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«You can only find truth with logic

if you have already found truth

without it»

G. K. Chesterton
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ABSTRACT

The seriation problem seeks to order a sequence of n objects when the only informa-

tion we are given is a dissimilarity matrix between all pairs of objects. In linear seriation

the goal is to find a linear order of the objects in a manner that is consistent with their dis-

similarity. For this problem optimal O(n2) algorithms are known. A generalization of the

previous problem is circular seriation, where the goal is to find a circular order instead. In

this thesis we study the circular seriation problem. Our contributions can be summarized

as follows. First, we introduce circular Robinson matrices as the natural class of dissim-

ilarity matrices for the circular seriation problem. Second, for the case of strict circular

Robinson dissimilarity matrices we provide an optimal O(n2) algorithm for the circular

seriation problem. Finally, we propose a statistical model to analyze the well-posedness of

the circular seriation problem for large n. In particular, we establish O(log(n)/n) rates on

the distance between any circular ordering found by solving the circular seriation problem

to the underlying order of the model, in the Kendall-tau metric.

Keywords: Circular seriation, circular Robinson dissimilarities, PQ-trees, circular Robin-

sonian matrices, circular-arc hypergraphs, circular embeddings of graphs, generative model,

unsupervised learning.
ix



RESUMEN

El problema de la seriación busca ordenar una secuencia de n objetos cuando la única

información que se nos da es una matriz de disimilitud entre todos los pares de objetos.

En la seriación lineal, el objetivo es encontrar un em orden lineal de los objetos man-

era que sea consistente con su disimilitud. Para este problema se conocen los algoritmos

óptimos O(n2). Una generalización del problema anterior es seriación circular, donde

el objetivo es encontrar un em orden circular. En esta tesis estudiamos el problema de

la seriación circular. Nuestras contribuciones se pueden resumir de la siguiente manera.

Primero, presentamos em matrices circulares de Robinson como la clase natural de ma-

trices de disimilitud para el problema de seriación circular. En segundo lugar, para el caso

de em matrices de disimilitud circular estrictas de Robinson proporcionamos un algo-

ritmo O(n2) óptimo para el problema de seriación circular. Finalmente, proponemos un

modelo estadístico para analizar el buen planteamiento (well-posedness en el sentido de

Hadamard) del problema de seriación circular para grandes valores de n. En particular,

establecemos tasas del orden O(log(n)/n) para la distancia entre cualquier orden circular

encontrado al resolver el problema de seriación circular al orden subyacente del modelo,

en la métrica de Kendall-tau.

Palabras Claves: Seriación circular, matrices de Robinson, árboles PQ, hipergrafos de

arco, modelo generativo, aprendizaje no supervisado
x



1. INTRODUCTION

The seriation problem seeks to recover a latent ordering from dissimilarity informa-

tion (Recanati, Brüls, & d’Aspremont, 2017). The input for this problem is a matrix

measuring pairwise dissimilarity between a set of n elements. Liiv defines seriation as

“an exploratory data analysis technique to reorder objects into a sequence along a one-

dimensional continuum so that it best reveals regularity and patterning among the whole

series” (Liiv, 2010). In seriation, one typically assumes that the data can be ordered along

a chain where the dissimilarity between elements increases with respect to their distance

within this chain. In practice, we observe a random permutation of this dissimilarity ma-

trix, where the elements are not indexed according to that latent ordering. Seriation then

seeks to find that global latent ordering using only pairwise dissimilarity (Recanati, Ker-

dreux, & d’Aspremont, 2018).

Originating from the field of archaeology, where it was used to infer the chronological

order of a set of graves based on the artifacts recovered from them (Robinson, 1951),

seriation has found applications in several areas such as sociology and psychology (Liiv,

2010), and gene sequencing and bioinformatics (Recanati et al., 2017). Although the

applications of this mathematical problem are several, in this introduction we are going to

have a special application in mind to give context to the problem, which we introduce in

the next subsection.

1.1. Seriation in the context of computer vision

A dissimilarity over a set X of n objects is a symmetric function d : X 2 ! R+ van-

ishing on the diagonal. Given any enumeration of the elements in X , we can construct

a dissimilarity matrix D whose entry (i, j) is d(xi, xj), the dissimilarity between the i-th

and j-th objects. In seriation we are given the matrixD for an arbitrary enumeration of the

elements and we want to infer a ‘natural’ ordering of the data points X . To give context

to the problem, suppose that the points in X correspond to the frames of a movie. Hence,

1



n corresponds to the number of frames and each element x 2 X corresponds to a specific

frame of the movie. Since each frame is an image, we can represent them with a vector in

Rr were r corresponds to the number of pixels in the frames (assuming a black and white

movie for simplicity). An example of a dissimilarity in Rr would be the Euclidean distance

d(x, y) = kx yk2. The natural intrinsic order of the frames would be the chronological

order and we would expect consecutive frames in the movie to have smaller dissimilarity

(Euclidean distance), than frames occurring at distinct instants of the movie (temporally

separated). As an example, Figure 1.1 shows the Euclidean distance matrix between the

images in a 31 second movie of a kiwi slowly rotting for several days. Since this process

develops slowly, we expect consecutive frames in the movie to be very similar. Consistent

with our intuition, in Figure 1.1a we see that when the indices of the dissimilarity matrix

are chronologically ordered, the dissimilarity tends to increase as we move away from the

diagonal, i.e., when the time interval between the kiwi images increases. Dissimilarity ma-

trices satisfying this property are called linear Robinson matrices, which we will formally

introduce in Section 1.4. In 1.1b, the frames are given in a random order, which is what is

observed in practice. The goal of seriation is to recover 1.1a given 1.1b. In our time-lapse

video example there is an important thing to observe: the last frames are very different

from the initial frames of the video. If the video sequence were a closed-loop sequence

instead, we would expect that the dissimilarity decreases at the end of the sequence as in

the case of a distance matrix of points embedded in the unit circle. In contrast, Figure 1.1

shows the Euclidean distance matrix between the images in a 13 second movie of a face

slowly spinning in 360 degrees. The last frame of the clip is very similar to the initial

frame. In a matrix representation, this can be visualized as a symmetric matrix of pairwise

dissimilarities where entries of each row (column) increase monotonically while moving

to the right (bottom) until some specific element and then decrease again monotonically

until the end of each row (column) and fold back from the left (top) of the matrix. Dissim-

ilarity matrices satisfying this property are called circular Robinson matrices, which we

will also introduce in section 1.4 (Evangelopoulos, Brockmeier, Mu, & Goulermas, 2020).

2



(a) movie-ordered (b) permuted

Figure 1.1. Dissimilarity matrix between kiwi images using the euclidean
distance, when the subscripts follow the chronological ordering of the
movie 1.1a, and when it is randomly permuted 1.1b. Yellow entries cor-
respond to higher distance values whereas bluer entries of the matrix cor-
respond to smaller values of the distance.

(a) movie-ordered (b) permuted

Figure 1.2. Dissimilarity matrix between images of faces using the eu-
clidean distance, when the subscripts follow the chronological ordering of
the movie 1.2a, and when it is randomly permuted 1.2b. Yellow entries
correspond to higher distance values whereas bluer entries of the matrix
correspond to smaller values of the distance.
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1.2. Applications of circular seriation in real-world problems

There are several real-world applications that motivate the development of algorithms

for circular seriation. In this section we review two examples that have been addressed

recently in the literature.

1.2.1. Tomography from unknown random projections (Coifman, Shkolnisky, Sig-

worth, & Singer, 2008)

The problem in tomography is to reconstruct an object from samples of its projections.

The object is characterized by its density function ⇢(x, y). The goal is to recover the den-

sity ⇢ from its projections R⇢(t, ✓) given by the line integral of ⇢ along parallel lines L at

an angle ✓ with respect to an axis of reference, and at a distance t from the origin (i.e. its

Radon transform) (see, e.g. (Deans, 2007)). However, there are cases in which the projec-

tion angles ✓ are unknown, for example, when reconstructing certain biological proteins or

moving objects. By constructing a dissimilarity matrix from the random projections, cir-

cular seriation can be used to sort the projections cyclically. After sorting the projections

it is possible to reconstruct the object’s density if enough samples are obtained.

1.2.2. DNA sequencing (Recanati, 2018)

DNA sequencing refers to the process of determining the nucleotide order of a given

DNA fragment. In a sequencing experiment, we can only ‘read’ small fragments (reads) of

DNA due to physical limitations, whose location on the genome is unknown. De novo as-

sembly aims to put them together to retrieve the full DNA sequence. A common approach

to this problem is to construct a similarity matrix based on pairwise overlaps between reads

and leave the task of sequencing to (linear) seriation algorithms. There are cases in which

the DNA fragments are subsampled from a circular genome (e.g. bacterial plasmids and

mitochondria), yielding an instance for the circular seriation problem instead (Recanati et

al., 2017).

4



1.3. Notation and preliminaries

In order to formulate the mathematical problem, let us introduce some notations, basic

definitions and folk results from several areas of discrete mathematics.

1.3.1. Matrix and vector notation

All arrays start at index 0. The symbol R denotes the set of real numbers, whereas R+

denotes the set of non-negative real numbers. Given a set X , we write X d to denote the

set of d-dimensional vectors taking values in X . Given a vector x 2 X d, we write x(i) as

the element at index i. We write as X n⇥m the set of matrices of n rows and m columns

taking values in X . Given M 2 X n⇥m, M(i, j) is the element at row i and column j.

Given an array M , we write MT to denote the transpose of M , i.e. the array that satisfies

M(i, j) = MT (j, i). We endow the set Rd with the p-norm kxkp ,
⇣

P

i2[d] |x(i)|
p
⌘

1
p

and the corresponding induced distances. Given a numeric array M , we write kMk1 to

denote the maximum element among all its entries. The n ⇥ n identity matrix is denoted

as In. The null vector and the ‘all ones’ vector are respectively denoted as 0n and 1n. We

may omit the subscripts when the dimensions are clear from the context.

1.3.2. Permutations

The set of all integers from 0 to n  1 is denoted as [n].1 We denote as Sym(n) the

permutation set, i.e. the set of all bijections ⇡ : [n] ! [n]. The elements in Sym(n) are

called permutations. Given any permutation ⇡ 2 Sym(n) we represent it either with a

vector ⇡ such that ⇡(i) = j whenever ⇡ maps i to j, or with a n⇥n matrix ⇧ 2 {0, 1}n⇥n

(in upper case) such that ⇧(i, j) = 1 $ ⇡(i) = j. We call such matrices, permutation

matrices.

1Notice that this differs form the convention of writing [n] = {1, 2, . . . , n} but the proposed definition
simplifies using modular arithmetic in the indices

5



1.3.3. Kendall-tau’s metric

Kendall-tau’s correlation coefficient (Kendall, 1938) has been introduced to measure

discrepancy between permutations. In this work, we use instead Kendall-tau’s metric (Ma,

Tony Cai, & Li, 2020), which is defined as follows

⌧K (⇡1, ⇡2) ,
|G (⇡1, ⇡2) |



n
2



where, for two permutations ⇡1 and ⇡2, G (⇡1, ⇡2) corresponds to the set of discordant

pairs defined as

G (⇡1, ⇡2) , {(i, j) : i < j, [⇡1(i) < ⇡1(j) ^ ⇡2(i) > ⇡2(j)] _ [⇡1(i) > ⇡1(j) ^ ⇡2(i) < ⇡2(j)]}

The denominator


n
2



ensures that ⌧K (⇡1, ⇡2) 2 [0, 1] where ⌧K (⇡1, ⇡2) = 0 corresponds

to ⇡1 = ⇡2 (Ma et al., 2020).

Definition 1. Given a set S ⇢ Sym(n) of permutations, the diameter of the S is

defined as

diam(S) , max
⇡1,⇡22S

⌧K(⇡1, ⇡2)

1.3.4. Order theory

Definition 2. (Burris & Sankappanavar, 2012) A binary relation 6 defined on a set

X is a partial order on the set X if the following conditions hold identically in X :

(i) a 6 a (reflexivity)

(ii) a 6 b and b 6 a imply a = b (antisymmetry)

(iii) a 6 b and b 6 c imply a 6 c (transitivity).

If, in addition, for every a, b in X

(iv) a 6 b or b 6 a (totality)

then we say 6 is a linear order on X .

6



Definition 3 (Interval). A subset I of an linearly ordered set (X , <) is said to be an

interval if there are some m,M 2 X such that I = {i : m  i  M}. We refer to such

elements m and M as the borders of I and often write I = [m,M ].

Definition 4. A cyclic order on a set X is a relation C ⇢ X 3, that satisfies the follow-

ing axioms:

(i) Cyclicity: If (a, b, c) 2 C then (b, c, a) 2 C ;

(ii) Asymmetry: If (a, b, c) 2 C then (c, b, a) /2 C ;

(iii) Transitivity: If (a, b, c) 2 C and (a, c, d) 2 C then (a, b, d) 2 C ; and

(iv) Totality: If a, b, and c are distinct, then either (a, b, c) 2 C or (c, b, a) 2 C .

We endow the set [n] with the usual linear order <, and with induced cyclic order Cn

defined by

(i, j, k) 2 Cn () (i < j < k) _ (j < k < i) _ (k < i < j). (1.1)

Figure 1.3 displays an example of the cyclic order in C11 over [11] = {0, 1, . . . , 10}.

Definition 5 (Arc). A subset I of a cyclically ordered set (X ,C ) is said to be an arc

if there are some m,M 2 X such that for every (m, k,M) 2 C it holds that k 2 I. We

refer to such elements m and M as the borders of I and often write I = [m,M ].

REMARK 1. Let I be an arc in ([n],Cn), then either I or Ic (the complement) is an

interval in ([n], <).

Example 1. In ([n], <,Cn) the sets I1 := {0, 1, 2, 3} and I2 := {n 3, n 2, n 1}

are both arc and interval. The set I3 := {n  2, n  1, 0, 1, 2} is and arc but not an

interval. We notice that Ic
3 = {3, 4, . . . , n 4, n 3} is an interval.

7
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Figure 1.3. The cyclically ordered set ([11],C11) represented as a directed
cycle graph. In red the tern (7, 9, 1) is present in the relation C11 since by
cyclically permuting the tern we obtain the increasing sequence (1, 7, 9).
The tern (7, 10, 9) is not in the relation since for every cyclic permutation
the sequence is not increasing.

1.3.5. Group theory

A group is a set G endowed with a binary operation, called the product and denoted

by ·, such that

(i) a, b 2 G implies that a · b 2 G (closed)

(ii) a, b, c 2 G implies that a · (b · c) = (a · b) · c (associative law).

(iii) There exists an element e 2 G such that a · e = e · a = a for all a 2 G (the

existence of an identity element in G ).

(iv) For every a 2 G there exists an element a1 2 G such that a · a1 = a1 · a = e

(the existence of inverses in G)

Example 2. The set Sym(n) together with the operation  (function composition) is

a group. The group (Sym(n), ) is called the symmetric group. The set of permutation

matrices endowed with matrix multiplication as binary operation is a group. The identity

permutation is denoted as id

Definition 6. (Herstein, 1975) A nonempty subset H of a group G is said to be a

subgroup of G if, under the product in G,H itself forms a group.

Definition 7. (Herstein, 1975) A mapping  from a group G into a group Ḡ is said to

be a homomorphism if for all a, b 2 G,(a · b) = (a) · (b).

8



Definition 8. (Herstein, 1975) A homomorphism  from G into Ḡ is said to be an

isomorphism if  is one-to-one.

