ

0 − ξλ
0,ρ ξ̄

ρ

0 (17)

and

[δξ , δξ ]g̃μν (x) = ζ1μ;ν + ζ1ν;μ + g̃μρζ
ρ

0,ν
+ g̃νρζ

ρ

0,μ
+ g̃μν,ρζ

ρ

0 = δζ g̃μν (x), (18)

where ζ0 is as before and

ζ λ
1 = ξ̄ λ

0,ρξ
ρ

1 + ξ̄ λ
1,ρξ

ρ

0 − ξλ
0,ρ ξ̄

ρ

1 − ξλ
1,ρ ξ̄

ρ

0 ; (19)

it can be seen from the above equations that both transformations form a closed algebra.
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2.2.2. Covariant differentiation. As is usual, we define the covariant derivative as

∇νAα = DνAα = Aα;ν = Aα,ν − �αν
λAλ, (20)

where Aα is a covariant vector. Now we generalize the definition of the covariant derivative
when it acts on ‘tilde’ tensors, e.g.

∇ν Ãα = δ̃(DνAα ) = Ãα,ν − �αν
λÃλ − δ̃(�αν

λ)Aλ, (21)

where Ãα = δ̃Aα , and we reserve the D notation for the usual covariant derivative and ∇ for
the generalized one so that

∇ν Ãα = Dν Ãα − δ̃(�αν
λ)Aλ, (22)

where

δ̃
(
�αν

λ
) = 1

2 gλρ (Dν g̃ρα + Dα g̃νρ − Dρ g̃αν ); (23)

further, the infinitesimal transformation of the modified connection is

δ
(
δ̃�μν

ε
) = ∇μ∇νξ

ε
1 + Rε

νγμξ
γ

1 + δ̃
(
Rε

νγμ

)
ξ

γ

0 (24)

with

δ̃(Rε
νγμ) = Dγ

[
δ̃
(
�μν

ε
)] − Dμ

[
δ̃
(
�γν

ε
)]

. (25)

As DνAα is a two covariant tensor, ∇ν Ãα is a tilde tensor of rank 2 and transforms according
to equation (13). This definition of the covariant derivative will be used in section 5. We note
that an analogous type of generalization of the covariant derivative was used in [25].

Now that we have established the notation and the definitions, we can start to look for the
structure of the modified models. In the following section, we will define the new invariant
action and find the classical equations of motion.

3. Modified model

As the GCTs were extended, we can look for an invariant action. We start by considering a
model which is based on a given action S0[φI] where φI are generic fields, and then we add to
it a piece which is equal to a δ̃ variation with respect to the fields and we let δ̃φJ = φ̃J so that
we have

S[φ, φ̃] = S0[φ] + κ2

∫
d4x

δS0

δφI(x)
[φ]φ̃I(x) (26)

with κ2 an arbitrary constant and the index I can represent any kind of indices. For more
details of the definition of δ̃, please see appendix A of [26]. This new defined action shows the
standard structure which is used to define any modified element or function for δ̃ type models,
for example, the gauge fixing and Faddeev–Popov. Next, we verify that this form of action is
indeed the correct one for δ̃ gravity and so is invariant to the new GCT.

3.1. The modified model’s invariance

In this paper, we will investigate the δ̃ gravity action, obtained by the procedure sketched
above:

S[g, g̃] =
∫

ddx
√−g

(
− 1

2κ
R + LM

)
+ κ2

∫ (
Rμν − 1

2
gμνR − κT μν

) √−gg̃μν ddx, (27)

6
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where LM is some matter Lagrangian and

T μν = − 2√−g

δ(
√−gLM )

δgμν

= − 2
δLM

δgμν

− gμνLM (28)

is the energy–momentum tensor. Now we must verify that (27) is invariant under the following
transformations:

δgμν (x) = gμρξ
ρ

0,ν
+ gνρξ

ρ

0,μ
+ gμν,ρξ

ρ

0 = ξ0μ;ν + ξ0ν;μ
δg̃μν (x) = ξ1μ;ν + ξ1ν;μ + g̃μρξ

ρ

0,ν
+ g̃νρξ

ρ

0,μ
+ g̃μν,ρξ

ρ

0 .

We can see that (27) is obviously invariant under transformations generated by ξ
ρ

0 , since
these are GCTs, and we declared g̃μν to be a rank 2 covariant tensor. Under transformations
generated by ξ

ρ

1 (δ1), gμν does not change, so we have

δ1S(g, g̃) = κ2

∫ (
Rμν − 1

2
gμνR − κT μν

) √−g(δ1g̃μν ) ddx

= κ2

∫ (
Rμν − 1

2
gμνR − κT μν

) √−g(ξ1μ;ν + ξ1ν;μ) ddx

= − 2κ2

∫ (
Rμν − 1

2
gμνR − κT μν

)
;ν

√−gξ1μ ddx = 0. (29)

We note that we must impose conservation of the energy–momentum tensor T μν ;ν = 0
so that (29) is fulfilled.

3.2. Classical equation

Now that we know that our action is invariant we can start to study the model. To begin with,
we will see how are the classical equations of motion. When varied (26) with respect to φ̃I ,
we obtain the classical equation of φI :

δS0

δφI(x)
[φ] = 0, (30)

and when varied with respect to φI , we obtain the φ̃I’s equation:

δS0

δφI(y)
[φ] + κ2

∫
d4x

δ2S0

δφI(y)δφJ(x)
[φ]φ̃J(x) = 0. (31)

Simplifying this equation using (30), we obtain∫
d4x

δ2S0

δφI(y)δφJ(x)
[φ]φ̃J(x) = 0, (32)

where we note that δ2S0
δφJδφI

[φ] is a differential operator acting on φ̃J . φ̃J belongs to the kernel of
this differential operator. It turns out that the kernel is not zero, a fact that can be clearly seen
in this paper, for the case of gravitation, in equation (44) and below.

Having studied the classical model, we can begin to look for its quantum aspects. In the
following section, we will compute the quantum corrections using a path integral approach.

