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Charged solutions in 5D Chern-Simons supergravity
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A family of solutions with mass and electric charge of five-dimensional Chern-Simons supergravity is
displayed. The action contains an extra term that changes the value of the cosmological constant, as considered
by Horava. It is shown that the solutions approach asymptotically the Reissner-Nordstro¨m spacetime. The role
of the torsion tensor in providing charged solutions is stressed.
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I. INTRODUCTION

The Chern-Simons formulation of three-dimension
gravity @1,2# has been a useful tool to understand vario
issues in 3D gravity. The Brown-Henneaux@3# conformal
symmetry@4# ~see also@5#!, the Liouville boundary action
@4#, and the dynamical~global! degrees of freedom@2# have
simple descriptions in the connection approach. The bl
hole entropy problem also has interesting descriptions in
formulation @6–8#.

In five dimensions@9#, and actually in all odd dimension
@9–11#, there exist Chern-Simons formulations for grav
and supergravity. These theories have a number of interes
formal properties. For example, it can be shown that
group of asymptotic symmetries, under certain spec
boundary conditions, is the Wess-Zumino-Witten (WZW4
algebra @12–15#. This yields a natural extension of th
known relation between 3D Chern-Simons theory and
affine Kac-Moody algebra. Other interesting properties
this theory are the fact that the supersymmetry algebra cl
off shell, and the invariance of the action is explicit.

The problem with higher-dimensional Chern-Simons
pergravities is that they are not equivalent to standard su
gravities. Since supergravity is not a fundamental theory
only an effective field theory, this should not be a reason
exclude Chern-Simons supergravity as an interesting fi
theory. However, it would be desirable to find that stand
supergravity arises from Chern-Simons supergravity in so
limit; for example, as a low energy approximation on som
background.

In @16# the 11-dimensional case has been studied. It w
shown that if the 11-dimensional Chern-Simons supergra
action is deformed by the addition of a cosmological term
considered by Horava@17#, then its linear behavior aroun
the new anti–de Sitter background contains a three-form
isfying the correct equations. The fermion and graviton eq
tions expanded around this background are also the stan
ones. This result then suggests a relation between stan
@18# and Chern-Simons@10# supergravity.

The aim of this paper is to test other aspects of the i
introduced in@16#, in the simpler setting of five-dimensiona
Chern-Simons supergravity. We shall consider theU(2,2)
;U(1)3SO(4,2) Chern-Simons action and prove that in
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particular background it reproduces Einstein’s theo
coupled to a gauge field. In particular, the spherically sy
metric configurations approach the Reissner-Nordstr¨m
spacetime.

The key input in this paper, as in@16#, is the introduction
of a symmetry breaking term that changes the value of
cosmological constant. A similar modification was cons
ered in @17# via the coupling of Wilson lines to the action
Our goal is to point out that once this term is added to
action, then its spectrum around the new anti–de Sitter ba
ground coincides with that of standard supergravity. We sh
also see that the torsion plays a key role in providing
correct quadratic kinetic term for the Abelian gauge field.

We stress that we do not claim that standard and Ch
Simons supergravity may be equivalent. Our claim is that
asymptotic behavior of Chern-Simons supergravity coinci
with standard supergravity and thus it is a ‘‘phenomenolo
cally’’ interesting theory. Near the singularity~where stan-
dard supergravity breaks down! both theories do differ.

In Sec. II we shall review the Chern-Simons action and
solutions with spherical symmetry. In Sec. III we introdu
the deformed theory and review its uncharged solutions
Sec. IV we introduce theU(1) gauge field, within the Chern
Simons approach, and show that its interactions with
gravitational variables are the correct ones.

