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«You can only find truth with logic
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ABSTRACT

The seriation problem seeks to order a sequence of n objects when the only informa-
tion we are given is a dissimilarity matrix between all pairs of objects. In linear seriation
the goal is to find a linear order of the objects in a manner that is consistent with their dis-
similarity. For this problem optimal O(n?) algorithms are known. A generalization of the
previous problem is circular seriation, where the goal is to find a circular order instead. In
this thesis we study the circular seriation problem. Our contributions can be summarized
as follows. First, we introduce circular Robinson matrices as the natural class of dissim-
ilarity matrices for the circular seriation problem. Second, for the case of strict circular
Robinson dissimilarity matrices we provide an optimal O(n?) algorithm for the circular
seriation problem. Finally, we propose a statistical model to analyze the well-posedness of
the circular seriation problem for large n. In particular, we establish O(log(n)/n) rates on
the distance between any circular ordering found by solving the circular seriation problem

to the underlying order of the model, in the Kendall-tau metric.

Keywords: Circular seriation, circular Robinson dissimilarities, PQ-trees, circular Robin-
sonian matrices, circular-arc hypergraphs, circular embeddings of graphs, generative model,

unsupervised learning.
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RESUMEN

El problema de la seriacién busca ordenar una secuencia de n objetos cuando la unica
informacion que se nos da es una matriz de disimilitud entre todos los pares de objetos.
En la seriacion lineal, el objetivo es encontrar un em orden lineal de los objetos man-
era que sea consistente con su disimilitud. Para este problema se conocen los algoritmos
6ptimos O(n?). Una generalizacién del problema anterior es seriacion circular, donde
el objetivo es encontrar un em orden circular. En esta tesis estudiamos el problema de
la seriacion circular. Nuestras contribuciones se pueden resumir de la siguiente manera.
Primero, presentamos em matrices circulares de Robinson como la clase natural de ma-
trices de disimilitud para el problema de seriacion circular. En segundo lugar, para el caso
de em matrices de disimilitud circular estrictas de Robinson proporcionamos un algo-
ritmo O(n?) 6ptimo para el problema de seriacioén circular. Finalmente, proponemos un
modelo estadistico para analizar el buen planteamiento (well-posedness en el sentido de
Hadamard) del problema de seriacion circular para grandes valores de n. En particular,
establecemos tasas del orden O(log(n)/n) para la distancia entre cualquier orden circular
encontrado al resolver el problema de seriacion circular al orden subyacente del modelo,

en la métrica de Kendall-tau.

Palabras Claves: Seriacion circular, matrices de Robinson, drboles PQ, hipergrafos de

arco, modelo generativo, aprendizaje no supervisado

X



1. INTRODUCTION

The seriation problem seeks to recover a latent ordering from dissimilarity informa-
tion (Recanati, Briils, & d’Aspremont, 2017). The input for this problem is a matrix
measuring pairwise dissimilarity between a set of n elements. Liiv defines seriation as
“an exploratory data analysis technique to reorder objects into a sequence along a one-
dimensional continuum so that it best reveals regularity and patterning among the whole
series” (Liiv, 2010). In seriation, one typically assumes that the data can be ordered along
a chain where the dissimilarity between elements increases with respect to their distance
within this chain. In practice, we observe a random permutation of this dissimilarity ma-
trix, where the elements are not indexed according to that latent ordering. Seriation then
seeks to find that global latent ordering using only pairwise dissimilarity (Recanati, Ker-

dreux, & d’Aspremont, 2018).

Originating from the field of archaeology, where it was used to infer the chronological
order of a set of graves based on the artifacts recovered from them (Robinson, 1951),
seriation has found applications in several areas such as sociology and psychology (Liiv,
2010), and gene sequencing and bioinformatics (Recanati et al., 2017). Although the
applications of this mathematical problem are several, in this introduction we are going to
have a special application in mind to give context to the problem, which we introduce in

the next subsection.

1.1. Seriation in the context of computer vision

A dissimilarity over a set X’ of n objects is a symmetric function d : X? — R, van-
ishing on the diagonal. Given any enumeration of the elements in X', we can construct
a dissimilarity matrix D whose entry (3, j) is d(z;, z;), the dissimilarity between the i-th
and j-th objects. In seriation we are given the matrix D for an arbitrary enumeration of the
elements and we want to infer a ‘natural’ ordering of the data points X'. To give context

to the problem, suppose that the points in X correspond to the frames of a movie. Hence,



n corresponds to the number of frames and each element z € X corresponds to a specific
frame of the movie. Since each frame is an image, we can represent them with a vector in
R" were r corresponds to the number of pixels in the frames (assuming a black and white
movie for simplicity). An example of a dissimilarity in R” would be the Euclidean distance
d(z,y) = ||z — yl||2- The natural intrinsic order of the frames would be the chronological
order and we would expect consecutive frames in the movie to have smaller dissimilarity
(Euclidean distance), than frames occurring at distinct instants of the movie (temporally
separated). As an example, Figure 1.1 shows the Euclidean distance matrix between the
images in a 31 second movie of a kiwi slowly rotting for several days. Since this process
develops slowly, we expect consecutive frames in the movie to be very similar. Consistent
with our intuition, in Figure 1.1a we see that when the indices of the dissimilarity matrix
are chronologically ordered, the dissimilarity tends to increase as we move away from the
diagonal, i.e., when the time interval between the kiwi images increases. Dissimilarity ma-
trices satisfying this property are called linear Robinson matrices, which we will formally
introduce in Section 1.4. In 1.1b, the frames are given in a random order, which is what is
observed in practice. The goal of seriation is to recover 1.1a given 1.1b. In our time-lapse
video example there is an important thing to observe: the last frames are very different
from the initial frames of the video. If the video sequence were a closed-loop sequence
instead, we would expect that the dissimilarity decreases at the end of the sequence as in
the case of a distance matrix of points embedded in the unit circle. In contrast, Figure 1.1
shows the Euclidean distance matrix between the images in a 13 second movie of a face
slowly spinning in 360 degrees. The last frame of the clip is very similar to the initial
frame. In a matrix representation, this can be visualized as a symmetric matrix of pairwise
dissimilarities where entries of each row (column) increase monotonically while moving
to the right (bottom) until some specific element and then decrease again monotonically
until the end of each row (column) and fold back from the left (top) of the matrix. Dissim-
ilarity matrices satisfying this property are called circular Robinson matrices, which we

will also introduce in section 1.4 (Evangelopoulos, Brockmeier, Mu, & Goulermas, 2020).



(a) movie-ordered (b) permuted

Figure 1.1. Dissimilarity matrix between kiwi images using the euclidean
distance, when the subscripts follow the chronological ordering of the
movie 1.1a, and when it is randomly permuted 1.1b. Yellow entries cor-
respond to higher distance values whereas bluer entries of the matrix cor-
respond to smaller values of the distance.

(a) movie-ordered (b) permuted

Figure 1.2. Dissimilarity matrix between images of faces using the eu-
clidean distance, when the subscripts follow the chronological ordering of
the movie 1.2a, and when it is randomly permuted 1.2b. Yellow entries
correspond to higher distance values whereas bluer entries of the matrix
correspond to smaller values of the distance.



1.2. Applications of circular seriation in real-world problems

There are several real-world applications that motivate the development of algorithms
for circular seriation. In this section we review two examples that have been addressed

recently in the literature.

1.2.1. Tomography from unknown random projections (Coifman, Shkolnisky, Sig-

worth, & Singer, 2008)

The problem in tomography is to reconstruct an object from samples of its projections.
The object is characterized by its density function p(x, y). The goal is to recover the den-
sity p from its projections Rp(t, 0) given by the line integral of p along parallel lines L at
an angle ¢ with respect to an axis of reference, and at a distance ¢ from the origin (i.e. its
Radon transform) (see, e.g. (Deans, 2007)). However, there are cases in which the projec-
tion angles ¢ are unknown, for example, when reconstructing certain biological proteins or
moving objects. By constructing a dissimilarity matrix from the random projections, cir-
cular seriation can be used to sort the projections cyclically. After sorting the projections

it is possible to reconstruct the object’s density if enough samples are obtained.

1.2.2. DNA sequencing (Recanati, 2018)

DNA sequencing refers to the process of determining the nucleotide order of a given
DNA fragment. In a sequencing experiment, we can only ‘read’ small fragments (reads) of
DNA due to physical limitations, whose location on the genome is unknown. De novo as-
sembly aims to put them together to retrieve the full DNA sequence. A common approach
to this problem is to construct a similarity matrix based on pairwise overlaps between reads
and leave the task of sequencing to (linear) seriation algorithms. There are cases in which
the DNA fragments are subsampled from a circular genome (e.g. bacterial plasmids and
mitochondria), yielding an instance for the circular seriation problem instead (Recanati et

al., 2017).



1.3. Notation and preliminaries

In order to formulate the mathematical problem, let us introduce some notations, basic

definitions and folk results from several areas of discrete mathematics.

1.3.1. Matrix and vector notation

All arrays start at index 0. The symbol R denotes the set of real numbers, whereas R
denotes the set of non-negative real numbers. Given a set X', we write X 4 to denote the
set of d-dimensional vectors taking values in X. Given a vector z € X', we write x(7) as
the element at index i. We write as X™*"™ the set of matrices of n rows and m columns
taking values in X. Given M € X" ™, M(i,j) is the element at row ¢ and column j.
Given an array M, we write M7 to denote the transpose of M, i.e. the array that satisﬁels
M(i,j) = MT(j,i). We endow the set R? with the p-norm ||z||, £ <Zie[d} |x(z)|p> ’
and the corresponding induced distances. Given a numeric array M, we write | M || to
denote the maximum element among all its entries. The n x n identity matrix is denoted

as [,,. The null vector and the ‘all ones’ vector are respectively denoted as 0,, and 1,,. We

may omit the subscripts when the dimensions are clear from the context.

1.3.2. Permutations

The set of all integers from 0 to n — 1 is denoted as [n]." We denote as Sym(n) the
permutation set, i.e. the set of all bijections 7 : [n] — [n]. The elements in Sym(n) are
called permutations. Given any permutation 7 € Sym(n) we represent it either with a
vector 7 such that 7(7) = j whenever  maps i to j, or with a n X n matrix IT € {0, 1}"*"
(in upper case) such that I1(7,j) = 1 <> w(i) = j. We call such matrices, permutation

matrices.

Notice that this differs form the convention of writing [n] = {1,2,...,n} but the proposed definition
simplifies using modular arithmetic in the indices



1.3.3. Kendall-tau’s metric

Kendall-tau’s correlation coefficient (Kendall, 1938) has been introduced to measure
discrepancy between permutations. In this work, we use instead Kendall-tau’s metric (Ma,
Tony Cai, & Li, 2020), which is defined as follows
A |g (7T 1, T 2) ‘

(5)

where, for two permutations 7; and 7o, G (7, ) corresponds to the set of discordant

TK (7T177T2)

pairs defined as
G (o) £ {(i,5) +i < 3, [m (i) < m(i) A ma(i) > ma()] V [m(i) > mi(5) A ma(i) < ()]}

The denominator (Z) ensures that 7x (71, m2) € [0, 1] where 7x (71, m3) = 0 corresponds

to m; = my (Ma et al., 2020).

Definition 1. Given a set S C Sym(n) of permutations, the diameter of the S is
defined as

diam(S) £ max 7x(m, mo)
T1,m2ES

1.3.4. Order theory

Definition 2. (Burris & Sankappanavar, 2012) A binary relation < defined on a set

X is a partial order on the set X if the following conditions hold identically in X :

(1) a < a (reflexivity)
(1)) a < band b < aimplya =0 (antisymmetry)
(i) a < band b < cimply a < ¢ (transitivity).
If, in addition, for every a,bin X
(iv) a < borb < a (totality)

then we say < is a linear order on X.



Definition 3 (Interval). A subset T of an linearly ordered set (X, <) is said to be an
interval if there are some m, M € X such thatT = {i : m < i < M}. We refer to such

elements m and M as the borders of T and often write T = [m,, M.

Definition 4. A cyclic order on a set X is a relation € C X3, that satisfies the follow-

ing axioms:

(i) Cyclicity: If (a,b,c) € € then (b,c,a) € €;
(ii) Asymmetry: If (a,b,c) € € then (c,b,a) ¢ €;
(iii) Transitivity: If (a,b,c) € € and (a,c,d) € € then (a,b,d) € €; and
(iv) Totality: If a, b, and c are distinct, then either (a,b,c) € € or (¢,b,a) € €.

We endow the set [n] with the usual linear order <, and with induced cyclic order %,,

defined by

(i,5,k) €6, <= (i<j<k)V (J<k<i)V (k<i<j). (1.1)

Figure 1.3 displays an example of the cyclic order in ¢; over [11] = {0,1,...,10}.

Definition 5 (Arc). A subset I of a cyclically ordered set (X ,€) is said to be an arc
if there are some m, M € X such that for every (m,k, M) € € it holds that k € T. We

refer to such elements m and M as the borders of T and often write T = [m,, M].

REMARK 1. Let T be an arc in ([n],6,), then either T or I (the complement) is an

interval in ([n], <).

Example 1. In ([n], <, %,,) the sets T, := {0,1,2,3} and Z, := {n —3,n —2,n — 1}
are both arc and interval. The set I3 == {n — 2,n — 1,0,1,2} is and arc but not an

interval. We notice that T = {3,4,...,n — 4,n — 3} is an interval.



Figure 1.3. The cyclically ordered set ([11], %71) represented as a directed
cycle graph. In red the tern (7,9, 1) is present in the relation %7, since by
cyclically permuting the tern we obtain the increasing sequence (1,7,9).

The tern (7,10, 9) is not in the relation since for every cyclic permutation
the sequence is not increasing.

1.3.5. Group theory

A group is a set G endowed with a binary operation, called the product and denoted

by -, such that

(i) a,b € G implies that a - b € G (closed)
(ii) a,b,c € G implies thata - (b- ¢) = (a - b) - ¢ (associative law).
(iii) There exists an element ¢ € G such that a - ¢ = e - a = a for all a € G (the
existence of an identity element in GG ).
(iv) For every a € G there exists an element ¢! € G suchthata-a ' =a'-a=¢

(the existence of inverses in (7)

Example 2. The set Sym(n) together with the operation o (function composition) is
a group. The group (Sym(n), o) is called the symmetric group. The set of permutation
matrices endowed with matrix multiplication as binary operation is a group. The identity

permutation is denoted as id

Definition 6. (Herstein, 1975) A nonempty subset H of a group G is said to be a
subgroup of G if, under the product in G, H itself forms a group.

