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Abstract

Diffusion and quantum mechanics with boundary conditions arise naturally in vari-

ous situations in physics. While reflecting and absorbing boundaries are well math-

ematically described, intermediate scenarios are not that clear. Consider a reflective

boundary which is removed for a time δ and subsequently reinstated. First, we place a

Brownian particle at one side of this barrier and study its path-integral propagator. We

obtained a closed expression for the particle’s probability of being before or after the

barrier at a certain time. We then consider the same barrier, but when the removing

time is unforeseen, so the particle could cross to the other side at some time within

a known interval [0, T ]. A path-integral propagator is computed, and it is shown nu-

merically that the limit to the exact path integral is convergent. Finally, we consider a

quantum particle in the presence of a reflective barrier removed at t = ∆t1 for a time δ

and then reinstated. We propose a path-integral propagator for this process and show

that the corresponding wave function satisfies the Schrödinger equation.
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Chapter 1

Introduction

The purpose of this work is to study the propagation of Brownian and quantum particles

in the presence of certain time-dependent barriers. Since both quantum mechanics and

diffusion share similar mathematical descriptions, and accept a path integral formulation,

we aim to describe a physical scenario that works for the two cases.

We begin discussing the Brownian particle which is a well-known stochastic process. A

system is considered stochastic if its time evolution is subject to random forces, leading

to the study of probabilities instead of deterministic predictions. In 1827, while studying

pollen grains suspended in water under a microscope, the botanist Robert Brown observed

tiny particles, ejected by the pollen grains, doing a jittery motion [1]. He was able to rule

out that the motion was life-related by repeating the experiment with particles of inorganic

matter, although its origin was yet to be explained. At the time, the theory of atoms and

molecules was controversial to physicists, so when Albert Einstein in one of his 1905 papers

[2] brought the solution of the problem to their attention, the idea of microscopic structures

causing effects on the movement of macroscopic particles became more plausible, giving

rise to a more formal and mathematical study of diffusion.

There are many diffusion processes in nature that are studied in terms of Brownian motion.

A few examples are the diffusion of pollutants through the atmosphere [3, 4], the motion of

a massive body (such as a star or a black hole) as it responds to gravitational forces from

surrounding stars [5, 6], the diffusion of calcium through bone tissue in living organisms
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CHAPTER 1. INTRODUCTION

[7, 8], among others. In particular, diffusion with boundary conditions is widely studied in

the literature [9, 10, 11].

Diffusion with absorbing boundary conditions

In this processes, particles are removed or ”killed” from the system when they reach

the boundary. These boundaries do not conserve the system’s particle number, allowing

to define the survival and first-hitting-time probabilities [12, 13]. The calculation of these

quantities is relevant in probability theory and has had immediate applicability in a myriad

of problems: spreading of diseases [14], animal or human movement [15], neuron firing

dynamics [16] or diffusion in bounded domains [17]. This type of system is readily modeled

by a diffusion equation with Dirichlet boundary conditions.

Diffusion with reflecting boundary conditions

Reflecting boundaries arise when no-flux is assumed to pass through the boundary, so

the particles bounce off upon arrival. This applies to most diffusion processes in finite

volumes, where unlike the previous case, the number of particles in conserved in time so

no survival probability is defined. Further applications are queuing models experiencing

heavy traffic [18] as proposed by Kingman [19] and proven by Iglehart and Whitt [20].

These systems are typically modeled by a diffusion equation with Neumann boundary

conditions [9].

Neither reflecting nor absorbing

However, not all processes fall into one of the previous categories. We can think of

a time-dependent boundary, which is reflecting for a certain time until suddenly, allows

particle passage to then become reflecting again. This allows us to define a survival prob-

ability, which is slightly different from the usual definition since this boundary accretes

particles for a finite amount of time. In order to solve the problem, it is useful to intro-

duce a wall-operator, which is in charge of removing and reinstate the boundary. Making

reference to Maxwells’ famous thought experiment [21], this operator will be referred to

the “demon”.
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CHAPTER 1. INTRODUCTION

We first examine the case of a reflective wall at x = 0 that is removed at t = ∆t1 for a time

δ and then is restored. The relevant question is: What is the probability of finding the

particle before (or after) the barrier at a time T?. We obtain the path integral propagator

for this process and find a closed expression for the probability in the entire domain before

and after the wall. Further, we show that for short opening time δ, the probability of the

particle to be after the barrier is O(δ1/2).

We then study a reflective wall at x = 0 removed at an unknown time during an interval

δ and subsequently reinstated; the uncertain time of removal is interpreted as the demon’s

action on the wall. The removal of the wall is achieved by replacing one microscopic

reflecting-wall propagator for a free particle propagator in the discrete path integral, and

the demon is introduced by summing over the possible removal times. The probability

density is computed along with the Shannon entropy of the system.

In section 3.2 we consider a quantum particle in the presence of a reflective wall at x = 0,

removed at t = ∆t1 for a time δ and then restored. Marchewka and Schuss [22] already

studied the propagation of quantum particles when a wall is removed and reinstated using

path integrals. They found that the probability propagated across the boundary in time

∆t is O(∆t3/2), which is a Zeno Effect [23]. Our scenario is slightly different because the

boundary is not removed instantaneously but after a time ∆t1. In this context, it is shown

that the probability propagated across the boundary is O(∆t−3
1 ) for ∆t1 �

mx2
0

2~ .

The structure of this work is the following: the first chapter is devoted to theoretical

framework, where diffusion is first presented as a result of a random walk and is then

re-discovered in the context of differential equations. Further, we obtain the diffusion

and Schrödinger propagators for the free particle and the reflective wall. Section 3.1 con-

tains the main calculations and results obtained for the Brownian particle, and Section 3.2

addresses the quantum particle in the same scenario of Sec. 3.1.1.
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Chapter 2

Theory

2.1 Random walk, diffusion and Brownian motion

A random walk is a stochastic process consisting of an idealized path performed by a

succession of random steps [24]. It is relevant in mathematics, physics, biology, and finance

[25, 26, 27]. In particular, it can denote the path traced by a Brownian particle as it travels

in a liquid [28]. By having the probability of each result in each step (for example, right /

left, up / down), we can obtain the probability of finding the particle in a given position

after N steps.

Since real-life particles do not travel by jumping in steps, we would like to have a continuous

model, that is, a model where the steps are so small that the particle can be anywhere in

space and time. In this section, we will show that the probability density of a continuous

random walk satisfies a differential equation called diffusion equation [29].

Consider a walker which moves along the x-axis by steps. Each step has the length h and

time duration τ . The walker in each step can move either h to the right (event R) or h to

the left (event L).

The probability distribution of the number of successes in a sequence of N independent

experiments, each with its own boolean-valued outcome: left (with probability p) or right
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CHAPTER 2. THEORY

(with probability q = 1− p), is given by the binomial distribution

PN (k) =

(
N

k

)
pkqN−k (2.1)

where k are the steps to the right and N − k to the left. The binomial theorem states

(pu+ q)N =
N∑
k=0

(
N

k

)
ukpkqN−k (2.2)

which leads to

N∑
k=0

PN (k) = (p+ q)N = 1. (2.3)

where we verify that PN (k) is normalized to one.The expectation value or first moment of

k is

〈k〉 =
N∑
k=0

kPN (k) =
N∑
k=0

k

[(
N

k

)
ukpkqN−k

]
u=1

=

N∑
k=0

[
u

d

du

(
N

k

)
ukpkqN−k

]
u=1

(2.4)

=

[
u

d

du

N∑
k=0

(
N

k

)
ukpkqN−k

]
u=1

(2.5)

=

[
u

d

du
(pu+ q)N

]
u=1

= Np, (2.6)
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CHAPTER 2. THEORY

similarly for the second moment

〈
k2
〉

=
N∑
k=0

k2PN (k) =
N∑
k=0

k2

[(
N

k

)
ukpkqN−k

]
u=1

=

N∑
k=0

[(
u

d

du

)2(N
k

)
ukpkqN−k

]
u=1

(2.7)

=

[(
u

d

du

)2 N∑
k=0

(
N

k

)
ukpkqN−k

]
u=1

(2.8)

=

[(
u

d

du

)2

(pu+ q)N

]
u=1

= Np+Np2(N − 1). (2.9)

Now we compute the variance as follows

σ2 =
〈
k2
〉
− 〈k〉2 = Np(1− p) = Npq (2.10)

which is a measure of the width of the distribution. Let m = 2k − N be the walker’s

position after N steps, its expectation value is

〈m〉 = 2 〈k〉 −N = N(2p− 1) = N(p− q) (2.11)

and the second moment

〈
m2
〉

= 4
〈
k2
〉
− 4N 〈k〉+N2 = 4σ2 + 〈m〉2 (2.12)

which leads to a variance

σ2
m =

〈
m2
〉
− 〈m〉2 = 4σ2 = 4Npq. (2.13)

When the squared displacement is proportional to time (or the number of steps N), we call

this a free diffusion process.

