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Charged solutions in 5D Chern-Simons supergravity
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A family of solutions with mass and electric charge of five-dimensional Chern-Simons supergravity is
displayed. The action contains an extra term that changes the value of the cosmological constant, as considered
by Horava. It is shown that the solutions approach asymptotically the Reissner-Nordgtacetime. The role
of the torsion tensor in providing charged solutions is stressed.
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[. INTRODUCTION particular background it reproduces Einstein’'s theory
coupled to a gauge field. In particular, the spherically sym-
The Chern-Simons formulation of three-dimensionalmetric configurations approach the Reissner-Nordstro
gravity [1,2] has been a useful tool to understand variousspacetime.
issues in 3D gravity. The Brown-Hennea{i®] conformal The key input in this paper, as [16], is the introduction
symmetry[4] (see alsd5]), the Liouville boundary action 0f a symmetry breaking term that changes the value of the
[4], and the dynamicalgloba) degrees of freedorf2] have ~ cosmological constant. A similar modification was consid-
simple descriptions in the connection approach. The blackred in[17] via the coupling of Wilson lines to the action.
hole entropy problem also has interesting descriptions in thi©ur goal is to point out that once this term is added to the
formulation[6—8]. action, then its spectrum around the new anti—de Sitter back-
In five dimensiong9], and actually in all odd dimensions ground coincides with that of standard supergravity. We shall
[9-11], there exist Chern-Simons formulations for gravity also see that the torsion plays a key role in providing the
and supergravity. These theories have a number of interestirgprrect quadratic kinetic term for the Abelian gauge field.
formal properties. For example, it can be shown that the We stress that we do not claim that standard and Chern-
group of asymptotic symmetries, under certain specificSimOI’lS supergravity may be equivalent. Our claim is that the
boundary conditions, is the Wess-Zumino-Witten (WZW) asymptotic behavior of Chern-Simons supergravity coincides
algebra[12-15. This yields a natural extension of the With standard supergravity and thus it is a “phenomenologi-
known relation between 3D Chern-Simons theory and the&ally” interesting theory. Near the singularityhere stan-
affine Kac-Moody algebra. Other interesting properties ofdard supergravity breaks doyhoth theories do differ.
this theory are the fact that the supersymmetry algebra closes In Sec. Il we shall review the Chern-Simons action and its
off shell, and the invariance of the action is explicit. solutions with spherical symmetry. In Sec. Ill we introduce
The problem with higher-dimensional Chern-Simons su-the deformed theory and review its uncharged solutions. In
pergravities is that they are not equivalent to standard supefec. IV we introduce th&J (1) gauge field, within the Chern-
gravities. Since supergravity is not a fundamental theory buBimons approach, and show that its interactions with the
only an effective field theory, this should not be a reason t@ravitational variables are the correct ones.
exclude Chern-Simons supergravity as an interesting field
theory. However, it would be desirable to find that standard Il. THE ACTION AND EQUATIONS OF MOTION
supergravity arises from Chern-Simons supergravity in some
limit; for example, as a low energy approximation on some
background. Let G be a Lie algebra anf) a one-form with values on
In [16] the 11-dimensional case has been studied. It wa&. The Chern-Simons action in five dimensions is defined as
shown that if the 11-dimensional Chern-Simons supergravity
action is deformed by the addition of a cosmological term, as | e f r 1)
considered by Horavfl7], then its linear behavior around cs €S
the new anti—de Sitter background contains a three-form sat-
isfying the correct equations. The fermion and graviton equa¥here
tions expanded around this background are also the standard 1 3 3
ones. This result then suggests a relation between standard ECS:_Tr(dQ dO QO +=d0 Q3+ _QS>_ )
[18] and Chern-SimonEL0] supergravity. 3 2 5
The aim of this paper is to test other aspects of the idea
introduced in[16], in the simpler setting of five-dimensional This Lagrangian satisfiesl{cs= (1/3)Tr(RARAR) and
Chern-Simons supergravity. We shall consider the2,2)  §Lcs=Tr(RARASQ) where R=dQ+QAQ. For our
~U(1)xXSQ(4,2) Chern-Simons action and prove that in achoice of() (see Appendix A the factori in Eq. (1) makes
the action real.
The applications of Eq2) to five-dimensional supergrav-
*Email address: mbanados@fis.puc.cl ity follow from the observatiori19,9| that the superalgebra