Definition 7. (Herstein, 1975) A mapping ¢ from a group G into a group G is said to

be a homomorphism if for all a,b € G, ¢(a - b) = ¢(a) - (b).
8



Definition 8. (Herstein, 1975) A homomorphism ¢ from G into G is said to be an

isomorphism if ¢ is one-to-one.

The mapping 1) from the set of permutation matrices to the symmetric group such that

Y(II) = 7 with I1(4, j) = 1 <> 7(¢) = j is in isomorphism.

Definition 9. (Herstein, 1975) Two groups G, G* are said to be isomorphic if there is

an isomorphism of G onto G*. In this case we write G = G”.

Definition 10. (Herstein, 1975) Given a subset W of a group G. We write (W) to
denote the set of all elements of G representable as a product of elements of W raised to

positive, zero, or negative integer exponents.

PROPOSITION 1. (Herstein, 1975) (W) forms a subgroup of G and is the smallest
subgroup of G containing W. In fact, (W) is the intersection of all the subgroups of
G which contain W (this intersection is not vacuous since G is a subgroup of G which

contains W ). This group is called the group generated by W .

Definition 11. (Dummit & Foote, 2004) A group action of a group G on a set A is a
map from G X Ato A (written as g - a, for all g € G and a € A ) satisfying the following

properties:

e g -(g2-a)=(q192) - a, forallg1,92 € G,a € A, and
ec-a=a, forallae A

In that case we say ‘G acts over the set A’

Example 3. The symmetric group Sym(n) acts over the set R™*" of matrices through

the following action

7 M — IIMTI"

Notice that M, = TIMTT satisfies M (i, j) = M(n(i),n(j)). We call this special action

‘conjugation’.



Definition 12. (Dummit & Foote, 2004) Given a group G acting on a set A, and given
some element v € A, the set Og(x) = {g - x|g € G} is called the orbit of x under the

action of g

Definition 13. We write r to denote the reversing permutation defined by r(i) =
n — 1 — 4. Also we write s to denote the cyclic shift permutation defined by s(i) :=
t + 1 mod n. The matrix representations of these permutations will be denoted by 11, and

1, respectively.

We denote by Dih,, the dihedral group of 2n different symmetries of a regular polygon
with n sides. We denote the cyclic group over n elements as Z/nZ. The particular case

Dih; is defined as Z/27Z.

REMARK 2. Note that the generated groups (r) and (r,s) are isomorphic to the dihe-

dral subgroups Dih; and Dih,, respectively. And similarly 7./nZ. is isomorphic to (s).

1.3.6. Graph theory

Given any set X, a graph is a pair G = (X, &) such that £ is a collection of pairs
{z,y} where z,y € X. We often denote as V' (G) the vertex set X’ (resp. E(G) the
edge set £) when it is not given by context. The elements in X are called nodes (or
vertices) and the elements in £ are called edges. Two nodes x and y are said to be adjacent
whenever there is an edge {z,y} € £. The set of adjacent nodes to x is denoted as
Na(z) & {y € X : {z,y} € £}. The function z — Ng() is called neighbourhood. An
hypergraph H = (X, £) is a collection of nodes X together a collection of hyperedges £,

which are non empty subsets of X.

Definition 14. Given some graph G, a graph H with vertex set V (G) is said to be a
subgraph of G whenever E(H) C E(G).

Example 4. (Bac, 1997) The ring graph R, = ([n], &) is the graph with edge set
E={{i,(t+1) mod n} :i € [n]}. The path graph P, = (
set E={{i,i+1}:i€[n—1]}

[n], €) is the graph with edge

10



Definition 15. (Hartmanis, 1982) In graph theory, an homomorphism of graphs G

and H is a function between the node sets of G and H
f:V(G)— V(H)

such that any two vertices u and v of G are adjacent in G whenever f(u) and f(v) are
adjacent in H. Moreover, if a homomorphism f : G — H is a bijection whose inverse
function is also a graph homomorphism, then f is said to be a graph isomorphism. For-

mally, {u,v} € E(G) < {f(u), f(v)} € E(H), for all pairs of vertices u,v € V(G)

PROPOSITION 2. Let H and G be two graphs. If there is a bijection f from V(H)
to V(Q) such that f(Ny(z)) C Ng(x) for every x € V(G), then H is isomorphic to a
subgraph of G

Definition 16. (Atkins, Boman, & Hendrickson, 1998) Given symmetric, non-negative
matrix A, the Laplacian matrix of A is defined as Ly = D, — A, where D 4 is a diagonal

matrix with D 4(i,1) = Zje[n] A(, j).

1.4. Mathematical formulation

The seriation problem is traditionally modeled as a recognition problem. We assume
that the observed dissimilarity matrix is a permuted version of a dissimilarity matrix be-
longing to a family of ‘ordered matrices’. The task is to find a permutation under which
the observed matrix is ordered. It is possible that this happens for more than one per-
mutation. In those cases we consider all such permutations as solutions of the problem
without making preferences between them as one would do in an optimization problem

for instance, since all this permutations are consistent with our hypothesis a priori.

1.4.1. Abstract seriation problem

Given a class of ‘ordered” matrices M C R"™*", define the class pre-M as the set of

matrices A such that for some permutation matrix IT € Sym(n) it holds that the matrix
11



(a) (Linear) Robinson (b) Circular Robinson
dissimilarity matrix dissimilarity matrix

ITATIT (whose entry (4, 7) is A(m (i), 7(5))) is in M. In terms of group theory, pre-M is
the orbit of M under the action of Sym(n) by conjugation. The seriation problem can be

stated as (Recanati et al., 2018)
Given A € pre-M, find IT € Sym(n) such that ITATI € M.

The set Sy(A) C Sym(n) of such permutations will be referred as the set of solutions.
The classes of matrices where seriation have been mostly studied are called Robinson

matrices.

1.4.2. Robinsonian dissimilarities: linear and circular seriation

There are two common classes of matrices that naturally arise when there is either a
linear or circular underlying order: linear and circular Robinson dissimilarities. Despite
that in the first section we implicitly defined dissimilarity matrices, we formalize it in the

following definition.

Definition 17. We say D € R™*" is a dissimilarity matrix if it is

(i) Symmetric,

(i) Non-negative and
12



(iii) D(i,i) = 0 foralli € [n).

Similarly, a matrix A € R™™" is said to be a similarity (or affinity) matrix if there is non-
increasing non-negative function f such that A(i,j) = f(D(1,7)) for some dissimilarity

matrix D

Definition 18. (Linear Robinson Matrix) We say that a dissimilarity matrix D € R™*"

is (linear) Robinson iff for every 1 < j < k

IA

D(i, k)

D(i, j)
k) < D(i, k).

D(j, k)

(1.2)

IN

If all inequalities hold strictly, we say D is strictly linear Robinson.

The set of linear Robinson dissimilarity matrices will be denoted as Lz whereas the
set of strict linear Robinson dissimilarity matrices will be denoted as £%. To introduce

circular Robinson dissimilarities, first we need to define unimodality

Definition 19. (Unimodality) Let (X, <) be a linearly ordered set. A sequence {x;}"—; C
X is said to be unimodal if there exists k € [n] such that

(1.3)
T > x, Vk<l<m.

Any k that satisfies the properties above is called a mode. A unimodal sequence is said
to be strictly unimodal if it has at most two consecutive modes, and before the mode it is

strictly increasing, and after the mode it is strictly decreasing.

REMARK 3. If a sequence is strictly unimodal, then every subsequence is also strictly

unimodal

Definition 20. (Circular Robinson Matrix) We say that a dissimilarity matrix D €

R™ ™ is circular Robinson iff for all i € [n|,{D(i, (i + j) mod n)}?:_é is unimodal. If all

such sequences are strictly unimodal, we say D is strictly circular Robinson. The set of
13



circular and strict circular Robinson dissimilarity matrices will be denoted as Cr and C5,,

respectively.

Definition 18 states that when moving away from the diagonal in a given row or col-
umn of D), the entries are non-decreasing, whereas in Definition 20, a sequence of non-
decreasing values is followed by a sequence of non-increasing values. For instance, the
distance matrix of points embedded on a circle follows Definition 20 (Recanati et al.,

2018). Figure 1.4.2 displays examples of such matrices.

It is easy to see that every linear Robinson matrix is also circular Robinson, hence
Lr C Crand L} C Cj. Elements in pre-Lr and pre-Cp are be said to be Robinsonian
matrices. We call (strict) linear seriation to the seriation problem when the matrix class
involved is the set of (strict) linear Robinson matrices and (strict) circular seriation when
the matrix class is the set of (strict) circular Robinson matrices. The solutions in the con-
text of linear and circular seriation are called Robinson orderings, which are all orderings

consistent with the data.

Definition 21. Let A be an affinity matrix A and let D 2 1 - ||Al|oc — A be the
dissimilarity matrix associated to A. We say a matrix A is a linear Robinson affinity
matrix if D is a linear Robinson dissimilarity matrix. Similarly, A is said to be a circular

Robinson affinity matrix if D is a circular Robinson dissimilarity matrix.

REMARK 4. Clearly, the seriation problems involving either affinity matrices or dis-

similarity matrices are equivalent.

1.5. State of the art

In this section, we present the main techniques that can be found in the literature to

solve linear and circular seriation
14



1.5.1. Spectral embedding

Consider an affinity matrix A. The linear seriation problem can be addressed with the

following combinatorial problem,

minimize Y~ A(i, j) |7(i) = 7(j)|* suchthat 7 € Sym(n) (1.4)
i,j€ln]

The intuition is that in the optimum 7*, high values of A(i, j) are compensated with
small values of |7*(i) — 7*(5)|, thus laying similar elements nearby. This problem is NP-
hard (Barnard, Pothen, & Simon, 1995), thus a straightforward approach is not possible
in practice. By a simple algebraic manipulation, the objective in (1.4) can be replaced for

any f € R" with the quadratic form

> A I = FG)IP = fTLaf (1.5)

i,j€[n]
where L 4 is the Laplacian of A (Recanati et al., 2018) (see Definition 16). Notice that
1= (1,...,1)7 is an eigenvector of L 4 associated to the eigenvalue \y = 0. The spectral
method (Atkins et al., 1998) consists in relaxing (1.4) by replacing the constraint 7 €
Sym(n) with norm and orthogonality constraints, ||7||s = 1,771 = 0, to avoid the trivial

solutions m = 0 and 7 o 1, yielding,

minimize fTL,f suchthat |flo=1,fT1=0 (1.6)

This is an eigenvalue problem on L 4 solved by f7, the eigenvector associated to A; > 0
the second smallest eigenvalue of L 4, called the Fiedler vector of A (Recanati et al., 2018).

To retrieve an ordering from this optimization problem we have this key theorem:

Theorem 1 ((Atkins et al., 1998)). Let A be a linear Robinson affinity matrix. Then,

A has a monotone Fiedler vector.
15



Recall that if (f, \) are respectively an eigenvector and eigenvalue of L 4 then

Laf =A\f
= MLaf = MIf
= LI, f = MIf
= TILAIITTLf = MIIf (1.7)
<= (D4 — AIITTLf = \If
= (Da, — AILf = MIf
= La [T = A"

where f, £ IIf satisfies f™(i) = f(w(i)). Thus if A € pre-Lr and A has a simple
Fiedler value, the permutation obtained by sorting the entries of the Fielder vector of A
is a Robinson ordering. Theorem 1 is a consequence of the Perron-Frobenious theorem?.

This result can also be exploited to obtain all Robinson orderings. The details can be found

in (Atkins et al., 1998).

On the aim of generalizing the above procedure to circular seriation, one could con-
sider computing the two largest non-trivial eigenvectors of the Laplacian matrix L4 of a
circular Robinson affinity matrix A. This is exactly what is proposed in (Coifman et al.,

2008) and (Recanati et al., 2018). Consider the following optimization problem,

minimize Y, o0 A7) ||y — y]||§

(1.8)
suchthat @ = (y7,...,y7)" € R4 &7 = I, 871, = 0,

Like before, the objective in (1.8) can be written as trace (<I>TL A(I>) (see (Belkin &
Niyogi, 2001)), yielding a multidimensional eigenvector problem. Once again the inter-

pretation is that similar elements are mapped nearby in R? and dissimilar placed apart. If

ZFor further information about this theorem see (Pillai, Suel, & Cha, 2005)
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Figure 1.4. Ideal example for the spectral method. In the right, a strict
circular Robinson affinity matrix A € R®*%. In the left, f; and f,, the
two first non-trivial eigenvectors of the Laplacian matrix of A. By comput-
ing the angles of the points (f;(i), f2(i)) € R? its possible to retrieve the
circular order.

the original objects where nearby a closed continuum, by taking d = 2 one could expect
the embedded points to lie in (close to) a circle. Therefore, the cyclic order could be re-
trieved by computing the angles from the points and sorting them®. There are asymptotic
justifications of this procedure due to the connection of the Laplacian matrix to the contin-
uous Laplace-Beltrami operator over a 1-manifold (Coifman et al., 2008). In spite of this,
the theoretical guarantees for this procedure in a finite sample case are very limited. Only
for highly structured affinity matrices this procedure has been proved recover a correct or-
dering (for instance see (Recanati et al., 2018)). Hence, characterizing instances where the
spectral method recovers the true ordering is an open problem. An ideal example together

with its spectral embedding is presented in Figure 1.4.

Negative evidence for the spectral method in the circular case

In this section we present some examples that suggest that the spectral method does

not always recover circular orders successfully in the general circular-Robinson setting.

31f f1 and fy are the two first non-trivial eigenvectors of L4, then sort the values of (i) £

atan2(f2 (1), f1(4))
17



Given an affinity matrix A € R™*", consider the mapping 64 : [n] — [0, 27| such
that each the i-th element is mapped to 04(i) = atan2(f»(4), f1(i)) where f, and f, are
the two first non-trivial eigenvectors of L 4. We endow [0, 27| with the usual cyclic order

0,27 such that

(a,8,7) € Co2n) <= (a<B<y)V (B<y<a)V (y<a<p). 1.9

For instance, the vector (60°,120°,10°) is in 6jg 2. Ideally, one would expect that if

A is circular Robinson, then

(84(1), 0(5), 84 (k) € Goam ¢ (i,4,k) € Gy (1.10)

This means that ordering angles yields a Robinson ordering and, conversely, Robinson
orderings yields ordered angles. A simple exercise is provided in the next section that

shows this cannot always be true.

