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The role of climate variability in determining the fluctuations of fish populations had been a traditional problem in
ecology. In this paper, we studied the role of the Southern Oscillation Index (SO) and the Pacific Decadal Oscillation
(PDO) on the population dynamics of the western stock of the skipjack tuna Katsuwonus pelamis. Our analysis was based
in three sequential steeps: a diagnostic approach to deduce what kind of population dynamic model should be more
appropriate, the modelling of capture per unit of effort data through a logistic model, and the use of population dynamic
theory for analyzing the effect of exogenous perturbations. We find that direct and one-year lagged negative PDO effects
and one-year lagged negative SO effects were needed to explain annual tuna fluctuations. Models including the combined
effects of these climatic indexes explain 80% of the variance in tuna fluctuations. In addition, these models provided very
accurate predictions of independent skipjack tuna observed dynamics. This result is encouraging because the inherent
variability in CPUE data and the not well determined link between climate and ecological processes. Finally, this study
demonstrates that simple models can offer reasonable explanations and accurate predictions of tuna fluctuations, provided
they are based on a sound theoretical framework.

Understanding and predicting the influence of climate on
the animal population fluctuations has been the subject of
numerous past studies among fisheries biologists (Hjort
1914, 1926) and population ecologists (Elton 1924).
Nowadays, because the pressing issue of predicting the
effect of climatic change there is an increasing amount of
empirical evidence determining the effects of climate on
natural populations (Stenseth et al. 2002, Walther et al.
2002). In particular, several studies had determined the
close relationship between climate variability and marine
ecosystem dynamics (Hayward 1997, Walther et al. 2002,
Ledohey et al. 2006). The common approach for studying
the influence of climatic-oceanographic variables on popu-
lation dynamic processes in marine ecosystems had been the
use of statistical relationships between time series of
population processes (recruitment or catch rates) and
environmental variables (MacKenzie and Köster 2004,
Stein and Borovkov 2004, Waluda et al. 2004) or
correlation analyses based in the time or frequency domain
(Ravier and Fromentin 2001, Ménard et al. 2007).
Although these procedures can be useful for detecting
relationships between variables and for showing common
signatures in the time or frequency domain, they fail
to provide explanations based in general and basic popula-
tion dynamic principles (Berryman 1999, Turchin 2003,
Ginzburg and Colyvan 2004).

Previous studies have reported the influence of climatic
variables on the population dynamics of different tuna
species. For example, in the Indian Ocean a strong
association has been observed between catch rates of the
bigeye Thunnus obesus and the yellowfin Thunnus albacares
tunas and the El Niño Southern Oscillation (ENSO) and
the Indian Oscillation Index (IOI) (Ménard et al. 2007).
In the Atlantic Ocean, the long-term fluctuations in catches
of the bluefin tuna Thunnus thynnus seem to be negatively
related to trends in sea surface temperature (Ravier and
Fromentin 2001). In the Pacific Ocean, the abundance and
spatial distribution of tuna populations are influenced by
the pervasive influence of the El Niño Southern Oscillation
(ENSO) phenomenon (Ledohey et al. 1997, 2003).
Previous studies have shown strong effects of the ENSO
on the spatial movements and the vertical distribution of
the skipjack Katsuwonus pelamis and the yellowfin tuna
(Ledohey et al. 1997, 2003). In terms of total fluctuations
in stock size and recruitment rates, both species appear to be
positively influenced by the El Niño events and by the
warm phases of the Pacific Decadal Oscillation (Ledohey
et al. 2003). The understanding of the relationships
between environmental variability, productivity and tuna
abundance in the Western Central Pacific pelagic ecosystem
had been approached by using a spatial environmental
population model (SEPODYM) (Bertignac et al. 1998).
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This is a coupled population dynamic model that combines
information on prey production and tuna age-structure in a
spatial dynamic setting described by an advection-diffusion
equation (Lehodey et al. 2003).

