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Abstract

This thesis contains original research on the conjectured AdS/CFT correspondence. Known
are the holographic correlators resulting from this correspondence under its classical ap-
proximation, confirming the conjecture at this level. In this work we will explore its
consequences beyond this approximation, considering the quantum corrections to these
known dual correlators for the particular cases of scalar Φ3 and Φ4 theories on a fixed
AdSd+1 background. This will involve the development of a scheme that adds system-
atically order by order the quantum corrections to the correlators obtained classically
together with the computation of these new contributions, introducing on the way sen-
sible regularization and renormalization schemes for the different expected divergences.
This process will show in a clear way the effect of these loop corrections through the main
role played by the infrared and ultraviolet divergences, which is briefly summarized in:
the quantum corrections to the holographic correlators produce anomalies in the result-
ing CFT in the form of an anomalous scaling dimension, confirming the validity of the
conjecture beyond tree-level computations. All this study is carried out throughout this
thesis for arbitrary values of the parameters of the theory in the bulk. With the intention
to study the general ideas and results developed in this work, at the end of the thesis a
particular case is analyzed.
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Chapter 1

Introduction

Perhaps the most basic and fundamental search that physics tries to do is to identify which
are the different agents (forces as Newton would have called them) existing in our reality
that generate movements in the different physical objects that live in it. What has been
extremely useful in this search is the mathematical language, allowing us to accurately
describe the dynamics produced by these agents, identified so far by 4: electromagnetism,
weak interaction, strong interaction and gravity. The different experiments that have been
developed to study the dynamics of these 4 interactions suggest that their behaviors are
dependent not only on the length scales at which they are tested but also on the energy
scales, having to consider quantum and relativistic corrections in their mathematical de-
scriptions. Despite this, the techniques developed to date have allowed us to satisfactorily
describe the first 3 (e.m., weak and strong) of these 4 fundamental forces theoretically for
all scales of interest. However, these same techniques that allow us to understand these
3 interactions at small distances applied to gravitation result in incurable contradictions,
suggesting that the quantum nature of gravity is much more delicate.

The understanding of quantum gravity is perhaps the greatest theoretical challenge
in contemporary physics, which is why different groups and programs have been fully
dedicated to studying it. Unsurprisingly, the main objects of study of these programs
have been black holes, since they concentrate a large amount of mass in an infinitesimally
small space, where the quantum effects of gravity are expected to be important. The
first remarkable results of these studies, consequence of general relativity and quantum
mechanics, is that black holes would emit thermal radiation [1] and that also they would
have an enormous entropy that scales not with their volume but with their area [2]. This
seems to suggest that the microscopic nature of gravity is holographic, being able to
encode the information that it contains in a space of one smaller dimension [3][4].

One of the most successful theories under development of quantum gravity that
manages to explain this holography of gravity in a concrete and precise way is string
theory. Particular cases of the holographic principle in this theory can be observed in the
limit of low energy of certain string’s dynamics, resulting in field theories on the product
of d+ 1 dimensional anti-de Sitter space with a compact manifold. These theories would
be included in the Hilbert space of certain large N gauge theories in d dimensions that
also occur to be invariant under the conformal group. The canonical example of this is
the low energy limit of type IIB strings, where one obtains N = 4 super Yang-Mills [5].
The modern dictionary of this holography that relates gravity theories in AdSd+1 with
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5

particle theories in CFTd basically postulates that the partition function of the theory
in AdS serves as a tool for the computation of the correlators of the corresponding CFT
[6]. However, the complexity of these calculations have reduced this study of holographic
correlators to the approximation of the AdS path integral to its leading, on-shell version.
Despite this, the resulting correlators of this approximation precisely correspond to those
of a strongly coupled CFT. This remarkable property of gravity’s holography is summa-
rized in a strong/weak duality: classical computations on AdS correspond to quantum
computations in the CFT.

The complexity that we mentioned previously lies in the development of a scheme
that systematically incorporates the quantum corrections to the AdS path integral to-
gether with the analytical calculations of these corrections. However, the conjectured
holography strongly restricts the form of these subleading contributions: they cannot
break the conformal invariance of the holographic correlators. Since this AdS/CFT cor-
respondence helps to elucidate the quantum nature of gravity, there are great reasons to
verify that it is indeed true. This is precisely the objective of this work and this thesis,
the complete study of the quantum corrections on the AdS side of the holographic corre-
spondence and the resulting CFT correlators. It is worth mentioning that this is a highly
unexplored area of research on the subject, so we expect that several of the results shown
here will be of great interest.

The content of this thesis is organized as follows: as the name of the AdS/CFT
correspondence suggests we cannot really talk about it and its consequences without a
basic understanding of CFTs and AdS spaces, thus in Chapter 2 we review the very basic
ingredients of CFTs and AdS spaces, which in turn at the end of the chapter will lead,
hopefully, to an expected correspondence.

Then with the AdS/CFT correspondence explicitly stated, as a first exploration
and familiarization into the topic in Chapter 3 we will proceed to study its consequences
for what are perhaps the simplest cases, scalar field theories on a fixed AdS background.
In here we develop the necessary tools that will allow us to obtain from these theories,
and through the use of what will be understood as the classical approximation of the
correspondence, the resulting approximated CFT n-point functions.

Finally, having studied and gained some insight on the AdS/CFT conjecture through
its classical approximation, in Chapter 4 we will proceed to study these same scalar the-
ories but now embracing the full quantum nature of the correspondence. In here we
develop a systematic scheme that adds order by order the respective quantum corrections
to the previous approximated correlators, to then study and compute each one of these
new contributions, process that will also force us to introduce sensitive regularization and
renormalization schemes. This chapter will contain most of the original work done in this
thesis.

We will end the discussion in this thesis with a concluding chapter, where we
summarize the key theoretical and conceptual results of our work together with their
implications.

Then comes the complementary material, which we present in the form of appen-
dices: Appendix A, where we discuss the integrals found in our work that only involve the
functions K(x, ~y) (bulk-boundary propagator, introduced in section 3.1.4) and Appendix
B, where we discuss those that also involve the functions G(x, y) (bulk-bulk propagator,
introduced in section 3.1.7). Most of these integrals are done separately from the main
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text as to not lose the focus of discussion.

Before diving into the work of this thesis, we clarify that the conventions used
throughout it are c = ~ = 1.



Chapter 2

CFTs, AdS Spaces and the
Correspondence

In this work we will study scalar field theories on a fixed anti-de Sitter background and
how, using the conjectured AdS/CFT correspondence, we can obtain from these theories
correlators for some dual conformal theory living in one less dimension. However, as the
name of the correspondence suggests, we cannot really talk about it and its consequences
without a basic understanding of CFTs and AdS spaces. Therefore, by completeness, the
objective of this chapter is to review the very basic ingredients of CFTs and AdS spaces,
which in turn at the end of the chapter will lead, hopefully, to an expected correspondence.

Section 2.1 will cover everything we will need to know about conformal field theo-
ries, using as main references the canonical book by Di Francesco, Mathieu and Sénéchal
[7] and the online lectures by Hugh Osborn [8]. In particular, in section 2.1.1 we will in-
troduce what are known as the conformal transformations, in section 2.1.2 we will study
the group formed by these transformations, in section 2.1.3 the implication of conformal
invariant field theories in their correlators and finally in section 2.1.4 the implication of
these same invariant theories on the external sources that give rise to the CFT operators.

Section 2.2 in turn will cover everything we will need to know about anti-de Sitter
spaces, using as the main reference the AdS section from the extensive review on the
AdS/CFT correspondence by Aharony, Gubser, Maldacena, Ooguri and Oz [9], comple-
menting with various of the modern textbooks on general relativity. In particular, in
section 2.2.1 we will introduce the AdS metric in convenient coordinates, in section 2.2.2
we will study the curvature equation that it satisfies, in section 2.2.3 the isometry trans-
formations of AdS spaces and finally in section 2.2.4 the notion of boundaries that these
spaces have in some limits.

Lastly, section 2.3 will be a brief review of the AdS/CFT correspondence itself,
using as main references the core articles on the subject due to Maldacena [5] and Witten
[6].

7



2.1. CONFORMAL FIELD THEORY 8

2.1 Conformal Field Theory

2.1.1 Conformal Transformations

How is the structure of space and time related for different individuals living in it if each
one of them is equipped with their own measuring sticks and clocks? Galileo would have
responded that space is a rigid place and that time is universal, so every person would
measure the same distance between two points and every clock would tick at the same
rate:

dx′ 2 + dy′ 2 + dz′ 2 = dx2 + dy2 + dz2, dt′ = dt (2.1)

This statement implies that the different measurements done by the individuals
can be related to each other simply through rotations and translations:

~x ′ = R~x+ ~a, t′ = t (2.2)

where R is an orthogonal matrix and ~a is some vector. These are known as the
Galilean transformations.

Einstein on the contrary would have argued that Galileo’s point of view can’t
possible be true since it is ignoring a decisive piece of evidence, the fact that every person
measures the same speed for a light ray. This inevitably connects space and time in a
profound way, and the measurements that agree now are not necessarily the distances
between two points in space nor the ticks from the clocks in time, but the distances
between two points in spacetime as a whole:

− dt′ 2 + dx′ 2 + dy′ 2 + dz′ 2 = −dt2 + dx2 + dy2 + dz2 (2.3)

The different measurements done by the individuals can be related to each other
now through rotations, translations and boosts:

x′ = Λx+ a (2.4)

where Λ are the Lorentz matrices and a is some constant vector. These are known
as the Poincaré transformations and their key property, by construction, is that they are
isometry transformations, i.e., they leave the spacetime metric invariant:

x→ x′ = Λx+ a, η → g′ = η (2.5)

where η is the Minkowski metric η = diag(−1, 1, 1, 1). A natural exploration and
generalization of these transformations are those which leave the metric invariant up to
a factor, known as conformal transformations:
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x→ x′ = x′(x), η → g′ = Ω2(x)η (2.6)

where Ω(x) is some function of the coordinates x. As we did for the Galilean
and Poincaré transformations, we would like to know the explicit form of the coordinate
transformations x′(x) which satisfy this property, with their respective values of Ω(x).
Usually, this is achieved by solving eq. (2.6) under infinitesimal transformations and from
these solutions constructing their finite version. However, for the sake of simplicity we
will follow here a more heuristic path.

We already saw our first example of a conformal transformation, namely Poincaré
transformations. Indeed, from eq. (2.5) we can directly see that these transformations
satisfy eq. (2.6) with Ω(x) = 1. Another transformation which is also direct to see as
conformal are dilations or rescaling of the coordinates x→ x′ = λx. Under these, the line
element transform as:

ds2 = ηµνdx
µdxν → ds′ 2 = λ2ηµνdx

µdxν (2.7)

therefore, the metric transform as η → g′ = λ2η, resulting in a conformal transfor-
mation with Ω(x) = λ.

There are two more transformations we can construct: inversions and special con-
formal transformations (SCT for short). Inversions are of the form xµ → x′µ = xµ

x2 , where
the differential dxµ transform as:

dxµ → dx′µ =
1

x2
Iµνdx

ν , Iµν = δµν −
2xµxν
x2

(2.8)

Under these, the line element transform as:

ds2 = ηµνdx
µdxν → ds′ 2 =

1

(x2)2
ηµνdx

µdxν (2.9)

where we used the fact that the matrices Iµν satisfy the easy to prove identity
ηµνI

µ
αI

ν
β = ηαβ. Therefore, the metric transform as η → g′ = 1

(x2)2η, resulting in a

conformal transformation with Ω(x) = 1
x2 .

Finally, the SCT are a more exotic type of transformation which can be intuitively
understood as an inversion, followed by a translation, followed by another inversion of the
original coordinates, resulting in:

xµ → x′µ =
xµ + aµx2

1 + 2ax+ a2x2
(2.10)

Under these, the line element transform as:
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ds2 = ηµνdx
µdxν → ds′ 2 =

1

(1 + 2ax+ a2x2)2
ηµνdx

νdxν (2.11)

therefore, the metric transform as η → g′ = 1
(1+2ax+a2x2)2η, resulting in a conformal

transformation with Ω(x) = 1
1+2ax+a2x2 .

In summary, there is a natural generalization of Poincaré transformation called
conformal transformations, which under a transformation of the coordinates x → x′ =
x′(x), the metric is left invariant up to an overall factor η → g′ = Ω2(x)η, and where the
set of all transformations is given by:

Poincaré: x′ = Λx+ a, Ω(x) = 1

Rescaling: x′ = λx, Ω(x) = λ

Inversion: x′µ =
xµ

x2
, Ω(x) =

1

x2

SCT: x′µ =
xµ + aµx2

1 + 2ax+ a2x2
, Ω(x) =

1

1 + 2ax+ a2x2
(2.12)

where Λ are the Lorentz matrices, a is a constant vector and λ is a constant scalar.

2.1.2 Conformal Group

What will be very enlightening when we study AdS spaces and their isometries, eventually
leading to an expected correspondence, is the study of the group formed by the conformal
transformations. The corresponding generators of the conformal algebra can be read from
the transformations just derived (eq. (2.12) just by looking at their infinitesimal version.
Take for example infinitesimal translations, i.e., Poincaré transformations with Λ = 1 and
a small. The resulting transformation can be written as:

x′µ ≡ (1 + iaνPν)x
µ (2.13)

where we defined the translation generator Pν = −i∂ν . In the same way for small
rotations and boosts, small rescaling and small SCT, the resulting generators in each case
are:

Translations: Pµ = −i∂µ
Rot. + Boosts: Lµν = i(xµ∂ν − xν∂µ)

Rescaling: D = −ixµ∂µ
SCT: Kµ = i(2xµx

ν∂ν − x2∂µ) (2.14)
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Notice that there is no generator for inversions. This is because inversions are dis-
crete transformations, there isn’t a parameter controlling the magnitude of these transfor-
mations that we can continuously vary to perform ”small” inversions. With the generators
at hand, the construction of the conformal algebra is straightforward, obtaining for every
pair of commutators:

[Pµ, D] = −iPµ, [Pµ, Lαβ] = i(ηµαPβ − ηµβPα), [Pµ, Kν ] = 2i(ηµνD + Lµν)

[D,Kµ] = −iKµ, [Lµν , Kα] = i(ηναKµ − ηµαKν)

[Lµν , Lαβ] = i(ηναLµβ + ηµβLνα − ηµαLνβ − ηνβLµα) (2.15)

Any other commutator not listed here is simply zero. The conformal algebra
written in this form is not very revealing so let us define a more interesting set of generators
which will explicitly show the isomorphism of the conformal group to a more familiar
one. First, let us quickly generalize the 4 spacetime dimensions we have been implicitly
assuming to an arbitrary number d (µ = 0, . . . , 3 → µ = 0, . . . , d − 1). Instead of the
generators Pµ, Lµν , D and Kµ defined in eq. (2.14) in d dimensions, consider a new set
Jab in d+ 2 dimensions defined in term of the previous generators as:

Jµν = Lµν , J(d+1)d = D, J(d+1)µ =
1

2
(Pµ +Kµ), Jdµ =

1

2
(Pµ −Kµ) (2.16)

where Jab = −Jba, a, b = 0, . . . , d + 1 and η = diag(−1, 1, . . . , 1,−1). It is a
nice exercise to check that the resulting conformal algebra (eq. (2.15)) for the conformal
generators written in terms of the new generators Jab simply reduces to:

[Jab, Jcd] = i(ηadJbc + ηbcJad − ηacJbd − ηbdJac) (2.17)

But this is the same closed algebra followed by the generators of the Lorentz trans-
formations Lµν ! The conformal group in d dimensions can be seen as the set of rotations
and boosts, i.e. Lorentz transformations, in d+ 2 dimensions. In group terminology it is
said that the conformal group in d dimensions is isomorphic to SO(d, 2).

2.1.3 Conformal Invariance in QFT

Conformal transformations are not an isometry of flat space, since they add to the metric
these Ω(x) factors which are not necessarily equal to 1. This would seem to suggest that
any conformal study done in a non-gravitational system is a merely theoretical exploration,
without much practical use. This is of course not the case. There are many interesting, real
phenomena which in practice can be modeled as a conformal theory. Since these theories,
by definition, are invariant under the full conformal group, in particular for rescaling of
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the coordinates, these are theories which usually look the same at every length scale. This
observation gives a nice recipe for constructing conformal theories: simply don’t consider
any energy scale-dependent parameter, i.e., mass terms, dimensionful coupling constants,
etc. Take for example a massless λΦ4 theory in d = 4:

S =

∫
d4x

(
−1

2
ηµν∂µΦ∂νΦ−

λ

4!
Φ4
)

(2.18)

Since we are working in units where c = ~ = 1, then [S] = 1, [x] = [E]−1, and
therefore the units of the field and coupling constant are [Φ] = [E] and [λ] = 1. The
only parameter present in the action, λ, is dimensionless so the theory is conformal. One
of the implications of field theories which are conformal is that under any conformal
transformation of the coordinates, a simple redefinition of the field can bring back the
action to its original form. Take for example the same action as before under a rescaling:

x→ x′ = cx, S → S ′ =

∫
d4x

(
−1

2
ηµν∂µ

[
cΦ′(cx)

]
∂ν
[
cΦ′(cx)

]
− λ

4!

