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RESUMEN 
 

El desarrollo de sondeos sinópticos del cielo en los últimos años ha generado cantidades 
masivas de datos. Su análisis requiere por lo tanto recursos que superan las capacidades 
humanas. Por esta razón, las técnicas de aprendizaje de máquina se han vuelto esenciales 
para procesar esta información y extraer todo el conocimiento posible. En este trabajo se 
presenta una nueva metodología automática para descubrir objetos anómalos en grandes 
catálogos astronómicos.  
 
De manera de aprovechar toda la información que se tiene de estos objetos, el método 
propuesto se basa en un algoritmo supervisado. En particular, se entrena un clasificador 
random forest con objetos de clases conocidas y se obtienen los votos de clasificación 
para cada uno de ellos. En una segunda instancia, se modela la repartición de estos votos 
con una red de Bayes consiguiendo así su distribución conjunta. La idea tras de esto es 
que un objeto desconocido podrá ser detectado como anomalía en la medida que sus 
votos de clasificación tengan una baja probabilidad conjunta bajo este modelo.  
 
Nuestro método es apropiado para explorar bases de datos masivas dado que el proceso 
de entrenamiento se realiza de forma offline. Testeamos nuestro algoritmo en 20 
millones de curvas de luz del catálogo MACHO y generamos una lista de candidatos 
anómalos. Luego de realizar un análisis, los dividimos en dos clases principales de 
anomalías: artefactos y anomalías intrínsecas. Los artefactos se deben principalmente a 
variaciones de la masa de aire, cambios estacionales, mala calibración o errores 
instrumentales y fueron por lo tanto removidos de la lista de anomalías y agregados al 
set de entrenamiento. Después de re-entrenar y ejecutar nuevamente el modelo llevamos 
a cabo una fase de post-análisis consistente en buscar información de los candidatos en 
todos los catálogos públicos disponibles. Dentro de nuestra lista identificamos ciertos 
objetos escasos pero conocidos tales como estrellas Cefeidas, variables azules, variables 
cataclísmicas y fuentes de rayos X. Sin embargo, para ciertas anomalías no se encontró 
información adicional. Fuimos capaces de agrupar algunas de estas en nuevas clases 
variables. No obstante, otras, que emergieron como únicas en su comportamiento, 
tendrán que ser examinadas por telescopios de manera de realizar un análisis en 
profundidad.    
 
 
 
 
 
 
 
 
 
 

x 
                          



  

ABSTRACT 
 

The development of synoptic sky surveys has led to a massive amount of data for which 
resources needed for analysis are beyond human capabilities. In order to process this 
information and to extract all possible knowledge, machine learning techniques become 
necessary. Here we present a new methodology to automatically discover unknown 
variable objects in large astronomical catalogs.  
 
With the aim of taking full advantage of all information we have about known objects, 
our method is based on a supervised algorithm. In particular, we train a random forest 
classifier using known variability classes of objects and obtain votes for each of the 
objects in the training set. We then model this voting distribution with a Bayesian 
network and obtain the joint voting distribution among the training objects. 
Consequently, an unknown object is considered as an outlier insofar it has a low joint 
probability.  
 
Our method is suitable for exploring massive datasets given that the training process is 
performed offline. We tested our algorithm on 20 million light-curves from the MACHO 
catalog and generated a list of anomalous candidates. After analysis, we divided the 
candidates into two main classes of outliers: artifacts and intrinsic outliers. Artifacts 
were principally due to air mass variation, seasonal variation, bad calibration or 
instrumental errors and were consequently removed from our outlier list and added to 
the training set. After retraining and rerunning the model, we continued with a post 
analysis stage by preforming a cross-match with all publicly available catalogs. Within 
these candidates we identified certain known but rare objects such as eclipsing Cepheids, 
blue variables, cataclysmic variables and X-ray sources. For some outliers there was no 
additional information. Among them we identified three unknown variability types and 
few individual outliers that will be followed up in order to do a deeper analysis. 
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1. INTRODUCTION

1.1. Data revolution

The evolution of techniques and advances in technology that have taken place in the

past few decades have led to a massive amount of information far beyond the reach of

available data management tools. In fact, 90% of the data available today have been col-

lected in the last two years; in 2012, 2.5 exabytes of information were gathered daily∗.

Even though this phenomenon is one of the greatest achievements of humanity it is also a

double-edged sword. We must now face the challenges of storage, transfer, visualization,

analysis, searching and sharing. Furthermore, this is not only affecting computer scientists,

but also economists, mathematicians, astronomers, biologists and scientist in almost every

area that is data driven. This has also affected the way science is conducted. In the past,

the scientist identified a problem, formulated a hypothesis and then collected data in order

to prove or reject the hypothesis. Today, data recollection has become the first step of the

process and it is the scientist’s job to ask the right questions in order to take the maximum

advantage of this massive amount of data.

The need to develop the right tools for analyzing this information is consequently one

of the biggest tasks we face today. It is our job as scientists to face the new age we are

entering in: the big data era.

∗http://www.ibm.com/big-data/us/en/
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1.2. Big data era in astronomy

An astronomical survey comprises a set of images or spectra of objects taken of a

particular region of the sky for a certain period of time. These objects are monitored and

observed by powerful telescopes, with diameters up to 10 meters and large field of views

(e.g. Pan-STARRS’ field of view is 7 square-degrees). Figure 1.1 shows one image ob-

tained with a 2.5 meters telescope from the Sloan Digital Sky Survey (SDSS) .

FIGURE 1.1. SDSS image of the Whirlpool galaxy (York et al., 2000)

Over the past few decades the development of better and more precise telescopes, CCD

technology and computers has led to the proliferation of large astronomical surveys. Some
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of the most important surveys include MACHO (Alcock, Allsman, Alves, Axelrod, Ben-

nett, et al., 1997), EROS (Ansari, 2004), OGLE (Udalski et al., 1997), Pan-Starrs (Hodapp

et al., 2004), SDSS (York et al., 2000) and future surveys LSST (Tyson et al., 2002) and

SKA (Schaubert et al., 2003). These observations result not only in valuable information

but also in an immense amount of data (going up to 150 PetaBytes) to be stored and pro-

cessed: astronomy must also face the challenges of the big data era. Indeed, astronomers

traditional data analysis is insufficient to deal with the data while performing the analysis by

visual inspection is becoming unrealistic. Consequently, the idea of developing automatic

and robust methods based on machine learning and statistics is growing strength.

After the observations are completed, an exhaustive analytical stage becomes neces-

sary in order to study the information obtained. In this context, a scientific field has been

created, known as “time domain astronomy” (TDA). Its aim is to the study and analyze

astronomical objects that change over time, such as pulsating variable stars, cataclysmic

and eruptive variables, quasi-stellar objects and gravitational microlensing, among others

(Percy, 2007). These analyses comprises mainly characterization, classification and nov-

elty detection of these stellar objects and events.

To perform the aforementioned, the measurements obtained from the telescopes, namely

the electromagnetic radiation from astronomical objects, must be converted into manage-

able information. These raw data are consequently processed by several methods and tech-

niques (Wall & Jenkins, 2012) in order to transform them into standard units of flux or

intensity. The result of this conversion is a set of time series, called light-curves, for every

object in the database. A light-curve is then a plot of the magnitude of brightness of a star

3



as a function of time (usually measured in Julian dates). It is worth noting that the y-axis

is plotted in descending order of magnitude. This is because magnitude is inversely pro-

portional to the brightness of the observation. In other words the higher the magnitude of a

star, the fainter it looks on the sky (Percy, 2007). An example of a light-curve is shown in

figure 1.2.
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FIGURE 1.2. Light-curve example from the MACHO catalog.

1.3. Contribution of this thesis

Several important discoveries in astronomy have happened serendipitously while as-

tronomers were examining other effects. For example, William Herschel discovered Uranus

on March 13 1781(Herschel, 1857) while surveying bright stars and nearby faint stars. Sim-

ilarly, Giuseppe Piazzi found the first asteroid, Ceres, on January 1 1801 (Serio et al., 2002)

while compiling a catalog of stars positions. Equally unexpected, was the discovery of the
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cosmic microwave background radiation (CMB) in 1965 by Arno Penzias and Robert Wil-

son, while testing Bell Labs horn antenna (Penzias & Wilson, 1965).

With the proliferation of data in astronomy and the introduction of automatic methods

for classification and characterization, the keen astronomer has been progressively removed

from the analysis. Anomalous objects or mechanisms that do not fit the norm are now

expected to be discovered systematically: serendipity is now a machine learning task. As

a consequence, the astronomer’s job is not to be behind the telescope anymore, but to be

capable of selecting and making the interpretation of the increasing amount of data that

technology is providing.

Outlier detection, as presented here, can guide the scientist on identifying unusual, rare

or unknown types of astronomical objects or phenomena (e.g. high redshift quasars, brown

dwarfs, pulsars and so on). These discoveries might be useful not only to provide new in-

formation but to outline observations, which might require further and deeper investigation.

In particular, our research detects anomalies in photometric time series data (light-curves).