In sum, we may ask whether something new can be done
for understanding the relationships between tropical pacific
tuna populations and climate. Certainly, we think that there
are some important reasons for analyzing tuna fluctuations
under another perspective. First, models previously used are
complex and need a large amount of data to be parameter-
ized, which is usually not available in many populations. In
contrast, here we propose the use of theoretical population
dynamics models as a platform for deciphering the
ecological effects of climatic oscillations (Berryman and
Lima 2006, Lima and Berryman 2006). The advantage of
using theoretical models is that they provide a solid and
simple background to analyze and interpret fluctuations in
animal population (Royama 1977, 1992, Berryman 1999,
Ginzburg and Colyvan 2004, Ginzburg and Jensen 2004).
Moreover, models used in the present study are easy to fit to
data, parameters are ecologically interpretable, and their
predictions can be tested against independent data. Second,
we used the year as the time unit in the time series analyses,
while previous studies correlated monthly CPUE estimates
with monthly climatic indexes. We chose this time unit
because inter-annual fluctuations can be more useful for
revealing ecological processes in nature (Berryman 1999).
Third, no study to the date has considered the possibility
that the combined effects of North and South Pacific Ocean
could explain tropical tuna fluctuations. Our analysis of the
western stock of the skipjack tuna Katsuwonus pelamis
Pacific populations is based in three sequential steeps: a
diagnostic approach to determine what kind of population
dynamic model is most appropriated (Berryman 1999), the
modelling of the observed dynamic through a simple
theoretically-based model, and the use of a theoretical
framework for analyzing exogenous perturbations (Royama
1992).

Data and methods

Focal species, fisheries, and abundance data

Pacific skipjack tuna fisheries
Skipjack tuna is a common inhabitant of the tropical and
subtropical waters of the Pacific Ocean (Hampton 2002). In
the Western Central Pacific Ocean (WCPO) the large scale
movement and mixing rates suggest a single stock (Lehodey
et al. 1997, Sibert et al. 1999), which was the focus of our
analyses (Fig. 1). Skipjack tuna is a rapid growth species
compared with other tunas and it has a shorter life cycle with
a maximum life-span of 4�5 yr (Hampton 2002). In the
Pacific Ocean, skipjack tuna fisheries can be classified into
the Japan distant-water and offshore pole-and-line fleets,
domestic pole-and-line fleets based in island countries,
artisanal fleets based in the Philippines, eastern Indonesia
and the Pacific Islands, and distant-water and Pacific-Island-
based purse seine fleets (Hampton 2002). Purse seine
fleets usually operate in equatorial waters from 108N to
108S (Fig. 1). The distant-water fleets from Japan, Korea,

Taiwan and the USA capture most of the skipjack in the
WCPO (Fig. 1). Skipjack tuna catches in the WCPO have
increased steadily since 1970, more than doubling during
the 1980s and continue increasing to the present (Hampton
2002).

CPUE data
Data on skipjack tuna catches from the tropical Pacific
Ocean were provided by the Oceanic Fisheries Programme,
Secretariat of the Pacific Community on behalf of the
Western and Central Pacific Fisheries Commission. The
data consist in annual catches in tonnes of skipjack, effort
(days fished or searched), and CPUE (tonnes d�1), for the
Japanese (1976�2006), United States (1981�2006), Korean
and Chinese Taipei (1994�2006) purse-seine fleets in the
Western and Central Pacific Ocean (west of 1508W
longitude and between 158S and 158N of latitude). The
use of CPUE data for analyzing population dynamics of fish
presents some problems, CPUE data is not a reliable
estimator of population abundance or biomass and it is
influenced by several factors that change the catchability of
fish. In consequence, we are aware that the observed CPUE
fluctuations are the results of changes in both, the
availability (abundance/biomass) and catchability of tunas.
For example, the catchability (i.e. the fraction of a stock
which is caught by a standardized unit of fishing effort) of
skipjack tuna appears to be influenced by climate. It is
known that ENSO variability influences the vertical
(catchability) distribution within the Tropical Pacific Ocean
of the skipjack tuna western stock (Ledohey et al. 1997,
Langley et al. 2006). In addition, the reliability of CPUE as
an index of fish stock abundance is proportional to the
homogeneity of the fishing vessels in their features and
operating behavior in space and time. In consequence, we
used only Japanese and United States purse seine CPUE
data because both are mobile fleets using similar fishing
techniques and they are the longer time series data of CPUE
(Ledohey et al. 1997). These two fleets operate in the entire
distribution of the western stock (Langley et al. 2006) being

Figure 1. In Western Central Pacific Ocean most of the skipjack
tuna catches from purse seine fleets come from the area in the
rectangle (158S�158N and west to the 1508W of longitude).
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two of the most important in terms of catches (41% of the
overall during the period 1986�2006).