[
cΦ′(cx)

]4)
(2.19)

In this case we can recover the original form of the action by simply defining
cΦ′(cx) ≡ Φ(x). Notice that this implies a very specific rule of transformations for the
fields under the conformal group. In general, a field is called primary if under a conformal
transformation x→ x′ = x′(x), η → g′ = Ω2(x)η, it transforms as:

Φ′(x′) = Ω−∆(x)Φ(x) (2.20)

where the number ∆ is called the scaling dimension of the field. In our previous
example, since for rescaling Ω(x) = c we can rewrite the redefinition of the field as
Φ′(x′) = Ω−1(x)Φ(x), therefore the massless λΦ4 field in d = 4 has a scaling dimension
∆ = 1.

In QFT one is usually interested in computing correlation functions, the most ba-
sic objects of a theory, since in these are contained the amplitudes of all the different
processes that can occur. The functional form of these correlators is highly dependant
on the particular symmetries of the theory under consideration. For instance, generally
one is interested in relativistic theories which are invariant under Poincaré transforma-
tions, and this invariance is promoted to the correlators themselves: 2-point correlation
functions must be a function of the distance between the 2 spacetime coordinates under
consideration, and so on. This is where all the power and richness of CFTs come into
play. Invariance under the conformal group is so restrictive that in some cases one can
completely determine the functional form of the correlators! Take for example the n-point
function of n primary scalar fields O∆i

(xi) with scaling dimensions ∆i:

〈O∆1(x1) · · ·O∆n(xn)〉 =

∫
DO O∆1(x1) · · ·O∆n(xn)eiS∫

DO eiS
(2.21)
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where S = S[O∆1 , . . . , O∆n ] is a conformally invariant action. Under a conformal
transformation, the quantity DO eiS is invariant and the fields transform as eq. (2.20),
which translates into the transformation rule for the correlators:

〈O∆1(x′1) · · ·O∆n(x′n)〉 = Ω−∆1(x1) · · ·Ω−∆n(xn)〈O∆1(x1) · · ·O∆n(xn)〉 (2.22)

Let’s see how in some cases eq. (2.22) can fully determine the form of the n-point
functions. Starting with n = 1:

〈O∆1(x′1)〉 = Ω−∆1(x1)〈O∆1(x1)〉 (2.23)

For a translation x′1 = x1 + a, Ω(x1) = 1, and rescaling x′1 = λx1, Ω(x1) = λ, eq.
(2.23) reduces in each case to:

〈O∆1(x1 + a)〉 = 〈O∆1(x1)〉 (2.24)

〈O∆1(λx1)〉 = λ−∆1〈O∆1(x1)〉 (2.25)

Now, eq. (2.24) alone implies that the 1-point function doesn’t depend on the
spacetime coordinate x1, i.e., it is a constant 〈O∆1(x1)〉 = c, and this result in eq. (2.25)
implies that c = λ−∆1c. Since this equality must hold for any values of λ and ∆1, it must
be that c = 0. In other words:

〈O∆1(x1)〉 = 0 (2.26)

For n = 2 the strategy to determine its functional form is the same. From eq.
(2.22) the 2-point function transform as:

〈O∆1(x′1)O∆2(x′2)〉 = Ω−∆1(x1)Ω−∆2(x2)〈O∆1(x1)O∆2(x2)〉 (2.27)

For a Poincaré transformation x′i = Λxi + a, Ω(xi) = 1, and rescaling x′i = λxi,
Ω(xi) = λ, eq. (2.27) reduces in each case to:

〈O∆1(Λx1 + a)O∆2(Λx2 + a)〉 = 〈O∆1(x1)O∆2(x2)〉 (2.28)

〈O∆1(λx1)O∆2(λx2)〉 = λ−∆1−∆2〈O∆1(x1)O∆2(x2)〉 (2.29)

Now, eq. (2.28) alone implies that the 2-point function must be a function of the
spacetime distance between x1 and x2, i.e., 〈O∆1(x1)O∆2(x2)〉 = f(|x1 − x2|), and this
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result in eq. (2.29) implies that f(λ|x1 − x2|) = λ−∆1−∆2f(|x1 − x2|). Since this equality

must hold for any values of λ and ∆i, it must be that f(|x1−x2|) =
C∆1,∆2

|x1−x2|∆1+∆2
. In other

words:

〈O∆1(x1)O∆2(x2)〉 =
C∆1,∆2

|x1 − x2|∆1+∆2
(2.30)

where C∆1,∆2 is some constant dependent on the scaling dimensions ∆i but not
on the spacetime coordinates xi. Poincaré and rescaling transformations were sufficient
to determine the functional form of the 2-point function, but actually there is one more
piece of information that we can acquire through the exotic SCT. First, let us rewrite the
transformation rule for the 2-point function (eq. (2.27)) in terms of eq. (2.30):

1

|x′1 − x′2|∆1+∆2
= Ω−∆1(x1)Ω−∆2(x2)

1

|x1 − x2|∆1+∆2
(2.31)

It can be shown that under a conformal transformation, the distance between two
points, x1 and x2, transform as:

|x′1 − x′2|2 = Ω(x1)Ω(x2)|x1 − x2|2 (2.32)

It is easy to check that this is indeed true case by case. Now, using this fact in eq.
(2.31) it implies that:

1

|x1 − x2|∆1+∆2
Ω−

∆1+∆2
2 (x1)Ω−

∆1+∆2
2 (x2) = Ω−∆1(x1)Ω−∆2(x2)

1

|x1 − x2|∆1+∆2
(2.33)

Then for 2-point functions under any conformal transformation it must be that:

Ω−
∆1+∆2

2 (x1)Ω−
∆1+∆2

2 (x2) = Ω−∆1(x1)Ω−∆2(x2) (2.34)

This is trivially satisfied by Poincaré and rescaling transformations where the quan-
tities Ω(xi) don’t depend on the spacetime points xi, but for SCT (and inversions) they do
depend on xi and therefore the only possibility to satisfy this condition is if ∆1+∆2

2
= ∆1

and ∆1+∆2

2
= ∆2, i.e., if ∆1 = ∆2. This further restricts the form of the 2-point function

to:

〈O∆1(x1)O∆2(x2)〉 =
C∆1,∆2δ∆1,∆2

|x1 − x2|∆1+∆2
(2.35)

where δ∆1,∆2 is the Kronecker delta.

For n = 3, in exactly the same way as we did for the n = 2 case, it can be shown
that the functional form of the 3-point function can be determined to be:
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〈O∆1(x1)O∆2(x2)O∆3(x3)〉 =
C∆1,∆2,∆3

|x1 − x2|∆1+∆2−∆3|x2 − x3|∆2+∆3−∆1|x3 − x1|∆3+∆1−∆2

(2.36)

where C∆1,∆2,∆3 is some constant dependent only on the scaling dimensions ∆i.

Now, for n ≥ 4 the study is more subtle. Nothing stops us from addressing the
case n = 4 in the same way as we did for n = 2 and n = 3, and if we did we would naively
conclude that the functional form of the 4-point function must be:

〈O∆1(x1)O∆2(x2)O∆3(x3)O∆4(x4)〉 =
C∆1,∆2,∆3,∆4∏

i<j|xi − xj|∆i+∆j−
∑
k ∆k
3

(2.37)

But actually for n ≥ 4, where we have 4 or more spacetime coordinates at disposal,
we can start constructing conformal invariants, known as anharmonic or cross ratios, and
the n-point functions can have an arbitrary dependence of these which are not determined
by eq. (2.22). In particular for n = 4, where we have 4 coordinates to play with, we can
construct two different cross ratios:

u =
|x1 − x2|2|x3 − x4|2

|x1 − x3|2|x2 − x4|2
, v =

|x1 − x4|2|x2 − x3|2

|x1 − x3|2|x2 − x4|2
(2.38)

And the general form of the 4-point function is given by eq. (2.37) up to some
function of these invariants:

〈O∆1(x1)O∆2(x2)O∆3(x3)O∆4(x4)〉 =
f(u, v)∏

i<j|xi − xj|∆i+∆j−
∑
k ∆k
3

(2.39)

In summary, CFTs are interesting theories with no dimensionful coupling constants
in their actions and therefore they usually look the same at every length scale. Since
the form of the correlators are sensible to the symmetries of the theory, and conformal
symmetry is highly restrictive, in some cases one can completely determine their functional
form. The resulting 1-, 2-, 3- and 4-point functions of primary scalar fields O∆i

(xi) with
scaling dimensions ∆i are:

1-pt fn: 〈O∆1(x1)〉 = 0

2-pt fn: 〈O∆1(x1)O∆2(x2)〉 =
C∆1,∆2δ∆1,∆2

|x1 − x2|∆1+∆2

3-pt fn: 〈O∆1(x1)O∆2(x2)O∆3(x3)〉 =
C∆1,∆2,∆3

|x1 − x2|∆1+∆2−∆3 |x2 − x3|∆2+∆3−∆1|x3 − x1|∆3+∆1−∆2

4-pt fn: 〈O∆1(x1)O∆2(x2)O∆3(x3)O∆4(x4)〉 =
f(u, v)∏

i<j|xi − xj|∆i+∆j−
∑
k ∆k
3

(2.40)
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where C∆1,∆2 and C∆1,∆2,∆3 are some constants dependent only on ∆i and f(u, v)
is some function of the cross ratios u and v (eq. (2.38)).

In the particular case where one is interested in computing the n-point functions
of the same primary scalar field of scaling dimension ∆, they can be obtained from eq.
(2.40) by simply taking ∆i = ∆, resulting in:

1-pt fn: 〈O∆(x1)〉 = 0

2-pt fn: 〈O∆(x1)O∆(x2)〉 =
C∆

|x1 − x2|2∆

3-pt fn: 〈O∆(x1)O∆(x2)O∆(x3)〉 =
C̃∆

|x1 − x2|∆|x2 − x3|∆|x3 − x1|∆

4-pt fn: 〈O∆(x1)O∆(x2)O∆(x3)O∆(x4)〉 =
f(u, v)∏

i<j|xi − xj|
2∆
3

(2.41)

where C∆ and C̃∆ are some constants dependent only on ∆.

2.1.4 Conformal Source

In practice, how does one compute CFT n-point functions of the form, say, eq. (2.21)?
The strategy that one follows is the same as in regular QFT, one simply add to the
generating functional Z external sources J∆i

coupled to every operator O∆i
that one

wishes to compute their correlators:

Z[J∆1 , . . . , J∆n ] =

∫
DO eiS+i

∫
ddx O∆1

(x)J∆1
(x)+···+i

∫
ddx O∆n (x)J∆n (x) (2.42)

and then, performing the resulting integral on the operators O with the use in most
cases of perturbation theory, the computation of the n-point functions is reduced to the
act of taking derivatives with respect to the external sources and then setting them to 0:

〈O∆1(x1) · · ·O∆n(xn)〉 =
(−i)n

Z[0, . . . , 0]

δnZ[J∆1 , . . . , J∆n ]

δJ∆1(x1) · · · δJ∆n(xn)

∣∣∣
J∆i

=0
(2.43)

The idea we want to explore in this section is what are the consequences of the
transformations rules for the primary operators O∆i

(eq. (2.20)) on the external sources
J∆i

themselves. We know that for a conformal theory, the generating functional Z is
invariant under conformal transformations. Since both DO and eiS in eq. (2.42) are
separately invariant, this implies that every coupling between the operators O∆i

and their
corresponding sources J∆i

must also be invariant:∫
ddx′ O′∆i

(x′)J ′∆i
(x′) =

∫
ddx O∆i

(x)J∆i
(x) (2.44)
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but we know how the operator and the measure transforms. The operator trans-
form according to eq. (2.20), O′∆i

(x′) = Ω−∆iO∆i
(x), and the measure transform as

ddx′ =
√
−det(g)ddx, where

√
−det(g) is the Jacobian of the transformation, but for a

conformal transformation η → Ω2(x)η, thus the measure transform as ddx′ = Ωd(x)ddx.
Therefore, eq. (2.44) implies that:∫

ddx Ωd−∆i(x)O∆i
(x)J ′∆i

(x′) =

∫
ddx O∆i

(x)J∆i
(x) (2.45)

For this equality to hold, the external sources must transform according to the
rule:

J ′∆i
(x′) = Ω−(d−∆i)(x)J∆i

(x) (2.46)

In other words, the corresponding sources J∆i
of the primary operators O∆i

of scal-
ing dimensions ∆i are also primary fields, with scaling dimensions d−∆i. The realization
of this fact will be very important in the last section of this chapter, where we will gather
all the evidence to naturally state the AdS/CFT correspondence.

2.2 Anti-de Sitter Space

2.2.1 Anti-de Sitter Geometry

How can we describe the 2-dimensional surface of a sphere? There are of course many
ways to do it, but one that is quite simple is acknowledging that it is the result of a sphere
living in a flat space with one additional space-like dimension:

ds2 = dx2 + dy2 + dz2, x2 + y2 + z2 = R2 (2.47)

where R is the constant radius of the sphere. The spherical coordinates, by con-
struction, not only satisfy the sphere equation but also it brings the line element ds2 to
the simple form:

ds2 = R2(dθ2 + sin2 θdφ2) (2.48)

which is the line element of a 2-dimensional surface of a sphere of radius R, as
desired.

In exactly the same way, we can describe Anti-de Sitter space in d + 1 spacetime
dimensions as the embedding of an hyperboloid of radius ` in a flat, one higher time-like
dimension spacetime:

ds2 = −dT 2
1 − dT 2

2 + d ~Xi

2
, −T 2

1 − T 2
2 + ~Xi

2
= −`2 (2.49)
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where i = 1, . . . , d. A nice set of coordinates which describe this hyperboloid are
known as the Poincaré coordinates:

T1 =
r

`
t, T2 =

`2

2r

[
1 +

r2

`4
(`2 + ~xi

2 − t2)
]

Xi =
r

`
xi, Xd =

`2

2r

[
1− r2

`4
(`2 − ~xi

2 + t2)
]

(2.50)

where xi, t ∈ R, r > 0 and now i = 1, . . . , d− 1. It is a nice exercise to check that
these coordinates not only satisfy the hyperboloid equation but also they bring the metric
to the simple form:

ds2 =
`2

r2
dr2 +

r2

`2
(−dt2 + d~xi

2) (2.51)

and if we further define r = `2

x0
, x0 > 0:

ds2 = `2
(dx2

0 − dt2 + d~xi
2

x2
0

)
(2.52)

from where we can read the metric:

ds2 = gµνdx
µdxν , gµν =

`2

x2
0

ηµν (2.53)

where µ, ν = 0, . . . , d, t ≡ xd and η = diag(1, . . . , 1,−1). This is known as the
AdSd+1 metric in Poincaré coordinates.

2.2.2 Einstein’s Equations

Great insight on AdS spaces can be gained by looking at the Einstein’s equations satisfied
by their metric (eq. 2.53). From this metric, it is a matter of direct calculation to compute
the corresponding Christoffel symbols, obtaining:

Γρµν =
1

x0

(ηµνη
ρ0 − δρνδ0

µ − δρµδ0
ν) (2.54)

and from these directly follow the Riemann tensor:

Rρ
σµν =

1

x2
0

(δρνησµ − δρµησν) (2.55)
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the Ricci tensor:

Rσν = − d

x2
0

ησν (2.56)

and the Ricci scalar:

R = −d(d+ 1)

`2
(2.57)

These quantities have the exact form expected for spaces that are maximally sym-
metric, i.e., spaces that are both homogeneous and isotropic. The Ricci scalar quantifies
the intrinsic curvature at each point in space. Since in this case it is a negative constant,
each point in AdS spaces is equally curved.

Maximally symmetric spaces are a solution to Einstein’s equation in vacuum with
the presence of a cosmological constant:

Rµν −
1

2
Rgµν + Λgµν = 0 (2.58)

From eqs. (2.56) and (2.57) it is direct to check that AdS spaces are indeed a
solution to Einstein’s equations with a cosmological constant value of:

Λ = −1

2

d(d− 1)

`2
(2.59)

AdS spaces then can be understood as maximally symmetric solutions to Einstein’s
equations in vacuum with negative cosmological constant. Each point in space is equally
curved, and for a given dimension, this curvature depends only on one parameter, the
radius ` of the hyperboloid. As this radius gets larger, each region of AdS spaces becomes
flatter.