Existence of non-trivial symmetries

It is intuitive that since reversing an ordered sequence produces a new ordered se-
quence, then reversing the entries of a Robinson matrix should produce a new Robinson
matrix. This is also valid for circular Robinson matrices. In the circular case we would
also expect that circular permutations should produce new circular Robinson matrices.

The following result formalizes this intuition.

Theorem 2. (Armstrong et al., 2021) The class of linear Robinson matrices is invari-
ant under the action of Dih; by conjugation and the class of circular Robinson matrices

is invariant under the action of Dih,, by conjugation.
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Therefore, given any A € Cr we have that Dih,, C S¢, (A). We call this solutions
the trivial symmetries of the affinity matrix, since they are always present, whereas any
7 € Sc,(A) \ Dih is called a non-trivial symmetry of A. It is not immediately clear that

even in the strict case non trivial symmetries may exist (see for instance Figure 1.5).

By (1.7), given some permutation 7 we have that §4(7(:)) = 04_(i) for every i € [n].
It is clear that if 7 € Dih,,, then ordering 6,4 yields a Robinson ordering whenever or-
dering 64 o 7 yields a Robinson ordering. However, if 7 is a non-trivial symmetry, both
orderings cannot be represented in [0, 27| unless they are both collapsed somehow by
0. For instance, consider the affinity matrix A available in Figure 1.5. The matrix
A € R®*® has only one non-trivial symmetry: = (0,1,2,5,4,3). Since is 7 is a
Robinson ordering, assuming (1.10) we would get that for every (i, 7, k) € %, it holds
that (04(7),04(j),04(k)) € Clo2x and (04(7(¢)),04(7(7)),04(m(7))) € Glo2x. In our
example, (04(3),04(4),04(5)) € Goox N (04(5),04(4),04(3)) € €2+, Which implies
that 64(3) = 04(4) = 604(5).

More generally, suppose that given A € R?"*2" it holds that A, A, € Cp for
7=(0,1,....n—2n—-1,2n—1,2n—2,....,n+ 1,n)
Then, the only way that in which 4 can be consistent with both orderings is if 0 4(7)
is constant for all ¢ = n,...,2n — 1. But, this implies that the elements n,...,2n — 1
are not ordered which is not necessarily true. For instance in Figure 1.6, there are only

two orderings and arbitrary permutations of the ‘second half’ of the element do not yield

Robinson orderings.

Therefore, if A possess multiple non-trivial symmetries at most we can expect three

things:

e Ordering 6, yields to one of the Robinson orderings
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e If A possess multiples non-trivial symmetries, then 64 collapses in some values
in order to represent the orderings

e Let A\, Ao be the minimum positive eigenvalues, then dim(ker(A — Ay - I)) +
dim(ker(A—X2-I)) > 2. Which implies, that the embedding is not 2-dimensional,

but somehow more complex in order to represent all orderings.

In either case, this shows an inconvenience for choosing this method for circular se-
riation. In the first case, we loose possible solutions. In the second case, its possible that
we obtain wrong solutions. In the third case, it is not clear how to design a rule (such as

computing the angles in the 2D case) that correctly recovers the orderings.

To summarize, we have shown that if there non-trivial symmetries, then the spectral
method is likely to fail. This is not a necessary condition for the method to fail since the
example in Figure 1.7 does not have non-trivial symmetries and sorting the values of 6 4

does not yield a Robinson ordering.

1.5.2. Seriation as an instance of the QAP

Some recent works aim to solve circular seriation also by starting from (1.4) but by
taking a different direction. In (Evangelopoulos et al., 2020) the authors propose to solve

the following optimization problem,

minimize QAP(A, B) £ trace (IIAII” B)
= 2 i jep) Alm (), 7(5)) B, j)

(1.11)

for a template

n—1—i—j|, ifli—j|>|2%}]

The above acts as a circular seriation template where the elements of the first row
(column) increase monotonically while moving to the right (bottom) until the L”T’lj -th

element and then decrease again monotonically until the end of the row (column), and fold
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(c) Strict circular R-matrix (d) Color representation of A,

Figure 1.5. A strict-circular Robinson matrix which posses non-trivial

symmetries: A € Cy AN A, € Cj form = (0,1,2,5,4,3)
back from the left (top) of the matrix (Evangelopoulos et al., 2020). A first inconvenience
of this approach is that it requires to set the turning point in advance (in this example at
L”T_lj ). Correctly fixing this parameter requires information a priori about the shape of
the continuum where the points lie nearby. A second inconvenience of this approach is that
(1.11) is an instance of the quadratic assignment problem (QAP) which is NP-hard. To
this day, no exact algorithm can solve general QAP-instances of size n > 20 in reasonable

computational time (Pitsoulis & Pardalos, 2009). This is why in (Evangelopoulos et al.,

21



25

06

100 04

125 02
00

150

175

00 01 02 03 04 05 06 07

() AeCj (b) f1vs fo

i

200

150

- L

T u T T T T T T T
0 5 50 EE) 100 125 150 175 200

(c) 04 in degrees

Figure 1.6. A 200 x 200 strict circular Robinson affinity matrix which has
a unique non-trivial symmetry.

2020) an heuristic approximation is proposed for solving (1.11) which has no theoretical

guarantees.

1.5.3. The definition of circular Robinson dissimilarities

There is general agreement on the definition of linear Robinson dissimilarities in the
literature. However, although most of the generalizations to the circular case follow the
same intuition, the mathematical formulations present subtle, nevertheless important, dif-
ferences. The intuition in all cases is that the entries of each row increase monotonically
while moving to the right until some specific element and then decrease again monoton-

ically until the end of each row and fold back from the left of the matrix, just as the
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Figure 1.7. An instance where the spectral method fails. In 1.7b,
a strict circular Robinson affinity matrix A € R%*®. In 1.7a, a
color representation of the matrix. In 1.7c, f; and f5, the two first
non-trivial eigenvectors of the Laplacian matrix of A. By computing
the angles of the points (f1(4), f2(i)) € R? we obtain the sequence
04 = (221.5°,12.7°,274.7°,183.8°,115.3°, 133.4°) which is not ordered
in 6o 2x. Finally, in 1.7d the matrix A, ¢ Cr where 7 is the permuta-
tion obtained by sorting 64 in increasing order. This affinity matrix has no
non-trivial symmetries, i.e. S¢,,(A) = Dihg

distance matrix of points embedded in a circle (this condition also holds for the columns
by the symmetry of the matrix). The first mathematical formalization is due to Hubert and

is as follows (Hubert, Arabie, & Meulman, 1998). For 1 <i <n—3andi+1 < j <n-—1
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if D(i+1,7) <D(i,j+1) then D (i + 1,5) < D (i, )
and D(i+1,j) < D(i+1,j+1)
if D(i+1,7) > D(i,j+1)then D (i,§) > D (i,j + 1)

and D (i+1,7+1)>D(,j+1)

and, for2 <i;:<n-—2
ifD(i+1,n)<D(i1)then D (i+ 1,n) < D (i,n)
and D (i+1,n) < D(i+1,1)
if D(i+1,n) > D(i,1) then D (i,n) > D (i,1)
and D (i 4+ 1,1) > D (i, 1)
In addition to being complex, this definition has two main problems. The first prob-

lem is that it allows bimodality within each row (modulo n). For instance consider the

following dissimilarity matrix

0111 1]
10311
Q=113 0 3 1 (1.13)
11301
11110

The matrix () satisfies the conditions proposed by (Hubert et al., 1998). Notice that
in the middle row we have two furning points corresponding to the entries (2,1) and
(2,3), where the dissimilarity attains the values 3 (recall that arrays start at index 0).
This bimodality is inconsistent with a circular embedding (where there is a unique turning
point). A second problem with the definition (which is a consequence of the first problem)

is that balls B,(i) = {j € [n] : D(i,j) < r} do not correspond to arcs in Robinson
24



orderings (disconnected classes in the terminology of (Brucker & Osswald, 2008)). For
instance the ball of radius = 2 centered at the element at index 2 corresponds to By(2) =

{0, 2,4} which is not an arc nor an interval.

A second definition available in the literature is due to Recanati et al. In (Recanati
et al., 2018), a dissimilarity matrix D is said to be circular Robinson iff for all 7 &€
[n],{D(i, j)}—o and {D(i, )}/ are unimodal. Again the intuition that motivated this
definition is correct, but this definition not only has the same problems that the previous
definition (since for instance the matrix () satisfies the definition), but also there is an ad-
ditional contradictory feature: the lack of invariance to cyclic permutations. For instance

consider the cyclic permutation defined by (i) = 7 + 2 mod n. By permuting ) by 7 we

obtain
0 1 1 1 3
10111
Q=111 0 1 1 (1.14)
1110 3
31130

and notice that {D, (4, j )}?:0 is not an unimodal sequence. This shows that if D is cir-
cular Robinson in the sense of (Recanati et al., 2018), then D is not necessarily circular
Robinson when 7 is a circular permutation. This is contradicting since cyclic permutations

preserve cyclic orders (by shifting the circle, it remains ordered).

In (Brucker & Osswald, 2008), dissimilarities whose balls correspond to arcs are stud-
ied. A definition which we show to be equivalent to Definition 20 is mentioned but this
paper mostly focuses on precircular dissimilarities which is a particular case of the previ-

ous definition.

1.6. Main objectives and contributions

The main contributions of this thesis can be enumerated as follows:
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e Establish a tractable and meaningful definition for the circular seriation prob-
lem. As opposed to the linear case, where a well established definition has
been accepted (Chepoi & Fichet, 1997) and optimal algorithms have been de-
signed (Préa & Fortin, 2014), the circular seriation problem has several different
definitions, with all of them having some advantages and some disadvantages.
Therefore, our first goal is to define a simple definition for circular seriation that
captures the intuitive properties of a circular embedding, and that is suitable for
efficient algorithms. The first contribution is to show that circular seriation can
be solved in polynomial time under the proposed definition.

e Optimal algorithm in the strict case. When the data is continuous, a natural
assumption for seriation is that inequalities hold strictly, i.e. strict seriation. Un-
der this setting, the complexity is substantially reduced. This has been known
for many years in the linear case, since an optimal algorithm for strict linear
seriation was introduced 17 years before the first optimal algorithm for the gen-
eral non-strict case (Chepoi & Fichet, 1997). However, in the circular case this
problem was still open. Our second contribution is an O(n?) time algorithm
that solves both linear and circular strict seriation: the Recursive Seriation Algo-
rithm.

e Generative model. The seriation problem has traditionally been modelled as a
recognition problem, where all Robinson orderings are considered as solutions
without establishing preferences between them. A philosophically different way
of looking into the problem is to assume that the observed data was sampled from
a continuous closed curve where the correct ordering is given by the parametriza-
tion of the curve. In this case, one would be interested in finding such ordering
or, at least, being capable to bound the error of the obtained ordering. Our third
contribution is designing a generative model for circular seriation where it is
possible to bound the diameter of the solution set and obtain sample complexity

bounds for the reconstruction of the ordering.
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e Numerical validation. We present numerical experiments where the Recursive
Seriation Algorithm successfully reconstructs the original order of the data in
both synthetic and real-world data. This experiments are available at the Appen-

dix.

1.7. Future Challenges

Along this thesis, a series of unsolved problem are raised. These constitute future lines

of investigation. We point out the main ones:

e Optimal algorithm in the circular (non-strict) case. It is known in the literature
that the linear (non strict) seriation problem can be solved in optimal O(n?) time
complexity. In (Préa & Fortin, 2014), an algorithm is presented for linear seri-
ation which solves the problem by computing the ball hypergraph partially, and
then carefully modifying the PQ-tree resulting from this hypergraph. There are
some key procedures in this paper such us partition refinement for which a gen-
eralization to the circular case is not obvious. Therefore, the question whether
applying a similar idea in the circular case is to the best of our knowledge still
open. A future challenge would be finding an O(n?) time complexity algorithm
for (non-strict) circular seriation or (in the negative) proving a superquadratic
lower complexity bound for general circular seriation.

e Necessary and sufficient condition for the spectral method. For some highly
structured circular Robinson matrices such as circulant Toeplitz matrices the
spectral method is guaranteed to successfully recover a Robinson ordering (Recanati
et al., 2018). However, as we saw in section 1.5.1 there are many cases in which
the method does not work. Another line of future research would be to com-
pletely characterize the set of circular Robinson matrices in which the embed-

ding 6 4 preserves cyclic orders.
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A. NUMERICAL EXPERIMENTS

A.1. Synthetic experiment: the Cantor set

The algorithm presented in (Armstrong et al., 2021) performs seriation by merging
nearest-neighbours. A limit case for such algorithm is when we only merge two neigh-
bours at a time. This is exactly what happens when we consider the boundary of the
intermediate Cantor sets, which we present in what follows (see Figure A.2). The Cantor
ternary set C,, consists of all numbers in [0, 1] that have a ternary expansion (Royden &

Fitzpatrick, 1988). Consider the sets defined recursively

C Acn—lu(2+cn—l
"3

3 3

) forn > 1, and Cy £ [0, 1].

Then the cantor set is defined as Co, = N.—, C,,. For every integer n > 1, we define

the intermediate Cantor sets as follows
n
Co % () Cre
k=1

The sets C,, are illustrated in Figure A.1 forn =1,...,6.

Consider the sequence x; < =y < --- < xg in [0, 1] such that 0C;, = Ufil{asl}
(i.e. the elements at the boundary of the intervals at obtained at the k-th recursion of the
construction of the Cantor set). In the optimal algorithm presented in (Armstrong et al.,
2021), the maximum recursion depth is bounded by log,(n) where n is the number of
initial points. For instance, if the input matrix is d(z;, z;) € R2%2" then this algorithm
correctly orders the sequence in at most log, (2¥) = k iterations. A circular Robinson ana-
log for such dissimilarity is given by D™(4, j) = d(f(z;), f(x;)) where f corresponds
to the mapping 6 — (cos(270), sin(270)). To test the tightness of such bound, in Figure
A.3 we present the intermediate steps of the algorithm with a random permutation of D

as input.
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Figure A.1. First six iterations of the construction of the Cantor set (i.e.
the intermediate Cantor sets) (Wikimedia Commons, 2007).