Climatic data

Southern Oscillation Index (SOI)
Fluctuations in tropical Pacific sea surface temperature
(SST) are related to the occurrence of El Niño (EN), during
which the equatorial surface waters warm considerably from
the International Date Line to the western coast of South
America. The atmospheric phenomenon linked to EN is
termed the Southern Oscillation (SO), which involves
exchanges of air between the eastern and western hemi-
spheres centered in tropical and subtropical latitudes. El
Niño and the SO are linked so closely that the term ENSO
is used to describe the atmosphere�ocean interactions
throughout the tropical Pacific. Various SO indices exist,
mostly based on Sea Level Pressure (SLP) time-series data.
The most common one is defined by the normalized SLP
anomalies of Tahiti (178339S, 1498379W) minus those of
Darwin (128289S, 1308519E). During an EN event, SLP
tends to be higher than usual at Darwin and lower than
usual at Tahiti, making the SO index negative.

Pacific Decadal Oscillation Index (PDO)
A very important index of wintertime climate fluctuations
over the North Pacific is the Pacific Decadal Oscillation
(PDO) of Mantua et al. (1997). This index is defined by
the leading principal component of SST anomalies north of
208N. A striking feature of the PDO index is the occurrence
of extended periods (two to three decades in duration) of
predominantly positive or negative departures from the
long-term mean. Very little is known about the mechanisms
producing these nominal 50�60 yr variations.

Diagnostic analysis

Population dynamics of skipjack tuna is the result of the
combined effects of feedback structure (ecological interac-
tions within and between populations), limiting factors,
climatic influences, and stochastic forces. To understand
how these factors may determine skipjack population
fluctuations, we model both system-intrinsic processes
(both within the population and between various trophic
levels) and exogenous influences, as a general model based
on the R-function (Berryman 1999). The R-function
represents the realized per capita population growth rates
that represent the processes of individual survival and
reproduction (Berryman 1999). Defining Rt�ln(Nt) � ln
(Nt�1), we can express the R-function (sensu Berryman
1999) as:

Rt� ln

�
Nt

Nt�1

�
� f ( Nt�1; Nt�2; . . . ; Nt�i;Ct�i; ot)

(1)

Here Nt�i is the CPUE at different time lags; Ct�i is
climate effects; and ot is a random normally distributed
variable. This model represents the basic feedback structure
and integrates the stochastic and climatic forces that drive
population dynamics in nature. Our first step was to

estimate the order of the dynamical processes (Royama
1977), that is how many time lags, Nt�i, should be
included in the model for representing the feedback
structure. To estimate the order of the process we used
the partial rate correlation (PRCF(i)) between R and ln
Nt�i�Xt�i after the effects of shorter lags have been
removed. We write (1) in logarithmic form to calculate the
partial correlations.

Rt� ln

�
Nt

Nt�1

�
�A�B1�Xt�1�B2�Xt�2�ot (2)

where R, the realized per-capita rate of change, is calculated
from the data, we fitted a multiple regression between the
per capita growth rates and lagged population density to
estimate the PRCFt�d coefficients at each lag (Bi, i�1,
2,..3), for statistical convenience we assumed a linear
relationship between R and Xt�i (Royama 1977). The
CPUE fluctuations of the skipjack tuna were characterized
by irregular oscillations and a linear positive trend during all
the period studied (r2�0.50; F1,30�31.39; pB0.0001;
Fig. 2a). Because the increasing trend in CPUE is in part
caused by the increasing effort, efficiency, and mobility of
the fleet (Langley et al. 2006), we de-trended the observed
time series by using the residuals of the linear regression
between ln CPUE and time and adding the mean ln CPUE
value (Fig. 2b), which is a common practice in the analysis
of population dynamic data (Berryman 1999). A first-order
negative feedback [PRCF (1)] was the most important
component of per capita growth rates (Table 1). This result
suggest a simple feedback structure, and low order dynamics
of the skipjack tuna population (Fig. 2c).