II. THE ACTION AND EQUATIONS OF MOTION

A. The exact Chern-Simons action

Let G be a Lie algebra andV a one-form with values on
G. The Chern-Simons action in five dimensions is defined

I CS5 i E LCS ~1!

where

LCS5
1

3
TrS dV dV V1

3

2
dV V31

3

5
V5D . ~2!

This Lagrangian satisfiesdLCS5(1/3)Tr(R̂`R̂`R̂) and
dLCS5Tr(R̂`R̂`dV) where R̂5dV1V`V. For our
choice ofV ~see Appendix A!, the factori in Eq. ~1! makes
the action real.

The applications of Eq.~2! to five-dimensional supergrav
ity follow from the observation@19,9# that the superalgebra
©2002 The American Physical Society14-1
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SU(2,2uN) contains the anti–de Sitter group. For this cho
of the Lie algebra, the action~2! yields a Lovelock type
theory of gravity coupled to fermions and some gauge fie
The whole action is invariant under adjoint transformatio
acting onV and is thus supersymmetric.

We shall be interested in the bosonic degrees of freed
in particular in the corresponding action associated to the
algebraU(2,2) containing the gravitational variables plus
Abelian gauge field. The Lagrangian expressed in terms
theea,wab and the Abelian fieldA is @9# ~see Appendix A for
a detailed derivation!

iLCS5 iLG1 iLA1 iLI ~3!

where

iLG52
1

8
eabcdeS 1

l
Rab`Rcd`ee1

2

3l 3 Rab`ec`ed`ee

1
1

5l 5 ea`eb`ec`ed`eeD ~4!

iLA52
x

3
A`F`F ~5!

iLI5
1

8
Rab`Rab`A2

1

4l 2 eaTa`F. ~6!

andx5N222422.
LG is the purely gravitational Lagrangian. This term is

Chern-Simons Lagrangian in its own right for the gro
SO(4,2). Note that both the Hilbert and cosmological ter
are present.LG can also be regarded as a Lovelock Lagra
ian with a prescribed choice of coefficients. This choice
coefficients have two important consequences:~i! they en-
large the local symmetry from LorentzSO(4,1) toSO(4,2),
~ii ! the equations of motion have the structure (R1L)250
making the anti–de Sitter background degenerate.

LA is an Abelian CS Lagrangian which is also present
the standard five-dimensional supergravity.

LI is the interaction term betweenA and the gravitationa
variables. Up to a boundary term, this piece can also
written as@R̄abR̄ab2(2/l 2)TaTa#A/4.

Varying the Lagrangian~3! with respect toea, wab and
A, one obtains the equations of motion

eabcdeR̄
ab`R̄cd52

4

l
Te`F, ~7!

1

l
eabcdeR̄

ab`Tc5R̄dè F, ~8!

1

2
Rab`Rab2

1

l 2 d~ea`Ta!54xF`F, ~9!

respectively.Ta5Dea is the torsion tensor,F5dA and

R̄ab5Rab1
1

l 2 ea`eb ~10!
04401
s.
s

,
ie

of

s
-
f

e

with Rab5dwab1w c
a wcb. Note that all coefficients in~7!–

~9! are fixed ~up to trivial rescalings! by supersymmetry.
Equations~7!–~9! have the generic form

gabcF
b`Fc50 ~11!

whereFaPU(2,2) andgabc is an invariant tensor.

B. Chern-Simons black holes

In the uncharged case,F50, black holes solutions asso
ciated with ~7!–~9! have been discussed in@20#. Let us
briefly review and extend to the caseFÞ0 @21# the solutions
found in@20#. This is instructive because it gives the first hi
that the exact Chern-Simons theory described by Eq.~2!
does not reproduce Einstein’s gravity.

Consider the spherically symmetric ansatz

ds252 f ~r !2dt21
h~r !2

f 2~r !
dr21r 2dV3 ~12!

A52f~r !dt, ~13!

and zero torsion. Replacing in~7!–~9! one finds the solution
for the functionsf , h andf,

f ~r !25
r 2

l 2 1 f 0 , ~14!

h~r !51, ~15!

f~r !5f0 , ~16!

where f 0 andf0 are arbitrary constants.
From this solution we learn that the spherically symmet

Abelian field does not couple to the gravitational variabl
and the metric is not asymptotically Schwarzschild-AdS. T
only allowed perturbation is a constant in the functionf (r )2,
which is not interesting from a ‘‘phenomenological’’ point o
view.

