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Abstract
Multipartite quantum correlation is one of the most relevant indicators of the quantumness of a
system in many body systems. This remarkable feature is in general difficult to characterize
and the known definitions are hard to measure. Besides the efforts dedicated to solve this
problem, the question of which is the best approach remains open. In this paper, we study
the global quantum discord (GQD) as a bipartite and multipartite measure. We also check
the limits of this definition and present an experimental scheme to determine the maximum of
the GQD via the measurements of the system’s excitations, during the time evolution of the
present system.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum correlations have been a hot topic over the last
few years due to their powerful applications in quantum
information and computational tasks [1, 2]. For bipartite states,
different measures such as entanglement (E) [3] and quantum
discord (QD) [4–6] are already well understood. Although,
sometimes for multipartite systems, there are correlations
which are not detected by the previous measurements.
We could in principle have different ways of quantifying
multipartite quantum correlations. One of them could be by
measuring bipartite and tripartite correlations at the same time
or by defining a genuine measure of multipartite correlations,
without the bipartite ones. The second approach has received
wide attention, probably because of the intuitive generalization
of the bipartite case.

Many attempts to extend bipartite correlations to the
multipartite case have been made [7–13], but still questions
remain about these generalizations. The first was the tangle
approach [7], which is related with E, but it is difficult to
compute for mixed states. Also in [8], a generalization of the
previous Wootters formula [7] was presented, having the same

problem with mixed states, being a good measure only for
bound estimation. Recently, a method for the construction of
multipartite E witnesses was introduced in [12]. However, we
are more interested in multipartite correlations related with
QD, since it seems to be more robust than the E against
decoherence [14]. Among the different endeavours to find a
good measure of the correlations, is global quantum discord
(GQD) [13]—the most promising one—because it is a straight
extension from the bipartite to the multipartite case, it is
symmetric and obeys monogamy properties. These unique
advantages suggest that GQD is a resource for quantum
information processing. More recently, much attention has
been paid to the application of GQD and its connection
with criticality [13, 15], as the detection of phase transitions
[16, 17]. Nevertheless, some questions are open, for example:
is it possible to measure GQD experimentally, or know when
it reaches its maximum value? To answer this question, we
first will study the distribution of excitations in the system,
and see how this distribution can affect GQD. We also propose
a model, which is a cavity QED system, where GQD has not
been studied yet.
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Figure 1. Three coupled cavity–atom systems.

Over the last few decades, cavity QED systems
have been extensively researched, and several advantages,
theoretical and experimental, are known about these systems
[18–20]. The development of experimental techniques for their
manipulation with an unprecedented level of control, as well
as performing measurements inside the cavity are desirable
features when choosing our model.

This paper is organized as follows: in section 2, we
describe our system, the Hamiltonian and write a generalized
master equation, where the Lindblad terms result from the
coupling of each cavity to its own thermal reservoir at zero
temperature. In section 3, we give a brief outline of GQD.
In section 4, we present the main results of this paper, related
to the applicability of GQD and we discuss our ability to gain,
experimentally, information about this magnitude. Finally,
section 5 is devoted to the conclusions.

2. The model

We have three coupled cavities, as shown in figure 1, where
each cavity interacts with a single atom and its own reservoir.
We choose Rydberg atoms with principal quantum numbers 51
and 50, where the transition is at 51, 1 GHz. The atom cavity
strength coupling (g), corresponds to an interaction time of
1 μs. The photon lifetime inside the cavity is Tcav = 1 ms
[21, 22]. The coupling between the cavities (J) is about 10−2g.
We scale the time in the figures with γ = 105 Hz.

The Hamiltonian of the system, in the basis of the dressed
states (polaritonic) [23], is given by

H =
3∑

i=1

(ωi − gi)|E〉i〈E| + +
2∑

i=1

Ji

2

(
L†

i Li+1 + L−
i L†

i+1

)
(1)

where |Ei〉 = 1√
2
(|1, g〉i − |0, e〉i) and |Gi〉 = |0, g〉i are the

dressed states, corresponding to excited and ground states,
respectively. The other operators L†

i = |Ei〉〈Gi| and L−
i =

|Gi〉〈Ei| are to create or destroy those states. So we can
consider polaritons as two-level systems. We can just have
one photon, at most, because due to photon blockade, double
or higher occupancy of the polaritonic states is prohibited
[24, 25].

The main source of dissipation originates from the leakage
of the cavity photons due to imperfect reflectivity of the cavity
mirrors. A second source of dissipation, corresponding to
atomic spontaneous emission, will be neglected assuming long
atomic lifetimes.

