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Abstract

Essays on Simulation Methods

by

Andrés Fernando Villegas Rodrı́guez

Doctor in Ciencias de la Agricultura

Professor Eugenio Bobenrieth H., Chair

This dissertation consists of two essays in which I use simulation methods to

study the structural parameters estimates from econometric models considering the

complexity of water and commodity markets. In the first, I study the efficiency of

several companies using non parametric methods, and next employing bootstrapping

techniques for statistical inference. In the second, I analyze the performance of

different econometric methods in the context of storage models, using Monte Carlo

experiments on heuristics representations comparing the distribution of the estimate

parameters using different descriptive statistics.

In the first chapter, I implement the double bootstrap to non-parametric Data En-

velopment Analysis with the purpose to estimate the efficiency of Chilean water and

sewerage companies. The relevance of applied this bootstrap technique, is that al-

lows statistical inferences that cannot be drawn directly from such non-parametric

model. This feature is important in the framework of water utilities performance com-



2

parisons since it is well-known that several exogenous variables influence the water

utilities efficiency. My results show that the ranking of water companies changes

notably whether efficiency scores are computed applying conventional or double-

bootstrap DEA models. Moreover, I found that the percentage of non-revenue water

and customer density are factors that influencing the efficiency of Chilean water and

sewerage companies

In the second chapter, I design a Monte Carlo experiment in the context of storage

model to compare finite sample performance of the Simulated Methods of Moments

estimator of Duffie and Singleton (1993), the Indirect Inference estimator of Gourier-

oux et al. (1993), the Efficient Method of Moments estimator of Gallant and Tauchen

(1996), the Pseudo Maximum Likelihood estimator (PML) of Deaton and Laroque

(1995), The Conditional Maximum Likelihood estimator of Cafiero et al. (2015) and

the Unconditional Maximum Likelihood of Gouel and Legrand (2017). My results sug-

gest that for parameterizations that imply low average storage and frequent stock-

outs, the PML estimator for small sample presents low bias and is more efficient than

Simulations estimators. However, for parameterizations that imply a more significant

role of storage, the Simulations estimators present bias that decrease with sample

size increase, while the PML estimator biases do not disappear but instead tend to

stabilize. I prove theoretically and numerically that Maximum Likelihood estimator is

consistent and achieves better small sample performance than the others.
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Chapter 1

Measuring and Comparing the

Efficiency of Water Companies: A

Double Bootstrap Approach1

1This chapter was published to Environmental Science and Pollution Research, March 2018, Vol-
ume 25, Issue 9, pp 8432-8440. Cite as: Molinos-Senante, M., Donoso, G., Sala-Garrido, R. et al.
Environ Sci Pollut Res (2018) 25: 8432.
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1.1 Introduction

Sustainable urban water management involves the efficient technical and economic

use of resources. In this context, it is essential to improve the efficiency of water util-

ities because it allows to reduce costs that could facilitate an increase in investments

to improve customer service quality (Guerrini et al. 2015). Moreover, in many coun-

tries, water and sewerage industry provides services under monopoly regimes which

implies that operators have no incentives towards efficiency. Hence, benchmarking

is of strategic importance to regulate water companies (Molinos-Senante and Sala-

Garrido 2017). Because of its usefulness, over the last few years, efficiency assess-

ment in the water industry has attracted considerable attention by researchers, wa-

ter companies, and regulators (Romano and Guerrini 2011). From a methodological

point of view, most studies have adopted a production frontier approach (Worthing-

ton 2014) which can be estimated using parametric approaches such as stochastic

frontier analysis (Saal et al. 2007) or non-parametric methods such as data envel-

opment analysis (DEA) (Molinos-Senante and SalaGarrido 2016). DEA has three

primary positive features that have favored its use to evaluate the efficiency of water

companies, namely, (i) it does not require a priori assumptions about the functional

relationship between inputs and outputs; (ii) it allows for the computation of efficiency

of units that use multiple inputs to produce multiple outputs; and (iii) the weights to

aggregate inputs and outputs are generated endogenously (Cooper et al. 2007).

Despite these advantages, DEA has two major drawbacks which are related to its
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deterministic nature (Ananda 2014). Firstly, DEA models assume that there is no

noise, nor outliers in the sample. However, for robust efficiency assessment, it is es-

sential to detect atypical observations (De Witte and Marques 2010a). As a second

disadvantage, statistical inferences cannot be drawn from conventional DEA analy-

sis (Badin et al. 2014). This limitation is especially relevant in the framework of water

utility performance comparisons since it is well-known that several exogenous vari-

ables influence water utility efficiency (Molinos-Senante et al. 2015). To overcome

this limitation, Cazals et al. (2002) proposed the order-m method, which is a partial

frontier method that only uses a portion of the sample to compute efficiency scores.

In the framework of water utilities, this approach was used to incorporate environ-

mental variables into efficiency assessment (De Witte and Marques 2010b). In spite

of the advantages of this method, it also had some difficulties (Daraio and Simar

2006); specifically, the selection of the value for “m” was challenging because it af-

fected the efficiency scores (Da Cruz and Marques 2014). Alternatively to the order-

m method, Simar and Wilson (2007) proposed a double-bootstrap procedure that

enables statistical inferences and hypothesis testing in DEA models. In other words,

reliable results are obtained with this approach since it estimates bias-corrected ef-

ficiency scores and also identifies the determinants of efficiency (Benito-López et

al. 2011). Despite its usefulness, to the best of our knowledge, only three previous

studies (De Witte and Marques 2010c; Ananda 2014; See 2015) employed a double-

bootstrap DEA approach to estimate bias-corrected efficiency scores and to explore

the sources of efficiency in water utilities. The three empirical applications focused
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on water companies that only provide drinking water services (WoCs), i.e., sewer-

age and wastewater treatment services were not considered in their assessment.

Hence, the study scope and the selection of the inputs and outputs to assess the

efficiency were adapted for water only companies and not for water and sewerage

companies (WaSCs). This issue is very relevant because water companies might

be affected by economies of scope (Guerrini et al. 2013). Moreover, an efficiency

assessment focused only on WoCs ignores the potential cost savings associated to

sewerage services, i.e., economies of scope, which are not negligible (Carvalho and

Marques 2014). Against this background, the objectives of this paper are twofold.

The first one is to evaluate the bias-corrected efficiency of a sample of WaSCs by

applying the double-bootstrap DEA method proposed by Simar and Wilson (2007).

With this approach, we obtain more reliable evidence with respect to results obtained

using traditional DEA models. The second objective is to identify the determinants

of efficiency in WaSCs. The empirical application focuses on the Chilean water and

sewerage industry for 2014. This paper contributes to the current strand of literature

by computing for the first-time bias-corrected efficiency scores and by identifying fac-

tors affecting efficiency of WaSCs. To the authors’ knowledge, this is the first study

that applies a double-bootstrap DEA procedure to assess the efficiency of a sample

of WaSCs. The Chilean water and sewerage industry is a paradigmatic case study

since it has long been a pioneer in the privatization of water and sewerage services.

The level of coverage and quality of water and sewerage services in Latin Amer-

ica has been defined as moderate; therefore, many emerging economies facing the
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challenge of improving water and sewerage services can learn important lessons

from the Chilean case. Actually, recent studies (Molinos-Senante et al. 2015, 2016;

Molinos-Senante and Sala-Garrido, 2016, 2017) have evaluated the performance

of Chilean water utilities. However, none of these previous studies identify the fac-

tors influencing the efficiency of WaSCs using a reliable approach such as bootstrap

method. From a policy perspective, the methodology and results of this study pro-

vide evidences that are of great interest both for WaSCs’ managers and regulators.

On the one hand, the estimation of bias-corrected efficiency scores provides a more

reliable performance comparison of the WaSCs. This issue is essential for the water

regulator to promote competition between WaSCs contributing to reduce monopoly

problems and also to set suitable water tariffs. On the other hand, the identification

of factors affecting efficiency scores is essential to support decisions, contributing to

the improvement of longterm sustainability of the urban water cycle. This paper il-

lustrates that implementing a consistent and reliable methodology is vital to increase

the relevance of benchmarking tools. Moreover, it provides evidence of the linkages

between environmental, social, and economic issues in the framework of water com-

panies’ performance.

Against this background, the objectives of this chapter are twofold. The first one

is to evaluate the bias-corrected efficiency of a sample of WaSCs by applying the

double-bootstrap DEA method proposed by Simar and Wilson (2007). With this ap-

proach, I obtain more reliable evidence with respect to results obtained using tradi-

tional DEA models. The second objective is to identify the determinants of efficiency
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in WaSCs. The empirical application focuses on the Chilean water and sewerage in-

dustry for 2014. The rest of the chapter is organized as follows. Section 1.2 describe

the regulatory model and water tariffs setting process in Chile. Section 1.3 define the

methodology of double-bootstrap DEA and details the sample description. Section

1.4 presents the results and discussion, and section 1.5 concludes.

1.2 Water Tariff Setting Process

The process to set water tariffs is based on the definition of a hypothetical efficient

firm, i.e., an “ideal firm” (Marques 2011). Under this approach, the performance of

the “real” water company is compared with a virtual, efficient company known as

the “model” company, which is considered to be the benchmark. It is a theoretical

water company created by the regulator which satisfies the demand in a optimal

manner taking into account prevailing norms and the geographical, demographic and

technological restrictions that characterize the operation of the service (Gobierno de

Chile 1988a, b, c). This model corresponds to a water company without assets,

which must make the investment to provide water and sanitation services (WSS)

and establish a development investment plan (Donoso 2017). The procedure to set

water tariffs is shown in Fig 1.1. A year before the end of the tariff cycle, the regulator

prepares terms of reference (ToR) for the tariff studies to be conducted by the water

company as well as the regulator. Based on the estimation of the long-term costs of

the hypothetical efficient water company, both the regulator and the water company
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Figure 1.1: Water tariff setting procedure. (SISS 2015b).

proposed the water tariff to be charged by the regulated firm. If the parties cannot

agree on the price, the disagreement is settled through and arbitration process.

The legal framework of the Chilean water and sanitation tariffs system defines

four main principles to set water tariffs: (i) economic efficiency, (ii) water conservation

incentives, (iii) equity, and (iv) affordability (Molinos-Senante and Donoso 2016). In

this context , the objectives of the Chilean tariff model are to:

1. Finance the WSS operator’s operating costs and maintenance and investment

requirements so as to insure continuity of water supply and quality service.

2. Finance a minimum agreed operational margin that covers the private opera-

tor’s capital opportunity cost.

3. Incentivize efficiency gains in the provision of WSS services.
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4. Transmit efficiency gains to customers through tariff reductions.

5. Provide water value signals so that consumers internalize the scarcity value of

water in their region.

To achieve these objectives, water and sanitation tariffs in Chile are based on a

two-part structure, a fixed part ($) and a variable tariff ($/m3). The fixed charge is

per connection and depends of the connection diameter and metering costs. The

variable tariff is almost uniform since an extra charge for over-consumption is ap-

plied only in very exceptional cases. However, the variable component internalizes

changes in seasonal demand by establishing a peak and non-peak charge. Thus, in

summer months when water demand is high but water availability is low, a peak tariff

is applied in contrast to the rest of the months. Hence, the difference in the provision

costs of WWS during both time periods is covered. Formally, the tariff (τ) is set such

that:

τ =
AI +OC +MR + T

C

where AI represents the annualized value of the required investments by the model

operator, OC is the annual operating and maintenance costs, MR is the minimum

guaranteed returns, T are the taxes that the operator must pay, and C represents

the total annual projected water consumption for the next 5 years in the concession

area. One of the investment costs considered in the calculation of the AI is the

market value of the necessary water rights. Thus, water tariffs should reflect the

scarcity value of water (Molinos-Senante and Donoso 2016).
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1.3 Methodology

I adopt the double-bootstrap DEA model with a truncated bootstrapped regression

proposed by Simar and Wilson (2007) to estimate the efficiency scores and their

determinants in the Chilean water industry, since it enables bias-corrected efficiency

score estimation and identification of the determinants of efficiency for the water

industry.

Efficiency estimation

DEA method has been widely applied to evaluate the efficiency of water utilities

(See 2015). DEA is a non-parametric technique based on linear programming that

allows for the construction of the efficient production frontier based on the inputs and

outputs of the decision making units (DMUs) (Charnes et al. 1978). The relative

efficiency for each unit is calculated by comparing its inputs and outputs in relation to

the rest of the units. Further details on DEA methodology are provided by Cooper et

al. (2007) and Hwang et al. (2016). DEA models can take either an input or output

orientation. In the framework of water industry, previous studies (Molinos-Senante

and Sala-Garrido 2016; Guerrini et al. 2015, 2011) have adopted input orientation

since the aim of the WaSCs is to provide water and sewerage services minimizing

the use of inputs.

Given j = 1, 2, ..., N units (WaSCs in my case study), each one using a vector of

M inputs xj = (x1j, x2j, ..., xMj) to produce a vector of S outputs yj = (y1j, y2j, ..., ySj),
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the input-oriented DEA model is denoted as follows

min θj

s.t.
∑N

j=1 λjxij ≤ θxi0 1 ≤ i ≤M∑N
j=1 λjyrj ≥ yr0 1 ≤ r ≤ S

λj ≥ 0 1 ≤ j ≤ N

(1.1)

θj indicates the efficiency of the unit evaluated being efficient when θj = 1 and inef-

ficient whenever θj > 1, M is the number of inputs used; S is the number of outputs

generated, N is the number of units analyzed, and λj is a set of intensity variables

which represent the weighting of each analyzed WaSC j in the composition of the

efficient frontier.

Double-bootstrap DEA approach

From the DEA literature, two main approaches are the most used to account for

the effects of explanatory and environmental variables on efficiency scores. The

first one is Tobit regression analysis in which the efficiency scores are regressed

against a set of explanatory variables taking into account the censured nature of

the dependent variable distribution (Guerrini et al. 2015). However, this procedure

suffers important shortcomings (Badin et al. 2014). Simar and Wilson (2007) proved

that if the variables used in specifying the original efficiency model are correlated

with the explanatory variables used in the regression analysis, then the second-

stage estimates are inconsistent and biased. Conventional inference methods used

in the two-stage DEA procedure are based on efficiency estimates that are serially
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correlated. As a result related statistical inference might not be reliable (Santos et

al., 2017).

The second approach is to apply non-parametric statistical tests to verify whether

there are significant differences between the efficiency scores of units grouped ac-

cording to certain factors that appear to be related to efficiency. Nevertheless, this

approach does not allow to isolate the influence of the explanatory variables on the

efficiency scores and, thus, causality cannot be determined.

To overcome these limitations, Simar and Wilson (2007) proposed a double-

bootstrap procedure that provides a confidence interval for the efficiency estimates

and yields consistent inferences for factors explaining efficiency (Boamah et al. 2017).

The bootstrapping generates new data that are drawn from the original set. This new

data are then used to reestimate the DEA model (Eq.1). The distinction between the

true and the estimated frontier allows for statistical inferences in DEA (Ananda 2014).

As in many previous studies (e.g., Da Cruz and Marques 2014; Zhang et al.

2016), the double-bootstrap procedure applied in this chapter is referred to as Al-

gorithm 2 of Simar and Wilson (2007) which can be summarized in the following

steps:

1. Estimate DEA input-efficiency scores θj for all WasCs in the sample by using

Eq. (1).

2. Carry out a truncated maximum likelihood estimation to regress θ against a

set of explanatory variables zj, θj = zjβ + εj, and provide an estimate β̂ of the
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coefficient vector β and estimate σ̂ε of σε , the standard deviation of the residual

errors εj.

3. For each WaSC j(j = 1, ..., N) repeat the following four steps (3.1-3.4) B1 times

to obtain a set of B1 bootstrap estimates θ̂jb for b = 1, ..., B1.

3.1 Generate the residual error εj from the normal distribution N(0, σ̂2
ε ).

3.2 Compute θ∗j = zjβ̂ + εj.

3.3 Generate a pseudo data set (x∗j , y
∗
j ) where x∗j = xj and y∗j = yj

(
θj
θ∗j

)
.

3.4 Using the pseudo data set (x∗j , y
∗
j ) and Eq.(1) estimate pseudo efficiency

estimates θ̂∗j .

4. Calculate the bias-corrected estimator θ̂j for each WaSC j(j = 1, ..., N) using

the bootstrap estimator of the bias b̂j where θ̂j = θj−b̂j and b̂j =

(
1

B1

∑B1

b=1 θ̂
∗
jb

)
−

θj.

5. Use truncated maximum likelihood estimation to regress θ̂j on the explanatory

variables zj and provide an estimate β̂∗ for β and an estimate σ̂∗ for σε.

6. Repeat the following three steps (6.1-6.3) B2 times to obtain a set of B2 pairs

of bootstrap estimates
(
β̂j
∗∗
, σ̂j
∗∗
)

for b = 1, ..., B2.

6.1 Generate the residual error εj from the normal distribution N(0, σ̂∗2).

6.2 Compute θ̂j
∗∗

= zjβ̂
∗ + εj.
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6.3 Use truncated maximum likelihood estimation to regress θ̂j
∗∗

on the ex-

planatory variables zj and provide an estimate β̂∗∗ for β and an estimate

σ̂∗∗ for σε.