Near the singularity, this solution takes the form

ds252 f 0 dt21
1

f 0
dr21r 2dV3 . ~17!

If f 051 this is regular. For other values off 0 one finds
‘‘conical’’ singularities in the planer ,w. If f 0,0 then the
singularity lies behind the horizon. Below, we shall modi
the Chern-Simons action in order to produce asymptotic
Schwarzschild spacetimes. However, the solution~12! will
reappear in the near singularity~and horizon! region.

Equations ~7!–~9! differ drastically from the standard
Einstein-electromagnetic system. Consider, for example
Abelian field A propagating on the gravitational AdS bac
ground withR̄ab5Ta50. The gravitational equations~7! and
~8! are identically satisfied while the gauge field equati
yield

xF`F50, ~18!
4-2
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CHARGED SOLUTIONS IN 5D CHERN-SIMONS SUPERGRAVITY PHYSICAL REVIEW D65 044014
which is quite different from the expected equation

d* F5F`F. ~19!

III. THE DEFORMED CHERN-SIMONS THEORY

A. The action and equations of motion

As shown in the preceding section, the exact Che
Simons theory does not have asymptotically Schwarzsc
solutions, and the gauge fieldA does not satisfy its standar
equations of motion. These two problems can be solve
once by breaking the symmetry of the Chern-Simons act

Suppose we add to Eq.~2! a contribution to the cosmo
logical term,

Lt5LCS1
t2

40l 5
eabcdee

a`•••`ee ~20!

wheret is a dimensionless number parametrizing the de
mation. An interesting mechanism to generate this term
been proposed in@17# via the coupling of Wilson lines. Fo
our purposes it will not be necessary to fixt to any particular
value, although some constraints will be found below.

The new equations of motion are

eabcdeS R̄ab`R̄cd2
t2

l 4 ea`eb`ec`edD52
4

l
Te`F ~21!

1

l
eabcdeR̄

ab`Tc5R̄dè F ~22!

1

2
Rab`Rab2

1

l 2d~ea`Ta!5xF`F ~23!

B. Torsion and a dynamical gauge field

Let us first show that the new equations yield the desi
equation~19! for the gauge field@22#. We freeze the gravi-
tational degrees of freedom (ea) and study the dynamics o
A. We shall also discard all quadratic terms inF and Ta

keeping only the linear terms.
Due to the new term in Eq.~21! the correct gravitationa

background is notR̄ab50 but

R̄ab5
t

l 2 ea`eb, ~24!

corresponding to a constant curvature spacetime with

Lt52
12t

l 2 . ~25!

Note that fort.0 big enoughL becomes positive and th
background is de Sitter.

We now replace Eq.~24! in Eq. ~22! and obtain

t

l
eabcdee

a`eb`Tc5ted`ee`F⇒ 2

l
ea`Ta5* F

~26!
04401
-
ld

at
n.

r-
as

d

provided tÞ0. The second equality follows straightfo
wardly from the first one. Note, in particular, thatTm nr

5eamT nr
a is totally antisymmetric. Finally, replacing Eq

~26! in Eq. ~23! we obtain the desired~linear! equation,

d* F50 ~27!

for an Abelian gauge field@25#.
The main lesson of this result is that the spin connect

contains both the second order structure for the graviton
the second order structure for the gauge field. In fact,
spin connection has the form

wab5wab~e!1kab~A! ~28!

wherewab(e) is the torsion-free part, whilek(A) is the tor-
sion and depends onA as in Eq.~26!.

When replacing Eq.~28! back into the action, the term
wab(e) produces the standard graviton second order kin
term *eR(e), while kab(A) produces the term*eFmnFmn .
Interestingly, in eleven dimensions, the supergravity thr
form @18# arises via a similar mechanism from the torsi
@16# in a deformed Chern-Simons theory. This mechani
has also appeared in the group manifold approach to su
gravity @23#.

