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We investigate the possibility to distinguish between the Standard Model Higgs boson

and the lightest Higgs boson in Split Supersymmetry. We point out that the best way to

distinguish between these two Higgs bosons is through the decay into two photons. It is shown

that there are large differences of several percent between the predictions for Γ(h → γγ) in

the two models, making possible the discrimination at future photon-photon colliders. Once

the charginos are discovered at the next generation of collider experiments, the well defined

predictions for the Higgs decay into two photons will become a cross check to identify the

light Higgs boson in Split Supersymmetry.

I. INTRODUCTION

Despite the great success of the Standard Model (SM), the mechanism for electroweak symmetry

breaking remains to be tested in experiments. There are many reasons to believe there is physics

beyond the SM. In particular, the Minimal Supersymmetric Standard Model (MSSM) is one of

the best motived theories where it is possible to describe the cold dark matter in the Universe

and where the unification of the gauge couplings is achieved. In low energy supersymmetry it is

assumed that the SUSY breaking scale is at TeV following the naturalness criterion.

Recently, Arkani-Hamed and Dimopoulos [1], have noticed that gauge coupling unification can

be achieved in a supersymmetric model where all scalars, except for one Higgs doublet, are very

heavy. Most of the unpleasant aspects of low energy supersymmetry, such as excessive flavour

and CP violation, very fast dimension 5 proton decay, and tight constraints on the Higgs mass,

are eliminated. At the same time, there is a candidate to describe the cold dark matter in the

Universe. Several phenomenological studies in this scenario, now called split supersymmetry, have

been performed [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

It is expected that the Higgs boson will be discovered in the next generation of collider experi-

ments. Therefore, one of the main issues in Higgs boson physics is the identification of observable

useful to distinguish between the SM Higgs hSM and the lightest Higgs in possible extensions of

the SM. There are several studies devoted to this very important issue in the context of the MSSM
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[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30].

As we mention before we hope at future collider experiments we will discover at least a neutral

particle with spin zero, the Higgs boson, and the lightest supersymmetric particles, the neutralinos

and charginos. Since in Split supersymmetry the interactions of the lightest Higgs boson with the

SM fermions are the same as the interactions of the SM Higgs, through the decays into two SM

fermions it is not possible to make the identification of the Higgs. Therefore we have to use the

decays at one loop, where the effect of virtual particles present in Split SUSY is relevant. In this

Letter we investigate this issue and we argue that the way to address it is studying the decays of

the Higgs boson into two photons. We show several numerical examples where it is possible to

appreciate large differences between the decay rates in the SM and in Split supersymmetry.

II. DISTINGUISHING BETWEEN hSM AND h0 IN SPLIT SUSY

In order to identify the Higgs boson at future colliders the predictions of all its decay rates have

to match with their measurements. This is the case of SM Higgs boson hSM or the lightest Higgs

boson h0 of the supersymmetric extension of the standard model.

It is particularly difficult to distinguish between the SM Higgs boson and the MSSM lightest

Higgs boson in the decoupling limit [31]. This is precisely what happens in Split Supersymmetry,

where all scalars are very heavy except for one Higgs doublet and for the neutralinos and charginos

which are all light. Therefore, in split supersymmetry we expect that at future colliders the lightest

Higgs boson will be discovered together with charginos and neutralinos. However, their discovery

is not enough to claim that the observed Higgs corresponds to the SPLIT SUSY light Higgs, since

we have to measure its couplings with a good precision.

In the context of the MSSM there are studies about the possibility to distinguish between

different Higgses through the couplings Hgg [19], HZγ [20, 21, 22] and Hγγ [23, 24, 25, 26, 27].

Also the quantity B(H → bb̄)/B(H → τ+τ−) has been studied extensively [28, 29, 30].

In this Letter we study the possibility to identify the light Higgs in split supersymmetry [1].

Since in this case all sfermions and Higgs bosons, except for the lightest one, are very heavy it is

not possible to use the quantity B(H → bb̄)/B(H → τ+τ−) nor the coupling Hgg. The Hbb̄ and

Hττ couplings are equal at tree level in the SM and in SPLIT SUSY. There are not differences at

one-loop, since all squarks or sleptons in the loops are very heavy. In the case of Hgg coupling,

this is a one-loop induced coupling with quark contributions being common to both the SM and

SPLIT-SUSY, and with the difference being the squark contributions, which are negligible. The
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two other possibilities are to use the couplings HZγ and Hγγ. However, it is not possible to use the

first one since we know that the B(h → Zγ) is very small and it will be very difficult to determine

it with a very good precision [32]. Therefore we concentrate on the possibility to use the coupling

Hγγ for our study. The decay h → γγ can be observed at the LHC but with an error larger than

10% [33, 34, 35]. At electron-positron colliders there is the additional possibility of photon-photon

collisions, where the rate γγ → h → bb̄ can be measured with a 2% precision [36, 37, 38, 39]. This

combined with a measurement of B(h → bb̄) with a 2.4% [35], gives a determination of B(h → γγ)

with a ∼ 2% error.

The decay rate Γ(h → γ γ) is given by [40]:

Γ(h → γ γ) =
α2g2

1024π3

m3
h

m2
W
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(1)

where α is the fine structure constant, g is the SU(2) gauge coupling constant, mW is the W boson

mass, and mh is the Higgs boson mass. There is an amplitude Ai for each charged particle inside

the loop, and depends on a loop function F whose form varies according to the spin of the particle

in the loop.