7. Construct the estimated (1− α)% confidence interval of the n-th element βn of

the vector β, that is:

[Lowerαn , Upperαn ] =
[
β̂∗n + âα, β̂

∗
n − b̂α

]
with Prob

(
−b̂α ≤ β̂∗∗n − β̂∗n ≤ âα

)
≈

1− α

Sample description

The empirical application carried out in this study focused on the Chilean water and

sewerage industry which finished its privatization in 2004. As a result, in 2014, 95.7%

of customers were served by private WaSCs and the remaining 4.3public conces-

sionaries, municipalities, and cooperatives (SISS 2014). While the total number of

regulated Chilean WaSCs in 2014 was 53, this study evaluates the efficiency of the

23 main WaSCs which provide water and sewerage services to approximately 98%

of the total number of urban customers (SISS 2014). The source of the data was

the “Management Report for Water and Sewerage Companies in Chile”, published

by the national water regulator (Superintendencia de Servicios Sanitarios, SISS) on

its webpage for the year 2014. The 23 WaSCs evaluated provide water supply and

wastewater treatment services.

The selection of inputs and outputs is essential in DEA studies. In a literature
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review recently conducted by See (2015), it was evidenced that the input and out-

put variables included in the efficiency assessment of water utilities vary notably in

empirical studies. Regarding inputs, the most widely used variables include oper-

ating costs (Byrnes et al. 2010), network length (De Witte and Marques 2010c),

number of employees, total capital expenditure, etc. Considering previous studies

on this topic, this study employed three inputs: operating costs, labor, and network

length. Operating costs involve the water and sewerage industry’s total expenditure

except labor costs which were proxy by the full-time employees. Selecting a variable

that represents capital expenditure is a difficult task by valuation disparities (Ananda

2014). The total network length was used as a proxy to capital stock. However, from

a theoretical point of view, there is opposition to include fixed capital as it is a sunk

cost (Byrnes et al. 2010). Hence, following previous studies (De Witte and Marques

2010c; Ananda 2014; See 2015), the network length, expressed in kilometers, was

selected as a proxy to capital costs. In my case study, this variable is the sum of the

water delivery network and sewerage network.

From the literature review, the most widely used output variables are the volume

of water delivered (Guerrini et al. 2013) and the number of properties connected

(Ananda 2014). These variables focus mainly on the water supply service while the

water companies evaluated in this study also provide sewerage services. Hence,

one or more outputs related to this service should be introduced in the model. More-

over, recent studies (e.g., HernÃ¡ndez-Sancho et al. 2012; Maziotis et al. 2015)

have evidenced that the quality of the service affects the performance assessment
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of water companies. WaSCs incur in considerable expenditures to improve water

quality (Ananda 2014), and therefore, quality issues cannot be omitted in the effi-

ciency assessment of WaSCs (Cherchi et al. 2015). Following Saal et al. (2007),

two quality-adjusted outputs were used in this study, one focused on water supply

and the other is sewerage services. The two outputs considered in the assessment

were as follows: (i) distributed water (expressed in thousands of cubic meters) ad-

justed by its quality (y1) and (ii) the number of customers with access to wastewater

treatment services adjusted by the quality of the treated water (y2). Information about

the quality of the drinking water and water treated is provided by the SISS. Thus, the

regulator develops for each WaSC two quality indicators (drinking water and wastew-

ater) that range between 0 and 1. A value of one means that the WaSC has fulfilled

all legal requirements regarding quality issues. The two quality-adjusted outputs are

defined as follows:

y1 = V DW ∗Q1 (1.2)

y2 = CWW ∗Q2 (1.3)

where y1 is the quality-adjusted drinking water output; V DW is the volume of drink-

ing water delivered; Q1 is the quality indicator of the drinking water; y2 is the quality-

adjusted wastewater treatment output; CWW is the number of customers with ac-

cess to wastewater treatment services; and Q2 is the quality indicator of the treated

wastewater.

A wide number of variables are employed in the literature as potential determi-
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nants of efficiency of water utilities (See 2015). In general, ownership, customer

density, peak factor, and water losses have been considered as environmental vari-

ables that explain the efficiency of water companies (Carvalho and Marques 2011;

Marques et al. 2014). In this study, the potential explanatory variables were selected

taking into account the features of the Chilean water and sewerage industry, the

available data and the extant literature (Berg and Marques 2011; See 2015). Five

variables, namely customer density, non-revenue water, ownership, water source,

and peak factor, were included in the second stage of the double-bootstrap DEA

model, as determinants of WaSCs efficiency scores. Table 1.1 provides a snapshot

of the statistical data used to compute efficiency scores of Chilean WaSCs and of

their potential explanatory variables. The variable ownership and source of water are

not quantitative and therefore are introduced in the regression analysis as dummies.

Operating costs are highly variable, presenting an average value of 42,819 US$

per year with a coefficient of variation (CV) of 1.40%. As expected, average operating

costs per client are less variable, presenting a CV of 0.51%. Figure 1.2 and 1.3 show

that average per client operating costs and average number of employees per client

decreases as the number of clients increases, respectively.
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Table 1.1: Sample Description

Average SD

Inputs
Operating costs (US$/year) 42,819 59,973
Labor (N◦ workers) 590 765
Network length (km) 3,138 4,941

Outputs

Water distributed 47,979 93,080
(103 m3/year)
Customers with wastewater 688,434 1,314,390
treatment service
Indicator of drinking 0.954 0.073
water quality
Indicator of wastewater 0.99 0.014
treatment quality

Continuous
Non-revenue water (%) 29.7 11.9

variables
Peak factor 1.2 0.2
Customer density (Customers/km) 57.3 14.46

Number % of total

Categorical Ownership
Private operator 12 52.2
Concession 10 43.5

variables
Municipal operator 1 4.3

Water Source
Surface water 3 13.1
Ground water 9 39.1
Mixed sources 11 47.8

Figure 1.2: Average per client operating costs vs. number of clients.
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Figure 1.3: Average number of employees vs. number of clients.

Drinking water quality is measured by the compliance with all water quality stan-

dards and treated wastewater; the quality indicator is based on compliance with

emission standards, which is directly related with the quality of effluent discharge.

On average, WaSCs present high drinking water and treated wastewater quality,

reaching 95.4% and 99%, respectively. Only two WaSCs present low compliance

with drinking water quality, with indicators below 90%. On the other hand, all WaSCs

present indicators of wastewater treatment quality above 95%. In spite that the

Chilean water regulator establishes that the maximum percentage of leakage in wa-

ter supply of the efficient WaSC is 20%, most of the water companies in Chile exhibit

larger percentages. In 2014 the average percentage of non-revenue water for the

Chilean water industry was 29.7% and about 74% of this percentage corresponded
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Figure 1.4: Distribution of WaSCs with respect to non-revenue water.

to water losses. As can be seen in Figure 1.4, the majority of Chilean WaSCs (61%)

present a percentage of non-revenue water above 30%, while only 26% present a

leakage percentage below the regulator?s target of 20%.

The peak factor is defined as the ratio between the maximum daily consumption

in the year and the average consumption per day. Table 1.1 shows that the average

value is 1.2. Regarding the ownership of WaSCs in Chile, it should be noted that all

companies evaluated are private, except one which is municipal. The privatization

process carried out in Chile followed two approaches: fully privatized, where utilities

were sold either by sales or of shares or transfers of assets to the private sector, and

concessionary, where the public sector maintained ownership of the infrastructure

and a private contractor undertakes operational and maintenance activities for a fixed
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term (Molinos-Senante and Sala-Garrido 2016). Our WaSCs sample consists of

52.2% and 43.5% of fully privatized and concessionary WaSCs, respectively. Our

sample also considers the only municipal water operator of Chile. Finally, the majority

of WaSCs obtain water from both surface water and groundwater (47.8%), followed

by those whose only water source is groundwater (39.1%). There are only a few

WaSCs whose sole water source is surface water. These are all located in the south

of Chile where surface water flows are on average greater than 20,000 m3/s.

1.4 Results and discussion

Efficiency assessment

The efficiency of each WaSC was computed by applying the double-bootstrap DEA

model. According to the initial DEA model (Eq. 1), 8 out of 23 observations (35%)

are efficient, i.e., those whose efficiency score equals one. These WaSCs formed

the best practice frontier since they cannot reduce the use of inputs keeping the

production of outputs when they are compared with the other assessed WaSCs. As

is shown in Table 1.2, the mean efficiency stands at 1.248 with a standard deviation

of 0.265.This finding indicates that an average WaSC that performed as efficiently as

its benchmark can decrease its inputs by 20% (1− 1/1.248) while keeping its output

constant.

The efficiency estimations of WaSCs level are gathered in Table 1.2.The column
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named “Bias” provides the bias estimate of the initial efficiency scores obtained with

the bootstrap using 2000 iterations. It is illustrated that the bias ranges from a mini-

mum value of -0.004 (WaSC7) to a maximum value of -0.905 (WaSC5). The sign of

the bias is negative for all WaSCs which is consistent with previous studies (Ananda

2014; See 2015) whom also obtained negative bias for all water utilities assessed. A

bootstrap procedure under the DEA framework allows us to obtain more precise effi-

ciency scores with a limited sample size. Ignoring the need to rescale residuals with

small sample sizes, as in this study, leads to strictly negative efficiency score bias in

finite samples (Simar and Wilson 2007). The fourth column of Table 1.2 shows the

bias-corrected efficiency scores for each WaSC. The average efficiency for the 23

WaSCs evaluated after correcting for the bias stands at 1.631 which means that the

potential for input saving among WaSCs is about 39%.

While the difference between the mean biased efficiency (second column of Ta-

ble 1.2) and the mean bias-corrected efficiency is not large, the ranking of WaSCs

based on its performance changes notably. For example, WaSC6 was efficient con-

sidering the biased efficiency assessment and therefore, it was in the first position

of the ranking. However, when the classification of WaSCs is based on the bias-

corrected efficiency score, the WaSC6 occupies the 15th position. From a statistical

point of view,the non-parametric test of Mann-Whitney reveals statistically significant

differences between the biased and bias-corrected efficiency scores (p-value≤ 0.01)

with a 1% of significance. The last three columns of Table 1.2 shows the variance

estimates and the lower and upper bounds of the confidence intervals at the 95%.
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They illustrate the large variability in the bias estimates among the evaluated WaSCs.

From policy perspective and especially in the context of regulated water indus-

tries, the results evidence the importance of estimating bias-corrected efficiency

scores. Otherwise, the comparison of the performance of water companies involves

biased rankings. This issue is relevant in countries or regions in which tariffs are set

based on benchmarking processes. The estimation of biased-corrected efficiency

scores provides water regulators with a more complete,reliable and robust in forma-

tion to support their decision-making process of setting water tariffs or of introducing

incentives to the best performed WaSCs.
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Table 1.2: Biased efficiency scores and bias-corrected efficiency scores for WaSCs.

Water and Biased Bias Bias-corrected SD Lower Upper
sewerage company efficiency score efficiency bound bound

WaSC1 1.000 -0.671 1.671 0.062 1.106 1.984
WaSC2 1.000 -0.667 1.667 0.052 1.102 1.956
WaSC3 1.158 -0.606 1.764 0.060 1.241 2.172
WaSC4 1.466 -0.414 1.880 0.894 1.809 1.945
WaSC5 1.077 -0.905 1.982 1.249 1.674 2.196
WaSC6 1.000 -0.521 1.521 0.029 1.108 1.783
WaSC7 1.342 -0.004 1.347 0.613 1.046 1.765
WaSC8 1.174 -0.561 1.735 0.874 1.678 1.942
WaSC9 1.883 -0.078 1.961 0.089 1.047 2.195

WaSC10 1.000 -0.455 1.455 0.020 1.096 1.695
WaSC11 1.000 -0.592 1.592 0.037 1.094 1.858
WaSC12 1.624 -0.071 1.694 0.052 1.617 1.723
WaSC13 1.000 -0.530 1.530 0.025 1.084 1.736
WaSC14 1.000 -0.471 1.471 0.028 1.093 1.721
WaSC15 1.000 -0.672 1.672 0.062 1.083 1.968
WaSC16 1.500 -0.055 1.555 0.778 1.543 1.684
WaSC17 1.063 -0.086 1.148 0.280 1.035 1.284
WaSC18 1.333 -0.475 1.807 0.039 1.440 1.921
WaSC19 1.536 -0.072 1.608 0.736 1.506 1.861
WaSC20 1.500 -0.045 1.545 0.856 1.190 1.948
WaSC21 1.282 -0.295 1.578 0.255 1.358 1.955
WaSC22 1.144 -0.474 1.618 0.032 1.241 1.938
WaSC23 1.625 -0.090 1.715 0.564 1.630 1.980
Average 1.248 -0.383 1.631 0.334 1.297 1.879

SD 0.265 0.265 0.188 0.387 0.255 0.198
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Exploring the determinants of efficiency

The main implication of considering the uncertainty of the data using bootstrapping

is that it is feasible to identify explanatory variables of WaSCs’ efficiency. In other

words, the second-stage analysis using a regression approach allows for the identifi-

cation of the environmental factors that significantly influence the efficiency of water

companies. Efficiency scores are θj ≥ 1, being a WaSC efficient when θj = 1 and in-

efficient whenever θj ≥ 1. Hence, the dependent variable of the regression analysis

indicates the inefficiency of the WaSCs. Hence, a positive sign of the estimated re-

gression parameter means higher inefficiency, i.e., lower efficiency, while a negative

sign of the estimated parameter means larger efficiency.

The number of potential environmental factors considered was conditioned by

the number of WaSCs, in order to ensure enough degrees of freedom for the estima-

tion. Hence, 5 environmental variables were considered, namely: (i) percentage of

non-revenue water; (ii) peak factor; (iii) source of water; (iv) customer density and;

(v) ownership of water companies. The bias-corrected coefficients of the regressed

variables, their standard error and p-values, which indicate the significance of the

estimated parameters, are presented in Table 1.3.It illustrates that the percentage

of non-revenue water negatively influences WaSCs’ efficiency. Hence, WaSCs with

large values of this variable correspond to high values of inefficiency since higher

percentage of non-revenue water involves higher operating costs influencing the ef-

ficiency of water companies. Moreover, the p- value indicates that the relationship
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between non-revenue water and efficiency is statistically significant. This is explained

Table 1.3: Results of bootstrap truncated regression.

Variable Bias-corrected coefficients Standard error p-value
Intercept -157.708 358.881 0.558
Non-revenue water 8.923 3.356 0.007**

Peak factor 124.05 214.362 0.473
Groundwater Reference Variable
Surface water -69.462 90.588 0.38
Mixed water -66.275 88.341 0.394
Customer density -3.849 2.433 0.99*

Privatized WaSCs Reference Variable
Concessionary WaSCs -10.69 51.588 0.819
* Significant at 10%
** Significant at 10, 5 and 1% level

by the fact that as nonrevenue water increases, the WaSC must increase water ex-

traction and distribute a greater amount of water, so as to produce the same out-

put level; thus, WaSCs with higher non-revenue present higher costs (Hastak et al.

2016). However, previous studies were inconclusive about this issue. For example,

Corton and Berg (2009) found that for water companies located in Central America,

efficiency and volume of water billed, which is the opposite to non-revenue water,

were correlated variables. By contrast, Ananda (2014) for Australian water utilities

and Marques et al. (2014) for Japanese water companies evidenced that leakage

has no influence on efficiency. In both case studies, the water loss levels were quite

low (notably lower than in Chile), and therefore, this variable was irrelevant in terms

of efficiency.

The average peak factor of the Chilean WaSCs analyzed in 2014 was 1.2. My

results show that parameter associated to peak factor is not statistically significant;

thus, this variable does not influence WaSCs’ efficiency in Chile. The lack of signifi-
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cance can be explained by two main factors. The first one is the lack of variability of

peak factor levels. Table 1.1 indicates that the average peak factor is 1.2 with a stan-

dard deviation of 0.2; thus, its coefficient of variation is very low, reaching 14similar

peak factors and, thus, I cannot explain inefficiency scores based on this variable.

The second explanation might be that these WaSCs supply seasonal and touristic

areas, which normally consume more water due to large outdoor water use. Hence,

the higher operating costs related to large peak factor are offset by the greater water

consumption. In the context of Portuguese water companies, Carvalho and Marques

(2011) evidenced that there is a negative influence for peak factors up to 1.2 and for

peak factors higher than 1.4. By contrast, when the peak factor is close to 1.4, it has

a positive influence on the efficiency.

The sources of water for the Chilean WaSCs are as follows: (i) only surface water,

(ii) only ground water, and (iii) mixed surface and ground water. The variable source

of water was integrated in the regression analysis as three dummy variables-one

for each type of water source. Given that the three dummy variables are perfectly

collinear (their sum is always 1), the dummy variable associated to groundwater

source was dropped from the estimation. The parameter estimates for the other

sources of water are interpreted as intercept shifters. Results show that water source

does not have a significant impact on efficiency. Studying water companies located

in Southeast Asian and Japan, See (2015) and Marques et al. (2014) also evidenced

that the source of water was not significantly related with efficiency.

For the assessed Chilean WaSCs, the average customer density in 2014 was
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57.27 number of customers per kilometer of network. As well as water utilities located

in several countries (Abbott et al., 2012; Guerrini et al. 2013; Ananda 2014), Chilean

WaSCs present economies of density. Thus, the negative sign of the coefficient for

customer density indicates that this variable has a positive influence on efficiency.

It should be noted that the relationship between efficiency and customer density is

significant at 10% level.

WaSC ownership was introduced in the analysis as two artificial dummy vari-

ables. Thus, the parameter estimate associated to Bconcessionary WaSCs’ must

be interpreted with respect to the reference category. The estimated parameter is

not statistically significant; hence, ownership type of WaSCs does not influence their

efficiency. This may be because the assessment only includes private operators

whose only difference is that the concession term for concessionary operators is 30

years, renewable, while fully privatized is for perpetuity. Hence, a concessionary firm

that complies with the regulation faces a concession term that tends to perpetuity.