Introducing the real displacement x = mh and the time t = Nτ we have

σ2
x =

〈
x2
〉
− 〈x〉2 = h2

(〈
m2
〉
− 〈m〉2

)
= 4pqNh2 = 4pqt

h2

τ
= 2Dt (2.14)
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CHAPTER 2. THEORY

where D ≡ 2h2pq
τ . Equation (2.14) is the well-known expression derived by Einstein for the

mean squared displacement of a Brownian particle [2]. The average position of the walker

is

〈x〉 = h 〈m〉 = N(p− q)h = vt (2.15)

which defines the drift velocity v = (p− q)hτ . For a symmetric walk where p = q = 1
2 , the

drift velocity and the average position are zero. In such case the probability (2.1) becomes

P (m,N) =
2−NN !

(m+N)!
2!

(N−m)!
2!

. (2.16)

which satisfies

P (m,N + 1) =
1

2
P (m+ 1, N) +

1

2
P (m− 1, N). (2.17)

We re-write (2.17) as

P (m,N + 1)− P (m,N)

τ
=
h2

2τ

P (m+ 1, N)− 2P (m,N) + P (m− 1, N)

h2
(2.18)

and after the substitution

D =
h2

2τ
, (2.19)

we find

P (m,N + 1)− P (m,N)

τ
= D

P (m+ 1, N)− 2P (m,N) + P (m− 1, N)

h2
, (2.20)

taking the limit τ → 0, h→ 0 we get to the form of the diffusion (heat) equation

∂P

∂τ
= D

∂2P

∂x2
. (2.21)
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CHAPTER 2. THEORY

On the other hand, when N is large we can use Stirling’s formula

log (n!) =

(
n+

1

2

)
log(n)− n+

1

2
log(2π) (2.22)

to simplify equation (2.16). We obtain

logP ≈
(
N +

1

2

)
logN − 1

2
(N +m+ 1) log

[
N +m

2

]
− 1

2
(N −m+ 1) log

[
N −m

2

]
− 1

2
log 2π −N log 2, (2.23)

now write

N ±m
2

=
N

2

(
1± m

N

)
(2.24)

and expand for m� N as follows

log
(

1± m

N

)
≈ ±m

N
− m2

2N2
. (2.25)

Equation (2.23) now becomes

logP ≈
(
N +

1

2

)
logN − 1

2
(N +m+ 1)

[
log

N

2
+
m

N
− m2

2N2

]
−

1

2
(N −m+ 1)

[
log

N

2
− m

N
− m2

2N2

]
− 1

2
log 2π −N log 2 (2.26)

Simplifying we obtain

logP ≈ −1

2
logN + log 2− 1

2
log 2π − m2

2N
(2.27)

which leads to

P (m,N) ≈
√

2

πN
e−

m2

2N . (2.28)

9



CHAPTER 2. THEORY

Since the problem is translational invariant, if the walker starts at a point different from

zero, say, m = m0, the solution changes only by a shift

P (m,m0, N) ≈
√

2

πN
e−

(m−m0)2

2N . (2.29)

If every step has length l and each step take a time τ then the initial position of the

particle will be x0 = m0l, the final position x = ml and the time of the Nth step t = Nτ .

Re-writting P (m,m0, N) we have

P (x, x0, t) =

√
1

4πDt

(
e−

(x−x0)2

4Dt

)
(2.30)

2.2 Random walk with reflecting barrier

Figure 2.1

Consider a barrier at m = m0 such that the particle has probability 1 to turn left when

reaching it. Naturally, trajectories that otherwise would not get to a certain point now will

because of the reflection, causing the probability to increase. Consider the N −m plane of

Figure 2.1, where N are the steps, and m is the position of the particle. In the absence of a

barrier, the probability that a particle arrives atm afterN steps is given by (2.16). Take, for

10



CHAPTER 2. THEORY

example, the green path; without barrier, it would count once, but now, with a barrier, the

step AB is rather obligated, so, a trajectory that would otherwise prefer B’ (without barrier)

has now to be added to the probability. Note that for every trajectory leading to the point

m after hitting the barrier once, there is exactly one trajectory leading to the image point

after a single reflection. Conversely, for every trajectory leading to the image point that

cross the barrier once, only one trajectory leads to m after a single reflection. Thus, there

is a one-to-one correspondence between a trajectory and its reflected companion. The

probability will contain the trajectories without barrier plus the trajectories leading to the

image point

PW (m,N) = P (m,N) + P (2m0 −m,N) (2.31)

where P (m,N) is given by (2.16). If we shift the problem such as the barrier is at m = 0

we have, for N � m

PW (m,N) =

√
2

πN

(
e−

(m−m0)2

2N + e
(m+m0)2

2N

)
(2.32)

which in the continuous limit x = mh, t = Nτ h, τ → 0 becomes

PW (x, t) =

√
1

4πDt

(
e−

(x−x0)2

4Dt + e−
(x+x0)2

4Dt

)
(2.33)

with D the diffusion coefficient defined in (2.19). Just as (2.30) is a solution to the the

diffusion equation (2.21), PW (x, t) is too with boundary conditions

J(x = 0, t) =

[
∂PW (x, t)

∂x

]
x=0

= 0 (2.34)

where J(x, t) is the current at position x at time t. This is a reflecting boundary condition,

and states that there is no particle flux through the wall.

11



CHAPTER 2. THEORY

2.3 Computing propagators

Many natural phenomena are described by differential equations, from quantum to

classical physics. In particular, two well-known differential equations are the diffusion and

Schrödinger equations; both describe the time evolution of probability density. One can

obtain the probability density at any time by knowing a quantity called Green’s function,

which is related to the differential operator of the equation and propagates the probability

function in time. In this section, we will calculate the Green’s function of the diffusion and

Schrödinger equations. In diffusion, we shall find the same results as in our discussion on

random walks, but as R. Feynman said: “there is a pleasure in recognizing old things from

a new point of view.”

2.3.1 Green’s Function

In particular, if L is a linear differential operator, acting at a point (x0, t0), we define

the Green’s function G(x, x0; t, t0) of the operator L as:

L(x, t)G(x, x0; t, t0) = δ(x− x0)δ(t− t0). (2.35)

If we multiply (2.35) by some function u(x0, t0) and integrate in x0

L(x, t)

∫
dx0 G(x, x0; t, t0)u(x0, t0) = δ(t− t0)

∫
dx0 δ(x− x0)u(x0, t0)

= δ(t− t0)u(x, t0), (2.36)

and define

u(x, t) =

∫
dx0 G(x, x0; t, t0)u(x0, t0), (2.37)

we are left with

L(x, t)u(x, t) = δ(t− t0)u(x, t0). (2.38)

12
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For t 6= t0, (2.38) is

L(x, t)u(x, t, t0) = 0, (2.39)

which is a linear homogeneous differential equation. If we know the Green’s function

G(x, x0; t, t0) and the initial condition u(x0, t0), the solution is given by (2.37).

For t = t0 we require that

lim
t→t0

G(x, x0; t, t0) = δ(x− x0). (2.40)

Conversely, if we consider an initial impulse u(x0, t0) = δ(x′ − x0) in equation (2.37), then

u(x, t) = G(x, x′; t, t0), which allows us to interpret the Green’s function as the system’s

response to an impulse. On the other hand, equation (2.37) shows that the Green’s function

plays the role of propagation between the function u at some time, to another. That is

why in some contexts, Green’s functions are called propagators.

2.3.2 The diffusion propagator

Now we compute the propagator for a diffusion process. The result is obtained from

the Green’s function defining differential equation. A fluid of density ρ(x, t) tends to flow

from a point where the density is high, towards a region of low density. The current J is

therefore assumed to be proportional to the gradient of the density:

J = −D∂ρ

∂x
, (2.41)

where D is the so-called diffusion constant. If we combine (2.41) with the continuity

equation, we obtain the diffusion equation

(
∂

∂t
−D ∂2

∂x2

)
ρ(x, t) = 0. (2.42)

13
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Now we want to compute the Green’s function G(x, x0; t, t0) of (2.64) in an infinite one-

dimensional region. The defining differential equation for G is

(
d

dt
−D d2

dx2

)
G(x, x0; t, t0) = 4πδ(x− x0)δ(t− t0) (2.43)

Since the Green’s function depends only on the differences, we define r = x−x0, τ = t− t0.