2.2.3 Anti-de Sitter Isometries

What are the isometries of AdS spaces, i.e., the coordinate transformations that leave the
AdS metric (eq. (2.53)) invariant? The answer to this question becomes very clear when
looking at the hyperboloid equation (2.49). It is just the set of transformations that leave
the hyperboloid equation invariant. Indeed, if we came up with a new set of coordinates
that satisfy eq. (2.49), then following the same steps we did previously the resulting
metric is, again, eq. (2.53). But it is quite obvious what are these transformations. By
definition, they are just the elements of the group SO(d, 2). But we already met this
group before, it is the conformal group! Therefore, we expect that exactly the same
set of transformations (Poincaré, rescaling, inversion and SCT, eq. (2.12)) to be isometry
transformations for AdS spaces, with the condition that, since the AdS metric has explicit
dependence on x0, this coordinate doesn’t get rotated nor translated. Therefore, the set
of isometry transformations for AdS spaces are:
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Poincaré: x′ = Λx+ a

Rescaling: x′ = λx

Inversion: x′µ =
xµ

x2

SCT: x′µ =
xµ + aµx2

1 + 2ax+ a2x2
(2.60)

where Λ0
ν = δ0

ν and a0 = 0. It is easy to check that these transformations are
isometries of AdS spaces. Indeed, since they are conformal transformations for flat spaces,
they transform the flat part of the line element as ηµνdx

µdxν → Ω2(x)ηµνdx
µdxν , which

together with the resulting transformation rule for the x0 coordinate:

x′0 = Ω(x)x0 (2.61)

result in the same original AdS metric eq. (2.53), as it should.

2.2.4 Conformal Boundary

Let us remember the AdS metric in Poincaré coordinates:

ds2 = `2
(dx2

0 − dt2 + d~xi
2

x2
0

)
(2.62)

where xi, t ∈ R, and x0 > 0. Notice that for fixed values of x0 the resulting metric
is, up to some overall constant, flat:

ds2|x0 =
`2

x2
0

(−dt2 + d~xi
2) (2.63)

There are two interesting limits of this metric, namely the two extreme values of
the coordinate x0. As we take larger values of x0 all the spacetime starts collapsing into
a point, and as we take smaller values the spacetime starts growing infinitely big. Now,
these regions at x0 = 0 and x0 = ∞ are not part of the domain of AdS spaces, but in
some very sensitive notion we can not only include and patch these regions to AdS spaces,
but even more we can define these regions as their boundaries.

The patching at x0 =∞ is simple, in this region we just have to add a point. The
patching at x0 = 0 however is more subtle since in this region the metric diverges. Since
it diverges as a second order pole, it doesn’t yield a specific metric but a whole conformal
structure instead. Consider a function f(x) with a first order pole at x0 = 0, then the
metric:

ds′2 = f 2(x)ds2|x0=0 (2.64)
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is finite in this region but defined up to conformal transformations. Indeed, if f(x)
renders the AdS metric finite at x0 = 0, then so does it too f(x)Ω(x) where Ω(x) is some
function with no zeros or poles at x0 = 0. In particular, if we take the function f(x) to
be f(x) = x0

`
, the resulting metric at x0 = 0 is:

ds′2 = Ω2(x)(−dt2 + d~xi
2) (2.65)

which is finite, of one lower dimension and defined up to conformal transforma-
tions. AdS spaces then contain the notion of boundaries at the extreme values of the x0

coordinate: a point at x0 = ∞ and a whole conformal structure of one lower dimension
at x0 = 0 [10].

2.3 The AdS/CFT Correspondence

So far we have studied the very basics of conformal field theories and anti-de Sitter
spaces. Now, the motivation for doing this has been twofold: to familiarize ourselves
with the concepts and objects that we will use in the next chapters, but also to show
that, although they are apparently very different and disconnected topics, they actually
share important features in common. For instance, the set of conformal transformations
in flat d dimensional spacetime (eq. (2.12)) and the set of isometry transformations in
d+ 1 dimensional AdS spaces (eq. (2.60)) is the same, and also that AdS spaces have the
notion of a boundary at x0 = 0 where a whole conformal structure of one lower dimension
resides (eq. (2.65)).

There seems to be some hints then on a possible correspondence between theories
in CFTd and AdSd+1. The final decisive piece of evidence that we will present which might
render this correspondence not only possible but also expected, which will be derived in
full detail in the next chapter, it is the fact that completely solving the dynamics for
some field Φ(x) on a AdSd+1 background only determines its functional form up to some
arbitrary function ϕ0(~x) not dependent on the x0 coordinate, that also happens to be
a primary field of scaling dimension d − ∆, where ∆ is some number dependent on the
dimension of the AdS space and the mass parameter of the field Φ(x). Now, this fact
is extremely remarkable for two reasons: first, it implies that the generating functional
ZAdS of some field theory on a AdSd+1 background will be a functional of this arbitrary
function ϕ0(~x), and second, the scaling dimension of this arbitrary function is exactly
the expected for a conformal source of some operator O∆(~x) of scaling dimension ∆ (eq.
(2.46))!

Putting all the evidence together, the resulting picture is very clear if not obvious:
the generating functional ZAdS[ϕ0] of a field Φ(x) on a AdSd+1 background correspond to
the generating functional ZCFT[ϕ0] of a CFTd of some operator O∆(~x) of scaling dimension
∆ living at the conformal boundary x0 = 0 of the AdS space, where ϕ0(~x), the arbitrary
function not determined by the dynamics on AdS, acts as a conformal source for the
primary operators O∆(~x) [6]. In other words:
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ZCFT[ϕ0] =

∫
DO eiSCFT[O]+i

∫
ddx O∆(~x)ϕ0(~x) =

∫
Φ[ϕ0]

DΦ eiSAdS[Φ] = ZAdS[ϕ0] (2.66)

where SCFT is some conformal invariant theory in d dimensions and SAdS is some
isometric AdS invariant theory in d+1 dimensions. This is the AdS/CFT correspondence.
It implies that we can obtain correlators for some CFTd theory using as a starting point
a field theory on AdSd+1:

〈O∆( ~x1) · · ·O∆( ~xn)〉CFT =
(−i)n

ZAdS[ϕ0 = 0]

δnZAdS[ϕ0]

δϕ0( ~x1) · · · δϕ0( ~xn)

∣∣∣
ϕ0=0

(2.67)

〈O∆( ~x1) · · ·O∆( ~xn)〉CFT,con = (−i)n δn logZAdS[ϕ0]

δϕ0( ~x1) · · · δϕ0( ~xn)

∣∣∣
ϕ0=0

(2.68)

Notice how highly non-trivial this equivalence between both theories is. Indeed, it
is saying that certain theories with gravity can be completely understood as some particle
theory without gravity living in one less dimension! Moreover, this duality between both
theories is expected to be strong/weak in the sense that classical computations on the
AdS side are expected to be related through this correspondence with strongly quantum
interacting phenomena on the CFT side. It must be taken into account however that
this particular equivalence between both theories is a conjecture. Proving it would seem
to require solving both sides of eq. (2.66) independently, showing in this way that they
are exactly the same. Needless to say, this is extremely difficult to do if not impossible.
For this reason is that in this work we will limit ourselves in checking that the corre-
lators obtained through this correspondence for certain scalar theories on AdS precisely
correspond to those of a CFT.



Chapter 3

Classical Scalar Theories in
AdS/CFT

With the AdS/CFT correspondence explicitly stated, as a first exploration and familiar-
ization into the topic we will proceed to study its consequences for what are perhaps the
simplest cases, these are, scalar field theories on a fixed AdS background. The objective of
this chapter then is to develop the necessary tools that will allow us to obtain from these
theories, and through the use of what will be understood as the classical approximation
of the AdS/CFT correspondence, the resulting approximated CFT n-point functions.

Section 3.1 will cover all these tools needed for the simplest scalar case, the free
field, using as the main reference the article by Skenderis [10]. In particular, in section
3.1.1 we will present the explicit AdS free field action to be studied, in section 3.1.2
its Euclidean rotated version which will be the signature used throughout this work, in
section 3.1.3 as a first approximation to these calculations we will present the classical
approximation of the AdS/CFT correspondence, in section 3.1.4 the classical solution to
the bulk field, in section 3.1.5 the required renormalization scheme for the divergences
present at the on-shell level of the AdS path integral, in section 3.1.6 through the use of
the approximated correspondence the resulting CFT correlators dual to the free field on
AdS and finally in section 3.1.7 how these same holographic correlators can be obtained
from a more straightforward approach through what is known as holographic dictionary.

Section 3.2 in turn will cover the additional tools needed for interacting scalar
theories, more concretely a Φ3 theory, using as the main reference the previous article by
Skenderis. In particular, in section 3.2.1 we will present the explicit AdS Φ3 action to
be studied under the classical approximation of the correspondence, in section 3.2.2 the
classical solution to the bulk field, in section 3.2.3 through the use of the approximated
correspondence the resulting CFT correlators dual to the Φ3 theory on AdS and finally in
section 3.2.4 how these same holographic correlators can be obtained from the holographic
dictionary.

Lastly, section 3.3 will cover the same tools developed as in section 3.2 now applied
to a different interacting scalar theory, a Φ4 theory, using as the main reference the same
article as before. In particular, in section 3.3.1 we will present the explicit AdS Φ4 action
to be studied under the classical approximation of the correspondence, in section 3.3.2 the
classical solution to the bulk field, in section 3.3.3 through the use of the approximated
correspondence the resulting CFT correlators dual to the Φ4 theory on AdS and finally in

23
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section 3.3.4 how these same holographic correlators can be obtained from the holographic
dictionary.

3.1 Free Scalar Field

3.1.1 Free Field Action

In the previous chapter we reviewed some very basics ingredients of CFTs and AdS spaces
which, putting them together in the last section, naturally led to the realization of the
AdS/CFT correspondence:

ZCFT[ϕ0] =

∫
DO eiSCFT[O]+i

∫
ddx O∆(~x)ϕ0(~x) =

∫
Φ[ϕ0]

DΦ eiSAdS[Φ] = ZAdS[ϕ0] (3.1)

Among these ingredients was the fact that the set of conformal transformations in
d dimensions and the set of AdS isometry transformations in d+1 dimensions is the same.
This is explicitly encoded in the correspondence where under this set of transformations
the CFT side of the correspondence is invariant due to conformal invariance and the AdS
side is invariant due to AdS isometry invariance.

In this section we want to explore what simple AdS isometry invariant actions we
can construct to later perform a more concrete study of the correspondence. The simplest
actions we can construct are, of course, for scalar theories where the corresponding fields
transform trivially under diffeomorphisms. For these cases the invariant action terms we
can write down are of the form:

SAdS[Φ] =

∫
dd+1x

√
−det(g)

[
c1Φ(x) + c2Φ2(x) + · · ·+ c3g

µν∂µΦ(x)∂νΦ(x) + · · ·
]

(3.2)

where Φ(x) is some scalar field, g is the AdSd+1 metric and ci are some constants.
Let us take what would be the most simple non-trivial case, a free scalar field on a AdSd+1

background:

SAdS[Φ] =

∫
dd+1x

√
−det(g)

[
−1

2
gµν∂µΦ(x)∂νΦ(x)− 1

2
m2Φ2(x)

]
(3.3)

Indeed, this is nothing more than the natural generalization of a free scalar field
in flat 4 dimensions to 4 → d + 1 dimensions on a η → g AdS background. This is the
first action we are going to consider for a more concrete study of the correspondence.

3.1.2 Euclidean Rotation

So far every expression we have written down has been on Lorentzian signature of the
metric where its time-like component is negative. But now that we will delve deeper
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into the calculations, the resulting equations will turn out to be more manageable in the
Euclidean signature where the time-like component of the metric is positive. This change
in the signature of the metric can be obtained by doing a Wick rotation of the time-like
coordinate t→ −it. This rotation allows us to write the AdS metric in Euclidean Poincaré
coordinates simply as:

ds2 = gµνdx
µdxν , gµν =

`2

x2
0

δµν (3.4)

where δµν is the Kronecker delta and the coordinates are understood to be x =
(x0, . . . , xd ≡ t). Not only the metric is redefined under this time transformation, but
every quantity dependent on the time-like coordinate. For instance, the free scalar field
action (eq. (3.3)) that we will be considering:

SAdS → i

∫
dd+1x

√
g
[1

2
gµν∂µΦ(x)∂νΦ(x) +

1

2
m2Φ2(x)

]
≡ iSAdS (3.5)

where we called the Jacobian
√
g ≡

√
det(g) and redefined the AdS action. The

AdS/CFT correspondence also has a small tweak in its Euclidean version:

ZCFT[ϕ0] =

∫
DO e−SCFT[O]+

∫
ddx O∆(~x)ϕ0(~x) =

∫
Φ[ϕ0]

DΦ e−SAdS[Φ] = ZAdS[ϕ0] (3.6)

where we also assumed an Euclidean rotation for the CFT action SCFT → iSCFT.
And finally, the resulting correlators in the Euclidean version of the correspondence allow
us to save writing the ”i” factors compared to the Lorentzian signature:

〈O∆( ~x1) · · ·O∆( ~xn)〉CFT =
1

ZAdS[ϕ0 = 0]

δnZAdS[ϕ0]

δϕ0( ~x1) · · · δϕ0( ~xn)

∣∣∣
ϕ0=0

(3.7)

〈O∆( ~x1) · · ·O∆( ~xn)〉CFT,con =
δn logZAdS[ϕ0]

δϕ0( ~x1) · · · δϕ0( ~xn)

∣∣∣
ϕ0=0

(3.8)

From now on we will work exclusively on the Euclidean signature unless stated
otherwise.

3.1.3 Semiclassical Approximation

The main objects we will be interested in computing using the AdS/CFT correspondence
are correlators for some conformal theory (eqs. (3.7) and (3.8)). The impressive prediction
of the correspondence is that these can be obtained from a very different starting point, a
theory on AdS space. Let us see how this is achieved in what is possibly the simplest yet
non-trivial example, the free scalar field. Consider the AdS part of the correspondence
together with the free scalar field action on Euclidean signature:
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ZAdS =

∫
DΦ e−SAdS[Φ], SAdS[Φ] =

∫
dd+1x

√
g
[1

2
gµν∂µΦ(x)∂νΦ(x) +

1

2
m2Φ2(x)

]
(3.9)

The natural way to approach this path integral is by looking at quantum fluctu-
ations around the classical solution of the AdS action. This is done by the change of
variable Φ(x) = φ(x)+h(x), where φ(x) is the on-shell field and h(x) carries the quantum
fluctuations around it. Under this division the AdS path integral takes the form:

ZAdS = e−SAdS[φ]f [φ] (3.10)

where SAdS[φ] is the same free field action as before and f [φ] is some functional
of the classical field φ(x) coupled to the quantum field h(x). This functional leftover of
the change of variable will be precisely the responsible for the quantum corrections to the
CFT correlators and will be the main object of study of the next chapter. However, in
this chapter we will be interested only on the on-shell contributions to the correlators and
therefore to this end, without loss of information, we will truncate1 for the moment the
functional f [φ] of ZAdS resulting simply in:

ZAdS = e−SAdS[φ] (3.11)

This is the classical or saddle point approximation of the AdS/CFT correspon-
dence.

3.1.4 Classical Solution

To continue advancing in the computation of the correlators we need the explicit form
of the on-shell field φ(x). We know it is the classical solution of the AdS action, i.e., it
satisfies the Euler-Lagrange equation:

(−� +m2)φ(x) = 0 (3.12)

where we defined the Laplace operator in curvilinear coordinates � ≡ 1√
g
∂µ(
√
ggµν∂ν).