This implies that under Chilean regulation, the incentives to be more efficient do not

depend on ownership type.
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1.5 Conclusions

Benchmarking the efficiency of water companies has acquired a fundamental role

in many regulated water industries in the tariff setting procedures so as to increase

the competitiveness of water companies and to improve the quality of service to

customers. In this context, conventional DEA models have been widely applied to

assess the efficiency of water companies. In spite of the positive features of DEA

method, one important limitation is that statistical inferences cannot be drawn from

conventional DEA models. This drawback is especially relevant in the framework of

water companies where controlling the impacts of environmental variables for con-

ducting performance benchmarking is essential. To overcome this limitation, in this

chapter, the double-bootstrap DEA method developed by Simar and Wilson (2007)

was applied. This approach allowed us to estimate bias-corrected efficiency scores

and also to identify determinants of efficiency.

The results for the case study provide three primary conclusions. First, the effi-

ciency ranking of WaSCs based on the conventional DEA model and on the double-

bootstrap procedure changes notably. Therefore, the estimation of bias uncorrected

efficiency scores generates biased rankings of WaSCs. This issue is essential in

countries where benchmarking procedures are used to set water tariffs. The esti-

mation of biascorrected efficiency scores is essential to support the decisionmak-

ing process. Secondly, the percentage of non-revenue water and the density of

customers significantly influence the efficiency of WaSCs. On one hand, customer
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density is an external variable for the WaSCs so they cannot act to improve this fac-

tor. However, the regulator should consider this factor while benchmarking WaSCs

since customers’ density of areas served by each water company impacts the perfor-

mance of the companies. On the other hand, the percentage of non-revenue water

is an environmental factor that WaSCs have some capacity to act upon, especially

with respect to leakage reduction. Hence, taking into account that the second-stage

analysis presents evidence that non-revenue water negatively influences efficiency,

the regulator must introduce public policies to encourage reductions in non-revenue

water such as awards or sanctions. Finally, for the Chilean water and sewerage in-

dustry, it was illustrated that the peak factor, the source of water, and the ownership

of the WaSCs do not significantly influence their efficiency.
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2.1 Introduction

In a very influential paper, Michaelides and Ng (2000) compares the small sample

performance of estimators for models with dynamic structure. They focus on the

commodity storage model which they recognize provides a sufficiently demanding

context for such comparison. The role of storage in such models is key to character-

ize price and consumption distributions. However, the particular choice of parameter

values of Michaelides and Ng (2000) imply too little role for storage if compared with

most of those presented in calibration or econometric estimations of the model. Fig-

ure 2.1 shows kernel densities of occurrence of stockouts implied in the simulated

price samples to explain how change the levels of storage using different parameter-

izations from the literature.

They compare the pseudo-maximum likelihood (PML) of Deaton and Laroque

(1995, 1996) with those of three simulation-based estimators: the simulated method

of moments estimator (SMM) of Duffie and Singleton (1993) the indirect inference

estimator (IND) of Gourieroux et al. (1993) and the efficient method of moments

estimator (EMM) of Gallant and Tauchen (1996). They conclude that the simulation-

based estimators have smaller bias, but are less efficient than PML.

This chapter has three contributions. First, I revisit the Monte Carlo comparisons

of Michaelides and Ng (2000), but for a set of storage models including a wider family

of parameter values including those more recently proposed as relevant for major

commodities. My results strongly differ from those of Michaelides and Ng (2000).
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Figure 2.1: Kernel densities of occurrence of stockouts.

Second, I compare the small sample performance of the conditional maximum

likelihood estimator (CML) of Cafiero et al. (2015), the unconditional maximum likeli-

hood estimator (UML) of Gouel and Legrand (2017), with those estimators studied by

Michaelides and Ng (2000). Third, I provide a proof of consistency for the maximum

likelihood estimators of Cafiero et al. (2015) and of Gouel and Legrand (2017).

Although I do not claim that the PML procedure implemented by Deaton and

Laroque (1995, 1996) and Cafiero et al. (2011) is asymptotically biased, I do not find

evidence in favor of the claim of consistency by Cafiero et al. (2011, p. 48). The

Monte Carlo experiments show that biases do not disappear but tend to stabilize as

the sample size is significantly increased (up to a sample size of 10,000). This was

also observed by Michaelides and Ng (2000, p. 244) for their more modest sample
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sizes of up to 200.

Michaelides and Ng (2000, p.263) claim that for the storage model “the objective

function for classical estimation becomes intractable.” Although analytical expres-

sions for the estimators of the storage model are not available, I prove consistency

for classical maximum likelihood estimators. I show that such estimators are far more

efficient and exhibit substantial less bias in small samples than each of the estima-

tors they consider.

All of the estimators studied in this paper are comparable. They require the same

informational structure, in the sense that they all need to assume a particular distribu-

tion for the shocks, a particular specification for the consumption demand, and stor-

age cost. Although my results refer to estimation of the commodity storage model,

my results provide useful lessons for the estimation of dynamic models that share

the non-linearity implied by the non-negativity constraint on stocks, for example in

models of consumption with liquidity constraints in the tradition of Deaton (1991).

The rest of the chapter is organized as follows. Section 2.2 describe the specula-

tive storage model and present the endogenous grid method to solve it. Section 2.3

details the Monte Carlo experiments and review the econometrics methods. Sec-

tion 2.4 present the results of Monte Carlo experiments. Section 2.5 proof the con-

sistency of the Conditional Maximum Likelihood estimator in the context of storage

model and section 2.6 concludes.
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2.2 The Model

The speculative storage model

I use the framework of a commodity storage model with non-negativity constraints on

the amount stored, in the tradition of Gustafson (1958), Scheinkman and Schecht-

man (1983), Williams and Wright (1991) and Deaton and Laroque (1992). The stan-

dard speculative storage model consider two type of agents, consumers and inven-

tory holders. They are competitive and both have rational expectations. I assume

risk neutrality, access to a perfect capital market where the rate of interest r is fixed

and there is no storage cost.1 The exogenous supply shocks wt are i.i.d. on a com-

pact support [w,w]. The availability at period t is zt ≡ wt + (1 − d)xt−1, where xt−1

is the storage at time t − 1, and d is the physical deterioration rate of stocks. The

demand for commodities ct has a linear inverse demand F (c) = a + bct with b < 0

and
(

1−d
1+r

)
EF (wt) > 0.

Considering the above elements, a stationary rational expectations equilibrium

(SREE) is a function f : Z → R which describes price as a function of the current

availability, and satisfies for all zt ∈ Z,

pt = f(zt) = max

{(
1− d
1 + r

)
Etf

(
wt+1 + (1− d)

[
zt − F−1

(
f(zt)

)])
, F (zt)

}
. (2.1)

Since the wt’s are i.i.d., f is the solution to the following functional equation:

f(z) = max

{(
1− d
1 + r

)
Ef
(
w + (1− d)

[
z − F−1

(
f(z)

)])
, F (z)

}
. (2.2)

1Cafiero et. al (2011b, 2014) and Gouel and Legrand (2016) consider a marginal cost k of storing
xt units of discretionary stocks.
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Existence and uniqueness of the SREE, f(z), are given by the following Theorem:

Theorem 1. There is a unique stationary rational expectations equilibrium f in the

class of continuous non-negative, non-increasing functions. Furthermore, if p∗ ≡(
1−d
1+r

)
Ef(w), then:

f(z) = F (z), for z ≤ F−1(p∗),

f(z) > F (z), for z > F−1(p∗).

f is strictly decreasing whenever it is strictly positive. The equilibrium level of inven-

tories, x(z), is strictly increasing for z > F−1(p∗).2

Proof. Deaton and Laroque (1992), Theorem 1.

2Cafiero et. al (2011b, 2014) extend the theorem for a model with positive marginal cost, possibly
unbounded realized production and free disposal.
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Numerical method for compute the SREE

There are many numerical methods to solve the equilibrium price function.3 I esti-

mate the SRRE function f with a linear spline over a grid of 1,000 equally spaced

points. To take expectations with respect to the normal shock w, I substitute the inte-

gral adopting the same approximation presented in Deaton and Laroque (1995,1996)

and used in Michaelides and Ng (2000), with nodes ws and equiprobly weights πs.4.

This procedure allow us write (2.2) as:

f(z) = max

{(
1− d
1 + r

) 10∑
s=1

f
(
ws + (1− d)

[
z − F−1

(
f(z)

)])
πs, F (z)

}
. (2.3)

Theorem 1 of Deaton and Laroque (1992) studies the mapping operator T which for

some m ∈ N associates with a function fm the function fm+1, defined by:

fm+1(z) = max

{(
1− d
1 + r

) 10∑
s=1

fm
(
ws + (1− d)

[
z − F−1

(
fm+1(z)

)])
πs, F (z)

}
. (2.4)

and proof that such operator defines a contracting mapping, and given a choice of

some f0 the sequence converges to the SREE f .

In this paper, I use the endogenous grid method proposed by Carroll(2016) to

solve the equation (2.4). Gouel (2013a) shows that this method applied in the storage

model allows rapid solution compares with Deaton and Laraque (1992). Notice that

the function fm has a kink in its domain at z∗m+1 = F−1

((
1− d
1 + r

)∑10
s=1 fm(ws)πs

)
.

For a given iterate fm defines the storage function:

xm+1(z) = z − F−1(fm+1(z)) (2.5)
3See Gouel (2013)
4S = 10 nodes, ws = (±1.755±1.045±0.677±0.386±0.126) with probabilities πs = 0.1 each one.
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Then the equation (2.4) can be written as:

fm+1(z) = max

{(
1− d
1 + r

) 10∑
s=1

fm
(
ws + (1− d)

[
xm+1(z)]

)
πs, F (z)

}
. (2.6)

The storage function (2.5) implies that, fm+1 = F (z−xm+1(z)), replacing this expres-

sion in (6), I can applying F−1 and solving for all z > z∗m+1. Hence, the last equation

can be written as:

z = F−1

((
1− d
1 + r

) 10∑
s=1

fm
(
ws + (1− d)

[
xm+1(z)]

)
πs

)
+ xm+1(z) (2.7)

The first step of the algorithm is define a monotone grid of points for the state

variable ~Z0, and a monotone grid for the storage function, ~x which starts at zero.

Given F, r, d, fm and considering the approximation of w, I compute z∗m+1 and define

the grid ~Zm+1 = {z ∈ ~Z0 : z ≤ z∗m+1}. Replace the storage grid ~x in equation (7) and

compute a new grid for z > z∗m+1, ~zm+1 defined as:

~zm+1 = F−1

((
1− d
1 + r

) 10∑
s=1

fm
(
ws + (1− d)~x

)
πs

)
+ ~x (2.8)

construct fm+1 interpolating the domain points {~Zm+1 ∪ z∗m+1 ∪~zm+1} with their prices

co-domain {F (~Zm+1)∪F (z∗m+1)∪F (~zm+1−~x)}. Finally update fm by fm+1 and repeat

the steps until ‖fm+1(~Z0)− fm(~Z0)‖∞ < ε, where ‖ · ‖∞ is the supremum norm, and

ε > 0 is an error of bound to approximate f which is fixed arbitrary. The advantage

of this procedure is that the convergence is monotone and I do not need to solve a

non-linear equation.
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2.3 Montecarlo Analysis

Generation of Prices

I design a Montecarlo experiment based on Michaelides and Ng (2000). To generate

sequences of ”observed” prices under the storage model, I compute the equilibrium

price function setting the parameters θ0 = (a, b, d) and I simulate {wt}Tt=1 normal

variates fixing the seed and parameters µ and σ. Finally, I construct the sample {pt}

of size T . To generate the heuristic models, I use the following parameterizations:

[1] a = 0.6, b = −0.3, d = 0.10, µ = 0 and σ = 1 (Michaelides and Ng 2000)

[2] a = 1, b = −1, µ = 0 and σ = 1 (Gouel and Legrand 2017)

[3] a = 1, b = −2, µ = 0 and σ = 1 (Cafiero et. al 2015)

[4] a = 600, b = −5, µ = 100 and σ = 10 (Williams and Wright 1991)

Econometric Procedures

In this section, I present the econometrics methods in the context of the speculative

storage model under rational expectations. Deaton and Laroque (1995) presented

pioneer estimator of Pseudo Maximum Likelihood (PML). Michaelides and Ng(2000)

implemented three simulation estimators: The Indirect Inference Estimator (IND) of

Gourieroux et al. (1993), the Simulated Method of Moments Estimator (SMM) of

Duffie and Singleton (1993), and the Efficient Method of Moments Estimator (EMM)
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by Gallant and Tauchen (1996). Cafiero et. al (2014) proposed the Conditional

Maximum Likelihood Estimator (CML) with stock-outs based only in prices. Finally,

Gouel (2017) extend the CML to its unconditional counterpart (UML). With these

econometrics tools, I estimate a set of parameters θ̂ = {a, b, d} setting µ and σ.5, and

I analyze the performance of each estimator for different sample sizes.

The Simulation Estimators

This kind of estimators require generate ”simulated” prices. First, I simulate normal

variates {w̃t}Nt=1 with the same mean µ and standard deviation σ as in 3.1, but using

a different seed. I define N = TH, where H are paths, each of length T . Start at

the initial guess θ̃0, in each iteration solve the equilibrium price function and simulate

prices {p̃t} of size N . For all estimators, θ̂ is determined as: Argminθ ξ
′Ωξ. Bellow, I

present the three estimators which differ in the choice of ξ and the weighting matrix

Ω.

• SMM

ξ =

(
1

T

T∑
t=1

m(pt)−
1

TH

TH∑
t=1

m(p̃t)

)

Ω = I−1
0 = lim

T→∞
V ar

(
1√
T

T∑
t=1

m(pt)

)−1

5Deaton and Laroque (1996), Proposition 1, prove that the mean and variance of harvest cannot
be separately identified from the demand parameters
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• IND

ξ = β̂T (p[T ])− β̃TH(p̃[TH], θ)

Ω = J0I
−1
0 J0

I−1
0 = lim

T→∞
V ar

(
1√
T

T∑
t=1

∂m(pt, β)

∂β

)−1

J0 = − 1

T

T∑
t=1

∂2m(pt, β)

∂β∂β′

• EMM

ξ = Ep

[
∂m(p[∞], β)

∂β′

]
β=β̂

≈ 1

N

N∑
n=1

∂m(p̃n, β̂)

∂β′

Ω = I−1
0 = V ar

(
1√
T

T∑
t=1

∂m(pt, β)

∂β

)−1

I use the moments conditions m1 and m2 for SMM. The main difference is that

m1 do not explicitly recognize the non-linear nature of the price process while m2

incorporate more relevant information by taking account the skewness and kurtosis.

In case of IND, I consider two auxiliary equations: M1 and M2. In this case, M2

recognize the non-linearity in the conditional mean. Finally for EMM, I use four spec-

ifications: M1, M2, M3 and M4 to estimate the simulated model: The third auxiliary

model M3, allows for a time-conditional heteroskedasticity variance , but does not

capture the two regime nature of the prices process as M4.

m1 : m(pt) = [pt, (pt − p̄)2, (pt − p̄)(pt−j − p̄)]
′
, j = 1, 2, 3

m2 : m(pt) = [pt, (pt − p̄)i, (pt − p̄)(pt−1 − p̄)]
′
, i = 2, 3, 4
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M1 : m(pt, β) = −(T−3) log(2π)−T − 3

2
log(σ2)−

T∑
t=4

(pt − β0 − β1pt−1 − β2pt−2 − β3pt−3)2

2σ2

M2 : m(pt, β) = −(T−1) log(2π)−T − 1

2
log(σ2)−

T∑
t=2

(pt − β0 − β1pt−1 − β2p
2
t−1 − β3p

2
t−1)2

2σ2

M3 : m(pt, β) = −(T − 1) log(2π) +
T∑
τ=2

(
−0.5ht − 0.5

e2
t

exp(ht)

)
et = pt − β0 − β1pt−1 − β2p

2
t−1

log σ2
t = ht = α0 + α1p

2
t−1

M4 : m(pt, β) = −(T − 1) log(2π) +
T∑
t=2

(
−0.5ht − 0.5

e2
t

exp(ht)

)
pt = α1p

∗ − α1p
∗ − α1pt−1

Mt

+ et

log σ2
t = ht = α0 +

β0 − α0 + β1p
2
t−1

Mt

Mt= 1 + exp (γ(pt−1 − p∗)) ,with γ fixed at 10/standard deviation of prices.