We write down the Fourier transform of the Green’s function

G(r, τ) =
1

2π

∫
dk eikrg(k, τ) (2.44)

We insert (2.44) into the defining equation (2.43) and use the Fourier representation of the

δ function to obtain

dg

dτ
+Dk2g = 4πδ(τ). (2.45)

This differential equation has the following causal solution

g(k, τ) = 4πDe−k
2τDΘ(τ) (2.46)

if we insert (2.46) in (2.44), we obtain a Gaussian integral (Appendix A)

G(r, τ) =
1

2π

∫
dk eikr4πDe−k

2τDΘ(τ) (2.47)

leading to the Green’s function

G(r, τ) =
1√

4πDτ
e−

r2

4Dτ Θ(τ). (2.48)

which is the same function we obtained for the probability distribution in a continuous

random walk (2.30).

14
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2.3.3 The Schrödinger propagator

The Schrödinger equation is

−~2∂
2Ψ(x, t)

∂x2
= i~

∂Ψ(x, t)

∂t
, (2.49)

if UE is an eigenstate of the Hamiltonian

−~2 d2Ψ(x, t)

dx2
= EUE , (2.50)

then we can write down

Ψ(x, t) =
∑
E

AE(t)UE(x) (2.51)

AE(t) =

∫
U∗E(x)Ψ(x, t)dx. (2.52)

Now we insert (2.51) in (2.49) obtaining

−~2
∑
E

AE(t)

(
d2UE(x)

dx2

)
= i~

∑
E

UE(x)

(
dAE(t)

dt

)
, (2.53)

which, using equation (2.50) and the ortonormality of UE , gives a differential equation for

AE(t)

EAE(t) = i~
dAE(t)

dt
(2.54)

with solution

AE(t) = AE(t′)ei
E(t′−t)

~ . (2.55)

15
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Inserting (2.55) in (2.51) and using (2.52) we have

Ψ(x, t) =
∑
E

AE(t′)ei
E(t′−t)

~ UE(x)

=
∑
E

(∫
U∗E(x′)Ψ(x′, t′)dx′

)
ei
E(t′−t)

~ UE(x)

=

∫ (∑
E

U∗E(x′)UE(x)ei
E(t′−t)

~

)
Ψ(x′, t′)dx′, (2.56)

where, by comparing with the convolution property (2.37), we have found the eigenmode

expansion for the Green’s function

G(x, t;x′, t′) =
∑
E

U∗E(x′)UE(x)ei
E(t′−t)

~ . (2.57)

Using plane waves for the eigenfunctions

UE(x) =
1√
2π~

ei
px
~ , (2.58)

we have

G(x, t;x′, t′) =
1

2π~

∫
ei
p(x−x′)

h e−i
p2(t−t′)

2mh dp, (2.59)

working on the argument of the exponential, we finally get to

G(x, t;x′, t′) =

√
m

2π~iT
e
im
2~T (x−x′)2

(2.60)

with T = t − t′. This is the unrestricted, free Green’s function that describes the propa-

gation into the future as well as back into the past. The retarded and advanced Greens

functions are

G+(x, t;x′, t′) = Θ(t− t′)G(x, t;x′, t′) (2.61)

G−(x, t;x′, t′) = −Θ(t′ − t)G(x, t;x′, t′) (2.62)

16
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Note that the transformation T → −iτ changes the Green’s function (2.60) into the Green’s

function for the diffusion equation.

2.3.4 The reflective wall

Diffusion equation

We aim to describe diffusion in half space with reflecting boundary conditions. The

latter means that there is no particle flux across the boundary. If the current J is propor-

tional to the gradient of particle density as stated in (2.41), then the boundary condition

will be

lim
x→0

J(x, t) =
dρ(x, t)

dx
= 0 (2.63)

with the boundary located in x = 0. In particular, we want to obtain the Green’s function

KW (x, x0; t, t0) for the diffusion equation with such a boundary condition, i.e, a solution

for

(
d

dt
−D d2

dx2

)
KW (x, x0; t, t0) = 0. (2.64)

with initial condition

lim
t→t0

KW (x, x0; t, t0) = δ(x− x0) (2.65)

and boundary condition

lim
x→0

dKW (x, x0; t, t0)

dx
= 0. (2.66)

The propagator that fulfills all those requirements is

KW (x, x0, τ) =

(
1

4πτD

) 1
2
(
e−

(x−x0)2

4Dτ + e−
(x+x0)2

4Dτ

)
, (2.67)

where τ = t−t0. This propagator represents the probability density of a Brownian particle

to propagate from (x0, t0) to (x, t) in the presence of a reflective barrier at x = 0, and is the
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same function we encounter in a continuous random walk with a reflective barrier (2.33).

Quantum mechanics

In this section we will compute the quantum mechanical propagator of a particle con-

fined to the half plane. The completeness relation reads

1 =

∫ ∞
0
|r〉 〈r| dr (2.68)

we want to compute

〈rb, tb|ra, ta〉 = 〈rb| e−i
Ĥ(tb−ta)

~ |ra〉 (2.69)

= 〈rb|
N−1∏
n=1

e−i
Ĥε
~ |ra〉 . (2.70)

We factorize into many time slices

〈rb, tb|ra, ta〉 =
N∏
n=1

[∫ ∞
0

drn

]N+1∏
j=1

〈rj | e−i
Ĥε
~ |rj−1〉 , (2.71)

and as H(p̂j) = H(−i~∂rj ), we have

〈rb, tb|ra, ta〉 =
N∏
n=1

[∫ ∞
0

drn

]N+1∏
j=1

e−
iε
~ H(−i~∂rj ) 〈rj |rj−1〉 (2.72)

The spectral representation of the transition element 〈r|r′〉 is

〈
r
∣∣r′〉 =

∫ ∞
−∞

dk 〈r|k〉
〈
k
∣∣r′〉 , (2.73)

we insert the 〈r|k〉 corresponding to a solution whose boundary condition is to vanish at

r = 0

〈r|k〉 =
1√
4π

(
eikr − e−ikr

)
. (2.74)
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Replacing in Equation (2.73) we have

〈
r
∣∣r′〉 =

1

4π

∫ ∞
−∞

dk
(
eikr − e−ikr

)(
e−ikr

′ − eikr′
)

=
1

2π

∫ ∞
−∞

dk
(
eik(r−r′) − eik(r+r′)

)
= δ(r − r′)− δ(r + r′), (2.75)

then, replacing p = ~k

e−
iε
~ H(−i~∂rj ) 〈rj |rj−1〉 = e−

iε
~ H(−i~∂rj )

∫ ∞
−∞

dp

2π~

(
ei
p
~ (rj−rj−1) − ei

p
~ (rj+rj−1)

)
=

∫ ∞
−∞

dp

2π~
e−

iε
~ H(p)

(
ei
p
~ (rj−rj−1) − ei

p
~ (rj+rj−1)

)
. (2.76)

It can be seen that, for simplicity, we can work on the amplitude 〈rb, tb|ra, ta〉 with zero

Hamiltonian and at the end add − iε
~H(p) to the exponent inside the momentum integral.

Equation (2.75) can be re-written as follows

〈
r
∣∣r′〉 =

∑
x=±r

∫ ∞
−∞

dp

2π~
exp

(
i

~
p(x− x′) + iπ(σ(x)− σ(x′))

) ∣∣∣∣
x′=r′

(2.77)

where

σ(x) := Θ(−x). (2.78)

The amplitude with zero Hamiltonian is

〈rb, tb|ra, ta〉0 = 〈ra|rb〉 (2.79)

we factorize into many time slices

〈rb, tb|ra, ta〉0 =
N∏
n=1

[∫ ∞
0

drn

]N+1∏
i=1

〈ri|ri−1〉 , (2.80)
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by inserting equation (2.77) we obtain

〈rb, tb|ra, ta〉0 =
N∏
n=1

[∫ ∞
0

drn

]N+1∏
j=1

 ∑
xj=±rj

∫ ∞
−∞

dpj
2π~

 exp

(
i

~
p(xj − xj−1) + iπ(σ(jj)− σ(xj−1))

)
,

(2.81)

for every ”n” we will basically have an integral of the type

∫ ∞
0

dr (f(r) + f(−r)) =

∫ ∞
−∞

dxf(x) (2.82)

only the last sum cannot be accommodated in this way because there is no integral over

rN+1. We get to

〈rb, tb|ra, ta〉0 =
∑

xb=±rb

N∏
n=1

[∫ ∞
−∞

dxn

]N+1∏
j=1

[∫ ∞
−∞

dpj
2π~

]
exp

(
N+1∑
k=1

i

~
p(xk − xk−1) + iπ(σ(xk)− σ(xk−1))

)
,

(2.83)

where we have set xN+1 = xb, rN+1 = rb. Now the integration measure is the usual for

the path integral without constraints. In the continuum limit, the exponent corresponds

to an action

Aσ0 [p, x] =

∫ tb

ta

dt (pẋ+ ~π∂tσ(x)) = A0(p, x) +Aσtopol. (2.84)