7
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4. Quantum modified model

In this section, we derive the exact effective action for a generic δ̃ model and apply the result to
the Einstein–Hilbert action in section 5. We saw that the classical action for a δ̃ model is (26).
This in turn implies that we now have two fields to be integrated in the generating functional
of Green’s functions:

Z( j, j̃) = eiW ( j, j̃) =
∫

DφDφ̃ ei(S0+
∫

dN x
δS0
δφI

φ̃I+
∫

dN x( jI (x)φI (x)+ j̃I (x)φ̃I (x)))
. (33)

We can readily appreciate that because of the linearity of the exponent on φ̃J what we
have is the integral representation of a Dirac’s delta function so that our modified model, once
integrated, over φ̃J gives a model with a constraint making the original model live on-shell:

Z( j, j̃) =
∫

Dφ ei(S0+
∫

dN x jI (x)φI (x))δ

(
δS0

δφI(x)
+ j̃I(x)

)
. (34)

A first glance at equation (34) could lead us to believe that this model is purely classical.
But we can see by doing a short and simple analysis that this is not so. For this, we follow
[39]. See also [40].

Let ϕI solve the classical equation of motion
δS0

δφI(x)

∣∣∣∣
ϕI

+ j̃I(x) = 0. (35)

We have

δ

(
δS0

δφI(x)
+ j̃I(x)

)
=

−1
det

⎛
⎝ δ2S0

δφI(x)δφJ(y)

∣∣∣∣∣
ϕI

⎞
⎠ δ(φI − ϕI ). (36)

Therefore,

Z( j, j̃) =
∫

Dφ ei(S0+
∫

dN x jI (x)φI (x))δ

(
δS0

δφI(x)
+ j̃I(x)

)

= ei(S0(ϕ)+∫
dN x jI (x)ϕI (x))

−1
det

⎛
⎝ δ2S0

δφI(x)δφJ(y)

∣∣∣∣∣
ϕI

⎞
⎠ . (37)

Note that ϕ is a functional of j̃. The generating functional of the connected Green function
is

W ( j, j̃) = S0(ϕ) +
∫

dNx jI(x)ϕI (x) + iTr

⎛
⎝log

⎛
⎝ δ2S0

δφI(x)δφJ(y)

∣∣∣∣∣
ϕI

⎞
⎠

⎞
⎠ . (38)

Define

�I(x) = δW

δ jI(x)

= ϕI(x)

�̃I(x) = δW

δ j̃I(x)
.

The effective action is defined by

�(�, �̃) = W ( j, j̃) −
∫

dNx{ jI(x)�I (x) + j̃I(x)�̃I (x)}.

8



Class. Quantum Grav. 28 (2011) 215020 J Alfaro et al

We get, using equations (35) and (38),

�(�, �̃) = S0(�) +
∫

dNx
δS0

δ�I(x)
�̃I(x) + iTr

(
log

(
δ2S0

δ�I(x)δ�J(y)

))
. (39)

This is the exact effective action for δ̃ theories. In this demonstration, we have assumed
that all the relevant steps for fixing the gauge have been made in (33), so S0 includes the
gauge fixing and Faddeev–Popov Lagrangian, in the manner that the new gauge fixing and
Faddeev–Popov will be the original ones plus their δ̃ variation. For more details on this and in
the case of gravitation, see equations (A.6) and (A.16).

Comparing equation (16.42) of [39] with equation (39), we see that the one-loop
contribution to the effective action of δ theories is exact and the δ̃-modified model lives
only to one loop because higher corrections simply do not exist. Finally, it is twice the one-
loop contribution of the original theory from which the δ̃ model was derived. This results from
having doubled the number of degrees of freedom. We also see that this term does not depend
on the φ̃I fields.

These conclusions can also be achieved through a topological analysis with Feynman
diagrams, but due to its length and complexity we have chosen to leave it out. See [25] for the
particular case of non-Abelian δ̃ Yang–Mills.

We see from equation (39) that the equations of motion for the original field �I(x) do not
receive quantum corrections:

δ

δ�̃I(z)
�(�, �̃) = 0

δS0

δ�I(z)
= 0.

(40)

On the other side, when varying with respect to φI , one obtains that the equations of
motion for the new field φ̃I do receive quantum corrections:

δ

δ�I(x)
�(�, �̃) = 0∫

dNx
δ2S0

δ�I(z)δ�J(x)
�̃J(x) + i

δ

δ�I(z)
Tr

(
log

(
δ2S0

δ�I(x)δ�J(y)

))
= 0. (41)

In conclusion, the quantum corrections behave as a source that only affects the equations
of the new field remaining the ones of the original field unchanged. This is clearly seen when
we compare (40) and (41) with (30) and (32).

In general, Tr
(

log
(

δ2S0
δ�I (x)δ�J (y)

))
could be divergent and need to be renormalized (see

[25]). From equation (39), we see that the δ̃ model will be renormalizable if the original
theory is renormalizable. But, due to equation (40), originally non-renormalizable theories
could be finite or renormalizable in its δ̃ version. This term can be calculated in many ways,
for example, by the Zeta function regularization (see, for instance, [41]), perturbation theory
(Feynman diagrams), etc. For gravitation, the calculation of this term is quite difficult in any
of the above methods so we will use an alternative method developed in [21].

In this work, the δ̃ gravity model contains two dynamical fields, gμν and g̃μν , which
are important to describe the gravitational field in this approach. Please see [26]. So, we
must consider the effective action of the model for the two fields. We saw that gμν satisfies
the classical equations always. This is the meaning of equation (34). But, the equation of
motion for g̃μν do receive quantum corrections. Moreover, one-particle irreducible (1PI)
graphs containing gμν external legs are nontrivial and subjected to quantum effects.
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In the following section, we will study δ̃ gravity. We will see that the divergent part of the
quantum corrections to the effective action give a null contribution to the equations of motion
for pure gravity and without a cosmological constant, which means that under these conditions
we have a finite model of gravity.

5. δ̃ Gravity

Until now, we have studied δ̃ models in general. We found the invariant action given by (26),
with the classical equations of motion (30) and (32). Then, we demonstrated that δ̃ models
live only to one loop and the effective action is given by (39). In this section, we apply these
results to gravity. In the first part, we will present the classical equations of motion for both
fields and show the solutions in two cases. Then, we will apply the background field method
(BFM) to obtain the quadratic Lagrangians and finally we calculate the divergent part of the
effective action for δ̃ gravity.