The model

Our starting point in the analyses was to model tropical
tuna populations using simple population dynamic models
(Royama 1977, 1992). The PRCF analysis suggests that
tuna fluctuations can be caused by a first-order population
process, which indicates that population dynamics may be
the result of intra-population processes (Results). To
understand how these processes determine tuna fluctua-
tions, we will use the called exponential form of the discrete
logistic model (Ricker 1954, Royama 1992):

Nt�rm�Nt�1�e(�c�N
a

t�1) (3)

In this model Nt represents the fish abundance or biomass
at time t (represented by the CPUE data), rm is a positive
constant representing the maximum finite reproductive
rate, c is a constant representing the competition intensity
and resource depletion and a indicates the effect of
interference on each individual as density or biomass
increases (Royama 1992); values of a�1 indicates that
interference intensifies with density, while values of aB1
indicates habituation to interference. By defining the above
equations in terms of the R-function, by defining Rt�ln
(Nt/Nt�1), and by log transforming the equation 1, we
obtain:

Rt�Rm�e(a�Xt�1�C) (4)
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where Rt is the realized per capita growth rate Rt�ln
(Nt/Nt�1), Rm�ln(rm), a is the same parameter as in
equation 1, C�ln(c), and X�ln(N). This model repre-
sents the basic feedback structure determined by intra-
population processes. In this model the three parameters
Rm, a and C have an explicit biological interpretation and
we can include climatic perturbations by using the frame-
work of Royama (1992). For example, simple additive
climatic perturbation effects can be represented as ‘‘vertical’’
effects, which shift the relative position of the R-function by
changing Rm in the y axis (Royama 1992); this can be
expressed as:

Rm�g(PDO; SO) (5)

where g is a simple linear function (� or �) of the climatic
variables at different lags. Another kind of climatic
perturbation is when the equilibrium point of the popula-
tion is influenced by the climate. In this case the climatic
factor shifts the R-function curve along the x-axis without

changing the slope at the equilibrium; that represents a
‘‘lateral’’ perturbation in the Royama (1992) framework:

C�g(PDO; SO) (6)

We fitted eq. 2 using the nls library in the program R by
means of nonlinear regression analyses (Bates and Watts
1988). In addition, we included the climatic variables in the
parameters Rm, and C as linear functions (eq. 5, 6). All the
models were fitted by minimizing the Akaike information
criterion corrected for low sample size, AICc ��2�
log(likelihood)�2p�2p(p�1)/(n�p�1), where p is
the number of model parameters and n is the sample size.
Models with lowest AICc values were selected. We tested
how well models fit with data from the sequence 1976�
1996 and use the sequence 1997�2006 for model predic-
tion. As an additional analysis, we used the de-trended time
series of the CPUE data extracted from Korean and Chinese
Taipei fleets to compare with model predictions for
the period 1994�2006. In order to make data comparable
the CPUE data of Korean and Chinese Taipei fleets were
de-trended, log-transformed and the average value was
tuned to the average CPUE value observed for the Japanese
and USA fleet. Observed and predicted dynamics
were compared using the standard deviations of the
difference between observed and predicted data and
calculated as:

Table 1. Diagnostic analysis of the feedback structure of skipjack
tuna dynamics. PRCFt�i�the partial correlation between R and ln
Nt�i (with i�1, 2 and 3). We interpret this to be a measure of the
importance, or the relative contributions, of feedback at lag i to the
determination of R (see the text).

PRCFt�1 PRCFt�2 PRCFt�3

�0.73 �0.029 �0.089

–

Year
Year

Figure 2. (a) Annual estimates of skipjack tuna ln CPUE for the period 1976�2006 in the studied area. (b) Detrended data, the vertical
line shows the division of data used to fit the models (1976�1996) and data used for validation of model precitions (1997�2006). (c) R-
function plot of the detrended data.
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2

n

vuuuut
(7)

where Oi is observed data and Pi is predicted data. In
addition, we used the Pearson’s correlation coefficient
between the observed and predicted numbers to assess
model predictions.

Results

According to our analyses, the logistic model without
exogenous effects accounts for 48% of the observed
variation in R-values of K. pelamis (Table 2; Fig. 2c). Our
second step was to look for the climatic effect to explain the
residual variation of the logistic model. The effects of SOI
showed no significant correlation with the model residuals
at any time lag [SOIt: r��0.047, p�0.84; SOIt�1: r�
�0.27, p�0.22; SOIt�2: r�0.23, p�0.31], while the
direct and one-year lagged PDO effects showed negative
correlation with model residuals [PDOt: r��0.45, p�
0.04; PDOt�1: r��0.40, p�0.07; PDOt�2: r�
�0.29, p�0.21]. The Akaike weights indicate a very
strong support for the role of PDOt as the main exogenous
perturbation effect. Specifically, the ratio between the
models including this climatic index and the pure endo-
genous model (w4/w1�2.18 and w5/w1�2.27) suggests
two times of support for the role of PDO (Table 2).
However, after removing the effects of PDOt, the one-year
lagged effects of SOI also suggest the existence of climatic
effects on model residuals [SOIt: r��0.18, p�0.43;
SOIt�1: r��0.44, p�0.046; SOIt�2: r�0.25, p�
0.28]. In this sense, the addition of lagged SOIt-1 to model
5 improves model performance substantially, in particular
when both climatic indices are included as lateral perturbation