For this work, each light-curve is described by 13 variability characteristics (period, ampli-

tude, color, etc.) termed features (Kim et al., 2011; Pichara et al., 2012), which have been

used for classification. It is worth noting that the method developed in this thesis is not

only applicable to time-series data but could also be used for any type of data that need to

be inspected for anomalies. In addition to this advantage, the fact that it can be applied to

big data, makes this algorithm suitable for almost any outlier detection problem.
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Many outlier detection methods have been proposed in astronomy. Most of them are

unsupervised techniques, where the assumption is made that there is no information about

the set of light-curves or their types (Xiong et al., 2010). One of these approaches con-

siders a point-by-point comparison of every pair of light-curves in the data base by using

correlation coefficient (Protopapas et al., 2006). Other techniques search for anomalies in

lower-dimensional subspaces of the data in order to deal with the massive number of ob-

jects or the large quantity of features that describe them (Henrion et al., 2013; Xiong et al.,

2010). Clustering methods are equally applied in the astronomical outlier detection area

aiming to find clusters of new variability classes (Bhattacharyya et al., 2012; Rebbapra-

gada et al., 2008). Unfortunately, these methods either scale poorly with massive data sets

and with high dimensional spaces or partially explore the data therefore missing possible

outliers.

In this thesis we face these constraints by creating an algorithm able to efficiently deal

with big data and capable of exploring the data space as exhaustively as possible. Fur-

thermore, we address this matter from a different point of view as the one presented by

He & Carbonell (2006) as “the new-class discovery challenge”. Contrary to unsupervised

methods, it relays on using labeled examples for each known class in the training set, and

unlike supervised methods, we assume the existence of some rare classes in the data set for

which we do not have any labeled examples. This approach takes advantage of available

information but it does not restrict the anomalous findings to a certain type of light-curves.

Furthermore, in unsupervised anomaly detection methods, in which no prior information is

available about the abnormalities in the data, anything that differs from the whole dataset

6



is flagged as an outlier and consequently many of the anomalies found would simply be

noise. In contrast to these techniques, supervised methods incorporate specific knowledge

into the outlier analysis process, thus obtaining more meaningful anomalies. This is illus-

trated in Figure. 1.3. The blue and green points represent instances in a two dimensional

feature space from known class 1 and class 2 respectively. The shaded areas represent the

boundaries learned from a classifier. The grey points represent isolated outliers and the red

points represent outlier classes. In most unsupervised methods the red points in the middle

will not be considered as outliers because they are in a region with point density that is

not separable. In the naivest supervised methods, anything that is outside the boundaries

is considered as an outlier. For the example of the outlier class in the middle, the product

of the probabilities, or the sum of the distances to the known classes, may not be adequate

as an outlier score, and therefore the joint probability is a better measure for outliers. This

case occurs when the conditional probability is lower than the marginal probability as it

can be seen from this simple illustration. The conditional probability shown on the left is

smaller than the marginal probability shown on the right. Our model will consider those

objects as outliers.

In the first stage of our method we build a classifier that is trained with known classes

(every known object is represented by its features and a label). We then use the classifier

decision mechanism to our advantage. More precisely, we learn a probability distribution

for the classifier votes on the training set in order to model the behavior of the classifier

when the objects correspond to a known variability class. The intuition behind this method

is to recognize, and thus to learn, the way the classifier is confused when it comes to voting.
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FIGURE 1.3. Simple illustration of the method.

By confusion, we refer not only to the hesitation between two or more classes for an object

label, but also to the weights it assigns to each of these possibilities.

Therefore, when an unlabeled light-curve is fed into the model, the classifier attempts

to label it and, if this classifying behavior is known by the model, the object will have a

high probability of occurrence and consequently a low outlierness score. On the contrary,

the object will have a higher anomaly score and will be flagged as an outlier candidate

insofar as the classifier operates in a different way from the previously known mechanisms.

Once our outlier candidates are selected, an iterative post-analysis stage becomes nec-

essary. By visual inspection we discriminate artifacts from true anomalies and a) we re-

move them systematically from our data set and b) create classes of spurious objects that

we add to our training set. We then re-run the algorithm and obtain new candidates. These

steps are repeated until obtaining no apparent artifacts in our outlier list and a clustering

method is finally executed. The purpose of this phase is to group similar objects in new

8



variability classes and consequently to give them an astronomical interpretation. Finally

we cross-match the most interesting outliers with all publicly available catalogs with the

aim of verifying if there is any additional information about them. In particular we are

interested in knowing if they belong to a known class. In the negative case, the outliers will

be followed up using spectroscopy to deeply analyze their identity and behavior.

To achieve this, we use random forest (RF) (Breiman, 2001) for the supervised classi-

fication in order to obtain the labeling mechanism for each class on the training set. RF has

been extensively and successfully used in astronomy for catalogation (Pichara & Protopa-

pas, 2013; Kim et al., 2014). Starting with the RF output, we construct a Bayesian Network

(BN) with the purpose of extracting the classifications patterns which we use for our final

score of outlier detection.

1.4. Overview of this Thesis

This thesis is based on the paper Supervised detection of anomalous light-curves in

massive astronomical catalogs by the authors Isadora Nun, Karim Pichara, Pavlos Pro-

topapas and Dae-Won Kim that was submitted to The Astrophysical Journal on March,

2014 and it is now in the review process (Nun et al., 2014).

The thesis is organized as follows: In section 2 we detail the background theory in-

cluding the basic blocks of RF and BN. Section 3 is devoted to methods related to anomaly

detections in machine learning and astronomy. Our approach and the pipeline followed in

this thesis are shown in section 4. Section 5 contains the information about the data used in

this work and presents the results of the performed tests and the experiments with real data,

9



including re-training, elimination of artifacts and the post analysis process. Conclusions

follow in section 6.
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2. BACKGROUND

2.1. Astronomical background

In the following section we present some of the objects and phenomena that can be

detected through sky surveys. In particular we focus on objects that have brightness fluc-

tuations over time and therefore vary in the optical spectrum. This astronomical area is the

main scope of this thesis.

2.1.1. Variable Stars

An important field of contemporary astronomy is the study of variable stars. Studying

the variability of those objects provide astronomers with additional parameters such as

time scales and amplitudes . These parameters can be useful not only to infer physical

characteristics of the stars such as radius, mass and luminosity, but also to study stellar

evolution and the distribution and size of our Universe (Percy, 2007; Huijse et al., 2014).

Variable stars can be divided into two main classes depending on the phenomena re-

sponsible of their brightness fluctuations. Intrinsic variable stars have internal physical

changes that explain these variations while extrinsic variable stars are those in which the

light output changes due to some process external to the star itself.

The tree diagram in figure 2.1 shows the classification of variable stars and a brief

description of each class is presented in table 2.1.
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FIGURE 2.1. Variable star topological classification as presented in Huijse et al. (2014)

(A) (B)

FIGURE 2.2. (a) Light curve of a pulsating variable star (upper left panel), such as
a Cepheid or RR Lyrae. The star pulsates periodically changing in size, temperature
and brightness which is reflected on its light curve. (b) Light curve of eclipsing
binary star (upper right panel). The lower panels show the geometry of the binary
system at the instants when the eclipses occur. The periodic pattern in the light
curve is observed because the Earth (X axis) is aligned with the orbital plane of the
system (Z axis) (Huijse et al., 2014)
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TABLE 2.1. Examples of variable stars as presented in Huijse et al. (2014)

Object name Variability Description
Cepheid Intrinsic Radially pulsating supergiant star. It expands and contract periodically

changing its size, temperature and brightness. The period ranges be-
tween 1 and 100 days. Fig. 2.2a shows a diagram of a pulsating vari-
able.

RR Lyrae Intrinsic Radially pulsating star. Older, with a lower mass, and less luminous
than Cepheids. The period ranges from 0.3 to 1.2 days.

Mira Intrinsic Pulsating red giant star. These variables are a thousand times brighter
than our sun and have periods longer that 80-days. The Miras and other
giant stars belong to the Long Period Variable (LPV) class.

Flare star Intrinsic Eruptive variable star. Material is violently ejected from their corona
(the most outer region of a star) in a non-periodic basis. The brightness
increases during this event.

Nova Intrinsic Cataclysmic binary star system with very close components. The hot-
ter component “steals” material from the cooler component which then
becomes the catalyst of the explosive reaction. The brightness of the
Novae increases in ∼10 orders of magnitude and then gradually returns
to its former brightness.

SuperNova Intrinsic The final explosion of a massive star. During this transient event, the
brightness of the system increases by ∼20 orders of magnitude. The
material ejected from the explosion forms a gas cloud (the basis from
which new stars will be formed) and the remnant of the star will evolve
into either a neutron star or a black hole depending on the its original
mass.

Eclipsing Binary Extrinsic Binary star system with orbital plane alligned with Earth. The mutual
eclipses appear as periodic brightness drops in the light curve. A dia-
gram showing the geometrical configuration of the system is shown in
Fig. 2.2b.