An approach to modelling the above mentioned losses, in
the presence of a single mode quantized cavity field, is using

the microscopic master equation, which goes back to the ideas
of Davies on how to describe the system–reservoir interactions
in a Markovian master equation [26]. For a three-cavity system
at zero temperature, the master equation is [14, 27]

ρ̇(t) = −i [H, ρ(t)] +
3∑

n=1

∞∑
ω>0

γn(ω)

×
(

An(ω)ρ(t)A†
n(ω) − 1

2

{
A†

n(ω)An(ω), ρ(t)
})

(2)

where An correspond to the Davies operators. The n sum is
over all the dissipation channels and the decay rates γn(ω)

are the Fourier transform of the correlation functions of the
environment [28].

The An operators are calculated as follows:

An(ωαβ ) = |φ〉α〈φ|an|φ〉β〈φ| (3)

where |φ〉α are the eigenstates of the Hamiltonian, with λα

their eigenvalues, and ωαβ = λβ − λα . The operator an is the
destruction operator acting on the cavity mode. As we set the
temperature to be zero, γn(ω) does not change significantly
with the frequency and thus we assume it to be a constant (see
[20] for thermal effects in equation (3)).

3. Global quantum discord

In the original proposal [4], QD was defined as a mismatch
between quantum analogues of classically equivalent
expressions of the mutual information

QD(ρAB) = I(ρAB) − J(ρAB). (4)

The mutual information I(ρAB) of two subsystem can be
expressed as

I(ρAB) = S(ρA) − S(ρA|ρB), (5)

where S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy,
and S(ρA|ρB) = S(ρAB) − S(ρB).

The classical correlation J(ρAB) is defined as the
maximum information that one can obtain from A by
performing a measurement on B, and in general this definition
is not symmetric:

J(ρAB) = max
{	k

B}
[S(ρA) − S(ρAB|{	k

B})], (6)

where {	k
B} is a complete set of projectors performed on

subsystem B and S(ρAB|{	k
B}) = ∑

k pkS(ρk
A). The reduced

density operator ρk associated with the measurement result k
is

ρk = 1

pk
(I ⊗ 	k

B)ρ(I ⊗ 	k
B) (7)

with I the identity operator.
Notice that I(ρAB) can be rewritten in terms of the relative

entropy, S(ρ‖σ ) = Tr(ρ log2 ρ − ρ log2 σ ), as

I(ρAB) = S(ρAB‖ρA ⊗ ρB). (8)

Also, by symmetrizing the definition through the
introduction of bilateral measurements, and after some algebra
we get a new definition of QD, given by

GQD(ρAB) = min
{	 j

A⊗	k
B}

[S(ρAB‖�AB(ρAB))

− S(ρA‖�A(ρA)) − S(ρB‖�B(ρB))] (9)

2
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Figure 2. Genuine tripartite GQD increases from zero to one when
the initial state goes from the Bell to GHZ state.

with �(ρAB) = ∑
j,k(	

j
A⊗	k

B)ρAB(	
j
A⊗	k

B). From equation
(9) the generalization to multipartite discord is evident,

GQD(ρA1...AN ) = min
{	k}

[
S(ρA1...AN ‖�(ρA1...AN ))

−
N∑

j=1

S(ρAj‖�(ρAj ))

]
(10)

where �(ρAj ) = ∑
k 	k

Aj
ρAj	

k
Aj

and �(ρA1...AN ) =∑
k 	kρA1...AN 	k, with 	k = 	

k1
A1

⊗ . . . ⊗ 	
kN
AN

and k denoting
the index string ( j1 . . . jN ).

In order to define the local measurements 	± = |±〉〈±|,
we considered rotations in the directions of the basis vectors
of the subsystem j,

|+〉 j = cos

(
θ j

2

)
|E〉 j + eiϕ j sin

(
θ j

2

)
|G〉 j

|−〉 j = − e−iϕ j sin

(
θ j

2

)
|E〉 j + cos

(
θ j

2

)
|G〉 j. (11)

4. Results

4.1. Genuine tripartite measure

It has been shown that GQD is a multipartite measurement
[13, 15], that not only measures tripartite quantum correlations,
as the tangle defined by Wootters [7], but also bipartite
correlations. This statement can be illustrated with the
following example. If we prepare our system initially in a
mixture of a genuine tripartite correlated state (GHZ) and a
bipartite Bell state,

ρ(0) = α

2
(|EEE〉〈EEE| + |GGG〉〈GGG|)