The mapping  from the set of permutation matrices to the symmetric group such that

 (⇧) = ⇡ with ⇧(i, j) = 1 $ ⇡(i) = j is in isomorphism.

Definition 9. (Herstein, 1975) Two groups G,G⇤ are said to be isomorphic if there is

an isomorphism of G onto G⇤. In this case we write G ⇠= G⇤.

Definition 10. (Herstein, 1975) Given a subset W of a group G. We write hW i to

denote the set of all elements of G representable as a product of elements of W raised to

positive, zero, or negative integer exponents.

PROPOSITION 1. (Herstein, 1975) hW i forms a subgroup of G and is the smallest

subgroup of G containing W . In fact, hW i is the intersection of all the subgroups of

G which contain W (this intersection is not vacuous since G is a subgroup of G which

contains W ). This group is called the group generated by W .

Definition 11. (Dummit & Foote, 2004) A group action of a group G on a set A is a

map from G⇥ A to A (written as g · a, for all g 2 G and a 2 A ) satisfying the following

properties:

• g1 · (g2 · a) = (g1g2) · a, for all g1, g2 2 G, a 2 A, and

• e · a = a, for all a 2 A

In that case we say ‘G acts over the set A’

Example 3. The symmetric group Sym(n) acts over the set Rn⇥n of matrices through

the following action

⇡ ·M 7! ⇧M⇧
T

Notice that M⇡ , ⇧M⇧
T satisfies M⇡(i, j) = M(⇡(i), ⇡(j)). We call this special action

‘conjugation’.
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Definition 12. (Dummit & Foote, 2004) Given a group G acting on a set A, and given

some element x 2 A, the set OG(x) , {g · x|g 2 G} is called the orbit of x under the

action of g

Definition 13. We write r to denote the reversing permutation defined by r(i) :=

n  1  i. Also we write s to denote the cyclic shift permutation defined by s(i) :=

i+ 1 mod n. The matrix representations of these permutations will be denoted by ⇧r and

⇧s, respectively.

We denote by Dihn the dihedral group of 2n different symmetries of a regular polygon

with n sides. We denote the cyclic group over n elements as Z/nZ. The particular case

Dih1 is defined as Z/2Z.

REMARK 2. Note that the generated groups hri and hr, si are isomorphic to the dihe-

dral subgroups Dih1 and Dihn respectively. And similarly Z/nZ is isomorphic to hsi.

1.3.6. Graph theory

Given any set X , a graph is a pair G = (X , E) such that E is a collection of pairs

{x, y} where x, y 2 X . We often denote as V (G) the vertex set X (resp. E(G) the

edge set E) when it is not given by context. The elements in X are called nodes (or

vertices) and the elements in E are called edges. Two nodes x and y are said to be adjacent

whenever there is an edge {x, y} 2 E . The set of adjacent nodes to x is denoted as

NG(x) , {y 2 X : {x, y} 2 E}. The function x 7! NG(x) is called neighbourhood. An

hypergraph H = (X , E) is a collection of nodes X together a collection of hyperedges E ,

which are non empty subsets of X .

Definition 14. Given some graph G, a graph H with vertex set V (G) is said to be a

subgraph of G whenever E(H) ⇢ E(G).

Example 4. (Bac, 1997) The ring graph Rn = ([n], E) is the graph with edge set

E = {{i, (i+ 1) mod n} : i 2 [n]}. The path graph Pn = ([n], E) is the graph with edge

set E = {{i, i+ 1} : i 2 [n 1]}.
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Definition 15. (Hartmanis, 1982) In graph theory, an homomorphism of graphs G

and H is a function between the node sets of G and H

f : V (G) ! V (H)

such that any two vertices u and v of G are adjacent in G whenever f(u) and f(v) are

adjacent in H . Moreover, if a homomorphism f : G ! H is a bijection whose inverse

function is also a graph homomorphism, then f is said to be a graph isomorphism. For-

mally, {u, v} 2 E(G) $ {f(u), f(v)} 2 E(H), for all pairs of vertices u, v 2 V (G)

PROPOSITION 2. Let H and G be two graphs. If there is a bijection f from V (H)

to V (G) such that f(NH(x)) ⇢ NG(x) for every x 2 V (G), then H is isomorphic to a

subgraph of G

Definition 16. (Atkins, Boman, & Hendrickson, 1998) Given symmetric, non-negative

matrix A, the Laplacian matrix of A is defined as LA , DA A, where DA is a diagonal

matrix with DA(i, i) ,
P

j2[n]A(i, j).

1.4. Mathematical formulation

The seriation problem is traditionally modeled as a recognition problem. We assume

that the observed dissimilarity matrix is a permuted version of a dissimilarity matrix be-

longing to a family of ‘ordered matrices’. The task is to find a permutation under which

the observed matrix is ordered. It is possible that this happens for more than one per-

mutation. In those cases we consider all such permutations as solutions of the problem

without making preferences between them as one would do in an optimization problem

for instance, since all this permutations are consistent with our hypothesis a priori.

1.4.1. Abstract seriation problem

Given a class of ‘ordered’ matrices M ✓ Rn⇥n, define the class pre-M as the set of

matrices A such that for some permutation matrix ⇧ 2 Sym(n) it holds that the matrix
11



(a) (Linear) Robinson
dissimilarity matrix

(b) Circular Robinson
dissimilarity matrix

⇧A⇧T (whose entry (i, j) is A(⇡(i), ⇡(j))) is in M. In terms of group theory, pre-M is

the orbit of M under the action of Sym(n) by conjugation. The seriation problem can be

stated as (Recanati et al., 2018)

Given A 2 pre-M, find ⇧ 2 Sym(n) such that ⇧A⇧T 2 M.

The set SM(A) ⇢ Sym(n) of such permutations will be referred as the set of solutions.

The classes of matrices where seriation have been mostly studied are called Robinson

matrices.

1.4.2. Robinsonian dissimilarities: linear and circular seriation

There are two common classes of matrices that naturally arise when there is either a

linear or circular underlying order: linear and circular Robinson dissimilarities. Despite

that in the first section we implicitly defined dissimilarity matrices, we formalize it in the

following definition.

Definition 17. We say D 2 Rn⇥n is a dissimilarity matrix if it is

(i) Symmetric,

(ii) Non-negative and

12



(iii) D(i, i) = 0 for all i 2 [n].

Similarly, a matrix A 2 Rn⇥n is said to be a similarity (or affinity) matrix if there is non-

increasing non-negative function f such that A(i, j) = f(D(i, j)) for some dissimilarity

matrix D

Definition 18. (Linear Robinson Matrix) We say that a dissimilarity matrixD 2 Rn⇥n

is (linear) Robinson iff for every i < j < k

D(i, j)  D(i, k)

D(j, k)  D(i, k).
(1.2)

If all inequalities hold strictly, we say D is strictly linear Robinson.

The set of linear Robinson dissimilarity matrices will be denoted as LR whereas the

set of strict linear Robinson dissimilarity matrices will be denoted as L⇤
R. To introduce

circular Robinson dissimilarities, first we need to define unimodality

Definition 19. (Unimodality) Let (X , <) be a linearly ordered set. A sequence {xj}n1
j=0 ✓

X is said to be unimodal if there exists k 2 [n] such that

xi  xj 8i < j  k

xl  xm 8k  l < m.
(1.3)

Any k that satisfies the properties above is called a mode. A unimodal sequence is said

to be strictly unimodal if it has at most two consecutive modes, and before the mode it is

strictly increasing, and after the mode it is strictly decreasing.

REMARK 3. If a sequence is strictly unimodal, then every subsequence is also strictly

unimodal

Definition 20. (Circular Robinson Matrix) We say that a dissimilarity matrix D 2

Rn⇥n is circular Robinson iff for all i 2 [n], {D(i, (i+ j) mod n)}n1
j=0 is unimodal. If all

such sequences are strictly unimodal, we say D is strictly circular Robinson. The set of

13



circular and strict circular Robinson dissimilarity matrices will be denoted as CR and C⇤
R,

respectively.

Definition 18 states that when moving away from the diagonal in a given row or col-

umn of D, the entries are non-decreasing, whereas in Definition 20, a sequence of non-

decreasing values is followed by a sequence of non-increasing values. For instance, the

distance matrix of points embedded on a circle follows Definition 20 (Recanati et al.,

2018). Figure 1.4.2 displays examples of such matrices.

It is easy to see that every linear Robinson matrix is also circular Robinson, hence

LR ⇢ CR and L⇤
R ⇢ C⇤

R. Elements in pre-LR and pre-CR are be said to be Robinsonian

matrices. We call (strict) linear seriation to the seriation problem when the matrix class

involved is the set of (strict) linear Robinson matrices and (strict) circular seriation when

the matrix class is the set of (strict) circular Robinson matrices. The solutions in the con-

text of linear and circular seriation are called Robinson orderings, which are all orderings

consistent with the data.

Definition 21. Let A be an affinity matrix A and let D , I · kAk1  A be the

dissimilarity matrix associated to A. We say a matrix A is a linear Robinson affinity

matrix if D is a linear Robinson dissimilarity matrix. Similarly, A is said to be a circular

Robinson affinity matrix if D is a circular Robinson dissimilarity matrix.

REMARK 4. Clearly, the seriation problems involving either affinity matrices or dis-

similarity matrices are equivalent.

1.5. State of the art

In this section, we present the main techniques that can be found in the literature to

solve linear and circular seriation
14



1.5.1. Spectral embedding

Consider an affinity matrix A. The linear seriation problem can be addressed with the

following combinatorial problem,

minimize
X

i,j2[n]

A(i, j) |⇡(i) ⇡(j)|2 such that ⇡ 2 Sym(n) (1.4)

The intuition is that in the optimum ⇡⇤, high values of A(i, j) are compensated with

small values of |⇡⇤(i) ⇡⇤(j)|2, thus laying similar elements nearby. This problem is NP-

hard (Barnard, Pothen, & Simon, 1995), thus a straightforward approach is not possible

in practice. By a simple algebraic manipulation, the objective in (1.4) can be replaced for

any f 2 Rn with the quadratic form

X

i,j2[n]

A(i, j)|f(i) f(j)|2 = fTLAf (1.5)

where LA is the Laplacian of A (Recanati et al., 2018) (see Definition 16). Notice that

1 = (1, . . . , 1)T is an eigenvector of LA associated to the eigenvalue 0 = 0. The spectral

method (Atkins et al., 1998) consists in relaxing (1.4) by replacing the constraint ⇡ 2

Sym(n) with norm and orthogonality constraints, k⇡k2 = 1, ⇡T
1 = 0, to avoid the trivial

solutions ⇡ = 0 and ⇡ / 1, yielding,

minimize fTLAf such that kfk2 = 1, fT
1 = 0 (1.6)

This is an eigenvalue problem on LA solved by f1, the eigenvector associated to 1  0

the second smallest eigenvalue ofLA, called the Fiedler vector ofA (Recanati et al., 2018).

To retrieve an ordering from this optimization problem we have this key theorem:

Theorem 1 ((Atkins et al., 1998)). Let A be a linear Robinson affinity matrix. Then,

A has a monotone Fiedler vector.
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Recall that if (f,) are respectively an eigenvector and eigenvalue of LA then

LAf = f

() ⇧LAf = ⇧f

() ⇧LAInf = ⇧f

() ⇧LA⇧
T
⇧f = ⇧f

() ⇧(DA  A)⇧T
⇧f = ⇧f

() (DA⇡
 A⇡)⇧f = ⇧f

() LA⇡
f⇡ = f⇡

(1.7)

where f⇡ , ⇧f satisfies f⇡(i) = f(⇡(i)). Thus if A 2 pre-LR and A has a simple

Fiedler value, the permutation obtained by sorting the entries of the Fielder vector of A

is a Robinson ordering. Theorem 1 is a consequence of the Perron-Frobenious theorem2.

This result can also be exploited to obtain all Robinson orderings. The details can be found

in (Atkins et al., 1998).

On the aim of generalizing the above procedure to circular seriation, one could con-

sider computing the two largest non-trivial eigenvectors of the Laplacian matrix LA of a

circular Robinson affinity matrix A. This is exactly what is proposed in (Coifman et al.,

2008) and (Recanati et al., 2018). Consider the following optimization problem,

minimize
P

i,j2[n]A(i, j)


yi  yj





2

2

such that  =


y
T
1 , . . . ,y

T
n

T
2 Rn⇥d,T

 = Id,
T
1n = 0d

(1.8)

Like before, the objective in (1.8) can be written as trace



TLA



(see (Belkin &

Niyogi, 2001)), yielding a multidimensional eigenvector problem. Once again the inter-

pretation is that similar elements are mapped nearby in Rd and dissimilar placed apart. If

2For further information about this theorem see (Pillai, Suel, & Cha, 2005)
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(a) f1 vs f2
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(b) Strict
circular
R-matrix

Figure 1.4. Ideal example for the spectral method. In the right, a strict
circular Robinson affinity matrix A 2 R6⇥6. In the left, f1 and f2, the
two first non-trivial eigenvectors of the Laplacian matrix of A. By comput-
ing the angles of the points (f1(i), f2(i)) 2 R2 its possible to retrieve the
circular order.

the original objects where nearby a closed continuum, by taking d = 2 one could expect

the embedded points to lie in (close to) a circle. Therefore, the cyclic order could be re-

trieved by computing the angles from the points and sorting them3. There are asymptotic

justifications of this procedure due to the connection of the Laplacian matrix to the contin-

uous Laplace-Beltrami operator over a 1-manifold (Coifman et al., 2008). In spite of this,

the theoretical guarantees for this procedure in a finite sample case are very limited. Only

for highly structured affinity matrices this procedure has been proved recover a correct or-

dering (for instance see (Recanati et al., 2018)). Hence, characterizing instances where the

spectral method recovers the true ordering is an open problem. An ideal example together

with its spectral embedding is presented in Figure 1.4.

Negative evidence for the spectral method in the circular case

In this section we present some examples that suggest that the spectral method does

not always recover circular orders successfully in the general circular-Robinson setting.

3If f1 and f2 are the two first non-trivial eigenvectors of LA, then sort the values of ✓(i) ,
atan2(f2(i), f1(i))
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Given an affinity matrix A 2 Rn⇥n, consider the mapping ✓A : [n] ! [0, 2⇡] such

that each the i-th element is mapped to ✓A(i) , atan2(f2(i), f1(i)) where f1 and f2 are

the two first non-trivial eigenvectors of LA. We endow [0, 2⇡] with the usual cyclic order

C[0,2⇡] such that

(↵, , ) 2 C[0,2⇡] () (↵ <  < ) _ ( <  < ↵) _ ( < ↵ < ). (1.9)

For instance, the vector (60, 120, 10) is in C[0,2⇡]. Ideally, one would expect that if

A is circular Robinson, then

(✓A(i), ✓A(j), ✓A(k)) 2 C[0,2⇡] $ (i, j, k) 2 Cn (1.10)

This means that ordering angles yields a Robinson ordering and, conversely, Robinson

orderings yields ordered angles. A simple exercise is provided in the next section that

shows this cannot always be true.

Existence of non-trivial symmetries

It is intuitive that since reversing an ordered sequence produces a new ordered se-

quence, then reversing the entries of a Robinson matrix should produce a new Robinson

matrix. This is also valid for circular Robinson matrices. In the circular case we would

also expect that circular permutations should produce new circular Robinson matrices.

The following result formalizes this intuition.