In Split Supersymmetry the relevant contributions are:

AW = CW F1(τW ) (2)

Af = Nf
C Q2

f Cf F1/2(τf ) (3)

Aχ̃± = Cχ̃±
MW

Mχ̃±
F1/2(τχ̃±) (4)

where AW , Af , Aχ̃± are the amplitudes for the contributions with W bosons, fermions, and

charginos inside the loop, respectively. The parameter τi = 4m2
i /m

2
h, where mi is the mass of

the particle inside the loop, and mh is the Higgs mass. NC = 3 for quarks and squarks, while

NC = 1 for leptons and sleptons, and Qf is the electric charge of the fermion f . The couplings of

the lightest Higgs to the internal particles are given by:

Cf=u,c,t = 1, Cf=d,s,b,e,µ,τ = 1, CW = 1, (5)

Cχ̃±
i

= 2(Sii sin β + Qii cos β) (6)

with Sij = Ui1Vj2/
√

2 and Qij = Ui2Vj1/
√

2. The matrices U and V are the matrices which

diagonalize the chargino mass matrix. The loop functions F0, F1/2 and F1 can be found in [40].
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In Split supersymmetry, the Higgs couplings to fermions and W bosons are SM-like, giving

contributions which are equal in both models. Therefore, the chargino contribution will determinate

the difference between the decays into two photons in the SM and split SUSY.

III. RESULTS

In order to quantify the difference between the decay rate of the SM Higgs and the lightest

Higgs into two photons in split supersymmetry we define the following quantity:

δ =
ΓSplit(h0 → γγ) − Γ(hSM → γγ)

Γ(hSM → γγ)
(7)

We calculate this quantity using the above formulas for different values of the relevant parame-

ters, which are the Higgs mass, the higgsino mass parameter µ, the SU(2) gaugino mass M2, and

tan β. We take mh = 120 GeV and consider it as an independent parameter. Notice that in the

case of split supersymmetry, since we accept the fine-tuning and we integrate out all superheavy

scalars, the Higgs mass basically does not change when we vary the rest of the parameters. The

loops corrections with charginos and neutralinos are not very important, see for example [9].

In Figure 1 we see how this quantity changes as a function of the parameter µ, for given values

of M2 and tan β. Note that it is possible to achieve differences up to 6% when the chargino

contribution is large. As this difference is achieved, the branching ratio of the decay into two

photons is of the order of 10−3. We impose the experimental bound mχ̃+

1

> 103 GeV, which limits

the curves at low values of µ. As the magnitude of the parameter µ increases the chargino masses

increase also, the heavier faster than the lightest. In general, larger chargino masses produce

smaller contributions to h → γγ and thus the parameter δ decreases. For a similar reason, curves

defined by larger values of the gaugino mass M2 have smaller δ. These curves are defined by

M2 = 150 GeV (red crosses), M2 = 200 GeV (blue x’s), and M2 = 250 GeV (green circles). Two

different values of tan β are considered in this figure, tan β = 10 and 50 with the smaller value

giving larger δ. Another interesting point to notice in this figure is the correlation between the

sign of µ (actually, the sign of µM2 since we work with M2 > 0) and the sign of δ.

In Fig. 2 we show the variation of δ as a function of M2 for tan β = 10 and µ = 150, 250,

and 350 GeV. It is clear that when M2 is increased our quantity decreases since the chargino

contributions are less important, due to their larger mass. The three curves are limited at low M2

by the experimental lower bound on the chargino mass described before. At the other extreme
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FIG. 1: Relative difference δ between Γ(h → γγ) in the SM and in split supersymmetry as a function of µ

for different values of tanβ and M2. Red crosses correspond to M2 = 150 GeV, blue x’s to M2 = 200 GeV,

and green circles to M2 = 250 GeV. We consider mh = 120 GeV.

(M2 = 300 GeV) the light chargino mass is given by 133, 213, and 262 GeV for µ = 150, 250,

and 350 GeV, respectively. Despite these large chargino masses, δ remains above 1% in the whole

parameter space shown in the figure.

In Fig. 3 we have the dependence of δ on tan β, and plot three curves with increasing values of

µ and M2, as indicated in the figure. In all cases δ decreases with tan β from several percent at

low values to less than 1-2% at large values.

The decay rate for h → γγ in the MSSM with the Higgs sector in the decoupling limit was

studied in [25, 30]. It was found that contributions from the stop sector are larger when the left-

right mixing is large, and that contributions from charginos decrease with tan β. At small tan β

chargino and stop contributions have opposite signs and a cancellation could occurs. Of course, this

cancellation does not happens in Split Supersymmetry, obtaining larger decay rates Γ(h → γγ). In
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FIG. 2: Relative difference δ between Γ(h → γγ) in the SM and in split supersymmetry as a function of M2,

for tanβ = 10 and different values of µ. We consider mh = 120 GeV.

general, smaller decay rates are obtained at large values of tan β: chargino contributions are small

in both the MSSM and Split SUSY, with the stop contribution adding to the W contribution in

the MSSM. Larger decay rates are found in the MSSM at high tan β when the sbottom loops are

also important. We hope that the results presented in this section will be useful to understand the

possibility to distinguish between the SM Higgs boson and the lightest Higgs boson in Split SUSY.

IV. SUMMARY

In Split Supersymmetry the light Higgs boson couplings to SM particles are identical to the

couplings of the SM Higgs boson. We point out that a way to distinguish between them is through

the decay into two photons. We show several numerical examples where we appreciate large

differences of several percent between the predictions for Γ(h → γγ) in the two models, making

possible the discrimination at future photon-photon colliders. Once the Higgs boson and the

charginos are discovered at the next generation of collider experiments, the well defined predictions

for the Higgs decay into two photons will constitute an important cross check to identify the light

Higgs boson in Split SUSY.
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FIG. 3: Relative difference δ between Γ(h → γγ) in the SM and in split supersymmetry as a function of

tan β for different values of µ and M2. We consider mh = 120 GeV.
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