+ (1 − α)

2
(|�〉〈�| ⊗ |G〉2〈G|) (12)

with |�〉 = (|E1G3〉 + |G1E3〉), as α increases from zero to
one, the system goes from bipartite to tripartite correlations,
but GQD = 1 for all α. The question is, what happens when we
eliminate all the bipartite QD? In figure 2 we plot the function
MGQD = GQD123 −GQD12 −GQD13 −GQD23, for the same
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Figure 3. For α = 0 the MGQD becomes negative, indicating that
the GQD does not include separately bipartite and tripartite
correlations. Tcav = 10 μs.

initial state in equation (12). Notice that for α = 0 there is no
multipartite correlation and for α = 1 the MGQD is one, as
expected from a GHZ state. Near to α = 0.7 the function has
a point where the derivative does not exist, this is because of
the change in the angles during the numerical minimization.

At this point, it seems that there is no problem with the
new definition of genuine multipartite correlation. However,
when we analyse the time evolution of the state (12) using
the master equation (2) for MGQD, particularly for α = 0,
the function becomes negative at certain times, see figure 3.
We also tried the Werner state, obtaining similar results. This
negative behaviour of MGQD is enhanced when the initial
condition is near a pure bipartite correlated state.

A first approach to solve this problem can be the use of
the monogamy restrictions [29, 30], where the exact solution
is lost, but at least we can estimate a upper bound for the
genuine tripartite correlations. From [29] and [30], we write
two monogamy relations:

GQD(ρABC) � GQD(ρAB) + GQD(ρAC) (13)

GQD(ρABC) � GQD(ρAB) + GQD(ρBC). (14)

The authors of these two papers define a ‘residual GQD’
(DR) as the difference between the left-hand and right-hand
side of the above equations. The problem with the definition
of DR is that is non symmetric with respect to the pairwise
combinations. Instead, we define a new DR, based on the above
equations, getting

GQD(ρABC) � 2
3 (GQD(ρAB) + GQD(ρBC) + GQD(ρAC)).

(15)

In figure 4 we reported the comparison between DR1,
DR2 and DR3 from equations (13)–(15), respectively. Already
from the initial state there are differences among the three
curves. Notice that the residual global discord corresponding
to equation (13) (red-dotted), seems to be the most restrictive
one. Nevertheless, that can be easily changed by starting with
a bipartite correlation of cavities 2 and 3, instead cavities 1
and 3, which will change DR2 to be the most restrictive one.
But, our approach remains very well independent of the initial

3
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Figure 4. Residual GQD corresponding to our definition (DR3)
represents better the monogamy restriction, since it is a good
approximation independent of the initial condition.
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Figure 5. All definitions are close, during the time evolution of the
system. We observe that DR3 remains between the other two, again
showing more stability to variations of the initial conditions.

condition, as it includes all possible combinations of pairwise
correlations.

Next, we analysed the time evolution of the above
definitions for α = 0.4. In figure 5 we show that certainly
DR1 and our definition DR3 are close. However, DR1 is highly
sensitive to the initial conditions, which is not the case for
DR3, so we conclude that DR3 is more suitable to describe
the quantum correlations, for any initial condition. Notice
that during the time evolution, far from the initial state,
the behaviour of the three curves is quite similar. The reason is
that for intermediate times, as the system gets more mixed, the
correlations are more distributed among the subsystems. These
bipartite correlations follow their own monogamy restrictions
[31, 32], thus compensating for the differences between the
various definitions of DR.

4.2. Estimation of the GQD by means of the excitation
probabilities of the subsystems

Quantum correlation measurements are very important for
quantum information and quantum computation, and even now
are difficult to perform [33], especially for higher correlations
such as the tripartite one. However, there is a connection
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Figure 6. GQD reaches its maximum when the three probabilities
cross at a certain time. Due to symmetry, PE3 = PE1.

between the localization of the excitations throughout the
system and the quantum correlations of its parts. To illustrate
this, we first consider a typical bipartite Bell state |φ〉 =

1√
2
(|10〉 + |01〉). It is well known that this state is maximally

correlated, but we also notice that the probability of finding
an excitation in each subsystems is 1/2. In other words,
we could say in this example, that when the subsystems
are highly correlated, the excitations are equally distributed
through them.