Theorem 2. (Armstrong et al., 2021) The class of linear Robinson matrices is invari-

ant under the action of Dih1 by conjugation and the class of circular Robinson matrices

is invariant under the action of Dihn by conjugation.
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Therefore, given any A 2 CR we have that Dihn ⇢ SCR(A). We call this solutions

the trivial symmetries of the affinity matrix, since they are always present, whereas any

⇡ 2 SCR(A) \ Dih is called a non-trivial symmetry of A. It is not immediately clear that

even in the strict case non trivial symmetries may exist (see for instance Figure 1.5).

By (1.7), given some permutation ⇡ we have that ✓A(⇡(i)) = ✓A⇡
(i) for every i 2 [n].

It is clear that if ⇡ 2 Dihn, then ordering ✓A yields a Robinson ordering whenever or-

dering ✓A  ⇡ yields a Robinson ordering. However, if ⇡ is a non-trivial symmetry, both

orderings cannot be represented in [0, 2⇡] unless they are both collapsed somehow by

✓A. For instance, consider the affinity matrix A available in Figure 1.5. The matrix

A 2 R6⇥6 has only one non-trivial symmetry: ⇡ , (0, 1, 2, 5, 4, 3). Since is ⇡ is a

Robinson ordering, assuming (1.10) we would get that for every (i, j, k) 2 Cn it holds

that (✓A(i), ✓A(j), ✓A(k)) 2 C[0,2⇡] and (✓A(⇡(i)), ✓A(⇡(i)), ✓A(⇡(i))) 2 C[0,2⇡]. In our

example, (✓A(3), ✓A(4), ✓A(5)) 2 C[0,2⇡] ^ (✓A(5), ✓A(4), ✓A(3)) 2 C[0,2⇡], which implies

that ✓A(3) = ✓A(4) = ✓A(5).

More generally, suppose that given A 2 R2n⇥2n it holds that A,A⇡ 2 CR for

⇡ = (0, 1, . . . , n 2, n 1, 2n 1, 2n 2, . . . , n+ 1, n)

Then, the only way that in which ✓A can be consistent with both orderings is if ✓A(i)

is constant for all i = n, . . . , 2n  1. But, this implies that the elements n, . . . , 2n  1

are not ordered which is not necessarily true. For instance in Figure 1.6, there are only

two orderings and arbitrary permutations of the ‘second half’ of the element do not yield

Robinson orderings.

Therefore, if A possess multiple non-trivial symmetries at most we can expect three

things:

• Ordering ✓A yields to one of the Robinson orderings
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• If A possess multiples non-trivial symmetries, then ✓A collapses in some values

in order to represent the orderings

• Let 1,2 be the minimum positive eigenvalues, then dim(ker(A  1 · I)) +

dim(ker(A2·I)) > 2. Which implies, that the embedding is not 2-dimensional,

but somehow more complex in order to represent all orderings.

In either case, this shows an inconvenience for choosing this method for circular se-

riation. In the first case, we loose possible solutions. In the second case, its possible that

we obtain wrong solutions. In the third case, it is not clear how to design a rule (such as

computing the angles in the 2D case) that correctly recovers the orderings.

To summarize, we have shown that if there non-trivial symmetries, then the spectral

method is likely to fail. This is not a necessary condition for the method to fail since the

example in Figure 1.7 does not have non-trivial symmetries and sorting the values of ✓A

does not yield a Robinson ordering.

1.5.2. Seriation as an instance of the QAP

Some recent works aim to solve circular seriation also by starting from (1.4) but by

taking a different direction. In (Evangelopoulos et al., 2020) the authors propose to solve

the following optimization problem,

minimize QAP(A,B) , trace


⇧A⇧TB


=
P

i,j2[n]A(⇡(i), ⇡(j))B(i, j)
(1.11)

for a template

B(i, j) =

8

<

:

|i j|, if |i j| 
⌅

n1
2

⇧

n 1 |i j|, if |i j| >
⌅

n1
2

⇧

(1.12)

The above acts as a circular seriation template where the elements of the first row

(column) increase monotonically while moving to the right (bottom) until the
⌅

n1
2

⇧

-th

element and then decrease again monotonically until the end of the row (column), and fold
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(a) f1 vs f2 (b) Color representation of A
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(c) Strict circular R-matrix (d) Color representation of A⇡

Figure 1.5. A strict-circular Robinson matrix which posses non-trivial
symmetries: A 2 C⇤

R ^ A⇡ 2 C⇤
R for ⇡ = (0, 1, 2, 5, 4, 3)

back from the left (top) of the matrix (Evangelopoulos et al., 2020). A first inconvenience

of this approach is that it requires to set the turning point in advance (in this example at
⌅

n1
2

⇧

). Correctly fixing this parameter requires information a priori about the shape of

the continuum where the points lie nearby. A second inconvenience of this approach is that

(1.11) is an instance of the quadratic assignment problem (QAP) which is NP-hard. To

this day, no exact algorithm can solve general QAP-instances of size n > 20 in reasonable

computational time (Pitsoulis & Pardalos, 2009). This is why in (Evangelopoulos et al.,
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(a) A 2 C⇤

R
(b) f1 vs f2

(c) ✓A in degrees

Figure 1.6. A 200⇥ 200 strict circular Robinson affinity matrix which has
a unique non-trivial symmetry.

2020) an heuristic approximation is proposed for solving (1.11) which has no theoretical

guarantees.

1.5.3. The definition of circular Robinson dissimilarities

There is general agreement on the definition of linear Robinson dissimilarities in the

literature. However, although most of the generalizations to the circular case follow the

same intuition, the mathematical formulations present subtle, nevertheless important, dif-

ferences. The intuition in all cases is that the entries of each row increase monotonically

while moving to the right until some specific element and then decrease again monoton-

ically until the end of each row and fold back from the left of the matrix, just as the
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(a) Color representation
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10 12 25 20 2 9
11 4 20 25 21 20
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(b) Strict circular R-matrix

(c) f1 vs. f2 (d) Permuted ma-
trix obtained by or-
dering ✓A

Figure 1.7. An instance where the spectral method fails. In 1.7b,
a strict circular Robinson affinity matrix A 2 R6⇥6. In 1.7a, a
color representation of the matrix. In 1.7c, f1 and f2, the two first
non-trivial eigenvectors of the Laplacian matrix of A. By computing
the angles of the points (f1(i), f2(i)) 2 R2 we obtain the sequence
✓A = (221.5, 12.7, 274.7, 183.8, 115.3, 133.4) which is not ordered
in C[0,2⇡]. Finally, in 1.7d the matrix A⇡ /2 CR where ⇡ is the permuta-
tion obtained by sorting ✓A in increasing order. This affinity matrix has no
non-trivial symmetries, i.e. SCR(A) = Dih6

distance matrix of points embedded in a circle (this condition also holds for the columns

by the symmetry of the matrix). The first mathematical formalization is due to Hubert and

is as follows (Hubert, Arabie, & Meulman, 1998). For 1  i  n3 and i+1 < j  n1
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if D (i+ 1, j)  D (i, j + 1) then D (i+ 1, j)  D (i, j)

and D (i+ 1, j)  D (i+ 1, j + 1)

if D (i+ 1, j)  D (i, j + 1) then D (i, j)  D (i, j + 1)

and D (i+ 1, j + 1)  D (i, j + 1)

and, for 2  i  n 2

if D (i+ 1, n)  D (i, 1) then D (i+ 1, n)  D (i, n)

and D (i+ 1, n)  D (i+ 1, 1)

if D (i+ 1, n)  D (i, 1) then D (i, n)  D (i, 1)

and D (i+ 1, 1)  D (i, 1)

In addition to being complex, this definition has two main problems. The first prob-

lem is that it allows bimodality within each row (modulo n). For instance consider the

following dissimilarity matrix

Q =

2

6

6

6

6

6

6

6

6

6

4

0 1 1 1 1

1 0 3 1 1

1 3 0 3 1

1 1 3 0 1

1 1 1 1 0

3

7

7

7

7

7

7

7

7

7

5

. (1.13)

The matrix Q satisfies the conditions proposed by (Hubert et al., 1998). Notice that

in the middle row we have two turning points corresponding to the entries (2, 1) and

(2, 3), where the dissimilarity attains the values 3 (recall that arrays start at index 0).

This bimodality is inconsistent with a circular embedding (where there is a unique turning

point). A second problem with the definition (which is a consequence of the first problem)

is that balls Br(i) , {j 2 [n] : D(i, j)  r} do not correspond to arcs in Robinson
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orderings (disconnected classes in the terminology of (Brucker & Osswald, 2008)). For

instance the ball of radius r = 2 centered at the element at index 2 corresponds toB2(2) =

{0, 2, 4} which is not an arc nor an interval.

A second definition available in the literature is due to Recanati et al. In (Recanati

et al., 2018), a dissimilarity matrix D is said to be circular Robinson iff for all i 2

[n], {D(i, j)}ij=0 and {D(i, j)}n1
i=j are unimodal. Again the intuition that motivated this

definition is correct, but this definition not only has the same problems that the previous

definition (since for instance the matrix Q satisfies the definition), but also there is an ad-

ditional contradictory feature: the lack of invariance to cyclic permutations. For instance

consider the cyclic permutation defined by ⇡(i) = i+ 2 mod n. By permuting Q by ⇡ we

obtain

Q⇡ =

2
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6

6

6

6

6

6

6

6

4

0 1 1 1 3

1 0 1 1 1

1 1 0 1 1

1 1 1 0 3

3 1 1 3 0

3

7

7

7

7

7

7

7

7

7

5

(1.14)

and notice that {D⇡(4, j)}
4
j=0 is not an unimodal sequence. This shows that if D is cir-

cular Robinson in the sense of (Recanati et al., 2018), then D⇡ is not necessarily circular

Robinson when ⇡ is a circular permutation. This is contradicting since cyclic permutations

preserve cyclic orders (by shifting the circle, it remains ordered).

In (Brucker & Osswald, 2008), dissimilarities whose balls correspond to arcs are stud-

ied. A definition which we show to be equivalent to Definition 20 is mentioned but this

paper mostly focuses on precircular dissimilarities which is a particular case of the previ-

ous definition.

1.6. Main objectives and contributions

The main contributions of this thesis can be enumerated as follows:
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• Establish a tractable and meaningful definition for the circular seriation prob-

lem. As opposed to the linear case, where a well established definition has

been accepted (Chepoi & Fichet, 1997) and optimal algorithms have been de-

signed (Préa & Fortin, 2014), the circular seriation problem has several different

definitions, with all of them having some advantages and some disadvantages.

Therefore, our first goal is to define a simple definition for circular seriation that

captures the intuitive properties of a circular embedding, and that is suitable for

efficient algorithms. The first contribution is to show that circular seriation can

be solved in polynomial time under the proposed definition.

• Optimal algorithm in the strict case. When the data is continuous, a natural

assumption for seriation is that inequalities hold strictly, i.e. strict seriation. Un-

der this setting, the complexity is substantially reduced. This has been known

for many years in the linear case, since an optimal algorithm for strict linear

seriation was introduced 17 years before the first optimal algorithm for the gen-

eral non-strict case (Chepoi & Fichet, 1997). However, in the circular case this

problem was still open. Our second contribution is an O(n2) time algorithm

that solves both linear and circular strict seriation: the Recursive Seriation Algo-

rithm.

• Generative model. The seriation problem has traditionally been modelled as a

recognition problem, where all Robinson orderings are considered as solutions

without establishing preferences between them. A philosophically different way

of looking into the problem is to assume that the observed data was sampled from

a continuous closed curve where the correct ordering is given by the parametriza-

tion of the curve. In this case, one would be interested in finding such ordering

or, at least, being capable to bound the error of the obtained ordering. Our third

contribution is designing a generative model for circular seriation where it is

possible to bound the diameter of the solution set and obtain sample complexity

bounds for the reconstruction of the ordering.
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• Numerical validation. We present numerical experiments where the Recursive

Seriation Algorithm successfully reconstructs the original order of the data in

both synthetic and real-world data. This experiments are available at the Appen-

dix.

1.7. Future Challenges

Along this thesis, a series of unsolved problem are raised. These constitute future lines

of investigation. We point out the main ones:

• Optimal algorithm in the circular (non-strict) case. It is known in the literature

that the linear (non strict) seriation problem can be solved in optimal O(n2) time

complexity. In (Préa & Fortin, 2014), an algorithm is presented for linear seri-

ation which solves the problem by computing the ball hypergraph partially, and

then carefully modifying the PQ-tree resulting from this hypergraph. There are

some key procedures in this paper such us partition refinement for which a gen-

eralization to the circular case is not obvious. Therefore, the question whether

applying a similar idea in the circular case is to the best of our knowledge still

open. A future challenge would be finding an O(n2) time complexity algorithm

for (non-strict) circular seriation or (in the negative) proving a superquadratic

lower complexity bound for general circular seriation.

• Necessary and sufficient condition for the spectral method. For some highly

structured circular Robinson matrices such as circulant Toeplitz matrices the

spectral method is guaranteed to successfully recover a Robinson ordering (Recanati

et al., 2018). However, as we saw in section 1.5.1 there are many cases in which

the method does not work. Another line of future research would be to com-

pletely characterize the set of circular Robinson matrices in which the embed-

ding ✓A preserves cyclic orders.
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A. NUMERICAL EXPERIMENTS

A.1. Synthetic experiment: the Cantor set

The algorithm presented in (Armstrong et al., 2021) performs seriation by merging

nearest-neighbours. A limit case for such algorithm is when we only merge two neigh-

bours at a time. This is exactly what happens when we consider the boundary of the

intermediate Cantor sets, which we present in what follows (see Figure A.2). The Cantor

ternary set C1 consists of all numbers in [0, 1] that have a ternary expansion (Royden &

Fitzpatrick, 1988). Consider the sets defined recursively

Cn ,
Cn1

3
[

✓

2

3
+
Cn1

3

◆

for n  1, and C0 , [0, 1].

Then the cantor set is defined as C1 ,
T1

n=1Cn. For every integer n  1, we define

the intermediate Cantor sets as follows

Cn ,
n
\

k=1

Ck.

The sets Cn are illustrated in Figure A.1 for n = 1, . . . , 6.

Consider the sequence x1 < x2 < · · · < x2k in [0, 1] such that @Ck =
S2k

i=1{xi}

(i.e. the elements at the boundary of the intervals at obtained at the k-th recursion of the

construction of the Cantor set). In the optimal algorithm presented in (Armstrong et al.,

2021), the maximum recursion depth is bounded by log2(n) where n is the number of

initial points. For instance, if the input matrix is d(xi, xj) 2 R2k⇥2k , then this algorithm

correctly orders the sequence in at most log2(2k) = k iterations. A circular Robinson ana-

log for such dissimilarity is given by Dcirc(i, j) , d(f(xi), f(xj)) where f corresponds

to the mapping ✓ 7! (cos(2⇡✓), sin(2⇡✓)). To test the tightness of such bound, in Figure

A.3 we present the intermediate steps of the algorithm with a random permutation of Dcirc

as input.
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Figure A.1. First six iterations of the construction of the Cantor set (i.e.
the intermediate Cantor sets) (Wikimedia Commons, 2007).

Figure A.2. Nearest neighbours relation between the the elements in @C6
(Derbyshire, 2016).