5.1. Classical equations of motion and solutions

Now we are ready to study the modifications to gravity. In this case, we have that φI → gμν

and φ̃I → g̃μν . So, using (26), we obtain

L0[gμν] = √−g

(
− 1

2κ
R + LM

)

L[gμν] = √−g

[
− 1

2κ
R + LM + κ ′

2 (Gμν − κT μν ) g̃μν

]
(42)

with κ = 8πG
c4 , κ ′

2 = κ2
2κ

, LM some matter Lagrangian and

T μν = − 2√−g

δ
(√−gLM

)
δgμν

= − 2
δLM

δgμν

− gμνLM (43)

is the energy momentum tensor. Recall from (29) that we need T μν to be conserved. If we
variate this action, we obtain the equations of motion:

Gμν = κT μν

1

2

(
Rμν g̃σ

σ − Rg̃μν
) + F (μν)(αβ)ρλDρDλg̃αβ = κ

δTαβ

δgμν

g̃αβ (44)

with

F (μν)(αβ)ρλ = P((ρμ)(αβ))gνλ + P((ρν)(αβ))gμλ − P((μν)(αβ))gρλ − P((ρλ)(αβ))gμν

P((αβ)(μν)) = 1

4

(
gαμgβν + gανgβμ − gαβgμν

)
, (45)

where (μν) shows that the μ and ν are in a totally symmetric combination. An important thing
to note is that both equations are of second order in derivatives which is needed to preserve
causality. In this paper, we will work in the vacuum, this is LM = 0, so that (44) simplifies to

Rμν = 0

F (μν)(αβ)ρλDρDλg̃αβ = 0. (46)

Some particular solutions to equations (44) and (46) are as follows.

10
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For the vacuum, we have for example the case of Schwarzschild

gμν =

⎛
⎜⎜⎝

− (
1 − α

r

)
0 0 0

0 1
1− α

r
0 0

0 0 r2 0
0 0 0 r2 sin(θ )

⎞
⎟⎟⎠ (47)

which has a solution for g̃αβ of the form

g̃μν =

⎛
⎜⎜⎜⎜⎝

−
(

1 − 2α+β

r

)
0 0 0

0
1+ β

r

(1− α
r )

2 0 0

0 0 r2 0
0 0 0 r2 sin(θ )

⎞
⎟⎟⎟⎟⎠ , (48)

where it has been imposed that gμν and g̃μν approach Minkowski space when r → ∞, and α

and β are determined by boundary conditions.
Another interesting case is for the case of Friedman–Robertson–Walker under a density

ρ(t) with an equation of state p(t) = ωρ(t):

gμν =

⎛
⎜⎜⎝

−1 0 0 0
0 R(t) 0 0
0 0 R(t)r2 0
0 0 0 R(t)r2 sin(θ )

⎞
⎟⎟⎠ , (49)

where R(t) = R0
(

t
t0

) 2
3(1+ω) . The solution for g̃αβ is

g̃μν =

⎛
⎜⎜⎝

−Ã(r) 0 0 0
0 B̃(r) 0 0
0 0 B̃(r)r2 0
0 0 0 B̃(r)r2 sin(θ )

⎞
⎟⎟⎠ (50)

with Ã(r) = 3ωl2
(

t
t0

) ω−1
ω+1 , B̃(r) = R2

0l2
(

t
t0

) 3ω−1
3(1+ω) and l2 a free parameter. This case was analyzed

in [26], where accelerated expansion of the Universe was obtained without a cosmological
constant.

5.2. BFM and quadratic Lagrangians

We proceed to calculate the quadratic Lagrangians for δ̃ gravity and Faddeev–Popov. These
expressions are needed to obtain the one-loop corrections of the model. For this, we use the
background field method (see appendix B), with LM = 0. That is gμν → gμν + hμν and
g̃μν → g̃μν + h̃μν . So, (42) reduces to

L0[gμν + hμν] =
√−g

2κ

(
−R̄ − 1

2
C2

)

L[gμν + hμν] =
√−g

2κ

(−R̄ − CμHμ + κ2Ḡμν g̃μν

)
(51)

with R̄ = R[g + h] and Ḡμν = Gμν[g + h]. We have included the original gauge fixing
Cμ = hν

μ;ν − 1
2 hν

ν;μ and the new part Hμ = 1
2

(
1 + κ2

2 g̃α
α

)
Cμ + κ2

(
C̃μ − 1

2 g̃μρCρ
)

(see
appendix A). When we calculate the quadratic part in the quantum gravitational fields, hμν

and h̃μν , we obtain

Lquad = 1

2

√−g�hT
(αβ)P

((αβ)(μν))
([

K(γ ε)

(μν)

](λη)∇λ∇η + [
W (γ ε)

(μν)

])
�h(γ ε) (52)

11
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and

�h(αβ) =
(

hαβ

h̃αβ

)
(53)

[
K(γ ε)

(μν)

](λη) = 1

2κ
gλη

((
1 + κ2

2 g̃σ
σ

)
δ

γ ε
μν + κ2P−1

((μν)(σρ))
δ̃(P((σρ)(γ ε))) κ2δ

γ ε
μν

κ2δ
γ ε
μν 0

)

− κ2

2κ
g̃ληδγ ε

μν

(
1 0
0 0

)
(54)

[
W (γ ε)

(μν)

]
= 1

κ

((
1 + κ2

2 g̃σ
σ

)
X (γ ε)

(μν)
+ κ2δ̃(X

(γ ε)

(μν)
) + κ2P−1

((μν)(σρ))
δ̃(P((σρ)(αβ)))X (γ ε)

(αβ)
κ2X (γ ε)

(μν)

κ2X (γ ε)

(μν)
0

)
, (55)

where

X (γ ε)

(μν)
= 1

2

(
Rγ ε

μν + Rεγ
μν + 1

2

(
δγ
μRε

ν + δε
μRγ

ν + δγ
ν Rε

μ + δε
νRγ

μ

)
−δγ εRμν − δμνRγ ε − 1

2 R
(
δγ
μδε

ν + δε
μδγ

ν − δμνδ
γ ε

))
, (56)

where P((αβ)(μν)) is defined in (45) and δ
γ ε
μν is the symmetrized Kronecker delta. Moreover, the

covariant derivative works on the�h(γ ε) vector like

∇λ
�h(γ ε) = ∂λ

�h(γ ε) − [
�λγ

β
]
�h(βε) − [

�λε
β
]
�h(γ β) (57)

with [
�λγ

β
] =

(
�λγ

β 0
δ̃
(
�λγ

β
)

�λγ
β

)
. (58)