effects (model 10 in Table 2). In this case, the decrease in
the AICc is almost 5.3 units, and the Akaike weights ratio
between this model and the pure endogenous model reach a
value of 13.94. Thus, the best models appear to be those
including the effects of direct and one-year lagged PDO and
one-year lagged SOI (Table 2).

Predictions of independent data (i.e. the period 1997�
2006 and Korean and Chinese CPUE data for the period
1994�2006) showed that the models including only one of
the two climatic indexes were poor in predicting the observed
dynamics (Fig. 3a, b and 4a, b; Table 2). However, model
predictions were noticeable improved with the simultaneous
inclusion of PDO and SOI effects (Fig. 3c, d; Table 2), and
particularly in the model including the direct and lagged
effect of PDO and the lagged effect of SOI (Fig. 3e, 4e;
Table 2). Again, models including climatic variables as lateral
perturbations give better predictions than models including
climate as vertical perturbations (Table 2).

Discussion

Our modelling analyses suggest that the relevant ecological
processes underlying the population dynamics of Western
Tropical Pacific skipjack tuna are intra-specific competition
and the combined effects of El Niño�Southern Oscillation
and the Pacific Decadal Oscillation. In particular tuna
CPUE fluctuations are much better described and predicted
when the two most important climatic indexes operating at
large spatial scale in the Pacific are included in combina-
tion. In this sense, it is noteworthy that delayed effect of
SOI only are significant after to include the effect of PDO,
suggesting that a variable may become important only if
another variable is first included in the analysis. Although
the influence of climatic variables such as the ENSO and
the PDO on tropical tuna fluctuations have been previously
reported (Ledohey et al. 1997, 2003, 2006, Ravier and

Table 2. Optimal population dynamic models for skipjack tuna, using the exponential form of logistic growth. The parameter values given in
the equations were estimated by non-linear regression analysis in R-program using the nls library. The best model was chosen by using the
Akaike information criteria for small sample size AICc. Xt�1�ln population abundance, SOI�Southern Oscillation Index, PDO�Pacific
Decadal Oscillation, p�number of model parameters, DAICc�model DAICc � lowest DAICc, wi�Akaike weigths, r2�porportion of the
variance explained by the model, SD�bias parameter estimated from the difference between the observed and predicted data (see the text), r
simulations�Pearson’s correlation coefficient between the observed and predicted dynamics (in parenthesis are the results of compare
model predictions against the CPUE of Korean and Chinese Taipei fleets for the period 1994�2006).

Models for skipjack tuna Log-
likelihood

AICc p DAICc wi r2 SD r

(simulations)

1. Rt�0.92�exp [1.18 Xt�1�3.45] 6.56 �2.51 4 6.82 0.0128 0.48

SOI effects
2. Rt�0.94�exp [1.19 Xt�1�3.44]�0.0067 SOIt�1 7.44 �0.88 5 8.55 0.054 0.52

3. Rt�0.77�exp [1.51 Xt�1�4.54�0.009 SOIt�1] 7.52 �1.04 5 8.39 0.058 0.53 0.14 (0.12) 0.70 (0.27)

PDO effects
4. Rt�0.70�exp [1.53 Xt�1�4.85]�0.13 PDO t 9.10 �4.19 5 5.24 0.028 0.59
5. Rt�0.87�exp [1.09 Xt�1�3.35�0.15 PDO t] 9.14 �4.27 5 5.16 0.029 0.60 0.75 (0.15) 0.75 (0.09)
6. Rt�3.91�exp [0.31 Xt�1�0.46]�0.10 PDOt�0.10 PDOt�1 10.40 �2.80 6 6.63 0.014 0.64
7. Rt�0.66�exp [1.65 Xt�1�5.32�0.14PDOt�0.16 PDOt�1] 10.94 �3.90 6 5.53 0.024 0.66 0.16 (0.14) 0.68 (0.21)
8. Rt�0.46�exp [2.66 Xt�1�8.74�0.27 PDOt�1]�0.10PDOt 11.10 �4.20 6 5.23 0.028 0.66