(a) recursion 1 (b) recursion 2 (c) recursion 3

(d) recursion 4 (e) recursion 5

Figure A.3. Iterations of the algorithm from (Armstrong et al., 2021) with
input ⇧Dcirc

⇧
T 2 R27⇥27 for some random permutation matrix ⇧
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A.2. Real-world application: tomographic reconstruction

We present an example of the tomographic reconstruction problem introduced in Sec-

tion 1.2.1. The objective of this experiment is to reconstruct a virus’s density ⇢(x, y) from

its projections. The density is available at Figure A.4. Let R⇢(t, ✓) be the Radon trans-

form at angle ✓ 2 {1, 2 . . . , 180} (see Figure A.5). Given some unknown permutation

⇡, let R⇢(t, ✓⇡) be the permuted collection of projections (the permuted Radon trans-

form). An example is displayed at Figure A.6 for some random permutation ⇡. A naive

approach for the reconstruction is to invert R⇢(t, ✓⇡) by assuming that the angle vector

✓⇡ is ✓id , (1, 2 . . . , 180). The obtained density from this (wrong) approach in our

example can be found at Figure A.7. To correctly solve this problem we first need to find

the latent circular ordering of the projections. Let D⇡ be the dissimilarity matrix given

by D⇡(i, j) , kR⇢(·, ✓⇡(i))  R⇢(·, ✓⇡(j))k1. Such dissimilarity matrix is displayed at

Figure A.8. Let  be the ordering (permutation) obtained from the algorithm presented in

(Armstrong et al., 2021) with input D⇡. In Figure A.9 we present the dissimilarity matrix

⌃D⇡⌃
T where ⌃ is the matrix representation of the permutation . By inverting the sorted

Radon transform R⇢(t, ✓⇡) we obtain the correct objects density as in Figure A.10.
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Figure A.4. Original object’s density

Figure A.5. Radon transform R⇢(t, ✓) of the density ⇢
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Figure A.6. Permuted Radon transform R⇢(t, ✓⇡)

Figure A.7. Density obtained by a straightforward inversion R⇢(t, ✓⇡)
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Figure A.8. Dissimilarity matrix between all pairs of projections

Figure A.9. Sorted dissimilarity matrix obtained from seriation
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Figure A.10. Density obtained by inverting R⇢(t, ✓⇡) where  is the or-
dering of the projections found by seriation
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An optimal algorithm for strict circular seriation⇤1

Santiago Armstrong† , Cristóbal Guzmán† , and Carlos A. Sing Long† ‡2

3

Abstract. We study the problem of circular seriation, where we are given a matrix of pairwise dissimilarities4
between n objects, and the goal is to find a circular order of the objects in a manner that is consistent5
with their dissimilarity. This problem is a generalization of the classical linear seriation problem6
where the goal is to find a linear order, and for which optimal O(n2) algorithms are known. Our7
contributions can be summarized as follows. First, we introduce circular Robinson matrices as8
the natural class of dissimilarity matrices for the circular seriation problem. Second, for the case of9
strict circular Robinson dissimilarity matrices we provide an optimal O(n2) algorithm for the circular10
seriation problem. Finally, we propose a statistical model to analyze the well-posedness of the circular11
seriation problem for large n. In particular, we establish O(log(n)/n) rates on the distance between12
any circular ordering found by solving the circular seriation problem to the underlying order of the13
model, in the Kendall-tau metric.14

Key words. Circular seriation, circular Robinson dissimilarities, PQ-trees, circular Robinsonian matrices, cir-15
cular-arc hypergraphs, circular embeddings of graphs, generative model16

AMS subject classifications. 68R01, 05C85, 05C50, 05C25, 65C2017

1. Introduction. The seriation problem seeks to order a sequence of n objects from pair-18

wise dissimilarity information. The goal is for the objects to be linearly ordered according to19

their dissimilarity [17, 25, 26]. Seriation has found applications in several areas such as ar-20

chaeology [27], sociology and psychology [17], and gene sequencing and bioinformatics [25, 19].21

However, in many applications the objects may be arranged along a closed continuum, result-22

ing instead in a circular order. For instance, in de novo genome assembly of bacterial plasmids,23

the goal is to reorder DNA fragments sampled from a circular genome [25, 16]. In some prob-24

lems in planar tomography, an object’s density is to be reconstructed from projections taken25

at unknown angles between 0 and 2⇡. Reordering the projections according to their angle26

enables the reconstruction of the density [9]. In this case, the matrix representation of the27

pairwise dissimilarities is symmetric, with entries that increase monotonically starting from28

the diagonal along each row until they reach a maximum and then decrease monotonically,29

when the columns are wrapped around (see Figure 1). Matrices of this form are called cir-30

cular Robinson [10, 12] in contrast to linear Robinson dissimilarities, where the entries are31

monotone non-decreasing along rows and columns when moving toward the diagonal [15].32
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1.1. Our Contributions. In this work, we address the problem of circular seriation, both33

in its algorithmic and well-posedness for large n. Some of our results also apply to the34

linear case. Our first contribution is to provide a tractable and natural definition of circular35

Robinson matrices by leveraging unimodality (cf. Proposition 3.7). Various definitions of36

circular ordering have been proposed in the literature (see Subsection 1.2 below), but we37

believe this one captures intuitively the behavior of circular data.38

Our second contribution is to provide the first optimal algorithm, with O(n2) time and39

space complexity, for the seriation problem for strict Robinson dissimilarity matrices. Our40

algorithm is based on known techniques and data structures used in combinatorial seriation,41

but by virtue of the strict Robinson property our algorithm is substantially simpler. At a42

high level, the algorithm follows a divide-and-conquer approach, where we recursively detect43

nearest neighbors between chains of consecutive elements, and then resolve the orientations44

of such chains by comparing elements from their borders.45

Our third contribution is a statistical model to analyze the large n regime. In this model,46

points are sampled from a closed curve, which without loss we assume is the unit circle, with47

a continuous and strict circular Robinson dissimilarity. Our main result here is a O(log(n)/n)48

bound on the expected Kendall-tau distance of any strict circular Robinson ordering of the49

data. This result is based on an observation we make that in the continuous model, there is50

essentially1 a unique ordering which makes the dissimilarity continuous and strictly circular51

Robinson. This analysis bridges the gap between solutions to the seriation problem, and their52

accuracy when data is naturally embedded in a continuous circular-like structure.53

1.2. Related Work. Linear seriation is a classical problem in unsupervised learning and54

exploratory data analysis. As such, it has been thoroughly studied, and optimal algorithms for55

combinatorial seriation are known, as well as spectral methods. In contrast, circular seriation56

is substantially less understood. Next we summarize some results from the literature.57

Linear Seriation. The first polynomial time algorithm for retrieving a linear order from58

permuted linear Robinson matrices was due to Mirkin and Rodin [19]. It is based on the59

connection between linear Robinson matrices and interval hypergraphs. It uses an algorithm60

introduced in [11] as a core subroutine, with an overall running time of O(n4). Chepoi and61

Fichet [6] later introduced a simpler algorithm using a divide-and-conquer strategy. By re-62

cursively performing a partition refinement the algorithm computes an ordering in O(n3)63

operations and O(n2) space. Using similar techniques, Seston [28] improved the complexity64

to O(n2 log(n)). Atkins [1] presented an entirely di↵erent strategy based on Laplacian eigen-65

maps (see [2]) with running time of O(n(T (n) + n log n)), where T (n) is the complexity of66

(approximately) computing the leading eigenvector of a n ⇥ n symmetric matrix. Prea and67

Fortin in [22] presented an optimal O(n2) algorithm, using an algorithm from [4] to first com-68

pute a PQ-tree which is then updated by the algorithm. For the sparse case, Laurent and69

Seminarotti [15] present the Similarity-First Search algorithm in O


n2 + nm log n


operations70

where m is the number of nonzero entries of the dissimilarity matrix.71

A natural question is how to perform seriation under noisy measurements of a dissimilarity.72

1In an infinite set, permutations can be identified with bijections. However, given that for any finite sample
we would only observe permutations of finitely many elements, we can substantially reduce the number of
relevant permutations for this question. See Section 6 for further details.

This manuscript is for review purposes only.



AN OPTIMAL ALGORITHM FOR STRICT CIRCULAR SERIATION 3

Here, it is known that projecting a dissimilarity on the class of Robinsonian dissimilarities (in73

`1-norm) is an NP-hard problem [7], and constant factor approximation algorithms exist [8].74

Circular Seriation. In contrast to the linear case, where there is a common consensus for75

the definition of linear Robinson dissimilarities, in the circular case many definitions have been76

proposed that, in spite that they follow the same intuition, have mathematical formulations77

that are not equivalent. The first generalization of Robinson dissimilarities to the circular case78

was introduced in [12]. On top of being quite involved, this definition allows bimodality within79

each row (modulo n), which is incompatible with a circle embedding. The approach proposed80

for circular seriation is an instance of the quadratic assignment problem, which is NP-hard.81

A recent work following a similar line is [10]. The authors propose an optimization framework82

where they employ a spherical embedding together with a spectral method for circular ordering83

in order to recover circular arrangements of the embedded objects. This heuristic has no84

theoretical guarantees. A di↵erent approach in [9] aims to generalize Atkins’ spectral approach85

by considering two eigenvectors. This methodology has asymptotic guarantees due to the86

connection between the Laplacian operator and the continuous Laplace-Beltrami operator87

over a manifold. Using the same idea, in [25] theoretical guarantees for a spectral method88

are introduced for the particular case in which the circular Robinson matrix is circulant,89

which is an idealized setting. In the same work, numerical experiments are presented to90

illustrate how the spectral method gains robustness by leveraging higher (> 2) Laplacian91

eigenvectors. In [5] dissimilarities whose ball, 2-ball and cluster hypergraph correspond to92

an arc hypergraphs are studied. Such dissimilarities can be considered as generalizations93

of Robinson dissimilarities to the circular case. We build upon this work by considering94

dissimilarities whose ball hypergraph corresponds to arcs and connect it to other definitions95

by showing that this definition is equivalent to requiring that the map j 7! D(i, j + i mod n)96

is unimodal. Brucker and Osswald in [5] mainly focus in what they call circular dissimilarities97

which are a particular case of the previous definition.98

1.3. Outline. The paper is organized as follows. Section 2 introduces the notation and99

preliminaries. In Section 3 we formally introduce the seriation problem and the crucial concept100

of Robinson dissimilarities and matrices. In Section 4 we present some classical results on the101

consecutive ones problem and its connection to seriation, including the PQ-tree data structure,102

which is critical for our optimal algorithm. In Section 5 we present our optimal algorithm103

for strict circular seriation. Finally, in Section 6 we provide the generative model of sampling104

from a continuous strictly Robinson curve.105

2. Preliminaries. Throughout this work, arrays are indexed starting from 0 and are real106

unless it is explicitly stated otherwise. We let [n] , {0, 1, . . . , n1} and denote as Sym(n) the107

group of permutations of [n]. A permutation is represented either by a vector ⇡ with entries108

in [n] or by an n ⇥ n orthogonal and binary matrix ⇧. We denote as ⇡r the permutation109

that reverses the elements of [n], i.e., ⇡r(i) = n  1  i, and ⇡s the cyclic (right) shift on110

[n], i.e., ⇡s(i) = i + 1 mod n. We consider the action by conjugation of Sym(n) over the set111

of n ⇥ n matrices, which is defined by (⇧, A) 7! ⇧A⇧T . If S ⇢ Sym(n) we denote hSi the112

subgroup generated by the elements of S. Finally, we denote the dihedral group of 2n di↵erent113

symmetries of a regular polygon with n sides as Dihn.114

For a countable set X and an enumeration x : i ! x(i) we write xi to denote x(i) and let115
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4 S. ARMSTRONG, C. GUZMÁN, C. A. SING LONG

#x be the integer such that x(#x) = x. In this work, we consider finite sets of cardinality n.116

An enumeration becomes a bijection X 7! [n] with inverse # : X ! [n].117

The notion of and ordered set will play a crucial role. A linear order on X is a relation118

 on X 2 that is reflexive, antisymmetric, transitive and total. The pair (X ,) is a linearly119

ordered set. We say x0, . . . , xN1 are linearly ordered if xi  xi+1 for i 2 [N ]. A cyclic order120

on X is a relation C on X 3 that is cyclic, antisymmetric, transitive and total. The pair (X ,C )121

is a cyclically ordered set. A cyclic order induces a linear order on X . For x0 2 X we define the122

linear order C ,x0
as x C ,x0

y if and only if (x0, x, y) 2 C . Finally, we say x0, . . . , xN1 2 X123

are cyclically ordered if xi C ,x0
xi+1 for i 2 [N ]. See [20] for more details.124

3. The seriation problem and Robinson dissimilarities. We introduce the seriation prob-125

lem. Given a set M of n⇥ n real matrices, let the pre-M class be the orbit of M under the126

action of Sym(n) by conjugation. The abstract seriation problem can be stated as [26]127

Given A in pre-M find ⇧ in Sym(n) such that ⇧A⇧T is in M.128

The seriation problem is completely determined by the class M. A solution to the seriation129

problem for A is any permutation ⇧ satisfying the above. The set of all solutions is SM(A).130

The seriation problem arises in applications when we consider a finite set X and we know131

the dissimilarity between its elements x1, . . . , xn. Ideally, a solution ⇡ to the seriation problem132

induces a linear order  on X such that x⇡(1)  . . .  x⇡(n). In this case, ⇡ and the order 133

orders or ranks the elements of X in a way that is consistent with their dissimilarities.134

We study two questions about this problem: how to construct a suitable class M for135

which such a solution exists? and, given this class, is there an efficient algorithm to solve136

the seriation problem for any A?. Our goal is to provide an answer when we allow for both137

linear and cyclic orders. For this reason, we explicitly distinguish between the linear seriation138

problem and the circular seriation problem; the seriation problem refers to either of them.139

To answer the first question, in Subsection 3.1 we characterize dissimilarities that admit140

such linear or cyclic orders, and in Subsection 3.2 we discuss how these induce a suitable class141

of matrices for the seriation problem. We defer the answer to the second question to Section 4142

and 5.143

3.1. Robinson dissimilarities. A dissimilarity or premetric d : X 2 ! R on X is a non-144

negative and symmetric function that is identically zero on the diagonal. Robinson dissimi-145

larities are dissimilarities to which we can associate a linear or cyclic order on X .146

3.1.1. Linear Robinson dissimilarities. Linear Robinson dissimilarities admit a family of147

linear orders on X .148

Definition 3.1 (The linear Robinson property). A dissimilarity d on X is linear Robinson149

if there exists a linear order d on X such that150

(3.1) 8 linearly ordered x, y, z 2 X : d(x, z)  max{d(y, x),d(y, z)}.151

It is strictly linear Robinson if all the inequalities are strict. We say d is consistent with d152

and that d is linear Robinson with respect to d.153

Linear Robinson dissimilarities preserve the intervals defined by any consistent order [19].154

From Definition 3.1 it follows that for any r > 0 and x 2 X the (closed) balls Bd
r (x) , {y 2155
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AN OPTIMAL ALGORITHM FOR STRICT CIRCULAR SERIATION 5

X : d(x, y)  r} are intervals in (X ,d). In fact, this property uniquely characterizes linear156

Robinson dissimilarities. To prove this converse, the appropriate structure to analyze is the157

hypergraph Hd with vertex set X and hyperedge set Bd , {Bd
r (x) : x 2 X , r > 0}. This158

hypergraph is called an interval hypergraph if every hyperedge is an interval [14].159

Proposition 3.2 ([19]). Let d be a dissimilarity on X . The following are equivalent:160