For SMM and EMM the optimal weighting matrix is given by Ω = I−1
0 . The long-

run covariance matrix is estimated using the Newey-West approximation (Newey

and West 1987), a heteroskedasticity and autocorrelation consistent procedure, with

appropriate weights. That is: I−1
0 = Γ0 +

∑J
j=1 λj(Γj + Γ

′
j) where Γj is the j-th

order estimated autocovariance matrix Γj =
1

T

∑T
t=j+1mtm

′
t−j, J is referred to as the

bandwitdth and the λj are weights. The specification for the weighting function is the

Parzen’s window:

λj =


1− 6x2 + 6|x|3, if 0 ≤ |x| ≤ 0.5

2(1− |x|)3, if 0.5 ≤ |x| ≤ 1
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where x = 1 − j/(J + 1). Consider the last specification, the optimal weighting for

IND is given by:

Ω =

[
1

T

T∑
t=1

∂2m(pt, β)

∂β∂β′

]′ [
Γ0 +

J∑
j=1

λj(Γj + Γ
′

j)

][
1

T

T∑
t=1

∂2m(pt, β)

∂β∂β′

]

PML

The log-pseudo likelihood function is formed as follows:

logL = 0.5

(
−(T − 1) log(2π)−

T−1∑
t=1

log s(pt)−
T−1∑
t=1

(pt+1 −m(pt))
2

s(pt)

)

we calculate the first two moments of pt+1 conditional on pt using the approximate

SREE price function f in (3):

m(pt) =
S∑
s=1

f
(
wst+1 + (1− d)(f−1(pt|θ)− F−1(pt|a, b))

)
(πst+1)

s(pt) =
S∑
s=1

f
(
wnt+1 + (1− d)(f−1(pt|θ)− F−1(pt|a, b))

)2
(πst+1)−m2(pt|θ)

CML

Given the SREE function f in (3), for positive prices the model implicitly defines a

mapping from harvests wt+1 to prices pt+1, conditional on the previous price pt: The

likelihood function is:

L(θ|p1, ..., pT ) =
T∏
t=1

lθ(pt+1|pt) =
T∏
t=1

φ(wt+1)

Φ(w)− Φ(w)
|Jt+1|

where Jt+1 =
df−1

dpt+1

(pt+1) is the Jacobian of the mapping pt+1 7→ wt+1. The conditional

log-likelihood function is:
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logL(θ|p1, ..., pT ) = −T
2

log(2π)− T log[Φ(w)− Φ(w)] +
∑T

t=1 log |Jt+1| −

1

2

∑T
t=1[f−1(pt+1|θ)− (1− d){f−1(pt|θ) + F−1(pt|a, b)}]2

where:

J(pt) =


dF−1

dpt
(pt) , if pt ≥ p∗

df−1

dpt
(pt) , if pt < p∗

UML

The purpose is to extend the CML using the information from the first price by ac-

counting for the marginal density lθ(p1).

L(θ|p1, ..., pT ) = lθ(p1)
T∏
t=1

lθ(pt+1|pt)

where lθ(p1) ≈ 1

M

∑M
m=1 lθ(p1|pm0 ) is the Montercalo integration by simulating the

model on the invariant distribution. Follow Gouel and Legrand (2007) I draw a 10,000

trajectories from the steady state for 100 periods, generating a sample of 1,000,000

prices. The shocks that generate the price simulations are drawn at the beginning

of the estimation procedure and remain fixed throughout. The unconditional log-

likelihood function is:

logL(θ|p1, ..., pT ) = lθ(p1) − T

2
log(2π) − T log[Φ(w) − Φ(w)] +

∑T
t=1 log |Jt+1| −

1

2

∑T
t=1[f−1(pt+1|θ)− (1− d){f−1(pt|θ) + F−1(pt|a, b)}]2



CHAPTER 2. FINITE SAMPLE PROPERTIES OF ESTIMATORS OF A
COMMODITY STORAGE MODEL: A MONTE CARLO STUDY 44

2.4 Results

To study the finite sample performance of the different econometric estimators, I

conduct four Monte Carlo experiments using the parameterizations presented in the

previous chapter for different sample sizes: T = 100, 200, 500, 1000, 5000, 10000.

The size of simulated data to estimate Simulation Methods varies for each auxiliary

model and ranges from: N = 500, 1000, 2000, 2500, 10000, 20000. The number of

simulations for each experiment is 500. Results for econometrics methods of each

experiment are reported in Appendix A, where the Mean and the Root Mean Square

Error (RMSE) of the parameters distribution are relevant to assess their performance.

Tables 1 to 9 present the Monte Carlo experiment results; whose parameteri-

zation (3.1[1]) implies low average storage and frequent stockouts. Results of the

Simulation Methods estimators are similar to those obtained by Michaelides and Ng

(2000) for samples T = 100, 200 that conclude that PML is more efficient in terms of

RMSE for all estimated parameters. Yet Table 9 shows that CML and UML estimators

yield to precise and more efficient estimates of the parameters of the model, same

conclusion presented by Cafiero et al. (2015). By increasing the sample size, Simu-

lation estimators tend to significantly reduce the bias and the RMSE, converging to

the true parameters of the heuristic model. According to Michaelides and Ng (2000,

p.251),“increasing the length of the observed data has a stronger influence on the

estimates than increasing the length of the simulated series”. My results prove such

statement for all Simulation Models as well as for CML and UML. However, biases
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for PML estimates do not disappear but tend to stabilize as sample size increase

close to the heuristic model values. For both CML and UML, the RMSE for each

estimated parameter is substantially lower than the corresponding value obtained by

the other methods. They do not have a significant difference and their estimates tend

to converge when the sample size increases to T = 10000, with a RMSE of 0.0014

for parameter a, 0.0018 for b and 0.001 for d.

Next, I assessed a Monte Carlo simulation model where demand functions are

steeper thus storage plays a greater role and is more frequent. Tables 10 to 18

present the results of the second parameterization (3.1[2]). Results show that small

samples bias increases for the Simulation estimators. In particular SMM, IND (M1),

EMM (M1), and EMM (M2) tend to underestimate parameters a and b. I observe

that IND (M2) underestimate a and over-estimates b while EMM (M3) and EMM

(M4), over-estimates a and underestimate b. As the sample size increases, the bias

is reduced and for a sample size T = 10000 the average RMSE for all estimates

converge to 0.01 for a and 0.03 for b. For small sample, the performance of PML

estimator underestimates a and over-estimates b. In general terms, both parameter

estimates are more efficient than the Simulation estimators. Yet, as sample size

increases parameter a tend to stabilize at 0.94. I observe that although bias might

be small compared to CML and UML methods for a sample T = 10000, estimators

have substantially better precision where the bias and the RSME converge to almost

zero.

Tables 19 to 27 show the Monte Carlo results whose parameterization (3.1[3])
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increases the slope of the previous case, implying greater storage. I note that small

sample performance for all Simulation estimators underestimate a and b. The bias in

b in terms of magnitude is greater than that presented in the previous simulation. By

increasing the slope, the RMSE present higher values that decrease as the sample

size increases. When I compare to the PML method, the small samples estimators

are more efficient than the Simulation estimators for both parameters. However, as

sample size increases, the estimators tend to underestimate a and b, whose mean

rises to 0.9085 for a and -1.9073 for b. Current estimation presents a greater bias and

RMSE compared to both CML and UML which are more efficient than all previous

methods studied.

The result of the last Monte Carlo (3.1[4]) are present in tables 28-36. They are

similar to those obtained in the previous experiments: when sample size increases

Simulation estimators tend to converge to the true values of the heuristic model. PML

keeps a bias as sample size increases. The estimates of CML and UML perform

better in terms of efficiency for all models.

The Monte Carlo experiments suggest that CML and UML tend to converge to the

true values of each heuristic model, which is related with the consistency property of

these estimators. In the next section I prove that the CML estimator in the context of

storage model is consistent.
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2.5 Consistency of Maximum Likelihood Estimator

Assumptions:

1. Linear inverse consumption demand F (ct) = a + bct, where a > 0, and b < 0

are real constants. The deterioration rate of stocks is d, 0 ≤ d ≤ 1.

2. The interest rate r, r > 0, is fixed.

3. The shocks are given for an i.i.d. sequence of random variables {wt}t∈N, with

a Normal N(0, 1) truncated distribution. The support of wt is [w,w], where

−∞ < w < w < +∞.

4. The SREE is a function which describes price as a function of the current avail-

ability, and satisfies for all zt ∈ Z,

pt = f(zt) = max

{(
1− d
1 + r

)
Etf

(
wt+1 + (1− d)

[
zt − F−1

(
f(zt)

)])
, F (zt)

}
.

Conclusions, Results:

1. The model implicitly defines a mapping from the harvests wt+1 to prices pt+1,

conditional on the previous price pt.

pt+1 = f [wt+1 + (1− d)
{
f−1(pt)− F−1(pt)}]

For a vector parameter θ = (a, b, d), the conditional density lθ(pt+1|pt) is equal

to:

lθ(pt+1|pt) =
φ(w

(θ)
t+1)

Φ(w)− Φ(w)

∣∣∣∣ df−1
θ

dpt+1

(pt+1)

∣∣∣∣ ,



CHAPTER 2. FINITE SAMPLE PROPERTIES OF ESTIMATORS OF A
COMMODITY STORAGE MODEL: A MONTE CARLO STUDY 48

where Φ and φ are the accumulated and density functions corresponding to

the normal N(0, 1), and w
(θ)
t+1 ≡ f−1

θ (pt+1)− (1− d){f−1
θ (pt)− F−1

θ (pt)}.

For a sample of prices, the likelihood function is:

L(θ|p1, ..., pT ) =
T∏
t=1

lθ(pt+1|pt) =
T∏
t=1

φ(w
(θ)
t+1)

Φ(w)− Φ(w)
|J (θ)
t+1|

where J (θ)
t+1 =

df−1
θ

dpt+1

(pt+1) is the Jacobian of the mapping pt+1 7→ w
(θ)
t+1.

2. The log-likelihood function is:

logL(θ|p1, ..., pT ) = −T
2

log(2π)− T log[Φ(w)− Φ(w)] +
∑T

t=1 log |J (θ)
t+1| −

1

2

∑T
t=1[f−1

θ (pt+1)− (1− d){f−1
θ (pt)− F−1

θ (pt)}]2

where:

J
(θ)
t+1 =


dF−1

θ

dpt+1

(pt+1) , if pt+1 > p∗

df−1
θ

dpt+1

(pt+1) , if pt+1 < p∗

3. Let {pt}t∈N be the storage price process. Let lθ(pt+1|pt) be the conditional

density.

Claim: lθ(pt+1|pt) is continuous in θ, for all (pt, pt+1).

Proof of Claim:

lθ(pt+1|pt) =
e−

[f−1
θ

(pt+1)−(1−d){f−1
θ

(pt)−F
−1
θ

(pt)}]
2

2

√
2π (Φ(w)− Φ(w))

∣∣∣∣ df−1
θ

dpt+1

(pt+1)

∣∣∣∣
For any given pt+1, f

−1
θ (pt+1) depends continuously on θ. Indeed, if g = g(z, θ)

is continuous, then
{

1− d
1 + r

}
Eg
(
wt+1 + (1− d)(z − F−1

θ (q)), θ
)

is continuous

(see Lemma 1 in Deaton and Laroque, 1992). The Jacobian of the price func-
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tion,
df−1
θ

dpt+1

(pt+1), exists almost everywhere. At p∗, we consider a small smooth

perturbation of fθ (see for example Bertsekas, 1975). Q.E.D.

4. Theorem 1:

(i) The random vector process {(wt+1, pt)}t∈N is ergodic, that is, it has a unique

invariant vector distribution π∞, which is a global attractor.

(ii) The vector process {(pt+1, pt)}t∈N satisfies the Strong Law of Large Num-

bers. That is, for any given Borel measurable function ϕ : A ⊆ R2 → R with fi-

nite limit expectation,
1

T

∑T
t=1 ϕ(pt+1, pt)→ Eπ∞ Ψ(wt+1, pt), where Ψ(wt+1, pt) ≡

ϕ(f [wt+1 + (1− d)
{
f−1(pt)− F−1(pt)}], pt).

Proof of Theorem 1:

(i) Since wt+1 is independent of pt, the distribution of the random vector (wt+1, pt)

can be expressed as :

Prob {(wt+1, pt) ∈]−∞, α]×]−∞, β]} = Prob[wt+1 ≤ α] · Prob[pt ≤ β].

The first factor, Prob[wt+1 ≤ α] does not depend on t, and the second factor

Prob[pt ≤ β] converges to a unique invariant distribution, by the ergodicity of

prices {pt}t∈N.

(ii) Since Ψ(wt+1, pt) ≡ ϕ(f [wt+1 +(1−d)
{
f−1(pt)−F−1(pt)}], pt) is measurable

with finite expectation with respect to π∞, by Breiman (1960) the result follows

(see Theorem 17.1.7 in Meyn and Tweedie, 1993). Q.E.D.

5. Let {pt}t∈N be the price process of the commodity storage model.
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Claim: There exists a finite constantK such that Uθ({pt+1, pt}) ≡ log lθ(pt+1|pt)−

log lθ0(pt+1|pt) satisfies |Uθ({pt+1, pt})| ≤ K for all θ and almost surely in {pt, pt+1}.

By Theorem 1 (see 4.), this fact implies that the sequence {Uθ({pt+1, pt})}t∈N

satisfies the law of large numbers.

Proof of Claim: Uθ({pt+1, pt}) =

= log

(
exp
−(w

(θ)
t+1))2

2
|J (θ)
t+1|

)
− log

(
exp
−(w

(θ0)
t+1 )2

2
|J (θ0)
t+1 |

)

=
−(w

(θ)
t+1)2

2
+ log |J (θ)

t+1|+
(w

(θ0)
t+1 )2

2
− log |J (θ0)

t+1 |

=
1

2

[
(w

(θ0)
t+1 )2 − (w

(θ)
t+1)2

]
+ log

[
|J (θ)
t+1|
|J (θ0)
t+1 |

]

Therefore:

|Uθ({pt+1, pt})| ≤ max{w2, w2} +

∣∣∣∣∣log

[
|J (θ)
t+1|
|J (θ0)
t+1 |

]∣∣∣∣∣ .
The absolute value of Jacobian, |J (θ)

t+1|, is bounded from below by the positive

number −1/b, and it is bounded from above by a finite bound obtained from

the deterministic model with wt ≡ w (see Theorem 1.1 (i) in Schechtman and

Escudero, 1977). The analytical expression for such deterministic model is

presented for example in Bobenrieth, Bobenrieth and Wright (2012, pp. 4-5).

Taking a bounded and closed parameter space (that is a compact parameter

space), Θ ≡ [a, a] × [b, b] × [0, 1] 3 θ0 = (a0, b0, d0), where 0 < a < a < ∞,

−∞ < b < b < 0, we get a finite upper bound for |J (θ)
t+1|, for all θ ∈ Θ. Hence,

|Uθ({pt+1, pt})| ≤ K < +∞, ∀ θ ∈ Θ, where K is a real constant. Q.E.D.
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6. Claim: For all θ ∈ Θ and sufficiently small ξ > 0, sup
||θ′−θ||<ξ

lθ′ (pt+1|pt) is Borel-

measurable in {pt, pt+1}.

Proof of Claim: lθ′ (pt+1|pt) is Borel-measurable in {pt, pt+1}, and it is continu-

ous in θ, this condition is satisfied because sup
||θ′−θ||<ξ

lθ′ (pt+1|pt) = sup
θ′n∈D

lθ′n(pt+1|pt)

for any denumerable set D, dense in the ball B(θ, ξ) ≡ {θ′ : ||θ′ − θ|| < ξ}

Q.E.D.

7. Claim:(Identifiability)

θ 6= θ0 ⇒ lθ(pt+1|pt) 6= lθ0(pt+1|pt) with positive probability in (pt, pt+1), for

t large enough.

Proof of Claim: I consider two cases:

First case: Let θ = (a, b, d) and θ0 = (a0, b0, d0) with d 6= d0. By the continuity of

fθ and Fθ in θ, and the compactness of Θ, there exists a set A of prices, a

set of positive probability, such that:

xθ(pt) ≡ (f−1
θ (pt)− F−1

θ (pt)) > 0, ∀ pt ∈ A, and ∀ θ ∈ Θ.

For prices pt ∈ A, the Euler condition is satisfied with equality, and therefore:{
1 + r

1− d

}
pt = Et(p

(θ)
t+1) 6=

{
1 + r

1− d0

}
pt = Et(p

(θ0)
t+1), ∀ pt ∈ A implying that:

lθ(pt+1|pt) 6= lθ0(pt+1|pt), with positive probability.

Second case: Let θ = (a, b, d) and θ0 = (a0, b0, d0) with d = d0, and therefore

(a, b) 6= (a0, b0).



CHAPTER 2. FINITE SAMPLE PROPERTIES OF ESTIMATORS OF A
COMMODITY STORAGE MODEL: A MONTE CARLO STUDY 52

By the continuity of fθ and Fθ in θ, and the compactness of Θ, there is a set

B of prices, a set of positive probability, such that:

xθ(p) ≡ (f−1
θ (p)− F−1

θ (p)) = 0, ∀ p ∈ B, and ∀ θ ∈ Θ.

Consider the joint probability:

Prob[pt+1 ∈ B, pt ∈ B] = Prob[pt+1 ∈ B | pt ∈ B] · Prob[pt ∈ B]

= Prob[Fθ0(wt+1) ∈ B] · Prob[pt ∈ B] = Prob[wt+1 ∈ F−1
θ0

(B)] · µt,θ0(B)

Therefore, for t large enough, the joint probability that pt, and pt+1 are in the

stock-out region of prices B, is bounded by below by a strictly positive constant,

for all θ ∈ Θ. However, note that the conditional densities for prices pt, and pt+1

in B, satisfies:

lθ(pt+1|pt) = lθ0(pt+1|pt) =⇒

1

b
exp
−
(a
b
− pt+1

b

)2

2
=

1

b0

exp

−
(
a0

b0

− pt+1

b0

)2

2
=⇒

(
1

b2
− 1

b2
0

)
p2
t+1 − 2

(
a

b2
− a0

b2
0

)
pt+1 +

[(
a2

b2
− a2

0

b2
0

)
− 2 log

(
b0

b

)]
= 0

The quadratic equation indicates that pt+1 takes at most two values. The con-

tinuity of the distribution of the shocks, and continuity of the price function,

implies that this is a zero probability event. Q.E.D.
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8. Theorem 2: Consider the model satisfying Assumptions 1,2,3. Then the ML

estimator θ̂T ≡ argmaxθ∈Θ

T∑
t=1

log [lθ(pt+1|pt)] is strongly consistent, that is

limT→∞θ̂T = θ0, almost surely.

Proof of Theorem 2: The idea of this proof is based on Wald (1949). Notwith-

standing that there are proofs of consistency of maximum likelihood for generic

cases, to the best of myr knowledge there is no proof for the case of the storage

model considered here.