Consider now a free particle in the right half space with the Hamiltonian

H =
p2

2m
(2.85)

as we stated before, the Hamiltonian can be added to the action without a problem, so we

have

A[p, x] =

∫ tb

ta

dt

(
pẋ− p2

2m
+ ~π∂tσ(x)

)
, (2.86)
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and the topological term is

Aσtopol = ~π (σ(xb)− σ(xa)) . (2.87)

The propagator will be

〈rb, tb|ra, ta〉 =
∑

xb=±rb

∫
Dx

∫
Dp

2π~
exp

(
i

~

∫ tb

ta

dt

[
pẋ− p2

2m
+ ~π (σ(xb)− σ(xa))

])
,

(2.88)

the integrals are carried out in the same way as for a free particle since the last is a pure

boundary term. The result is

〈rb, tb|ra, ta〉 =
∑

xb=±rb

√
m

2πi(tb − ta)
exp

[
im

2~
(xb − xa)2

tb − ta
+ iπ [σ(xb)− σ(xa)]

]

=

√
m

2πi(tb − ta)

(
exp

[
im

2~
(rb − ra)2

tb − ta

]
− exp

[
im

2~
(rb + ra)

2

tb − ta

])
(2.89)

with xa = ra.
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Calculation and Results

3.1 Diffusion scenario

3.1.1 Barrier with known removal time

Consider a Brownian particle that starts on one side of a reflective wall located at

x = 0. The wall is removed at t = ∆t1 and reinstated at t = ∆t1 + δ. When the wall is

removed, the particle can cross to the other side or stay. In this section, we will obtain the

probability of finding the particle at some position at a time T . The one-dimensional free

diffusion kernel is

KF (x0;xN , τ) =

(
1

4πDτ

) 1
2

exp

[
−(x0 − xN )2

4Dτ

]
, (3.1)

the propagator for diffusion with a reflective wall is

KW (x0, xN , τ) = KF (x0;xN , τ) +KF (x0;−xN , τ), (3.2)

which is obtained from solving the diffusion equation with initial condition

lim
τ→0

K(x0, xN , τ) = δ(xN − x0), (3.3)
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and boundary condition

lim
x→0

∂xK(x0, x, τ) = 0. (3.4)

Figure 3.1: To compute the propagator, we divide the total time into N − 1 segments of
length ε and one segment of length δ; in this case, we have N = 4 segments. The piece of
length δ is a free particle propagator, while the others are wall propagators.

We will construct a path integral made of infinitesimal diffusion wall propagators (3.2),

and change one of those by a free propagator (3.1). If the wall is located at x = 0 and

the particle starts at the positive side, all points before crossing will be integrated between

[0,∞), and the points after crossing between (−∞, 0]. If the total time of the experiment

is T , and the wall was removed for a time δ, then it was closed for a time T − δ, we

will divide the time it was closed in N − 1 segments of length ε, so the total time will be

T = (N − 1)ε+ δ, Figure 3.1 shows the time discretization when N = 4. The propagator

will be

KA1(x0, xN , δ, ε, k,N) =(
k∏
i=1

∫ ∞
0

dxi′

) N−1∏
j=k+1

∫ 0

−∞
dxj

 (
k∏

i′=1

KW (xi′−1, xi′ , ε)

)
KF (xk, xk+1, δ)

×

 N−1∏
j′=k+1

KW (xj′ , xj′+1, ε)

 , (3.5)
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where the subscript A stands for “After”, T is the total time, and xN ∈ (−∞, 0]. As the

wall propagators satisfy the following Chapman-Kolmogorov equation for Markov processes

[11]

∫ ∞
0

dx1 KW (x0, x1, t1 − t0)KW (x1, x2, t2 − t1) =

∫ 0

−∞
dx1 KW (x0, x1, t1 − t0)KW (x1, x2, t2 − t1)

= KW (x0, x2, t2 − t0), (3.6)

we end up with

KA1(x0, xN , δ, ε, k,N) =∫ ∞
0

dxk

∫ 0

−∞
dxk+1 KW (x0, xk, kε)KF (xk, xk+1, δ)KW (xk+1, xN , ε(N − 1− k)), for xN < 0

(3.7)

Consider the case where the particle stays before the barrier instead of crossing within the

time interval δ. The corresponding propagator is

KB1(x0, xN , δ, ε, k,N) =∫ ∞
0

dxk

∫ ∞
0

dxk+1 KW (x0, xk, kε)KF (xk, xk+1, δ)KW (xk+1, xN , ε(N − 1− k)), for xN > 0

(3.8)

where B stands for “Before”. Adding this together, the total propagator will be

K1(x0, xN , δ, ε, k,N) = KB1(x0, xN , δ, ε, k,N)Θ(xN ) +KA1(x0, xN , δ, ε, k,N)Θ(−xN ).

(3.9)

The integrals in equations (3.7), (3.8) are solved analytically, yet the explicit expression is

not shown here since it is rather complicated (see Appendix B). Figure 3.2 shows equation

(3.9) as a function of xN for different δ, here we use the constraint ε = T−δ
N−1 that states

that for a fixed total time T and partition N , the time steps ε have to vary as a function

of δ. We observe that when δ → T , the curve approaches the free particle, and conversely,

when δ → 0, the curve tends to the reflective wall. This is a direct consequence of the
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δ=0.001 s

δ=0.1 s
δ=0.5 s

δ=0.9 s

Free particle δ=1 s

-4 -2 2 4 6 8 10
xN (m)

0.1

0.2

0.3

0.4

0.5
K1(xN) (1/m)

Figure 3.2: Probability density K1 as a function of the position xN given that the particle
starts at x0 = 1 m, with a diffusion coefficient d = 0.5 m2 s−1, a total time T = 1
sec, a crossing step k = 2 and a partition N = 5. The different curves are for δ =
0.001, 0.1, 0.5, 0.9 and 1 sec.

propagator’s construction: setting δ = 0 in equations (3.7), (3.8) we obtain

KB1(x0, xN , δ, ε, k,N) =∫ ∞
0

dxk

∫ ∞
0

dxk+1 KW (x0, xk, kε)δ(xk − xk+1)KW (xk+1, xN , ε(N − 1− k)), for xN > 0

KA1(x0, xN , δ, ε, k,N) =∫ ∞
0

dxk

∫ 0

−∞
dxk+1 KW (x0, xk, kε)δ(xk − xk+1)KW (xk+1, xN , ε(N − 1− k)), for xN < 0

where δ(xk, xk+1) is the Dirac delta. Solving the xk+1 integral for KB1 we get

KB1(x0, xN , δ, ε, k,N) =

∫ ∞
0

dxk KW (x0, xk, kε)KW (xk, xN , ε(N − 1− k))

= KW (x0, xN , ε(N − 1)), for xN > 0.

and using T = (N − 1)ε+ δ = (N − 1)ε, KB1 becomes

KB1 = KW (x0, xN , T ), for xN > 0, δ = 0. (3.10)
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In the case of KA1, since xk > 0 and xk+1 < 0, the integration of the Dirac delta gives

zero, thus KA1 for δ = 0. Therefore, the total propagator for δ = 0 is

K1(x0, xN , T ) = KA1(x0, xN , T )Θ(−xN ) +KB1(x0, xN , T )Θ(xN ) = KW (x0, xN , T )Θ(xN )

(3.11)

Now, for δ = T we have ε = T−δ
N−1 = 0, so the two wall propagators of equations (3.7), (3.8)

will become Dirac deltas, giving

KB1(x0, xN , T ) =

∫ ∞
0

dxk

∫ ∞
0

dxk+1 δ(x0, xk)KF (xk, xk+1, T )δ(xk+1, xN ), for xN > 0

KA1(x0, xN , T ) =

∫ ∞
0

dxk

∫ 0

−∞
dxk+1 δ(x0, xk)KF (xk, xk+1, T )δ(xk+1, xN ), for xN < 0.

Solving the integrals we have

KB1(x0, xN , T ) = KF (x0, xN , T ), for xN > 0

KA1(x0, xN , T ) = KF (x0, xN , T ), for xN < 0, (3.12)

arriving to the free propagator as expected

K1(x0, xN , T ) = KF (x0, xN , T )Θ(xN ) +KF (x0, xN , T )Θ(−xN ) = KF (x0, xN , T ) (3.13)

From Figure 3.2, we observe a discontinuity at x = 0, meaning that the propagator for the

left side has a different value at the boundary than the one from the right. In the reflective

wall the probability density drops abruptly to zero at the boundary, and conversely, in the

free particle case there is no discontinuity at all. Being an interpolation between those

two cases, our propagator K1 shows a gap at x = 0 that decreases as δ → T (Figure 3.2).