Pulsar Extrinsic Highly magnetized and dense neutron stars with fast rotational speeds.
Pulsars emit electromagnetic radiation with periods that range between
1ms and 10s. This emissions can be detected if the emission axis of the
pulsar is aligned with Earth.

2.1.2. Variable non-stellar phenomena

Besides variable stars, there are other phenomena known by their brightness fluctua-

tions. Table 2.2 summarizes some of them.
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TABLE 2.2. Examples of non-stellar variable sources as presented in Huijse et al. (2014)

Name Description
Gravitational lensing An increase of several orders of magnitude in the observed brightness

of a star due to a massive dark object passing in front of it and acting as
a lens. The dark object bends the light of the source. If the dark object
is of planetary size the effect is called microlensing.

Active Galatic Nuclei A compact region in the center of a galaxy characterized by their vari-
able, strong and broad electromagnetic emissions. The most studied
AGN is the quasar (quasi stellar radio sources). Quasars are one of the
most luminous objects in the sky and are characterized by their strong
stochastic variability across wavelengths and on timescales.

Transiting extrasolar planet Planet outside our solar system, orbiting a star different than our sun.
If the orbital plane of the exoplanet is aligned with the Earth, periodic
drops will appear in the light curve of its main star. Small planets may
induce a shallow minimum that needs to be discriminated against the
noise of the light curve.

2.2. Machine learning background

Machine learning is an area of artificial intelligence that provides computers with the

ability to learn and make predictions from the data without being explicitly programmed.

There are two basic types of algorithms in this field: supervised and unsupervised.

Our algorithm is based on known machine learning methods, namely RF and BN.

In this section we summarize the necessary background to understand how they perform.

Detailed explanations for each of these approaches can be found in Breiman (2001), Koller

& Friedman (2009) and Cooper & Herskovits (1992).

2.2.1. Supervised learning algorithms

In the supervised learning algorithm case, there is a labeled set of input-output pairs

(the training set) from which we infer or learn a general mapping from inputs x (the features

describing the object) to outputs y (the object label). For example, consider a set of input
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data of temperature measures from several days and a labeled output corresponding to each

day weather (rainy, cloudy and sunny). The training data is used to infer the values of

relevant parameters which are then utilized to make forecasts for a new data point (the test

set). Below, we summarize some of the basic supervised machine learning algorithms.

• Decision trees (Breiman et al., 1984): flowchart-like structure where each inter-

nal node denotes a test on an attribute, each branch corresponds to an outcome

of the test and each external node or leaf denotes a class prediction or a decision.

At each node, the algorithm chooses the “best” attribute by following a partic-

ular set of criteria (for example information gain) in order to partition the data

into individual classes. Figure 2.3 shows one example of such model proposed

in Quinlan (1986) for a problem that involves weather. To simplify the case it is

assumed that there are only two classes denoted P and N, referred to as positive

and negative instances, respectively.

FIGURE 2.3. Decision tree example. Only two classes denoted P and N are
considered, referred to as positive and negative instances, respectively. Retrieved
from http://www.cs.princeton.edu/courses/archive/spr07/cos424/papers/mitchell-
dectrees.pdf
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• Support vector machines (SVM) (Boser et al., 1992): two-class classification

model that defines a linear hyperplane or set of hyperplanes in a high dimen-

sional space that separate the data. Intuitively, a good separation is achieved by

the hyperplane that has the largest distance to the nearest training data point of

any class (known as margin), since in general a larger margin implies a lower

generalization error of the classifier. Figure 2.4 illustrates SVM algorithm.

FIGURE 2.4. Example of SVM: the hyperplane maxi-
mizes the margin of the training data. Retrieved from
http://docs.opencv.org/doc/tutorials/ml/introduction to svm/introduction to svm.html

• Artificial neural networks (ANN) (Rumelhart et al., 1988): model inspired by

the central nervous system. It is composed of interconnected units that serve

as “neurons” on a system with three basic elements. First, the synapses of the

biological neurons are modeled as weights and therefore they reflect the strength

of the connections. The following components of the model represent the actual

activity of the neuron cell: all weighted inputs are summed. This activity is
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referred to as a linear combination. Finally, an activation function normalizes

the amplitude of the output (between 0 and 1, or -1 and 1 for example). A

representation of this process is illustrated in figure 2.5.

FIGURE 2.5. ANN process: interconnected neurons, learning process for
updating the weights of the interconnections and activation function that
converts a neuron’s weighted input to its output activation. Retrieved from
http://www.durofy.com/machine-learning-introduction-to-the-artificial-neural-
network/

2.2.2. Unsupervised learning algorithms

In unsupervised learning algorithms in contrast, there is no labeled training set. A sim-

ple set of input data is available from which we wish to find interesting patterns. Clustering

algorithms (Hartigan, 1975) are the main methods of unsupervised learning since their aim

is to find meaningful groups of similar members without necessarily having any predefined

classes. A good clustering is achieved when the intra-cluster similarity is maximal (low

distances between objects of the same cluster) and the inter-cluster similarity is minimal

(high distances between objects of different clusters) as shown in figure 2.6. Some of the

clustering algorithms are:
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FIGURE 2.6. Example of clustering: each color represents a different cluster. Re-
trieved from http://scikit-learn.org/stable/auto examples/cluster/plot dbscan.html

• K-means (Hartigan & Wong, 1979): iterative method that aims to classify the

data into k different clusters (user specified parameter). The main idea is to de-

fine k centers points or centroids, one for each cluster. On the first iteration the

centroids are randomly selected and each point is assigned to its closest centroid

based on a distance metric. The new centroids are then recalculated as the mean

of all the points assigned to each cluster and the objects are reassigned. The iter-

ations continue until the assignment is stable: the clusters formed in the current

round are the same as those formed in the previous round.

• DBSCAN (Ester et al., 1996): method that finds objects with dense neighbor-

hoods, also known as core objects. A point density can be measured as the

number of instances close to it in a defined ε radius (user specified parameter).

The algorithm connects then core objects and their neighborhoods to form dense

regions as clusters. To determine if a neighborhood is dense, DBSCAN uses
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an other user-specified parameter, MinPts, which specifies the density thresh-

old of dense regions. Therefore, an object is considered as a core object if its

ε-neighborhood contains at least MinPts objects.

• EM-Gaussian mixture of models (Reynolds, 2009): soft clustering algorithm

where data points are assigned to k clusters with certain probabilities. The

method assumes that each cluster contains data generated from a Gaussian dis-

tribution with parameters (µj, σj) (the mean and standard deviation of each j

distribution) that need to be learned. For each data point, the probability of be-

longing to each cluster is not known (not observed) - called latent variables- thus

it also needs to be learned. The algorithm starts from some initial estimate of the

parameters (e.g., random), and then proceeds to iteratively update until conver-

gence is detected. The algorithm steps are the following: a) Randomly initialize

the Gaussian parameters and assume equal probability amongst classes b) E-

step: compute the probability of each data point of belonging to each cluster for

all data points and all clusters given the parameters at this iteration c) M-step:

recompute the parameters of each Gaussian.

2.2.3. Model selection

Generally, the first task in tackling any real world problem in machine learning is to

select a model. Even if the main interest of most of the problems is to obtain a particular

output variable, the choice of the relevant inputs to perform this inference can be highly

determinant. In addition, deciding how exactly the output variables are related to a given
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set of input variables, and how the latter are related to each other can be very tricky, and in

many cases may have multiple answers. Nevertheless, there is one principle to follow when

choosing the model. Occam’s razor, also known as the parsimony principle, establishes

that the best model is the simplest one that adequately describes the data. Oftentimes, it

is possible to find a more complex model that performs better when training, but then it

performs worse on the test set (out-of-sample), it will perform worse than a simpler model.

This problem is described by Dietterich (1995) as overfitting.

2.2.4. Model evaluation

Besides avoiding the overfitting obstacle, the modeling goal should be to minimize the

generalization rate: the expected value of misclassification rate when averaged over future

(test) data. In other words, it is the ability to perform accurately on new, unseen examples

or tasks after having experienced a training data set. Without having access to the future

data, the analysis of the misclassification rate (the percent of the training data misclassified

by the model) is used to calibrate the model for high future performance. However, due to

the overfitting problem, a model that minimizes the misclassification rate will not always

perform optimally out-of-sample. There are many approaches that are commonly used to

avoid this constraint. One popular example, used in this thesis, is the K-fold cross validation

technique. The idea is to divide the training data into k groups. The model is then trained

with k−1 groups and tested with the k-th one in a round robin fashion. Once this process in

performed, the model that minimizes the average prediction error from all groups is chosen.

Figure 2.7 shows a pictorial representation of this process.
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FIGURE 2.7. Cross validation for a 574 objects training set. The data is divided
into k groups. The model is then trained with k − 1 groups and tested with the
k-th one. The model that minimizes the average prediction error from all groups is
chosen. Retrieved from Ruiz et al. (2013)

It is worth noting that even in cases where it is known with certainty that the data is

truly high dimensional, there might be only several latent factors which describe most of the

output variability. Therefore complexity reduction could be achieved with minimal loss of

accuracy. Since more complex models are often associated with great computational costs,

it is generally useful to reduce dimensionality whenever is possible. Model exploration

and pre-processing is therefore always important and should always be performed before

making the inference.