This is the expected wave equation on a curved space. In Euclidean Poincaré coordinates
it can be explicitly written as:

− x2
0∂

2
0φ(x)− (1− d)x0∂0φ(x)− x2

0∂
2
i φ(x) +m2φ(x) = 0 (3.13)

1Since the holographic correlators are obtained from the AdS path integral by taking derivatives on
it, thanks to the product rule any contribution coming from the functional f [φ] will be additive to those
obtained from the on-shell part of the path integral. Therefore what we are achieving by truncating this
functional is to ignore these additive contributions to the correlators which will be of the order of the
quantum fluctuations h(x).
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where we set the AdS radius ` in the metric equal to 1. From now on we will keep
this value, meaning that every length or energy scale will be measured in units of the
AdS radius. We will explore a couple of ways to solve this equation, the first one being
an asymptotic approach through a power series solution in the x0 coordinate:

φ(x) =
∞∑
n=0

xn+∆
0 ϕn(~x) (3.14)

where the number ∆ and the functions ϕn(~x) will be highly restricted from the
equation of motion. In fact, since the wave equation is of second order we expect that
the infinite number of functions ϕn(~x) simply reduce to 2 linearly independent ones. The
form of eq. (3.13) suggests that we can fix the number ∆ by quickly looking at a solution
of the form φ(x) = x∆

0 . By doing this one obtains the condition:

x∆
0

[
∆(∆− d)−m2

]
= 0 =⇒ ∆(∆− d) = m2 (3.15)

There are then two possible values for ∆:

∆± =
d

2
± ν, ν ≡

√(d
2

)2

+m2 (3.16)

In our study we will focus exclusively on real and different values for ∆+ and ∆−,
i.e., ν > 0. We will often refer to ∆+ simply as ∆ and consequently to ∆− as d−∆. Now,
these two values generally give two different solutions for φ(x) of the form of eq. (3.14),
one for each value of ∆, but when ∆+ − ∆−(= 2ν) is an integer, one of the solutions
will be contained in the other resulting in a linearly dependent set of solutions. If this is
the case, in order two construct a second independent solution one considers a third term
with a logarithmic function, resulting in a general solution to φ(x) of the form:

φ(x) = xd−∆
0 f(x) + x∆

0 g(x) + x∆
0 ln (x0)h(x) (3.17)

where 2ν ∈ N and f(x), g(x) and h(x) are some power series in x0. As it will
become clear in the next section, we will only need the field φ(x) up to order x∆

0 in the
computation of the holographic n-point functions. Therefore, the part of the solution we
will be interested in can be written as:

φ(x) = xd−∆
0

2ν−1∑
n=0

xn0ϕn(~x) + x∆
0 ϕ2ν(~x) + x∆

0 ln (x0)ψ(~x) +O(x∆<
0 ) (3.18)

where most of the functions ϕn(~x), ϕ2ν(~x) and ψ(~x) are expected to be determined
from eq. (3.13). Indeed, calling the sum

∑2ν−1
n=0 xn0ϕn(~x) ≡ ϕ(x) and plugin the solution

in the equation of motion one finds the condition:
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(2ν−1)xd−∆+1
0 ∂0ϕ(x)−xd−∆+2

0 ∂2
0ϕ(x)−xd−∆+2

0 ∂2
i ϕ(x)−2νx∆

0 ψ(~x)+O(x∆<
0 ) = 0 (3.19)

Since we are considering that 2ν is a positive integer, ν itself will be a positive
integer or positive half-integer (ν = 1

2
, 1, 3

2
, . . . ). If ν = 1

2
, eq. (3.19) reduces to:

− x∆
0 ψ(~x) +O(x∆<

0 ) = 0 =⇒ ψ(~x) = 0 (3.20)

and the general solution of the wave equation, up to order x∆
0 , is given by:

φ(x) = x∆−1
0 ϕ0(~x) + x∆

0 ϕ1(~x) +O(x∆<
0 ) (3.21)

where ϕ0(~x) and ϕ1(~x) are some arbitrary functions not determined by the equation
of motion. If ν = 1, using the power series representation of ϕ(x), eq. (3.19) reduces to:

x∆−1
0 ϕ1(~x)− x∆

0

[
∂2
i ϕ0(~x) + 2ψ(~x)

]
+O(x∆<

0 ) = 0 =⇒ ϕ1(~x) = 0, ψ(~x) = −1

2
∂2
i ϕ0(~x)

(3.22)

and the general solution of the wave equation, up to order x∆
0 , is given by:

φ(x) = x∆−2
0 ϕ0(~x) + x∆

0 ϕ2(~x)− 1

2
x∆

0 ln (x0)∂2
i ϕ0(~x) +O(x∆<

0 ) (3.23)

where, again, ϕ0(~x) and ϕ1(~x) are some arbitrary functions. Finally, if ν > 1, using
the power series representation of ϕ(x), eq. (3.19) reduces to:

(2ν − 1)xd−∆+1
0 ϕ1(~x) +

2ν−3∑
n=0

xd−∆+2+n
0

[
(n+ 2)(2ν − n− 2)ϕn+2(~x)− ∂2

i ϕn(~x)
]

− x∆
0

[
∂2
i ϕ2ν−2(~x) + 2νψ(~x)

]
+O(x∆<

0 ) = 0 (3.24)

from where we can read the conditions:

ϕ1(~x) = 0, ϕn+2(~x) =
∂2
i ϕn(~x)

(n+ 2)(2ν − n− 2)
, ψ(~x) = − 1

2ν
∂2
i ϕ2ν−2(~x) (3.25)

The first two conditions imply that:
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ϕ2n+1(~x) = 0, ϕ2n(~x) =
Γ(ν − n)

4nn!Γ(ν)
(∂2
i )
nϕ0(~x) (3.26)

which replacing in the last condition results in:

ψ(~x) =

{
0, ν ∈ N− 1

2

−1
2

1
4ν−1Γ(ν)Γ(ν+1)

(∂2
i )
νϕ0(~x), ν ∈ N

(3.27)

Therefore, when ν is a positive integer the general solution of the wave equation
(eq. (3.12)), up to order x∆

0 , is given by:

φ(x) =xd−∆
0

ν−1∑
n=0

x2n
0

Γ(ν − n)

4nn!Γ(ν)
(∂2
i )
nϕ0(~x) + x∆

0 ϕ2ν(~x)

− 1

2

1

4ν−1Γ(ν)Γ(ν + 1)
x∆

0 ln (x0)(∂2
i )
νϕ0(~x) +O(x∆<

0 ) (3.28)

and when ν is a positive half-integer the general solution, up to this same order,
is instead:

φ(x) = xd−∆
0

ν− 1
2∑

n=0

x2n
0

Γ(ν − n)

4nn!Γ(ν)
(∂2
i )
nϕ0(~x) + x∆

0 ϕ2ν(~x) +O(x∆<
0 ) (3.29)

where ϕ0(~x) and ϕ2ν(~x) are some arbitrary functions not determined by the equa-
tion of motion. Notice that, for any value of ν, as the on-shell field φ(x) approaches the
conformal boundary of the AdS space at x0 = 0, it has an asymptotic expansion of the
form:

φ(x) = xd−∆
0 ϕ0(~x) + · · ·+ x∆

0 ϕ2ν(~x) + · · ·+O(x∆<
0 ) (3.30)

As we anticipated in the last section of the previous chapter where we formulated
the AdS/CFT correspondence, the function ϕ0(~x) is precisely the conformal source for
some scalar operator O∆(~x) living at the boundary of AdS, and as we will see in the next
section the exact form for its correlators will be given by the function ϕ2ν(~x). Up to now,
where we have only solved the equation of motion asymptotically, these functions are
completely arbitrary and disconnected between them, but in fact fully solving eq. (3.13)
for a regular field in the interior of AdS forces ϕ2ν(~x) to be a functional of ϕ0(~x).

To fully solve the equation of motion we will look for a solution in terms of a
Green’s function:

φ(x) =

∫
ddy K(x, ~y)ϕ0(~y) (3.31)
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where the Green’s function K(x, ~y) is known as the bulk-boundary propagator,
since it propagates the field from the boundary of the AdS space to a point in the bulk.
Replacing this form of the solution into the equation of motion implies that the bulk-
boundary propagator itself must satisfy the wave equation:

(−� +m2)K(x, ~y) = 0 (3.32)

There is a quite clever way to solve it which can be seen by remembering from
eqs. (3.15) and (3.16) that x∆

0 itself is a solution of the wave equation if ∆ = ∆±, where
∆± = d

2
± ν. Then, a more general solution to it can be written as:

(−� +m2)
(
c∆+x

∆+

0 + c∆−x
∆−
0

)
= 0 (3.33)

Now, since the metric is invariant under AdS isometries, in particular for inversions
and translations of the form xµ → xµ

x2 and x→ x− ~y respectively, then the wave equation
is invariant as well and thus under these transformations it must also hold that:

(−� +m2)
(
c∆+

[ x0

(x− ~y)2

]∆+

+c∆−

[ x0

(x− ~y)2

]∆−)
= 0 (3.34)

Therefore, by arguments of existence and uniqueness of the solution, the general
form of the bulk-boundary propagator is given by:

K(x, ~y) = c∆

[ x0

(x− ~y)2

]∆

+cd−∆

[ x0

(x− ~y)2

]d−∆

(3.35)

where, again, we simply called ∆+ ≡ ∆ and consequently ∆− ≡ d − ∆. The
coefficients c∆ and cd−∆ can be determined with the imposition of appropriate boundary
conditions. In particular we will be interested in two boundary conditions, that the
resulting fields are regular in the interior of the AdS space, that is to say, fields that
vanish fast enough as xi → ±∞ but also as x0 →∞, and that their asymptotic expansion
behave like eq. (3.30) as they approach the conformal boundary at x0 → 0. Since in most
cases of interest the second term in eq. (3.35) will be the responsible for divergences as
we study the field in the limit x0 →∞, the first condition sets the value of the coefficient
cd−∆ to 0. This reduces the general form of the regular fields in the interior of AdS to be
of the form:

φ(x) =

∫
ddy K(x, ~y)ϕ0(~y), K(x, ~y) = c∆

[ x0

(x− ~y)2

]∆

(3.36)

where the coefficient c∆ is yet to be determined. The second condition, that the
asymptotic expansion of the field should agree with the one found previously, implies that
in the limit x0 → 0 the leading terms in the expansion of the bulk-boundary propagator
must be:
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K(x, ~y) =
x0→0

xd−∆
0 δd(~x− ~y) + · · ·+ x∆

0 f(~x, ~y) + · · ·+O(x∆<
0 ) (3.37)

where f(~x, ~y) is some function and δd(~x− ~y) is the Dirac delta. Indeed, replacing
this behavior in φ(x) one recovers that φ(x) = xd−∆

0 ϕ0(~x)+ · · ·+x∆
0 ϕ2ν(~x)+ · · ·+O(x∆<

0 ),
for some ϕ2ν(~x) in terms of f(~x, ~y) and ϕ0(~y), which is the correct expansion (eq. (3.30)).
Let us see then that eq. (3.37) is precisely the expansion of the bulk-boundary propagator
from eq. (3.36), finding explicitly the forms of c∆ and f(~x, ~y) in the process. In the case
that ~x 6= ~y, a simple Taylor expansion near the point x0 = 0 suggests that:

K(x, ~y) =
x0→0

~x6=~y

x∆
0

c∆

|~x− ~y|2∆
+O(x∆<

0 ) =⇒ f(~x, ~y) =
c∆

|~x− ~y|2∆
(3.38)

completely fixing the functional form of the function f(~x, ~y) up to the constant
c∆. The resulting expansion however when not only x0 → 0 but also ~x → ~y is more
interesting. Eq. (3.37) is telling us that in these limits the leading order in the expansion
of the bulk-boundary propagator must be a Dirac delta with support at ~x = ~y, of order
xd−∆

0 . This fact further implies that:

lim
x0→0

x∆−d
0 K(x, ~y) = δd(~x− ~y) =⇒ lim

x0→0

∫
ddy x∆−d

0 K(x, ~y) =

∫
ddy δd(~x− ~y) = 1

(3.39)

In our case, the explicit form of K(x, ~y) found in eq. (3.36) normally goes to 0 as
x0 → 0, but as ~x→ ~y also, it no longer vanishes, in fact it diverges. This is the expected
behavior of a quantity behaving as a Dirac delta with support at ~x = ~y. Moreover, when
integrated in the ~y coordinate in the limit of eq. (3.39)2:

lim
x0→0

∫
ddy x∆−d

0 K(x, ~y) = c∆
π
d
2 Γ(ν)

Γ(∆)
(3.40)

Therefore eq. (3.39), which contains the explicit behavior as a Dirac delta function
that the bulk-boundary propagator must have in the limits x0 → 0 and ~x→ ~y, is satisfied
for the K(x, ~y) found in eq. (3.36) if the coefficient c∆ is chosen such that:

c∆
π
d
2 Γ(ν)

Γ(∆)
= 1 =⇒ c∆ =

Γ(∆)

π
d
2 Γ(ν)

(3.41)

In summary, the complete solution of the wave equation (−� + m2)φ(x) = 0
which is regular in the interior of the AdS space with appropriate boundary behavior
as it approaches the conformal boundary of AdS at x0 = 0 can be written in terms of

2The integral can be easily done after a translation ~y → ~y + ~x and rescaling ~y → x0~y using spherical
coordinates.
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a Green’s function K(x, ~y), the bulk-boundary propagator which also satisfies the wave
equation (−� +m2)K(x, ~y) = 0, as:

φ(x) =

∫
ddy K(x, ~y)ϕ0(~y), K(x, ~y) = c∆

[ x0

(x− ~y)2

]∆

, c∆ =
Γ(∆)

π
d
2 Γ(ν)

(3.42)

where the asymptotic expansion of the bulk-boundary propagator K(x, ~y) and bulk
field φ(x) as x0 → 0 are given by:

K(x, ~y) = xd−∆
0 δd(~x− ~y) + · · ·+ x∆

0

c∆

|~x− ~y|2∆
+ · · ·+O(x∆<

0 ) (3.43)

φ(x) = xd−∆
0 ϕ0(~x) + · · ·+ x∆

0 ϕ2ν(~x) + · · ·+O(x∆<
0 ), ϕ2ν(~x) =

∫
ddy

c∆

|~x− ~y|2∆
ϕ0(~y)

(3.44)

This form of the solution not only shows our promised statement that the function
ϕ2ν(~x) present in the expansion of the field (function that as we will see will be crucial in
the values of the correlators) becomes a functional of ϕ0(~y), but also that the transforma-
tion rules for ϕ0(~y) are precisely those of a conformal source to some O∆(~y) operator of
scaling dimension ∆, realization which was key in the formulation of the AdS/CFT corre-
spondence at the end of the last chapter. Indeed, this can easily be seen from the trivial
transformation rule for the field φ(x) itself. Under AdS isometries, using eqs. (2.32) and
(2.61), the bulk-boundary propagator transforms as:

K(x′, ~y′) = Ω−∆(~y)K(x, ~y) (3.45)

Since φ(x) is a scalar field, it transforms trivially under diffeomorphisms φ′(x′) =
φ(x). This fact implies that:

φ′(x′) =

∫
ddy K(x, ~y)Ωd−∆(~y)ϕ′0(~y′)

!
=

∫
ddy K(x, ~y)ϕ0(~y) = φ(x) (3.46)

where we used the transformation rules forK(x, ~y) and the measure ddy′ = Ωd(~y)ddy.
In other words, the function ϕ0(~y) itself must transform as:

ϕ′0(~y′) = Ω−(d−∆)(~y)ϕ0(~y) (3.47)

This is exactly the transformation rule expected for a conformal source of a primary
scalar operator O∆(~y) of scaling dimension ∆ (eq. (2.46)), as we anticipated.
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3.1.5 Holographic Renormalization

We are one step away from being able to compute our first correlation functions using the
AdS/CFT correspondence for what is the simplest case, a free scalar field. Now that we
know how the on-shell field φ(x) depends on the dual source ϕ0(~x), it is a matter of direct
calculation to compute the functional derivatives of ZAdS[ϕ0] = e−SAdS[φ] with respect to
ϕ0(~x) with the intention to compute the CFT correlators eqs. (3.7) and (3.8). With this
objective in mind then, varying the AdS path integral once:

δZAdS[ϕ0] = −ZAdS[ϕ0]

∫
dd+1x

(
∂µ
[√
ggµν∂νφ(x)δφ(x)

]
+
√
g(−� +m2)φ(x)δφ(x)

)
(3.48)

where integration by parts was done. Now, the second term vanishes due to the
Euler-Lagrange equation (eq. (3.12)) and the first term is a boundary term evaluated at
the boundaries of every coordinate. As we mentioned in the last section, we are interested
in fields which are regular in the interior of the AdS space, that is to say, fields that vanish
fast enough as xi → ±∞ but also as x0 → ∞. All the interesting behavior of the bulk
fields occur as they approach the conformal boundary of the AdS space at x0 = 0, which
reduces the variation of the AdS action to:

δZAdS[ϕ0] = ZAdS[ϕ0]

∫
ddx x1−d

0 ∂0φ(x)δφ(x)
∣∣∣
x0=0

(3.49)

where we used the explicit form of the AdS metric. From this expression it is clear
why we only need the expansion of the field φ(x) up to order x∆

0 . Considering higher order
terms will result in contributions of the form x0<

0 which will vanish when we evaluate the
integrand at x0 = 0, not playing any role in the computation of the correlators. But even
more interesting, the contributions from the leading terms in the expansion of φ(x) will
be of the form x<0

0 which will diverge when evaluated at x0 = 0, making the variation of
the AdS path integral δZAdS ill-defined. This is not surprising at all when one takes into
account the fact that the AdS/CFT correspondence is a weak/strong duality meaning
that weakly coupled (classical) theories on the AdS side are related to strongly coupled
(quantum) theories on the CFT side. Since we are considering some classical theory
approximation on AdS, we are computing the CFT correlators for some quantum theory
which are usually UV-divergent due to loops contributions, divergence which must be
present somehow on the AdS side due to the AdS/CFT dictionary. In this case, the
divergence is of the type IR and it is because the combination found in eq. (3.49) of the
AdS metric together with the bulk field diverges as it approaches the conformal boundary.