A. The exact Chern-Simons action
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SU(2,2N) contains the anti—de Sitter group. For this choicewith R%=dw?’+w?.w°P. Note that all coefficients iii7)—

of the Lie algebra, the actiof2) yields a Lovelock type (9) are fixed (up to trivial rescalings by supersymmetry.

theory of gravity coupled to fermions and some gauge fieldsEquations(7)—(9) have the generic form

The whole action is invariant under adjoint transformations

acting on{) and is thus supersymmetric. UancF*/\F°=0 (13)
We shall be interested in the bosonic degrees of freedom,

in particular in the corresponding action associated to the LigvhereF®e U(2,2) andgap is an invariant tensor.

algebralU(2,2) containing the gravitational variables plus an

Abelian gauge field. The Lagrangian expressed in terms of B. Chern-Simons black holes

thee® w2 and the Abelian field\ is [9] (see Appendix A for

a detailed derivation In the uncharged cas€&,=0, black holes solutions asso-

ciated with (7)—(9) have been discussed i20]. Let us
i Los=iLo+ilatil (3)  briefly review and extend to the caBe# 0 [21] the solutions
found in[20]. This is instructive because it gives the first hint
where that the exact Chern-Simons theory described by &.
does not reproduce Einstein’s gravity.

iLg=— gfabcde(TRab/\ ROIAee+ o R e\ eI/ e Consider the spherically symmetric ansatz

3l
h(r)?
1 ds’=—f(r)?dt?+ ———dr’+r?dQ, (12)
+ ﬁea/\eb/\ec/\ed/\ee (4) 2(r)
X A=—¢(r)dt, (13
iLa=—ZANFAF (5) ) o i )
3 and zero torsion. Replacing {@)—(9) one finds the solution
1 1 for the functionsf, h and ¢,
iL =§Rab/\Rab/\A— 228 T/\F. (6) (2
f(r)2=|—2+f0, (14)
andy=N"2-4"2,
Lg is the purely gravitational Lagrangian. This term is a h(r)=1 (15)
Chern-Simons Lagrangian in its own right for the group '
SO(4,2). Note that both the Hilbert and cosmological terms B(r)= g (16)

are presentLg can also be regarded as a Lovelock Lagrang-

ian with a prescribed choice of coefficients. This choice Ofwherefo and ¢, are arbitrary constants.

coefficients have two important consequendgsihey en- From this solution we learn that the spherically symmetric
large the local symmetry from Loren&((4,1) toSO(;l,Z), Abelian field does not couple to the gravitational variables,
(i) the equations of motion have the structuRYA)*=0  gn the metric is not asymptotically Schwarzschild-AdS. The

making the anti—de Sitter background degenerate. _ only allowed perturbation is a constant in the functfgn)?,
L, is an Abelian CS Lagrangian which is also present inyich is not interesting from a “phenomenological” point of
the standard five-dimensional supergravity. view.
L, is the interaction term betweehand the gravitational Near the singularity, this solution takes the form

variables. Up to a boundary term, this piece can also be
written as[R2°R,,— (2/12) T2T,]A/4. , 1,
Varying the Lagrangiari3) with respect toe?, w2" and ds’=—fydt*+ f—odr +redQ;. (17
A, one obtains the equations of motion
If fo=1 this is regular. For other values éf one finds
abATed_ “conical” singularities in the pl If f4<0 then th
€anea RPARY= — T \F, ) conical” singularities in the planer, ¢. 0 en the
| singularity lies behind the horizon. Below, we shall modify
the Chern-Simons action in order to produce asymptotically

< ab A To_ chwarzschild spacetimes. However, the solutiv®) will
[ €abedlR/AT*=Rae/\F, ® reappear in the near singularitgnd horizon region.
Equations (7)—(9) differ drastically from the standard
1 . 1 a Einstein-electromagnetic system. Consider, for example the
§R /\Rap— rzd(ea/\T )=4xF/\F, ) Abelian field A propagating on the gravitational AdS back-
_ _ _ ground withR&°=T2=0. The gravitational equatiorig) and
respectivelyT?=De® is the torsion tensof =dA and (8) are identically satisfied while the gauge field equation
1 yield
pab_pab, ~ .a b
R3=R +|29 e (10 CFAF=0, (19
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which is quite different from the expected equation

d*F=FAF. (19

Ill. THE DEFORMED CHERN-SIMONS THEORY

A. The action and equations of motion

As shown in the preceding section, the exact Chern-

PHYSICAL REVIEW B6 044014

provided 7#0. The second equality follows straightfor-
wardly from the first one. Note, in particular, that, ,,
zea,LTayp is totally antisymmetric. Finally, replacing Eq.
(26) in Eqg. (23) we obtain the desiredinear equation,
d*F=0 (27

for an Abelian gauge fiel@25].