2.2.5. Random forest

Random forest developed by Breiman (2001) is a very effective machine learning clas-

sification algorithm. The intuition behind this method is to train several decision trees using

labeled data (training set) and then use the resulting trained decisions trees to classify new
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unlabeled objects in a voting system. The main principle is to follow a divide-and-conquer

approach, each decision tree is trained with a random sample of the data and is conse-

quently considered as a “weak” classifier. Nevertheless, the ensemble of these decision

trees generates a robust or “strong” classifier that, based on the combinatorial power of its

construction, creates an accurate and effective model.

The process of training or building a RF model given some training data is as follows:

• Let R be the number of trees in the forest (a user defined parameter) and |F | be

the number of features describing the data.

• Build R sets (bags) of n samples taken with replacement from the training set

(bootstrap samples). Note that each of the R bags has the same number of el-

ements than the training set but some of the examples are selected more than

once, given that the samples are taken with replacement.

• For each of the R sets, train a decision tree using at each node a feature picked

from a random sample of |F ′| features (|F ′| is a model parameter where |F ′| �

|F |) that optimizes the split.

Each decision tree is created independently and randomly using two principles. First,

training each individual tree on different samples of the training set. Growing trees from

different samples of the training set, creates the expected diversity among the individual

classifiers. The second principle is the random feature selection, which means that only

a subset of randomly selected features is used while building each tree. This contributes

22



to the reduction of the dimensionality and has been shown to significantly improve the RF

accuracy (?Geurts et al., 2006).

2.2.6. Bayesian Networks

A Bayesian network is a directed acyclic graph (DAG), a particular probabilistic graph-

ical model that encodes local statistical dependencies among random variables. A BN is

defined by a set of nodes representing random variables V = {v1, . . . , vk} and a set of

edges ε = {ε1, . . . , εb} connecting the variables. One of the applications of BN is to esti-

mate joint probability density functions (PDF). This is done by assuming that the variables

in the PDF are the nodes in the BN and that the connections between the nodes determine

certain dependence relationships that simplify the joint distribution. More formally, if we

want to estimate the joint probability distribution P (v1, . . . , vk) and we have a BN describ-

ing connections between these variables, we can simplify it as:

P (v1, . . . , vk) =
k∏
i=1

P (vi|PaBN(vi)) (2.1)

where PaBN(vi) corresponds to the parents of the node vi in the BN. Note that the PDF

has been decomposed in a product of smaller factors (conditional probabilities).

The main challenges of learning a BN that models a PDF over a set of variables are a)

to learn the set of edges ε, or in other words the BN structure, and b) to learn the conditional

probabilities P (vi|PaBN(vi)).
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2.2.7. Learning the edges of the BN

Recall that a BN is a directed acyclic graph where each node represents a random vari-

able. In our case the random variables we are modelling are the RF outputs, in other words,

a probability vector [v1, . . . , vk] vj ∈ [0, 1], representing the probabilities of belonging to

each of the possible classes cj (j ∈ [1 . . . k], with k being the number of known classes).

Given that the amount of possible network structures is exponential in the number of vari-

ables, it is necessary to use heuristics to find the optimal network. In our work we use a

greedy algorithm proposed by Cooper & Herskovits (1992). They define a score to evalu-

ate each possible network structure and greedily search for the structure with the maximum

score. First, they decide an order of the variables (topological order) from where possible

structures will be explored. A topological order {1, . . . , k} is such that if i is smaller than j

in the order, then vi is an ancestor of vj in the network structure. After deciding on a partic-

ular order, the algorithm proceeds by finding the best set of parents per each node, greedily

adding a new candidate parent and checking if the new addition creates a better network

score or not. In case the edge addition improves the network score, the edge remains in the

actual network. Note that the maximum number of parents per node is an input parameter

of the algorithm.

Finally, to calculate the network score, they evaluate the probability of the structure

given the data, which corresponds to apply the same factorization imposed by the struc-

ture to the data and use multinomial distributions over each factor. How exactly score is

24



assigned to a given structure is well described in the original work (Cooper & Herskovits,

1992; Pichara & Protopapas, 2013).

2.2.8. Learning the parameters of the conditional distributions

In order to model the conditional probabilities, we may assume that all variables (votes)

are continuous and normally distributed. Since V comes from the RF votes, its distribution

is multimodal and consequently a single Gaussian would not describe the data. A better

solution is to discretise the continuous data (Monti & Cooper, 1998), so as to use multino-

mial distributions. Even if this process only gets rough characteristics of the distribution of

the continuous variables, it better describes the data by capturing its multimodality. To do

the discretisation, the data is divided into a set of bins, thus every data value which falls in

a given interval, is replaced by a representative value of that interval.

Given that our data are now discrete, we use multinomial distributions to model each

conditional probability P (vj|PaBN(vj)). The number of parameters to be estimated de-

pends on the number of values that variables vj and PaBN(vj) can take. For example,

suppose that the parents of variable vj are {va, vb}, where each of the three variables

{vj, va, vb} can take two different values (for simplicity say 1 and 2). The probability

distribution P (vj|va, vb) is then completely determined by Table 2.3.

The number of parameters for each variable is consequently given by the following

expression:

(Nbins − 1)× (Nbins)
Nparents (2.2)
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TABLE 2.3. Probability of vj given the different values of the parents,
P ((vj |va, vb)). There is one multinomial distribution per each combination of the
values of the parents. The number of outcomes of each distribution corresponds to
the number of values of variable vj .

vj = 1 vj = 2
va = 1, vb = 1 θ1 1− θ1
va = 1, vb = 2 θ2 1− θ2
va = 2, vb = 1 θ3 1− θ3
va = 2, vb = 2 θ4 1− θ4

where Nbins is the number of bins chosen for the discretization and Nparents corre-

sponds to the number of parents of the variable. In the example given above, the number

of parameters we have to estimate is (2− 1)× 22 = 4. To estimate the parameters, we use

the maximum a posteriori (MAP) approach, where we select the value for the unknown

parameter as the value with maximum probability under the posterior distribution of the

parameter. The posterior distribution of, lets say θ1, is calculated as:

P (θ1|data) =
P (data|θ1)× P (θ1)∑
θ1
P (data|θ1)× P (θ1)

(2.3)

Where P (data|θ1) is the likelihood of the model and P (θ1) is the prior of the parameter

θ1. The likelihood is calculated as:

P (data|θ1) = θN1
1 × (1− θ1)N2 (2.4)

Where N1 is the number of cases in the data where vj’s take a particular value. Fol-

lowing the example above, N1 is the number of cases where vj = 1 and va = 1, vb = 1 and
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N2 is the number of cases where vj = 2 and va = 1, vb = 1.

The main purpose of the priors is to avoid overfitting. In other words, in cases where

we have just few cases in the data with a given combination of values, the estimation of the

parameters should tend to stay in a predefined value until the data cases increase. Priors are

a manner to simulate previously seen “imaginary data” in order to compensate situations

of few cases. We choose conjugate priors to simplify the calculations of the posteriors. In

our case, given that the likelihood is a multinomial, the chosen prior for P (θ) is a Dirichlet

distribution, which is the conjugate distribution for the multinomial. Using a Dirichlet prior

the obtained posterior is:

P (θ1|data) ∝ θN1+α1
1 × (1− θ1)N2+α2 (2.5)

where {α1, α2} are the Dirichlet distribution parameters. The values of {α1, α2} act

as the “imaginary data” that we count, and we just assume that all combinations of values

have the same number of previously seen cases. Analogously, we can find the value of

every parameter θj for variables with any number of different values.
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3. RELATED WORK

3.1. Outlier detection in machine learning

Vast literature has been published in relation to anomaly/outlier detection problems

(Chandola et al., 2009; Kou et al., 2004), but generally they can be classified into two main

classes: supervised and unsupervised methods.

In unsupervised approaches the examples given to the learner are unlabeled and con-

sequently there is no training set in which the data is separated into different classes. In

turn, these techniques can be partitioned into three main subcategories: statistical methods,

proximity based methods and clustering methods.

Statistical approaches are the earliest methods used for anomaly detection. These

methods detect anomalies as outliers that deviate markedly from the generality of the obser-

vations (Grubb & Frank, 1969), by assuming that a statistical model generates normal data

objects and data that does not follow the model are outliers. In particular, many of these

methods use mixture models by applying Gaussian distributions (Agarwal, 2005; Eskin,

2000). The typical strategy considers the calculation of a score and a threshold, both used

to identify points that deviate from normal data. For example, Eskin (2000) proposes an

algorithm that fits mixture models, a normal and anomalous, using the Expectation maxi-

mization (EM) algorithm and assuming a prior probability λ of being anomalous. Then, the

author obtains an anomaly score which is based on measuring the variation of the normal
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distribution when a point is moved to the anomalous distribution. One of the main draw-

backs of the statistical approach is that it requires to assume a distribution for data, whereas

in complex cases, most of the known distributions will not fit data the way we expect.