If we are able to write the IR-divergences present in eq. (3.49) as the total variation
of some quantity which transforms correctly under AdS isometries, we can always add a
boundary term to the AdS action with exactly this same value but opposite sign which
not only it will not modify the Euler-Lagrange equations but also it will preserve the
AdS invariance of the action, property that is extremely important for the validity of
the correspondence. Adding such boundary term to the action would exactly cancel all
divergences, rendering a finite predictive action. This process of extracting the sensitive
information from the ill-defined variation of the AdS path integral is known as holographic
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renormalization and it consists of the following way: to not manipulate divergent terms
let us first regularize δZAdS with a small IR-regulator ε where instead of evaluating its
integrand at the conformal boundary x0 = 0 we evaluate it at some small distance from
it x0 = ε:

δZAdS[ϕ0] = lim
ε→0

ZAdS[ϕ0]

∫
ddx x1−d

0 ∂0φ(x)δφ(x)
∣∣∣
x0=ε

(3.50)

Before replacing the explicit form of the field φ(x), since we only need it up to order
x∆

0 , its asymptotic expansions given by eqs. (3.28) and (3.29) will be sufficient for this
study. To address both cases at the same time we will compactly write these expansions
as:

φ(x) = xd−∆
0 ϕ(x) + x∆

0 ϕ2ν(~x) + x∆
0 ln (x0)ψ(~x) +O(x∆<

0 ) (3.51)

where we called:

ϕ(x) =

{∑ν− 1
2

n=0 x
2n
0

Γ(ν−n)
4nn!Γ(ν)

(∂2
i )
nϕ0(~x), ν ∈ N− 1

2∑ν−1
n=0 x

2n
0

Γ(ν−n)
4nn!Γ(ν)

(∂2
i )
nϕ0(~x), ν ∈ N

(3.52)

ψ(~x) =

{
0, ν ∈ N− 1

2

−1
2

1
4ν−1Γ(ν)Γ(ν+1)

(∂2
i )
νϕ0(~x), ν ∈ N

(3.53)

Replacing then eq. (3.51) into eq. (3.50) one finds that:

δZAdS[ϕ0] = lim
ε→0

ZAdS[ϕ0]

∫
ddx

(
(d−∆)

[
ε−2νϕ(x)δϕ(x) + ϕ(x)δϕ2ν(~x) + ln (ε)ϕ(x)δψ(~x)

]
+ ε−2ν+1∂0ϕ(x)δϕ(x) + ∆ϕ2ν(~x)δϕ(x) + ∆ ln (ε)ψ(~x)δϕ(x)

+ ψ(~x)δϕ(x) +O(ε0<)
)

(3.54)

where the bulk coordinates x are understood to be x = (ε, ~x). It is clear that
many of these terms will diverge as we take the limit ε → 0. Indeed, take for example
the first term for some particular simple case, say ν = 1. It reduces to ε−2νϕ(x)δϕ(x) =

ν=1

ε−2ϕ0(~x)δϕ0(~x), which is clearly divergent for ε = 0. As we explained before, if we
can write these divergences as total variations of some AdS invariant quantities we will
be able to renormalize them through a suitable boundary action term. Following this
line then, let us write the variations on the square bracket as ϕ(x)δϕ(x) = δ

[
1
2
ϕ2(x)

]
,

ϕ(x)δϕ2ν(~x) = δ
[
ϕ(x)ϕ2ν(~x)

]
−ϕ2ν(~x)δϕ(x) and ϕ(x)δψ(~x) = δ

[
ϕ(x)ψ(~x)

]
−ψ(~x)δϕ(x),

resulting in:
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δZAdS[ϕ0] = lim
ε→0

ZAdS[ϕ0]

∫
ddx

(1

2
(d−∆)δ

[
ε−2νϕ2(x) + 2ϕ(x)ϕ2ν(~x) + 2 ln (ε)ϕ(x)ψ(~x)

]
+ ε−2ν+1∂0ϕ(x)δϕ(x) + 2νϕ2ν(~x)δϕ(x) + 2ν ln (ε)ψ(~x)δϕ(x)

+ ψ(~x)δϕ(x) +O(ε0<)
)

(3.55)

The terms on the square bracket, up to order ε0, are nothing but the square of the
field φ(x) times the corresponding Jacobian:

ε−2νϕ2(x) + 2ϕ(x)ϕ2ν(~x) + 2 ln (ε)ϕ(x)ψ(~x) =
√
γφ2(x) +O(ε0<) (3.56)

where we defined the induced metric on the boundary γij = 1
ε2
δij. The first term

on the second line can also be written as a total variation in terms of the field and induced
metric:

ε−2ν+1∂0ϕ(x)δϕ(x) = δ
[√

γ
1

4(ν − 1)
φ(x)�γφ(x) + · · ·

]
(3.57)

where we defined the Laplace operator �γ ≡ 1√
γ
∂i(
√
γγij∂j) = ε2∂2

i , used that

�γφ(x)δφ(x) = δ
[

1
2
φ(x)�γφ(x)

]
, and where the triple dots represent terms with higher

order derivatives. In exactly the same way we can also write the third term on the second
line and the term on the third line of eq. (3.55) as total variations in terms of the field
and induced metric using that:

ψ(~x)δϕ(x) = δ
[√

γ
1

2
Cνφ(x)�ν

γφ(x)
]
+O(ε0<) (3.58)

where Cν summarizes the constants in eq. (3.53):

Cν =

{
0, ν ∈ N− 1

2

−1
2

1
4ν−1Γ(ν)Γ(ν+1)

, ν ∈ N
(3.59)

All this allows us to group the divergent terms in eq. (3.55) as a total variation of
some quantity which transforms correctly under diffeomorphisms:

δZAdS[ϕ0] = lim
ε→0

ZAdS[ϕ0]

∫
ddx

(
δ
{√

γ
[1

2
(d−∆)φ2(x) + ν ln (ε)Cνφ(x)�ν

γφ(x)

+
1

2
Cνφ(x)�ν

γφ(x) +
1

4(ν − 1)
φ(x)�γφ(x) + · · ·

]}
+ 2νϕ2ν(~x)δϕ(x) +O(ε0<)

)
(3.60)
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The only term that cannot be written as a total variation is 2νϕ2ν(~x)δϕ(x) and
this will be precisely the term that will give rise to the values of the correlators. Now,
continuing with the renormalization process, we can always add a boundary term to the
AdS action of the form:

SAdS[φ]→ SAdS[φ] +

∫
ddx
√
γ B

(
φ(x)

)∣∣∣
x0=0

(3.61)

where B
(
φ(x)

)
is some AdS invariant function of the fields φ(x). The addition of

this boundary term modifies the variation of the AdS path integral eq. (3.60) to:

δZAdS[ϕ0] = lim
ε→0

ZAdS[ϕ0]

∫
ddx

(
δ
{√

γ
[1

2
(d−∆)φ2(x) + ν ln (ε)Cνφ(x)�ν

γφ(x)+

1

2
Cνφ(x)�ν

γφ(x) +
1

4(ν − 1)
φ(x)�γφ(x) + · · ·

−B
(
φ(x)

)]}
+2νϕ2ν(~x)δϕ(x) +O(ε0<)

)
(3.62)

Then simply choosing this boundary term to be3:

B
(
φ(x)

)
=

1

2
(d−∆)φ2(x) + ν ln (ε)Cνφ(x)�ν

γφ(x) +
1

2
Cνφ(x)�ν

γφ(x)+

1

4(ν − 1)
φ(x)�γφ(x) + · · · (3.63)

renders the variation of the AdS path integral finite, allowing us to safely approach
the conformal boundary, i.e., take the IR-regulator ε equal to 0:

δZAdS[ϕ0] = ZAdS[ϕ0]

∫
ddx 2νϕ2ν(~x)δϕ0(~x) (3.64)

This is the holographic renormalization procedure.

3.1.6 Correlation Functions

The whole study of the obtention of CFT correlators starting from an AdS path integral
in the AdS/CFT correspondence is reduced to the computation of the finite, renormalized
variation δZAdS as a functional of the corresponding conformal sources. Once the explicit
form of this variation is found, the obtention of every n-point function is just a simple
exercise of taking derivatives. In the particular case of a free scalar field in AdS, this
study led us to eq. (3.64) where the explicit form of ϕ2ν(~x) is given by eq. (3.44):

3For ν < 3
2 the terms 1

4(ν−1)φ(x)�γφ(x) + · · · are not present, while for ν = 3
2 only the higher order

derivative terms represented by the triple dots are absent.
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δZAdS[ϕ0] = ZAdS[ϕ0]

∫ ∫
ddxddy

2νc∆

|~x− ~y|2∆
ϕ0(~y)δϕ0(~x) (3.65)

From this expression it is just a matter of direct calculation to obtain the corre-
sponding correlators eqs. (3.7) and (3.8). The resulting 1-, 2-, 3- and 4-point functions
for some primary scalar operator O∆(~x) of scaling dimension ∆ dual to a free scalar field
Φ(x) in AdSd+1 are given by:

1-pt fn: 〈O∆(~y1)〉CFT = 〈O∆(~y1)〉CFT,con = 0

2-pt fn: 〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con =
2νc∆

|~y1 − ~y2|2∆

3-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT = 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con = 0

4-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT =
2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con = 0 (3.66)

~y1 ~y2

~y1

~y3

~y2

~y4

Figure 3.1: Pictorial representation of the contributions to the 2- and 4-point functions.

Notice how the holographic 1-, 2- and 3-point functions follow the expected form
for a conformal invariant theory as it was derived in eq. (2.41). It is not obvious however
given its current form that this is also true for the holographic 4-point function just
obtained. What we can assert at the moment is that this correlator depends of the product
of 2-point functions evaluated at different boundary points along with its permutations
which, pictorially, correspond exactly to the disconnected tree-level diagrams expected
from a free field theory. Fortunately, the conformal form of the 4-point function can be
exposed directly through simple manipulations of the boundary points. Indeed, adding a
convenient factor of 1 to the first term of the correlator we can rewrite it as:

2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
=

(2νc∆)2∏
i<j| ~yij|

2∆
3

( | ~y13|| ~y14|| ~y23|| ~y24|
| ~y12|2| ~y34|2

) 2∆
3

(3.67)

where we defined | ~yij| ≡ |~yi − ~yj|. The resulting fraction of the boundary points
inside the parentheses can be written in terms of the conformal invariant cross ratios u
and v defined in eq. (2.38) simply as u−1v

1
2 , which allows us to express eq. (3.67) as:
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2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
=

(2νc∆)2∏
i<j| ~yij|

2∆
3

u−
2∆
3 v

∆
3 (3.68)

This result let us rewrite the holographic 4-point function into the form:

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT =
(2νc∆)2∏
i<j| ~yij|

2∆
3

u−
2∆
3 v

∆
3 + (~y2 ↔ ~y3) + (~y2 ↔ ~y4) (3.69)

The objective of these manipulations was precisely to be able to write the first
term of the correlator in its desired conformal form, as in eq. (2.41). But what about its
permutations? It is a nice exercise to check that under the interchange of ~y2 with ~y3 the
multiplication

∏
i<j| ~yij|

2∆
3 remains invariant while the cross ratios u and v are mapped to 1

u

and v
u

respectively, and equivalently under the interchange of ~y2 with ~y4 the multiplication∏
i<j| ~yij|

2∆
3 also remains invariant while the cross ratios u and v are mapped now to v

and u respectively. Therefore, since the only quantity that changes when interchanging
the boundary points is the particular function on the cross ratios, the permutations of
the first term of the correlator also have the expected conformal form. Finally then, these
facts allow us to write the holographic 4-point function, exposing explicitly its conformal
form, as:

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT =
(2νc∆)2∏
i<j| ~yij|

2∆
3

u−
2∆
3 v

∆
3 +

(
u, v → 1

u
,
v

u

)
+(u, v → v, u)

(3.70)

In summary, the resulting 1-, 2-, 3- and 4-point functions for some primary scalar
operator O∆(~x) of scaling dimension ∆ dual to a free scalar field Φ(x) in AdSd+1 are given
by:

1-pt fn: 〈O∆(~y1)〉CFT = 〈O∆(~y1)〉CFT,con = 0

2-pt fn: 〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con =
2νc∆

|~y1 − ~y2|2∆

3-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT = 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con = 0

4-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT =
(2νc∆)2∏
i<j| ~yij|

2∆
3

u−
2∆
3 v

∆
3 +

(
u, v → 1

u
,
v

u

)
+ (u, v → v, u)

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con = 0 (3.71)

The form of these correlators are exactly those dictated by eq. (2.41), expected
for a conformal theory. These results greatly motivate and contribute to the belief of the
validity of the AdS/CFT conjecture.
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3.1.7 Holographic Dictionary

The n-point functions just obtained were the result of a careful study of a free scalar field
theory on AdS with delicate boundary behavior as it approaches its conformal boundary
through the use of the AdS/CFT correspondence, however the relative complexity of
this procedure makes us wonder if there is any other more direct approach. With this
concern in mind, we want to check if there is any relation between these desired boundary
correlators for the operator O∆(~x) with the simple and known bulk correlators for the field
Φ(x). Consider the n-point functions of the free scalar field Φ(x) on a AdS background
obtained from the usual Feynman rules:

1-pt fn: 〈Φ(y1)〉 = 〈Φ(y1)〉con = 0

2-pt fn: 〈Φ(y1)Φ(y2)〉 = 〈Φ(y1)Φ(y2)〉con = G(y1, y2)

3-pt fn: 〈Φ(y1)Φ(y2)Φ(y3)〉 = 〈Φ(y1)Φ(y2)Φ(y3)〉con = 0

4-pt fn: 〈Φ(y1)Φ(y2)Φ(y3)Φ(y4)〉 = G(y1, y2)G(y3, y4) + (y2 ↔ y3) + (y2 ↔ y4)

〈Φ(y1)Φ(y2)Φ(y3)Φ(y4)〉con = 0 (3.72)

where G(x, z) is the Green’s function of the wave operator:

(−� +m2)G(x, z) =
1
√
g
δd+1(x− z) (3.73)

whose solution in terms of the AdS invariant variable ξ is given by4 [11]:

G(x, z) =
2−∆c∆

2ν
ξ∆

2F1

(∆

2
,
∆ + 1

2
; ν + 1; ξ2

)
, ξ =

2x0z0

x2
0 + z2

0 + (~x− ~z)2
(3.74)

where the function 2F1 is the Gauss’ hypergeometric function. It is a nice exercise
to check that this solution indeed satisfies the Green’s equation. G(x, z) is also known
as the bulk-bulk propagator since it propagates the field between two points in the bulk
of the AdS space. When one of its points is taken to the conformal boundary it has an
expansion of the form:

G(x, z) =
x0→0

x∆
0

2ν
K(z, ~x) +O(x∆<

0 ) (3.75)

4The invariance of ξ can be seen directly from its representation in terms of the chordal distance u:

ξ = 1
1+u , where u is given by: u = (x−z)2

2x0z0
. Under an AdS isometry transformation, the Euclidean distance

(x− z)2 transforms according to eq. (2.32) and the radial coordinates x0 and z0 according to eq. (2.61),

which implies the transformation rule for u: u(x′, z′) = (x′−z′)2
2x′

0z
′
0

= Ω(x)Ω(z)(x−z)2
2Ω(x)x0Ω(z)z0

= (x−z)2
2x0z0

= u(x, z).