Figure A.2. Nearest neighbours relation between the the elements in 9Cg
(Derbyshire, 2016).

(c) recursion 3

20 40 60 80

(d) recursion 4 (e) recursion 5

Figure A.3. Iterations of the algorithm from (Armstrong et al., 2021) with
input TIDTI7 € R2™*?" for some random permutation matrix IT
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A.2. Real-world application: tomographic reconstruction

We present an example of the tomographic reconstruction problem introduced in Sec-
tion 1.2.1. The objective of this experiment is to reconstruct a virus’s density p(z, y) from
its projections. The density is available at Figure A.4. Let Rp(t, 6) be the Radon trans-
form at angle # € {1°,2°...,180°} (see Figure A.5). Given some unknown permutation
7, let Rp(t,0,) be the permuted collection of projections (the permuted Radon trans-
form). An example is displayed at Figure A.6 for some random permutation 7. A naive
approach for the reconstruction is to invert Rp(t, 0, ) by assuming that the angle vector
O is 0iq = (1°,2°...,180°). The obtained density from this (wrong) approach in our
example can be found at Figure A.7. To correctly solve this problem we first need to find
the latent circular ordering of the projections. Let D, be the dissimilarity matrix given
by Dx(i,7) £ |Rp(-,0(i)) — Rp(-,0(5))|l1. Such dissimilarity matrix is displayed at
Figure A.8. Let o be the ordering (permutation) obtained from the algorithm presented in
(Armstrong et al., 2021) with input D,.. In Figure A.9 we present the dissimilarity matrix

YD, T where ¥ is the matrix representation of the permutation o. By inverting the sorted

Radon transform R p(t, 0,,.,) we obtain the correct objects density as in Figure A.10.
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Figure A.5. Radon transform Rp(t, 6) of the density p
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Figure A.6. Permuted Radon transform Rp(t, 6;)
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Figure A.7. Density obtained by a straightforward inversion Rp(t, 6;)
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Figure A.8. Dissimilarity matrix between all pairs of projections

Figure A.9. Sorted dissimilarity matrix obtained from seriation
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Figure A.10. Density obtained by inverting Rp(t, 0., ) where o is the or-
dering of the projections found by seriation
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An optimal algorithm for strict circular seriation*

Santiago Armstrong’, Cristébal Guzman®, and Carlos A. Sing Long'*

Abstract. We study the problem of circular seriation, where we are given a matrix of pairwise dissimilarities
between n objects, and the goal is to find a circular order of the objects in a manner that is consistent
with their dissimilarity. This problem is a generalization of the classical linear seriation problem
where the goal is to find a linear order, and for which optimal O(n?) algorithms are known. Our
contributions can be summarized as follows. First, we introduce circular Robinson matrices as
the natural class of dissimilarity matrices for the circular seriation problem. Second, for the case of
strict circular Robinson dissimilarity matrices we provide an optimal O(n2) algorithm for the circular
seriation problem. Finally, we propose a statistical model to analyze the well-posedness of the circular
seriation problem for large n. In particular, we establish O(log(n)/n) rates on the distance between
any circular ordering found by solving the circular seriation problem to the underlying order of the
model, in the Kendall-tau metric.

Key words. Circular seriation, circular Robinson dissimilarities, PQ-trees, circular Robinsonian matrices, cir-
cular-arc hypergraphs, circular embeddings of graphs, generative model

AMS subject classifications. 68R01, 05C85, 05C50, 05C25, 65C20

1. Introduction. The seriation problem seeks to order a sequence of n objects from pair-
wise dissimilarity information. The goal is for the objects to be linearly ordered according to
their dissimilarity [17, 25, 26]. Seriation has found applications in several areas such as ar-
chaeology [27], sociology and psychology [17], and gene sequencing and bioinformatics [25, 19].
However, in many applications the objects may be arranged along a closed continuum, result-
ing instead in a circular order. For instance, in de novo genome assembly of bacterial plasmids,
the goal is to reorder DNA fragments sampled from a circular genome [25, 16]. In some prob-
lems in planar tomography, an object’s density is to be reconstructed from projections taken
at unknown angles between 0 and 2w. Reordering the projections according to their angle
enables the reconstruction of the density [9]. In this case, the matrix representation of the
pairwise dissimilarities is symmetric, with entries that increase monotonically starting from
the diagonal along each row until they reach a maximum and then decrease monotonically,
when the columns are wrapped around (see Figure 1). Matrices of this form are called cir-
cular Robinson [10, 12] in contrast to linear Robinson dissimilarities, where the entries are
monotone non-decreasing along rows and columns when moving toward the diagonal [15].
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1.1. Our Contributions. In this work, we address the problem of circular seriation, both
in its algorithmic and well-posedness for large n. Some of our results also apply to the
linear case. Our first contribution is to provide a tractable and natural definition of circular
Robinson matrices by leveraging unimodality (cf. Proposition 3.7). Various definitions of
circular ordering have been proposed in the literature (see Subsection 1.2 below), but we
believe this one captures intuitively the behavior of circular data.

Our second contribution is to provide the first optimal algorithm, with O(n?) time and
space complexity, for the seriation problem for strict Robinson dissimilarity matrices. Our
algorithm is based on known techniques and data structures used in combinatorial seriation,
but by virtue of the strict Robinson property our algorithm is substantially simpler. At a
high level, the algorithm follows a divide-and-conquer approach, where we recursively detect
nearest neighbors between chains of consecutive elements, and then resolve the orientations
of such chains by comparing elements from their borders.

Our third contribution is a statistical model to analyze the large n regime. In this model,
points are sampled from a closed curve, which without loss we assume is the unit circle, with
a continuous and strict circular Robinson dissimilarity. Our main result here is a O(log(n)/n)
bound on the expected Kendall-tau distance of any strict circular Robinson ordering of the
data. This result is based on an observation we make that in the continuous model, there is
essentially' a unique ordering which makes the dissimilarity continuous and strictly circular
Robinson. This analysis bridges the gap between solutions to the seriation problem, and their
accuracy when data is naturally embedded in a continuous circular-like structure.

1.2. Related Work. Linear seriation is a classical problem in unsupervised learning and
exploratory data analysis. As such, it has been thoroughly studied, and optimal algorithms for
combinatorial seriation are known, as well as spectral methods. In contrast, circular seriation
is substantially less understood. Next we summarize some results from the literature.

Linear Seriation. The first polynomial time algorithm for retrieving a linear order from
permuted linear Robinson matrices was due to Mirkin and Rodin [19]. It is based on the
connection between linear Robinson matrices and interval hypergraphs. It uses an algorithm
introduced in [11] as a core subroutine, with an overall running time of O(n*). Chepoi and
Fichet [6] later introduced a simpler algorithm using a divide-and-conquer strategy. By re-
cursively performing a partition refinement the algorithm computes an ordering in O(n?)
operations and O(n?) space. Using similar techniques, Seston [28] improved the complexity
to O(n?log(n)). Atkins [1] presented an entirely different strategy based on Laplacian eigen-
maps (see [2]) with running time of O(n(T(n) + nlogn)), where T'(n) is the complexity of
(approximately) computing the leading eigenvector of a n X n symmetric matrix. Prea and
Fortin in [22] presented an optimal O(n?) algorithm, using an algorithm from [4] to first com-
pute a PQ-tree which is then updated by the algorithm. For the sparse case, Laurent and
Seminarotti [15] present the Similarity-First Search algorithm in O (n2 + nmlog n) operations
where m is the number of nonzero entries of the dissimilarity matrix.

A natural question is how to perform seriation under noisy measurements of a dissimilarity.

In an infinite set, permutations can be identified with bijections. However, given that for any finite sample
we would only observe permutations of finitely many elements, we can substantially reduce the number of
relevant permutations for this question. See Section 6 for further details.

s manuscript 1s for review purposes only.
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AN OPTIMAL ALGORITHM FOR STRICT CIRCULAR SERIATION 3

Here, it is known that projecting a dissimilarity on the class of Robinsonian dissimilarities (in
{so-norm) is an NP-hard problem [7], and constant factor approximation algorithms exist [8].

Circular Seriation. In contrast to the linear case, where there is a common consensus for
the definition of linear Robinson dissimilarities, in the circular case many definitions have been
proposed that, in spite that they follow the same intuition, have mathematical formulations
that are not equivalent. The first generalization of Robinson dissimilarities to the circular case
was introduced in [12]. On top of being quite involved, this definition allows bimodality within
each row (modulo n), which is incompatible with a circle embedding. The approach proposed
for circular seriation is an instance of the quadratic assignment problem, which is NP-hard.
A recent work following a similar line is [10]. The authors propose an optimization framework
where they employ a spherical embedding together with a spectral method for circular ordering
in order to recover circular arrangements of the embedded objects. This heuristic has no
theoretical guarantees. A different approach in [9] aims to generalize Atkins’ spectral approach
by considering two eigenvectors. This methodology has asymptotic guarantees due to the
connection between the Laplacian operator and the continuous Laplace-Beltrami operator
over a manifold. Using the same idea, in [25] theoretical guarantees for a spectral method
are introduced for the particular case in which the circular Robinson matrix is circulant,
which is an idealized setting. In the same work, numerical experiments are presented to
illustrate how the spectral method gains robustness by leveraging higher (> 2) Laplacian
eigenvectors. In [5] dissimilarities whose ball, 2-ball and cluster hypergraph correspond to
an arc hypergraphs are studied. Such dissimilarities can be considered as generalizations
of Robinson dissimilarities to the circular case. We build upon this work by considering
dissimilarities whose ball hypergraph corresponds to arcs and connect it to other definitions
by showing that this definition is equivalent to requiring that the map j — D(¢,j + ¢ mod n)
is unimodal. Brucker and Osswald in [5] mainly focus in what they call circular dissimilarities
which are a particular case of the previous definition.

1.3. Outline. The paper is organized as follows. Section 2 introduces the notation and
preliminaries. In Section 3 we formally introduce the seriation problem and the crucial concept
of Robinson dissimilarities and matrices. In Section 4 we present some classical results on the
consecutive ones problem and its connection to seriation, including the PQ-tree data structure,
which is critical for our optimal algorithm. In Section 5 we present our optimal algorithm
for strict circular seriation. Finally, in Section 6 we provide the generative model of sampling

from a continuous strictly Robinson curve.

2. Preliminaries. Throughout this work, arrays are indexed starting from 0 and are real
unless it is explicitly stated otherwise. We let [n] = {0,1,...,n—1} and denote as Sym(n) the
group of permutations of [n]. A permutation is represented either by a vector = with entries
in [n] or by an n x n orthogonal and binary matrix II. We denote as m, the permutation
that reverses the elements of [n], i.e., m.(i) = n — 1 — i, and 7, the cyclic (right) shift on
[n], i.e., ms(i) = i + 1 mod n. We consider the action by conjugation of Sym(n) over the set
of n x n matrices, which is defined by (IT, A) — ITAIT. If S C Sym(n) we denote (S) the
subgroup generated by the elements of S. Finally, we denote the dihedral group of 2n different
symmetries of a regular polygon with n sides as Dih,,.

For a countable set X and an enumeration x : i — x(¢) we write x; to denote x (i) and let

This manuscript is for review purposes only.
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#1x be the integer such that x(#x) = x. In this work, we consider finite sets of cardinality n.
An enumeration becomes a bijection X’ +— [n] with inverse # : X — [n].

The notion of and ordered set will play a crucial role. A linear order on X is a relation
< on X? that is reflexive, antisymmetric, transitive and total. The pair (X, <) is a linearly
ordered set. We say xg,...,xn—1 are linearly ordered if x; < x;41 for i € [N]. A cyclic order
on X is a relation % on X2 that is cyclic, antisymmetric, transitive and total. The pair (X,%)
is a cyclically ordered set. A cyclic order induces a linear order on X. For zg € X we define the
linear order <¢ ,, as x <¢ 4, y if and only if (z¢,z,y) € €. Finally, we say zo,...,any—1 € X
are cyclically ordered if x; <¢ 5, xi+1 for i € [N]. See [20] for more details.

3. The seriation problem and Robinson dissimilarities. We introduce the seriation prob-
lem. Given a set M of n x n real matrices, let the pre-M class be the orbit of M under the
action of Sym(n) by conjugation. The abstract seriation problem can be stated as [20]

Given A in pre-M find 11 in Sym(n) such that TLATIY is in M.

The seriation problem is completely determined by the class M. A solution to the seriation
problem for A is any permutation II satisfying the above. The set of all solutions is Sy(A).

The seriation problem arises in applications when we consider a finite set X and we know
the dissimilarity between its elements x1, ..., x,. Ideally, a solution 7 to the seriation problem
induces a linear order < on X such that Tr) < oot < Tr(p)- In this case, m and the order <
orders or ranks the elements of X in a way that is consistent with their dissimilarities.

We study two questions about this problem: how to construct a suitable class M for
which such a solution exists? and, given this class, is there an efficient algorithm to solve
the seriation problem for any A?. Our goal is to provide an answer when we allow for both
linear and cyclic orders. For this reason, we explicitly distinguish between the linear seriation
problem and the circular seriation problem; the seriation problem refers to either of them.

To answer the first question, in Subsection 3.1 we characterize dissimilarities that admit
such linear or cyclic orders, and in Subsection 3.2 we discuss how these induce a suitable class
of matrices for the seriation problem. We defer the answer to the second question to Section 4
and 5.

3.1. Robinson dissimilarities. A dissimilarity or premetric d : X2 — R on X is a non-
negative and symmetric function that is identically zero on the diagonal. Robinson dissimi-
larities are dissimilarities to which we can associate a linear or cyclic order on X.

3.1.1. Linear Robinson dissimilarities. Linear Robinson dissimilarities admit a family of
linear orders on X.

Definition 3.1 (The linear Robinson property). A dissimilarity d on X is linear Robinson
if there exists a linear order <4 on X such that
(3.1) V linearly ordered z,y,z € X : d(z,2) > max{d(y, z),d(y, z)}.
It is strictly linear Robinson if all the inequalities are strict. We say <q is consistent with d
and that d is linear Robinson with respect to <g4.

Linear Robinson dissimilarities preserve the intervals defined by any consistent order [19).
From Definition 3.1 it follows that for any r > 0 and « € X the (closed) balls Bd(x) 2 {y €

This manuscript is for review purposes only.
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X : d(x,y) <r} are intervals in (X, <q). In fact, this property uniquely characterizes linear
Robinson dissimilarities. To prove this converse, the appropriate structure to analyze is the
hypergraph Hq with vertex set X and hyperedge set Bq = {Bd(z) : = € X, r > 0}. This
hypergraph is called an interval hypergraph if every hyperedge is an interval [14].