Clustering-based methods (Yang et al., 2006; Son et al., 2009; Zhang et al., 1996) are

based on the fact that similar instances can be grouped into clusters, and that normal data

lies on large and dense clusters, while anomalies belong to small or sparse clusters, or to

no cluster at all. Most recent clustering algorithms proposed for anomaly detection are on

the context of intrusion detection on networks (Yang et al., 2006; Son et al., 2009). Unfor-

tunately, clustering algorithms suffer from the curse of dimensionality problem. Often, in

large dimensional spaces, distance metrics that are applied to characterize similarity do not

provide suitable clusters. Subspace clustering algorithms, a remedy to the dimensionality

curse, have not been commonly used for anomaly detection with exception of some recent

works (Seidl et al., 2009; Pichara et al., 2008; Pichara & Soto, 2011). Seidl et al. (2009)

perform a subspace clustering algorithm to rank data points according to the size of the

clusters and the number of dimensions of each subspace where the points belong. To iden-

tify microclusters containing anomalies, Pichara et al. (2008) search for relevant subspaces

in subsets of variables that belong to the same factor in a trained BN. Similarly, Pichara &

Soto (2011) present a semi-supervised algorithm that actively learns to detect anomalies in

relevant subsets of dimensions, where dimensions are selected by using a subspace clus-

tering technique that finds dense regions in a sparse multidimensional data set. One of

the main drawbacks of these kind of approaches is that they use heuristics to find relevant
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subspaces and those heauristics may ignore combinations of spaces where anomalies could

also lie.

Finally, proximity-based methods follow the intuition that anomalies are records with

less neighbors than normal records (Ramaswamy et al., 2000; Knorr & Ng, 1998; Breunig

et al., 2000). For example, Breunig et al. (2000) assign an anomaly score called Local

outlier factor (LOF) to each data instance; this score is given by the ratio between the

local density of the point and the average local density of its k-nearest neighbors. Local

density is calculated using the radius of the smallest hyper-sphere that is centered at the

data instance and contains k (nearest) neighbors. Papadimitriou et al. (2003) propose a

variant of the LOF called Multi granularity deviation factor (MDEF). For a given record,

its MDEF is calculated as the standard deviation among its local density and the local

densities of its k-nearest neighbors. Then they use the MDEFs to search micro clusters

of anomalous records. Along the same lines, Jin et al. (2001) propose another variant of

LOF that improves efficiency by avoiding unnecessary calculations. They achieve this by

calculating upper and lower bounds among the micro clusters detected. Unfortunately,

density-based algorithms usually are quadratic in the number of instances and thus they

are not suitable for big data. Furthermore, these methods also suffer from the curse of

dimensionality because of the same reasons mentioned above for the clustering methods.

On the other hand, in supervised approaches, outlier detection can be treated as a clas-

sification problem, where a training set with class labels is used to generate a classifier

that distinguishes between normal and anomalous data (Gibbons & Matias, 1998; Aggar-

wal & Yu, 2001; Chandola et al., 2009). Various anomaly detection algorithms have been
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proposed in this area, such as decision trees (John, 1995; Arning et al., 1996) and neural

networks (Nairac et al., 1999; Bishop, 1994). Decision trees algorithms fit the data focus-

ing only on salient attributes, a desirable characteristic when dealing with high dimensional

data. These algorithms work by modeling all points corresponding to normal classes: then

points having an erroneous or unexpected classification are considered as anomalies. Sim-

ilarly, neural networks are employed to model the unknown distribution of normal class

points by training a feed forward network. This is achieved by adjusting the weights and

thresholds while learning from the input data. Neural networks work well when training

sets are representative of the unseen data. Unfortunately, this may not occur for new in-

stances which are out of the scope of the training set. Decision trees and Neural networks

are susceptible to overfitting when stopping criteria are not well determined.

3.2. Outlier detection in astronomy

Because synoptic sky surveys have significantly increased in the last decade (Keller et

al., 2007; Hodapp et al., 2004; Tyson et al., 2002), astronomical anomaly detection has not

been yet fully implemented in the enormous amount of data that has been gathered. As a

matter of fact, barring a few exceptions, most of the previous studies can be divided into

only two different trends: clustering and subspace analysis methods.

In Rebbapragada et al. (2008), the authors create an algorithm called Periodic curve

anomaly detection (PCAD), an unsupervised outlier detection method for sets of unsyn-

chronized periodic time series, by modifying the k-means clustering algorithm. The method

samples the data and generates a set of representative light-curves centroids from which the
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anomaly score is calculated. In order to solve the phasing issue, during each iteration every

time series is rephased to its closest centroid before recalculating the new one. The anom-

aly score is then calculated as the distance of the time series to its closest centroid. Even if

the anomaly detection is satisfactory on a restricted and small data set, the technique scales

poorly with massive data sets. This is mainly due to the distinctive high dimensionality

problem that clustering methods encounter as mentioned in the previous section. Further-

more, since the algorithm is based on the alignment of the time series periods, it is restricted

to periodic light-curves, thus limiting the scope of possible astronomy applications.

Similarly, Protopapas et al. (2006) search for outliers light-curves in catalogs of peri-

odic variable stars. To this end, they use cross-correlation as measure of similarity between

two individual light-curves and then classify light-curves with lowest average similarity

as outliers. Unfortunately, this method scales as N2
LC , where NLC is the number of light-

curves. In order to deal with this high operational cost and to apply the algorithm to large

data sets they make an approximation they call universal phasing. By using clustering they

find where the signal with the highest/lowest magnitude dip occurs for each light-curve and

set it to a particular phase by time-shifting the folded light-curve. Once they find an abso-

lute phase for all the light-curves, they calculate the correlation of each one with the average

of the rest of the set, reducing the operational cost of the algorithm to NLC . Unfortunately,

this method is an approximation since it does not guarantee that the correlation between

two light-curves is maximum. Furthermore this approximation also implies not taking into

account the observational errors, thus losing highly valuable information. Finally, as in

Rebbapragada et al. (2008), this algorithm is also restricted to periodic light-curves.
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Xiong et al. (2010) separate astronomy anomalies into two different categories: point

anomalies, which include individual anomalous objects, such as single stars or galaxies that

present unique characteristics and group anomalies (anomalous groups of objects) such as

unusual clusters of the galaxies that are close together. For that end, they develop one

method for each of these cases. For the former case the authors create Mixed-error matrix

factorization (MEMF), an unsupervised algorithm that explores subspaces of the data. They

also assume that normal data lie in a low-dimensional subspace and that their features can

be reconstructed by linear combination of a few bases features. Quite opposite, anomalies

lie outside of that subspace and cannot be well reconstructed by these bases. To do so, they

find a robust low-rank factorization of the data matrix and consider the low-rank approx-

imation error to be an additive mixture of the regular Gaussian noise and the outliers that

can be measured differently in the model. One limitation of MEMF is that the factorization

rank k has to be specified by the user and it is consequently often determined by heuristics.

For group anomalies, the authors use hierarchical probabilistic models to capture the gen-

erative mechanism of the data. In particular, they propose Dirichlet genre model (DGM),

which assume that the distribution of the groups in the data set can be represented by a

Dirichlet distribution. Two anomaly scores are then presented: the likelihood of the whole

group and a scoring function that focus on the distribution of objects in the group. One

of the main drawbacks of this method is that the inference stage considers a non convex

problem and is consequently restricted to the limitation of variational approximations.

Finally, Henrion et al. (2013) propose CASOS, an algorithm to detect outliers in

datasets obtained by cross-matching astronomical surveys. To do so, they compute an
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anomaly score for each observation in lower-dimensional subspaces of the data, where sub-

spaces make allusion to subsets of the original data variables. In particular, any anomaly

detection method that produces numerical anomaly scores can be used with this approach.

The idea is to analyze the anomaly score of each observation in every possible subspace

and then combine them in such way that objects with many observed variables and objects

with only a few are equally likely to have high anomaly scores. Unfortunately, CASOS

has the disadvantage that it will not be able to detect outliers, which are only apparent in

multivariate spaces with significant numbers of variables.

34



4. DESCRIPTION OF THE PROPOSED MODEL

In the next section we detail our work and methodology. For illustration, we present

in Figure 4.1 a pictorial representation of our algorithm and its two main stages: the train-

ing stage and the outlier detection stage. In the training stage, we start with a training set

followed by the training of the RF, discretization of the probabilities and finally the con-

struction of the BN. In the outlier discovery stage, every new instance is passed through the

already learned RF and BN resulting in a score for being an outlier.

As we previously mentioned, the idea behind our method is to train a classifier with

known classes and learn its decision mechanism with a model. In this manner, when an

outlier is being analyzed, the classifier will present an abnormal voting confusion that will

be immediately flagged by our model.