PDO and SOI effects
9. Rt�0.72�exp [1.52 Xt�1�4.75]�0.16 PDOt�0.010 SOIt�1 11.65 �5.32 6 4.10 0.050 0.68

10. Rt�0.39�exp [2.61 Xt�1�8.60�0.45 PDOt�0.033 SOIt�1] 12.94 �7.91 6 1.52 0.18 0.72 0.14 (0.17) 0.73 (0.23)
11. Rt�5.24�exp [0.26 Xt�1�0.90]�0.12 PDOt�0.15 PDOt�1

�0.013 SOIt�1

15.46 �8.29 7 1.13 0.22 0.78

12. Rt�0.83�exp [1.48 Xt�1�4.55�0.15 PDOt�0.16 PDOt�1

�0.015 SOIt�1]
16.02 �9.43 7 0.00 0.39 0.79 0.10 (0.14) 0.86 (0.46)
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Fromentin 2001, Ménard et al. 2007), we think that our
results bring a new perspective and interpretation of
skipjack biomass oscillations at the western tropical Pacific
Ocean. This is because we were able to describe tuna
population dynamics by using a simple logistic model
(Ricker 1954), with only six ecological parameters. In fact,
recent studies in terrestrial mammals showed that simple
models are helpful for understanding the causes of popula-
tion fluctuations and can make very accurate predictions
(Berryman and Lima 2006, Lima and Berryman 2006,
Lima et al. 2008a, b). In addition, our results agree with
some previous analyses that find close statistical associations
between biomass indices and climatic variables of ocean top
predators (Maunder and Watters 2003).

An increasing numbers of studies have determined the
role of climate-induced fluctuations in catches of commer-
cial fish (Cushing and Dickson 1976, Cushing 1995,
Hjermann et al. 2004, 2007, MacKenzie and Köster
2004, Stige et al. 2006), and tuna stocks (Ledohey et al.
1997, 2003, Bertignac et al. 1998, Ravier and Fromentin
2001, Ménard et al. 2007). Climate fluctuations have been
shown to influence: 1) the catchability, i.e. the fraction of
a stock which is caught by a standardized unit of fishing
effort; 2) the spatial dynamics of migrating fish popula-
tions (Corten 1990, 2001, Ledohey et al. 1997) and
3) population dynamic processes, such as, mortality,
reproduction and recruitment. For the particular case of
skipjack tuna western stock it is well know that ENSO
variability influences organisms’ vertical (catchability) and
spatial distribution (Ledohey et al. 1997, Langley et al.

2006). Given that the positive PDO (warm) phases appear
to be related with a reduction in the equatorial upwelling
and a deeper thermo-cline at the equatorial Pacific Ocean
(McPhaden and Zhang 2002), we think that the direct
negative effect of PDO on CPUE could be related to
changes in tuna vertical distribution, skipjack tuna moves to
deeper areas and there is also a decrease in their catchability.
On the other hand, because the large spatial scale of our
study, we think that longitudinal displacement were not
important in determining temporal variability in our
analysis. Therefore, we think that the positive one-year
lagged effects of El Niño phase and the cool phase of the
PDO represent real effects on per capita rates of change of
skipjack tunas.

Indeed, our analyses at annual time scale agree with
previous studies relating lagged positive effects of El Niño
phase, suggesting the role of ENSO variability influencing
skipjack tuna recruitment within the warm pool area
(Ledohey et al. 2003). During El Niño years the expansion
experienced by the warm pool and the subsequent enlarge-
ment of the spawning grounds appears to benefit skipjack
tuna recruitment processes (Ledohey et al. 2003), which is
consistent with the one-year lagged SOI effect detected in
our analyses. In the same vein, Ledohey (2001) suggests that
the higher zooplankton biomass in the western Pacific
during the El Niño phase represents a highly favorable
environment for larval survival and development of the
skipjack tuna, which is expected to produce strong tuna
recruitment to the fisheries around one year later. In
addition, skipjack tuna appears to be influenced by the