1. d is linear Robinson.161

2. The hypergraph Hd is an interval hypergraph.162

Preserving intervals is not enough to yield uniqueness of the consistent order. This follows163

from the natural symmetries of Robinson dissimilarities. Let d be consistent with respect to164

d. Its reversal 0
d
is the linear order defined by x 0

d
y if and only if y d x. It is clear that165

d is linear Robinson with respect to d if and only if it is so with respect to 0
d
. Therefore,166

for Robinson dissimilarities the consistent order in X is not unique.167

3.1.2. Circular Robinson dissimilarities. Circular Robinson dissimilarities arise naturally168

when we allow for cyclic orders.169

Definition 3.3 (The circular Robinson property). A dissimilarity d on X is circular Robinson170

if there exists a cyclic order Cd such that171

8 cyclically ordered x, y, w, z 2 X : d(y, w)  min{d(y, x),d(y, z)}.172

We say it is strict circular Robinson if the inequality is strict. We say Cd is consistent with d173

and that d is linear Robinson with respect to Cd.174

Circular Robinson dissimilarities preserve the arcs of any compatible order, i.e., sets of175

the form {x 2 X : (m,x,M) 2 Cd} for m,M 2 X called the borders of the arc. Arcs are the176

natural analogues of intervals for a cyclic order. Consequently, we say Hd is an arc hypergraph177

if all its hyperedges are arcs. The analog of Proposition 3.2 for a cyclic order is the following.178

Proposition 3.4. ([5, Proposition 5]) Let d be a dissimilarity. The following are equivalent:179

1. d is circular Robinson.180

2. The hypergraph Hd is an arc hypergraph.181

Similarly to the linear case, preserving arcs is not sufficient to yield uniqueness of the182

consistent order. Let Cd be consistent with respect to d. In this case, its reversal C 0
d
is the183

cyclic order such that (x, y, z) 2 C 0
d
if and only if (z, y, x) 2 Cd. By definition, d is circular184

Robinson with respect to Cd if and only if it is so with respect to C 0
d
.185

3.2. Robinson matrices. Let d be a dissimilarity on X . To any enumeration x : [n] ! X186

we can associate the n⇥n dissimilarity matrix D with entries D(i, j) := d(xi, xj). It is always187

non-negative, symmetric, and with zero-diagonal. However, some enumerations will endow D188

with additional properties. This leads us to Robinson matrices.189

3.2.1. Linear Robinson matrices. If d is consistent with respect d there exists an enu-190

meration of X such that for i, j 2 [n] we have i  j if and only if xi d xj . In this case, it191

follows that D induces a linear Robinson dissimilarity on [n].192

Definition 3.5 (Linear Robinson matrix). A dissimilarity matrix D is linear Robinson if193

(3.2) 8 linearly ordered i, j, k 2 [n] : D(i, k)  max{D(j, i), D(j, k)}.194
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Figure 1: Example of a linear Robinson dissimilarity matrix (in the left) and a circular
Robinson dissimilarity matrix (in the right)

It is strictly linear Robinson if all the inequalities are strict.195

This implies D is consistent with the standard order on [n] and Proposition 3.2 holds for196

D when X = [n]. From the definition, we also deduce that197

8 linearly ordered i, j, k 2 [n] : D(i, j)  D(i, k) and D(j, k)  D(i, k).198

When the dimension is understood from context, the set of linear and strictly linear Robinson199

dissimilarity matrices will be denoted LR and L⇤
R respectively. Considering each one of these200

sets as M leads to the linear seriation problem and the strict linear seriation respectively.201

Note linear Robinson matrices inherit the symmetries from the dissimilarity. In fact, it202

can be verified that D is linear Robinson if and only if ⇧rD⇧T
r is linear Robinson. Remark203

that Dih1 ⇠= h⇡ri and consequently linear Robinson matrices are invariant under the action of204

Dih1 by conjugation.205

3.2.2. Circular Robinson matrices. For the circular case, we endow the set [n] with the206

standard cyclic order Cn207

(3.3) (i, j, k) 2 Cn () (i < j < k) _ (j < k < i) _ (k < i < j).208

We still denote the standard linear order in [n] as .209

If d is consistent with respect Cd there exists an enumeration of X such that (i, j, k) 2 Cn210

if and only if (xi, xj , xk) 2 Cd. Similarly to the linear case, this implies D induces a circular211

Robinson dissimilarity on [n].212

Definition 3.6 (Circular Robinson matrix). A dissimilarity matrix D is circular Robinson213

if214

8 cyclically ordered i, j, k, ` 2 [n] : D(j, k)  min{D(j, i), D(j, `)}.215

Therefore, D is consistent w.r.t. Cn and Proposition 3.4 holds for D when X = [n]. When216

the dimension is understood from context, the set of circular and strictly circular Robinson217

matrices will be denoted CR and C⇤
R, respectively. Considering each one of these sets leads218

to the circular seriation problem and the strict circular seriation respectively. Comparing219

Definition 3.5 and Definition 3.6 it is apparent that every linear Robinson matrix is also circular220
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Robinson. In this sense, the notion of circular Robinson extends that of linear Robinson. The221

di↵erence between linear and circular Robinson matrices is illustrated in Figure 1.222

We provide an alternative definition for circular Robinson matrices that will be useful in223

what follows. Let f : [n] ! R. A mode is any m 2 [n] such that224

8 i, j 2 [n] : i  j  m or m  j  i ) fi  fj  fm.225

We say f is unimodal if it has a mode. We say f is strictly unimodal if it has at most two226

distinct, consecutive modes m1  m2 with fm1
= fm2

and227

8 i, j 2 [n] : i < j < m1 ) fi < fj < fm1
and i > j > m2 ) fi < fj < fm2

.228

From the definition it is clear that every subsequence of a strictly unimodal sequence is also229

strictly unimodal. The proof of the following is deferred to Appendix A.1.230

Proposition 3.7. Let D be a dissimilarity matrix. The following are equivalent:231

1. D is circular Robinson (resp. strict circular Robinson).232

2. For any i 2 [n] the function j ! D(i, i+j mod n) is unimodal (resp. strict unimodal).233

This property is naturally invariant under cyclic permutations.234

Proposition 3.8. A dissimilarity matrix D is circular Robinson if and only if ⇧rD⇧T
r and235

⇧sD⇧T
s are circular Robinson matrices.236

Proof. First, notice that the (i, j) entry of ⇧sD⇧T
s and ⇧rD⇧T

r are D(i + 1 mod n, j +237

1 mod n) and D(n1 i, n1j), respectively. Noticing that {D(i mod n, i+j mod n)}n1
j=0238

is unimodal for all i, we have that {D(i + 1 mod n, i + j + 1 mod n)}n1
j=0 and {D(n  1 239

i mod n, n  1  i + j mod n)}n1
j=0 are unimodal. Therefore ⇧rD⇧T

r and ⇧sD⇧T
s are also240

circular Robinson.241

Since Dihn ⇠= h⇡r,⇡si it follows that circular Robinson matrices are invariant under the242

action of Dihn by conjugation. This invariance is particular to the definition and should not243

be taken for granted. Other definitions proposed in the literature, e.g., [26], do not enjoy this244

property. We believe that cyclic invariance makes the definition arguably more natural.245

3.3. Robinson orderings. The seriation problem does not assume we observe a linear or246

circular Robinson dissimilarity matrix, but instead its image under conjugation by an unknown247

permutation matrix. In other words, we observe matrices in pre-LR and pre-CR. We call such248

matrices Robinsonian matrices.249

Given a Robinsonian matrix and an algorithm for the corresponding seriation problem,250

the set of solutions may not be a singleton. In fact, the symmetries of linear and circular251

Robinson dissimilarity matrices ensures they will never be a singleton. We call Robinson252

orderings all the orderings represented by the elements in the set of solutions.253

Although there will never be a unique Robinson ordering, we can at least distinguish254

which ones are due to the natural symmetries of the problem. Therefore, for the linear255

seriation problem we call solutions in the same orbit under the action Dih1 the trivial solutions256

whereas those in di↵erent orbits non-trivial solutions. The same criteria applies for the circular257

seriation problem when the action of Dihn is considered instead.258
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4. The consecutive ones problem and PQ-trees. Robinson matrices turn out to be nat-259

ural to formulate the seriation problem. We now review the connection between this problem260

and the consecutive ones problem. This connection yields polynomial time algorithms for261

solving the seriation problem, and allows us to introduce PQ-trees, which will be extensively262

used in Section 5.263

4.1. The consecutive ones problem. The linear seriation problem is deeply connected264

to a combinatorial problem known as the consecutive ones (C1) problem. To introduce this265

problem, consider a n ⇥ n binary matrix M . The C1 problem is to find a permutation ⇧266

such that the entries of M⇧ equal to one appear consecutively along rows. We say M has the267

consecutive ones property (C1) property if the C1 problem has a solution for M . An example268

of such matrix can be found in Figure 2a. The first linear time algorithm for the C1 problem269

was introduced by Booth and Lueker in [3]. If f is the number of ones in M then their result270

states the C1 problem can be decided in O(n+ f) time.271

An extension to this problem is the circular ones (Cr1) problem. The Cr1 problem is to272

find a permutation ⇧ such that the entries of M⇧ equal to one appear consecutively modulo n273

along rows. We say M has the circular ones (Cr1) property if the Cr1 problem has a solution274

for M [29]. This problem can also be solved efficiently as it can be reduced to the C1 problem.275

Let M be the matrix such that every row with a 1 on its first entry is complemented. Then M276

satisfies the C1 property if an only if M satisfies the Cr1 property [29, Theorem 1]. Therefore,277

by forming the complement, the Cr1 problem can be decided in polynomial time.278

Both problems are connected to the seriation problem through the hypegraph HD. In fact,279

interval and arc hypergraphs are precisely those for which their incidence matrices respectively280

satisfy the C1 and Cr1 properties [14]. This suggests how to efficiently solve the seriation281

problem for Robinson matrices.282

Theorem 4.1. ([6, 19]) The linear and circular seriation problem can be reduced in polyno-283

mial time and space to deciding respectively the C1 and Cr1 problem. Robinson matrices can284

be recognized in O


n3


time and with O


n3


space.285

The bounds above follow from the worst case in whichHD has O


n2


di↵erent hyperedges.286

In this case, for each of the n possible centers and each row i 2 [n] the matrix can take O(n)287

possible values. In this case, the incidence matrix has O(n3) entries.288

4.2. PQ-Trees. The algorithmic structure underlying the algorithm to solve the C1 prob-289

lem is the PQ-tree. A PQ-tree T on a set X is a rooted tree with two types of internal nodes290

denoted by P , represented as circles, and Q, represented as rectangles, and where the leaves291

represent the elements in X . The type of node represents admissible permutations on X :292

children of a P -node can be permuted arbitrarily, whereas children of a Q-node can only be293

reversed. Figure 2b shows an example of a PQ-tree.294

PQ-trees are related to the C1 problem as follows. Let Yi be the indices of the columns295

of M such that its i-th entry equal to one. Then Y = {Yi}i0 is a collection of subsets of296

[n]. The C1 problem can be solved if we can permute the elements of [n] so that every Yi297

becomes an interval. The algorithm starts with a single set Y1 = {Yi1} and determines the set298

of admissible permutations such that Yi1 becomes an interval. These can be represented by a299

PQ-tree T1 (see [3] and [4]). The algorithm proceeds by adding a Yi2 to form Y2 = {Yi1 , Yi2}300
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4

1 2 3 4 5 6

1 1 0 0 0 0

0 1 1 0 0 0

1 1 1 1 0 0

0 0 0 1 1 1

0 0 0 0 1 1

3

7

7

7

7

7

5

(a) M 2 {0, 1}5⇥6 with
the consecutive ones
property.

Q

Q

1 2 3

4 P

5 6

(b) PQ-tree T representing
the solutions of the (C1P)
for M .

{(1, 2, 3, 4, 5, 6), (5, 6, 4, 1, 2, 3),
(3, 2, 1, 4, 5, 6), (5, 6, 4, 3, 2, 1),
(1, 2, 3, 4, 6, 5), (6, 5, 4, 1, 2, 3),
(3, 2, 1, 4, 6, 5), (6, 5, 4, 3, 2, 1)}

(c) The set S(T ) of permutations
represented by the tree.

Figure 2: A PQ-tree of all solutions to the (C1P) for a {0, 1}-matrix.

and update the PQ-tree accordingly. The main contribution of [4] is an algorithm for updating301

Tk in a way that given any subset Yk ✓ [n], the set of permutations represented by the updated302

tree Tk+1 is precisely the set of admissible permutations of Yk+1 [ {Yk}. This is done in time303

linear in the size of Yk. The algorithm finishes when Y is attained.304

As an example, by considering all rows of the binary matrix in Figure 2a, the resulting305

PQ-tree at the final step would be the one in Figure 2b, and the solution set would be the306

one in Figure 2c.307

5. Optimal Algorithm for Strict Circular Seriation. In this section, we present an op-308

timal algorithm for circular seriation in the strict Robinson case (this algorithm would also309

work for the strict linear case, but we will omit this). Our algorithm runs in O(n2) time310

and space, which is obviously optimal, since it is the time required to read the input and the311

space required to provide a strict Robinson dissimilarity.2 The core algorithm relies in two312

main ideas: merging nearest neighbors, and discarding forbidden arc reversals. We recursively313

merge nearest neighbors, using the fact that nearest neighbors are guaranteed to be consec-314

utive elements in a strict Robinsonian ordering. Exploiting this fact we can obtain chains of315

consecutive elements which are stored in Q-nodes of PQ-trees. The most complicated part of316

the algorithm consists in (efficiently) determining if each Q-node can be uniquely oriented. In317

that case such Q-node can be deleted and its children merged to the parent Q-node.318

The process of building chains of consecutive elements and deciding their orientation can319

be done in several ways. The advantage of our algorithm is that the total number comparisons320

to decide each orientation is bounded by O(n), which leads to a running time O(n2).321

5.1. Preliminaries part I: nearest neighbours graph in strict Robinson dissimilarities.322

Given D 2 pre-CR, a collection of subsets P = {Ii}i0 of X is said to be an arc partition if P323

is a partition of X (i.e. Ii \ Ij = ; when i 6= j and
S

i0 Ii = X ) and every set Ii is an arc324

of consecutive elements in any Robinson ordering. A crucial part of the algorithm consists in325

building arc partitions by merging nearest neighbours. The set of nearest neighbours of x 2 X326

is defined as NN(x) , argminy2X\{x} d(x, y). The nearest-neighbours graph is an undirected327

2Given the strict Robinson property, it is clear that the underlying matrix is dense, and therefore O(n2)
memory is required to even provide the input.
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graph GNN(X ,d) = (X , E) such that {x, y} 2 E i↵ x 2 NN(y) or y 2 NN(x). An essential328

condition of strict Robinson dissimilarities is what we called the nearest-neighbour condition,329

which implies that the connected components of the nearest-neighbours graph correspond to330

arcs of consecutive elements, and since connected components form a partition, such collection331

corresponds to an arc partition.332

Definition 5.1. (Nearest-neighbour condition) A dissimilarity matrix D 2 Rn⇥n is said to333

have the nearest-neighbour condition if it holds that NN(i) ✓ V C
i , {i1 mod n, i+1 mod n}.3334