Our method starts with a set of n labeled instances (training set) S = {(x1, y1), . . . , (xn, yn)},

where each xi = {xi1, . . . , xiD} is a vector in a D−dimensional space - the statistical de-

scriptors or features that represent each light-curve - and yi corresponding to the label of

xi (yi ∈ {c1, . . . , ck}, are all the known classes in the training set). In Section 5.1, we give

details about the classes and statistical descriptors we used.

We train a RF classifier and obtain voted labels for each element using the set S. More

precisely, we perform a T -fold cross validation. To do so, the original data is randomly

partitioned into T equal size subsamples or folds. For each iteration, we train a RF with

T −1 folds and we use that RF to predict the label for the fold that the RF did not see in the

training process. Repeating this process for each fold, we end up with predicted labels for
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FIGURE 4.1. Algorithm illustration. The left panel shows the training stage of our
method and the right panel presents the anomaly detection process. In the training
stage, we start with a training set followed by the training of the RF, discretization
of the probabilities and finally the construction of the BN. In the outlier discovery
stage, every new instance is passed through the already learned RF and BN resulting
in a score for being an outlier.

each element in the training set S. Each prediction obtained from the RF come as a vector

{vi1, . . . , vik} where each vij ∈ [0, 1], j ∈ [1 . . . k], tell us the probability that the element

xi belongs to the class yj ,
∑k

j=1 vij = 1, ∀i ∈ [1 . . . n].
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In our experiments we use T = 1000 folds, 20 bins for the discretization and a maxi-

mum of three parents.

At the end of the cross validation process, we end with a new dataset V = {v1, . . . , vn}

where each vi = {vi1, . . . , vik}. This dataset gives us information about how the RF votes

among objects that belong to each of the known variability classes. We want to use this

dataset to decide if an unlabeled object belongs to an unknown variability class or not, sim-

ply by comparing the RF votes of this unlabelled object with the “usual” votes of the RF

obtained from the dataset V . If the voting vector for the unlabeled object is too different

from the voting vectors stored in the dataset V , we flag it as an outlier. To do this compar-

ison, we learn the joint probability distribution over the dataset V using a BN. Recall that

BNs estimate joint probability distributions as a product of smaller factors. These factors

are conditional probability distributions and in our case, the joint probability we aim to

model is the joint probability of the various votes, P (v1, . . . , vk).

In section 2.2.8 we mentioned the necessity of a prior in order to include all the possible

cases in our model. To chose the value of α, we calculate the number of instances one would

hope to see if the data were uniformly distributed. Three parameters are considered for this

estimation: the size of our data (5646), the number of bins in the discretization process

(20 bins) and the maximum number of parents a node can have on the BN. Given that the

minimum number of parents is zero and the maximum is three, a reasonable number for α
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is four. We also empirically tested with different values of α and found that the results are

not sensitive to the choice of α.
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5. DATA, EXPERIMENTAL RESULTS AND ANALYSIS

5.1. MACHO catalog

MACHO (Massive Compact Halo Object) is a survey which observed the sky, starting

in July 1992 and ending in 1999, to detect microlensing events produced by Milky Way

halo objects. Several tens of millions of stars where observed in the Large Magellanic

Cloud (LMC), Small Magellanic Cloud (SMC) and Galactic bulge. The average number

of observations per object is several hundreds, with the center of the LMC being observed

more frequently than the periphery. The reader can find detailed MACHO description in

Alcock, Allsman, Alves, Axelrod, Bennett, et al. (1997).

Every light-curve is described by 13 features corresponding to the blue non standard

pass with a bandpass of 440-590nm (see Pichara et al. (2012) for more details).

5.1.1. Training set

The training set is composed of a subset of 5646 labeled observations from the MA-

CHO catalog (Kim et al., 2011)∗. The constitution of the training set is presented in Table

1 and a representative example of each class light-curve is shown in Figure 5.1.

The catalog comprises several sources from MACHO variable studies (Alcock et al.,

1996; Alcock, Allsman, Alves, Axelrod, Becker, et al., 1997c,d; Alcock et al., 1999), the

MACHO microlensing studies (Alcock, Allsman, Alves, Axelrod, Becker, et al., 1997a;

∗We collected these variables from the MACHO variable catalog found at: http://vizier.u-strasbg.fr/viz-
bin/VizieR?-source=II/247
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TABLE 5.1. Training Set Composition

Class Number of objects
1 Non variable 3969
2 Quasars 58
3 Be Stars 127
4 Cepheid 78
5 RR Lyrae 288
6 Eclipsing Binaries 193
7 MicroLensing 574
8 Long Period Variable 359
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FIGURE 5.1. Example light-curves of each class in the MACHO training set.
The x-axis is the modified Julian Date (MJD), and the y-axis is the MACHO B-
magnitude. Note that Cepheid, RR lyrae and Eclipsing Binary light-curves are
folded since they are periodic.

Alcock, Allsman, Alves, Axelrod, Bennett, et al., 1997; Alcock, Allsman, Alves, Axel-

rod, Becker, et al., 1997b; Thomas et al., 2005), and the LMC long-period variable study

(Wood, 2000). Quasars in the training set were collected from Blanco & Heathcote (1986);

Schmidtke et al. (1999); Dobrzycki et al. (2002); Geha et al. (2003). Be stars were obtained

from private communication with Geha, M. The non-variables were randomly chosen from
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the MACHO LMC database, and any previously known MACHO variables were removed

from the non-variable set.

5.2. Results

In this section, we show how we applied the above methods to the MACHO catalog.

5.2.1. Performance Test

To prove the performance of our algorithm, we created a test set leaving one class

out of the MACHO training set; we trained our algorithm with the remaining classes and

considered the excluded class as unknown objects that we want to discover. In other words,

we expected these light-curves to have the highest outlierness score as they have never been

seen by the model.

We performed three different tests, each time leaving out of the training set one of the

classes: quasars, eclipsing binaries and Be stars. For every test we ran a 10 fold cross

validation. The RF considered 500 trees, with F ′ =
√
F features in every node.

Next, we present the results for the test leaving the quasars out of the training set.

In order to visualize the voting database V , we present the average number of objects

voted by the RF for each class in Figure 5.2. By using a color scale, we also show the

average distribution of the votes among the different classes. For example, when the RF

is classifying a RR Lyrae it doubts mainly between non variables, eclipsing binaries and

the true class, RR Lyrae. This is shown in the colors along the vertical line labeled RRL.

This hesitation is learned by the BN and the relationship between classes is represented on
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a graph as shown in Figure 5.3. When the light-curve to be classified is from RR Lyrae

class the voting vector will present high values for eclipsing binaries and Cepheids classes,

therefore RR Lyrae node is a child node of these other two classes.

FIGURE 5.2. The color scale represents the RF votes distribution for the pre-
dicted classes in the MACHO training set (NV: Non variable, BE: BE stars, CEPH:
Cepheid, RRL: RR lyrae, EB: Eclipsing Binaries, ML: Microlensing, LPV: Long
Period Variable) during the cross validation phase and for the test class (QSO:
Quasars) during the testing phase. The values displayed in each square represent
the average number of objects that were voted in the correspondent class. The x-
axis represents the object’s true class and the y-axis represents the predicted class.

FIGURE 5.3. BN structure for the performance test. RR Lyrae node is a child
node of Cepheid and non variable nodes meaning that, when the light-curve to
be classified is from RR Lyrae class, the voting vector will present high values in
these other two classes. On the other hand, Be stars node is independent of the
other classes, as expected.
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After training the algorithm, we obtained the joint probability of every object in the

training set, quasars included. Figure 5.4 shows how “known” classes present a high joint

probability while outliers (quasars) have the lowest values. Finally, the top left panel of

Figure 5.5 represents our algorithm performance, comparing the imputed outliers (quasars)

positions in the top outliers list with the ideal case result - the 58 quasars will be using the

58 first places in the outlier list. It can be seen that the top 40-60 outliers are quasars and

all imputed outliers (quasars) are in the top 200 list. The same behavior is observed when

we choose other classes as the outlier class, as shown in the top right and bottom panel in

Figure 5.5.
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FIGURE 5.4. Joint log probability distribution for each class in the training set
(blue lines) and for the outlier class (red line)
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FIGURE 5.5. Performance test results for Quasars, Eclipsing binaries and Be stars
as outliers. The dashed line represents the ideal result, where the class left out
use the top positions in the outlier list. Grey squares shows the actual obtained
positions.

5.2.2. Running on the whole dataset

Once we tested the accuracy of our method, we trained a RF with the complete training

set and learned a new BN. The same parameters of the performance test were used in this

stage.

We ran our model on the whole MACHO data set (about 20 million of light-curves) to

obtain a list of outlier candidates. Fortunately the main computational cost of the algorithm

occurs during the training phase, for which the model needs to run the cross validation and
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learn the BN structure and parameters. After training the model, performing the inference

for a light-curve takes a fraction of second and it is easily parallelizable.