Simons theory does not have asymptotically Schwarzschild 1h€ main lesson of this result is that the spin connection
solutions, and the gauge fieAldoes not satisfy its standard contains both the second order structure for the graviton and

equations of motion. These two problems can be solved

4he second order structure for the gauge field. In fact, the

once by breaking the symmetry of the Chern-Simons actionsPIn connection has the form

Suppose we add to E@2) a contribution to the cosmo-
logical term,

2

L.=Lcst ﬁ €abca™/\ - - /\e® (20)

wP=w?"(e) + «k°(A) (28)
wherew??(e) is the torsion-free part, while(A) is the tor-
sion and depends oh as in Eq.(26).

When replacing Eq(28) back into the action, the term

w?P(e) produces the standard graviton second order kinetic
wherer is a dimensionless number parametrizing the deforterm [eR(e), while x®°(A) produces the ternfe FEYE L
mation. An interesting mechanism to generate this term hamterestingly, in eleven dimensions, the supergravity three-
been proposed ifil 7] via the coupling of Wilson lines. For form [18] arises via a similar mechanism from the torsion
our purposes it will not be necessary to fixo any particular  [16] in a deformed Chern-Simons theory. This mechanism
value, although some constraints will be found below. has also appeared in the group manifold approach to super-
The new equations of motion are gravity [23].

B 4 .
5abcde( Rab/\Rcd_ITea/\eb/\ecAed - I_Te/\F (21) C. Uncharged exact solution
Let us now seF=T2=0 and study the gravitational so-
lutions of the deformed theory. The solution to E¢&1)—

1 — _
I—eabcdeRab/\T°= Rge/\F (220 (23) with spherical symmetry is
1
1. 1 . ds?=—f(r)%dt*+ f—zdr2+r2dﬂ3 (29
SR ARyp— l—zd(ea/\T )=xF/\F (23 (r)
with [26,27)
B. Torsion and a dynamical gauge field (2 T ¢
Let us first show that the new equations yield the desired f(r)2=1+ 7z =+ |2_02 (30)

equation(19) for the gauge field22]. We freeze the gravi- !

tational degrees of freedone) and study the dynamics of anqc is an arbitrary integration constant proportional to the
A. We shall also discard all quadratic termsfnand T mass In the limitr—0 we recover the solution of the un-
keeping only the linear terms. o broken theory(14), and for Co=0 we recover the back-

Due to the new term in Eq21) the correct gravitational  ground(24) of the deformed theory. In what follows we shall
background is noR**=0 but only consider the case

7>0 (31)

Rab= " ea/\gh (24)
12 '
since otherwisd (r)? has no real zeros and no horizon.
The interesting property of this solution is that for large

corresponding to a constant curvature spacetime with
values ofr, the functionf(r)? takes the form

(25) 2m 1
f(r)2=—A,r2+1- r_2+0(r_6) (r—o) (32

Note that for7>0 big enoughA becomes positive and the
background is de Sitter.
We now replace Eq(24) in Eq. (22) and obtain

coinciding, as promised, with the asymptotic form of the
Schwarschild-AdS spacetime in five dimensiorisn
=Cy/(47) and A is given in Eqg.(25)]. It is interesting to
note that the term 1# is absent in the asymptotic expansion
of f(r)2. As expected, this term will arise in the charged
case.

T 2
T €abca™/\"/\T= 764/ \eo/\F= 1€,/ \T*=*F

(26)
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On the other hand, near the singularity¢0) the defor- |2 ( 24) “0
. 40

mation parameter becomes unimportant, k= 20 29— -

12

f(n?=1- -

In particular, we find the condition>24/29 in order to have
the correct sign.