Further, we can obtain the explicit value of that gap via

∆K1 = KB1(x0, xN , δ, ε, k,N)−KA1(x0, xN , δ, ε, k,N)

∣∣∣∣
xN=0

(3.14)
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which, using the explicit values of KB1 and KA1 from eqs. (B.8) & (B.9) is

∆K1 =
e
− x2

0
4D(δ+ε(−k+N−1)+kε)√

πD(δ + ε(−k +N − 1) + kε)
(1− 4T (α, β)) (3.15)

where T (α, β) is the Owen’s T function [30] and

α ≡
x0

√
ε(−k +N − 1)√

2D(δ + kε)(δ + ε(−k +N − 1) + kε)

β ≡
√
δ(δ + ε(−k +N − 1) + kε)

ε
√
k(−k +N − 1)

.

Note that when δ is zero, β becomes zero too and the Owen’s T function vanishes, giving

∆K1 =
e
− x2

0
4Dε(+N−1)√

πDε(N − 1)
=

e−
x2
0

4DT

√
πDT

(3.16)

which is precisely the reflecting wall propagator (3.2) evaluated at xN = 0.

Conversely, if δ is the total time T , then ε is zero; causing α to vanish and β to be infinitely

large. The Owen’s function becomes

lim
β→∞

T (0, β) =
1

4
,

thus giving ∆K1 = 0, which is the free particle case.

Figure 3.3 shows ∆K1 from equation (3.15) as a function of δ. Four curves are plotted,

each for a different total time T ; here we see the interpolation from the reflecting wall to

the free particle obtained above. Next is to show that the total probability is normalized

to one, i.e

∫ ∞
0

dxN KB1(x0, xN , δ, ε, k,N) +

∫ 0

−∞
dxN KA1(x0, xN , δ, ε, k,N) = 1. (3.17)

The proof goes as follows: let PB1 and PA1 be the probabilities for the particle to

be before or after the barrier, respectively. Since the integrand is a squared integrable
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T=1 s
T=2 s

T=3 s

T=4 s

0.2 0.4 0.6 0.8 1.0

δ

T

0.1

0.2

0.3

0.4

0.5
ΔK1(δ)

Figure 3.3: Equation (3.15) is plotted as a function of δ, each curve is for a different total
time T . We used a diffusion coefficient of D = 0.5 m2 s−1, initial position x0 = 1 m,
crossing step k = 2 and a partition N = 5

function, we can swap the integrals to get

PA1(x0, T ) =

∫ 0

−∞
dxN

∫ ∞
0

dx1

∫ 0

−∞
dx2 KW (x0, x1,∆t1)KF (x1, x2, δ)KW (x2, xN , T − δ −∆t1)

=

∫ ∞
0

dx1

∫ 0

−∞
dx2

∫ 0

−∞
dxN KW (x0, x1,∆t1)KF (x1, x2, δ)KW (x2, xN , T − δ −∆t1),

(3.18)

defining ∆t2 = T − δ −∆t1 we have that (3.18) is

PA1 =(
1

4πD∆t1

) 1
2
(

1

4πDδ

) 1
2
(

1

4πD∆t2

) 1
2
∫ ∞

0
dx1

∫ 0

−∞
dx2

∫ 0

−∞
dxN

(
e
− (x0−x1)2

4D∆t1 + e
− (x0+x1)2

4D∆t1

)
e−

(x1−x2)2

4Dδ

×

(
e
− (x2−xN )2

4D∆t2 + e
− (x2+xN )2

4D∆t2

)

=

(
1

4πD∆t1

) 1
2
(

1

4πDδ

) 1
2
∫ ∞

0
dx1

∫ 0

−∞
dx2 e

− (x1−x2)2

4Dδ

(
e
− (x1−x0)2

4D∆t1 + e
− (x1+x0)2

4D∆t1

)
(3.19)
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Analogously for the right side

PB1 =

(
1

4πD∆t1

) 1
2
(

1

4πDδ

) 1
2
∫ ∞

0
dx1

∫ ∞
0

dx2 e
− (x1−x2)2

4Dδ

(
e
− (x1−x0)2

4D∆t1 + e
− (x1+x0)2

4D∆t1

)
(3.20)

We can sum up the integrals over dx2 to obtain

PA1 + PB1 =

(
1

4πD∆t1

) 1
2
(

1

4πDδ

) 1
2
∫ ∞

0
dx1

∫ ∞
−∞

dx2 e
− (x1−x2)2

4Dδ

(
e
− (x1−x0)2

4D∆t1 + e
− (x1+x0)2

4D∆t1

)
,

(3.21)

and solving the integrals we find

PA1 + PB1 = 1. (3.22)

These probabilities can be expressed in terms of the the Owen’s T function T (a, b) [30].

PA1(x0, D, δ,∆t1) = 2T

(
x0

√
1

2D(δ + ∆t1)
,

√
δ

∆t1

)
(3.23)

PB1(x0, D, δ,∆t1) =

(
1− 2T

(
x0

√
1

2D(δ + ∆t1)
,

√
δ

∆t1

))
. (3.24)

On the other hand, if δ � ∆t1 we can Taylor-expand the Owen’s T function as follows

T (α, β) ≈ e−
α2

2 β

2π
+O(β3) , for β � 1 (3.25)

with β =
√

δ
∆t1

, we obtain

PA ≈
√
δ

π
√

∆t1
e
− x2

0
4D∆t1 . (3.26)

The probability for the particle to be after the wall is O(δ1/2) for δ � ∆t1.
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3.1.2 Barrier with unknown removal time: The demon.

Now consider a reflecting boundary at x = 0 that is guarded by a ”demon” who can

remove it once at a time between [0, T ], for a time δ. As in the previous case, the Brownian

particle is initially at x = x0 and crosses from the ray [0,∞) to (−∞, 0]. Since the barrier

opens at a time between t = ε and t = (N − 2)ε, we obtain the propagator by summing

over all possible tk = kε within k = [1, N − 2].

KA2(xN , x0, D, δ, ε,N) =A
( m

4πDε

)N−1
2
( m

4πDδ

) 1
2
N−2∑
k=1

(
N−1∏
i′=k+1

∫ 0

−∞
dxi′

)(
k∏
i=1

∫ ∞
0

dxi

)

×

 k∏
j=1

KW (xj−1, xj , ε)

KF (xk, xk+1, δ)

×

 N−1∏
j′=k+1

KW (xj′ , xj′+1, T − kε− δ)

 , (3.27)

where the subscript A stands for ”After” since this propagator describes the probability

density after crossing the barrier, T = (N − 1)ε+ δ and A is a normalization constant. As

the wall propagators satisfy the following Chapman-Kolmogorov equation (3.6), we write

KA2(xN , x0, D, δ, ε,N) =

A
N−2∑
k=1

(
1

4πDkε

) 1
2
(

1

4πDδ

) 1
2
(

1

4πD∆t2

) 1
2
∫ ∞

0
dxk

∫ 0

−∞
dxk+1

(
e−

(x0−xk)2

4Dkε + e−
(x0+xk)2

4Dkε

)
e−

(xk−xk+1)2

4Dδ

×

(
e
− (xk+1−xN )2

4D∆t2 + e
− (xk+1+xN )2

4D∆t2

)
. (3.28)

where ∆t2 = T−kε−δ. As in the previous case, we compute the probability density to find

a particle before the boundary (i.e., on the positive half-plane) at time T = (N − 1)ε+ δ.

This propagator is very similar to (3.28), only with a change in the integration limits of
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the xk+1 integral

KB2(xN , x0, D, δ, ε,N) =

A

N−2∑
k=1

(
1

4πDkε

) 1
2
(

1

4πDδ

) 1
2
(

1

4πD∆t2

) 1
2
∫ ∞

0
dxk

∫ ∞
0

dxk+1

(
e−

(x0−xk)2

4Dkε + e−
(x0+xk)2

4Dkε

)
e−

(xk−xk+1)2

4Dδ

×

(
e
− (xk+1−xN )2

4D∆t2 + e
− (xk+1+xN )2

4D∆t2

)
. (3.29)

Plugging this together, we obtain the total probability density

K2(xN , x0, D, δ, ε,N) = KB2(xN , x0, D, δ, ε,N)Θ(xN ) +KA2(xN , x0, D, δ, ε,N)Θ(−xN ).