C. Uncharged exact solution

Let us now setF5Ta50 and study the gravitational so
lutions of the deformed theory. The solution to Eqs.~21!–
~23! with spherical symmetry is

ds252 f ~r !2dt21
1

f ~r !2 dr21r 2dV3 ~29!

with @26,27#

f ~r !2511
r 2

l 2 2tAr 4

l 4 1
C0

l 2t2 ~30!

andC0 is an arbitrary integration constant proportional to t
mass. In the limitt→0 we recover the solution of the un
broken theory~14!, and for C050 we recover the back
ground~24! of the deformed theory. In what follows we sha
only consider the case

t.0 ~31!

since otherwisef (r )2 has no real zeros and no horizon.
The interesting property of this solution is that for larg

values ofr, the functionf (r )2 takes the form

f ~r !252Lt r 2112
2m

r 2 1OS 1

r 6D ~r→`! ~32!

coinciding, as promised, with the asymptotic form of t
Schwarschild-AdS spacetime in five dimensions@m
5C0 /(4t) and L is given in Eq.~25!#. It is interesting to
note that the term 1/r 4 is absent in the asymptotic expansio
of f (r )2. As expected, this term will arise in the charge
case.
4-3
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On the other hand, near the singularity (r→0) the defor-
mation parametert becomes unimportant,

f ~r !2512
C0

1/2

l
~r→0! ~33!

and the solution approaches Eq.~17!. The horizon structure
is also controlled by the exact Chern-Simons theory. In
AdS sector withLt,0 (12t.0), the equationf (r 1)2

50 has one zero@28#,

r 1
2 5

AC0~12t2!2t221

12t2
, ~34!

which is real providedC0.1. The spectrum of the solutio
then coincides with the Chern-Simons black hole@20,29#

C050: background~regular!

0,C0,1: naked ~‘‘conical’’ ! singularities

C0>1: black holes

In summary, the deformation parametert is important in
the asymptotic region producing ‘‘phenomenologically’’ in
teresting solutions. Near the singularity the physics is c
trolled by the exact Chern-Simons theory. The functionf is
regular atr 50 but the geometry is not. For example, t
scalar curvature diverges as@20#

R;
C0

l 2r 2 . ~35!

It is worth noticing that this divergence is milder than that
SchwarzschildR;m/r 4.

IV. THE CHARGED SOLUTION

In this section we study charged (FÞ0) solutions of the
deformed Chern-Simons theory described by Eqs.~21!–~23!.
We shall see that the interaction between the gauge field
gravitational variables is, asymptotically, the usual minim
coupling. Equations~21!–~23! have the asymptotic Reissne
Nordström solution,

ds252 f ~r !2dt21
1

f ~r !2 dr21r 2dV3 , ~36!

A52f~r !dt, ~37!

where the leading terms off andf are

f ~r !52Lr 2112
C0

r 2 1k
q2

r 4 ~38!

f~r !5
q

r 2 . ~39!

L is given in Eq.~25!. The coupling constantk turns out to
be
04401
e

-

f

nd
l

k5
l 2

20S 292
24

t D . ~40!

In particular, we find the conditiont.24/29 in order to have
the correct sign.

The full set of equations whenFÞ0 is an extremely com-
plicated non-linear system. We have solved these equat
perturbatively starting from the vacuum~24!, and this yields
the functionsf andf displayed above. The goal of this se
tion is to expand up to second order and prove the app
ance of the termk q2/r 4 in Eq. ~38!, showing that the inter-
action terms between gravity and the gauge field have
desired asymptotic behavior.