Since u is invariant, and ξ is a function of u, then ξ is also invariant.
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where we used that 2F1(. . . ; 0) = 1 and identified the explicit form of the bulk-
boundary propagator. When both points are taken to the boundary however, using the
known expansion for the bulk-boundary propagator eq. (3.43), it has the form:

G(x, z) =
x0,z0→0

(contact terms) +
x∆

0

2ν

z∆
0

2ν

2νc∆

|~x− ~z|2∆
+ (subleading terms) (3.76)

These nice expansions for the bulk-bulk propagator allow us to easily relate the
boundary n-point functions with the bulk n-point functions simply as the former being
the extension of the internal points of the latter to the conformal boundary of the AdS
space [12]! Indeed, by just applying these behaviors into the bulk correlators eq. (3.72),
the resulting quantities (up to contact terms which can always be renormalized with
appropriate local counterterms) are:

1-pt fn: lim
y1,0→0

2ν

y∆
1,0

〈Φ(y1)〉 = lim
y1,0→0

2ν

y∆
1,0

〈Φ(y1)〉con = 0

2-pt fn: lim
y1,0,y2,0→0

2ν

y∆
1,0

2ν

y∆
2,0

〈Φ(y1)Φ(y2)〉 = lim
y1,0,y2,0→0

2ν

y∆
1,0

2ν

y∆
2,0

〈Φ(y1)Φ(y2)〉con =
2νc∆

|~y1 − ~y2|2∆

3-pt fn: lim
y1,0,y2,0,y3,0→0

2ν

y∆
1,0

2ν

y∆
2,0

2ν

y∆
3,0

〈Φ(y1)Φ(y2)Φ(y3)〉

= lim
y1,0,y2,0,y3,0→0

2ν

y∆
1,0

2ν

y∆
2,0

2ν

y∆
3,0

〈Φ(y1)Φ(y2)Φ(y3)〉con = 0

4-pt fn: lim
y1,0,y2,0,y3,0,y4,0→0

2ν

y∆
1,0

2ν

y∆
2,0

2ν

y∆
3,0

2ν

y∆
4,0

〈Φ(y1)Φ(y2)Φ(y3)Φ(y4)〉 =

2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

lim
y1,0,y2,0,y3,0,y4,0→0

2ν

y∆
1,0

2ν

y∆
2,0

2ν

y∆
3,0

2ν

y∆
4,0

〈Φ(y1)Φ(y2)Φ(y3)Φ(y4)〉con = 0 (3.77)

but these values are nothing but the boundary n-point functions just obtained
through the AdS/CFT procedure for the operator O∆(~x) dual to the field Φ(x), eq.
(3.66)! This fact suggests the boundary/bulk n-point functions equivalence:

〈O∆(~y1) · · ·O∆( ~yn)〉CFT ≡ lim
y1,0,...,yn,0→0

2ν

y∆
1,0

· · · 2ν

y∆
n,0

〈Φ(y1) · · ·Φ(yn)〉 (3.78)

〈O∆(~y1) · · ·O∆( ~yn)〉CFT,con ≡ lim
y1,0,...,yn,0→0

2ν

y∆
1,0

· · · 2ν

y∆
n,0

〈Φ(y1) · · ·Φ(yn)〉con (3.79)

This is known as the holographic dictionary. Here we gave an heuristic derivation
of this equivalence for the very particular case of a free scalar field on the AdS side in
the classical approximation of the AdS/CFT correspondence, but note however that this
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dictionary as it is presented in eqs. (3.78) and (3.79) it is conjectured to hold for any
theory on AdS and at the full quantum level of the AdS/CFT correspondence. The
validity of this claim will be put to the test throughout our work as we consider more
complicated and interesting theories.

3.2 Φ3 Theory

3.2.1 Semiclassical Approximation

Up to now we have reviewed in detail how starting from a concrete field theory on a
AdS background we can obtain the corresponding dual CFT correlators, in the particular
case of a free scalar field through the use of the classical or saddle point approximation
of the AdS/CFT correspondence. Now, of course free fields are not the only theories
we can consider on AdS, and the correspondence is conjectured to be true not only in
the classical approximation but at the full quantum level. The quantum corrections
to the correlators will be the main topic of the next chapter. In what remains of the
current chapter however, we will study how we can complicate the current picture by
considering now self-interacting terms in the AdS action with the intention to not only
start constructing more interesting theories but also to further test the validity of the
AdS/CFT correspondence.

The most natural step in difficulty from the current picture is, of course, adding a
Φ3(x) self-interacting term to the free scalar field AdS action, from which we expect new
contributions on top of the recently found correlators (eq. (3.66)). Therefore, the theory
that we will have under study in this section is:

ZAdS =

∫
DΦ e−SAdS[Φ], SAdS[Φ] =

∫
dd+1x

√
g
[1

2
gµν∂µΦ(x)∂νΦ(x)+

1

2
m2Φ2(x)+

λ

3!
Φ3(x)

]
(3.80)

This is known as a Φ3 theory on a Euclidean AdS background. Just like we did
for the free field case, the natural way to approach this path integral is by looking at
quantum fluctuations h(x) around the classical solution φ(x) of the AdS action through
the change of variable Φ(x) = φ(x) + h(x), resulting in:

ZAdS = e−SAdS[φ]f [φ] (3.81)

where SAdS[φ] is the same φ3 action and f [φ], as we mentioned before, is some
functional of the classical field φ(x) coupled to the quantum field h(x) responsible for the
quantum corrections to the dual CFT correlators. Then, adopting the classical or saddle
point approximation of the AdS/CFT correspondence, we will truncate for the moment
this functional from ZAdS, focusing only on the on-shell contributions to the correlators:

ZAdS = e−SAdS[φ] (3.82)
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This is the classical AdS path integral in which we will work on.

3.2.2 Classical Solution

Following the same steps as in the free field case, to continue advancing in the computation
of the correlators we need the explicit dependence of the on-shell field φ(x) in terms of the
dual source ϕ0(~x). We know it is the classical solution of the AdS action, i.e., it satisfies
the Euler-Lagrange equation:

(−� +m2)φ(x) = −λ
2
φ2(x) (3.83)

Now, exactly solving this equation is very hard. However, if we can think of the
parameter λ (which mediates the strength of the self-interaction) as being in some sense
”small”, we can resort to perturbation theory, easily solving for the form of the field φ(x)
as an expansion of this parameter. With this objective in mind then, we will look for a
solution to eq. (3.83) of the form5:

φ(x) = φ(0)(x) + λφ(1)(x) + λ2φ(2)(x) +O(λ3) (3.84)

where the functions φ(i)(x) are to be determined. Therefore, replacing the expan-
sion eq. (3.84) into the equation of motion eq. (3.83), we find at each order in λ:

Order λ0 : (−� +m2)φ(0)(x) = 0

Order λ1 : (−� +m2)φ(1)(x) = −1

2
φ2

(0)(x)

Order λ2 : (−� +m2)φ(2)(x) = −φ(0)(x)φ(1)(x) (3.85)

We already solved the resulting homogeneous equation at order λ0. This is nothing
but the equation of motion of a free field, eq. (3.12). The solution we found which is
regular in the interior of AdS with appropriate boundary behavior is given by:

φ(0)(x) =

∫
ddy K(x, ~y)ϕ0(~y) (3.86)

where K(x, ~y) is the bulk-boundary propagator given by eq. (3.42). The resulting
inhomogeneous equations at orders λ1 and λ2 can be easily solved in terms of the Green’s
function G(x, z) of the wave operator eq. (3.73), also known as the bulk-bulk propagator
whose form is given by eq. (3.74). Any inhomogeneous wave equation can be directly
solved in terms of this propagator simply as:

5Considering the expansion of the field up to order λ2 will be sufficient to completely compute the
correlation functions up to the 4-point functions.
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(−� +m2)f(x) = g(x) =⇒ f(x) =

∫
dd+1z

√
g G(x, z)g(z) (3.87)

Indeed, by just applying the wave operator on both sides of this solution and using
the definition of the Green’s function eq. (3.73) one recovers the original equation, as
expected. Then, using this property we can easily solve the resulting equation at order
λ1 for φ(1)(x):

φ(1)(x) = −1

2

∫
dd+1x1

√
g G(x, x1)

[∫
ddy K(x1, ~y)ϕ0(~y)

]2

(3.88)

and consequently, in exactly the same way we can solve the resulting equation at
order λ2 for φ(2)(x):

φ(2)(x) =
1

2

∫
dd+1x1

√
g G(x, x1)

[∫
ddy K(x1, ~y)ϕ0(~y)

]
×
∫
dd+1x2

√
g G(x1, x2)

[∫
ddy K(x2, ~y)ϕ0(~y)

]2

(3.89)

Therefore, the explicit form of the on-shell field φ(x) as a functional of the dual
source ϕ0(~y), up to order λ2 in the self-interacting coupling constant, is:

φ(x) =

∫
ddy K(x, ~y)ϕ0(~y)− λ

2

∫
dd+1x1

√
g G(x, x1)

[∫
ddy K(x1, ~y)ϕ0(~y)

]2

+
λ2

2

∫
dd+1x1

√
g G(x, x1)

[∫
ddy K(x1, ~y)ϕ0(~y)

]
×
∫
dd+1x2

√
g G(x1, x2)

[∫
ddy K(x2, ~y)ϕ0(~y)

]2

+O(λ3) (3.90)

The next step in the computation of the CFT correlators is to replace this solution
for φ(x) in the classical AdS path integral, variate it with respect to the dual source
ϕ0(~x) and then extract from the resulting ill-defined variation the sensitive information
which will give rise to the particular finite values of the n-point functions, process which
is known as holographic renormalization. Now, as we saw in detail for the case of a free
field, this process only requires knowing the on-shell field φ(x) up to order x∆

0 since the
resulting quantities in this procedure coming from higher order terms will simply vanish,
not making any contribution to the correlators. To this end, to know the field φ(x) just
obtained (eq. (3.90)) up to order x∆

0 , we need the expansion of both propagators eqs.
(3.43) and (3.75). Since the leading term in the expansion of G(x, z) is already of the
order of x∆

0 , the resulting form of the field φ(x) up to this order after using the expansion
of both propagators is exactly the same as the one found for the free field (eq. (3.51))!
The only difference with the current case is what we understand by the function ϕ2ν(~x),
where now for a φ3 theory it will receive self-interacting contributions of the order of the
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coupling constant λ and its powers. Indeed, expanding the propagators in eq. (3.90) we
easily recover the same asymptotic form of the free field:

φ(x) = xd−∆
0 ϕ(x) + x∆

0 ϕ2ν(~x) + x∆
0 ln (x0)ψ(~x) +O(x∆<

0 ) (3.91)

where the functions ϕ(x) and ψ(~x) are given by eqs. (3.52) and (3.53) respectively,
and where now the function ϕ2ν(~x), i.e., the terms of the order x∆

0 in the expansion of
the field, is given by:

ϕ2ν(~x) =

∫
ddy

c∆

|~x− ~y|2∆
ϕ0(~y)− λ

4ν

∫
dd+1x1

√
g K(x1, ~x)

[∫
ddy K(x1, ~y)ϕ0(~y)

]2

+
λ2

4ν

∫
dd+1x1

√
g K(x1, ~x)

[∫
ddy K(x1, ~y)ϕ0(~y)

]
×
∫
dd+1x2

√
g G(x1, x2)

[∫
ddy K(x2, ~y)ϕ0(~y)

]2

+O(λ3) (3.92)

Of course for λ = 0 it reduces to the value obtained for the free field case. Hav-
ing the expansion of the field at hand, the next step is to holographic renormalize the
ill-defined variation of the AdS path integral, in order to construct a finite, predictive
quantity. Notice however that for the free field this process didn’t require the explicit
form of ϕ2ν(~x). Since the only difference with the current case is what we understand by
this function, this implies that we can renormalize the variation of the path integral in
exactly the same way as we did before! This is, adding the boundary term eq. (3.63) to
the AdS action of the form of eq. (3.61) renders the variation of the AdS path integral
finite, given by:

δZAdS[ϕ0] = ZAdS[ϕ0]

∫
ddx 2νϕ2ν(~x)δϕ0(~x) (3.93)

where now with the presence of a φ3 self-interacting term, the function ϕ2ν(~x) is
given by eq. (3.92).

3.2.3 Correlation Functions

The finite, renormalized variation δZAdS as a functional of the corresponding conformal
sources is the main object to be computed in the study of the dual correlators since once
its explicit form is found, every n-point function can be directly obtained from it through
a simple exercise of just taking derivatives. For a φ3 theory on AdS, this study led us to
eq. (3.93) where the quantity ϕ2ν(~x) is given by eq. (3.92):
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δZAdS[ϕ0] = ZAdS[ϕ0]

∫
ddx
{∫

ddy
2νc∆

|~x− ~y|2∆
ϕ0(~y)

− λ

2

∫
dd+1x1

√
g K(x1, ~x)

[∫
ddy K(x1, ~y)ϕ0(~y)

]2

+
λ2

2

∫
dd+1x1

√
g K(x1, ~x)

[∫
ddy K(x1, ~y)ϕ0(~y)

]
×
∫
dd+1x2

√
g G(x1, x2)

[∫
ddy K(x2, ~y)ϕ0(~y)

]2

+O(λ3)
}
δϕ0(~x) (3.94)

From this expression it is just a matter of direct calculation to obtain the corre-
sponding correlators eqs. (3.7) and (3.8). The resulting 1-, 2-, 3- and 4-point functions for
some primary scalar operator O∆(~x) of scaling dimension ∆ dual to a Φ3 self-interacting
scalar field in AdSd+1 are given by:

1-pt fn: 〈O∆(~y1)〉CFT = 〈O∆(~y1)〉CFT,con = 0

2-pt fn: 〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con =
2νc∆

|~y1 − ~y2|2∆

3-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT = 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con

= −λ
∫
K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)

4-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT =
2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

+ λ2

∫ ∫
K(x1, ~y1)K(x1, ~y2)G(x1, x2)K(x2, ~y3)K(x2, ~y4)× 3

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con =

λ2

∫ ∫
K(x1, ~y1)K(x1, ~y2)G(x1, x2)K(x2, ~y3)K(x2, ~y4)× 3

(3.95)

where, with the intention to keep the notation short, we defined∫ ∫
· · · ≡

∫
dd+1x1

√
g
∫
dd+1x2

√
g · · · and represented the different permutations of the

integrals as a multiplicative factor at the end of each. Notice the new contributions
of the order of the self-interacting coupling constant λ to the 3- and 4-point functions,
compared to the free field case. Pictorially, these new contributions correspond exactly to
the connected tree-level diagrams expected from a Φ3 self-interacting theory. Since these
integrals are contributing to specific correlators which are conjectured to be of the form
dictated by eq. (2.41), the functional form of their results is strongly conditioned purely
from conformal symmetry arguments. We will proceed then to study these quantities in
detail through their explicit computation.
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3-Point Function

In the holographic CFT 3-point function dual to a Φ3 self-interacting theory on AdS we
then find a contribution of the form:

I(~y1, ~y2, ~y3) = −λ
∫
dd+1x1

√
g K(x1, ~y1)K(x1, ~y2)K(x1, ~y3) (3.96)

~y1 ~y2

~y3

Figure 3.2: Pictorial representation of the contribution to the 3-point function.

These integrals involving only the bulk-boundary propagator are common objects
in the study of holographic correlators, which in the AdS/CFT literature can be found
under the name of D-functions. The computation of these quantities are in principle
straightforward but tedious, so with the intention to not lose the focus of discussion we
will give them a separate treatment from the main text, dedicating the entire Appendix
A to their delicate study. What will matter to us right now is that their definition in eq.
(A.1) allows us to write the integral that we are interested in computing eq. (3.96) in the
form of:

I(~y1, ~y2, ~y3) = −λc3
∆D∆∆∆(~y1, ~y2, ~y3) (3.97)

where K̃∆(x1, ~yi) is the unnormalized bulk-boundary propagator, eq. (A.2). The
complete study of this particular D-function can be found in section A.2 of Appendix A,
concluding in its value in eq. (A.21). Using this value then in our present case we find
that the final result of the integral eq. (3.96) is given by:

I(~y1, ~y2, ~y3) = −λc3
∆

π
d
2

2

Γ(3∆−d
2

)

Γ(∆)3

Γ(∆
2

)3

|~y1 − ~y2|∆|~y2 − ~y3|∆|~y3 − ~y1|∆
(3.98)

respecting, of course, the functional form expected for contributions to CFT 3-point
functions derived in eq. (2.41).

4-Point Function

In the holographic CFT 4-point function dual to a Φ3 self-interacting theory on AdS we
find a contribution of the form:
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I(~y1, ~y2, ~y3, ~y4) =λ2

∫
dd+1x1

√
g

∫
dd+1x2

√
g K(x1, ~y1)K(x1, ~y2)G(x1, x2)K(x2, ~y3)K(x2, ~y4)

+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4) (3.99)

~y1

~y2

~y3

~y4

Figure 3.3: Pictorial representation of the contribution to the 4-point function.

which in terms of the unnormalized bulk-boundary propagator eq. (A.2) we can
write it as:

I(~y1, ~y2, ~y3, ~y4) =λ2c4
∆

∫
dd+1x1

√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2)

×
∫
dd+1x2

√
g G(x1, x2)K̃∆(x2, ~y3)K̃∆(x2, ~y4) + (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

(3.100)

The solving strategy for this quantity will be brute force. We will start by first
computing one of the integrals, say the x2 integral, hoping that the remaining integral in
x1 will be familiar to us, which as we will see will indeed be the case. Notice however that
unlike the D-functions, the x2 integral in this case not only contains the bulk-boundary
propagator but also the bulk-bulk propagator, which is of course expected for diagrams
with internal lines on AdS. These integrals involving both propagators are common objects
in the study of holographic correlators, specially at their quantum corrections as we will see
in the next chapter. The computation of these integrals are in principle straightforward
but tedious, so just like we did for the D-functions, with the intention to not lose the
focus of discussion we will give them a separate treatment from the main text, dedicating
the entire Appendix B to their delicate study. What will matter to us right now is the
discussion that takes place at the beginning of this appendix, where we prove that the
argument of the bulk-bulk propagator ranges between 0 and 1 in the entire region of
integration, allowing us to express it in its convergent power series representation eq.
(B.3), which in turn it further allows us to write the x2 integral in eq. (3.100) in the form
of:
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∫
dd+1x2

√
g G(x1, x2)K̃∆(x2, ~y3)K̃∆(x2, ~y4) =

2−∆c∆

2ν

∞∑
k=0

(∆
2

)k(
∆+1

2
)k

(ν + 1)k k!