Uθ({pt+1, pt}) ≡ log

[
lθ(pt+1|pt)
lθ0(pt+1|pt)

]
It is clear that θ̂T = argmaxθ∈Θ

T∑
t=1

Uθ({pt+1, pt}).

Since:

• lθ(pt+1|pt) is continuous in θ,

• The vector process {(pt+1, pt)}t∈N satisfies the Strong Law of Large Num-

bers (Theorem 1).

• There exists a finite constant K ∈ R, such that |Uθ({pt+1, pt})| ≤ K <

+∞, ∀ θ ∈ Θ, almost surely in {pt+1, pt}, and

• The parameter vector θ is identified at θ0(identifiability),

Then, for any given δ > 0, and for the complement of a δ−neighborhood of θ0,

S ≡ {θ ∈ Θ : ||θ − θ0|| ≥ δ}, we have that, with probability one:

Claim:

limsupT→∞

{
sup
θ∈S

1

T

T∑
t=1

Uθ({pt+1, pt})

}
≤ sup

θ∈S
Eπ∞,θ0 {Uθ({pt+1, pt})}
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Proof of Claim: Indeed, if we define for each ξ > 0 :

ϕ({pt+1, pt}, θ, ξ) ≡ sup
||θ′−θ||<ξ

Uθ′({pt+1, pt}),

then ϕ is measurable in {pt+1, pt}(by the measurability of lθ(pt+1|pt) in {pt+1, pt}

and by the continuity of lθ(pt+1|pt) in θ.) Furthermore, |ϕ({pt+1, pt}, θ, ξ)| ≤

K < +∞, ∀ θ ∈ Θ, ∀ ξ > 0, almost surely in {pt+1, pt}, and, by the continuity

in θ :

ϕ({pt+1, pt}, θ, ξ) ↓ Uθ({pt+1, pt}), as ξ ↓ 0.

Hence, by the Dominated Convergence Theorem:

limξ↓0Eπ∞,θ0 [ϕ({pt+1, pt}, θ, ξ)] = Eπ∞,θ0 [Uθ({pt+1, pt})] (∗)

Let ε > 0 be any small positive number, fixed. By (∗) for each θ ∈ S, there is

ξθ > 0, such that:

Eπ∞,θ0

[
ϕ({pt+1, pt}, θ, ξθ)

]
< Eπ∞,θ0

[
Uθ({pt+1, pt})

]
+ ε.

The balls {B(θ, ξθ) : θ ∈ S} cover the compact S, and therefore there is a

finite subcover, that is : S ⊆
⋃m
j=1B(θj, ξθj). For each T ∈ N, by definition of

ϕ,

sup
θ∈S

1

T

T∑
t=1

Uθ({pt+1, pt}) ≤ sup
1≤j≤m

1

T

T∑
t=1

ϕ({pt+1, pt}, θj, ξθj)

Furthermore, by the strong law of large numbers, for each j ∈ {1, · · · ,m}, with

probability one:

limT→∞
1

T

T∑
t=1

ϕ({pt+1, pt}, θj, ξθj) = Eπ∞,θ0

[
ϕ({pt+1, pt}, θj, ξθj)

]
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Hence, with probability one:

limT→∞
1

T

T∑
t=1

ϕ({pt+1, pt}, θj, ξθj) ≤ Eπ∞,θ0

[
Uθj({pt+1, pt})

]
+ε, for j = 1, · · · ,m.

Therefore, with probability one:

limsupT→∞

{
sup

1≤j≤m

1

T

T∑
t=1

ϕ({pt+1, pt}, θj, ξθj)

}
≤ sup

1≤j≤m
Eπ∞,θ0

[
Uθj({pt+1, pt})

]
+ε

Noting that ε > 0 is arbitrary, we conclude, with probability one,

limsupT→∞

{
sup
θ∈S

1

T

T∑
t=1

Uθ({pt+1, pt})

}
≤ sup

θ∈S
Eπ∞,θ0 {Uθ({pt+1, pt})} ,

showing the Claim in this way.

Now, the identifiability of θ0 implies that for each θ ∈ S :

Eπ∞,θ0 {Uθ({pt+1, pt})} = Eπ∞,θ0

{
log

[
lθ(pt+1|pt)
lθ0(pt+1|pt)

]}
< logEπ∞,θ0

[
lθ(pt+1|pt)
lθ0(pt+1|pt)

]
,

where in the last strict inequality we are using the strict concavity of log and

Claim 7 (identifiability). Furthermore, the last expectation satisfies:

Eπ∞,θ0

[
lθ(pt+1|pt)
lθ0(pt+1|pt)

]
=

∫
lθ(pt+1|pt)
lθ0(pt+1|pt)

lθ0(pt+1|pt) dπ∞,θ0(wt+1, pt) ≤ 1,

concluding that for each θ ∈ S : Eπ∞,θ0 {Uθ({pt+1, pt})} < 0.

By the continuity in θ of Eπ∞,θ0 {Uθ({pt+1, pt})} , and the compactness of S,

we have:

sup
θ∈S

Eπ∞,θ0 {Uθ({pt+1, pt})} < 0.
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Therefore, with probability one,

limsupT→∞

{
sup
θ∈S

1

T

T∑
t=1

Uθ({pt+1, pt})

}
< 0,

and then, with probability one, there exists T1 ∈ N, such that:

sup
θ∈S

1

T

T∑
t=1

Uθ({pt+1, pt}) < 0, ∀ T ≥ T1.

Finally, since :

θ̂T ≡ argmaxθ∈Θ

1

T

T∑
t=1

Uθ({pt+1, pt}) ≥
1

T

T∑
t=1

Uθ0({pt+1, pt}) = 0,

I conclude that θ̂T does not belong to S, concluding that:

||θ̂T − θ0|| < δ, ∀ T ≥ T1. Q.E.D.
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2.6 Conclusions

In this chapter I conduct Monte Carlo experiments with different parameterizations

to compare finite sample performance of the Simulation and Likelihood estimators.

The results suggest that for parameterizations that imply low average storage and

frequent stockouts, the PML estimator for small sample presents low bias and is

more efficient than Simulations estimators. However, for parameterizations that im-

ply a more significant role of storage, the Simulations estimators present bias that

decrease with sample size increase, while the PML estimator biases do not disap-

pear but instead tend to stabilize. I prove theoretically and numerically that Maximum

Likelihood estimator is consistent and achieves better finite sample performance than

the others.
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[49] Meyn, S. P., and R.L. Tweedie (1993): Markov Chains and Stochastic Stability.

Springer. London.



BIBLIOGRAPHY 65

[50] Romano G, Guerrini A (2011): “Measuring and comparing the efficiency of wa-

ter utility companies: a data envelopment analysis approach,” Utilities Policy, 19,

202-209.

[51] Saal DS, Parker D, Weyman-Jones T (2007): “Determining the contribution of

technical change, efficiency change and scale change to productivity growth in

the privatized English and welsh water and sewerage industry: 1985-2000,” Jour-

nal of Productivity Analysis, 28, 127-139.

[52] Santos P, Amado C, Coelho ST, Leitão JP (2017): “Stochastic data mining tools

for pipe blockage failure prediction” Urban Water Journal, 14, 343-353.

[53] Scheinkman, J.A., and V. L. Escudero (1977): “Some Results on “An Income

Fluctuation Problem”,” Journal of Economic Theory, 16, 151-166.

[54] Scheinkman, J. A., and J. Schechtman (1983): “A simple competitive model

with production and storage,” Review of Economic Studies, 50, 427?441

See KF (2015): “Exploring and analysing sources of technical efficiency in wa-

ter supply services: some evidence from southeast Asian public water utilities,”

Water Resources and Economics, 9, 23-44.

[55] Simar L, Wilson PW (2007): “Estimation and inference in two-stage, semipara-

metric models of production processes”. Journal of Econometrics, 136, 31-64.

[56] SISS (2014): “Report about water and sewerage services in Chile 2014”.



BIBLIOGRAPHY 66

[57] SISS. (2015b): “VI Proceso de FijaciÃ3nTarifariaPerÃ-
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Table A.1: Results for SMM (a = 0.6 b = −0.3 d = 0.10)

Model T N = TH Statistics a b d

m1 100 500
Mean 0.5464 -0.2820 0.1106

Median 0.5570 -0.2754 0.0921
Std 0.0522 0.0637 0.0732

RMSE 0.0748 0.0661 0.0739

m1 100 1000
Mean 0.5490 -0.2792 0.1101

Median 0.5539 -0.2745 0.0889
Std 0.0495 0.0610 0.0703

RMSE 0.0711 0.0644 0.0709

m1 100 2500
Mean 0.5508 -0.2772 0.1110

Median 0.5564 -0.2730 0.0951
Std 0.0487 0.0571 0.0658

RMSE 0.0692 0.0614 0.0666

m1 200 500
Mean 0.5683 -0.2906 0.1069

Median 0.5728 -0.2856 0.0989
Std 0.0363 0.0528 0.0552

RMSE 0.0482 0.0536 0.0556

m1 200 1000
Mean 0.5726 -0.2881 0.1067

Median 0.5770 -0.2828 0.0992
Std 0.0329 0.0485 0.0505

RMSE 0.0427 0.0499 0.0509

m1 200 2500
Mean 0.5753 -0.2862 0.1083

Median 0.5793 -0.2811 0.1032
Std 0.0317 0.0449 0.0474

RMSE 0.0401 0.0470 0.0481

m1 500 1000
Mean 0.5866 -0.2961 0.1023

Median 0.5884 -0.2927 0.0990
Std 0.0208 0.0340 0.0348

RMSE 0.0247 0.0342 0.0348

m1 1000 2000
Mean 0.5938 -0.2977 0.1014

Median 0.5950 -0.2962 0.1008
Std 0.0127 0.0223 0.0233

RMSE 0.0141 0.0224 0.0233

m1 5000 10000
Mean 0.5986 -0.2995 0.1002

Median 0.5986 -0.2990 0.0994
Std 0.0049 0.0107 0.0113

RMSE 0.0051 0.0107 0.0113

m1 10000 20000
Mean 0.5993 -0.3001 0.1000

Median 0.5993 -0.3003 0.1001
Std 0.0034 0.0072 0.0077

RMSE 0.0034 0.0072 0.0077
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Table A.2: Continued (a = 0.6 b = −0.3 d = 0.10)

Model T N = TH Statistics a b d

m2 100 500
Mean 0.5693 -0.2713 0.1234

Median 0.5666 -0.2694 0.1185
Std 0.0564 0.0541 0.0477

RMSE 0.0641 0.0611 0.0531

m2 100 1000
Mean 0.5678 -0.2699 0.1221

Median 0.5664 -0.2668 0.1180
Std 0.0545 0.0540 0.0455

RMSE 0.0632 0.0617 0.0506

m2 100 2500
Mean 0.5691 -0.2684 0.1231

Median 0.5658 -0.2648 0.1182
Std 0.0520 0.0512 0.0451

RMSE 0.0605 0.0601 0.0506

m2 200 500
Mean 0.5810 -0.2843 0.1128

Median 0.5839 -0.2806 0.1091
Std 0.0468 0.0438 0.0356

RMSE 0.0504 0.0465 0.0378

m2 200 1000
Mean 0.5807 -0.2821 0.1116

Median 0.5808 -0.2781 0.1091
Std 0.0433 0.0399 0.0328

RMSE 0.0473 0.0437 0.0347

m2 200 2500
Mean 0.5824 -0.2815 0.1115

Median 0.5799 -0.2786 0.1101
Std 0.0401 0.0368 0.0300

RMSE 0.0438 0.0411 0.0320

m2 500 1000
Mean 0.5905 -0.2925 0.1050

Median 0.5911 -0.2897 0.1044
Std 0.0318 0.0289 0.0229

RMSE 0.0332 0.0298 0.0234

m2 1000 2000
Mean 0.5956 -0.2957 0.1027

Median 0.5974 -0.2955 0.1024
Std 0.0209 0.0197 0.0152

RMSE 0.0214 0.0202 0.0154

m2 5000 10000
Mean 0.5985 -0.2986 0.1009

Median 0.5990 -0.2985 0.1010
Std 0.0092 0.0090 0.0070

RMSE 0.0093 0.0091 0.0070

m2 10000 20000
Mean 0.5992 -0.2996 0.1004

Median 0.5997 -0.2996 0.1003
Std 0.0066 0.0062 0.0049

RMSE 0.0067 0.0062 0.0049
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Table A.3: Results for IND (a = 0.6 b = −0.3 d = 0.10)

Model T N = TH Statistics a b d

M1 100 500
Mean 0.5972 -0.2880 0.1240

Median 0.5976 -0.2788 0.1070
Std 0.0329 0.0646 0.0785

RMSE 0.0330 0.0657 0.0820

M1 100 1000
Mean 0.5969 -0.2863 0.1186

Median 0.5962 -0.2783 0.1011
Std 0.0312 0.0614 0.0702

RMSE 0.0313 0.0629 0.0726

M1 100 2500
Mean 0.5974 -0.2838 0.1206

Median 0.5983 -0.2786 0.1044
Std 0.0305 0.0586 0.0693

RMSE 0.0306 0.0607 0.0723

M1 200 500
Mean 0.5991 -0.2961 0.1157

Median 0.5985 -0.2902 0.1070
Std 0.0228 0.0534 0.0608

RMSE 0.0228 0.0535 0.0627

M1 200 1000
Mean 0.5989 -0.2923 0.1130

Median 0.5990 -0.2868 0.1063
Std 0.0208 0.0485 0.0525

RMSE 0.0208 0.0491 0.0540

M1 200 2500
Mean 0.5995 -0.2902 0.1132

Median 0.5990 -0.2840 0.1080
Std 0.0200 0.0455 0.0481

RMSE 0.0200 0.0465 0.0499

M1 500 1000
Mean 0.5996 -0.2983 0.1059

Median 0.5997 -0.2950 0.1014
Std 0.0152 0.0342 0.0352

RMSE 0.0152 0.0342 0.0356

M1 1000 2000
Mean 0.6003 -0.2988 0.1034

Median 0.6004 -0.2968 0.1019
Std 0.0100 0.0224 0.0235

RMSE 0.0100 0.0224 0.0237

M1 5000 10000
Mean 0.6000 -0.2998 0.1006

Median 0.6002 -0.2993 0.0997
Std 0.0046 0.0107 0.0113

RMSE 0.0046 0.0107 0.0113

M1 10000 20000
Mean 0.5999 -0.3003 0.1001

Median 0.5998 -0.3004 0.1001
Std 0.0033 0.0072 0.0077

RMSE 0.0033 0.0072 0.0077
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Table A.4: Continued (a = 0.6 b = −0.3 d = 0.10)

Model T N = TH Statistics a b d

M2 100 500
Mean 0.5820 -0.3067 0.0975

Median 0.5893 -0.2934 0.0979
Std 0.0583 0.0876 0.0435

RMSE 0.0610 0.0877 0.0436

M2 100 1000
Mean 0.5785 -0.3073 0.0976

Median 0.5925 -0.2900 0.0948
Std 0.0818 0.1319 0.0450

RMSE 0.0845 0.1320 0.0450

M2 100 2500
Mean 0.5807 -0.2977 0.0986

Median 0.5912 -0.2851 0.0971
Std 0.0609 0.0871 0.0432

RMSE 0.0638 0.0870 0.0432

M2 200 500
Mean 0.5888 -0.3114 0.0963

Median 0.5958 -0.2969 0.0944
Std 0.0562 0.0764 0.0333

RMSE 0.0572 0.0771 0.0334

M2 200 1000
Mean 0.5912 -0.3030 0.0966

Median 0.5965 -0.2949 0.0954
Std 0.0395 0.0609 0.0316

RMSE 0.0404 0.0609 0.0317

M2 200 2500
Mean 0.5922 -0.2982 0.0983

Median 0.5968 -0.2928 0.0978
Std 0.0368 0.0525 0.0319

RMSE 0.0376 0.0525 0.0319

M2 500 1000
Mean 0.5960 -0.3058 0.0973

Median 0.5975 -0.3023 0.0967
Std 0.0226 0.0371 0.0209

RMSE 0.0229 0.0375 0.0210

M2 1000 2000
Mean 0.5986 -0.3034 0.0990

Median 0.5992 -0.3005 0.0986
Std 0.0132 0.0226 0.0134

RMSE 0.0133 0.0228 0.0134

M2 5000 10000
Mean 0.6000 -0.3000 0.1002

Median 0.5998 -0.2994 0.1003
Std 0.0053 0.0081 0.0059

RMSE 0.0053 0.0081 0.0059

M2 10000 20000
Mean 0.5999 -0.3003 0.0998

Median 0.5998 -0.3006 0.1000
Std 0.0038 0.0052 0.0043

RMSE 0.0038 0.0052 0.0043
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Table A.5: Results for GT (a = 0.6 b = −0.3 d = 0.10)