The ansatz and solution

As we have seen, the correct dynamical theory forA is
linked to the torsion tensor. As usual when dealing w
spacetimes with torsion we define

wab5wab~e!1kab ~41!

where wab(e) is the solution to the equationdea1w b
a (e)

`eb50, andk is related to the torsion asTa5kb
a`eb. As-

suming thatem
a is invertible, the relation betweenTmn

a and
km

ab is invertible.
The variables of this problem are thenea, kab andA. We

start by assuming the spherically symmetric ansatz for
gauge field and metric

ds252 f ~r !2dt21
h~r !2

f ~r !2 dr21r 2dV3 , ~42!

A52f~r !dt, ~43!

where f , h andf are functions to be determined.
The situation is more complicated for the torsion,

kab m5eaak m
ab ebb , ~44!

because this tensor has no prescribed symmetries betw
$a,b% andm. The problem is then to determine which com
ponents in the irreducible decomposition ofk will contribute
to the spherically symmetric solution. We have already s
in Eq. ~26! that to first order, only the purely antisymmetr
part of k contributes. This is, however, no longer true in t
full solution.

In Appendix B we display a systematic procedure to fi
k for the spherically symmetric solution. This ansatz has
form,

kab m5uabm1zabUm1gm[aVb] ~45!

whereu andz are both fully antisymmetric in their indices

* u5c~r !dt`dr, ~46!

z5dr`dt, ~47!

U5b~r !dt, ~48!
4-4
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V5a~r !dr, ~49!

where * denotes Hodge’s dual~in five dimensions, the dua
of u is a two-form!. c,b,a are unknown functions ofr to be
determined.

The full ansatz then contains 6 functions of the rad
coordinate, namely,f andh appearing in the metric~42!, f is
the Coulomb potential in Eq.~43!, andc,a,b appear in the
torsion. We now plug this ansatz in Eqs.~21!–~23! and find,
unfortunately, a complicated non-linear system of equati
which cannot be solved in a closed form. What we can d
to analyze it perturbatively starting from the known bac
ground~24!.

To this end, we expand each function in the ansatz up
second order,

f 25 u
~0!

1s u
~1!

1s2 u
~2!

, ~50!

h511s h
~1!

1s2 h
~2!

, ~51!

f5s f
~1!

1s2 f
~2!

, ~52!

c5s c
~1!

1s2 c
~1!

, ~53!

a5s a
~1!

1s2 a
~2!

, ~54!

b5s b
~1!

1s2 b
~2!

, ~55!

wheres is the expansion parameter which will be set eq
to one at the end (s can be absorbed in the charges that w
appear in the solution!. At order zero, we set the anti–d
Sitter background~24! with

u
~0!

52Ltr
211. ~56!

@Lt is given in Eq.~25!.#
We shall skip the detailed calculation of the equatio

order by order because it is rather long and devoid of
interesting physics. Instead we present a summary of
results.

At order one, we find the five-dimensional Newton a
Coulomb potentials

u
~1!

52
C0

r 2 , f
~1!

5
q

r 2 , ~57!

whereC0 and q are, respectively, proportional to the ma
and electric charge. At this order only the fully antisymm
ric part of torsion is different from zero,

c
~1!

~r !5
q

2r 3 , a
~1!

5 b
~1!

5 h
~1!

50. ~58!

At order two we obtain the back reaction from the gau
field to the metric
04401
l

s
is
-

to

l
l

s
y
e

-

e

u
~2!

5k8
q2

r 4 ~59!

having the expected form, withk85 l 2@19/1224/(3t)#. At
this order, the torsion is not fully antisymmetric, and the
are also further corrections toh andf,

h
~2!

5
l 4q2

3r 6t
, ~60!

f
~1!

52
l 2qC0

3r 6t
, ~61!

c
~2!

5
l 3qC0

2r 7t
, ~62!

a
~2!

5
l 4q2

r 7t
, ~63!

b
~2!

52
4l 4q2

r 7t
~12Lr 2!. ~64!

Note that at second order, the functionh is not equal to
one, and thus the form of the metric~42! is not the standard
one. One can make a radial redefinitionh(r )dr→dr which
leads to the metric~36!. ~The correction inr 2dV3 is sublead-
ing.!