×
∫
dd+1x2

√
g ξ∆+2kK̃∆(x2, ~y3)K̃∆(x2, ~y4)

(3.101)

The complete study of this type of integrals can be found in section B.4 of Appendix
B, concluding in its value in eq. (B.32). Using this formula then for the particular values
∆1 = ∆ + 2k, ∆2 = ∆ and ∆3 = ∆, we find that the result of the x2 integral is given by:

∫
dd+1x2

√
g G(x1, x2)K̃∆(x2, ~y3)K̃∆(x2, ~y4) =K̃∆(x1, ~y3)K̃∆(x1, ~y4)π

d+1
2

2−∆c∆

2ν

Γ(3∆−d
2

)Γ(∆
2

)

Γ(∆+1
2

)Γ(3∆
2

)

×
∞∑
k=0

(∆
2

)k(
∆
2

)k(
3∆−d

2
)k

(ν + 1)k(
3∆
2

)k k!
2F1

(
∆,∆;

3∆

2
+ k; 1− K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

)
(3.102)

where we wrote the k-dependent Gamma functions in terms of their Pochhammer
symbols Γ(a + k) = Γ(a)(a)k and moved all the k-independent terms out of the sum. A
nice clue on how to proceed with the calculations is to note that if we are able to write
this hypergeometric function being summed as a power series in K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2
the value of the x2 integral would consist of a sum of 2 bulk-boundary propagators of
different scaling dimensions, value which when replaced back into the original integral eq.
(3.100) would result in a sum of integrals of 4 bulk-boundary propagators in the x1 vari-
able. But we already discussed these integrals involving only bulk-boundary propagators
when we studied the contribution to the 3-point function, these integrals are precisely
the D-functions which are reviewed in detail in Appendix A. Therefore, if we are able to
write the hypergeometric function in eq. (3.102) as a series in the bulk-boundary propa-
gators, we can solve for eq. (3.99) in terms of D-functions just like we did for the 3-point
function. But this can be easily achieved using the known linear transformation of the
hypergeometric function [13]:

2F1(a, b; c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1(a, b; a+ b+ 1− c; 1− z)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−b 2F1(c− a, c− b; 1 + c− a− b; 1− z)

(3.103)

which for the particular values a = ∆, b = ∆, c = 3∆
2

+ k and z = 1 −
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2 let us rewrite eq. (3.102) as:
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∫
dd+1x2

√
g G(x1, x2)K̃∆(x2, ~y3)K̃∆(x2, ~y4) = K̃∆(x1, ~y3)K̃∆(x1, ~y4)π

d+1
2

2−∆c∆

2ν

Γ(3∆−d
2

)Γ(∆
2

)

Γ(∆+1
2

)

×
{Γ(−∆

2
)

Γ(∆
2

)2

∞∑
k=0

(3∆−d
2

)k(−∆
2

)k

(ν + 1)k k!
2F1

(
∆,∆;

∆

2
+ 1− k; K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

)
+

Γ(∆
2

)

Γ(∆)2

∞∑
k=0

(∆
2

)k(
∆
2

)k(
3∆−d

2
)k(

∆
2

)−k

(ν + 1)k k!

[
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

]−∆
2

+k

× 2F1

(∆

2
+ k,

∆

2
+ k; 1− ∆

2
+ k; K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

)}
(3.104)

It turns out that these 2 resulting sums can be solved in closed form using known
properties of sums, Pochhammer symbols and hypergeometric functions. The first sum
can be computed to give:

∞∑
k=0

(3∆−d
2

)k(−∆
2

)k

(ν + 1)k k!
2F1

(
∆,∆;

∆

2
+ 1− k; K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

)
=

Γ(ν + 1)

Γ(1− ∆
2

)Γ(3∆−d
2

+ 1)
3F2

(
∆,∆, 1;

∆

2
+ 1,

3∆− d
2

+ 1; K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2
)

(3.105)

where we expressed the hypergeometric function in its power series representation,

used that (a)−k = (−1)k

(1−a)k
, solved the resulting sum in k in terms of the 2F1 function of

unit argument where 2F1(a, b; c; 1) = Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) and finally identified the representation

of the generalized hypergeometric function 3F2. Similarly, the second sum in eq. (3.104)
result in the value:

∞∑
k=0

(∆
2

)k(
∆
2

)k(
3∆−d

2
)k(

∆
2

)−k

(ν + 1)k k!

[
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

]−∆
2

+k

× 2F1

(∆

2
+ k,

∆

2
+ k; 1− ∆

2
+ k; K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

)
=
[
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

]−∆
2

2F1

(∆

2
,
∆

2
; ν + 1; K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

)
(3.106)

where we expressed the hypergeometric function in its power series representation,

used that (a)−k = (−1)k

(1−a)k
and (a)k(a + k)l = (a)k+l, also used that

∑∞
l=0

∑∞
k=0 al,k =∑∞

l=0

∑l
k=0 al−k,k, solved the resulting sum in k in terms of the terminating 2F1 function

of unit argument where 2F1(a, b; c; 1) = Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) and finally identified the representation

of the 2F1 function. Eq. (3.105) together with eq. (3.106) allow us to express the result
for the

∫
GKK integral eq. (3.104) in the nice closed form:
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∫
dd+1x2

√
g G(x1, x2)K̃∆(x2, ~y3)K̃∆(x2, ~y4) = K̃∆(x1, ~y3)K̃∆(x1, ~y4)π

d+1
2

2−∆c∆

2ν

Γ(3∆−d
2

)Γ(∆
2

)

Γ(∆+1
2

)

×
{
− Γ(ν + 1)

Γ(∆
2

)Γ(∆
2

+ 1)Γ(3∆−d
2

+ 1)
3F2

(
∆,∆, 1;

∆

2
+ 1,

3∆− d
2

+ 1; K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2
)

+
Γ(∆

2
)

Γ(∆)2

[
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

]−∆
2

2F1

(∆

2
,
∆

2
; ν + 1; K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

)}
(3.107)

where we used that
Γ(−∆

2
)

Γ( ∆
2

)Γ(1−∆
2

)
= − 1

Γ( ∆
2

+1)
. Remember that we are trying to

compute the contribution to the holographic 4-point function coming from the Φ3 self-
interaction of the bulk field on AdS, eq. (3.100). Replacing then the result for the x2

integral just found back into the quantity we are trying to compute, we find that it reduces
to:

I(~y1, ~y2, ~y3, ~y4) =λ2c4
∆π

d+1
2

2−∆c∆

2ν

Γ(3∆−d
2

)Γ(∆
2

)

Γ(∆+1
2

)

×
∫
dd+1x1

√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2)K̃∆(x1, ~y3)K̃∆(x1, ~y4)

×
{ Γ(∆

2
)

Γ(∆)2

[
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

]−∆
2

2F1

(∆

2
,
∆

2
; ν + 1; K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

)
− Γ(ν + 1)

Γ(∆
2

)Γ(∆
2

+ 1)Γ(3∆−d
2

+ 1)
3F2

(
∆,∆, 1;

∆

2
+ 1,

3∆− d
2

+ 1; K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2
)}

+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4) (3.108)

As we commented before, we can proceed with the calculations by simply writing
these hypergeometric functions as a power series in their argument, resulting for eq.
(3.108) in a sum of integrals of bulk-boundary propagators, each one solvable in terms of
the D-functions eq. (A.1). Therefore following this path, the definition of the D-functions
allows us to write this integral in the form of:

I(~y1, ~y2, ~y3, ~y4) =λ2c4
∆π

d+1
2

2−∆c∆

2ν

Γ(3∆−d
2

)Γ(∆
2

)

Γ(∆+1
2

)

[ Γ(∆
2

)

Γ(∆)2

∞∑
k=0

(∆
2

)k(
∆
2

)k

(ν + 1)k k!
D∆∆ ∆

2
+k∆

2
+k| ~y34|−∆+2k

− Γ(ν + 1)

Γ(∆
2

)Γ(∆
2

+ 1)Γ(3∆−d
2

+ 1)

∞∑
k=0

(∆)k(∆)k(1)k

(∆
2

+ 1)k(
3∆−d

2
+ 1)k k!

D∆∆∆+k∆+k| ~y34|2k
]

+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4) (3.109)

This result is in perfect agreement with what was found by D’Hoker, Freedman
and Rastelli in [14] and also independently by Dolan and Osborn in [15]. The complete
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study of these type of D-functions can be found in section A.3 of Appendix A, concluding
in its value in eq. (A.31). Using this formula then for the particular values ∆1 = ∆2 = ∆
and ∆3 = ∆4 = ∆

2
+ k, we find that the first D-function in eq. (3.109) can be written as:

D∆∆ ∆
2

+k∆
2

+k| ~y34|−∆+2k =
π
d
2

2

Γ(3∆−d
2

+ k)

Γ(∆)2Γ(∆
2

+ k)2

u
∆
3 v

∆
3∏

i<j| ~yij|
2∆
3

H
(

∆,∆,
∆

2
+ 1− k, 2∆;u, v

)
(3.110)

where the function H(. . . ;u, v) represents a series expansion on both cross ratios
as discussed in Appendix A. Using the same formula eq. (A.31) for the particular values
∆1 = ∆2 = ∆ and ∆3 = ∆4 = ∆ + k, we find that the second D-function in eq. (3.109)
can be written as:

D∆∆∆+k∆+k| ~y34|2k =
π
d
2

2

Γ(2∆− d
2

+ k)

Γ(∆)2Γ(∆ + k)2

u
∆
3 v

∆
3∏

i<j| ~yij|
2∆
3

H(∆,∆, 1− k, 2∆;u, v) (3.111)

Replacing the values of both D-functions back into eq. (3.109), simplifying common
terms and writing the permutations in terms of the cross ratios u and v as done in eq.
(3.70), we find that the final result of the contribution eq. (3.99) can be written in the
form of:

I(~y1, ~y2, ~y3, ~y4) =λ2c4
∆

π
d
2

8

Γ(3∆−d
2

)Γ(∆
2

)

Γ(∆)4

u
∆
3 v

∆
3∏

i<j| ~yij|
2∆
3

×
[ ∞∑
k=0

Γ(3∆−d
2

+ k)

Γ(ν + 1 + k) k!
H
(

∆,∆,
∆

2
+ 1− k, 2∆;u, v

)
−
∞∑
k=0

Γ(2∆− d
2

+ k)

Γ(∆
2

+ 1 + k)Γ(3∆−d
2

+ 1 + k)
H(∆,∆, 1− k, 2∆;u, v)

]
+
(
u, v → 1

u
,
v

u

)
+(u, v → v, u) (3.112)

respecting, of course, the functional form expected for contributions to CFT 4-point
functions derived in eq. (2.41).

Final Correlators

Finally then, replacing the results for the integrals eqs. (3.98) and (3.112) back into eq.
(3.95) and writing the disconnected part of the 4-point correlator in its conformal form
eq. (3.70), the resulting 1-, 2-, 3- and 4-point functions for some primary scalar operator
O∆(~x) of scaling dimension ∆ dual to a Φ3 self-interacting scalar field in AdSd+1 are given
by:
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1-pt fn: 〈O∆(~y1)〉CFT = 〈O∆(~y1)〉CFT,con = 0

2-pt fn: 〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con =
2νc∆

|~y1 − ~y2|2∆

3-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT = 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con

= −λc3
∆

π
d
2

2

Γ(3∆−d
2

)

Γ(∆)3

Γ(∆
2

)3

|~y1 − ~y2|∆|~y2 − ~y3|∆|~y3 − ~y1|∆

4-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT =
(2νc∆)2∏
i<j| ~yij|

2∆
3

u−
2∆
3 v

∆
3 +

(
u, v → 1

u
,
v

u

)
+ (u, v → v, u) + λ2c4

∆

π
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8
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)

Γ(∆)4
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∆
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∆
3∏
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×
[ ∞∑
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+ k)

Γ(ν + 1 + k) k!
H
(

∆,∆,
∆

2
+ 1− k, 2∆;u, v

)
−
∞∑
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Γ(2∆− d
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Γ(∆
2

+ 1 + k)Γ(3∆−d
2

+ 1 + k)
H(∆,∆, 1− k, 2∆;u, v)

]
+
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u, v → 1

u
,
v

u

)
+(u, v → v, u)

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con = λ2c4
∆
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Γ(∆)4
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3 v

∆
3∏
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×
[ ∞∑
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Γ(ν + 1 + k) k!
H
(

∆,∆,
∆

2
+ 1− k, 2∆;u, v

)
−
∞∑
k=0

Γ(2∆− d
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Γ(∆
2

+ 1 + k)Γ(3∆−d
2

+ 1 + k)
H(∆,∆, 1− k, 2∆;u, v)

]
+
(
u, v → 1

u
,
v

u

)
+(u, v → v, u) (3.113)

The form of these correlators are exactly those dictated by eq. (2.41), expected
for a conformal theory. These results greatly motivate and contribute to the belief of the
validity of the AdS/CFT conjecture.

3.2.4 Holographic Dictionary

The n-point functions just obtained were the result of a careful study of a Φ3 self-
interacting scalar field theory on AdS with delicate boundary behavior as it approaches
its conformal boundary through the use of the AdS/CFT correspondence, however the
relative complexity of this procedure makes us wonder if there is any other more direct
approach. For the free scalar field case this concern led us to relate the desired boundary
correlators for the operator O∆(~x) with the simple and known bulk correlators for the
field Φ(x) defining what is known as the holographic dictionary eqs. (3.78) and (3.79).
These boundary/bulk correlators equivalence certainly hold for free fields on AdS but
we want to verify if it remains true for less trivial theories, in particular for Φ3 theories.
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Consider the tree-level n-point functions of the Φ3 self-interacting scalar field Φ(x) on a
AdS background obtained from the usual Feynman rules:

1-pt fn: 〈Φ(y1)〉 = 〈Φ(y1)〉con = 0

2-pt fn: 〈Φ(y1)Φ(y2)〉 = 〈Φ(y1)Φ(y2)〉con = G(y1, y2)

3-pt fn: 〈Φ(y1)Φ(y2)Φ(y3)〉 = 〈Φ(y1)Φ(y2)Φ(y3)〉con = −λ
∫
G(x1, y1)G(x1, y2)G(x1, y3)

4-pt fn: 〈Φ(y1)Φ(y2)Φ(y3)Φ(y4)〉 = G(y1, y2)G(y3, y4) + (y2 ↔ y3) + (y2 ↔ y4)

+ λ2

∫ ∫
G(x1, y1)G(x1, y2)G(x1, x2)G(x2, y3)G(x2, y4)× 3

〈Φ(y1)Φ(y2)Φ(y3)Φ(y4)〉con =

λ2

∫ ∫
G(x1, y1)G(x1, y2)G(x1, x2)G(x2, y3)G(x2, y4)× 3

(3.114)

where
∫ ∫
· · · ≡

∫
dd+1x1

√
g
∫
dd+1x2

√
g · · · . The nice expansions for the bulk-bulk

propagator eqs. (3.75) and (3.76) allow us to easily confirm the equivalence between the
boundary n-point functions with the bulk n-point functions simply as the former being the
extension of the internal points of the latter to the conformal boundary of the AdS space.
Indeed, by just applying these behaviors into the bulk correlators eq. (3.114), the resulting
quantities (up to contact terms which can always be renormalized with appropriate local
counterterms) are:

1-pt fn: lim
y1,0→0

2ν

y∆
1,0

〈Φ(y1)〉 = lim
y1,0→0

2ν

y∆
1,0

〈Φ(y1)〉con = 0

2-pt fn: lim
y1,0,y2,0→0

2ν

y∆
1,0

2ν

y∆
2,0

〈Φ(y1)Φ(y2)〉 = lim
y1,0,y2,0→0

2ν

y∆
1,0

2ν

y∆
2,0

〈Φ(y1)Φ(y2)〉con =
2νc∆

|~y1 − ~y2|2∆

3-pt fn: lim
y1,0,y2,0,y3,0→0

2ν

y∆
1,0

2ν

y∆
2,0

2ν

y∆
3,0

〈Φ(y1)Φ(y2)Φ(y3)〉 =

lim
y1,0,y2,0,y3,0→0

2ν

y∆
1,0

2ν

y∆
2,0

2ν

y∆
3,0

〈Φ(y1)Φ(y2)Φ(y3)〉con = −λ
∫
K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)

4-pt fn: lim
y1,0,y2,0,y3,0,y4,0→0

2ν

y∆
1,0

2ν

y∆
2,0

2ν

y∆
3,0

2ν

y∆
4,0

〈Φ(y1)Φ(y2)Φ(y3)Φ(y4)〉 =

2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

+ λ2

∫ ∫
K(x1, ~y1)K(x1, ~y2)G(x1, x2)K(x2, ~y3)K(x2, ~y4)× 3

lim
y1,0,y2,0,y3,0,y4,0→0

2ν

y∆
1,0

2ν

y∆
2,0

2ν

y∆
3,0

2ν

y∆
4,0

〈Φ(y1)Φ(y2)Φ(y3)Φ(y4)〉con =

λ2

∫ ∫
K(x1, ~y1)K(x1, ~y2)G(x1, x2)K(x2, ~y3)K(x2, ~y4)× 3

(3.115)
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but these values are nothing but the boundary n-point functions just obtained
through the AdS/CFT procedure for the operator O∆(~x) dual to the field Φ(x), eq.
(3.95)! This fact confirms the boundary/bulk n-point functions equivalence eqs. (3.78)
and (3.79), known as holographic dictionary, for a Φ3 theory on AdS in the classical
approximation of the AdS/CFT correspondence. The validity of this dictionary for a Φ3

theory at the full quantum level of the AdS/CFT correspondence will be put to the test
in the next chapter.