Model T N = TH Statistics a b d

M1 100 500
Mean 0.5934 -0.2778 0.1128

Median 0.5925 -0.2729 0.0925
Std 0.0331 0.0659 0.0798

RMSE 0.0337 0.0695 0.0807

M1 100 1000
Mean 0.5936 -0.2761 0.1102

Median 0.5939 -0.2715 0.0878
Std 0.0315 0.0637 0.0739

RMSE 0.0321 0.0679 0.0745

M1 100 2500
Mean 0.5946 -0.2759 0.1092

Median 0.5951 -0.2717 0.0927
Std 0.0306 0.0593 0.0708

RMSE 0.0310 0.0640 0.0713

M1 200 500
Mean 0.5960 -0.2900 0.1063

Median 0.5959 -0.2844 0.0969
Std 0.0231 0.0527 0.0579

RMSE 0.0235 0.0536 0.0582

M1 200 1000
Mean 0.5964 -0.2888 0.1037

Median 0.5959 -0.2837 0.0994
Std 0.0212 0.0490 0.0495

RMSE 0.0214 0.0502 0.0496

M1 200 2500
Mean 0.5974 -0.2870 0.1048

Median 0.5971 -0.2819 0.0987
Std 0.0203 0.0451 0.0469

RMSE 0.0205 0.0469 0.0471

M1 500 1000
Mean 0.5980 -0.2964 0.1012

Median 0.5983 -0.2942 0.0983
Std 0.0154 0.0350 0.0351

RMSE 0.0155 0.0351 0.0351

M1 1000 2000
Mean 0.5994 -0.2980 0.1007

Median 0.5996 -0.2962 0.0996
Std 0.0101 0.0225 0.0233

RMSE 0.0101 0.0225 0.0233

M1 5000 10000
Mean 0.5998 -0.2996 0.1001

Median 0.5999 -0.2988 0.0991
Std 0.0046 0.0107 0.0113

RMSE 0.0046 0.0107 0.0113

M1 10000 20000
Mean 0.5999 -0.3002 0.0999

Median 0.5998 -0.3003 0.0999
Std 0.0033 0.0072 0.0077

RMSE 0.0033 0.0072 0.0077
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Table A.6: Continued (a = 0.6 b = −0.3 d = 0.10)

Model T N = TH Statistics a b d

M2 100 500
Mean 0.5927 -0.2526 0.1065

Median 0.5940 -0.2477 0.1006
Std 0.0417 0.0484 0.0428

RMSE 0.0423 0.0677 0.0433

M2 100 1000
Mean 0.5909 -0.2493 0.1071

Median 0.5928 -0.2466 0.1020
Std 0.0428 0.0453 0.0464

RMSE 0.0437 0.0679 0.0469

M2 100 2500
Mean 0.5911 -0.2487 0.1067

Median 0.5937 -0.2456 0.1016
Std 0.0414 0.0450 0.0445

RMSE 0.0423 0.0682 0.0450

M2 200 500
Mean 0.5970 -0.2711 0.1038

Median 0.5969 -0.2691 0.1015
Std 0.0303 0.0388 0.0287

RMSE 0.0304 0.0484 0.0289

M2 200 1000
Mean 0.5976 -0.2685 0.1037

Median 0.5964 -0.2665 0.1009
Std 0.0256 0.0351 0.0273

RMSE 0.0256 0.0472 0.0275

M2 200 2500
Mean 0.5981 -0.2679 0.1044

Median 0.5982 -0.2651 0.1020
Std 0.0265 0.0333 0.0265

RMSE 0.0266 0.0463 0.0268

M2 500 1000
Mean 0.5982 -0.2830 0.1016

Median 0.5984 -0.2822 0.1010
Std 0.0181 0.0274 0.0184

RMSE 0.0182 0.0323 0.0184

M2 1000 2000
Mean 0.5995 -0.2900 0.1013

Median 0.5997 -0.2894 0.1005
Std 0.0116 0.0190 0.0121

RMSE 0.0116 0.0214 0.0122

M2 5000 10000
Mean 0.5999 -0.2970 0.1005

Median 0.5998 -0.2965 0.1008
Std 0.0052 0.0084 0.0059

RMSE 0.0052 0.0089 0.0059

M2 10000 20000
Mean 0.5999 -0.2988 0.1000

Median 0.5998 -0.2992 0.1001
Std 0.0038 0.0056 0.0042

RMSE 0.0038 0.0058 0.0042



APPENDIX A. RESULTS MONTE CARLO EXPERIMENTS 74

Table A.7: Continued (a = 0.6 b = −0.3 d = 0.10)

Model T N = TH Statistics a b d

M3 100 500
Mean 0.6016 -0.2723 0.1167

Median 0.6027 -0.2631 0.1148
Std 0.0333 0.0657 0.0503

RMSE 0.0333 0.0712 0.0529

M3 100 1000
Mean 0.6021 -0.2710 0.1167

Median 0.6010 -0.2629 0.1126
Std 0.0314 0.0604 0.0490

RMSE 0.0314 0.0669 0.0517

M3 100 2500
Mean 0.6027 -0.2698 0.1171

Median 0.6020 -0.2623 0.1149
Std 0.0307 0.0586 0.0462

RMSE 0.0308 0.0659 0.0492

M3 200 500
Mean 0.6017 -0.2801 0.1123

Median 0.6018 -0.2751 0.1111
Std 0.0234 0.0469 0.0336

RMSE 0.0235 0.0509 0.0358

M3 200 1000
Mean 0.6024 -0.2800 0.1119

Median 0.6024 -0.2741 0.1107
Std 0.0211 0.0440 0.0321

RMSE 0.0212 0.0483 0.0342

M3 200 2500
Mean 0.6033 -0.2797 0.1125

Median 0.6035 -0.2756 0.1124
Std 0.0201 0.0407 0.0293

RMSE 0.0203 0.0454 0.0318

M3 500 1000
Mean 0.6027 -0.2887 0.1090

Median 0.6020 -0.2876 0.1089
Std 0.0151 0.0282 0.0211

RMSE 0.0153 0.0303 0.0229

M3 1000 2000
Mean 0.6035 -0.2916 0.1084

Median 0.6034 -0.2915 0.1086
Std 0.0099 0.0179 0.0138

RMSE 0.0105 0.0198 0.0161

M3 5000 10000
Mean 0.6026 -0.2957 0.1050

Median 0.6026 -0.2957 0.1049
Std 0.0045 0.0078 0.0063

RMSE 0.0052 0.0089 0.0081

M3 10000 20000
Mean 0.6022 -0.2970 0.1038

Median 0.6023 -0.2973 0.1038
Std 0.0033 0.0053 0.0046

RMSE 0.0039 0.0061 0.0059
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Table A.8: Continued (a = 0.6 b = −0.3 d = 0.10)

Model T N = TH Statistics a b d

M4 100 500
Mean 0.6090 -0.2816 0.0971

Median 0.6086 -0.2752 0.0950
Std 0.0389 0.0638 0.0387

RMSE 0.0399 0.0664 0.0388

M4 100 1000
Mean 0.6083 -0.2869 0.0907

Median 0.6081 -0.2824 0.0906
Std 0.0376 0.0649 0.0370

RMSE 0.0385 0.0661 0.0381

M4 100 2500
Mean 0.6067 -0.2804 0.0910

Median 0.6060 -0.2779 0.0895
Std 0.0373 0.0620 0.0366

RMSE 0.0379 0.0650 0.0377

M4 200 500
Mean 0.6037 -0.2957 0.0946

Median 0.6024 -0.2922 0.0939
Std 0.0266 0.0497 0.0289

RMSE 0.0268 0.0499 0.0294

M4 200 1000
Mean 0.6037 -0.2943 0.0929

Median 0.6022 -0.2926 0.0921
Std 0.0235 0.0456 0.0276

RMSE 0.0238 0.0459 0.0285

M4 200 2500
Mean 0.6039 -0.2938 0.0930

Median 0.6053 -0.2921 0.0922
Std 0.0233 0.0454 0.0267

RMSE 0.0236 0.0458 0.0276

M4 500 1000
Mean 0.6004 -0.2980 0.0970

Median 0.6004 -0.2949 0.0975
Std 0.0171 0.0321 0.0202

RMSE 0.0171 0.0321 0.0204

M4 1000 2000
Mean 0.6009 -0.2990 0.0983

Median 0.6013 -0.2984 0.0983
Std 0.0110 0.0205 0.0132

RMSE 0.0110 0.0206 0.0133

M4 5000 10000
Mean 0.6000 -0.2993 0.0998

Median 0.6001 -0.2992 0.1000
Std 0.0049 0.0088 0.0061

RMSE 0.0049 0.0088 0.0061

M4 10000 20000
Mean 0.6000 -0.3000 0.0998

Median 0.6000 -0.2997 0.0997
Std 0.0035 0.0060 0.0043

RMSE 0.0035 0.0059 0.0043
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Table A.9: Pseudo and Maximum Likelihood Estimators (a = 0.6 b = −0.3 d = 0.10)

Size Statistics
PML CML UML

a b d a b d a b d

Mean 0.6005 -0.3050 0.1080 0.6023 -0.2956 0.1031 0.6034 -0.2984 0.1012
Median 0.5997 -0.2980 0.1040 0.6000 -0.2963 0.1021 0.6013 -0.2997 0.1006

100 Std 0.0291 0.0506 0.0360 0.0163 0.0205 0.0106 0.0147 0.0186 0.0097
Bias 0.0009 0.0167 0.0790 0.0038 -0.0146 0.0306 0.0056 -0.0053 0.0117
RMSE 0.0291 0.0508 0.0370 0.0164 0.0209 0.0111 0.0151 0.0187 0.0098
Mean 0.5984 -0.3060 0.1050 0.6014 -0.2977 0.1019 0.6018 -0.2995 0.1009
Median 0.5978 -0.3010 0.1030 0.6008 -0.2985 0.1014 0.6007 -0.3000 0.1007

200 Std 0.0203 0.0354 0.0240 0.0099 0.0139 0.0071 0.0093 0.0129 0.0067
Bias -0.0030 0.0185 0.0520 0.0023 -0.0078 0.0191 0.0030 -0.0015 0.0095
RMSE 0.0204 0.0358 0.0250 0.0100 0.0140 0.0073 0.0095 0.0128 0.0068
Mean 0.5963 -0.3080 0.1040 0.6012 -0.2991 0.1011 0.6013 -0.3000 0.1008
Median 0.5954 -0.3060 0.1040 0.6010 -0.2992 0.1011 0.6007 -0.3000 0.1005

500 Std 0.0135 0.0237 0.0160 0.0055 0.0102 0.0044 0.0052 0.0093 0.0042
Bias -0.0060 0.0251 0.0410 0.0020 -0.0029 0.0111 0.0022 -0.0001 0.0079
RMSE 0.0140 0.0250 0.0160 0.0056 0.0102 0.0045 0.0054 0.0093 0.0043
Mean 0.5958 -0.3080 0.1030 0.6009 -0.2996 0.1009 0.6010 -0.2997 0.1006
Median 0.5958 -0.3080 0.1030 0.6010 -0.2999 0.1008 0.6008 -0.3000 0.1004

1000 Std 0.0092 0.0161 0.0110 0.0041 0.0063 0.0033 0.0033 0.0059 0.0028
Bias -0.0070 0.0275 0.0330 0.0016 -0.0012 0.0085 0.0017 -0.0009 0.0058
RMSE 0.0101 0.0181 0.0110 0.0042 0.0063 0.0034 0.0035 0.0059 0.0029
Mean 0.5948 -0.3090 0.1030 0.6005 -0.3000 0.1005 0.6005 -0.3001 0.1004
Median 0.5949 -0.3080 0.1030 0.6005 -0.3001 0.1005 0.6004 -0.3001 0.1004

5000 Std 0.0041 0.0073 0.0050 0.0016 0.0025 0.0015 0.0016 0.0023 0.0015
Bias -0.0090 0.0283 0.0340 0.0009 0.0000 0.0050 0.0008 0.0003 0.0042
RMSE 0.0067 0.0112 0.0060 0.0017 0.0025 0.0016 0.0017 0.0023 0.0016
Mean 0.5948 -0.3090 0.1030 0.6002 -0.3000 0.1002 0.6003 -0.3000 0.1002
Median 0.5949 -0.3090 0.1030 0.6002 -0.3000 0.1002 0.6001 -0.3000 0.1002

10000 Std 0.0030 0.0049 0.0040 0.0014 0.0018 0.0013 0.0014 0.0018 0.0012
Bias -0.0090 0.0300 0.0320 0.0004 0.0000 0.0023 0.0005 0.0000 0.0024
RMSE 0.0060 0.0103 0.0050 0.0014 0.0018 0.0013 0.0014 0.0018 0.0012
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Table A.10: Results for SMM (a = 1 b = −1)

Model T N = TH Statistics a b

m1 100 500
Mean 0.8568 -0.7635

Median 0.8750 -0.7529
Std 0.1379 0.2673

RMSE 0.1987 0.3566

m1 100 1000
Mean 0.8678 -0.7549

Median 0.8829 -0.7386
Std 0.1292 0.2512

RMSE 0.1847 0.3508

m1 200 500
Mean 0.9113 -0.8578

Median 0.9211 -0.8445
Std 0.1068 0.2422

RMSE 0.1388 0.2807

m1 200 1000
Mean 0.9213 -0.8486

Median 0.9311 -0.8319
Std 0.1002 0.2199

RMSE 0.1274 0.2668

m1 500 1000
Mean 0.9566 -0.9253

Median 0.9611 -0.9159
Std 0.0668 0.1526

RMSE 0.0796 0.1698

m1 1000 2000
Mean 0.9806 -0.9609

Median 0.9826 -0.9511
Std 0.0421 0.1072

RMSE 0.0464 0.1141

m1 5000 10000
Mean 0.9954 -0.9915

Median 0.9961 -0.9887
Std 0.0180 0.0498

RMSE 0.0186 0.0505

m1 10000 20000
Mean 0.9976 -0.9960

Median 0.9978 -0.9963
Std 0.0126 0.0343

RMSE 0.0128 0.0345
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Table A.11: Continued (a = 1 b = −1)

Model T N = TH Statistics a b

m2 100 500
Mean 0.8661 -0.8199

Median 0.8743 -0.8132
Std 0.1502 0.2622

RMSE 0.2011 0.3179

m2 100 1000
Mean 0.8700 -0.8155

Median 0.8740 -0.8085
Std 0.1551 0.2364

RMSE 0.2022 0.2997

m2 200 500
Mean 0.9172 -0.8845

Median 0.9228 -0.8854
Std 0.1131 0.2165

RMSE 0.1401 0.2452

m2 200 1000
Mean 0.9216 -0.8768

Median 0.9310 -0.8755
Std 0.1040 0.1896

RMSE 0.1301 0.2260

m2 500 1000
Mean 0.9558 -0.9298

Median 0.9608 -0.9325
Std 0.0705 0.1454

RMSE 0.0832 0.1614

m2 1000 2000
Mean 0.9797 -0.9584

Median 0.9844 -0.9530
Std 0.0453 0.0965

RMSE 0.0496 0.1050

m2 5000 10000
Mean 0.9936 -0.9869

Median 0.9941 -0.9848
Std 0.0208 0.0498

RMSE 0.0217 0.0515

m2 10000 20000
Mean 0.9968 -0.9944

Median 0.9975 -0.9933
Std 0.0142 0.0336

RMSE 0.0145 0.0341
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Table A.12: Results for IND (a = 1 b = −1)

Model T N = TH Statistics a b

M1 100 500
Mean 0.9615 -0.7517

Median 0.9583 -0.7154
Std 0.1166 0.3699

RMSE 0.1227 0.4452

M1 100 1000
Mean 0.9637 -0.7355

Median 0.9560 -0.7049
Std 0.1061 0.3598

RMSE 0.1121 0.4463

M1 200 500
Mean 0.9805 -0.8726

Median 0.9726 -0.8458
Std 0.0859 0.3091

RMSE 0.0880 0.3340

M1 200 1000
Mean 0.9811 -0.8646

Median 0.9791 -0.8482
Std 0.0791 0.2793

RMSE 0.0812 0.3101

M1 500 1000
Mean 0.9940 -0.9555

Median 0.9933 -0.9383
Std 0.0591 0.1832

RMSE 0.0594 0.1883

M1 1000 2000
Mean 0.9987 -0.9782

Median 0.9992 -0.9673
Std 0.0393 0.1187

RMSE 0.0393 0.1206

M1 5000 10000
Mean 0.9994 -0.9941

Median 0.9994 -0.9938
Std 0.0187 0.0550

RMSE 0.0187 0.0552

M1 10000 20000
Mean 0.9996 -0.9979

Median 0.9995 -1.0000
Std 0.0135 0.0379

RMSE 0.0135 0.0380
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Table A.13: Continued (a = 1 b = −1)

Model T N = TH Statistics a b

M2 100 500
Mean 0.9270 -1.0173

Median 0.9525 -0.9607
Std 0.1939 0.3966

RMSE 0.2070 0.3988

M2 100 1000
Mean 0.9043 -1.0182

Median 0.9432 -0.9553
Std 0.2059 0.4255

RMSE 0.2269 0.4254

M2 200 500
Mean 0.9722 -1.0160

Median 0.9851 -0.9750
Std 0.1351 0.2866

RMSE 0.1378 0.2868

M2 200 1000
Mean 0.9582 -0.9974

Median 0.9725 -0.9462
Std 0.1229 0.2810

RMSE 0.1297 0.2807

M2 500 1000
Mean 0.9842 -1.0067

Median 0.9896 -0.9908
Std 0.0790 0.1952

RMSE 0.0805 0.1952

M2 1000 2000
Mean 0.9885 -1.0112

Median 0.9960 -0.9880
Std 0.0609 0.1428

RMSE 0.0619 0.1431

M2 5000 10000
Mean 0.9975 -1.0006

Median 0.9976 -0.9971
Std 0.016 0.0566

RMSE 0.0161 0.0565

M2 10000 20000
Mean 0.9990 -0.9999

Median 0.9991 -0.9983
Std 0.0106 0.0372

RMSE 0.0106 0.0371
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Table A.14: Results for GT (a = 1 b = −1)