(3.30)

Now we proceed to find the normalization factor needed to fulfill the condition

∫ 0

−∞
dxN KA2(xN , x0, D, δ, ε,N) +

∫ ∞
0

dxN KB2(xN , x0, D, δ, ε,N) = 1. (3.31)

Define

PA2(x0, D, δ, ε,N) =

∫ 0

−∞
dxN KA2(xN , x0, D, δ, ε,N) (3.32)

PB2(x0, D, δ, ε,N) =

∫ ∞
0

dxN KB2(xN , x0, D, δ, ε,N), (3.33)

we have

PA2(x0, D, δ, ε,N) =

A

∫ 0

−∞
dxN

N−2∑
k=1

(
1

4πD∆t1

) 1
2
(

1

4πDδ

) 1
2
(

1

4πD∆t2

) 1
2
∫ ∞

0
dxk

∫ 0

−∞
dxk+1

(
e
− (x0−xk)2

4D∆t1 + e
− (x0+xk)2

4D∆t1

)

× e−
(xk−xk+1)2

4Dδ

(
e
− (xk+1−xN )2

4D∆t2 + e
− (xk+1+xN )2

4D∆t2

)
. (3.34)

Entering the xN integral in the sum and following the same procedure as in sec. 3.1.1
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we find

PA2(x0, D, δ, ε,N) =

A

N−2∑
k=1

(
1

4πD∆t1

) 1
2
(

1

4πDδ

) 1
2
∫ ∞

0
dxk

∫ 0

−∞
dxk+1 e

−
(xk−xk+1)2

4Dδ

(
e
− (xk−x0)2

4D∆t1 + e
− (xk+x0)2

4D∆t1

)
,

(3.35)

analogously for the right side

PB2(x0, D, δ, ε,N) =

A
N−2∑
k=1

(
1

4πD∆t1

) 1
2
(

1

4πDδ

) 1
2
∫ ∞

0
dxk

∫ ∞
0

dxk+1 e
−

(xk−xk+1)2

4Dδ

(
e
− (xk−x0)2

4D∆t1 + e
− (xk+x0)2

4D∆t1

)
.

(3.36)

Carrying out the integrals and the sum we finally have

PA2(x0, D, δ, ε,N) + PB2(x0, D, δ, ε,N) = A(N − 2) = 1, (3.37)

then

A =
1

N − 2
(3.38)
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Figure 3.4: Probability density at T = 5 sec. for a Brownian particle that starts at
x0 = 4 m given that: (1) is in the presence of a reflective wall (orange), (2) is in the
presence of a demon (blue points), (3) is free (green). The three different plots account for
δ = 0.0001, 2.5, 4.9 sec. respectively. We consider a partition of N = 4.

Figure 3.4 shows a comparison between the probability densities of the free particle,

the reflecting wall, and the wall with a demon. We note that when δ → 0, the wall with
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a demon approaches the reflective wall (left plot), and conversely, when δ → T = 5 sec, it

approaches the free particle (right plot). The latter we stated in the previous section is a

consequence of the propagator’s construction. The middle plot shows neither full reflective

nor total free propagation, but a wall with a demon that removes it for a time δ = T
2 = 2.5

sec.

Going back to the total probabilities, we have

PA2(x0, D, δ, ε,N) =

(
1

N − 2

)N−2∑
k=1

(
1

4πDkε

) 1
2
(

1

4πDδ

) 1
2
∫ ∞

0
dxk

∫ 0

−∞
dxk+1 e

−
(xk−xk+1)2

4Dδ

×
(
e−

(xk−x0)2

4Dkε + e−
(xk+x0)2

4Dkε

)
, (3.39)

PB2(x0, D, δ, ε,N) =

(
1

N − 2

)N−2∑
k=1

(
1

4πDkε

) 1
2
(

1

4πDδ

) 1
2
∫ ∞

0
dxk

∫ ∞
0

dxk+1 e
−

(xk−xk+1)2

4Dδ

×
(
e−

(xk−x0)2

4Dkε + e−
(xk+x0)2

4Dkε

)
. (3.40)

which can be expressed in terms of the the Owen’s T function T (a, b) [30] as follows

PA2(x0, D, δ, ε,N) =
1

N − 2

N−2∑
k=1

2T

(
x0

√
1

2D(δ + kε)
,

√
δ

kε

)
(3.41)

PB2(x0, D, δ, ε,N) =
1

N − 2

N−2∑
k=1

(
1− 2T

(
x0

√
1

2D(δ + kε)
,

√
δ

kε

))
. (3.42)

Figure 3.5 shows equations (3.41), (3.42) as a function of the opening time δ for different

partitions N . To impose a fixed total time T we set ε = T−δ
N−1 , so that when δ increases, the

time slice ε decreases. We note that as δ → 0 the probability before the barrier approaches

one and after the barrier approaches zero. On the other hand, if δ → T both probabilities

approach the free particle case, which is the expected result. In conclusion, the smaller

parameter δ, the more confident we are that the particle is before the barrier.

A rigorous way to measure how certain we are of an outcome in a probabilistic experiment

is the Shannon’s entropy. Given an experiment of two possible outcomes, one of them with
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x0 = 0.1m
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Figure 3.5: Probability of a Brownian particle that starts at x0 = 0.1 m to be measured
at T = 100 s before (PB) or after (PA) the barrier when it is removed for a time δ s at
any moment. Three curves, one for each N = 4, 10, 50 are shown. In dashed line is the
probability to find a free particle at T = 100 s released at the same point.

probability p, the Shannon’s entropy reads

H(p) = −p log(p)− (1− p) log(1− p). (3.43)

If we use our probabilities PA and PB = 1−PA, we can obtain the entropy as a function of

δ as shown in Figure 3.6. If δ = 0 then PB = 1 which leads to H = 0 according to (3.43),

T=100 s

N=4

x0 = 0.1m

Maximum Entropy

20 40 60 80 100
δ

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H

Figure 3.6: Shannon entropy as a function of δ for fixed values of total time T = 100 s,
partition N = 4, and initial position x0 = 0.1 m.

in this case we know for certain that the particle has not crossed the boundary, fact that

minimizes the entropy. The probability for a free particle to be after the barrier is

P0(D,x0, T ) =
1

2
erfc

(
1

2
x0

√
1

DT

)
, (3.44)
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we note that it approaches 1
2 when T is large. Also, note that the entropy (3.43) has a

maximum at p = 1
2 , thus, the free particle reaches maximum entropy at long times. For

T = 100 s, d = 0.5 m2s−1, x0 = 0.1 m, we have that P0 = 0.496 and the entropy is almost

maximal. In particular, our system reaches its maximum entropy when it tends to the free

particle (δ → T ) as shown in Figure 3.6.

Further, we can study the dependence of the propagator on the time partition N . Figure

3.7 shows the configurations considered when computing the total probability for N = 5,

recall that the demon can open the barrier right after the first (wall) propagator until

right before the last, so if N = 5 there are three possibilities. In general there are N − 2

configurations we add together to obtain the total probability.

Figure 3.7: Possible configurations that sum up the Brownian particle’s total probability
to cross to the other side if we divide the time into N=5 segments. When the barrier is
closed, the segments are of length ε and δ when it is open.

Figure 3.8 shows the probability density (3.30) for different N . We find that the curve

changes very slowly, and mainly at the boundary, an increase in N results in a decrease of

the probability density at the boundary before crossing, and an increase after crossing. If

N=4

N=10

N=200

N=1000
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0.12
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Figure 3.8: Probability density for the barrier with demon as a function of the position for
different partitions N = 4, 10, 200, 1000. The right plot is a close-up of the left plot at the
boundary.

we were to take the limit N → ∞, which is the exact path integral, it seems to converge
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to a finite value. To reinforce this affirmation, we take a point near the boundary from the

curve 3.8 and plot it as a function of N (Figure 3.9). We observe that indeed for large N ,

the curve saturates to a constant value.

50 100 150 200 250 300
N

0.0630

0.0635

0.0640

0.0645

Probability Density at x=0.01 m

50 100 150 200 250 300
N

0.0075

0.0080

0.0085

0.0090

Probability Density at x=-0.01 m

Figure 3.9: Probability density at x = 0.01 m (left) and x = −0.01 m (right) for the barrier
with demon as a function of the number of partitions N .

3.2 Quantum scenario

3.2.1 Barrier with known removal time

This section addresses the case of a quantum particle in the presence of a reflective

wall potential that is turned off and on at known times. The procedure follows in the same

fashion as the diffusion case in section 3.1.1. However, the reader does not need knowledge

of the previous sections.

Consider a reflecting wall located at x = 0 and a quantum particle that is initially at x0 > 0,

the wall is removed at t = ∆t1 and reinstated at t = ∆t1 + δ. When the wall is removed,

the particle can either cross to the other side or stay. We aim to obtain the probability of

finding the particle at some position at a time T given that the wall is removed for a time

δ. In Chapter 2 we obtained that the one-dimensional Schrodinger propagator is

K0(x0, xN , T ) =

√
m

2πi~T
exp

[
im

2~T
(x0 − xN )2

]
, (3.45)

and for a particle in the presence of a reflecting wall at x = 0 the propagator becomes

KW (x0, xN , T ) = K0(x0;xN , T )−K0(x0;−xN , T ). (3.46)
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We construct a path integral made of infinitesimal half space propagators (3.46), and

change one of those by a free propagator (3.45). If the total time of the experiment is T ,

and the wall was opened for a time δ, then it was closed for a time T−δ, we divide the time it

was closed in N−1 segments of length ε; thus the total time will be T = (N−1)ε+δ. Figure

3.1 shows the time discretization when N = 4. Let KAqm be the probability amplitude

that the particle is at xN < 0 after a time T given that started at x0 > 0, then

KAqm(x0, xN , T ) =(
k∏
i=1

∫ ∞
0

dxi′

) N−1∏
j=k+1

∫ 0

−∞
dxj

 (
k∏

i′=1

KW (xi′−1, xi′ , ε)

)
K0(xk, xk+1, δ)

×

 N−1∏
j′=k+1

KW (xj′ , xj′+1, ε)

 , (3.47)

where k ∈ [1, N−2] is the crossing step, and the subscript A stands for ”After” the barrier.