And using the BRST method, we obtain the Faddeev–Popov:

LFP = �̄c
T
μ

√−g
([

Kμλ
FP

](ρν)∇ρ∇ν + [
W μλ

FP

])
�cλ (59)

where

�cλ =
(

cλ

c̃λ

)
(60)

[
Kμλ

FP

](ρν) = igνρ

(1

2

(
1 + κ2

2
g̃σ

σ

)
gμλ − κ2

2
g̃μλ κ2gμλ

gμλ 0

)
− iκ2g̃νρgμλ

(
1 0
0 0

)
(61)

[
W μλ

FP

] = i

(1

2

(
1 + κ2

2
g̃σ

σ

)
Rμλ − κ2g̃αβRμαλβ − κ2

2
g̃μαRλ

α − gαβgμγ δ̃
(
Rλ

αβγ

)
κ2Rμλ

Rμλ 0

)

(62)

with

∇λ�cμ = ∂λ�cμ − [
�λμ

β
]
�cβ. (63)

The details of the Faddeev–Popov Lagrangian is presented in appendix A.

12



Class. Quantum Grav. 28 (2011) 215020 J Alfaro et al

5.3. Divergent part of the effective action

In section 4, we demonstrated that the quantum corrections to the effective action do not
depend on the tilde fields, in this case g̃μν . On the other side, the renormalization theory tells
us that its divergent corrections can only be local terms. So, by power counting and invariance
of the background field effective action under GCTs, we know that the divergent part to L
loops is [3, 24]

�SL
div ∝

∫
d4x

√−gRL+1, (64)

where RL+1 is any scalar contraction of (L + 1) Riemann’s tensors. As our model lives only
to one loop,

Ldiv
Q = √−g(a1R2 + a2RαβRαβ ). (65)

We do not use RαβγλRαβγλ because we have the topological identity in four dimensions:

√−g(RαβγλRαβγλ − 4RαβRαβ + R) = total derivative. (66)

To calculate the divergent part of the effective action in our model (i.e. a1 and a2 in (65)),
we made a FORM program [42] to implement the algorithm developed in [21], obtaining in
our case (see appendix C)

Ldiv
Q,grav = √−g

�c

ε

(
7

12
R2 + 7

6
RαβRαβ

)

Ldiv
Q,ghost = − 2 × √−g

�c

ε

(
17

60
R2 + 7

30
RαβRαβ

)

Ldiv
Q = √−g

�c

ε

(
1

60
R2 + 7

10
RαβRαβ

)
(67)

with ε = 8π2(N − 4). When we compare it with the usual result in gravitation [3, 21] we can
see that we obtain twice the divergent term of general relativity. Divergences also double in
Yang–Mills [25].

Moreover, since Einstein’s equations of motion are exactly valid at the quantum level,(
δ�(g, g̃)

δg̃μν

)
= Rμν = 0, (68)

where �(g, g̃) is the effective action in the BFM. It follows that the contribution of (67) to the
equation of motion vanishes:

�c

[√−g

ε

(
1

2
gμν

(
1

60
R2 + 7

10
RαβRαβ

)

+ 1

30
R

δR

δgμν

+ 7

10
Rαβ

δRαβ

δgμν

+ 7

10
Rαβ δRαβ

δgμν

)]
Rαβ=0

= 0. (69)

Therefore, δ̃ gravity is a finite model of gravitation if we do not have matter and a
cosmological constant. The finiteness of our model implies that the Newton constant does
not run at all, nor with time or energy scale which would be supported by the very stringent
experimental bounds set on its change [43, 44]. We must note that this model is finite only
in four dimensions because we need (66). Moreover, in more dimensions, there could appear
more terms in (65) that contain Rμ1μ2...μN with N the dimension of space that gives a nonzero
contribution to the equations of motion.

In spite of these apparent successes, there seems to be a problem with this model and this
is the possible existence of ghosts. This issue will be dealt with in the following section.
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6. Ghosts

In this section, we discuss the possibility that our model has ghosts and the lost of unitarity
due to them. In order to proceed with this endeavor, we first write the quadratic Lagrangian
(52) for a noninteracting model (that is, with the backgrounds both equal to the Minkowsky
metric tensor) and calculate from it the canonical conjugated momenta to the quantum fields.
It is important to note that for the Lagrangian (52) a gauge has been chosen. Then, it is
possible to show that under these conditions and in this gauge, the quantum fields obey the
wave equation and an expansion in plane waves is possible where the Fourier coefficients
are promoted to creation and annihilation operators much in the same way as can be done
for the electromagnetic potential. We use the canonical commutation relations for fields and
momenta to work out the corresponding canonical commutation relations for the creation and
annihilation operators. We also show first the Hamiltonian in terms of fields and momenta and
then in terms of annihilation and creation operators.

To study the existence of ghosts in the model we will study small perturbations to flat space.
This is done by taking expression (52) and putting the backgrounds equal to the Minkowski
metric gμν = ημν and g̃μν = ημν , thus obtaining

S[h, h̃] = − 1

2κ

∫
d4xP((αβ)(μν))

(
(1 − κ2)

2
∂ρhαβ∂ρhμν + κ2∂ρ h̃αβ∂ρhμν

)
(70)

where now

P((αβ)(μν)) = 1
4 (ηαμηβν + ηανηβμ − ηαβημν ) (71)

and the equations of motion for the fields are

∂2hμν = 0

∂2h̃μν = 0 (72)

with ∂2 = ηρλ∂ρ∂λ. This corresponds to the wave equation with energy Ep = |p|. Here, we
note that in order to obtain these equations, we have made use of a particular gauge fixing
term (A.10) in the Lagrangian (52).