Model T N = TH Statistics a b

M1 100 500
Mean 0.9525 -0.6487

Median 0.9549 -0.6154
Std 0.1142 0.3067

RMSE 0.1236 0.4662

M1 100 1000
Mean 0.9547 -0.6494

Median 0.9583 -0.6292
Std 0.1111 0.3013

RMSE 0.1199 0.4621

M1 200 500
Mean 0.9636 -0.7706

Median 0.9594 -0.7465
Std 0.0882 0.2902

RMSE 0.0954 0.3697

M1 200 1000
Mean 0.9651 -0.7709

Median 0.9664 -0.7516
Std 0.0828 0.2685

RMSE 0.0898 0.3527

M1 500 1000
Mean 0.9775 -0.8715

Median 0.9773 -0.8731
Std 0.0603 0.1899

RMSE 0.0643 0.2291

M1 1000 2000
Mean 0.9890 -0.9303

Median 0.9898 -0.9251
Std 0.0412 0.1278

RMSE 0.0426 0.1455

M1 5000 10000
Mean 0.9967 -0.9813

Median 0.9971 -0.9821
Std 0.0192 0.0571

RMSE 0.0195 0.0601

M1 10000 20000
Mean 0.9982 -0.9911

Median 0.9983 -0.9937
Std 0.0136 0.0388

RMSE 0.0138 0.0397



APPENDIX A. RESULTS MONTE CARLO EXPERIMENTS 82

Table A.15: Continued (a = 1 b = −1)

Model T N = TH Statistics a b

M2 100 500
Mean 0.9949 -0.6733

Median 0.9870 -0.6792
Std 0.1377 0.2707

RMSE 0.1377 0.4241

M2 100 1000
Mean 0.9915 -0.6472

Median 0.9864 -0.6474
Std 0.1392 0.2557

RMSE 0.1393 0.4356

M2 200 500
Mean 0.9982 -0.7891

Median 0.9936 -0.8151
Std 0.1097 0.2279

RMSE 0.1096 0.3103

M2 200 1000
Mean 0.9927 -0.7712

Median 0.9898 -0.7804
Std 0.1095 0.2211

RMSE 0.1097 0.3180

M2 500 1000
Mean 1.0041 -0.8662

Median 0.9991 -0.8748
Std 0.0714 0.1782

RMSE 0.0714 0.2227

M2 1000 2000
Mean 0.9970 -0.9209

Median 0.9945 -0.9260
Std 0.0445 0.1260

RMSE 0.0446 0.1486

M2 5000 10000
Mean 0.9968 -0.9789

Median 0.9962 -0.9789
Std 0.0166 0.0554

RMSE 0.0168 0.0592

M2 10000 20000
Mean 0.9985 -0.9889

Median 0.9988 -0.9886
Std 0.0110 0.0378

RMSE 0.0111 0.0394
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Table A.16: Continued (a = 1 b = −1)

Model T N = TH Statistics a b

M3 100 500
Mean 1.0344 -0.7950

Median 1.0370 -0.7810
Std 0.0990 0.3332

RMSE 0.1047 0.3909

M3 100 1000
Mean 1.0348 -0.7804
Median 1.0377 -0.7814

Std 0.0963 0.3171
RMSE 0.1023 0.3854

M3 200 500
Mean 1.0256 -0.8773

Median 1.0219 -0.8676
Std 0.0699 0.2692

RMSE 0.0744 0.2956

M3 200 1000
Mean 1.0247 -0.8775

Median 1.0231 -0.8658
Std 0.0636 0.2624

RMSE 0.0682 0.2894

M3 500 1000
Mean 1.0138 -0.9472

Median 1.0098 -0.9392
Std 0.0491 0.1945

RMSE 0.0510 0.2013

M3 1000 2000
Mean 1.0088 -0.9790

Median 1.0081 -0.9674
Std 0.0352 0.1317

RMSE 0.0362 0.1333

M3 5000 10000
Mean 1.0018 -0.9943

Median 1.0011 -0.9908
Std 0.0154 0.0572

RMSE 0.0155 0.0574

M3 10000 20000
Mean 1.0008 -0.9961

Median 1.0004 -0.9944
Std 0.0112 0.0388

RMSE 0.0113 0.0389
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Table A.17: Continued (a = 1 b = −1)

Model T N = TH Statistics a b

M4 100 500
Mean 1.0237 -0.7857

Median 1.0269 -0.7887
Std 0.1351 0.3100

RMSE 0.1371 0.3766

M4 100 1000
Mean 1.0237 -0.7796

Median 1.0326 -0.7638
Std 0.1437 0.3142

RMSE 0.1455 0.3835

M4 200 500
Mean 1.0122 -0.8298

Median 1.0111 -0.8311
Std 0.0829 0.2399

RMSE 0.0837 0.2940

M4 200 1000
Mean 1.0140 -0.8283

Median 1.0155 -0.8305
Std 0.0785 0.2466

RMSE 0.0796 0.3002

M4 500 1000
Mean 0.9996 -0.8793

Median 0.9978 -0.8827
Std 0.0562 0.2023

RMSE 0.0562 0.2354

M4 1000 2000
Mean 0.9985 -0.9295

Median 0.9975 -0.9410
Std 0.0380 0.1487

RMSE 0.0380 0.1644

M4 5000 10000
Mean 0.9990 -0.9787

Median 1.0003 -0.9796
Std 0.0177 0.0729

RMSE 0.0177 0.0759

M4 10000 20000
Mean 0.9992 -0.9892

Median 0.9994 -0.9892
Std 0.0123 0.0482

RMSE 0.0123 0.0493
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Table A.18: Pseudo and Maximum Likelihood Estimators (a = 1 b = −1)

Size Statistics
PML CML UML

a b a b a b

Mean 0.9612 -1.0560 0.9954 -0.9986 1.0073 -0.9994
Median 0.9610 -1.0039 0.9974 -0.9997 1.0010 -0.9999

100 Std 0.1005 0.2995 0.0364 0.0068 0.0315 0.0055
Bias -0.0388 0.0560 -0.0046 -0.0014 0.0073 -0.0006

RMSE 0.1076 0.3044 0.0366 0.0069 0.0323 0.0055
Mean 0.9591 -1.0279 0.9986 -0.9992 1.0050 -0.9997

Median 0.9589 -0.9999 0.9990 -0.9998 1.0009 -0.9999
200 Std 0.0690 0.2225 0.0226 0.0055 0.0192 0.0025

Bias -0.0409 0.0279 -0.0014 -0.0008 0.0050 -0.0003
RMSE 0.0801 0.2240 0.0227 0.0056 0.0199 0.0025
Mean 0.9517 -1.0115 0.9982 -0.9997 1.0019 -0.9999

Median 0.9511 -1.0063 0.9990 -0.9999 1.0004 -0.9999
500 Std 0.0444 0.1197 0.0131 0.0016 0.0108 0.0005

Bias -0.0483 0.0115 -0.0018 -0.0003 0.0019 -0.0001
RMSE 0.0656 0.1201 0.0132 0.0016 0.0110 0.0005
Mean 0.9517 -1.0098 0.9994 -0.9998 1.0012 -0.9999

Median 0.9517 -1.0088 0.9994 -0.9999 1.0002 -1.0000
1000 Std 0.0330 0.0876 0.0079 0.0010 0.0069 0.0002

Bias -0.0483 0.0098 -0.0006 -0.0002 0.0012 -0.0001
RMSE 0.0585 0.0880 0.0079 0.0010 0.0070 0.0002
Mean 0.9493 -1.0104 0.9997 -0.9999 1.0002 -1.0000

Median 0.9481 -1.0053 0.9998 -1.0000 1.0000 -1.0000
5000 Std 0.0154 0.0478 0.0022 0.0002 0.0019 0.0003

Bias -0.0507 0.0104 -0.0003 -0.0001 0.0002 0.0000
RMSE 0.0530 0.0489 0.0023 0.0002 0.0019 0.0003
Mean 0.9486 -1.0079 0.9999 -1.0000 1.0001 -1.0000

Median 0.9485 -1.0042 0.9999 -1.0000 1.0000 -1.0000
10000 Std 0.0107 0.0333 0.0012 0.0003 0.0011 0.0002

Bias -0.0514 0.0079 -0.0001 0.0000 0.0001 0.0000
RMSE 0.0525 0.0342 0.0012 0.0003 0.0011 0.0002
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Table A.19: Results for SMM (a = 1 b = −2)

Model T N = TH Statistics a b

m1 100 500
Mean 0.8676 -1.4541

Median 0.8861 -1.3902
Std 0.2142 0.6512

RMSE 0.2516 0.8492

m1 100 1000
Mean 0.8787 -1.4418

Median 0.8991 -1.3830
Std 0.2108 0.5868

RMSE 0.2431 0.8094

m1 200 500
Mean 0.9051 -1.6526

Median 0.9135 -1.5912
Std 0.1699 0.6367

RMSE 0.1945 0.7247

m1 200 1000
Mean 0.9152 -1.6245

Median 0.9252 -1.5972
Std 0.1666 0.5403

RMSE 0.1868 0.6575

m1 500 1000
Mean 0.9494 -1.8017

Median 0.9550 -1.7878
Std 0.1180 0.3955

RMSE 0.1283 0.4421

m1 1000 2000
Mean 0.9802 -1.9007

Median 0.9828 -1.8983
Std 0.0733 0.2817

RMSE 0.0759 0.2984

m1 5000 10000
Mean 0.9953 -1.9773

Median 0.9968 -1.9720
Std 0.0326 0.1301

RMSE 0.0329 0.1319

m1 10000 20000
Mean 0.9974 -1.9886

Median 0.9979 -1.9851
Std 0.0230 0.0916

RMSE 0.0231 0.0922
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Table A.20: Continued (a = 1 b = −2)

Model T N = TH Statistics a b

m2 100 500
Mean 0.8812 -1.6039

Median 0.8885 -1.5592
Std 0.2123 0.5918

RMSE 0.2431 0.7116

m2 100 1000
Mean 0.8818 -1.6038

Median 0.8966 -1.5312
Std 0.3645 0.5979

RMSE 0.3828 0.7167

m2 200 500
Mean 0.9124 -1.7362

Median 0.9117 -1.6940
Std 0.1691 0.5536

RMSE 0.1903 0.6127

m2 200 1000
Mean 0.9119 -1.6963

Median 0.9327 -1.6460
Std 0.3142 0.5188

RMSE 0.3260 0.6007

m2 500 1000
Mean 0.9514 -1.8276

Median 0.9540 -1.8058
Std 0.1122 0.3664

RMSE 0.1222 0.4046

m2 1000 2000
Mean 0.9773 -1.8920

Median 0.9850 -1.8911
Std 0.0741 0.2564

RMSE 0.0774 0.2780

m2 5000 10000
Mean 0.9922 -1.9635

Median 0.9926 -1.9528
Std 0.0352 0.1303

RMSE 0.0360 0.1352

m2 10000 20000
Mean 0.9960 -1.9821

Median 0.9959 -1.9824
Std 0.0243 0.0878

RMSE 0.0246 0.0895
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Table A.21: Results for IND (a = 1 b = −2)

Model T N = TH Statistics a b

M1 100 500
Mean 0.9506 -1.3761

Median 0.9446 -1.2273
Std 0.2212 0.9000

RMSE 0.2264 1.0943

M1 100 1000
Mean 0.9474 -1.3657

Median 0.9510 -1.1837
Std 0.2421 0.9451

RMSE 0.2475 1.1374

M1 200 500
Mean 0.9707 -1.6236

Median 0.9526 -1.5255
Std 0.1856 0.8636

RMSE 0.1877 0.9412

M1 200 1000
Mean 0.9710 -1.5674

Median 0.9616 -1.4758
Std 0.1719 0.7642

RMSE 0.1741 0.8775

M1 500 1000
Mean 0.9924 -1.8372

Median 0.9806 -1.7705
Std 0.1269 0.5325

RMSE 0.1270 0.5563

M1 1000 2000
Mean 1.0007 -1.9345

Median 0.9993 -1.9008
Std 0.0848 0.3678

RMSE 0.0847 0.3732

M1 5000 10000
Mean 0.9995 -1.9838

Median 0.9990 -1.9811
Std 0.0401 0.1649

RMSE 0.0401 0.1656

M1 10000 20000
Mean 0.9996 -1.9929

Median 0.9992 -1.9854
Std 0.0289 0.1133

RMSE 0.0289 0.1134
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Table A.22: Continued (a = 1 b = −2)

Model T N = TH Statistics a b

M2 100 500
Mean 0.8926 -1.9595

Median 0.9135 -1.8713
Std 0.3048 0.7597

RMSE 0.3229 0.7600

M2 100 1000
Mean 0.8518 -1.9463

Median 0.9168 -1.8267
Std 0.3175 0.8299

RMSE 0.3501 0.8308

M2 200 500
Mean 0.9465 -2.0525

Median 0.9726 -1.9629
Std 0.2524 0.6911

RMSE 0.2578 0.6924

M2 200 1000
Mean 0.9202 -1.9898

Median 0.9582 -1.8720
Std 0.2441 0.6764

RMSE 0.2566 0.6758

M2 500 1000
Mean 0.9714 -1.9895

Median 0.9789 -1.9162
Std 0.1458 0.4999

RMSE 0.1484 0.4995

M2 1000 2000
Mean 0.9816 -1.9862

Median 0.9954 -1.9432
Std 0.1130 0.3542

RMSE 0.1144 0.3541

M2 5000 10000
Mean 0.9948 -1.9903

Median 0.9973 -1.9806
Std 0.0500 0.1372

RMSE 0.0502 0.1374

M2 10000 20000
Mean 0.9981 -1.9948

Median 0.9968 -1.9947
Std 0.0206 0.0946

RMSE 0.0207 0.0947
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Table A.23: Results for GT (a = 1 b = −2)

Model T N = TH Statistics a b

M1 100 500
Mean 0.9397 -1.1761

Median 0.9447 -1.0367
Std 0.2193 0.7423

RMSE 0.2272 1.1085

M1 100 1000
Mean 0.9416 -1.1549

Median 0.9588 -1.0695
Std 0.2142 0.6913

RMSE 0.2218 1.0914

M1 200 500
Mean 0.9423 -1.3801

Median 0.9339 -1.2783
Std 0.1625 0.6936

RMSE 0.1723 0.9298

M1 200 1000
Mean 0.9452 -1.3758

Median 0.9381 -1.3190
Std 0.1568 0.6632

RMSE 0.1660 0.9103

M1 500 1000
Mean 0.9612 -1.6152

Median 0.9608 -1.5959
Std 0.1176 0.5088

RMSE 0.1237 0.6375

M1 1000 2000
Mean 0.9805 -1.7922

Median 0.9815 -1.7896
Std 0.0821 0.3659

RMSE 0.0843 0.4205

M1 5000 10000
Mean 0.9934 -1.9401

Median 0.9939 -1.9448
Std 0.0403 0.1702

RMSE 0.0408 0.1802

M1 10000 20000
Mean 0.9964 -1.9695

Median 0.9966 -1.9665
Std 0.0289 0.1148

RMSE 0.0291 0.1187
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Table A.24: Continued (a = 1 b = −2)

Model T N = TH Statistics a b

M2 100 500
Mean 1.0120 -1.1614

Median 1.0027 -1.1664
Std 0.2411 0.6469

RMSE 0.2412 1.0587

M2 100 1000
Mean 1.0115 -1.0765

Median 0.9873 -1.0544
Std 0.2228 0.6141

RMSE 0.2229 1.1087

M2 200 500
Mean 1.0254 -1.4391

Median 1.0055 -1.4751
Std 0.2060 0.6187

RMSE 0.2074 0.8346

M2 200 1000
Mean 1.0094 -1.3442

Median 0.9963 -1.4230
Std 0.1976 0.5519

RMSE 0.1976 0.8568

M2 500 1000
Mean 1.0077 -1.6210

Median 0.9871 -1.6489
Std 0.1431 0.5043

RMSE 0.1432 0.6304

M2 1000 2000
Mean 0.9968 -1.7401

Median 0.9857 -1.7715
Std 0.1085 0.3594

RMSE 0.1084 0.4433

M2 5000 10000
Mean 0.9889 -1.9251

Median 0.9900 -1.9240
Std 0.0319 0.1420

RMSE 0.0338 0.1604

M2 10000 20000
Mean 0.9942 -1.9584

Median 0.9935 -1.9601
Std 0.0217 0.0943

RMSE 0.0225 0.1030
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Table A.25: Continued (a = 1 b = −2)

Model T N = TH Statistics a b

M3 100 500
Mean 1.1069 -1.4350

Median 1.1081 -1.3188
Std 0.1888 0.7913

RMSE 0.2168 0.9716

M3 100 1000
Mean 1.1091 -1.4404
Median 1.1092 -1.3641

Std 0.1806 0.7741
RMSE 0.2108 0.9545

M3 200 500
Mean 1.0760 -1.6137

Median 1.0701 -1.4882
Std 0.1492 0.7473

RMSE 0.1673 0.8406

M3 200 1000
Mean 1.0755 -1.5588

Median 1.0750 -1.4753
Std 0.1396 0.6611

RMSE 0.1586 0.7942

M3 500 1000
Mean 1.0495 -1.7082

Median 1.0497 -1.6420
Std 0.1009 0.5754

RMSE 0.1123 0.6447

M3 1000 2000
Mean 1.0368 -1.7871

Median 1.0380 -1.7155
Std 0.0742 0.5104

RMSE 0.0828 0.5525

M3 5000 10000
Mean 1.0079 -1.9574

Median 1.0125 -1.8948
Std 0.0419 0.3644

RMSE 0.0426 0.3665

M3 10000 20000
Mean 1.0003 -2.0042

Median 1.0053 -1.9482
Std 0.0364 0.3145

RMSE 0.0363 0.3142
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Table A.26: Continued (a = 1 b = −2)