It is immediate to verify that strict circular Robinson dissimilarities satisfy the nearest-335

neighbour condition, which is not necessarily true in the non-strict case.336

We also recall from graph theory that given a graph G = (X , E) and a node x 2 X ,337

the set of adjacent nodes to x is denoted as NG(x) , {y 2 X : {x, y} 2 E}. The function338

x 7! NG(x) is called the neighbourhood. The ring graph Rn = ([n], E) is the graph with edge339

set E = {{i, (i + 1) mod n} : i 2 [n]}. If a graph G is a subgraph of Rn, then it is clear340

that its connected components correspond to arcs of ([n],Cn). A direct consequence of the341

nearest-neighbour condition is that the nearest-neighbours graph of strict circular Robinson342

dissimilarity matrices correspond to subgraphs of Rn.343

Our algorithm relies crucially on the fact that strict dissimilarities must respect nearest344

neighbors in any Robinson ordering. This is not necessarily true in the non-strict case.345

Lemma 5.2. Let D 2 pre-C⇤
R and i 2 [n]. Suppose that j 2 NN(i), then in any Robinson346

ordering , the elements i and j are consecutive.347

Proof. Let  be any Robinson ordering. Let j 2 NN(i) and let r , D(i, j). This implies348

that for any k 2 B(i, r) \ {i}, D(i, k) = D(i, j). Suppose by contradiction that there exist349

k1, i, k2 consecutive in , with j 6= k1, k2. Since in any Robinson ordering balls are arcs, this350

implies that either k1 2 B(i, r) or k2 2 B(i, r). Any of the two cases is a contradiction with351

the nearest-neighbour condition, proving the result.352

Since nearest-neighbours must be consecutive, we get that the connected components of353

the nearest-neighbours graph of a strict circular Robinson dissimilarity correspond to arcs of354

any Robinson ordering. Hence, the set of connected components constitute an arc partition.355

The fact that this graph is a subgraph of the ring graph makes computationally efficient356

finding the order intrinsic to each component, and the task is divided in two steps:357

1. Find all degree 1 nodes. These correspond to the borders of the components.358

2. Perform a Depth-First Search (Algorithm DFS) starting at each non visited degree 1359

node. The order in which the nodes are visited will follow the Robinson ordering (or360

backwards).361

If there are no degree one nodes, then GNN
⇠= Rn and therefore we can start at any node.362

For an algorithmic implementation, tuples can be used to represent the local fragments of363

Robinson orderings (Q-nodes). A tuple is an ordered set ↵ = (a0, a1, a2, . . . , ak1). We write364

↵(i) to denote ai, the i-th element of ↵. Each connected component will be stored in a tuple365

↵, where ↵(j) is the j-th element visited by performing a DFS. The procedure is summarized366

in Algorithm AP (Arc Partition ), whose correctness is stated in the following Proposition367

3Given some enumeration # and i 2 [n], when we write NN(i), we refer to the set #(NN(xi))
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(the proof of the next result is omitted for brevity).368

Proposition 5.3. Given any dissimilarity matrix D 2 pre-C⇤
R, by performing Algorithm AP369

with input ([n], D) the resulting tuples follow an arc ordering for every Robinson ordering.370

5.2. Preliminaries part II: orienting arcs. The previous section tell us that nearest-371

neighbours must be consecutive in the strict Robinson case. By exploiting this idea we can372

obtain ordered sequences of elements stored in Q-nodes of a PQ-tree. Notice however that373

Q-nodes are allowed to be reversed, which at this point of the algorithm is not guaranteed374

to lead to Robinson orderings. If this is not the case, the inconsistent ordering must be dis-375

carded, which corresponds to removing the Q-node and merging the its children directly to376

the parent Q-node. We call this process orienting. In this section we provide computationally377

efficient conditions to determine when a Q-node must be oriented. Each Q-node ↵ in a tree378

T can be associated with an arc I↵ in X : the arc of all leaves in X which are descendants of379

↵. Reversing ↵ corresponds to reversing I↵. The first relevant concept to determine when it380

is possible to reverse each arc is the strictly overlapping condition, which has been studied for381

instance in [23] and in [14]. An example of the property can be seen in Figure 3 (a).382

Definition 5.4. Two arcs I and J are said to strictly overlap, denoted by I G⇤ J , if

1. I 6⇢ J ; 2. J 6⇢ I; 3. Ic 6⇢ J ; and 4. J 6⇢ Ic.

Observation 5.5. The relation G⇤ is symmetric and equivalent to

1. I \ J c 6= ;; 2.J \ Ic 6= ;; 3. Ic \ J c 6= ;; and 4. I \ J 6= ;.

Lemma 5.6. Let I and J be two arcs. Let a, b and a0, b0 be the borders of I and Ic,
respectively, where a (b) and a0 (b0) are consecutive in the cyclic order. Then I G⇤ J if and
only if one of the following conditions holds

(i) {a, a0} ⇢ J and {b, b0} ⇢ J c; or (ii) {b, b0} ⇢ J and {a, a0} ⇢ J c.

Proof. We first prove ((). Suppose (i) holds (the other case follows analogously). Then383

since a 2 I and a0 2 Ic we get conditions 2 and 4 of Observation 5.5. Now, since b 2 I and384

b0 2 Ic we get conditions 1 and 3 of Observation 5.5.385

Next we prove ()). First we notice that there are at least two elements in I and two386

elements in Ic (otherwise containing a single element of these arcs would imply containing the387

whole set, contradicting one of the conditions in Definition 5.4). Hence, the elements a, b, a0388

and b0 exist and are distinct. Suppose a 2 J (the case a 2 J c is analogous), and let z 2 J \I389

(exists by hypothesis). Since J is an arc, it must contain one of the two paths connecting390

a and z. Since it does not contain the whole I it must be the path that covers a0, therefore391

{a, a0} ⇢ J and b /2 J . On the other hand, since it does not contain the whole Ic, b0 2 J . It392

follows that {b, b0} ⇢ J c.393

Given an arc I = {a0, . . . , ak1} (where elements are indexed following the cyclic order),394

we define the permutation that reverses I as the permutation  s.t. (aj) = akj1 for395

j 2 {0, . . . , k  1}, and (x) = x if x /2 I.396
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a0
a

bb0

a0
b

ab0

Figure 3: In the left, two strictly overlapping arcs I (in blue) and J (in red). In the right,
(I) (in blue) and (J ) (in red), where  is the permutation that reverses the elements of I.

Lemma 5.7. Let I and J be two arcs and let  be the permutation that reverses the ele-397

ments of I. Then I G⇤ J i↵ the permutation of J by  is not an arc.398

Proof. We first prove ((). By contraposition, assume any of the conditions in Defini-399

tion 5.4 do not hold, then it is easy to see that (J ) = J , which is an arc. Now we prove400

()). If I G⇤ J , then at least one of the conditions of Lemma 5.6 hold. Since (a) = b,401

(b) = a, (a0) = a0 and (b0) = b0 then (J ) is not connected and thus it is not an arc.402

As an example, consider the two strictly overlapping arcs I and J in Figure 3. By reversing
the blue arrow (the arc I) the red arrow (the arc J ) gets ripped apart into two disconnected
pieces. Recall from Proposition 3.4 that a dissimilarity matrix is circular Robinson i↵ each
ball J is an arc. Therefore, any arc I cannot be arbitrarily reversed to produced a new
Robinson ordering i↵ there is some ball that strictly overlaps with I. In terms of PQ-trees,
a necessary and sufficient condition for a Q-node ↵ to be orientable is the existence of some
z 2 X and r > 0 such that the ball Br(z) strictly overlaps with I↵. In such case, one of the
two orientations of the node is not compatible with a Robinson ordering since in one of these
orientations the ball gets disconnected. By Lemma 5.6, to determine the orientation of the
arc I one could equivalently check whether there exists z 2 X and r > 0 such that

h

{a, a0} ⇢ Br(z) ^ {b, b0} ⇢ Br(z)
c
i

_
h

{b, b0} ⇢ Br(z) ^ {a, a0} ⇢ Br(z)
c
i

,

If none of this conditions hold, then we say the arc is not orientable which means that403

the Q-node in the tree must be preserved. Notice that this requires knowing that a, b (a0, b0)404

are the borders of I (resp. Ic) in advance. Algorithm BCO is an efficient way for orienting405

the arc I with respect to the dissimilarity d when we have border candidates but the actual406

borders within the candidates are unknown.407

Definition 5.8 (Border candidates of an arc). An 4-tuple of sets (A0,A,B,B0) are said to408

be border candidates of the arc I, if the following properties hold:409

1. A,B ⇢ I and A0,B0 ⇢ Ic.410

2. The sets are pairwise disjoint.411

3. If a, b are the borders of I and a0, b0 are the borders of Ic, then: a 2 A, b 2 B, a0 2 A0412

and b0 2 B0.413

4. Either (A0,A,B,B0) or (A0,B,A,B0) is cyclically ordered.4414

4Formally, the ordered collection is a consistent cyclic quasi order, see Definition 5.12
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The next result provides correctness for Algorithm BCO (see its proof in Appendix A.2).415

Lemma 5.9. Let I ⇢ X be an arc in any Robinson ordering. Suppose a, b are the borders416

of I and a0, b0 are the respective borders of Ic. Additionally suppose that (A0,A,B,B0) are417

border candidates for I. Then, for every z 2 X , the following statements are equivalent:418

1. Both {a, a0} ⇢ Br(z) and {b, b0} ⇢ Br(z)
c hold.419

2. There exist (x0, x, y, y0) 2 A0⇥A⇥B⇥B0 s.t. max{fz(x), fz(x
0)} < min{fz(y), fz(y

0)}.420

3. It holds that max


min{fz(A)},min{fz(A
0)}
 

< min


max{fz(B)},max{fz(B
0)}
 

.421

Above fz(·) , d(z, ·) and given any U ⇢ X , min{fz(U)} , miny2U fz(y).422

Corollary 5.10. Let I ⇢ X be an arc in any Robinson ordering and suppose the sets423

(A0,A,B,B0) are border candidates for the arc I. Then, Algorithm BCO correctly determines424

if I must be fixed, reversed or if it is not orientable.425

Algorithm BCO Border Candidates Orientation

1: Input: A sequence of sets (A0,A,B,B0)
2: Let fz(x) , d(z, x) for every z 2 X
3: Let Oi : X ! {True, False} for i = 1, 2, 3, 4 be defined by
4: O1(z) , max{min{fz(A)},min{fz(A

0)} < min{max{fz(B)},max{fz(B
0)}

5: O2(z) , max{min{fz(B)},min{fz(B
0)} < min{max{fz(A)},max{fz(A

0)}
6: O3(z) , max{min{fz(A)},min{fz(B

0)} < min{max{fz(A
0)},max{fz(B)}

7: O4(z) , max{min{fz(B)},min{fz(A
0)} < min{max{fz(B

0)},max{fz(A)}
8: for z 2 X do

9: if O1(z) _O2(z) then
10: return ‘correct’

11: else if O3(z) _O4(z) then
12: return ‘reverse’

13: end if

14: end for

15: return ‘not orientable’

16: Output: A string determining the orientation of the input

Observation 5.11. The time complexity of Algorithm BCO with input (A0,A,B,B0) is426

O(|X | ·max{|A0|, |A|, |B|, |B0|}), thus it is an efficient way of orienting a Q-node ↵ whenever427

the sets of border candidates for I↵ is not too big.428

5.3. The Recursive Seriation Algorithm. The general idea of the algorithm is first: to429

merge nearest neighbours into Q-nodes, and second: to orient these nodes afterwards whenever430

is possible. For this recursive algorithm to work, we need an appropriate data structure that431

maintains arcs certified by nearest neighbour conditions. We find convenient for this purpose432

to use trees, which keep track of the nearest neighbours obtained at di↵erent steps of the433

recursion. The starting family of trees are singletons indexed by the elements of X434

Consider a family T of Q-trees (which are PQ-trees composed solely by Q-nodes). For435

each T 2 T we write as @T the set of leaves of T . Along this section we assume that436

{@T }T 2T is an arc partition. Moreover, for every Robinson ordering of X we assume that437
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there is a configuration of each T 2 T in a way that the leaves of T follow an arc ordering.438

We endow each T 2 T with a set B(T ) of border candidates5, which are all leaves of T439

that appear in the extreme left or right under some configuration of the tree. Whenever440

|@T |  2, the set of border candidates B(T ) can be split in two: left and right. The set of left441

border candidates, denoted as BL(T ), are all elements in B(T ) that appear in the extreme442

left under some configuration of the tree, subject to fixing the Q-node in the root. Similarly,443

BR(T ) denotes the set of all right border candidates, which are are all elements in B(T ) that444

appear in the extreme right. For instance, in the tree T appearing in Figure 5a, we have445

BL(T ) = {a3, b3, b2, b1} and BR(T ) = {b0}. Finally depth(T ) denotes the tree-depth of T .446

Next we present a high level pseudocode and describe its main steps. For simplicity, we447

describe the orienting steps at the end.448

Algorithm 5.2 Recursive Seriation

Input: A family T of Q-trees
step 1: Compute dmin and dargmin over T
step 2: Perform Algorithm EO of each T 2 T

step 3: Compute a new family trees T0 using Algorithm AP with input (dmin,T)
if |T0| = 1 then

step 4: Perform Algorithm FO in T 2 T0

return T 2 T 0

else

step 4: Perform Algorithm CIO in each T 2 T0

Recurse over T0

end if

Output: The unique Q-tree T 2 T0 containing all Robinson orderings

5.3.1. Initialization. Initially we have an abstract set X (or indices) and some dissimilar-449

ity d among its elements. Given this input, we initialize Recursive Seriationwith a collection450

of single element trees T = X . In such case, B(x) = @x , {x} for every x 2 X .451

5.3.2. Computing the minimum pairwise dissimilarity among trees. The following step452

of each iteration consists in computing a dissimilarity matrix among the input trees. Given453

two trees T1, T2 define the dissimilarity dmin(T1, T2) , min{d(x, y) : x 2 B(T1), y 2 B(T2)}.454

Also let dargmin(T1, T2) be the collection of all minimizers in B(T1) ⇥ B(T2). Computing455

dissimilarities among trees allows us to solve the problem recursively. In each step, the objects456

we reorder will be Q-trees and by doing so we obtain quasi-orders among our original set of457

objects. The following Lemmata justifies this procedure.458

Definition 5.12 (Quasi-order6). Let (X ,C ) be a cyclically ordered set. An ordered parti-459

tion {A0, . . . , Am1} is a (consistent) cyclic quasi order if for all (i, j, k) 2 Cm, x 2 Ai, y 2 Aj460

and z 2 Ak we have that (x, y, z) 2 C .461

5We emphasize the distinction of the border candidates of a tree and the border candidates of an arc,
introduced in Definition 5.8

6This extends the definition introduced in [6] for linear orders to cyclic orders.
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Lemma 5.13. Let D 2 Rn⇥n be a (strict) circular Robinson dissimilarity and let {Ai}i2[m]462

be a cyclic quasi-order in [n]. The matrix Dmin(Ai, Aj) , min{D(k, l) : k 2 Ai, l 2 Aj} is a463

(strict) circular Robinson dissimilarity.464

Notice that since {@T }T 2T is an arc partition, by computing the minimum dissimilarity465

among all pairs of leaves we can solve the problem recursively. However, this could be com-466

putationally expensive. The next result, which is a direct consequence of Proposition A.1 in467

Appendix A.1, implies that we can reduce this search by only using border candidates.468

Lemma 5.14. Suppose D 2 C⇤
R and let I = [a, b] be an arc in ([n],Cn). Then for every469

i /2 Ic, all minimizers of min{D(i, j) : j 2 I} are contained in {a, b}.470

Therefore, given a family of trees T = {Ti}, we have that D0(i, j) , dmin(Ti, Tj) 2 pre-C⇤
R471

(pre-CR) whenever the original dissimilarity D is in pre-C⇤
R (pre-CR) and a Robinson ordering472

for D0 yields a quasi order for D.473

Observation 5.15. Computing dmin(T1, T2) takesO(|B(T1)|·|B(T2)|) operations and storing474

dargmin(T1, T2) requires O(1) space, since by Lemma 5.14 we have that |dargmin(T1, T2)|  4.475

5.3.3. Connected components of the nearest-neighbours graph. Since for any enumer-476

ation of T we have that D0(i, j) , dmin(Ti, Tj) 2 pre-C⇤
R, Proposition 5.3 guarantees that477

Algorithm AP with input (T,dmin) returns an arc partition of T stored in ordered tuples.478

The elements in each tuple ↵ must be consecutive. Therefore, for each ↵ we build a new tree479

T↵ with a Q-node in the root whose i-th children corresponds to ↵(i). In each iteration we480

repeat this process until we end up with a unique connected component, yielding a Q-tree.481

Now we introduce the main procedure required for orienting Q-nodes within the trees.482

5.3.4. Consecutive Q-nodes orientation. Recall from Corollary 5.10 that in order to483

orient the root of a Q-tree T2, it suffices to find border candidates for the arc @T2. If T2 is the484

children of a Q-node ↵ in which T2 succeeds some tree T1 and precedes another tree T3, then485

we propose the procedure Consecutive Orientation (Algorithm CO).486

Algorithm CO Consecutive Orientation

1: Input: Three consecutive subtrees (T1, T2, T3) of a Q-node ↵

2: Let A0 , B(T1), B
0 , B(T3), A , BL(T2) and B , BR(T2).