Proposition 3.2 ([19]). Let d be a dissimilarity on X. The following are equivalent:
1. d s linear Robinson.
2. The hypergraph Hgq is an interval hypergraph.

Preserving intervals is not enough to yield uniqueness of the consistent order. This follows
from the natural symmetries of Robinson dissimilarities. Let <4 be consistent with respect to
d. Its reversal <} is the linear order defined by = </, y if and only if y <q x. It is clear that
d is linear Robinson with respect to <q if and only if it is so with respect to </;. Therefore,
for Robinson dissimilarities the consistent order in A" is not unique.

3.1.2. Circular Robinson dissimilarities. Circular Robinson dissimilarities arise naturally
when we allow for cyclic orders.

Definition 3.3 (The circular Robinson property). A dissimilarity d on X is circular Robinson
if there exists a cyclic order 4 such that

V cyclically ordered z,y,w,z € X :  d(y,w) > min{d(y, z),d(y, 2)}.

We say it is strict circular Robinson if the inequality is strict. We say %4 is consistent with d
and that d is linear Robinson with respect to %y4.

Circular Robinson dissimilarities preserve the arcs of any compatible order, i.e., sets of
the form {z € X : (m,z, M) € €q} for m, M € X called the borders of the arc. Arcs are the
natural analogues of intervals for a cyclic order. Consequently, we say Hq is an arc hypergraph
if all its hyperedges are arcs. The analog of Proposition 3.2 for a cyclic order is the following.

Proposition 3.4. ([5, Proposition 5]) Let d be a dissimilarity. The following are equivalent:
1. d s circular Robinson.
2. The hypergraph Hq is an arc hypergraph.

Similarly to the linear case, preserving arcs is not sufficient to yield uniqueness of the
consistent order. Let 6gq be consistent with respect to d. In this case, its reversal €} is the
cyclic order such that (z,y,z) € €} if and only if (z,y,z) € €gq. By definition, d is circular
Robinson with respect to 6 if and only if it is so with respect to €.

3.2. Robinson matrices. Let d be a dissimilarity on X'. To any enumeration x : [n] - X
we can associate the n x n dissimilarity matriz D with entries D(i, j) := d(x;, ;). It is always
non-negative, symmetric, and with zero-diagonal. However, some enumerations will endow D
with additional properties. This leads us to Robinson matrices.

3.2.1. Linear Robinson matrices. If d is consistent with respect <q there exists an enu-
meration of X such that for i,j € [n] we have i < j if and only if z; <q ;. In this case, it
follows that D induces a linear Robinson dissimilarity on [n].

Definition 3.5 (Linear Robinson matrix). A dissimilarity matrix D is linear Robinson if

(3.2) V linearly ordered i,j,k € [n] : D(i, k) > max{D(j,i), D(j,k)}.

This manuscript is for review purposes only.
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Figure 1: Example of a linear Robinson dissimilarity matrix (in the left) and a circular
Robinson dissimilarity matrix (in the right)

It is strictly linear Robinson if all the inequalities are strict.

This implies D is consistent with the standard order on [n] and Proposition 3.2 holds for
D when X = [n]. From the definition, we also deduce that

V linearly ordered i,7,k € [n]: D(i,j) < D(i, k) and D(j, k) < D(i, k).

When the dimension is understood from context, the set of linear and strictly linear Robinson
dissimilarity matrices will be denoted L and L}, respectively. Considering each one of these
sets as M leads to the linear seriation problem and the strict linear seriation respectively.

Note linear Robinson matrices inherit the symmetries from the dissimilarity. In fact, it
can be verified that D is linear Robinson if and only if IT, DI’ is linear Robinson. Remark
that Dih; = (m,) and consequently linear Robinson matrices are invariant under the action of
Dih; by conjugation.

3.2.2. Circular Robinson matrices. For the circular case, we endow the set [n] with the
standard cyclic order %,

(3.3) (i,7,k) €€, <= (<j<k)V (J<k<i)V (E<i<j).

We still denote the standard linear order in [n] as <.

If d is consistent with respect €g there exists an enumeration of X’ such that (i, j, k) € 6,
if and only if (x;, %, x1) € €q. Similarly to the linear case, this implies D induces a circular
Robinson dissimilarity on [n].

Definition 3.6 (Circular Robinson matrix). A dissimilarity matrix D is circular Robinson
if

V cyclically ordered ,j,k,¢ € [n] :  D(j,k) > min{D(j5,%), D(5,€)}.

Therefore, D is consistent w.r.t. €, and Proposition 3.4 holds for D when X = [n]. When
the dimension is understood from context, the set of circular and strictly circular Robinson
matrices will be denoted Cr and Cj, respectively. Considering each one of these sets leads

to the circular seriation problem and the strict circular seriation respectively. Comparing
Definition 3.5 and Definition 3.6 it is apparent that every linear Robinson matrix is also circular

This manuscript is for review purposes only.
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Robinson. In this sense, the notion of circular Robinson extends that of linear Robinson. The
difference between linear and circular Robinson matrices is illustrated in Figure 1.

We provide an alternative definition for circular Robinson matrices that will be useful in
what follows. Let f: [n] = R. A mode is any m € [n] such that

Vijjen]: i<j<morm<j<i = fi<[f;i< fm.

We say f is unimodal if it has a mode. We say f is strictly unimodal if it has at most two
distinct, consecutive modes m; < mg with f,, = fm, and

Vijjen]:i<j<mi = [i<fi<fmandi>j>me = fi < fj < fms.

From the definition it is clear that every subsequence of a strictly unimodal sequence is also
strictly unimodal. The proof of the following is deferred to Appendix A.1.

Proposition 3.7. Let D be a dissimilarity matriz. The following are equivalent:
1. D is circular Robinson (resp. strict circular Robinson).
2. For anyi € [n] the function j — D(i,i+ 7 mod n) is unimodal (resp. strict unimodal).

This property is naturally invariant under cyclic permutations.

Proposition 3.8. A dissimilarity matriz D is circular Robinson if and only if 11, DIIL and
O DT are circular Robinson matrices.

Proof. First, notice that the (i,5) entry of IHgDIIZ and II,DIIL are D(i + 1 mod n, j +
1 mod n) and D(n—1—i,n—1—j), respectively. Noticing that {D(i mod n,i+j mod n) ?:_&
is unimodal for all 7, we have that {D(i + 1 mod n,i + j + 1 mod n) ;?:_01 and {D(n — 1 —
imod n,n — 1 — i 4+ j mod n)}’;;ol are unimodal. Therefore II,.DII! and I DIIL are also
circular Robinson. |

Since Dih,, & (m,, ) it follows that circular Robinson matrices are invariant under the
action of Dih,, by conjugation. This invariance is particular to the definition and should not
be taken for granted. Other definitions proposed in the literature, e.g., [26], do not enjoy this
property. We believe that cyclic invariance makes the definition arguably more natural.

3.3. Robinson orderings. The seriation problem does not assume we observe a linear or
circular Robinson dissimilarity matrix, but instead its image under conjugation by an unknown
permutation matrix. In other words, we observe matrices in pre-Lg and pre-Cgr. We call such
matrices Robinsonian matrices.

Given a Robinsonian matrix and an algorithm for the corresponding seriation problem,
the set of solutions may not be a singleton. In fact, the symmetries of linear and circular
Robinson dissimilarity matrices ensures they will never be a singleton. We call Robinson
orderings all the orderings represented by the elements in the set of solutions.

Although there will never be a unique Robinson ordering, we can at least distinguish
which ones are due to the natural symmetries of the problem. Therefore, for the linear
seriation problem we call solutions in the same orbit under the action Dih; the trivial solutions
whereas those in different orbits non-trivial solutions. The same criteria applies for the circular
seriation problem when the action of Dih,, is considered instead.

This manuscript is for review purposes only.
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4. The consecutive ones problem and P(Q-trees. Robinson matrices turn out to be nat-
ural to formulate the seriation problem. We now review the connection between this problem
and the consecutive ones problem. This connection yields polynomial time algorithms for
solving the seriation problem, and allows us to introduce PQ-trees, which will be extensively
used in Section 5.

4.1. The consecutive ones problem. The linear seriation problem is deeply connected
to a combinatorial problem known as the consecutive ones (C1) problem. To introduce this
problem, consider a n X n binary matrix M. The C1 problem is to find a permutation II
such that the entries of MII equal to one appear consecutively along rows. We say M has the
consecutive ones property (C1) property if the C1 problem has a solution for M. An example
of such matrix can be found in Figure 2a. The first linear time algorithm for the C1 problem
was introduced by Booth and Lueker in [3]. If f is the number of ones in M then their result
states the C1 problem can be decided in O(n + f) time.

An extension to this problem is the circular ones (Cri1) problem. The Crl problem is to
find a permutation IT such that the entries of MTI equal to one appear consecutively modulo n
along rows. We say M has the circular ones (Crl) property if the Crl problem has a solution
for M [29]. This problem can also be solved efficiently as it can be reduced to the C1 problem.
Let M be the matrix such that every row with a 1 on its first entry is complemented. Then M
satisfies the C1 property if an only if M satisfies the Cr1 property [29, Theorem 1]. Therefore,
by forming the complement, the Cr1 problem can be decided in polynomial time.

Both problems are connected to the seriation problem through the hypegraph Hp. In fact,
interval and arc hypergraphs are precisely those for which their incidence matrices respectively
satisfy the C1 and Crl properties [14]. This suggests how to efficiently solve the seriation
problem for Robinson matrices.

Theorem 4.1. ([6, 19]) The linear and circular seriation problem can be reduced in polyno-
mial time and space to deciding respectively the C1 and Crl problem. Robinson matrices can
be recognized in O (n3) time and with O (n3) space.

The bounds above follow from the worst case in which Hp has O (nQ) different hyperedges.
In this case, for each of the n possible centers and each row i € [n] the matrix can take O(n)
possible values. In this case, the incidence matrix has O(n?) entries.

4.2. PQ-Trees. The algorithmic structure underlying the algorithm to solve the C1 prob-
lem is the PQ-tree. A PQ-tree T on a set X" is a rooted tree with two types of internal nodes
denoted by P, represented as circles, and @, represented as rectangles, and where the leaves
represent the elements in X'. The type of node represents admissible permutations on X:
children of a P-node can be permuted arbitrarily, whereas children of a )-node can only be
reversed. Figure 2b shows an example of a PQ-tree.

PQ-trees are related to the C1 problem as follows. Let Y; be the indices of the columns
of M such that its i-th entry equal to one. Then Y = {Y;};>¢ is a collection of subsets of
[n]. The C1 problem can be solved if we can permute the elements of [n] so that every Y;
becomes an interval. The algorithm starts with a single set Y1 = {Y}, } and determines the set
of admissible permutations such that Y;, becomes an interval. These can be represented by a
PQ-tree Tq (see [3] and [4]). The algorithm proceeds by adding a Y;, to form Yo = {Y;,,Y;,}

This manuscript is for review purposes only.
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1 2 3 4 5 6 {(1,2,3,4,5,6), (5,6,4,1,2,3),
o 11 0 0 o 1 2 35 6 (321456, (56432]1),
11 1 1 0 0
0.0 0 1 1 1 (b) PQ-tree T representing E;’??’i’g’g;’ ((2’55’:’;’2275’))i
o000 516 1_ the solutions of the (C1P) 2T RS P
(a) M € {0,1}°° with  for pf. (¢) The set S(T) of permutations
the consecutive ones represented by the tree.

property.

Figure 2: A PQ-tree of all solutions to the (C1P) for a {0, 1}-matrix.

and update the PQ-tree accordingly. The main contribution of [4] is an algorithm for updating
Ti in a way that given any subset Yj;, C [n], the set of permutations represented by the updated
tree Tj1 is precisely the set of admissible permutations of Y1 U {Y%}. This is done in time
linear in the size of Y;. The algorithm finishes when Y is attained.

As an example, by considering all rows of the binary matrix in Figure 2a, the resulting
PQ-tree at the final step would be the one in Figure 2b, and the solution set would be the
one in Figure 2c.

5. Optimal Algorithm for Strict Circular Seriation. In this section, we present an op-
timal algorithm for circular seriation in the strict Robinson case (this algorithm would also
work for the strict linear case, but we will omit this). Our algorithm runs in O(n?) time
and space, which is obviously optimal, since it is the time required to read the input and the
space required to provide a strict Robinson dissimilarity.? The core algorithm relies in two
main ideas: merging nearest neighbors, and discarding forbidden arc reversals. We recursively
merge nearest neighbors, using the fact that nearest neighbors are guaranteed to be consec-
utive elements in a strict Robinsonian ordering. Exploiting this fact we can obtain chains of
consecutive elements which are stored in @-nodes of PQ-trees. The most complicated part of
the algorithm consists in (efficiently) determining if each @-node can be uniquely oriented. In
that case such @Q-node can be deleted and its children merged to the parent (Q-node.

The process of building chains of consecutive elements and deciding their orientation can
be done in several ways. The advantage of our algorithm is that the total number comparisons
to decide each orientation is bounded by O(n), which leads to a running time O(n?).

5.1. Preliminaries part I: nearest neighbours graph in strict Robinson dissimilarities.
Given D € pre-Cp, a collection of subsets P = {Z;};>¢ of X is said to be an arc partition if P
is a partition of X (i.e. Z;NZ; = @ when ¢ # j and |J;,Z; = X) and every set Z; is an arc
of consecutive elements in any Robinson ordering. A crucial part of the algorithm consists in
building arc partitions by merging nearest neighbours. The set of nearest neighbours of z € X
is defined as NN(z) £ arg minge x\ {5} d(z,y). The nearest-neighbours graph is an undirected

2Given the strict Robinson property, it is clear that the underlying matrix is dense, and therefore (’)(n2)
memory is required to even provide the input.
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graph Gyn(X,d) = (X, ) such that {z,y} € £ iff x € NN(y) or y € NN(x). An essential
condition of strict Robinson dissimilarities is what we called the nearest-neighbour condition,
which implies that the connected components of the nearest-neighbours graph correspond to
arcs of consecutive elements, and since connected components form a partition, such collection
corresponds to an arc partition.