5.2.2.1. Removal of spurious outliers

Figure 5.6 shows some of the outliers we obtained from this first iteration. The top

left and right outliers in Figure 5.6 are characterized by having one day period, while the

bottom right has a period of approximately a year. This is probably caused by MACHO’s

nightly and seasonal observational pattern and not by an intrinsic anomalous behavior. We

also faced other kind of artifacts like the outlier in Figure 5.6 bottom left panel, which is

obviously due to some instrumentation problems - this behavior at the beginning of the

light-curve appeared in many light-curves.
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FIGURE 5.6. Top left panel one day period artifact MACHO 77.7187.271, top
right panel one day period artifact MACHO 79.4780.358, bottom left panel sam-
pling artifact MACHO 5.5010.986 and bottom right panel 370 days period MA-
CHO 49.5899.715.

In order to remove the spurious outliers we do the following steps:
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(i) Filter all outlier candidates that have periods very close to sidereal day or a year.

There is no doubt that those light-curves exhibit strange behavior due to variable

seeing conditions during the night or seasonal aliases.

(ii) We run the whole analysis in the MACHO red non standard bandpass. MACHO

was observed in two bandpasses simultaneously and therefore there are corre-

sponding red-band light-curves for each object. For every outlier candidate that

is not in the top 20,000 list of the equivalent list in the red candidate list, we

consider it as an artifact/spurious and therefore it is removed from the candidate

list.

(iii) We visually inspect all candidates and group those that are obviously spurious,

like the examples in Figure 5.6, into groups of similar shapes and behaviors. We

add these new classes to the training set, re-train and then we predict outliers

again as explained above.

(iv) Repeat previous steps until finding no artifacts on the top outlier list.

We expect that once we filter the artifacts, the ‘true’ outliers will be the only ones

remaining.

5.3. Post analysis

As a fist step, we visually inspected all the candidates starting from the top of the list

(“strongest” outliers) moving our way to the “weakest” outliers. We determined that about

4,000 candidates was a good number of candidates to start. Candidates beyond this point

46



either were not showing any significant variation or had low signal-to-noise ratio (SNR),

and therefore not interesting.

As a second step we cross-matched our candidates with other astronomical catalogs of

known types or catalogs with additional contextual information. Some of these catalogs

are collections of known types; for example, LMC Long Period Variables (Fraser et al.,

2008), is a collection of long period variables from LMC. On the other hand, catalogs like

XMM-Newton Watson et al. (2009) contain X-ray information, which can be useful to

further understand the nature of the candidates. Having additional information for some

of the outlier candidates could be helpful to identify the nature of these objects. Table 5.2

summarizes all the catalogs used in the analysis and the resulting cross-matched numbers

(Nx−matched).

TABLE 5.2. Catalogs used for post-analysis.

Catalog Reference Number of objects in catalog Nx−matched

LMC LPVs from MACHO Fraser et al. (2008) 56,453 52†

XMM-Newton Watson et al. (2009) 262,902 13
ROSAT All-Sky Bright Source Catalogue (1RXS) Voges et al. (1999a) 18,806 2

LMC Blue variable stars from MACHO Keller et al. (2002) 1280 91
OGLE eclipsing binaries in LMC Wyrzykowski et al. (2003) 2720 29

OGLE RR Lyrae in LMC Soszynski et al. (2003) 7661 8
LMC Cepheids in OGLE and MACHO data Poleski (2008) 2946 8

OGLE!2MASS!DENIS LPV in Magellanic Clouds Groenewegen (2004) 2919 9
Variable Stars in the Large Magellanic Clouds Alcock et al. (2004) 21474 334

Machine-learned ASAS Classification Cat. (MACC) Richards et al. (2012) 50124 5
QSO Candidates in the MACHO LMC database Kim et al. (2012) 2566 51

EROS Periodic Variable Candidates Kim et al. (2014) 150,115 432
Type II and anomalous Cepheids in LMC Soszynski et al. (2008) 286 19

OGLE Variables in Magellanic Clouds Ita et al. (2004) 8852 134
GCVS, Vol. V.: Extragalactic Variable Stars Artyukhina et al. (1996) 10979 74

High proper-motion stars from MACHO astrometry Alcock et al. (2001) 154 0

The fact that some of the candidates appear in catalogs of known objects imply that

we either have false positives in our results or there are misclassifications in the catalogs.

Possible reasons for false positives are:
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(i) Known classes are not included in our original training set. This may be the case

when a new class of objects was discovered and published after the training set

was constructed.

(ii) The training set is not complete for some of these classes. For example, we find

that a number of outliers turned out to be eclipsing binaries (29), Cepheids (8) or

RR Lyrae (8). However these classes were used in the training set as indicated

in Table 5.1. Nevertheless, as in the case of MACHO 25.4201.54 which is sup-

posedly a Cepheid, the period in our catalog is 59.08 days, which is longer than

the Cepheid periods in the training set (1 day < P < 50 days). Such objects

could be identified as ‘rare’ Cepheids or alternatively our training set could be

incomplete with respect to Cepheids.

(iii) The objects in these catalogs were mislabeled or incorrectly classified. Many of

these catalogs are guided by algorithms or done automatically, so unavoidably

they contain errors. Even when humans are involved in the classification, bi-

ases would always be present. These errors will hopefully present themselves as

outliers in our final analysis.

(iv) The features considered in this work and the features used by the other catalogs

are not the same. For example, we find that the period of MACHO 77.7428.190

is 906.3559 days, while in Soszynski et al. (2008) is 0.2843359 days. Because

of this, this light-curve does not appear to be an RRL, in our model, however all

other features indicate that it is an RRL and therefore it is identified as an outlier.

Dealing with feature uncertainties is a topic of a future work. It is well known
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that less confident features produce low quality classification and false-positives

in our outlier predictions.

(v) The SNR of the light-curves is survey dependent and therefore features that are

dependent on the actual amplitude of the variability will be different from catalog

to catalog. For example if a catalog is compiled using a survey that is more

sensitive than our survey, then the fainter objects are indistinguishable from the

non-variables. Moreover, as described above, low signal-to-noise ratio light-

curves will result into uncertain features and therefore higher probability of being

false-positive.

Almost all of these reasons can be attributed to the lack of a perfect training set. Be-

cause our method is based on a supervised classification, the results heavily depend on the

choice of these representative objects. In the ideal scenario, one would compile a training

set that contains every possible known objects. In our case, we started with a trustworthy

training set and we were aware that some of the known objects were not included. This

served as a blind test since some of these types were never presented to the method, never

trained with them and therefore they should have been discovered by our method. Indeed

we recovered most of these objects in the candidate list.

As a third step, we examined the color magnitude diagram (CMD) of the candidate

list and identified regions where objects were most likely from a known type. One of the

advantages of the LMC, is that all stellar populations are at essentially the same distance
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and thus we can use CMDs as an additional way to separate and identify the sources.

Figure 5.12 shows the CMD for the outliers.

As a fourth step, we grouped the outliers into sets based on the morphology of the light-

curves. Here we present the top most interesting subgroups. Some of them are known, but

are rare objects while others do not obviously belong to any known class of objects.

(i) Eclipsing Cepheid: Eclipsing Cepheids have been discussed in papers of the

MACHO, OGLE and EROS-2 surveys (Alcock et al., 2002; Marconi et al.,

2013; Cassisi & Salaris, 2011). These objects are Cepheids in binary systems

where there are flux drops during the pulsating cycle caused by the transit of

a companion star. Although it is known that 50% of Galactic Cepheids are in

binary systems, only about 20 such Cepheids are known in the LMC, which is

mainly due to their faint magnitudes caused by the distance to the LMC. Re-

cently, Pietrzyński et al. (2010) have used such a system to limit the distance

uncertainty to the LMC, so finding such systems is very valuable for precision

cosmology. By simply looking through our catalog of outliers, we found few

objects of this kind. Figure 5.7 shows one of these examples.

(ii) Cataclysmic Variables (CV): Another interesting group of outliers are CVs or

novae or novae-like looking objects. Because there are no unified variability

characteristics, this group was not included in the training set and therefore few

CVs are in our candidate list. These objects can increase more than 20 magni-

tudes, becoming approximately 108 times brighter. Novae and Recurrent Novae
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FIGURE 5.7. Top panel Eclipsing Cepheid MACHO 6.6454.5 and bottom panel
its folded light-curve.

are close binary systems that are variable due to explosions on their surfaces. The

eruptions can last from a few days to almost a year, and can be quasi-periodic as

the recurrent Novae (Schaefer, 2010; Knigge, 2011). This a subject of an exten-

sive research, and recently the interests focused on superluminous SNe (Quimby

et al., 2011). Figure 5.8 shows MACHO 77.7546.2744, one of this class exam-

ple, where the change in magnitude is 2.5 and the relaxation time is about a year.

Our candidate list contains a few dozen of these objects, nevertheless, some of

them are already known, such as those presented in Shafter (2013).
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FIGURE 5.8. Nova like variable MACHO 77.7546.2744.
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(iii) Blue Variables: The class coined Blue Variables is a generic class without a uni-

fied light-curve morphology or features. Because of this, we did not include such

a class in the training set. Keller & Wood (2002) proposed that the variability

of these stars is the result of processes related to the establishment, maintenance

and dissipation of the Be disk. The emission that characterizes Be stars origi-

nates in a gaseous circumstellar quasi-Keplerian disk. These objects appear to be

blue and are simply variable. Sixty-eight of our candidates fall into this category.