As the wall propagators satisfy the following Chapman-Kolmogorov equation (3.6), we

obtain

KAqm(x0, xN ,∆t1, δ,∆t2) =

∫ ∞
0

dx1

∫ 0

−∞
dx2 KW (x0, x1,∆t1)K0(x1, x2, δ)KW (x2, xN ,∆t2).

(3.48)

where ∆t1 + δ + ∆t2 = T . Similarly, the probability amplitude that the particle is at

xN > 0 after a time T given that started at x0 > 0 is

KBqm(x0, xN ,∆t1, δ,∆t2) =

∫ ∞
0

dx1

∫ ∞
0

dx2 KW (x0, x1,∆t1)K0(x1, x2, δ)KW (x2, xN ,∆t2).

(3.49)

37



CHAPTER 3. CALCULATION AND RESULTS

where B stands for “Before” the barrier. If we take an arbitrary normalized initial state

ψ0(x0), the corresponding wave functions will be

ψA(x, δ,∆t1,∆t2) =

∫
dx0 ψ0(x0)KAqm(x0, x,∆t1, δ, T )

=

∫
dx0 ψ0(x0)

∫ ∞
0

dx1

∫ 0

−∞
dx2 KW (x0, x1,∆t1)K0(x1, x2, δ)KW (x2, x,∆t2).

(3.50)

ψB(x, δ,∆t1,∆t2) =

∫
dx0 ψ0(x0)KBqm(x0, x,∆t1, δ, T )

=

∫
dx0 ψ0(x0)

∫ ∞
0

dx1

∫ ∞
0

dx2 KW (x0, x1,∆t1)K0(x1, x2, δ)KW (x2, x,∆t2),

(3.51)

and the total wave function is

ψ(x, δ,∆t1,∆t2) = ψA(x, δ,∆t1,∆t2)Θ(−x) + ψB(x, δ,∆t1,∆t2)Θ(x). (3.52)

Thus, the probability is given by

∫ ∞
−∞

dx |ψ(x, δ,∆t1,∆t2)|2 =

∫ ∞
−∞

dx |ψA(x, δ,∆t1,∆t2)Θ(−x) + ψB(x, δ,∆t1,∆t2)Θ(x)|2

=

∫ 0

−∞
dx|ψA(x, δ,∆t1,∆t2)|2 +

∫ ∞
0

dx|ψB(x, δ,∆t1,∆t2)|2.

(3.53)
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First, note that both ψA, ψB satisfy the Schrödinger equation with respect to ∆t2. For ψA

we have

i~
dψA
d∆t2

=

∫
dx0 ψ0(x0)

∫ ∞
0

dx1

∫ 0

−∞
dx2 KW (x0, x1,∆t1)K0(x1, x2, δ)i~

dKW (x2, x,∆t2)

d∆t2

=

∫
dx0 ψ0(x0)

∫ ∞
0

dx1

∫ 0

−∞
dx2 KW (x0, x1,∆t1)K0(x1, x2, δ)

(
− ~2

2m

d2KW (x2, x,∆t2)

dx2

)
= − ~2

2m

d2

dx2

∫
dx0 ψ0(x0)

∫ ∞
0

dx1

∫ 0

−∞
dx2 KW (x0, x1,∆t1)K0(x1, x2, δ)KW (x2, x,∆t2)

= − ~2

2m

d2ψA
dx2

, (3.54)

which implies that the probability

PA =

∫ 0

−∞
dx |ψA|2 (3.55)

does not change with ∆t2 provided that |ψA(x→ −∞)| = |ψA(x→ 0)| = 0 (Appendix

C). An analogous procedure can be carried out to conclude the same for ψB. Given that∫ 0
−∞ dx |ψA|2 and

∫∞
0 dx |ψB|2 do not change with ∆t2, we can study these probabilities at

∆t2 = 0 to simplify the computation. Using the property KW (x2, x; ∆t2 = 0) = δ(x2− x),

we have

ψA(x, δ,∆t1,∆t2 = 0) =

∫
dx0 ψ0(x0)

∫ ∞
0

dx1

∫ 0

−∞
dx2 KW (x0, x1,∆t1)K0(x1, x2, δ)δ(x2 − x),

(3.56)

which leads to

ψA(x, δ,∆t1,∆t2 = 0) =

∫
dx0 ψ0(x0)

∫ ∞
0

dx1 KW (x0, x1,∆t1)K0(x1, x, δ), for x < 0

(3.57)
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Similarly for ψB we have

ψB(x, δ,∆t1,∆t2 = 0) =

∫
dx0 ψ0(x0)

∫ ∞
0

dx1 KW (x0, x1,∆t1)K0(x1, x, δ), for x > 0

(3.58)

thus, the total wave function at ∆t2 = 0 is

ψ(x, δ,∆t1, 0) =

∫
dx0 ψ0(x0)

∫ ∞
0

dx1 KW (x0, x1,∆t1)K0(x1, x, δ), for all x (3.59)

If we also set ∆t1 = 0, the wave function (3.59) becomes

ψ(x, δ, 0, 0) =

∫
dx0 ψ0(x0)K0(x0, x, δ), for all x, (3.60)

this case was already studied by Marchweka & Schuss [22] considering an initial wave

function with compact support. They conclude that the probability propagated across the

wall is O(δ3/2) which recovers the Zeno effect for continuous detection of a particle in a

given domain [23]. A more in-depth study of the wave function (3.52) and its applications

will be left for future work.
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Chapter 4

Summary and Conclusions

This work aims to describe a barrier that is neither purely absorbing nor purely re-

flecting, but a reflecting barrier removed and reinstated. We first consider the case of a

Brownian particle that starts on one side of a reflective barrier which is removed once at

t = ∆t1 and reinstated at t = ∆t1 + δ. The construction is such that when δ tends to zero,

we recover the known probability density of a reflective wall, and when this time tends to

the total time, we recover free particle’s probability density. We obtained the path-integral

propagator and a closed expression for the particle’s probability of being before or after

the barrier at a certain time. Moreover, it is shown that the probability propagated across

the boundary is O
(
δ1/2

)
when δ � ∆t1.

In section 3.1.2, we consider a reflecting barrier removed at some time within an interval

[0, T ] and reinstated after t = δ, the uncertain time of removal is interpreted as the action

of a “demon” on the wall. We obtain the probability density and the total probability

for this process (Figures 3.5 & 3.4), where we observe an interpolation between the free

particle and the reflecting wall probability densities.

This model allows us to control how many possibilities we want to give to the demon. The

variable that module this feature is the number of partitions N ; the more we partition the

path, the more possibilities the demon has. It is shown that if we increase N , at some

point, the probability density begins to saturate (Figure 3.9), i.e., it is not dependent on

the number of partitions when this number is large. That is good news if we are interested
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in taking the limit to the exact path integral N →∞.

In section 3.2, we address the case of quantum mechanics. Consider a particle in some

normalized state ψ0 initially in the presence of a reflecting wall at x = 0. At t = ∆t1

one wall is removed for a time δ and subsequently reinstated. We found a path integral

propagator from where we can compute a wave function for a particle passing through this

kind of gate. Other works have studied this case with ∆t1 = 0, finding applications in

measurement theory [22].

Although this work is, in spirit, a solution to a purely theoretical problem, it has the

benefit of generality; the broad applicability ranges from a group of ions passing through

an ion channel to an electron propagating from a confined domain. More unconventional

scenarios can, of course, be proposed.
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Appendix A

Gaussian Integral

We aim to solve the following integral

I(a) =

∫ ∞
−∞

dx e−ax
2
. (A.1)

First take the square of I(a)

I2 =

[∫ ∞
−∞

dx e−ax
2
.

] [∫ ∞
−∞

dy e−ay
2
.