Definition 5.1. (Nearest-neighbour condition) A dissimilarity matrix D € R™*" is said to
have the nearest-neighbour condition if it holds that NN(i) C V. £ {i—1 mod n, i+1 mod n}.>

It is immediate to verify that strict circular Robinson dissimilarities satisfy the nearest-
neighbour condition, which is not necessarily true in the non-strict case.

We also recall from graph theory that given a graph G = (X,€) and a node = € X,
the set of adjacent nodes to = is denoted as Ng(z) = {y € X : {z,y} € £}. The function
x — Ng(z) is called the neighbourhood. The ring graph R, = ([n],£) is the graph with edge
set £ = {{i,(i+1) modn} :i € [n]}. If a graph G is a subgraph of R,, then it is clear
that its connected components correspond to arcs of ([n],%,). A direct consequence of the
nearest-neighbour condition is that the nearest-neighbours graph of strict circular Robinson
dissimilarity matrices correspond to subgraphs of R,,.

Our algorithm relies crucially on the fact that strict dissimilarities must respect nearest
neighbors in any Robinson ordering. This is not necessarily true in the non-strict case.

Lemma 5.2. Let D € pre-Cj;, and i € [n]. Suppose that j € NN(i), then in any Robinson
ordering o, the elements i and j are consecutive.

Proof. Let o be any Robinson ordering. Let j € NN() and let » = D(i, j). This implies
that for any k € B(i,r) \ {i}, D(i,k) = D(i,j). Suppose by contradiction that there exist
k1,1, ko consecutive in o, with j # ki, ke. Since in any Robinson ordering balls are arcs, this
implies that either k; € B(i,r) or ko € B(i,7). Any of the two cases is a contradiction with
the nearest-neighbour condition, proving the result. |

Since nearest-neighbours must be consecutive, we get that the connected components of
the nearest-neighbours graph of a strict circular Robinson dissimilarity correspond to arcs of
any Robinson ordering. Hence, the set of connected components constitute an arc partition.
The fact that this graph is a subgraph of the ring graph makes computationally efficient
finding the order intrinsic to each component, and the task is divided in two steps:

1. Find all degree 1 nodes. These correspond to the borders of the components.

2. Perform a Depth-First Search (Algorithm DFS) starting at each non visited degree 1
node. The order in which the nodes are visited will follow the Robinson ordering (or
backwards).

If there are no degree one nodes, then GNn = R, and therefore we can start at any node.
For an algorithmic implementation, tuples can be used to represent the local fragments of
Robinson orderings (@Q-nodes). A tuple is an ordered set o = (agp, a1, a9, ...,ax—1). We write
a(i) to denote a;, the i-th element of a. Each connected component will be stored in a tuple
a, where «(j) is the j-th element visited by performing a DFS. The procedure is summarized
in Algorithm AP (Arc Partition), whose correctness is stated in the following Proposition

3Given some enumeration # and i € [n], when we write NN(i), we refer to the set #(NN(x;))
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(the proof of the next result is omitted for brevity).

Proposition 5.3. Given any dissimilarity matriz D € pre-Cy, by performing Algorithm AP
with input ([n], D) the resulting tuples follow an arc ordering for every Robinson ordering.

5.2. Preliminaries part Il: orienting arcs. The previous section tell us that nearest-
neighbours must be consecutive in the strict Robinson case. By exploiting this idea we can
obtain ordered sequences of elements stored in ()-nodes of a PQ-tree. Notice however that
@-nodes are allowed to be reversed, which at this point of the algorithm is not guaranteed
to lead to Robinson orderings. If this is not the case, the inconsistent ordering must be dis-
carded, which corresponds to removing the ()-node and merging the its children directly to
the parent (Q-node. We call this process orienting. In this section we provide computationally
efficient conditions to determine when a (Q-node must be oriented. Each @-node « in a tree
T can be associated with an arc Z,, in X: the arc of all leaves in X which are descendants of
a. Reversing o corresponds to reversing Z,. The first relevant concept to determine when it
is possible to reverse each arc is the strictly overlapping condition, which has been studied for
instance in [23] and in [14]. An example of the property can be seen in Figure 3 (a).

Definition 5.4. Two arcs Z and J are said to strictly overlap, denoted by Z (* 7, if

1.ZT¢ J; 2. J ¢ I; 3.7°¢ J; and 4.7 ¢ I°

Observation 5.5. The relation (* is symmetric and equivalent to
1.ZNnJ° #0; 2.J NI 40, 3.I°NJ¢#0; and 4.ZNJ #0.

Lemma 5.6. Let Z and J be two arcs. Let a,b and a’,b' be the borders of T and I°,
respectively, where a (b) and o’ (b') are consecutive in the cyclic order. Then I (* J if and
only if one of the following conditions holds

(i) {a,a’} € J and {b,¥'} C T or (ii) {b,'} C J and {a,d'} C J°.

Proof. We first prove (<=). Suppose (i) holds (the other case follows analogously). Then
since a € Z and a’ € Z¢ we get conditions 2 and 4 of Observation 5.5. Now, since b € Z and
b € Z¢ we get conditions 1 and 3 of Observation 5.5.

Next we prove (=). First we notice that there are at least two elements in Z and two
elements in Z¢ (otherwise containing a single element of these arcs would imply containing the
whole set, contradicting one of the conditions in Definition 5.4). Hence, the elements a, b, a’
and ¥ exist and are distinct. Suppose a € J (the case a € J€ is analogous), and let z € J\ T
(exists by hypothesis). Since J is an arc, it must contain one of the two paths connecting
a and z. Since it does not contain the whole Z it must be the path that covers a’, therefore
{a,d'} € J and b ¢ J. On the other hand, since it does not contain the whole Z¢ v € J. It

follows that {b,0'} C J°. [ |
Given an arc Z = {ayg,...,ax_1} (where elements are indexed following the cyclic order),
we define the permutation that reverses I as the permutation o s.t. o(a;) = ap—j—1 for

je{0,....;k—1},and o(z) =z if x ¢ .
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Figure 3: In the left, two strictly overlapping arcs Z (in blue) and J (in red). In the right,
o(Z) (in blue) and o(J) (in red), where o is the permutation that reverses the elements of Z.

Lemma 5.7. Let T and J be two arcs and let o be the permutation that reverses the ele-
ments of Z. Then T (* J iff the permutation of J by o is not an arc.

Proof. We first prove («<). By contraposition, assume any of the conditions in Defini-
tion 5.4 do not hold, then it is easy to see that o(J) = J, which is an arc. Now we prove
(=). If 7T §* J, then at least one of the conditions of Lemma 5.6 hold. Since o(a) = b,
o(b) =a, o(a’) =a and o(t') = V' then o(J) is not connected and thus it is not an arc. W

As an example, consider the two strictly overlapping arcs Z and J in Figure 3. By reversing
the blue arrow (the arc Z) the red arrow (the arc J) gets ripped apart into two disconnected
pieces. Recall from Proposition 3.4 that a dissimilarity matrix is circular Robinson iff each
ball 7 is an arc. Therefore, any arc Z cannot be arbitrarily reversed to produced a new
Robinson ordering iff there is some ball that strictly overlaps with Z. In terms of PQ-trees,
a necessary and sufficient condition for a Q-node «a to be orientable is the existence of some
z € X and r > 0 such that the ball B,(z) strictly overlaps with Z,. In such case, one of the
two orientations of the node is not compatible with a Robinson ordering since in one of these
orientations the ball gets disconnected. By Lemma 5.6, to determine the orientation of the
arc Z one could equivalently check whether there exists z € & and r > 0 such that

[{a,a'} C Bo(2) A {bt} CBT(Z)C] v [{b, WY C Bo(2) A {a,a} C Br(2)],

If none of this conditions hold, then we say the arc is not orientable which means that
the @-node in the tree must be preserved. Notice that this requires knowing that a,b (a’,b)
are the borders of Z (resp. Z¢) in advance. Algorithm BCO is an efficient way for orienting
the arc Z with respect to the dissimilarity d when we have border candidates but the actual
borders within the candidates are unknown.

Definition 5.8 (Border candidates of an arc). An 4-tuple of sets (A’, A, B, B') are said to
be border candidates of the arc Z, if the following properties hold:
1. ABCZTand A,B CI°.
2. The sets are pairwise disjoint.
3. If a, b are the borders of 7 and o',V are the borders of Z¢, then: a € A,b € B,a' € A’
and V' € B'.
4. Either (A', A,B,B') or (A, B, A,B') is cyclically ordered.*

4Formally, the ordered collection is a consistent cyclic quasi order, see Definition 5.12
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The next result provides correctness for Algorithm BCO (see its proof in Appendix A.2).

Lemma 5.9. Let Z C X be an arc in any Robinson ordering. Suppose a,b are the borders
of T and d',V are the respective borders of Z¢. Additionally suppose that (A', A,B,B') are
border candidates for Z. Then, for every z € X, the following statements are equivalent:

1. Both {a,a’} C B,(z) and {b,b'} C B,(2)¢ hold.

2. There exist (z/,x,y,y") € A X AxBxB' s.t. max{f,(z), f.(2')} < min{f.(y), f-(v')}.

3. It holds that max { min{f.(A)}, min{f.(A")}} < min { max{f.(B)}, max{f.(B')}}.
Above f.(-) £ d(z,-) and given any U C X, min{f.(U)} £ minyey f»(y).

Corollary 5.10. Let T C X be an arc in any Robinson ordering and suppose the sets
(A", A, B, B') are border candidates for the arc Z. Then, Algorithm BCO correctly determines
if T must be fized, reversed or if it is not orientable.

Algorithm BCO Border Candidates Orientation

Input: A sequence of sets (A, A, B, B)
Let f.(x) = d(z,z) for every z € X
Let O; : X — {True, False} for i = 1,2,3,4 be defined by
O1(2) £ mas{ming f.(A)}, min{ f.(A)} < min{max] f.(B)}, max{ /- (5}
O2(z) £ max{min{f,(B)}, min{f.(8')} < min{max{f.(A)}, max{f.(A)}
O3(z) = max{min{f,(A)}, min{f.(B')} < min{max{f,(A")}, max{f.(B)}
O4(z) = max{min{f,(B)}, min{f,(A")} < min{max{f,(B')}, max{f.(A)}
for z € X do
if O1(z) V O2(2) then
return ‘correct’
else if O3(z) V O4(z) then
return ‘reverse’
end if
: end for
: return ‘not orientable’
: Output: A string determining the orientation of the input

e e e e e
@ T w2 o

Observation 5.11. The time complexity of Algorithm BCO with input (A, A,B,B) is
O(1X] - max{|A'[,|A],|B|,|B|}), thus it is an efficient way of orienting a @-node & whenever
the sets of border candidates for Z,, is not too big.

5.3. The Recursive Seriation Algorithm. The general idea of the algorithm is first: to
merge nearest neighbours into @-nodes, and second: to orient these nodes afterwards whenever
is possible. For this recursive algorithm to work, we need an appropriate data structure that
maintains arcs certified by nearest neighbour conditions. We find convenient for this purpose
to use trees, which keep track of the nearest neighbours obtained at different steps of the
recursion. The starting family of trees are singletons indexed by the elements of X

Consider a family T of Q-trees (which are PQ-trees composed solely by Q-nodes). For
each 7 € T we write as 07 the set of leaves of 7. Along this section we assume that
{OT }rer is an arc partition. Moreover, for every Robinson ordering of X we assume that

s manuscript 1s for review purposes only.
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there is a configuration of each 7 € T in a way that the leaves of T follow an arc ordering.
We endow each 7 € T with a set B(T) of border candidates®, which are all leaves of T
that appear in the extreme left or right under some configuration of the tree. Whenever
|0T| > 2, the set of border candidates B(7) can be split in two: left and right. The set of left
border candidates, denoted as BY(T), are all elements in B(7) that appear in the extreme
left under some configuration of the tree, subject to fixing the @-node in the root. Similarly,
BE(T) denotes the set of all right border candidates, which are are all elements in B(7) that
appear in the extreme right. For instance, in the tree 7 appearing in Figure 5a, we have
BY(T) = {ag, bs, ba, b1} and BE(T) = {b}. Finally depth(7) denotes the tree-depth of 7.

Next we present a high level pseudocode and describe its main steps. For simplicity, we
describe the orienting steps at the end.

Algorithm 5.2 Recursive Seriation

Input: A family T of Q-trees
step 1: Compute d™" and d*&™" gver T
step 2: Perform Algorithm EO of each 7 € T
step 3: Compute a new family trees T' using Algorithm AP with input (d™",T)
if |T'| =1 then
step 4: Perform Algorithm FO in T € T’
return 7 €7’
else
step 4: Perform Algorithm CIO in each 7 € T
Recurse over T
end if
Output: The unique Q-tree 7 € T’ containing all Robinson orderings

5.3.1. Initialization. Initially we have an abstract set X (or indices) and some dissimilar-
ity d among its elements. Given this input, we initialize Recursive Seriation with a collection
of single element trees T = X. In such case, B(x) = 0x £ {z} for every v € X

5.3.2. Computing the minimum pairwise dissimilarity among trees. The following step
of each iteration consists in computing a dissimilarity matrix among the input trees. Given
two trees 71, 7o define the dissimilarity d™*(77,72) £ min{d(z,y) : = € B(T1),y € B(T2)}.
Also let d®&™i®(T;,T3) be the collection of all minimizers in B(71) x B(T3). Computing
dissimilarities among trees allows us to solve the problem recursively. In each step, the objects
we reorder will be Q-trees and by doing so we obtain quasi-orders among our original set of
objects. The following Lemmata justifies this procedure.

Definition 5.12 (Quasi-order®). Let (X,%) be a cyclically ordered set. An ordered parti-

tion {Ao, ..., Am—1} is a (consistent) cyclic quasi order if for all (i,7,k) € €n, v € Aj, y € A
and z € Ay we have that (z,y,2) € .

SWe emphasize the distinction of the border candidates of a tree and the border candidates of an arc,
introduced in Definition 5.8
5This extends the definition introduced in [6] for linear orders to cyclic orders.
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Lemma 5.13. Let D € R™*" be a (strict) circular Robinson dissimilarity and let {A;}icim)
be a cyclic quasi-order in [n]. The matriz D™™(A;, A;) £ min{D(k,l) : k € A;,l € A} is a
(strict) circular Robinson dissimilarity.

Notice that since {97 }reT is an arc partition, by computing the minimum dissimilarity
among all pairs of leaves we can solve the problem recursively. However, this could be com-
putationally expensive. The next result, which is a direct consequence of Proposition A.1 in
Appendix A.1, implies that we can reduce this search by only using border candidates.