The particular form of the coupling~40! can be under-
stood from the Chern-Simons Lagrangian~3!. We freeze the
gravitational variableea, and replace the torsion in terms o
F as in Eq.~26!. Expanding to second order inF, one finds
various contributions to* F F. For example, the termeaTaF
yields * F F, while RabRabA yieldsLt * F F. The sum of all
terms produce the above coupling.

V. CONCLUSIONS

We have shown in this paper that if the five-dimension
@9# Chern-Simons supergravity action is deformed by the
dition of cosmological term, then its asymptotic behav
coincides with that of standard supergravity.

The role of torsion in providing charged solutions is pa
ticularly interesting. It has been shown in@16# that a similar
mechanism holds in 11 dimensions. In this case, the th
form @19,18# arises as the fully antisymmetric part of th
torsion.

It would be interesting to find an exact solution to th
equations in the charged case. This would allow us to ch
acterize the charged black hole solutions in Chern-Sim
theory. In particular, it would be interesting to check wheth
the deformationt is unimportant near the origin or not~as in
the uncharged case!, and to study the singularity structur
and spectrum of the charged black hole. The existence
extreme black holes and their supersymmetric proper
would be particularly interesting.
4-5
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MÁXIMO BAÑ ADOS PHYSICAL REVIEW D 65 044014
ACKNOWLEDGMENTS

The author would like to thank A. Gomberoff for usef
discussions. This work was partially supported by grant N
1000744~FONDECYT, Chile!.

APPENDIX A: THE FIVE-DIMENSIONAL U „2,2…
CHERN-SIMONS ACTION

The goal of this appendix is to give some details in t
derivation of the Lagrangian~3! starting from Eq.~2!. This
has been discussed in@9,10#; however, there appear to b
some misprints in those references. Since in our applicat
~see also@30#! all terms and numerical factors are importa
we include here the derivation.

We use the Dirac matrices in five dimensions

$ga ,gb%522hab ~A1!

with hab5diag(21,1,1,1,1). The following traces will be
needed:

Tr~gagb!524hab ~A2!

Tr~gabgcd!524d [cd]
[ab] ~A3!

Tr~gagbgcgdge!54eabcde ~A4!

with e0123551 andg55g0g1g2g3. Note thatg0
†5g0 while

g i
†52g i for i 51,2,3,5.g0 is taken to be

g05S 1

1

21

21

D . ~A5!

1. The U„2,2… gauge field

The first step is to express theSU(2,2uN) gauge fieldV
in terms of the veilbein, spin connection and Abelian gau
field A. By definition,V is a (N14)3(N14) complex ma-
trix satisfying

~VG!†52VG, STr~V!50, ~A6!

where the (N14)3(N14) matrix G is

G5S g0 0

0 I N
D ~A7!

and I N is the identity inN dimensions.
Conditions~A6! can be implemented by expandingV in

the form @9#

V5S W c

2c̄ AD ~A8!

where WPU(2,2), i.e., (Wg0)†52Wg0 , c is a Dirac
spinor in five dimensions (c̄5c†g0) and A †52A is a
04401
.

ns
,

e

N3N matrix. The super trace ofV is required to vanish and
hence TrW2Tr A50, but the individual traces ofW andA
can be non-zero.

In what follows we set the spinor fields to zero. We sh
also discard theSU(N) fields ~traceless part ofA). For the
full Lagrangian see@9,10#.

A basis of 434 matrices satisfying (Mg0)†52Mg0 is
given by the matricesiga , gab and i I 4. We then expand

W5
i

4
A I41

i

2l
eaga2

1

4
wabgab , ~A9!

A5
i

N
A IN , ~A10!

whereA is an Abelian gauge field. Note that TrW5Tr A as
desired.ea andwab are identified with the vielbein and spi
connection, respectively. It will also be convenient to defi
the SU(2,2);SO(4,2) field,

W85
i

2l
eaga2

1

4
wabgab , ~A11!

carrying the gravitational variables.