]
=

∫ ∞
−∞

∫ ∞
−∞

dxdy e−(x2+y2) (A.2)

and use polar coordinates to get

I2 = 2π

∫ ∞
0

dr re−ar
2
. (A.3)

Changing variables to u = r2, we obtain

I2 = π

∫ ∞
0

du e−au = π

[
−e
−au

a

]∞
0

=
π

a
, (A.4)

which implies that the solution to the gaussian integral is

I(a) =

∫ ∞
−∞

dx e−ax
2

=

√
π

a
(A.5)
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Computation of the integrals

We have the integrals

KA1 =

∫ ∞
0

dx1

∫ 0

−∞
dx2 KW (x0, x1,∆t1)KF (xk, x2, δ)KW (x2, xN ,∆t2)

KB1 =

∫ ∞
0

dxk

∫ ∞
0

dx2 KW (x0, x1,∆t1)KF (xk, x2, δ)KW (x2, xN ,∆t2), (B.1)

using eqs. (3.1), (3.2) the problem reduces to solving

I− =

∫ ∞
0

dx1

∫ 0

−∞
dx2

(
e
− (x0−x1)2

4D∆t1 + e
− (x0+x1)2

4D∆t1

)
e−

(x1−x2)2

4Dδ

(
e
− (x2−xN )2

4D∆t2 + e
− (x2+xN )2

4D∆t2

)

I+ =

∫ ∞
0

dx1

∫ ∞
0

dx2

(
e
− (x0−x1)2

4D∆t1 + e
− (x0+x1)2

4D∆t1

)
e−

(x1−x2)2

4Dδ

(
e
− (x2−xN )2

4D∆t2 + e
− (x2+xN )2

4D∆t2

)
(B.2)

Working out the inner integral and defining

c (D,∆t1, δ,∆t2) ≡ ∆t2

2
√
Dδ∆t2(δ + ∆t2)

d (D,xN ,∆t1, δ,∆t2) ≡ δxN

2
√
Dδ∆t2(δ + ∆t2)

g (x1, xN ,∆t1, δ,∆t2) ≡ −
∆t1x

2
N + 2∆t1x1xN + 2x2

0 (δ + ∆t2) + x2
1 (2 (δ + ∆t2) + ∆t1)

4d∆t1 (δ + ∆t2)
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we have

I± =

∫ ∞
0

dx1

(
e

(x0−x1)2

4D∆t1 + e
(x0+x1)2

4D∆t1

)
8πD

√
∆t1 (δ + ∆t2)

(
1 + e

x1xN
D(δ+∆t2) ± erf (cx1 − d)± e

x1xN
D(δ+∆t2) erf (cx1 + d)

)
exp (g) .

(B.3)

Defining

fn(a, b, c, d) =

∫ ∞
0

dx xne−ax
2+bxerf (cx+ d) (B.4)

we note that eq. (B.3) contains integrals of the form f0. From the integral tables we get

f1(a, b, c, d) =
e
b2

4a

4a

(4
√
πb

(
T

(
2ad+bc√

2
√
a(a+c2)

,
√
a(2cd−b)
2ad+bc

)
− T

(
b√

2
√
a
, 2
√
ad
b

))
√
a

+ 2e−
b2

4a erf(d) +

√
πberf

(
2ad+bc

2
√
a(a+c2)

)
√
a

+
2ce
− (−2ad−bc)2

4a(a+c2) erfc
(

2cd−b
2
√
a+c2

)
√
a+ c2

−
2b
(

tan−1
(√

a(2cd−b)
2ad+bc

)
− tan−1

(
2
√
ad
b

)
− tan−1

(
c√
a

))
√
π
√
a

)
, (B.5)

where T (, ) is the Owen’s T function [30]. Integrating by parts using u = erf(cx + d),

v = e−ax
2+bx in the usual prescription, we obtain

−2af1 + bf0 = −erf(d)− 2c√
π

∫ ∞
0

dx e−ax
2+bx−(cx+d). (B.6)
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Finally, solving the gaussian integral and inserting (B.5) gives

f0(a, b, c, d) =
e
b2

4a

2b

(
4
√
πb
(
T
(

2ad+bc√
2
√
a
√
a+c2

,
√
a(2cd−b)
2ad+bc

)
− T

(
b√

2
√
a
, 2
√
ad
b

))
√
a

+ 2e−
b2

4a erf(d)

+

√
πberf

(
2ad+bc

2
√
a
√
a+c2

)
√
a

+
2ce
− (2ad+bc)2

4a(a+c2) erfc
(

2cd−b
2
√
a+c2

)
√
a+ c2

+
2b
(
− tan−1

(√
a(2cd−b)
2ad+bc

)
+ tan−1

(
2
√
ad
b

)
+ tan−1

(
c√
a

))
√
π
√
a

)

−
ce
−4ad2+b2−4bcd

4(a+c2)
(

erf
(

b−2cd
2
√
a+c2

)
+ 1
)

b
√
a+ c2

− erf(d)

b
. (B.7)

As stated above, I± can be arranged such as it contains only integrals of the form f0 and

ordinary gaussians. Since we already know those results, we can work out I± and therefore,

KA1 and KB1 . Defining

n(D,∆t1,∆t2, δ) ≡
1

8πD
√

∆t1

√
δ + ∆t2

y (D,∆t2,∆t1, x0, δ, xN ) ≡ −
x2
N

4D (δ + ∆t2)
− x2

0

4D∆t1

a (D,∆t2,∆t1, δ) ≡ −
δ + ∆t1 + ∆t2

4δD∆t1 + 4D∆t2∆t1

b (D,∆t2,∆t1, x0, δ, xN ) ≡ − δ + ∆t1 + ∆t2

4δD∆t1 + 4D∆t2∆t1

c (D,∆t2, δ, xN ) ≡ ∆t2

2
√
δD∆t2 (δ + ∆t2)

d (D,∆t2, δ, xN ) ≡ δxN

2
√
δD∆t2 (δ + ∆t2)
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and

i1 (D,x0, xN ,∆t1, δ,∆t2) ≡ 2n(D,∆t1,∆t2, δ)

√
πD∆t1 (δ + ∆t2)

δ + ∆t1 + ∆t2
e
− (xN+x0)2

4D(δ+∆t1+∆t2)

(
e

x0xN
D(δ+∆t1+∆t2) + 1

)
i2 (D,x0, xN ,∆t1, δ,∆t2) ≡ n(D,∆t1,∆t2, δ)e

y(D,∆t2,∆t1,x0,δ,xN )(
f0 (−a (D,∆t2,∆t1, δ) , b (D,∆t2,∆t1,−x0, δ,−xN ) , c (D,∆t2, δ, xN ) ,−d (D,∆t2, δ, xN ))

+ f0 (−a (D,∆t2,∆t1, δ) , b (D,∆t2,∆t1, x0, δ,−xN ) , c (D,∆t2, δ, xN ) ,−d (D,∆t2, δ, xN ))
)

i3 (D,x0, xN ,∆t1, δ,∆t2) ≡ n(D,∆t1,∆t2, δ)e
y(D,∆t2,∆t1,x0,δ,xN )(

f0 (−a (D,∆t2,∆t1, δ) , b (D,∆t2,∆t1,−x0, δ, xN ) , c (D,∆t2, δ, xN ) , d (D,∆t2, δ, xN ))

+ f0 (−a (D,∆t2,∆t1, δ) , b (D,∆t2,∆t1, x0, δ, xN ) , c (D,∆t2, δ, xN ) , d (D,∆t2, δ, xN ))
)

the integrals (B.1), are

KA1 = i1 − i2 − i3 (B.8)

KB1 = i1 + i2 + i3 (B.9)
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Appendix C

Conservation of the quantum

probability

Let ψ(x, t) be a state that satisfies the Schrödinger equation. The time derivative of

the probability in the domain [a, b] is

d

dt

∫ b

a
|ψ(x, t)|2dx =

d

dt

∫ b

a
ψ(x, t)∗ψ(x, t)dx

=

∫ b

a

(
ψ
∂ψ∗

∂t
+ ψ∗

∂ψ

∂t

)
. (C.1)

Now consider the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
(C.2)

and its conjugate

−i~∂ψ
∗

∂t
= − ~2

2m

∂2ψ∗

∂x2
, (C.3)

if we multiply C.2 by ψ∗, C.3 by ψ and then substract C.2−C.3 we get to

(
ψ
∂ψ∗

∂t
+ ψ∗

∂ψ

∂t

)
=

i~
2m

(
ψ∗
∂2ψ

∂x2
− ψ∂

2ψ∗

∂x2

)
, (C.4)

48



APPENDIX C. CONSERVATION OF THE QUANTUM PROBABILITY

inserting this into C.1 and integrating by parts we obtain

d

dt

∫ b

a
|ψ(x, t)|2dx =

i~
2m

∫ b

a

(
ψ∗
∂2ψ

∂x2
− ψ∂

2ψ∗

∂x2

)
=

i~
2m

[
ψ∗
∂ψ

∂x
− ψ∂ψ

∗

∂x

]b
a

= 0. (C.5)

The above is satisfied provided

|ψ| → 0 at the boundaries. (C.6)
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