The full set of equations wheh+0 is an extremely com-
and the solution approaches E@7). The horizon structure plicated non-linear system. We have solved these equations
is also controlled by the exact Chern-Simons theory. In theyerturbatively starting from the vacuu¢®4), and this yields
AdS sector withA,<0 (1-7>0), the equationf(r,)*  the functionsf and ¢ displayed above. The goal of this sec-
=0 has one zer28], tion is to expand up to second order and prove the appear-

ance of the ternk g°/r* in Eq. (38), showing that the inter-
» NCo(l—7%)—7°—1 action terms between gravity and the gauge field have the
re= 1— 72 ' (34 desired asymptotic behavior.

(r—0) (33

which is real providedC,>1. The spectrum of the solution The ansatz and solution

then coincides with the Chern-Simons black hi@6,29 As we have seen, the correct dynamical theory Aois

linked to the torsion tensor. As usual when dealing with

Co=0: background(regulay : . . )
_ . N spacetimes with torsion we define
0<Cy<1l: naked(“conical”) singularities ) ) )
ap__ a a
Co=1: black holes WE=we) + (4D

ab i ; - a a
In summary, the deformation parameters important in wherew™(e) is the solution to the equatiode™+w",(e)

the asymptotic region producing “phenomenologically” in- /\eb_:O’ andx is related to the torsion aB*= Kp/\eP. As-

teresting solutions. Near the singularity the physics is conSUming thatej, is invertible, the relation betweefi;, and

trolled by the exact Chern-Simons theory. The functids &, is invertible.

regular atr=0 but the geometry is not. For example, the ~ The variables of this problem are thefy «*"andA. We

scalar curvature diverges B20] start by assuming the spherically symmetric ansatz for the
gauge field and metric

Co
R~ 5. (35) h(r)2
% ds?=—f(r)2dt?+ fgr—;zdr2+r2d03, (42)
It is worth noticing that this divergence is milder than that of
SchwarzschiloR~m/r?. A= — ¢(r)dt, (43

IV. THE CHARGED SOLUTION wheref, h and ¢ are functions to be determined.
The situation is more complicated for the torsion,
In this section we study chargeé ¢ 0) solutions of the

deformed Chern-Simons theory described by Eg$—(23).

We shall see that the interaction between the gauge field and

gravitational variables is, asymptotically, the usual minimalbecause this tensor has no prescribed symmetries between

coupling. Equation§21)—(23) have the asymptotic Reissner- {@,8} andw.. The problem is then to determine which com-

KaﬁpdzeaaKabMebﬁ, (44)

Nordstran solution,

1
ds?=—f(r)2dt?+ Wdr2+r2d93’ (36)
A=—¢(r)dt, (37)
where the leading terms d&fand ¢ are
C 2
f(r)=—Ar2+1—T§+k?—4 (39)
q
P(r)=—. (39

=

A is given in Eq.(25). The coupling constark turns out to
be

ponents in the irreducible decompositionsoWwill contribute
to the spherically symmetric solution. We have already seen
in EqQ. (26) that to first order, only the purely antisymmetric
part of k contributes. This is, however, no longer true in the
full solution.

In Appendix B we display a systematic procedure to find
« for the spherically symmetric solution. This ansatz has the
form,

Kapu=OaputZapUut 9uiaVp (45)

where # andz are both fully antisymmetric in their indices,

* 0= y(r)dt/\dr, (46)
z=dr/\dt, (47)
U=p(r)dt, (48)
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V=a(r)dr, 49 @ g
o) 49 u=k" (59

where * denotes Hodge’s duéh five dimensions, the dual

of @ is a two-form). ¢, 3, are unknown functions afto be ) P
determined. having the expected form, with’ =119/12-4/(37)]. At

The full ansatz then contains 6 functions of the radialthis order, the torsion is not fully antisymmetric, and there

coordinate, namely,andh appearing in the metrig2), ¢ is ~ &re aiso further corrections toand ¢,
the Coulomb potential in Eq43), and ¢, «, 8 appear in the

torsion. We now plug this ansatz in Eq81)—(23) and find, (ﬁ)_ 1“g? 60
unfortunately, a complicated non-linear system of equations T 3r6 (60)
which cannot be solved in a closed form. What we can do is
to analyze it perturbatively starting from the known back- 1 124C
ground(24). b=— q6 0 (61)
To this end, we expand each function in the ansatz up to 3ror
second order,
2 |3
© @ (@ = "aC, (62)
f2=u+ou+dlu, (50) 2r'r
(1) (2 4.2
h=1+ch+oh, (51) = I 63
riz’
(1) 2(2)
p=0cp+ad, (52) o g 2
(1) (1) B=- g (1—-Ar9). (64
Y=o y+a’y, (53
(1) (2) Note that at second order, the functibris not equal to
a=ca+oa, (54)  one, and thus the form of the met(i2) is not the standard
one. One can make a radial redefinitiofr)dr—dr which
(1) 2(2> leads to the metri¢36). (The correction irr2dQ) 5 is sublead-
B=oB+o°B, (55  ing.)