Model T N = TH Statistics a b

M4 100 500
Mean 0.9917 -1.5667

Median 1.0364 -1.5022
Std 0.4112 0.7781

RMSE 0.4109 0.8899

M4 100 1000
Mean 0.9484 -1.6230

Median 1.0483 -1.5068
Std 0.5935 1.1119

RMSE 0.5951 1.1730

M4 200 500
Mean 1.0317 -1.6420

Median 1.0298 -1.6495
Std 0.1400 0.6688

RMSE 0.1435 0.7580

M4 200 1000
Mean 1.0049 -1.6214

Median 1.0415 -1.6062
Std 0.3635 0.6803

RMSE 0.3631 0.7779

M4 500 1000
Mean 1.0135 -1.7449

Median 1.0123 -1.7139
Std 0.0958 0.5691

RMSE 0.0967 0.6231

M4 1000 2000
Mean 1.0051 -1.8395

Median 1.0030 -1.8234
Std 0.0677 0.4072

RMSE 0.0678 0.4373

M4 5000 10000
Mean 1.0010 -1.9600

Median 1.0013 -1.9602
Std 0.0311 0.2040

RMSE 0.0311 0.2077

M4 10000 20000
Mean 1.0007 -1.9837

Median 1.0006 -1.9770
Std 0.0204 0.1280

RMSE 0.0204 0.1289
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Table A.27: Pseudo and Maximum Likelihood Estimators (a = 1 b = −2)

Size Statistics
PML CML UML

a b a b a b

Mean 0.9254 -2.0956 0.9959 -1.9547 1.0110 -2.0140
Median 0.9223 -1.9977 0.9971 -1.9753 1.0011 -2.0060

100 Std 0.1474 0.6739 0.0607 0.1259 0.0517 0.0916
Bias -0.0746 0.0478 -0.0041 -0.0227 0.0110 0.0070
RMSE 0.1651 0.6799 0.0608 0.1337 0.0528 0.0925
Mean 0.9312 -2.0489 1.0021 -1.9794 1.0077 -2.0141
Median 0.9272 -2.0037 1.0032 -1.9827 1.0031 -2.0031

200 Std 0.1071 0.4889 0.0374 0.0945 0.0353 0.0638
Bias -0.0688 0.0244 0.0021 -0.0103 0.0077 0.0071
RMSE 0.1272 0.4908 0.0374 0.0966 0.0361 0.0653
Mean 0.9242 -1.9996 1.0015 -1.9907 1.0033 -2.0095
Median 0.9235 -1.9897 1.0008 -1.9926 1.0006 -2.0057

500 Std 0.0742 0.3328 0.0243 0.0595 0.0227 0.0552
Bias -0.0758 0.0002 0.0015 -0.0047 0.0033 0.0047
RMSE 0.1060 0.3325 0.0243 0.0601 0.0229 0.0560
Mean 0.9187 -1.9564 1.0016 -1.9962 1.0022 -2.0049
Median 0.9159 -1.9591 1.0005 -1.9984 1.0003 -2.0043

1000 Std 0.0516 0.2268 0.0159 0.0451 0.0159 0.0410
Bias -0.0813 -0.0218 0.0016 -0.0019 0.0022 0.0025
RMSE 0.0962 0.2307 0.0159 0.0452 0.0160 0.0413
Mean 0.9097 -1.9172 1.0001 -1.9982 1.0002 -2.0018
Median 0.9093 -1.9069 1.0002 -1.9981 1.0000 -2.0006

5000 Std 0.0239 0.1125 0.0075 0.0180 0.0071 0.0158
Bias -0.0903 -0.0414 0.0001 -0.0009 0.0002 0.0009
RMSE 0.0934 0.1396 0.0075 0.0181 0.0071 0.0159
Mean 0.9085 -1.9073 1.0004 -1.9989 1.0003 -2.0003
Median 0.9095 -1.9024 1.0001 -1.9993 1.0000 -2.0003

10000 Std 0.0175 0.0792 0.0052 0.0112 0.0049 0.0106
Bias -0.0915 -0.0463 0.0004 -0.0005 0.0003 0.0002
RMSE 0.0932 0.1219 0.0052 0.0113 0.0049 0.0105
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Table A.28: Results for SMM (a = 600 b = −5)

Model T N = TH Statistics a b

m1 100 500
Mean 497.2039 -4.0991

Median 490.8640 -3.9955
Std 114.8648 1.0985

RMSE 154.0554 1.4198

m1 100 1000
Mean 536.5978 -4.4476

Median 531.2719 -4.3692
Std 98.8391 0.9475

RMSE 117.3429 1.0959

m1 200 500
Mean 505.1230 -4.1763

Median 489.5937 -4.0142
Std 189.7449 1.9904

RMSE 211.9634 2.1521

m1 200 1000
Mean 536.4926 -4.4356

Median 532.7233 -4.3794
Std 91.7087 0.8783

RMSE 111.4755 1.0433

m1 500 1000
Mean 568.9188 -4.7273

Median 567.7719 -4.6833
Std 61.3887 0.5917

RMSE 68.7538 0.6509

m1 1000 2000
Mean 583.3728 -4.8521

Median 580.0225 -4.8164
Std 41.5158 0.4035

RMSE 44.6831 0.4294

m1 5000 10000
Mean 596.2600 -4.9670

Median 595.5766 -4.9605
Std 19.4570 0.1917

RMSE 19.7941 0.1943

m1 10000 20000
Mean 598.5690 -4.9879

Median 599.2193 -4.9941
Std 13.1525 0.1296

RMSE 13.2170 0.1300
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Table A.29: Continued (a = 600 b = −5)

Model T N = TH Statistics a b

m2 100 500
Mean 527.9823 -4.3949

Median 517.0194 -4.3377
Std 114.0970 1.0830

RMSE 134.8180 1.2395

m2 100 1000
Mean 546.7608 -4.5423

Median 549.7148 -4.5429
Std 97.1959 0.9266

RMSE 110.7354 1.0326

m2 200 500
Mean 518.3551 -4.2962

Median 517.9202 -4.3314
Std 104.9562 0.9980

RMSE 132.8807 1.2202

m2 200 1000
Mean 544.7007 -4.5190

Median 550.4452 -4.5437
Std 93.1796 0.9149

RMSE 108.2727 1.0328

m2 500 1000
Mean 570.1166 -4.7383

Median 572.7126 -4.7441
Std 62.0150 0.5925

RMSE 68.7835 0.6472

m2 1000 2000
Mean 582.5474 -4.8440

Median 581.5468 -4.8236
Std 39.7741 0.3816

RMSE 43.3983 0.4119

m2 5000 10000
Mean 595.1586 -4.9568

Median 594.3108 -4.9478
Std 19.6214 0.1901

RMSE 20.1908 0.1948

m2 10000 20000
Mean 598.1520 -4.9841

Median 598.3952 -4.9899
Std 13.4525 0.1304

RMSE 13.5655 0.1313
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Table A.30: Results for IND (a = 600 b = −5)

Model T N = TH Statistics a b

M1 100 500
Mean 510.3457 -4.1259

Median 498.7019 -4.0050
Std 140.9853 1.3797

RMSE 166.9515 1.6321

M1 100 1000
Mean 553.5491 -4.5484

Median 546.7013 -4.4958
Std 99.8893 0.9770

RMSE 110.0604 1.0754

M1 200 500
Mean 500.9580 -4.0343

Median 488.2273 -3.9210
Std 134.3376 1.3144

RMSE 166.7818 1.6298

M1 200 1000
Mean 542.1322 -4.4358

Median 533.2960 -4.3263
Std 94.9570 0.9282

RMSE 111.1021 1.0852

M1 500 1000
Mean 579.5301 -4.8017

Median 574.4918 -4.7590
Std 61.9788 0.6056

RMSE 65.1952 0.6365

M1 1000 2000
Mean 590.0107 -4.9030

Median 589.4814 -4.9017
Std 42.2682 0.4135

RMSE 43.3685 0.4241

M1 5000 10000
Mean 598.5667 -4.9857

Median 597.9037 -4.9768
Std 20.2012 0.1979

RMSE 20.2165 0.1981

M1 10000 20000
Mean 599.9815 -4.9999

Median 600.2217 -5.0055
Std 13.6940 0.1335

RMSE 13.6713 0.1333
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Table A.31: Continued (a = 600 b = −5)

Model T N = TH Statistics a b

M2 100 500
Mean 604.3078 -5.0683

Median 586.1466 -4.8816
Std 166.4384 1.6766

RMSE 166.2679 1.6757

M2 100 1000
Mean 617.9128 -5.1899

Median 597.8249 -4.9702
Std 132.9859 1.3294

RMSE 133.9900 1.3409

M2 200 500
Mean 588.5175 -4.9138

Median 577.9398 -4.7904
Std 152.2356 1.5371

RMSE 152.4541 1.5373

M2 200 1000
Mean 594.9143 -4.9625

Median 593.5029 -4.9444
Std 103.1122 1.0311

RMSE 103.0669 1.0301

M2 500 1000
Mean 599.7526 -5.0025

Median 598.5612 -4.9732
Std 76.7453 0.7721

RMSE 76.6080 0.7707

M2 1000 2000
Mean 603.9002 -5.0425

Median 599.3215 -4.9940
Std 49.9823 0.5023

RMSE 50.0468 0.5032

M2 5000 10000
Mean 601.5065 -5.0157

Median 601.2103 -5.0107
Std 21.6131 0.2157

RMSE 21.6261 0.2159

M2 10000 20000
Mean 601.2168 -5.0124

Median 601.1404 -5.0071
Std 15.3442 0.1538

RMSE 15.3647 0.1540
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Table A.32: Results for GT (a = 600 b = −5)

Model T N = TH Statistics a b

M1 100 500
Mean 464.8138 -3.6770

Median 459.7403 -3.6320
Std 135.5756 1.3159

RMSE 191.3617 1.8651

M1 100 1000
Mean 517.3378 -4.1938

Median 520.3069 -4.2193
Std 111.3285 1.0821

RMSE 138.5724 1.3485

M1 200 500
Mean 465.9827 -3.6871

Median 455.1236 -3.5545
Std 132.9884 1.2915

RMSE 188.7092 1.8408

M1 200 1000
Mean 519.2223 -4.2112

Median 513.3373 -4.1642
Std 103.9601 1.0112

RMSE 131.5717 1.2816

M1 500 1000
Mean 558.0183 -4.5912

Median 559.1889 -4.5867
Std 69.3694 0.6747

RMSE 81.0244 0.7883

M1 1000 2000
Mean 577.6936 -4.7820

Median 575.9946 -4.7684
Std 46.0824 0.4487

RMSE 51.1558 0.4984

M1 5000 10000
Mean 594.5522 -4.9468

Median 594.6187 -4.9480
Std 20.4865 0.2003

RMSE 21.1786 0.2070

M1 10000 20000
Mean 597.8651 -4.9794

Median 598.0758 -4.9822
Std 13.8782 0.1354

RMSE 14.0277 0.1368
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Table A.33: Continued (a = 600 b = −5)

Model T N = TH Statistics a b

M2 100 500
Mean 478.0481 -3.8095

Median 474.6868 -3.7535
Std 119.3750 1.1806

RMSE 170.5693 1.6759

M2 100 1000
Mean 521.8684 -4.2342

Median 515.4722 -4.1648
Std 94.3566 0.9393

RMSE 122.4333 1.2112

M2 200 500
Mean 473.3456 -3.7700

Median 472.8052 -3.7536
Std 123.7129 1.2294

RMSE 176.9611 1.7382

M2 200 1000
Mean 517.7174 -4.1961

Median 512.1424 -4.1390
Std 93.5112 0.9356

RMSE 124.4878 1.2328

M2 500 1000
Mean 553.7192 -4.5423

Median 553.0773 -4.5445
Std 67.0170 0.6699

RMSE 81.3892 0.8107

M2 1000 2000
Mean 574.0279 -4.7435

Median 574.8012 -4.7466
Std 46.0837 0.4609

RMSE 52.8584 0.5271

M2 5000 10000
Mean 592.9154 -4.9304

Median 592.5503 -4.9270
Std 22.0929 0.2207

RMSE 23.1800 0.2312

M2 10000 20000
Mean 596.5063 -4.9654

Median 596.9415 -4.9694
Std 15.5573 0.1560

RMSE 15.9296 0.1596
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Table A.34: Continued (a = 600 b = −5)

Model T N = TH Statistics a b

M3 100 500
Mean 503.5479 -4.0287

Median 502.8393 -4.0233
Std 131.0933 1.2838

RMSE 162.6471 1.6088

M3 100 1000
Mean 500.4626 -3.9971
Median 501.2850 -4.0174

Std 126.8113 1.2428
RMSE 161.1105 1.5960

M3 200 500
Mean 548.0457 -4.4741

Median 543.7376 -4.4166
Std 110.3548 1.0872

RMSE 121.8731 1.2067

M3 200 1000
Mean 545.7874 -4.4514

Median 544.0687 -4.4229
Std 100.9280 0.9941

RMSE 114.4775 1.1345

M3 500 1000
Mean 578.5912 -4.7813

Median 570.4354 -4.7068
Std 83.9542 0.8260

RMSE 86.5595 0.8537

M3 1000 2000
Mean 588.6449 -4.8831

Median 586.0304 -4.8530
Std 73.0148 0.7192

RMSE 73.8203 0.7279

M3 5000 10000
Mean 594.0562 -4.9398

Median 595.7983 -4.9545
Std 50.0033 0.4918

RMSE 50.3057 0.4950

M3 10000 20000
Mean 600.9093 -5.0086

Median 600.4886 -5.0016
Std 48.8528 0.4804

RMSE 48.8124 0.4800
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Table A.35: Continued (a = 600 b = −5)

Model T N = TH Statistics a b

M4 100 500
Mean 528.2140 -4.2649

Median 525.8295 -4.2499
Std 136.6993 1.3283

RMSE 154.2795 1.5170

M4 100 1000
Mean 544.4593 -4.4414

Median 541.1960 -4.4054
Std 111.6182 1.0872

RMSE 124.5731 1.2214

M4 200 500
Mean 515.8175 -4.1421

Median 514.5777 -4.1406
Std 129.1316 1.2538

RMSE 154.0388 1.5182

M4 200 1000
Mean 537.1270 -4.3660

Median 540.8369 -4.3877
Std 107.4813 1.0470

RMSE 124.4272 1.2231

M4 500 1000
Mean 564.5931 -4.6449

Median 565.9669 -4.6321
Std 71.6023 0.6983

RMSE 79.8140 0.7828

M4 1000 2000
Mean 580.1958 -4.8015

Median 578.1393 -4.7782
Std 52.8990 0.5176

RMSE 56.4351 0.5538

M4 5000 10000
Mean 594.5181 -4.9453

Median 592.4386 -4.9224
Std 24.2697 0.2374

RMSE 24.8574 0.2434

M4 10000 20000
Mean 597.4753 -4.9749

Median 596.9135 -4.9689
Std 16.4944 0.1612

RMSE 16.6702 0.1630
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Table A.36: Pseudo and Maximum Likelihood Estimators (a = 600 b = −5)

Size Statistics
PML CML UML

a b a b a b

Mean 629.9104 -5.3158 598.7129 -4.9895 603.0852 -5.0306
Median 611.8145 -5.1559 600.9977 -5.0109 601.2422 -5.0109

100 Std 139.0217 1.3629 14.8260 0.1503 9.5747 0.0978
Bias 0.0499 0.0632 -0.0021 -0.0021 0.0051 0.0061

RMSE 142.0669 1.3976 14.8670 0.1505 10.0504 0.1024
Mean 620.6766 -5.2256 599.3386 -4.9947 602.0959 -5.0201

Median 615.2680 -5.1687 600.5140 -5.0067 600.7777 -5.0069
200 Std 85.7622 0.8414 10.5729 0.1070 6.5761 0.0665

Bias 0.0345 0.0451 -0.0011 -0.0011 0.0035 0.0040
RMSE 88.1361 0.8703 10.5829 0.1070 6.8957 0.0694
Mean 618.1547 -5.2037 600.4591 -5.0051 601.6421 -5.0162

Median 615.0317 -5.1841 601.0898 -5.0113 600.6896 -5.0075
500 Std 53.6683 0.5261 7.1347 0.0738 5.7014 0.0586

Bias 0.0303 0.0407 0.0008 0.0010 0.0027 0.0032
RMSE 56.6050 0.5636 7.1422 0.0739 5.9277 0.0608
Mean 618.3625 -5.2057 600.5703 -5.0061 600.9427 -5.0091

Median 614.8426 -5.1700 601.0020 -5.0112 600.5151 -5.0048
1000 Std 37.4499 0.3680 4.9605 0.0514 3.9702 0.0412

Bias 0.0306 0.0411 0.0010 0.0012 0.0016 0.0018
RMSE 41.6758 0.4212 4.9881 0.0517 4.0767 0.0421
Mean 618.4924 -5.2086 600.7797 -5.0083 600.5557 -5.0057

Median 616.6668 -5.1894 600.8904 -5.0098 600.2301 -5.0023
5000 Std 17.2490 0.1694 2.0094 0.0210 2.2255 0.0233

Bias 0.0308 0.0417 0.0013 0.0017 0.0009 0.0011
RMSE 25.2765 0.2686 2.1535 0.0226 2.2917 0.0239
Mean 619.0792 -5.2141 600.7376 -5.0078 600.3378 -5.0035

Median 619.2819 -5.2143 600.9583 -5.0101 600.1952 -5.0019
10000 Std 11.9005 0.1166 1.4693 0.0154 1.6487 0.0173

Bias 0.0318 0.0428 0.0012 0.0016 0.0006 0.0007
RMSE 22.4800 0.2437 1.6426 0.0173 1.6813 0.0176



 