It is well known that for a diffeomorphism invariant Lagrangian, the canonical Hamiltonian
is zero. This is so in delta gravity as well as in general relativity: the total Hamiltonian is a
linear combination of the first class constraints (see [4]). After gauge fixing, the Hamiltonian
is

H =
∫

d3x

(
2κ

κ2
P−1

((αβ)(μν))

(
�̃αβ�μν − (1 − κ2)

2κ2
�̃αβ�̃μν

)

+ κ2

2κ
P((αβ)(μν))

(
∂ih̃αβ∂ihμν + (1 − κ2)

2κ2
∂ihαβ∂ihμν

))
(73)

with

P−1
((αβ)(μν)) = ηαμηβν + ηανηβμ − ηαβημν = 4P((αβ)(μν)) (74)

and where the conjugate momenta are

�μν = δL
δḣμν

= 1

2κ
P((αβ)(μν))((1 − κ2)ḣαβ + κ2

˙̃hαβ ) (75)

�̃μν = δL
δ
˙̃hμν

= κ2

2κ
P((αβ)(μν))ḣαβ. (76)
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We can write our fields h and h̃ in the following way:

hμν (x, t) =
∫

d3 p√
(2π)32Ep

[
χ

(AB)

(μν)
(p)a(AB)(p) eip·x + χ

(AB)

(μν)
(p)a+

(AB)(p) e−ip·x]∣∣
p0=Ep

h̃μν (x, t) =
∫

d3 p√
(2π)32Ep

[
χ

(AB)

(μν)
(p)ã(AB)(p) eip·x + χ

(AB)

(μν)
(p)ã+

(AB)(p) e−ip·x]∣∣
p0=Ep

, (77)

where χ
(AB)

(μν)
(p) is a polarization tensor and a(AB)(p) and ã(AB)(p) are promoted to annihilation

operators when we quantize it. a+
(AB)

(p) and ã+
(AB)

(p) correspond to the creation operators. A
and B are indices of polarization that work like Lorentz indices, that is, they go from 0 to 3 and
are moved up and down with ηAB. As these indices are presented symmetrically we will have
ten polarization tensors, enough to make a complete basis. For the quantization of the model,
we must impose the canonical commutation relations; the only nonvanishing commutators are

[hμν (t, x),�αβ (t, y)] = [h̃μν (t, x), �̃αβ (t, y)] = iδαβ
μν δ3(x − y), (78)

and when expressed using (77) the non-vanishing commutators are

[aAB(p), ã+
CD(p′)] = [ãAB(p), a+

CD(p′)] = 4κ

κ2
δAB

CDδ3(p − p′) (79)

[ãAB(p), ã+
CD(p′)] = −4κ(1 − κ2)

κ2
2

δAB
CDδ3(p − p′); (80)

there is a slight subtlety in calculating the above commutators. Basically the expression that
appears at one stage of the calculus is∑

ABCD

χ
(AB)

(μν)
P(αβ)

(γ ε)
χ

(γ ε)

CD =
∑

ABCD

χ
(AB)

(μν)

1

2
δ

(αβ)

(γ ε)
χ

(γ ε)

CD − 1

4
ηαβχ

(AB)

(μν)
Tr(χ ) (81)

and since we have the completeness relation∑
ABCD

χ
(AB)

(μν)
χ

(αβ)

(CD)
δ

(CD)

(AB)
= δ

(αβ)

(μν)
, (82)

we must impose Tr(χ ) = 0 which in turn means that Tr(h) = Tr(h̃) = 0. This can always
be done because the gauge fixing being used does not fix entirely the gauge freedom and this
further condition can be imposed (see [45]).

The Hamiltonian expressed in terms of creation and annihilation operators is

H =
∫

d3 p

4κ
Ep

(
(1 − κ2)a

+
ABaAB + κ2a+

ABãAB + κ2ã+
ABaAB

)
, (83)

where we have subtracted an infinite constant. Looking at this Hamiltonian, we note that it has
cross-products of operators, which obscures its physical interpretation. Something analogous
happens when we observe the commutators (79) and (80) and so it is difficult to define their
action over states. Because of this we redefine our annihilation (and therefore also the creation)
operators; for this, we return to our action (70) and define

hμν = Ah̄1
μν + Bh̄2

μν

h̃μν = Ch̄1
μν + Dh̄2

μν, (84)

where A, B, C and D are real constants so that the new fields, h̄1 and h̄2, are real fields. On
replacing this in (70), we obtain

S[h̄1, h̄2] = 1

2κ

∫
d4xP((αβ)(μν))

(
A

2
(A − κ2A + 2κ2C)h̄1

αβ∂2h̄1
μν + B

2
(B − κ2B

+ 2κ2D)h̄2
αβ∂2h̄2

μν

)
+ P((αβ)(μν))(AB − κ2AB + κ2AD + κ2BC)h̄1

αβ∂2h̄2
μν (85)
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and with the objective of decoupling the new fields, we make the last term in (85) null. It can
be demonstrated that imposing the above criteria, it is inevitable that one (and only one) of
the two fields will be a ghost. We make the choice of h̄2 as the corresponding ghost. Taking
the above considerations plus the condition that (85) has the usual form of an action with
real fields, we impose that the coefficients of the first and second terms in it be 1

2 and − 1
2

respectively. This means that

A = B

C = 1 − (1 − κ2)B2

2κ2B

D = − 1 + (1 − κ2)B2

2κ2B
, (86)

where B is left as an arbitrary real constant. Here we make the point that if we had chosen h̄1

as the ghost, then the real constants would change such that C ↔ D.
Then, the action we are left with finally is

S[h̄1, h̄2] = 1

2κ

∫
d4xP((αβ)(μν))

(
1

2
h̄1

αβ∂2h̄1
μν − 1

2
h̄2

αβ∂2h̄2
μν

)
. (87)

Following this same line of reasoning, we can find the destruction operators for h̄1 and
h̄2:

b1
AB(�p) = 1 + B2(1 − κ2)

2B
aAB(�p) + κ2BãAB(�p) (88)

b2
AB(�p) = 1 − B2(1 − κ2)

2B
aAB(�p) − κ2BãAB(�p), (89)

where we have used (84). It can be verified that the only nonvanishing commutators are now

[b1(AB)(�p), b1+
CD(�p′)] = 4κδAB

CDδ3(�p − �p′) (90)

[b2(AB)(�p), b2+
CD(�p′)] = − 4κδAB

CDδ3(�p − �p′). (91)

These commutators indicate that b1 and b2 have a vanishing inner product and that b2 is
the annihilation operator for the ghost. On the other hand, the Hamiltonian expressed in terms
of these operators is

H =
∫

d3 p

4κ
Ep

(
b1+

ABb1AB − b2+
ABb2AB

)
. (92)

Due to the existence of the ghost it is possible that this model will not be unitary. To
analyze this in greater depth, it is necessary to do a more profound study of the S-matrix, but
to do this for gravitation is a colossal task that would take us beyond the original scope of this
paper. On the other side, the existence of ghost or phantom fields has been proposed by some
authors to explain the accelerated expansion of the Universe [27–31], a feature that our model
presents [26]. The problem with these models is that when they are quantized, either there is a
lost of unitarity or there is negative energy which means loss of stability. Looking at (87), we
find that the propagators of h̄1 and h̄2 are respectively

− 2κP−1
((αβ)(μν))

i

p2 − iε
(93)
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2κP−1
((αβ)(μν))

i

p2 ± iε
, (94)

where ± in the phantom propagator, h̄2, will decide whether unitary and negative energy
solutions or nonunitary and positive energy solutions will be present in the model [30].