3: Run Algorithm BCO with input (A0,A,B,B0). Let x be the output
4: if x =correct then

5: Fix the the root of T2
6: else if x =reverse then

7: Reverse the the root of T2, then fix it
8: else

9: Label T2’s root as non-orientable and continue the algorithm as if the root of T2 where
fixed. This node is an actual Q-node of the tree of Robinson orderings.

10: end if

11: Result: The root of T2 is oriented

Since A0 , B(T1), B0 , B(T3), A , BL(T2) and B , BR(T2) are border candidates487
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for @T2, the correctness of the procedure is due to the correctness of Algorithm BCO. By488

Observation 5.11, the complexity is given by O(n ·max{|B(T1)|, |B(T2)|, |B(T3)|}).489

5.3.5. Complete internal orientation of elements in a connected component. Given490

some Q-tree T with depth(T ) > 1, let T L (resp. T R) be the subtree of T whose root is the491

first (resp. last) Q-node among the direct descendants of the root of T . A complete internal492

orientation of a Q-tree T , is a process in which we determine the orientation of all nodes493

present a tree except from the nodes present in T L and T R. For this task we propose the494

procedure Complete Internal Orientation (Algorithm CIO).495

Algorithm CIO Complete Internal Orientation

1: Input: A Q-tree T with root ↵ with depth(T ) > 1
2: Let {Ti}i2[k] be all subtrees children of ↵, excluding the first and last trees (T L and T R)
3: for i 2 [k] do
4: Run Algorithm CO with input (Ti1, Ti, Ti+1), where T1 , T L and Tk , T R

5: end for

6: Recursively repeat this process until the only unoriented node in T are in T L and T R

7: Result: All elements in @T \ @T L [ @T R are directly connected to ↵

The recursion is done in a Breadth-first search fashion7. Once again, the correctness of496

the procedure is due to the correctness of Algorithm BCO. As an example, consider Figure 4.497

Here, the tree at the top was constructed at the second recursion of the algorithm and repre-498

sents a connected component of the nearest-neighbours graph over a family of Q-nodes. T L499

corresponds to the tree with root in Q1 and T R corresponds to the tree with root in Qk. The500

tree in the bottom corresponds to the tree after Algorithm CIO.501

In the final recursion of Recursive Seriation Algorithmwe obtain a unique connected com-502

ponent from Arc Partition , from which we construct a unique tree T such that @T = X .503

Here, the cyclic order of X implies that the subtrees T L and T R are consecutive. Hence, to ori-504

ent these trees we make a slight variation in the procedure Final Orientation (Algorithm FO).505

This is equivalent to consider the Q-node as a ring rather than as a list.506

5.3.6. External orientation of trees. Since for each T 2 T, the set @T corresponds to507

an arc and as a consequence of Lemma 5.14, dmin(T , T 0) is attained at some x 2 B(T ) and508

y 2 B(T 0) which are guaranteed to be borders of @T and @T 0, respectively. Therefore, we509

must arrange some of their internal nodes in a way that x and y lie at the borders. We propose510

the procedure External Orientation (Algorithm EO).511

An important observation is that in the tree T resulting from the first part of this procedure512

we have that T L = {x} (assuming for simplicity that x 2 BL(T )). In the second part we513

execute Algorithm CIO with input T . Since T L = {x} at the end the only Q-nodes remaining514

to be oriented are the ones present in T R. As an example, we consider the Q-trees in Figure 5.515

Let T be the tree in Figure 5a. In this example, T L is the subtree with root in Q1 and T R516

is the singleton {b0}. Suppose by computing dmin(T , T 0) for some other T 0 we get that dmin517

is attained at b2 2 BL(T ). In that case, we must fix T L following the algorithm. Since b2 is518

7This way, trees of same depth are compared in Algorithm CO (excluding comparisons with T L and T R).
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Algorithm FO Final Orientation

1: Input: A Q-tree T with root ↵.
2: Let T , {Ti}i2[k] be all subtrees of ↵ (including T L and T R)
3: if |T| > 2 then

4: for i 2 [k] do
5: Run Algorithm CO with input (Ti1, Ti, Ti+1), where T1 , T R and Tk , T L

6: end for

7: else

8: In this case we have that T = {T1, T2}
9: To orient the root of T1, run Algorithm CO with input (T R

2 , T1, T
L
2 ) {Notice that suffices

to orient the root of T1 to determine the orientation of both roots}
10: end if

11: Recursively repeat this process until all nodes are oriented
12: Result: All Q-nodes in T are oriented.

Q0

Q1

a1 . . . b1

. . . Qi1

ai1. . . bi1

Qi

ai . . . bi

Qi+1

ai+1. . . bi+1

. . . Qk

ak . . . bk

Q0

Q1

a1 . . . b1

. . . ai1 . . . bi1 bi . . . ai ai+1 . . . bi+1 . . . Qk

ak . . . bk

Figure 4: Example of a connected component of the nearest neighbours graph at the second re-
cursion of the Recursive Seriation Algorithmbefore and after Complete Internal Orientation .

Algorithm EO External Orientation

1: Input: Q-trees T and T 0. The set dargmin(T , T 0)
2: for (x, y) 2 dargmin(T , T 0) do
3: if x 2 BL(T ) then
4: Fix every Q-node in T L containing x as a descendant from the root until the Q-node

↵ where x lies in a way such that x is placed on the left
5: else if x 2 BR(T ) then
6: Fix every Q-node in T R containing x as a descendant from the root until the Q-node

↵ where x lies in a way such that x is placed on the right
7: end if

8: end for

9: Run Algorithm CIO with input T
10: Repeat the same procedure with T 0 and y
11: Result: Either all Q-nodes in T L (resp.T 0L) or T R (resp.T 0R) are oriented
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Q

Q1

Q2

Q3

a3 . . . b3

. . . . . . b2

. . . . . . b1

. . . . . . b0

(a) Step 1

Q

Q1

Q2

b2 . . . Q3

a3 . . . b3

. . . . . . b1

. . . . . . b0

(b) Step 2

Q

b2 . . . Q3

a3 . . . b3

. . . b1 . . . b0

(c) Step 3

Q

b2 . . . a3 . . . b3 . . . b1 . . . b0

(d) Step 4

Figure 5: External orientation

a left border in Q1, this node is correctly oriented. However, since b2 appears in the right of519

Q2, we must reverse Q2 as in Figure 5b. The resulting tree is the one in Figure 5c. Next, we520

perform a complete orientation and the resulting tree is the one in Figure 5d.521

Notice that excluding the running time of Algorithm CIO, the number of operations522

required for this procedure is bounded by O(depth(T L)).523

Observation 5.16. If T is a tree built at the k-th recursion of the algorithm, then clearly524

depth(T )  k. We claim that since after this process either T L or T R gets completely525

oriented, then it holds that |B(T )|  k+1. We prove this by induction on k. Notice that if T526

is composed by a single Q-node in the root, then |B(T )|  2. Now let T be a tree instantiated527

at the k-th recursion of the algorithm. W.l.o.g. assume T L gets completely oriented. Then528

B(T ) = B(T R) [ {x}. Hence, |B(T )| = |B(T R)|+ 1. The claim follows by inducting on T R.529

5.4. Analysis of the Recursive Seriation Algorithm.530

Theorem 5.17. Given D 2 pre-C⇤
R, let T be the PQ-tree obtained from the Recursive Seri-531

ation Algorithmwith input D. Let S(T ) the set of all ordering of X (permutations) represented532

by the tree. Then, SC⇤

R
(D) = Dihn S(T ), i.e. it solves the strict circular seriation problem.533

Proof Sketch. For simplicity, suppose in the Recursive Seriation Algorithmwe omit the534

orientation steps and leave them to the end of the process. This does not a↵ect the set of535

solutions but may increase the time complexity. Denote T pre and T the trees before and after536

orientation, respectively. Also let Tk the family of trees instantiated at the k-th recursive step.537

Notice that by Lemma 5.13, evaluating dmin over Tk yields a dissimilarity matrix Dk 2 pre-C⇤
R538

(a (permuted) submatix of D). Due to Proposition 5.3, we have that SC⇤

R
(D) ⇢ Dihn S(T

pre)539

(at least all Robinson orderings are considered at this point). To complete the proof, it remains540

to show that in T all orientable Q-nodes originally in T pre had been correctly fixed. To see541

this notice that the orientation of each Q-node in T pre is tested either by Algorithm EO or542
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Algorithm CO. The correctness of Algorithm EO is due to Lemma 5.14. The correctness of543

Algorithm CO is due to Corollary 5.10.544

Theorem 5.18. The Recursive Seriation Algorithm runs in O(n2) time.545

Proof. We count the number of operations required by the procedure Algorithm CIO and546

Algorithm FO separately from the rest. At the i-th recursion let T(i) be the input Q-trees,547

let k(i) , |T(i)| and let b(i) = maxT 2T(i) |B(T )|. Then, by Observation 5.15, computing548

dmin, takes O(k(i)2 · b(i)2) operations. By Observation 5.16, the complexity of the procedure549

Algorithm EO takes O(k(i)2) operations. Computing GNN takes O(k(i)2) operations. The550

procedure Algorithm DFS takes O(k(i)) operations.551

On the other hand, notice that in each step of the recursion, every tree is merged to its552

nearest neighbour. This implies that k(i)  n
2i

and, therefore, the depth of the recursion553

is bounded by log2(n). Since by Observation 5.16 b(i)  i + 1 then, there is some con-554

stant C1 > 0 such that the the total number of operations of this procedure is bounded by555

C1
Plog2(n)

i=0



n
2i

2
(i+ 1)2 +



n
2i

2
+



n
2i



= O(n2).556

It remains to consider Algorithm CIO and Algorithm FO. In this procedures, all Q-nodes557

↵ are oriented through Algorithm CO with input (T1, T2, T3) where ↵ is the root of T2. To558

count the operations of this procedure we consider two cases. The first (and most common)559

case is when T1, T2 and T3 are trees instantiated at the same recursive step. In this case, if560

they where instantiated at the i-th recursion then by Observation 5.16 and Observation 5.11561

the orientation takes O((i+ 1) · n) operations.562

By counting on the recursion where each node was instantiated, the total number of563

operations involving first case Q-nodes can be bounded by C2 ·
Plog2(n)

i=0



n
2i



(i+1) ·n = O(n2).564

A second case to consider is during the complete orientation of a connected component. Let565

T be a tree generated from a connected component of the nearest-neighbours graph at the i-th566

recursion of the algorithm. Then, in Algorithm CIO (or Algorithm FO) with input T , some of567

the internal Q-nodes will be oriented by having as border candidates B(T L) and B(T R). Since568

depth(T )  i, this can occur for B(T L) (resp. B(T R)) for at most i internal Q-nodes of T . If569

C(i) be the number of connected component found in the i-th recursion, then the number of570

second caseQ-nodes is at most C(i)·i·2. Since by Observation 5.16, |B(T L)|  i and |B(T R)| 571

i, the number of operations required for orienting all this nodes is bounded by O(C(i) · i2 ·n).572

Again, by counting through the recursion levels and considering that C(i)  n/2i, the total573

cost of orienting second case Q-nodes is bounded by C3 ·
Plog2(n)

i=0



n
2i



· i2 · n = O(n2), which574

proves the result.575

5.5. PQ-tree of solutions in the strict Robinson case. It is clear that if a sequence is576

strictly monotone the only permutation that preserves this property is the one that reverses577

the sequence. Therefore if D 2 L⇤
R, we have that SL⇤

R
(D) = {e, r} ⇠= Dih1. However, it is not578

immediately clear which permutations are the ones that preserve the strict unimodality. The579

next Lemma will let us conclude that there is at most one non trivial ordering for D 2 C⇤
R.580

Lemma 5.19. Let D 2 C⇤
R and let I1, . . . Ik be disjoint arcs of [n]. Let Ii be the permuta-581

tion that reverses Ii. Then, at most one of the Ii’s produces a new Robinson ordering.582

Proof. Suppose I is a Robinson ordering for some arc I. For every i 2 [n], let M(i) =583

argmaxj D(i, j). We claim that for every i /2 I it holds that M(i) ⇢ I. Otherwise, given584
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m⇤ 2 M(i), by the connectivity of I, we must have that I must be strictly contained in one of585

the two paths connecting i and m⇤. Also notice that D(i, ·) is strictly monotone in such path.586

Hence, reversing I would violate the monotonicity of such sequence (an thus the unimodality587

of the whole sequence). This proves the claim. Since Ic is an arc, by the same argument we588

have that i 2 I implies M(i) ⇢ Ic. Hence, the only arcs that can be reversed are I and Ic.589

6. Behavior for large n. The literature on the seriation problem has mostly focused on590

finite ordered sets, either linearly or cyclically ordered, on suitable classes of matrices encoding591

properties of this order, such as Robinson matrices, and on efficient algorithms for its solution.592

However, typically the use of seriation algorithms is motivated by the interpretation of data593

as embedded in a closed curve, and it is unclear how these combinatorial solutions relate to594

the underlying order of a continuous object.595

To bridge this gap, we provide a simple generative model of sampling from a continuous596

and periodic structure. That sample, and more specifically the dissimilarities between pairs597

of points from the sample, will be the input of our strict seriation algorithm. The question we598

want to answer is: To which extent the solution obtained by the seriation algorithm applied599

to a random sample reflects the underlying ordering of the periodic structure? We will answer600

this question by proving that as the sample size n grows, the expected Kendall-tau distance601

from the strict circular seriation algorithm solution to the order inherited from the continuous602

model decreases at a rate O(log(n)/n).603

6.1. Reduction to S1. We will consider our periodic continuous structure as parameter-604

ized by the unit circle. Equivalently, we will use the set [0, 1) as the set of points, where we605

topologically identify 0 and 1, making it a circular-like structure. This set is endowed with606

the natural cyclic order, which results from embedding [0, 1) into S1. We assume the set [0, 1)607

is endowed with a dissimilarity d. We will make some assumptions that relate the circular608

ordering to the circular Robinson property.609

Assumption 6.1. d is continuous, and strict circular Robinson, i.e.,610

(6.1) 8 cyclically ordered x, y, z, w 2 [0, 1) : d(y, w) > min{d(y, x),d(y, z)}.611