) ] ) ) The particular form of the coupling40) can be under-
whereo is the expansion parameter WhICh will be set equ_alstood from the Chern-Simons Lagrangi@). We freeze the
to one at the end« can be absorbed in the charges that will 5y itational variablee?, and replace the torsion in terms of
appear in the solutign At order zero, we set the anti—de E a5 in Eq.(26). Expanding to second order F one finds

Sitter background24) with various contributions td F F. For example, the terra, T2F
(0) yields *F F, while R%R,,A yields A, *F F. The sum of all
u=—Ar?+1. (56) terms produce the above coupling.

[A,is given in Eq.(25).]

We shall skip the detailed calculation of the equations
order by order because it is rather long and devoid of any We have shown in this paper that if the five-dimensional
interesting physics. Instead we present a summary of thgg] Chern-Simons supergravity action is deformed by the ad-

V. CONCLUSIONS

results. dition of cosmological term, then its asymptotic behavior
At order one, we find the five-dimensional Newton andcoincides with that of standard supergravity.
Coulomb potentials The role of torsion in providing charged solutions is par-

ticularly interesting. It has been shown[ib6] that a similar
mechanism holds in 11 dimensions. In this case, the three-
form [19,18 arises as the fully antisymmetric part of the
torsion.

where Cy and q are, respectively, proportional to the mass It would be interesting to find an exact solution to the
and electric charge. At this order only the fully antisymmet-equations in the charged case. This would allow us to char-

W ¢, @ q
u=--7, é=-3, (57)

r

-

ric part of torsion is different from zero, acterize the charged black hole solutions in Chern-Simons
theory. In particular, it would be interesting to check whether
w g ©O OO the deformatiorr is unimportant near the origin or ns in
y(r)= 2r3 47 B=h=0. (58) the uncharged cageand to study the singularity structure

and spectrum of the charged black hole. The existence of
At order two we obtain the back reaction from the gaugeextreme black holes and their supersymmetric properties
field to the metric would be particularly interesting.
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APPENDIX A: THE FIVE-DIMENSIONAL U (2,2
CHERN-SIMONS ACTION

The goal of this appendix is to give some details in the

derivation of the LagrangiafB) starting from Eq.(2). This

has been discussed [98,10]; however, there appear to be

PHYSICAL REVIEW D 65 044014

N> N matrix. The super trace @ is required to vanish and
hence TW—Tr A=0, but the individual traces o and .A
can be non-zero.

In what follows we set the spinor fields to zero. We shall
also discard th&&U(N) fields (traceless part ofd). For the
full Lagrangian se¢9,10].

A basis of 4<4 matrices satisfyingNl yo)'=—M 1y, is
given by the matricesy,, ya, andil,. We then expand

. L
W= AI4+ Ya— =Wy, 0,

2| 4 (A9)

some misprints in those references. Since in our applications

(see alsg30]) all terms and numerical factors are important,

we include here the derivation.
We use the Dirac matrices in five dimensions

{¥a,70}=—27ap (A1)
with 7,,=diag(—1,1,1,1,1). The following traces will be
needed:

Tr(yayp) = —47ap (A2)

TH(Y**yea) = — 483 (A3)
Tr(¥aYoYeYdYe) =4€ancde (A4)

W|th €01235 1 and Y5= YoVY1Y27Y3- Note that'yO: Yo Wh||e
yi=—4y, fori=1,2,3,5.y, is taken to be

1

Yo= (A5)

-1

1. The W(2,2) gauge field
The first step is to express t18U(2,2N) gauge field(2

in terms of the veilbein, spin connection and Abelian gaug
field A. By definition,() is a (N+4)X(N+4) complex ma-

trix satisfying

QD)'=-Qr, STrQ)=0, (AB)

where the N+4)X (N+4) matrixI" is

-2

o 1, (A7)

andly is the identity inN dimensions.
Conditions(A6) can be implemented by expandifiy in

the form[9]
W ¢
“:(—E A)

where We U(2,2), i.e., Wy,)T'=—Wy,o, ¢ is a Dirac
spinor in five dimensions =y¢"y,) and AT=—A is a