Lemma 5.14. Suppose D € Cj, and let T = [a,b] be an arc in ([n],€,). Then for every
i ¢ Z¢ all minimizers of min{D(i,j): j € I} are contained in {a,b}.

Therefore, given a family of trees T = {7;}, we have that D’(i, j) = d™"(T;, T;) € pre-C,
(pre-Cr) whenever the original dissimilarity D is in pre-Cy (pre-Cr) and a Robinson ordering
for D' yields a quasi order for D.

Observation 5.15. Computing d™® (71, T2) takes O(|B(T1)|-|B(72)|) operations and storing
daremin( Ty T5) requires O(1) space, since by Lemma 5.14 we have that [d*8™ (77, T3)| < 4.

5.3.3. Connected components of the nearest-neighbours graph. Since for any enumer-
ation of T we have that D'(i,j) £ d™"(7;,T;) € pre-Cj, Proposition 5.3 guarantees that
Algorithm AP with input (T,d™™") returns an arc partition of T stored in ordered tuples.
The elements in each tuple a must be consecutive. Therefore, for each o we build a new tree
To with a @-node in the root whose i-th children corresponds to a(i). In each iteration we
repeat this process until we end up with a unique connected component, yielding a Q-tree.

Now we introduce the main procedure required for orienting ()-nodes within the trees.

5.3.4. Consecutive ()-nodes orientation. Recall from Corollary 5.10 that in order to
orient the root of a Q-tree 72, it suffices to find border candidates for the arc 073. If T3 is the
children of a @-node « in which 75 succeeds some tree 7; and precedes another tree 73, then
we propose the procedure Consecutive Orientation (Algorithm CO).

Algorithm CO Consecutive Orientation

Input: Three consecutive subtrees (71, 72, T3) of a @-node «
Let A' £ B(T1), B = B(T3), A 2 BX(T3) and B £ BE(T3).
Run Algorithm BCO with input (A, A, B,B’). Let = be the output
if = =correct then
Fix the the root of T3
else if = =reverse then
Reverse the the root of 73, then fix it
else
Label 72’s root as non-orientable and continue the algorithm as if the root of 75 where
fixed. This node is an actual @-node of the tree of Robinson orderings.
10: end if
11: Result: The root of 73 is oriented

Since A" = B(T1), B = B(T3), A = BL(Tz) and B = BE(Tz) are border candidates
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for 97z, the correctness of the procedure is due to the correctness of Algorithm BCO. By
Observation 5.11, the complexity is given by O(n - max{|B(71)|, |B(72)|, |B(T3)|}).

5.3.5. Complete internal orientation of elements in a connected component. Given
some Q-tree 7 with depth(7) > 1, let 7% (resp. T%) be the subtree of 7 whose root is the
first (resp. last) @-node among the direct descendants of the root of 7. A complete internal
orientation of a @Q-tree 7, is a process in which we determine the orientation of all nodes
present a tree except from the nodes present in 7% and 7. For this task we propose the
procedure Complete Internal Orientation (Algorithm CIO).

Algorithm CIO Complete Internal Orientation

Input: A Q-tree T with root o with depth(7) > 1
Let {7i}iepr be all subtrees children of o, excluding the first and last trees (7% and 77)
for i € [k] do

Run Algorithm CO with input (7;_1,7;, Tix1), where 71 2 TX and T, 2 TE
end for
Recursively repeat this process until the only unoriented node in 7 are in 7% and 7%
Result: All elements in 0T \ OT* UJTE are directly connected to «

The recursion is done in a Breadth-first search fashion”. Once again, the correctness of
the procedure is due to the correctness of Algorithm BCO. As an example, consider Figure 4.
Here, the tree at the top was constructed at the second recursion of the algorithm and repre-
sents a connected component of the nearest-neighbours graph over a family of @-nodes. 7%
corresponds to the tree with root in Q1 and 7% corresponds to the tree with root in Q). The
tree in the bottom corresponds to the tree after Algorithm CIO.

In the final recursion of Recursive Seriation Algorithm we obtain a unique connected com-
ponent from Arc Partition, from which we construct a unique tree 7 such that 9T = X.
Here, the cyclic order of X implies that the subtrees 7% and T are consecutive. Hence, to ori-
ent these trees we make a slight variation in the procedure Final Orientation (Algorithm FO).
This is equivalent to consider the (-node as a ring rather than as a list.

5.3.6. External orientation of trees. Since for each 7 € T, the set 9T corresponds to
an arc and as a consequence of Lemma 5.14, d™®(7,7”) is attained at some x € B(T) and
y € B(T’) which are guaranteed to be borders of T and 97", respectively. Therefore, we
must arrange some of their internal nodes in a way that x and y lie at the borders. We propose
the procedure External Orientation (Algorithm EO).

An important observation is that in the tree 7 resulting from the first part of this procedure
we have that 7% = {z} (assuming for simplicity that 2 € BY(7)). In the second part we
execute Algorithm CIO with input 7. Since 7% = {x} at the end the only Q-nodes remaining
to be oriented are the ones present in 7. As an example, we consider the Q-trees in Figure 5.
Let 7 be the tree in Figure 5a. In this example, T is the subtree with root in Q; and T
is the singleton {by}. Suppose by computing d™"(7",7") for some other 7' we get that d™®
is attained at by € BX(T). In that case, we must fix 7~ following the algorithm. Since by is

"This way, trees of same depth are compared in Algorithm CO (excluding comparisons with TE and TR).

s manuscript 1s for review purposes c .
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Algorithm FO Final Orientation

1: Input: A Q-tree 7 with root a.

2: Let T £ {T;};epx be all subtrees of a (including 7% and TF)

3. if |T| > 2 then

4:  foric [k] do

5: Run Algorithm CO with input (7;_1,7;, Ti+1), where T_1 2 T and T £ T

6: end for

7. else

8:  In this case we have that T = {77, T2}

9:  To orient the root of 77, run Algorithm CO with input (T5F, 71, ToF) {Notice that suffices

to orient the root of 77 to determine the orientation of both roots}
10: end if
11: Recursively repeat this process until all nodes are oriented
12: Result: All Q-nodes in T are oriented.

| % |
Qi1 |cli [ Q1]
| % |
a Ly o’ Ly

Figure 4: Example of a connected component of the nearest neighbours graph at the second re-
cursion of the Recursive Seriation Algorithm before and after Complete Internal Orientation.

Algorithm EO External Orientation

. Input: Q-trees T and 7’. The set d*&™® (T, T7)
. for (z,y) € d¥&™ (T T') do
if € BY(T) then
Fix every @Q-node in 7% containing = as a descendant from the root until the Q-node
«a where z lies in a way such that x is placed on the left
5. else if 2 € BE(T) then
Fix every @-node in 7 containing = as a descendant from the root until the Q-node
a where z lies in a way such that x is placed on the right
7. end if
8: end for
9: Run Algorithm CIO with input T
10: Repeat the same procedure with 77 and y
11: Result: Either all Q-nodes in 7% (resp.7'%) or T (vesp.T'%) are oriented

s manuscript 1s for review purposes only.
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bs
(c) Step 3 (d) Step 4

Figure 5: External orientation

519 a left border in ()1, this node is correctly oriented. However, since bs appears in the right of
520 @2, we must reverse 2 as in Figure 5b. The resulting tree is the one in Figure 5c. Next, we
521 perform a complete orientation and the resulting tree is the one in Figure 5d.

522 Notice that excluding the running time of Algorithm CIO, the number of operations

523 required for this procedure is bounded by O(depth(771)).

524 Observation 5.16. If T is a tree built at the k-th recursion of the algorithm, then clearly
525 depth(7) < k. We claim that since after this process either 7% or T® gets completely
526 oriented, then it holds that |B(7T)| < k+ 1. We prove this by induction on k. Notice that if T
527 is composed by a single @-node in the root, then |B(7)| < 2. Now let 7 be a tree instantiated
528 at the k-th recursion of the algorithm. W.l.o.g. assume 7 gets completely oriented. Then
520 B(T) = B(TT) U {z}. Hence, |B(T)| = |B(T*#)| + 1. The claim follows by inducting on 7%,
530 5.4. Analysis of the Recursive Seriation Algorithm.

531 Theorem 5.17. Given D € pre-Cy, let T be the PQ-tree obtained from the Recursive Seri-

532 ation Algorithmwith input D. Let S(T) the set of all ordering of X (permutations) represented
533 by the tree. Then, Scy,(D) = Dihy, 0S(T), i.e. it solves the strict circular seriation problem.

Proof Sketch. For simplicity, suppose in the Recursive Seriation Algorithm we omit the
orientation steps and leave them to the end of the process. This does not affect the set of
solutions but may increase the time complexity. Denote 7P"¢ and T the trees before and after
orientation, respectively. Also let T}, the family of trees instantiated at the k-th recursive step.
Notice that by Lemma 5.13, evaluating d™" over T}, yields a dissimilarity matrix Dy, € pre-Cp,
(a (permuted) submatix of D). Due to Proposition 5.3, we have that Sc: (D) C Dih,, oS(777¢)
(at least all Robinson orderings are considered at this point). To complete the proof, it remains
to show that in 7 all orientable (Q-nodes originally in 7P"¢ had been correctly fixed. To see
this notice that the orientation of each Q-node in TP is tested either by Algorithm EO or

ot
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Algorithm CO. The correctness of Algorithm EO is due to Lemma 5.14. The correctness of
Algorithm CO is due to Corollary 5.10. |

Theorem 5.18. The Recursive Seriation Algorithm runs in O(n?) time.

Proof. We count the number of operations required by the procedure Algorithm CIO and
Algorithm FO separately from the rest. At the i-th recursion let T(¢) be the input @Q-trees,
let k(i) £ |T(:)| and let b(i) = maxyer(;) |B(T)|. Then, by Observation 5.15, computing
d™in takes O(k(i)? - b(i)?) operations. By Observation 5.16, the complexity of the procedure
Algorithm EO takes O(k(i)?) operations. Computing Gnn takes O(k(i)?) operations. The
procedure Algorithm DFS takes O(k(i)) operations.

On the other hand, notice that in each step of the recursion, every tree is merged to its
nearest neighbour. This implies that k(i) < 3 and, therefore, the depth of the recursion
is bounded by logs(n). Since by Observation 5.16 b(i) < 4 + 1 then, there is some con-
stant C1 > 0 such that the the total number of operations of this procedure is bounded by
™ (3) G +1%+ (3)° + () = 0.

It remains to consider Algorithm CIO and Algorithm FO. In this procedures, all @-nodes
« are oriented through Algorithm CO with input (77, 72, 73) where « is the root of T2. To
count the operations of this procedure we consider two cases. The first (and most common)
case is when 77,75 and 73 are trees instantiated at the same recursive step. In this case, if
they where instantiated at the i-th recursion then by Observation 5.16 and Observation 5.11
the orientation takes O((i 4+ 1) - n) operations.

By counting on the recursion where each node was instantiated, the total number of
operations involving first case @-nodes can be bounded by Cs- Ziofg(n) (%) (i+1)-n = O(n?).

A second case to consider is during the complete orientation of a connected component. Let
T be a tree generated from a connected component of the nearest-neighbours graph at the i-th
recursion of the algorithm. Then, in Algorithm CIO (or Algorithm FO) with input 7, some of
the internal @Q-nodes will be oriented by having as border candidates B(7%) and B(T ). Since
depth(7") < i, this can occur for B(T*) (resp. B(T*)) for at most i internal Q-nodes of 7. If
C'(i) be the number of connected component found in the i-th recursion, then the number of
second case Q-nodes is at most C(4)-i-2. Since by Observation 5.16, |B(T*)| <iand |B(TT)| <
i, the number of operations required for orienting all this nodes is bounded by O(C(i) -2 n).
Again, by counting through the recursion levels and considering that C(i) < n/2¢, the total

logy (n)

cost of orienting second case Q-nodes is bounded by C3 - )", (%) -i? - n = O(n?), which

proves the result. [ ]
5.5. P(Q-tree of solutions in the strict Robinson case. It is clear that if a sequence is
strictly monotone the only permutation that preserves this property is the one that reverses
the sequence. Therefore if D € L}, we have that Sgy (D) = {e,r} = Dih;. However, it is not
immediately clear which permutations are the ones that preserve the strict unimodality. The
next Lemma will let us conclude that there is at most one non trivial ordering for D € C%,.

Lemma 5.19. Let D € Cj, and let I, ... T}, be disjoint arcs of [n]. Let o7, be the permuta-
tion that reverses Z;. Then, at most one of the oz,’s produces a new Robinson ordering.

Proof. Suppose o7 is a Robinson ordering for some arc Z. For every i € [n], let M (i) =
argmax; D(i,j). We claim that for every i ¢ T it holds that M(i) C Z. Otherwise, given
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m* € M(z), by the connectivity of Z, we must have that Z must be strictly contained in one of
the two paths connecting ¢ and m*. Also notice that D(i,-) is strictly monotone in such path.
Hence, reversing 7 would violate the monotonicity of such sequence (an thus the unimodality
of the whole sequence). This proves the claim. Since Z¢ is an arc, by the same argument we
have that ¢ € Z implies M (i) C Z°. Hence, the only arcs that can be reversed are Z and Z°.H

6. Behavior for large n. The literature on the seriation problem has mostly focused on
finite ordered sets, either linearly or cyclically ordered, on suitable classes of matrices encoding
properties of this order, such as Robinson matrices, and on efficient algorithms for its solution.
However, typically the use of seriation algorithms is motivated by the interpretation of data
as embedded in a closed curve, and it is unclear how these combinatorial solutions relate to
the underlying order of a continuous object.

To bridge this gap, we provide a simple generative model of sampling from a continuous
and periodic structure. That sample, and more specifically the dissimilarities between pairs
of points from the sample, will be the input of our strict seriation algorithm. The question we
want to answer is: To which extent the solution obtained by the seriation algorithm applied
to a random sample reflects the underlying ordering of the periodic structure? We will answer
this question by proving that as the sample size n grows, the expected Kendall-tau distance
from the strict circular seriation algorithm solution to the order inherited from the continuous
model decreases at a rate O(log(n)/n).