The advantage that our model has against other models that use scalar fields for the
phantoms is that being a gauge model, there remains open the possibility of fixing a gauge
in which the model is unitary keeping the model’s good attributes, as in the BRST canonical
quantization [46]. On the other hand as a possible solution to the case of instability, we may
consider δ̃ supergravity which may solve the unboundedness of the Hamiltonian from below.
The last argument comes from the fact that in supersymmetry one defines the Hamiltonian as
the square of a Hermitian charge, making it positive definite [47, 48].

Having explained the problem that our model has, now we would like to discuss the new
physics that our model may predict. For this, we will analyze the type of some finite quantum
corrections and how the most simplest ones affect the equations of motion of the model.

7. Finite quantum corrections

The finite quantum corrections to our modified model of gravity can be separated into two
groups. The first are the non-local terms, which are characterized by the presence of a logarithm
in the form [36]

√−gRμν ln

(∇2

μ2

)
Rμν

√−gR ln

(∇2

μ2

)
R, (95)

where ∇2 = gαβ∇α∇β , ∇β being the covariant derivative. There are no terms like the above
ones but quadratic in the Riemann tensor because these terms always occur like

1

ε
+ ln

(∇2

μ2

)
(96)

and it is known that the terms that appear with the pole are purely Ricci tensors and Ricci
scalars [3, 21] (see also equation (67)), which in turn is due to (66). Now, when looking at
the quantum corrections and equation (68), we need to care about the variations of (95) with
respect to gμν . Taking this into consideration, for the nonlocal terms we have

δ
(√−g

)
Rμν ln

(∇2

μ2

)
Rμν = 0

√−gRμνδ

(
ln

(∇2

μ2

)
Rμν

)
= 0

√−gδ(Rμν ) ln

(∇2

μ2

)
Rμν = 0

δ
(√−g

)
R ln

(∇2

μ2

)
R = 0

√−gRδ

(
ln

(∇2

μ2

)
R

)
= 0

√−gδ(R) ln

(∇2

μ2

)
R = 0 (97)
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because our model lives on-shell, i.e. Rμν ≡ 0 and R ≡ 0. So we see that the only relevant
quantum corrections will come from the second group, that is, from the local terms which
correspond to a series expansion in powers of the curvature tensor. The linear term is basically
R, which corresponds to the original action, and the quadratic terms when taking into account
their contribution are null due to (66). The next terms to be considered are cubic in the Riemann
tensor. In principle any power of the curvature tensor will appear, but now we want to discuss
only the cubic ones because they are simpler to be dealt with [33]. The most general form of
these corrections is

Lfin
Q = √−g

(
c1Rμνλσ Rαβλσ Rμν

αβ + c2Rμν
λσ Rμα

λβRασ
νβ + c3RμνRμαβγ Rν

αβγ

+ c4RRμνλκRμνλκ
)
. (98)

These types of corrections will affect the equations of motion for g̃μν . So, using (41), we
obtain

F (μν)(αβ)ρλDρDλg̃αβ = − 1

κ2

(
M(μν) + c1N(μν) + c2B(μν) + 3{Dρ , Dσ }E [σμ][νρ]

)
(99)

with

M(μν) = 1
2

(
DαDνA(αμ) + DαDμA(αν) − DαDαA(μν) − gμνDαDβA(αβ)

)
(100)

A(μν) = c3Rμαβγ Rν
αβγ + c4gμνRαβγ εRαβγ ε (101)

N(μν) = 1
2 gμνRρελσ RλσαβRαβ

ρε + 3Rρελσ Rα
νερRαμλσ (102)

B(μν) = 1
2 gμνRρελσ RραλβRα

σε
β + 3Rρελσ Rνσρ

βRμεβλ (103)

E [σμ][νρ] = c1Rσμ
αβRαβνρ + 1

2 c2
(
Rν

α
σ

βRρβαμ − Rρ
α

σ
βRνβαμ

)
, (104)

where [μν] means that μ and ν are in a antisymmetric combination, and F (μν)(αβ)ρλ was
defined in (45). Obviously, if we do not have quantum correction, i.e. c1 = c2 = c3 = c4 = 0,
(99) is transformed into (46). It is possible to demonstrate that one solution to (46) is g̃μν = gμν ,
a fact that is necessary so that the predictions of the original theory of Einstein–Hilbert are still
fulfilled in vacuum. This means that the solution of (99) must come to be small perturbations
to gμν .

δ̃ Gravity will provide finite answers for the constants ci. Due to the general structure of
the finite quantum corrections, they will be relevant only at very short distances and strong
curvatures. So the natural scenario to test the predictions of the model is the inflationary epoch
of the Universe. The computation of the ci and the phenomenological implications of quantum
δ̃ gravity will be discussed elsewhere.

7. Conclusions

We have shown following [25] that the δ̃ transformation, applied to any theory, produces
physical models that live only at one loop. This is achieved introducing new fields that
generate a new constraint through a functional Dirac’s delta inside the path integral (34). We
have seen that the original symmetries are generalized when we apply the δ̃ transformation.
Moreover, the modified model is invariant under the generalized symmetries.
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Now, going to δ̃ gravity, we calculated the divergent part of the action to one loop and
we obtained twice the well-known result of [3]. We see that this factor of 2 also appears
in [25]. The divergent part at one loop is zero in the absence of matter and on-shell, so δ̃

gravity is a finite quantum model, in four-dimensional spacetime. This in turn implies that the
Newton gravitational constant does not run with scale, which agrees with the very stringent
experimental bounds that restrict its variation [43, 44].