(A8)

i
A:_AlN,

N (A10)

whereA is an Abelian gauge field. Note that W=Tr A as
desired.e? andw?® are identified with the vielbein and spin
connection, respectively. It will also be convenient to define
the SU(2,2)~S0(4,2) field,
’ i a 1 ab
W= S1€Ya™ 7W ab,

2 (A11)

carrying the gravitational variables.

2. The Lagrangian

Setting the spinors to zero, the gauge fiékB) has a
block diagonal form and replacing in E(2), we obtain

L=L(W) + FFA (A12)

where

1 3 3
L(W)= =Tr| dWdWW+ EdWWBJr gW5 . (A13)

3

The U(2,2) field W contains the gravitational variables as

ewell as the Abelian gauge field,

[
_A|4

=W'+
WW4

(A14)
whereW' is given in Eq.(A11). There is a simple way to
write £(W) as a function oW’ and A. We shall prove the
following formula:

i i
LIW)=L(W")~— Ixa2FFAT ZTr(R’R’)A (A15)

whereR'=dW' +W'W'. The first two terms in Eq(A15)

are obvious becausg is a polynomial inW which must
reduce toL(W') if A=0, and toL(A) if W' =0. The inter-
action term can be determined as follows. Sindé&

e SU(2,2) with TrR’=0 andA is Abelian, the curvatur&’

can only appear quadratically in the interaction term. This
implies thatA must appear linearly and therefore it can be
treated as infinitesimal. The well known formula for the
variation of the Chern-Simons action,

044014-6
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LOW' +X)=L(W')+Tr(R'R'X) (A16)

can then be used and leads to the third term in Bd.5)
with X=iA/4. Next we note thatR'=dW +WW’

=(i/2)T2y,— (1/4)R*°y,, and hence
o 1_ab D a
THR'R') == SR™/\Rap+ T\ T, (A17)

Finally, we need to writeC(W') in terms ofe® andw?”.
Up to boundary terms one has the equa]@y20]

1 3 3
ST AW dW'W' + SdW' W3+ W'

1 ab cd e 2 ab c d e
:koEade l—R AR\ e +WR AetN\el/\e

1
+ g5 e?/\ePAec\ed/\e® (A18)

whereW’ is related ton?® ande? in Eq. (A11). The constant
ko can be fixed by choosing®’=de?=0. Comparing both

sides one findky=i/8. Collecting all terms one arrives at

the final formula displayed in Eq3).

APPENDIX B: THE ANSATZ FOR

The correct form forxaP

in the spherically symmetric

PHYSICAL REVIEW B6 044014

At order zero we have the backgrou(ith),

© L0 (0

ﬁabzl_zea/\ eb. (B4)

The torsion is zero at this order; hence the curvature depends

0
only on the vielbein(e)a. By looking at the equations of
motion order by order we will be able to find the form of
at each order.
At order one, the torsior and electromagnetic fieldl are
coupled through Eq22). We already encountered this equa-

(1)
tion in Eq. (26). In particular, this means that ‘Zb is fully
antisymmetric,

(1) (1)

= ap
K yvp= €pvpapF .

(B5)

(1)
Thus, given the Coulomb ansatz fév, the first order func-
1

(1)
tion « is completely determined.
At order two, the equation for the torsig@2) gives

© © @ 0 © @ D (1
TEabcdfea/\ eb/\TC:Ted/\ef/\F+Rdf/\F

@

— €apcatRPA T (B6)

ansatz can be obtained via a systematic expansion around the

deformed backgroun4). We consider the expansion

© @ 2
e?=ed+ged+gle? (B1)
(1) (2)
A=cA+0°’A (B2)
(1) (2)
k3= g k34 52 P, (B3)

2 (2)
From this equation we can solvE? in terms of F and the
first order fields. Since the spherically symmetric formrof
is known at all orders from this equation we can find the

(2) . L .
non-zero components ok . This calculation is straightfor-

(2)
ward and we shall not present the details. One finds that
contains a trace, and a mixed component. The explicit form
for the full « is given in Eq.(45).
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