2. The Lagrangian

Setting the spinors to zero, the gauge field~A8! has a
block diagonal form and replacing in Eq.~2!, we obtain

L5L~W!1
i

3N2 FFA ~A12!

where

L~W!5
1

3
TrS dWdWW1

3

2
dWW31

3

5
W5D . ~A13!

The U(2,2) field W contains the gravitational variables a
well as the Abelian gauge field,

W5W81
i

4
A I4 ~A14!

whereW8 is given in Eq.~A11!. There is a simple way to
write L(W) as a function ofW8 andA. We shall prove the
following formula:

L~W!5L~W8!2
i

3342 FFA1
i

4
Tr~R8R8!A ~A15!

whereR85dW81W8W8. The first two terms in Eq.~A15!
are obvious becauseL is a polynomial inW which must
reduce toL(W8) if A50, and toL(A) if W850. The inter-
action term can be determined as follows. SinceW8
PSU(2,2) with TrR850 andA is Abelian, the curvatureR8
can only appear quadratically in the interaction term. T
implies thatA must appear linearly and therefore it can
treated as infinitesimal. The well known formula for th
variation of the Chern-Simons action,
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L~W81X!5L~W8!1Tr~R8R8X! ~A16!

can then be used and leads to the third term in Eq.~A15!
with X5 iA/4. Next we note that R85dW81W8W8

5( i /2)Taga2(1/4)R̄abgab and hence

Tr~R8R8!52
1

2
R̄ab`R̄ab1Ta`Ta . ~A17!

Finally, we need to writeL(W8) in terms ofea andwab.
Up to boundary terms one has the equality@9,20#

1

3
TrS dW8dW8W81

3

2
dW8W831

3

5
W85D

5k0eabcdeS 1

l
Rab`Rcd`ee1

2

3l 3 Rab`ec`ed`ee

1
1

5l 5 ea`eb`ec`ed`eeD ~A18!

whereW8 is related towab andea in Eq. ~A11!. The constant
k0 can be fixed by choosingwab5dea50. Comparing both
sides one findsk05 i /8. Collecting all terms one arrives a
the final formula displayed in Eq.~3!.

APPENDIX B: THE ANSATZ FOR k

The correct form forkab in the spherically symmetric
ansatz can be obtained via a systematic expansion aroun
deformed background~24!. We consider the expansion

ea5 e
~0!

a1s e
~1!

a1s2 e
~2!

a ~B1!

A5s A
~1!

1s2 A
~2!

~B2!

kab5s k
~1!

ab1s2 k
~2!

ab. ~B3!
tu

04401
the

At order zero we have the background~24!,

R̄
~0!

ab5
t

l 2 e
~0!

a` e
~0!

b. ~B4!

The torsion is zero at this order; hence the curvature depe

only on the vielbein e
(0)

a. By looking at the equations o
motion order by order we will be able to find the form ofk
at each order.

At order one, the torsionk and electromagnetic fieldA are
coupled through Eq.~22!. We already encountered this equ

tion in Eq. ~26!. In particular, this means thatk
(1)

m
ab is fully

antisymmetric,

k
~1!

mnr5emnrab F
~1!

ab. ~B5!

Thus, given the Coulomb ansatz forA
(1)

, the first order func-

tion k
(1)

is completely determined.
At order two, the equation for the torsion~22! gives

teabcd f e
~0!

a` e
~0!

b` T
~2!

c5t e
~0!

d` e
~0!

f` F
~2!

1 R̄
~1!

d f` F
~1!

2eabcd fR̄
~1!

ab` T
~1!

c. ~B6!

From this equation we can solveT
(2)

a in terms of F
(2)

and the
first order fields. Since the spherically symmetric form ofF
is known at all orders from this equation we can find t

non-zero components ofk
(2)

. This calculation is straightfor-

ward and we shall not present the details. One finds thak
(2)

contains a trace, and a mixed component. The explicit fo
for the full k is given in Eq.~45!.
x,
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