We have shown that perturbing around the Minkowsky vacuum and using a particular
Lorentz invariant gauge, we can redefine the gravitational fields in such a way that the free part
of the action is decoupled. In this redefinition, it is seen that one of the new fields is a ghost.
Despite that this may bring unitary or unstable problems (negative energies), these ghosts
(phantoms) can explain the accelerated expansion of the Universe [26] at a classical level.
Scalar phantoms have been introduced in order to explain dark energy in [27] and discussed
in many papers. See, for instance, [28–31]. This connection may be far reaching because the
phantom idea has gained great popularity as an alternative to the cosmological constant. The
present model could provide an arena to study the quantum properties of a phantom field, since
the model has a finite quantum effective action. In this respect, the advantage of the present
model is that being a gauge model, it could give us the possibility of solving the problem of
lack of unitarity using standard techniques of gauge theories as the BRST method. This is
something that needs to be studied further but goes beyond the original scope of this paper.

We want to point out that supergravity with matter is finite at the one-loop level [32].
According to the general argument developed in this paper, δ̃ supergravity will be a one-loop
model which has a strong possibility to be a finite quantum model of gravity plus matter and also
it may solve the instability of negative energies since in supersymmetry one has a Hermitian
charge whose square is equal to the Hamiltonian operator meaning that the Hamiltonian is
positive definite [47, 48].

Finally, we have shown that the contribution of quadratic local and non-local logarithmic
terms is zero due to the on-shell condition of the modified model. We have also shown how
the cubic corrections in the Riemann tensor affect the equation of motion (99). Given the
general form of the quantum corrections in quantum δ̃ gravity, they may be important during
the inflationary epoch of the Universe.
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Appendix A. BRST formalism

First we give the BRST transformations δ̄ of our model:

ξ
μ

0 (x) = λcμ

0 (x)

ξ
μ

1 (x) = λcμ

1 (x), (A.1)

where λ is a Grassmann constant and cμ

0 , cμ

1 are the two ghosts of our model. Starting from
the gauge transformations for our quantum fields hμν and h̃μν [49], we obtain to zero order in
h and h̃

δ̄hμν = c0μ;ν + c0ν;μ (A.2)
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δ̄h̃μν = c1μ;ν + c1ν;μ + g̃μν;λcλ
0 + g̃μλcλ

0;ν + g̃νλcλ
0;μ (A.3)

and we also have

δ̄cμ

0 = cρ

0 cμ

0,ρ

δ̄cμ

1 = cρ

0 cμ

1,ρ
+ cρ

1 cμ

0,ρ

δ̄c̄μ

0 = ibμ

0 (x)

δ̄c̄μ

1 = ibμ

1 (x) (A.4)

for the corresponding anti-ghosts c̄ and where the b’s are the auxiliary Nakanishi–Lautrup
fields which satisfy

δ̄bμ

0,1 = 0. (A.5)

It has been verified that these transformations are nilpotent. Now, we choose for our gauge
fixing term

GF = −√−g
C2

2
− δ̃

(
κ2

√−g
C2

2

)
(A.6)

and we see that this is a good choice for our gauge fixing since it is invariant under both
transformations δ0 and δ1 (see section 3.1), where [3, 21]

C2 = gαβCαCβ

Cμ = Dνhν
μ − 1

2 Dμhν
ν . (A.7)

In this way, we have

GF = − √−g

[(
1 + κ2

2
gαβ g̃αβ

) C2

2
+ κ2δ̃

(
gμρCμCρ

2

)]

= − √−g

[(
1 + κ2

2
gαβ g̃αβ

) CμCμ

2
+ κ2

(
C̃μCμ − g̃μβCμCβ

2

)]
, (A.8)

where

C̃μ = δ̃Cμ = δ̃
[
Dνhν

μ − 1
2 Dμhν

ν

] = gνρ
[
∇ν h̃ρμ − 1

2∇μh̃ρν

]
− g̃νρ

[
Dνhρμ − 1

2 Dμhρν

]
,

(A.9)

and this can be written in the form

GF = −√−gHμCμ (A.10)

with

Hμ =
[(

1 + κ2

2
g̃α

α

) Cμ

2
+ κ2

(
C̃μ − g̃μβ

Cβ

2

)]
. (A.11)

Having established the form of the gauge fixing term, we can now by a standard procedure
(the BRST method) find the associated Faddeev–Popov Lagrangian. Following [37], now we
do

LGF+FP = −iδ̄(P), (A.12)

where P in our case is

P = c̄μ

0 Hμ + c̄μ

1 Cμ + β1c̄μ

1 b0μ + β2c̄μ

0 b1μ, (A.13)
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where the β’s are arbitrary constants to be fixed shortly, so we have

LGF+FP = −i
(
ibμ

0 Hμ + ibμ

1Cμ + i(β1 + β2)b
μ

1 b0μ − c̄μ

0 (δ̄Hμ) − c̄μ

1 (δ̄Cμ)
)

(A.14)

and so

LGF = bμ

0 Hμ + bμ

1Cμ + (β1 + β2)b
μ

1 b0μ (A.15)

LFP = i
(
c̄μ

0 (δ̄Hμ) + c̄μ

1 (δ̄Cμ)
)
. (A.16)

Now, for the gauge fixing part, we can use the equations of motion for the auxiliary fields
to make them disappear:

∂LGF

∂bμ

1

= Cμ + (β1 + β2)b0μ = 0 −→ b0μ = − Cμ

(β1 + β2)

∂LGF

∂bμ

0

= Hμ + (β1 + β2)b1μ = 0 −→ b1μ = − Hμ

(β1 + β2)
; (A.17)

substituting it in LGF we get

LGF = − CμHμ

(β1 + β2)
− CμHμ

(β1 + β2)
+ (β1 + β2)CμHμ

(β1 + β2)2
= − CμHμ

(β1 + β2)
(A.18)

so we see that we recover our initial gauge fixing if we set (β1 + β2) = 1. Now for the
Faddeev–Popov Lagrangian we have

LFP = i
(
c̄μ

0 (δ̄Hμ) + c̄μ

1 (δ̄Cμ)
)

(A.19)

and it is well known that [3, 21]

δ̄Cμ = DνDνc0μ + Rμνcν
0 (A.20)

and using

δ̄hνρ = Dνc0ρ + Dρc0ν

δ̄h̃νρ = ∇νc1ρ + ∇ρc1ν (A.21)

we get

δ̄Hμ =
[(

1 + κ2

2
g̃α

α

) δ̄Cμ

2
+ κ2

(
δ̄C̃μ − g̃μβ

δ̄Cβ

2

)]
δ̄C̃μ = ∇ν∇νc1μ + Rμνcν

1 − gρν δ̃(Rα
ρνμ)c0α − g̃νρ

[
DνDρc0μ + c0σ Rσ

ρμν

]
. (A.22)

So, evaluating in (A.19), we will obtain (59).