6.1. Reduction to S'. We will consider our periodic continuous structure as parameter-
ized by the unit circle. Equivalently, we will use the set [0,1) as the set of points, where we
topologically identify 0 and 1, making it a circular-like structure. This set is endowed with
the natural cyclic order, which results from embedding [0,1) into S'. We assume the set [0, 1)
is endowed with a dissimilarity d. We will make some assumptions that relate the circular
ordering to the circular Robinson property.

Assumption 6.1. d s continuous, and strict circular Robinson, i.e.,
(6.1) Y cyclically ordered x,y,z,w € [0,1) : d(y,w) > min{d(y, z),d(y, 2)}.

One natural question is how general this continuous model is. We claim that the assump-
tion that our sample space is the unit circle is without loss of generality. For example, if the
sample space is a one dimensional compact manifold of R%, we can parameterize the manifold
by its arc-length v : [0,1) — R? and let d(t,s) := ||y(t) — y(s)||, which is clearly continuous.
Notice however that the validity of the strict circular Robinson property is not guaranteed in
this example: such assumption depends on the relative positions of points in space.

6.2. Solutions in the limit. To understand the set of solutions in the limit we first need
to characterize the natural symmetries of the strict Robinson dissimilarity d. To do so, we
consider the family of cyclic shifts {ms : s € [0,1)} defined by 7m4(t) = ¢t + s mod 1, and
the reversal mp(t) = 1 —t. We let Dihy = (75, m : s € [0,1)). In addition, given an arc
T :=(t,s) € [0,1), we let o7 be the bijection that reverses Z and fixes Z¢. Since in the finite
case all solutions can be expressed as compositions of such permutations, in the continuous
case we look for solutions in Sym(cc) £ Dihy, o{o7 : T arc).
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Theorem 6.2. Suppose d satisfies Assumption 6.1, and let m € Sym(oco). If d o 7 is strict
circular Robinson then m € Dih .

This result can be seen as a well-posedness statement of the seriation problem in the
continuous limit. Our next goal is to study its consequences for large (but finite) sample size.

6.3. Approximate well-posedness of seriation in the large n regime. We now propose
a sampling model from the continuous model. We uniformly at random extract a size n
sample from [0,1). We denote this sample by X, := {zg,...,zp—1}. If we let A be the
Lebesgue measure on [0,1), then our sampling is distributed as \". Let Dy, denote the
dissimilarity matrix associated to A,. In particular, if xg,...,x,—1 are cyclically ordered,
then the dissimilarity matrix is strict circular Robinson (cf. Assumption 6.1).

Despite that in the continuous case there is a unique Robinson ordering, with finitely
many samples there might exists non-trivial orderings (cf. Lemma 5.19). In what follows we
study conditions under which for a large sample, any ordering in ch(D x,) is close to the one
induced by the curve. Our closeness measure is given by the Kendall-tau’s metric 7 and the
goal is to bound the expected value of the diameter of the set of solutions:

Definition 6.3 (Kendall-tau's metric [13, 18]). We define the Kendall-tau distance between
permutations 7 and my as 7x (71, 7m2) £ |G (71, 72) |/(5), where G (71, 72) corresponds to the
set of discordant pairs defined as

G (m1,m2) = {(i,) + i < j [m(d) < w1 (i) Ama(i) > ma(i)] V [m1 (i) > m(f) A ma(i) < ma(5)]} -

The denominator (4) ensures that 7 (m1,72) € [0,1]. The next definition of diameter takes
into account that for seriation cyclic permutations provide the same ordering.

Definition 6.4. Given a set S C Sym(n), the diameter of the S is defined as diam(S) £
MaXr, rpeS Mills eDihy, omy TK (71, T2).

Let Arc: [0,1) x [0,1) — [0, 1] be the length of the shortest arc connecting two points in
the unit circle, i.e. Arc(6y,62) = min{|0; — 62],1 — |01 — 62]}. To prove rates on the Kendall-
tau distance we make a final assumption. This condition allows us to avoid making overly
restrictive metric assumptions on the dissimilarity, but still enjoying a weaker form of distance.

Assumption 6.5. The dissimilarity d satisfies the following bi-Lipschitz property:
(6.2) (3L > £ > 0)(Vs,t €[0,1)) 0 Arc(s,t) < d(s,t) < L- Arc(s,t).

We conclude this Section by providing a rate on the expected Kendall-tau diameter of the
set of solutions of the circular Robinson algorithm. Hence, all these solutions must be close
to the underlying order of the continuous model. Its proof is deferred to Appendix A.4.

Theorem 6.6. Let X, = {xo,21,...Tpn-1} i Unif[0,1). Then given any d satisfying As-
sumption 6.1 and Assumption 6.5 we have that

(L+0) log(n)).

(6.3) Ex, [diam(Sc;%(DXn))} - o( ; -

This manuscript is for review purposes only.



656
657
658
659
660
661
662
663
664
665
666
667
668
669

678

679
680
681
682
683
684
685
686
687
688
689

690
691

692

22 S. ARMSTRONG, C. GUZMAN, C. A. SING LONG

Appendix A. Proofs.
A.1. Proof of Proposition 3.7. We need two auxiliary results first.

Proposition A.1. f is unimodal (resp. strictly unimodal) if and only if for 1 < j < k we
have f; > min{ f;, fr} (resp. f; > min{f;, fi}).

Proof. Suppose f is unimodal, let m be a mode, and suppose there are i, j, k, not all equal,
such that i < j < k and x; < min{x;,x;}. Then x; > x; and x; < x. This implies m < j
and m > j. Hence m = j. This is a contradiction. Now, suppose f satisfies the inequality
but has no mode. Then j is not a mode, and there is ¢ < j and k£ > j such that f; > f; and
fr > fj. This is a contradiction. The proof for the strictly unimodal case follows from the
same arguments. |

Proposition A.2. If (i_1,10,%1), (i0,1,12) € G, then for each k € {—1,1,2} there is g € [n]
such that i, = ig + qx mod n. Furthermore, ¢1 < qo < q_1.

Proof. Consider g = i) — ig mod n. Then gy = 0. Since cyclic shifts do not change cyclic
orderings, this implies ¢; < g2 < q_1. This proves the proposition. |
A

Proof of Proposition 3.7. For simplicity we define d;'- £ D(iyi +j modn). (2 = 1)
From Proposition A.2 we can write i = j + ¢;, k = j + g, and £ = j + g with g < qo < ¢;.
Since ¢’ is unimodal, from Proposition A.1 we deduce dj, > min{dj, ,d},}. (1 = 2) If &/ is not
unimodal, by Proposition A.1 there are g < g < ¢; with &}, < &}, and &}, < d},. If we define
i=j+¢gmodn, k=j+ g, modn and ¢ = j + gy mod n we see that (i, 5, k), (j,k,£) € €n.
This contradicts 1. |

A.2. Proofs for Section 5.
Proof of Lemma 5.9. Let z € X and denote f,(-) = d(z,-). First, notice that

(Ir > 0).{a,d’} C B.(2) A {b,b'} C B,(2)°
< max{f:(a), f2(a')} < min{f.(b), f-(0)}.

(1. = 2.) By (A.1), this implication is direct from the fact that a € A,b € B,a’ € A’ and
V € B. (2= 1.) Let r £ max{f.(z), f.(2")}, thus {z,2’} C B,(z) and {y,y'} C B.(2)".
By Proposition 3.4 this ball is an arc, and therefore is connected in any Robinson ordering.
This implies that all elements in between x and 2’ (in all Robinson orderings), including a
and @’ must also be present in B,(z). Similarly, all elements in between y and y’, including
b and b’ must not be present in B,(z). The implication follows from (A.1). (3.= 2.) Direct.
(2.= 3.) Notice that given any z € X and any t > 0 we have that if there is some a € A
and ¢’ € A’ such that max{f.(a), fz(a’)} < t. Then, f.(a) < t A f.(a’) < t. Which implies
max{min f,(A), min f,(A)} < ¢. Similarly, the existence of b € B and ¥’ € B’ such that
min{ f,(b), f-(v')} > t implies that min{max f,(B), max f,(B')} > t. This proves the final
implication, and hence the result. ]

Proof of Lemma 5.13. Let x4 € By and x; € By be such that D™ (By, By) = D(xp, 14),
and let x. € B¢, x, € B, be arbitrary. We notice that x4, xp, ¢, T4 is cyclically ordered, hence

(A1)

D™ (By By) = D(zy,24) > (>) min{ D(xy, z4), D(zp, )}
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On the other hand,
min{ D(xy, z4), D(zp, zc)} > min{Dmin(Bb7 B,), Dmin(Bb, B.)}

by definition of D™™ proving the result. |
A.3. Proof of Theorem 6.2.

Proof. Suppose by contradiction that there exist an arc Z = [a, b) such that d ooz is strict
Robinson. For € > 0 small, a — €, a,b,b + € are cyclically ordered. By hypothesis,

(A.2) d(o(a),o(b+€)) > min{d(c(a),o(a —¢€)),d(c(a), (b))},

and since b+ €,a — € ¢ Z, we get that o(a —¢) = a — ¢ and o(b+¢) = b+ €. On the other
hand, o(a) = b and o(b) = a. Therefore, we can rewrite (A.2) as

(A.3) d(b,b+ ¢) > min{d(b,a —¢),d(b,a)}.
Let 6 := d(b,a) > 0. By continuity we get that d(o(a)),o(b+¢€)) — 0 and d(b,a —€) — ¢ as
e — 0. For sufficiently small e, this is a contradiction with (A.3). |

A.4. Proof of Theorem 6.6. Given zy,...,z,-1 € [0,1), the order statistics correspond
to the variables z (1), z(2), ...,z () obtained by sorting the samples by increasing order. The
gaps of the sample correspond to the variables w; = T(iy1) — T()- Let e = max;c(, wi- The
following result can be found in [21, Theorem 1.2].

Proposition A.3. Suppose xg, 1, ... Tn_1 id Unif[0,1). Then,

n+1
Plen22) < Y (~1) (”j 1) (1— o

Proposition A.4. Given any T = [x;, x5, we write (L) to denote Arc(x;,xj). Suppose that
Assumption 6.1 and Assumption 6.5 hold. Then the inequality e, < £5/(L + £) implies that
any arc L C X, such that u(Z) > 6 has a unique orientation in any circular Robinson ordering
Of DXn .

Proof. Let s & z(;) and ¢ = ;) for some i < j. Let 6 € (0, %) and consider the arc Z = s, t]
in X,. Suppose €, < £§/(L +€) and p(Z) > 6. Let s* = 2(;_1 mod n) a0d tT = Z(j 11 mod n)-
We claim that Bs(d(s,s™)) (* Z. To prove the claim, it suffices to prove that
(A.4) d(s,s") < min{d(s,t),d(s,t7)}.

First, notice that d(s,s™) < L - €,. Second, notice that since Arc(s,t) > ¢, then

d(s,tT) > £ Arc(s,tT) > £ - (Arc(s,t) —€,) > £ (0 — €),

and therefore min{d(s,t),d(s,t")} > ¢- (6 — €,). Joining this two results with the fact
that €, < £5/(L + ¢) a proves the claim. |
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Lemma A.5. Let n > log(1/9)/6, and let xo,x1,...Tn_1 i Unif[0,1). Let E,(5) = {en <
66/(L+4)}, then

/ diam Sex (D, (w)) dA"(w) = 0(52 + M)
En () "

Proof. Recall from Lemma 5.19 that there is at most one non-trivial ordering o7 of Dy,
which corresponds to the permutation that reverses the arc Z N &),. Therefore, it suffices to
bound the integral of the random variable 7 (id, o*), where 0* € arg minge (1, 00,,0,} 7k (id, 6).

The number of discordant pairs between o* and id is bounded by § min{|ZNX,|,n—|ZN
X,|}2. Therefore, we will focus in bounding this expression. Let w € E,(§). By Proposi-
tion A.4, pu(Z(w)) < 6. This implies that either A(Z) < § or A(Z) > 1 — 6. Which leads to the
bound

/ min{|Z N &, |,n — |ZNX,[}* d\"*(w)
En(9)

< / max | J NX,[? d\"(w) < / max | J NX,[2 d\*(w). =
Ep(8) Jinterval, A(J)<6 Q Jinterval, A\(J)<6

We bound the random variable inside the integral using a balls and bins argument. W.l.o.g.
1/6 is an integer. Let (J;);c[1/5) be a partition of [0,1) by disjoint intervals of length 6. For
any w € {2, the maximizer in the integral above lies in at most two of the partition intervals.
Therefore, maxy(7)<s [T N&n| < 2max;ep [JiNAy|. Next, we can estimate max;cy,) | J; N A
by looking into the problem of throwing n balls into 1/§ bins (see [24] for further details); since
we further assumed that n > 1/§log(1/6), then w.h.p., the maximum occupancy is bounded
by nd + O(1/ndlog(1/d)). Plugging this bound above yields the result.

Proof of Theorem 6.6. Let E,(6) denote the event {¢, < ¢6/(L+¢)}. Denote the random
variable Z = diam(Scz (Dx,)). Then,

n

(A5)  E[Z] = [, Z@)ANW) + [, ) Z(@)dNw) < O(0? 4 LBL) 4 PIE, (5)],

where in the inequality we used Lemma A.5 and 7 < 1. By Proposition A.3 we have
; ) J :
(A6)  PIEG)] <Y (T 0t <0 () ep{-ajn),  ®

where x = £5/(L+{). By taking §(n) = (L+£)-log(e(n+1)2)/(n-£) we obtain that (A.6) can be

bounded by 327 57 € O(1/n). By (A.5) and (A.6) we conclude that B[Z] = O(Lptloan),
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Appendix B. Auxiliary subroutines.

Algorithm AP Arc Partition

1: Input: A dissimilarity d and a set T
2: Ng(z) £ {y€T: 2 NN(y) Vy € NN(z)} {Compute the neighbourhood function}

32 B2{zcT: |Ng(x)| =1}
{Find all degree 1 nodes (if there are no such nodes pick any)}
4: =0 {Run DFS starting at every non visited degree 1 node}
5: for x € B\Uj<iai do
6: «a; =DFS(Ng,0,z)
7 i=1+1
8: end for
9: Output: An arc partition stored into tuples P £ {aitiep

Algorithm DFS Depth-First Search

1: Input: The neighbourhood function of a graph Ng(+), a tuple « of visited nodes and a
starting node x

a(n) = x {Set x as n-th visited node where n is the size of a}
for y € Ng(z) \ a do
a = DFS(Ng, o, y) {Recurse over all adjacent nodes that have not been visited}
end for
return «
Output: A tuple of visited nodes «
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