In our system, things are more complicated, since we
have three cavities and we could have up to three excitations.
Nevertheless, the same rule applies. For example, let us assume
that initially we have one excitation in cavity 2, and let PE1, PE2

and PE3 be the probabilities of finding the polariton in cavities
1, 2 and 3, respectively. In figure 6, we plot the time evolution
of GQD and these three probabilities. We can readily see that
when the three probabilities cross at a certain time, the GQD
reaches its maximum value, as in the case of two qubits. Thus
we believe that the GQD is associated with disorder or equal
distribution of the excitations among the three cavities. Since
the coincidence of the probabilities of finding an excitation is
not a proof per se, of the presence of quantum correlations (one
could find examples of fully mixed uncorrelated states with the
same characteristics), it is quite clear that only a combination
of the present observation and the full tomography will be the
final proof of the presence of these correlations.

Similar results are also observed for the state in equation
(12), see figure 7. Here we show the matrix elements of the
density operator for α = 0.1 and α = 0.5. We used the
standard basis: |1〉 = |EEE〉, |2〉 = |EEG〉, |3〉 = |EGE〉,
|4〉 = |GEE〉, |5〉 = |EGG〉, |6〉 = |GEG〉, |7〉 = |GGE〉,
|8〉 = |GGG〉. Each graphic corresponds to the maximum of
the GQD. Notice that again the three probabilities, associated
to the |5〉〈5|, |6〉〈6| and |7〉〈7| matrix elements, are equal. It
is worthwhile noticing that for the long time evolution these
elements, as well as the correlations tend to disappear because
of the losses.

As we saw, one of the advantages of GQD is that for
any mixed initial bipartite and tripartite state, with only one
measurement we can estimate how correlated the subsystems
are. Then, one could experimentally detect when the maximum

4
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Figure 7. Density operator’s elements for the initial state in equation
(12). The maximum of GQD is reached when PE1 = PE2 = PE3 and
the off-diagonal components do not vanish.

GQD is reached by measuring the polaritons in the cavities
[34]. To summarize, the GQD can provide us with valuable
information about any class of multipartite correlations and
furthermore, this can be experimentally observed by measuring
the excitations of our system.

5. Summary and conclusions

We analysed the global quantum discord, as a measure of
the joint bipartite and tripartite correlations. We showed its
limitations in detecting a genuine tripartite correlation, since
negative values show up. However, we presented an upper
bound which turned out to be a good estimation, valid for
any initial condition. Then we studied the relation between the
disorder of the system and the GQD. Our goal was to associate
the GQD with some experimentally measurable quantity, such
as the degree of excitation of each sub-system. We found that
when excitations were nearly equally distributed, among the
various sub-systems, the GQD reached its maximal value.

Moreover, the sensitivity of this measure, which is
certainly related with the bilateral projection and the
minimization process, seems very interesting for its different
applications. In order to illustrate this feature, we focus on the
sudden transition effect [35, 36]. This effect depends strongly
on the initial conditions, and it can be seen only when some
restrictions are fulfilled. For example, we start with the initial
state proposed in [35] for the cavities 1 and 3, and assume for
the second cavity to be in an excited or ground state

ρ(0) =

⎛
⎜⎜⎝

(1 + c3) 0 0 (c1 − c2)

0 (1 − c3) (c1 + c2) 0
0 (c1 + c2) (1 − c3) 0

(c1 − c2) 0 0 (1 + c3)

⎞
⎟⎟⎠

⊗ |i〉2〈i| (16)

where the matrix is in the basis: |EE〉, |EG〉, |GE〉, |GG〉, and
|i〉 = {|E〉, |G〉}.

In figure 8 we plotted the quantum discord, defined in
equation (9) between cavities 1 and 3, when cavity 2 is initially
in the state |G〉, and weakly coupled to the other two cavities.
The parameters are: c1 = 1, c2 = −c3 and c3 = 0.8. The
inset corresponds to a zoom at the beginning of the curve. We
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Figure 8. Sudden changes in the bipartite GQD for the cavities 1, 3.
Tcav = 10 μs.

observe rapid oscillations that have not been reported before,
for this particular measure, and also abrupt changes in the
derivative, which is quite unusual. The change of different
sets of angles in the minimization procedure is responsible for
the sudden changes in the derivatives of the GQD (inset of
figure 8). With respect to the rapid oscillations, we chose a
set of angles corresponding to the lower branch, eliminating
the minimization procedure, and observed that the oscillations
subsided but without the sudden changes in the derivatives.
On the other hand, if we took the upper branch, we observed
no oscillations. We do not yet have a full understanding of
such an odd behaviour. We did the same for the QD defined
in equation (4), following two different approaches [37, 38],
and we did not find such effects in either case. This proves that
GQD, proposed in [13], is more sensitive than the others.
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