An example of such light-curve is shown in Figure 5.9 and the locations of all

the members in the CMD are shown in Figure 5.12.
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FIGURE 5.9. Blue variable MACHO 81.9727.662.

(iv) X-ray Sources: There are two sources cross-matched with the ROSAT all-sky

survey bright source catalog (Voges et al., 1999b) and 13 with the second XMM-

Newton serendipitous source catalog (Watson et al., 2009). Among these X-ray

sources, MACHO 61.9045.32 is a confirmed high-mass X-ray binary (Liu et al.,

2005) hosting a radio pulsar (Ridley et al., 2013) but the other 14 counterparts

are not carefully studied for their X-ray origins. These remaining objects are
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interesting sources since they show strong optical variability, either periodic or

non-periodic and X-ray emission simultaneously. They could be either W UMa-

type contact binaries, X-ray binaries, or other types of X-ray emitters (e.g. see

Ness et al. 2002; Chen et al. 2006; Liu et al. 2007 and references therein). Partic-

ularly, X-ray binaries are most interesting sources since they are known to host

either neutron stars or black holes (i.e. accretor) together with a companion star.

Their X-ray emission is caused by accreting material falling from the compan-

ion star into the accretor (van den Heuvel et al., 1992; Done et al., 2007). Thus

studying X-ray binaries help us to understand the process of accretion and the

fundamental physics of the binaries such as mass, radius, orbit, jets, etc (e.g. see

van der Klis 2000; Fender et al. 2004). Figure 5.10 shows one representative

example.
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FIGURE 5.10. X-Ray binary MACHO 61.9045.32.

(v) R Coronae Borealis: Within our outliers we identified one object belonging to

one of the most rare and interesting classes among the variable stars. MA-

CHO 6.6696.60 is a R Coronae Borealis (RCB) star. These kinds of objects are
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yellow supergiant stars whose atmospheres are carbon rich and extremely hy-

drogen deficient. This causes irregular intervals of dust-formation episodes that

result in a drop in brightness of up to 8 magnitudes in a short period(Clayton,

1996). An example of this type of light-curve is shown in Figure 5.11.
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FIGURE 5.11. R Coronae Borealis MACHO 6.6696.60.

(vi) The OTHERS: Undoubtedly there are many variable classes and it is out of

the scope of this work to analyze and comment on every outlier from our list.

Our goal was to find novel objects that have not been identified before. For this

end, we first ran a clustering algorithm and then visually inspected all the light-

curves that are not in the categories mentioned above, identifying a few classes of

objects and a few individual objects that could not be assigned to known classes.

We show three classes and 4 individual outliers in Table 5.3 , Figures 5.13, 5.14,

5.15, 5.16, and also in the CMD in Figure 5.12.

Nevertheless, we had to perform a more specific analysis for outliers in Class A.

We noticed that the objects belonging to this class are neighbors (since they are

located in the same field, number 82), so it is very possible that the perturbation
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on the light-curves was caused by a high proper motion star moving close to these

sources. In order to confirm or reject this hypothesis we calculated the distance

between these objects and the time differences of the peaks of the variation.

The time difference of the variation was on average of 400 days but the objects

were ∼100 arcsec apart. Since proper motion are less than few arsec/year the

hypothesis was rejected. Objects of Class A are consequently good candidates

to conform a new variability class.
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FIGURE 5.12. Color magnitude diagram of all the outliers. The outlier rank is in-
dicated by the color of each data point. The bluer, the higher the outlier score. Black
boxes mark the location of blue main sequence (BMS), lower red giant branch
(LRGB), long period variables (LPV), RR Lyrae (LLR) and Cepheid (CEPH).
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TABLE 5.3. The others: new variability classes and individual outliers

Class MACHO id RA Dec Period [days] V R Color SNR
Class A 82.8887.471 5.59031 -69.2956 657.19 19.78 19.28 0.49 1.53
Class A 82.9009.834 5.59633 -69.2722 525.75 20.25 19.71 0.536 2.38
Class A 82.9009.1850 5.59655 -69.2762 525.75 21.04 20.96 0.08 1.66
Class A 82.8887.2395 5.59106 -69.2954 876.25 21.04 21.20 -0.16 1.59
Class B 56.5178.29 5.19911 -66.5471 363.00 16.50 17.02 -0.51 4.44
Class B 44.1616.257 4.84559 -70.0673 871.32 16.23 16.704 -0.47 3.84
Class B 35.7272.13 5.42992 -72.127 374.98 16.23 16.70 -0.47 5.63
Class B 48.2864.67 4.96026 -67.5326 872.94 17.00 17.53 -0.52 2.98
Class B 82.8284.126 5.51805 -69.202 438.12 17.56 17.61 -0.04 2.34
Class C 17.2711.26 4.9556 -69.6723 680.70 15.41 15.87 -0.46 9.14
Class C 82.8283.41 5.5218 -69.2594 525.75 15.07 15.66 -0.59 8.53
Class C 62.7361.30 5.4249 -66.2181 848.30 16.38 16.65 -0.27 5.44

Individual Outlier 13.5835.11 5.2742 -71.0974 296.98 14.85 15.21 -0.36 51.52
Individual Outlier 18.2478.9 4.9342 -69.0323 226.90 14.76 15.23 -0.46 36.69
Individual Outlier 78.6462.561 5.3366 -69.6743 678.95 18.11 17.91 0.20 7.02
Individual Outlier 62.7241.19 5.4114 -66.1581 636.23 16.16 16.34 -0.18 52.51
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FIGURE 5.13. Top left panel Class A MACHO 82.8887.471, top right panel
Class A MACHO 82.9009.834, bottom left panel Class A MACHO 82.9009.1850
and bottom right panel Class A MACHO 82.8887.2395.

56



0 250 500 750 1000 1250 1500 1750 2000 2250 2500

−8.1

−8.05

−8

−7.95

−7.9

Time [MJD]

M
A

C
H

O
 m

ag
 B

 

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

−8.45

−8.4

−8.35

−8.3

−8.25

−8.2

−8.15

Time [MJD]

M
A

C
H

O
 m

ag
 B

 

FIGURE 5.14. Left panel Class B MACHO 56.5178.29 and right panel Class B
MACHO 44.1616.257.
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FIGURE 5.15. Left panel Class C MACHO 82.8283.41 and right panel Class C
MACHO 62.7361.30.
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FIGURE 5.16. Top left panel Outlier MACHO 13.5835.11, top right panel Outlier
MACHO 18.2478.9, bottom left panel Outlier MACHO 78.6462.561 and bottom
right panel Outlier MACHO 62.7241.19.

57



6. CONCLUSIONS

The generation of precise, large and complete sky surveys in the last years has in-

creased the need of developing automated analysis tools to process this tremendous amount

of data. These tools should help astronomers to classify stars, characterize objects and de-

tect anomaly among other applications. In this work we presented an algorithm based on

a supervised classifier mechanism that enables us to discover outliers in catalogs of light-

curves. Different from the existing methods, our work develops a supervised algorithm

where all the available information is used to our advantage. Since the amount of data to be

processed is huge, one could have expected a high computational complexity and the over-

take of the resources. Nevertheless, our algorithm is only expensive in the training stage

and extremely fast analyzing the unknown light-curves, allowing us to explore a very large

dataset. Furthermore, our method is not only restricted to astronomical problems, being

applicable to any data base where anomaly detection is necessary.

The results from the application of our work on catalogs of classified periodic stars

from MACHO project are encouraging, showing that our method correctly identifies light-

curves that do not belong to these catalogs as outliers.

We have identified light-curves that were artifacts because of instrumental, mechani-

cal, electronic or human errors, and about 4000 light-curves that emerged as intrinsic. The

artifacts were removed from the outlier list and added to the training set. After retraining,

we cross-matched the new candidates with the available catalogs and found known but rare

objects among our outliers and also objects that did not have previous information. We
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classified some of them as new variability classes and others as intriguing unique outliers.

As a future work, these objects will be followed up using spectroscopy, in order to charac-

terize them and identify them with new observations. We hope that by doing this analysis,

we will be able to find more of these objects and turn our isolated outliers into new known

variability classes.

Furthermore, we are planning to improve our algorithm by constructing a more com-

plete and large training set and by creating new robust features. Our future approach will

mainly belong to the family of deep learning and unsupervised feature learning techniques,

where the most representative patterns from objects are automatically discovered to rep-

resent every object as a mixture of these patterns. We also aim to apply our algorithm to

different large sky surveys as EROS (Ansari, 2004), Pan-Starrs (Hodapp et al., 2004) and

when finished LSST (Tyson et al., 2002).

Finally, in order to help astronomers, we are planning a full release of a software which

will include feature calculation of the light-curves and the application of our algorithm as

a downloadable software and as an on-line tool and web services in the near future.
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