Year Year Year

YearYear

Figure 3. Comparison of observed skipjack tuna biomass (solid circles) for the period 1997�2006 with predictions from models fitted to
the data until the year 1996 (grey lines). (a) Model 3 (SOIt�1); (b) model 5 (PDOt); (c) model 7 (PDOt and PDOt�1); (d) model 10
(PDOt, and SOIt�1) and (e) model 12 (PDOt, PDOt�1 and SOIt�1).
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Pacific Decadal Oscillation (Ledohey et al. 2003, Langley
et al. 2006). Specifically, we observed a negative one-year
lagged effects of PDO on skipjack tuna CPUE, a result that
is consistent with the hypothesis that cool phases of PDO
(i.e. negative PDO values) would have positive effects on
tuna populations inhabiting the warm pool of western
tropical Pacific Ocean (Chavez et al. 2003). According to
this hypothesis, the negative effects of PDO on skipjack
tuna could be associated with the observation that during
the warm phases of PDO (i.e. positive PDO values) there is
a reduction in the equatorial upwelling and a rise of the sea
surface temperatures at the equatorial Pacific Ocean
(McPhaden and Zhang 2002). Therefore, this reduction
in the ocean productivity could be influencing negatively
the recruitment of skipjack tuna that are perceived the next
year when the individuals recruit to the fishery. It seems
that changes in sea surface temperature and ecosystem
processes within the equatorial Pacific Ocean are influenced
by the decadal oscillation within the North Pacific Ocean
(Linsley et al. 2000, McPhaden and Zhang 2002). In sum,
we determined one-year lagged effects of SOI and PDO
that can be related with ecological effects on recruitment,
whereas the direct PDO effects could be caused by the effect
of oceanographic conditions on tuna catchability.

On the other hand, models including climatic indexes as
lateral (non-additive) perturbations appear to perform
better than models including climate as a vertical (additive)
effect. This result is expected when climate is influencing a
limiting factor, for example, when rainfall influence the

biomass of plants or seeds in arid ecosystems, it is very likely
that, in those cases, rainfall represents a lateral perturbation
effect for the herbivore populations (Royama 1992). The
problem with this kind of exogenous effect is that it affects
the availability of some limiting factor or resource (e.g.
food); hence, the per capita resource share of individuals is
also influenced (Royama 1992). In consequence, the effect
of the climatic variable cannot be evaluated independently
of the population density level, because the exogenous effect
acts jointly with population density or biomass (Royama
1992, Berryman and Lima 2006, Lima and Berryman
2006, Lima et al. 2006, 2008a, b, Previtali et al. 2009),
resulting in potentially nonlinear responses of populations
to changes in climate. Some recent studies in fish popula-
tions have emphasized the role of non-additive and indirect
climatic effects (Hjermann et al. 2004, 2007, Dingsør et al.
2007). This is consistent with other recent studies in small
rodents and insects showing that the effect of rainfall (or
temperature) on primary productivity can be easily incor-
porated as a lateral perturbation effect using simple
population models (Lima et al. 2006, 2008a, b, Estay
et al. 2009, Previtali et al. 2009). The same approach has
been used to predict the dynamics of large mammal
populations influenced by climatic variability (Berryman
and Lima 2006, Lima and Berryman 2006).

Although our approach did not denied the relevance of
more complex models (e.g. standard age-structured stock
assessment models) to disentangle the effect of different
climatic variables on specific processes (e.g. catchability,

Year Year Year

YearYear

Figure 4. Comparison of observed skipjack tuna biomass (solid circles) for the period 1994�2006 extracted from the Korean and Chinese
Taipei purse-seine fleet with predictions from models fit to 1976�1996 data from Japanese and USA fleet (grey lines). (a) Model 3
(SOIt�1); (b) model 5 (PDOt); (c) model 7 (PDOt and PDOt�1); (d) model 10 (PDOt, and SOIt�1) and (e) model 12 (PDOt,
PDOt�1 and SOIt�1).

603



growth, survival), it shows that very simple models can offer
reasonable explanations and accurate predictions of tuna
populations provided they are based on population dynamic
theory (Royama 1992, Berryman 1999, Turchin 2003).
Our simple logistic models were able to show an important
predictive capability despite that age-structure and spatial-
structure were not considered. We think that this result is
very important since most of the available information of
animal abundance in nature do not include information on
age, sex, or spatial structure. Moreover, using simple logistic
models and including climatic perturbations, we were able
to predict independent data quite adequately despite the
high variability inherent in the skipjack tuna CPUE data.
Using the western skipjack tuna stock as an example, we
have demonstrated that a first step toward considering
ecological effects in management approaches is the use of
population dynamic theory and the explicit inclusion of the
combined role of intra-population processes and environ-
mental variables.
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