One natural question is how general this continuous model is. We claim that the assump-612

tion that our sample space is the unit circle is without loss of generality. For example, if the613

sample space is a one dimensional compact manifold of Rd, we can parameterize the manifold614

by its arc-length  : [0, 1) 7! Rd, and let d(t, s) := k(t) (s)k, which is clearly continuous.615

Notice however that the validity of the strict circular Robinson property is not guaranteed in616

this example: such assumption depends on the relative positions of points in space.617

6.2. Solutions in the limit. To understand the set of solutions in the limit we first need618

to characterize the natural symmetries of the strict Robinson dissimilarity d. To do so, we619

consider the family of cyclic shifts {⇡s : s 2 [0, 1)} defined by ⇡s(t) = t + s mod 1, and620

the reversal ⇡r(t) = 1  t. We let Dih1 := h⇡s,⇡r : s 2 [0, 1)i. In addition, given an arc621

I := (t, s) ( [0, 1), we let I be the bijection that reverses I and fixes Ic. Since in the finite622

case all solutions can be expressed as compositions of such permutations, in the continuous623

case we look for solutions in Sym(1) , Dih1 hI : I arci.624
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Theorem 6.2. Suppose d satisfies Assumption 6.1, and let ⇡ 2 Sym(1). If d  ⇡ is strict625

circular Robinson then ⇡ 2 Dih1 .626

This result can be seen as a well-posedness statement of the seriation problem in the627

continuous limit. Our next goal is to study its consequences for large (but finite) sample size.628

6.3. Approximate well-posedness of seriation in the large n regime. We now propose629

a sampling model from the continuous model. We uniformly at random extract a size n630

sample from [0, 1). We denote this sample by Xn := {x0, . . . , xn1}. If we let  be the631

Lebesgue measure on [0, 1), then our sampling is distributed as n. Let DXn denote the632

dissimilarity matrix associated to Xn. In particular, if x0, . . . , xn1 are cyclically ordered,633

then the dissimilarity matrix is strict circular Robinson (cf. Assumption 6.1).634

Despite that in the continuous case there is a unique Robinson ordering, with finitely635

many samples there might exists non-trivial orderings (cf. Lemma 5.19). In what follows we636

study conditions under which for a large sample, any ordering in SC⇤

R
(DXn) is close to the one637

induced by the curve. Our closeness measure is given by the Kendall-tau’s metric ⌧K and the638

goal is to bound the expected value of the diameter of the set of solutions:639

Definition 6.3 (Kendall-tau’s metric [13, 18]). We define the Kendall-tau distance between

permutations ⇡1 and ⇡2 as ⌧K (⇡1,⇡2) , |G (⇡1,⇡2) |/


n
2



, where G (⇡1,⇡2) corresponds to the
set of discordant pairs defined as

G (⇡1,⇡2) , {(i, j) : i < j, [⇡1(i) < ⇡1(j) ^ ⇡2(i) > ⇡2(j)] _ [⇡1(i) > ⇡1(j) ^ ⇡2(i) < ⇡2(j)]} .

The denominator


n
2



ensures that ⌧K (⇡1,⇡2) 2 [0, 1]. The next definition of diameter takes640

into account that for seriation cyclic permutations provide the same ordering.641

Definition 6.4. Given a set S ⇢ Sym(n), the diameter of the S is defined as diam(S) ,642

max⇡1,⇡22S min⇡̂12Dihn ⇡1
⌧K(⇡̂1,⇡2).643

Let Arc : [0, 1)⇥ [0, 1) ! [0, 12 ] be the length of the shortest arc connecting two points in644

the unit circle, i.e. Arc(✓1, ✓2) = min{|✓1  ✓2|, 1 |✓1  ✓2|}. To prove rates on the Kendall-645

tau distance we make a final assumption. This condition allows us to avoid making overly646

restrictive metric assumptions on the dissimilarity, but still enjoying a weaker form of distance.647

Assumption 6.5. The dissimilarity d satisfies the following bi-Lipschitz property:648

(6.2) (9L  ` > 0)(8s, t 2 [0, 1)) ` ·Arc(s, t)  d(s, t)  L ·Arc(s, t).649

We conclude this Section by providing a rate on the expected Kendall-tau diameter of the650

set of solutions of the circular Robinson algorithm. Hence, all these solutions must be close651

to the underlying order of the continuous model. Its proof is deferred to Appendix A.4.652

Theorem 6.6. Let Xn = {x0, x1, . . . xn1}
iid
⇠ Unif[0, 1). Then given any d satisfying As-653

sumption 6.1 and Assumption 6.5 we have that654

(6.3) EXn

h

diam(SC⇤

R
(DXn))

i

= O
⇣(L+ `)

`
·
log(n)

n

⌘

.655
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Appendix A. Proofs.656

A.1. Proof of Proposition 3.7. We need two auxiliary results first.657

Proposition A.1. f is unimodal (resp. strictly unimodal) if and only if for i  j  k we658

have fj  min{fi, fk} (resp. fj > min{fi, fk}).659

Proof. Suppose f is unimodal, let m be a mode, and suppose there are i, j, k, not all equal,660

such that i  j  k and xj < min{xi, xk}. Then xi > xj and xj < xk. This implies m  j661

and m  j. Hence m = j. This is a contradiction. Now, suppose f satisfies the inequality662

but has no mode. Then j is not a mode, and there is i < j and k > j such that fi > fj and663

fk > fj . This is a contradiction. The proof for the strictly unimodal case follows from the664

same arguments.665

Proposition A.2. If (i1, i0, i1), (i0, i1, i2) 2 Cn then for each k 2 {1, 1, 2} there is qk 2 [n]666

such that ik = i0 + qk mod n. Furthermore, q1  q2  q1.667

Proof. Consider qk = ik  i0 mod n. Then q0 = 0. Since cyclic shifts do not change cyclic668

orderings, this implies q1  q2  q1. This proves the proposition.669

Proof of Proposition 3.7. For simplicity we define dij , D(i, i + j mod n). (2 ) 1)670

From Proposition A.2 we can write i = j + qi, k = j + qk and ` = j + q` with qk  q`  qi.671

Since dj is unimodal, from Proposition A.1 we deduce djq`  min{djqk , d
j
qi}. (1 ) 2) If dj is not672

unimodal, by Proposition A.1 there are qk  q`  qi with djq` < djqk and djq` < djqi . If we define673

i = j + qi mod n, k = j + qk mod n and ` = j + q` mod n we see that (i, j, k), (j, k, `) 2 Cn.674

This contradicts 1.675

A.2. Proofs for Section 5.676

Proof of Lemma 5.9. Let z 2 X and denote fz(·) , d(z, ·). First, notice that677

(9r > 0).{a, a0} ⇢ Br(z) ^ {b, b0} ⇢ Br(z)
c

, max{fz(a), fz(a
0)} < min{fz(b), fz(b

0)}.
(A.1)678

(1. ) 2.) By (A.1), this implication is direct from the fact that a 2 A, b 2 B, a0 2 A0 and679

b0 2 B0. (2.) 1.) Let r , max{fz(x), fz(x
0)}, thus {x, x0} ⇢ Br(z) and {y, y0} ⇢ Br(z)

c.680

By Proposition 3.4 this ball is an arc, and therefore is connected in any Robinson ordering.681

This implies that all elements in between x and x0 (in all Robinson orderings), including a682

and a0 must also be present in Br(z). Similarly, all elements in between y and y0, including683

b and b0 must not be present in Br(z). The implication follows from (A.1). (3.) 2.) Direct.684

(2.) 3.) Notice that given any z 2 X and any t > 0 we have that if there is some a 2 A685

and a0 2 A0 such that max{fz(a), fz(a
0)} < t. Then, fz(a) < t ^ fz(a

0) < t. Which implies686

max{min fz(A),min fz(A
0)} < t. Similarly, the existence of b 2 B and b0 2 B0 such that687

min{fz(b), fz(b
0)} > t implies that min{max fz(B),max fz(B

0)} > t. This proves the final688

implication, and hence the result.689

Proof of Lemma 5.13. Let xd 2 Bd and xb 2 Bb be such that Dmin(Bb, Bd) = D(xb, xd),690

and let xc 2 Bc, xa 2 Ba be arbitrary. We notice that xa, xb, xc, xd is cyclically ordered, hence691

Dmin(Bb, Bd) = D(xb, xd)  (>)min{D(xb, xa), D(xb, xc)}.692
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On the other hand,693

min{D(xb, xa), D(xb, xc)}  min{Dmin(Bb, Ba), D
min(Bb, Bc)}694

by definition of Dmin, proving the result.695

A.3. Proof of Theorem 6.2.696

Proof. Suppose by contradiction that there exist an arc I = [a, b) such that dI is strict697

Robinson. For ✏ > 0 small, a ✏, a, b, b+ ✏ are cyclically ordered. By hypothesis,698

(A.2) d((a),(b+ ✏)) > min{d((a),(a ✏)),d((a),(b))},699

and since b + ✏, a  ✏ /2 I, we get that (a  ✏) = a  ✏ and (b + ✏) = b + ✏. On the other700

hand, (a) = b and (b) = a. Therefore, we can rewrite (A.2) as701

(A.3) d(b, b+ ✏) > min{d(b, a ✏),d(b, a)}.702

Let  := d(b, a) > 0. By continuity we get that d((a)),(b+ ✏)) ! 0 and d(b, a ✏) !  as703

✏ ! 0. For sufficiently small ✏, this is a contradiction with (A.3).704

A.4. Proof of Theorem 6.6. Given x0, . . . , xn1 2 [0, 1), the order statistics correspond705

to the variables x(1), x(2), . . . , x(k) obtained by sorting the samples by increasing order. The706

gaps of the sample correspond to the variables wi , x(i+1)  x(i). Let ✏n , maxi2[n]wi. The707

following result can be found in [21, Theorem 1.2].708

Proposition A.3. Suppose x0, x1, . . . xn1
iid
⇠ Unif[0, 1). Then,

P(✏n  z) 
n+1
X

j=1

(1)j1

✓

n+ 1

j

◆

(1 jz)n+

Proposition A.4. Given any I = [xi, xj ], we write µ(I) to denote Arc(xi, xj). Suppose that709

Assumption 6.1 and Assumption 6.5 hold. Then the inequality ✏n < `/(L + `) implies that710

any arc I ⇢ Xn such that µ(I) >  has a unique orientation in any circular Robinson ordering711

of DXn.712

Proof. Let s , x(i) and t , x(j) for some i < j. Let  2 (0, 12) and consider the arc I = [s, t]713

in Xn. Suppose ✏n < `/(L + `) and µ(I) > . Let s+ = x(i1 mod n) and t+ = x(j+1 mod n).714

We claim that Bs(d(s, s
+)) G⇤ I. To prove the claim, it suffices to prove that715

(A.4) d(s, s+) < min{d(s, t),d(s, t+)}.716

First, notice that d(s, s+)  L · ✏n. Second, notice that since Arc(s, t) > , then

d(s, t+)  ` ·Arc(s, t+)  ` · (Arc(s, t) ✏n)  ` · (  ✏n),

and therefore min{d(s, t),d(s, t+)}  ` · (  ✏n). Joining this two results with the fact717

that ✏n < `/(L+ `) a proves the claim.718
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Lemma A.5. Let n  log(1/)/, and let x0, x1, . . . xn1
iid
⇠ Unif[0, 1). Let En() = {✏n <

`/(L+ `)}, then

Z

En()
diamSC⇤

R
(DXn(!)) d

n(!) = O
⇣

2 +
 log(1/)

n

⌘

.

Proof. Recall from Lemma 5.19 that there is at most one non-trivial ordering I of DXn719

which corresponds to the permutation that reverses the arc I \ Xn. Therefore, it suffices to720

bound the integral of the random variable ⌧K(id,⇤), where ⇤ 2 argmin2{⇡rI ,I} ⌧K(id,).721

The number of discordant pairs between ⇤ and id is bounded by 1
2 min{|I \Xn|, n |I \722

Xn|}
2. Therefore, we will focus in bounding this expression. Let ! 2 En(). By Proposi-723

tion A.4, µ(I(!))  . This implies that either (I)   or (I)  1 . Which leads to the724

bound725
726

Z

En()
min{|I \ Xn|, n |I \ Xn|}

2 dn(!)727



Z

En()
max

J interval, (J )

|J \ Xn|
2 dn(!) 

Z

⌦

max
J interval, (J )

|J \ Xn|
2 dn(!).728

729

We bound the random variable inside the integral using a balls and bins argument. W.l.o.g.730

1/ is an integer. Let (Ji)i2[1/] be a partition of [0, 1) by disjoint intervals of length . For731

any ! 2 ⌦, the maximizer in the integral above lies in at most two of the partition intervals.732

Therefore, max(J ) |J \Xn|  2maxi2[n] |Ji\Xn|. Next, we can estimate maxi2[n] |Ji\Xn|733

by looking into the problem of throwing n balls into 1/ bins (see [24] for further details); since734

we further assumed that n  1/ log(1/), then w.h.p., the maximum occupancy is bounded735

by n +⇥(
p

n log(1/)). Plugging this bound above yields the result.736

Proof of Theorem 6.6. Let En() denote the event {✏n < `/(L+ `)}. Denote the random737

variable Z = diam(SC⇤

R
(DXn)). Then,738

(A.5) E [Z] =
R

En()
Z(!)d(!) +

R

En()c
Z(!)d(!)  O

⇣

2 +  log(1/)
n

⌘

+ P [En()
c] ,739

where in the inequality we used Lemma A.5 and ⌧K  1. By Proposition A.3 we have740

(A.6) P [En()
c] 

Pn+1
j=1 (1)j1



n+1
j



(1 jx)n+ 
Pn+1

j=1

⇣

e(n+1)
j

⌘j
exp{xjn},741

where x = `/(L+`). By taking (n) = (L+`)·log(e(n+1)2)/(n·`) we obtain that (A.6) can be742

bounded by
Pn+1

j=1
1

(n+1)j
2 O(1/n). By (A.5) and (A.6) we conclude that E[Z] = O(L+`

`
logn
n ).743
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Appendix B. Auxiliary subroutines.

Algorithm AP Arc Partition

1: Input: A dissimilarity d and a set T
2: NG(x) , {y 2 T : x 2 NN(y) _ y 2 NN(x)} {Compute the neighbourhood function}
3: B , {x 2 T : |NG(x)| = 1}

{Find all degree 1 nodes (if there are no such nodes pick any)}
4: i = 0 {Run DFS starting at every non visited degree 1 node}
5: for x 2 B \ [j<i↵i do

6: ↵i = DFS(NG, ;, x)
7: i = i+ 1
8: end for

9: Output: An arc partition stored into tuples P , {↵i}i2[k]

744

Algorithm DFS Depth-First Search

1: Input: The neighbourhood function of a graph NG(·), a tuple ↵ of visited nodes and a
starting node x

2: ↵(n) = x {Set x as n-th visited node where n is the size of ↵}
3: for y 2 NG(x) \ ↵ do

4: ↵ = DFS(NG,↵, y) {Recurse over all adjacent nodes that have not been visited}
5: end for

6: return ↵

7: Output: A tuple of visited nodes ↵
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