Appendix B. Background field method

The BFM is a mechanism utilized to calculate the effective action at any order of perturbation
theory without losing explicit gauge invariance. This simplifies the calculations and the
comprehension of the model. The importance of the effective action is due to the fact that it
contains all the quantum information of the theory and that from it all 1PI Feynman diagrams
can be computed. Stringing them together, we can compute all connected Feynman diagrams
in a more efficient manner [38] and from them the S-matrix can be calculated.

Next we calculate the effective action � for a general model using the BFM. One begins
by defining the generating functional of disconnected diagrams Z[J]:

Z[J] =
∫

Dϕ ei(S[ϕ]+J·ϕ), (B.1)
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where S is the action of the system and where we will be using the notation J · ϕ ≡ ∫
Jϕ d4x.

In the BFM, we do the identification ϕ → ϕ + φ inside the action, where φ is an arbitrary
background. So now we have

Ẑ[J, φ] =
∫

Dϕ ei(S[ϕ+φ]+J·ϕ). (B.2)

Now the generating functional of connected diagrams W [J] is

W [J] = −i ln Z[J] (B.3)

so we define

Ŵ [J, φ] = −i ln Ẑ[J, φ] (B.4)

and

ϕ̄ = δW

δJ
(B.5)

so here

ϕ̂ = δŴ

δJ
; (B.6)

with all these definitions, it is possible to give the formula for the usual effective action:

�[ϕ̄] = W [J] − J · ϕ̄ (B.7)

and the background field effective action:

�̂[ϕ̂, φ] = Ŵ [J, φ] − J · ϕ̂; (B.8)

now we do the shift ϕ → ϕ − φ, so that

Ẑ[J, φ] = Z[J] e−iJ·φ (B.9)

from which it follows (after taking logarithms) that

Ŵ [J, φ] = W [J] − J · φ; (B.10)

taking now the functional derivative with respect to J,

ϕ̂ = ϕ̄ − φ (B.11)

but now we can appreciate that

�̂[ϕ̂, φ] = W [J] − J · φ − J · ϕ̂

= W [J] − J · φ − J · (ϕ̄ − φ)

= W [J] − J · ϕ̄

�̂[ϕ̂, φ] = �[ϕ̂ + φ]. (B.12)

In particular, if we take ϕ̂ = 0, we have

�̂[0, φ] = �[φ]. (B.13)

This means that the effective action of the theory � can be computed from the background
field effective action �̂ by taking the quantum field to zero and with the presence of the
background φ. Since the derivatives of the effective action with respect to the fields generate
the 1PI diagrams, the last equation means that if we treat φ perturbatively what we will have
will be diagrams with external legs corresponding to the background field φ and with internal
lines corresponding to the quantum field ϕ.
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And so, to study the quantum effects it only suffices to carry out an expansion in the
quantum fields in the action S or in the Lagrangian L using the identification of the BFM. This
means that

φI → φI + ϕI

φ̃I → φ̃I + ϕ̃I . (B.14)

We use (B.14) in δ̃ gravity, where gμν → gμν + hμν and g̃μν → g̃μν + h̃μν .

Appendix C. Divergent part of the effective action at one loop

As was mentioned in section 4, there are various ways to calculate the divergent part of the
effective action at one loop, but they are quite complicated. So, we have resolved to follow an
algorithm developed in [21].

The effective action � to one loop can be written as

�[φ] = S[φ] + i

2
�Tr ln D + O(�2), (C.1)

where

Di
j = δ2S

δφiδφ j
[φ] (C.2)

is a differential operator depending on the background field φi. Its most general form is

Di
j = Kμ1μ2...μL j

i∇μ1∇μ2 . . . ∇μL + Sμ1μ2...μL−1 j
i∇μ1∇μ2 . . . ∇μL−1

+W μ1μ2...μL−2 j
i∇μ1∇μ2 . . . ∇μL−2 + Nμ1μ2...μL−3 j

i∇μ1∇μ2 . . . ∇μL−3

+ Mμ1μ2...μL−4 j
i∇μ1∇μ2 . . . ∇μL−4 + · · · , (C.3)

where K, S,W, N, M are parameters which must be specified for each model and ∇μ is a
covariant derivative:

∇αT β
i
j = ∂αT β

i
j + �αγ

βT γ
i
j + ωα

k
iT

β
k

j − ωα
j
kT β

i
k

(C.4)

∇μ�i = ∂μ�i + ωμ
j
i� j; (C.5)

here,

�μν
α = 1

2 gαβ (∂μgνβ + ∂νgμβ − ∂βgμν ) (C.6)

and ωμ
j
i is a connection on the principle bundle. The computation of the divergent part of

the effective action at one loop is done through a lengthy and cumbersome calculation that
consists of the sum of a finite number of one-loop divergent Feynman diagrams; the details
are given in [21] and the result by equation (30) in the same reference. This last result is too
large to be shown here, but it depends on the parameters involved in Di

j (C.3). So basically,
what we need is the quadratic part of the Lagrangian of the model to obtain the divergent part
of the effective action.

In δ̃ gravity, we have

φi → �h(αβ), (C.7)

where�h is defined in (53). As the covariant derivative acting on�h is given by (57), this means
I → (αβ):

ωμ
j
i → −([

�μα
ρ
]
δν
β + [

�μβ
ρ
]
δν
α

)
, (C.8)
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where [�μα
ρ] is given by equation (58). The other relevant parameters in our model are given

by
L = 2
Kμ1μ2...μL j

i given by (54)
Sμ1μ2...μL−1 j

i = 0
W μ1μ2...μL−2 j

i given by (55).
On the other side of the Faddeev–Popov ghosts, we have

φi → �cα, (C.9)

where �cα is defined by (60) and the covariant derivative (63) shows that

ωμ
j
i → −[

�μα
ρ
]
. (C.10)

Finally, the other parameters are given by
L = 2
Kμ1μ2...μL j

i given by (61)
Sμ1μ2...μL−1 j

i = 0
W μ1μ2...μL−2 j

i given by (62).
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