3.3 Φ4 Theory

3.3.1 Semiclassical Approximation

We have reviewed in detail how starting from a concrete field theory on a AdS back-
ground we can obtain the corresponding dual CFT correlators, in the particular cases of
a free scalar field and a Φ3 self-interacting scalar field through the use of the classical or
saddle point approximation of the AdS/CFT correspondence. Continuing in the line of
complicating the current picture with the intention to not only construct more interesting
theories but also to further test the validity of the AdS/CFT correspondence, we will
study now another self-interacting scalar theory on the AdS side. Instead of adding a
Φ3(x) self-interacting term to the free scalar field AdS action as in the previous case, we
will consider now a Φ4(x) term of the form:

ZAdS =

∫
DΦ e−SAdS[Φ], SAdS[Φ] =

∫
dd+1x

√
g
[1

2
gµν∂µΦ(x)∂νΦ(x)+

1

2
m2Φ2(x)+

λ

4!
Φ4(x)

]
(3.116)

This is known as a Φ4 theory on a Euclidean AdS background. Just like we did
in the previous cases, the natural way to approach this path integral is by looking at
quantum fluctuations h(x) around the classical solution φ(x) of the AdS action through
the change of variable Φ(x) = φ(x) + h(x), resulting in:

ZAdS = e−SAdS[φ]f [φ] (3.117)

where SAdS[φ] is the same φ4 action and f [φ] is the responsible for the quantum
corrections to the dual CFT correlators. Then, adopting the classical or saddle point
approximation of the AdS/CFT correspondence, we will truncate for the moment this
functional from ZAdS, focusing only on the on-shell contributions to the correlators:

ZAdS = e−SAdS[φ] (3.118)

This is the classical AdS path integral in which we will work in.
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3.3.2 Classical Solution

Following the same steps as in the previous cases, to continue advancing in the computa-
tion of the correlators we need the explicit dependence of the on-shell field φ(x) in terms
of the dual source ϕ0(~x). We know it is the classical solution of the AdS action, i.e., it
satisfies the Euler-Lagrange equation:

(−� +m2)φ(x) = −λ
6
φ3(x) (3.119)

Exactly solving this equation is very hard, but if we can think of the parameter λ
as being in some sense ”small”, we can resort to perturbation theory, easily solving for
the form of the field φ(x) as an expansion of this parameter. With this objective in mind
then, we will look for a solution to eq. (3.119) of the form6:

φ(x) = φ(0)(x) + λφ(1)(x) +O(λ2) (3.120)

where the functions φ(i)(x) are to be determined. Therefore, replacing the ex-
pansion eq. (3.120) into the equation of motion eq. (3.119), we find at each order in
λ:

Order λ0 : (−� +m2)φ(0)(x) = 0

Order λ1 : (−� +m2)φ(1)(x) = −1

6
φ3

(0)(x) (3.121)

We already solved the resulting homogeneous equation at order λ0. This is nothing
but the equation of motion of a free field, eq. (3.12). The solution we found which is
regular in the interior of AdS with appropriate boundary behavior is given by:

φ(0)(x) =

∫
ddy K(x, ~y)ϕ0(~y) (3.122)

where K(x, ~y) is the bulk-boundary propagator given by eq. (3.42). The resulting
inhomogeneous equation at order λ1 can be easily solved in terms of the Green’s function
G(x, z) of the wave operator eq. (3.73), also known as the bulk-bulk propagator whose
form is given by eq. (3.74). Any inhomogeneous wave equation can be directly solved in
terms of this propagator using the property eq. (3.87), in particular for φ(1)(x):

φ(1)(x) = −1

6

∫
dd+1x1

√
g G(x, x1)

[∫
ddy K(x1, ~y)ϕ0(~y)

]3

(3.123)

6Considering the expansion of the field up to order λ will be sufficient to completely compute the
correlation functions up to the 4-point functions.
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Therefore, the explicit form of the on-shell field φ(x) as a functional of the dual
source ϕ0(~y), up to order λ in the self-interacting coupling constant, is:

φ(x) =

∫
ddy K(x, ~y)ϕ0(~y)− λ

6

∫
dd+1x1

√
g G(x, x1)

[∫
ddy K(x1, ~y)ϕ0(~y)

]3

+O(λ2)

(3.124)

The next step in the computation of the CFT correlators is to replace this solution
for φ(x) in the classical AdS path integral and to holographic renormalize its resulting
ill-defined variation with respect to the dual source, process which will give rise to the
particular finite values of the n-point functions. As we have already seen though, this
procedure only requires knowing the on-shell field φ(x) up to order x∆

0 , since the resulting
quantities coming from higher order terms will simply vanish, not making any contribution
to the correlators. To this end then, expanding the propagators in eq. (3.124), as in the
Φ3 case, we easily recover the same asymptotic form of the free field:

φ(x) = xd−∆
0 ϕ(x) + x∆

0 ϕ2ν(~x) + x∆
0 ln (x0)ψ(~x) +O(x∆<

0 ) (3.125)

where the functions ϕ(x) and ψ(~x) are given by eqs. (3.52) and (3.53) respectively,
and where now the function ϕ2ν(~x), i.e., the terms of the order x∆

0 in the expansion of
the field, is given by:

ϕ2ν(~x) =

∫
ddy

c∆

|~x− ~y|2∆
ϕ0(~y)− λ

12ν

∫
dd+1x1

√
g K(x1, ~x)

[∫
ddy K(x1, ~y)ϕ0(~y)

]3

+O(λ2)

(3.126)

For λ = 0 it reduces to the value obtained for the free field, as expected. Moreover,
since the expansion of the field has exactly the same form as in the free field case, the
only difference with the current case being what we understand by ϕ2ν(~x), and for the
free field the holographic renormalization procedure didn’t require the explicit form of
this function, this implies that we can renormalize the current theory in exactly the same
way as we did before. This is, adding the boundary term eq. (3.63) to the AdS action of
the form of eq. (3.61) renders the variation of the AdS path integral finite, given by:

δZAdS[ϕ0] = ZAdS[ϕ0]

∫
ddx 2νϕ2ν(~x)δϕ0(~x) (3.127)

where now with the presence of a φ4 self-interacting term, the function ϕ2ν(~x) is
given by eq. (3.126).

3.3.3 Correlation Functions

The finite, renormalized variation δZAdS as a functional of the corresponding conformal
sources is the main object to be computed in the study of the dual correlators since once
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its explicit form is found, every n-point function can be directly obtained from it through
a simple exercise of just taking derivatives. For a φ4 theory on AdS, this study led us to
eq. (3.127) where the quantity ϕ2ν(~x) is given by eq. (3.126):

δZAdS[ϕ0] = ZAdS[ϕ0]

∫
ddx
{∫

ddy
2νc∆

|~x− ~y|2∆
ϕ0(~y)

− λ

6

∫
dd+1x1

√
g K(x1, ~x)

[∫
ddy K(x1, ~y)ϕ0(~y)

]3

+O(λ2)
}
δϕ0(~x) (3.128)

From this expression it is just a matter of direct calculation to obtain the corre-
sponding correlators eqs. (3.7) and (3.8). The resulting 1-, 2-, 3- and 4-point functions for
some primary scalar operator O∆(~x) of scaling dimension ∆ dual to a Φ4 self-interacting
scalar field in AdSd+1 are given by:

1-pt fn: 〈O∆(~y1)〉CFT = 〈O∆(~y1)〉CFT,con = 0

2-pt fn: 〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con =
2νc∆

|~y1 − ~y2|2∆

3-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT = 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con = 0

4-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT =
2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

− λ
∫
K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)K(x1, ~y4)

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con = −λ
∫
K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)K(x1, ~y4)

(3.129)

where, with the intention to keep the notation short, we defined
∫
≡
∫
dd+1x1

√
g.

Notice the new contribution of the order of the self-interacting coupling constant λ to
the 4-point function, compared to the free field case. Pictorially, this new contribution
correspond exactly to the connected tree-level diagram expected from a Φ4 self-interacting
theory. Since this integral is contributing to a specific correlator which is conjectured to be
of the form dictated by eq. (2.41), the functional form of its result is strongly conditioned
purely from conformal symmetry arguments. We will proceed then to study this quantity
in detail through its explicit computation.

4-Point Function

In the holographic CFT 4-point function dual to a Φ4 self-interacting theory on AdS we
then find a contribution of the form:

I(~y1, ~y2, ~y3, ~y4) = −λ
∫
dd+1x1

√
g K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)K(x1, ~y4) (3.130)
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~y1

~y3

~y2

~y4

Figure 3.4: Pictorial representation of the contribution to the 4-point function.

As we already mentioned previously in the study of the Φ3 theory, these integrals
involving only the bulk-boundary propagator, the D-functions as they are known in the
AdS/CFT literature, are common objects in the study of holographic correlators. Since
their computation are in principle straightforward but tedious, with the intention to
not lose the focus of discussion we give them a separate treatment from the main text,
dedicating the entire Appendix A to their delicate study. What will matter to us right now
is that their definition in eq. (A.1) allows us to write the integral that we are interested
in computing eq. (3.130) in the form of:

I(~y1, ~y2, ~y3, ~y4) = −λc4
∆D∆∆∆∆(~y1, ~y2, ~y3, ~y4) (3.131)

where K̃∆(x1, ~yi) is the unnormalized bulk-boundary propagator, eq. (A.2). The
complete study of this particular D-function can be found in section A.3 of Appendix A,
concluding in its value in eq. (A.32). Using this value then in our present case we find
that the final result of the integral eq. (3.130) is given by:

I(~y1, ~y2, ~y3, ~y4) = −λc4
∆

π
d
2

2

Γ(2∆− d
2
)

Γ(∆)4

u
∆
3 v

∆
3∏

i<j|~yi − ~yj|
2∆
3

H(∆,∆, 1, 2∆;u, v) (3.132)

where the function H(. . . ;u, v) represents a series expansion on both cross ratios
as discussed in Appendix A. This result respects, of course, the functional form expected
for contributions to CFT 4-point functions derived in eq. (2.41).

Final Correlators

Finally then, replacing the result for the integral eq. (3.132) back into eq. (3.129) and
writing the disconnected part of the 4-point correlator in its conformal form eq. (3.70),
the resulting 1-, 2-, 3- and 4-point functions for some primary scalar operator O∆(~x) of
scaling dimension ∆ dual to a Φ4 self-interacting scalar field in AdSd+1 are given by:
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1-pt fn: 〈O∆(~y1)〉CFT = 〈O∆(~y1)〉CFT,con = 0

2-pt fn: 〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con =
2νc∆

|~y1 − ~y2|2∆

3-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT = 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con = 0

4-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT =
(2νc∆)2∏
i<j| ~yij|

2∆
3

u−
2∆
3 v

∆
3 +

(
u, v → 1

u
,
v

u

)
+ (u, v → v, u)− λc4

∆

π
d
2

2

Γ(2∆− d
2
)

Γ(∆)4

u
∆
3 v

∆
3∏

i<j|~yi − ~yj|
2∆
3

H(∆,∆, 1, 2∆;u, v)

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con =

− λc4
∆

π
d
2

2

Γ(2∆− d
2
)

Γ(∆)4

u
∆
3 v

∆
3∏

i<j|~yi − ~yj|
2∆
3

H(∆,∆, 1, 2∆;u, v)

(3.133)

The form of these correlators are exactly those dictated by eq. (2.41), expected
for a conformal theory. These results greatly motivate and contribute to the belief of the
validity of the AdS/CFT conjecture.

3.3.4 Holographic Dictionary

The n-point functions just obtained were the result of a careful study of a Φ4 self-
interacting scalar field theory on AdS with delicate boundary behavior as it approaches
its conformal boundary through the use of the AdS/CFT correspondence, however the
relative complexity of this procedure makes us wonder if there is any other more direct
approach. For the free scalar field case this concern led us to relate the desired boundary
correlators for the operator O∆(~x) with the simple and known bulk correlators for the
field Φ(x) defining what is known as the holographic dictionary eqs. (3.78) and (3.79).
These boundary/bulk correlators equivalence turned out to be true not only for free fields
on AdS but also for Φ3 self-interacting fields. Now we want to verify if this relation still
holds for Φ4 theories. Consider the tree-level n-point functions of the Φ4 self-interacting
scalar field Φ(x) on a AdS background obtained from the usual Feynman rules:

1-pt fn: 〈Φ(y1)〉 = 〈Φ(y1)〉con = 0

2-pt fn: 〈Φ(y1)Φ(y2)〉 = 〈Φ(y1)Φ(y2)〉con = G(y1, y2)

3-pt fn: 〈Φ(y1)Φ(y2)Φ(y3)〉 = 〈Φ(y1)Φ(y2)Φ(y3)〉con = 0

4-pt fn: 〈Φ(y1)Φ(y2)Φ(y3)Φ(y4)〉 = G(y1, y2)G(y3, y4) + (y2 ↔ y3) + (y2 ↔ y4)

− λ
∫
G(x1, y1)G(x1, y2)G(x1, y3)G(x1, y4)

〈Φ(y1)Φ(y2)Φ(y3)Φ(y4)〉con = −λ
∫
G(x1, y1)G(x1, y2)G(x1, y3)G(x1, y4)

(3.134)
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where
∫
≡
∫
dd+1x1

√
g. The nice expansions for the bulk-bulk propagator eqs.

(3.75) and (3.76) allow us to easily confirm the equivalence between the boundary n-point
functions with the bulk n-point functions simply as the former being the extension of the
internal points of the latter to the conformal boundary of the AdS space. Indeed, by just
applying these behaviors into the bulk correlators eq. (3.134), the resulting quantities (up
to contact terms which can always be renormalized with appropriate local counterterms)
are:

1-pt fn: lim
y1,0→0

2ν

y∆
1,0

〈Φ(y1)〉 = lim
y1,0→0

2ν

y∆
1,0

〈Φ(y1)〉con = 0

2-pt fn: lim
y1,0,y2,0→0

2ν

y∆
1,0

2ν

y∆
2,0

〈Φ(y1)Φ(y2)〉 = lim
y1,0,y2,0→0

2ν

y∆
1,0

2ν

y∆
2,0

〈Φ(y1)Φ(y2)〉con =
2νc∆

|~y1 − ~y2|2∆

3-pt fn: lim
y1,0,y2,0,y3,0→0

2ν

y∆
1,0

2ν

y∆
2,0

2ν

y∆
3,0

〈Φ(y1)Φ(y2)Φ(y3)〉

= lim
y1,0,y2,0,y3,0→0

2ν

y∆
1,0

2ν

y∆
2,0

2ν

y∆
3,0

〈Φ(y1)Φ(y2)Φ(y3)〉con = 0

4-pt fn: lim
y1,0,y2,0,y3,0,y4,0→0

2ν

y∆
1,0

2ν

y∆
2,0

2ν

y∆
3,0

2ν

y∆
4,0

〈Φ(y1)Φ(y2)Φ(y3)Φ(y4)〉 =

2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

− λ
∫
K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)K(x1, ~y4)

lim
y1,0,y2,0,y3,0,y4,0→0

2ν

y∆
1,0

2ν

y∆
2,0

2ν

y∆
3,0

2ν

y∆
4,0

〈Φ(y1)Φ(y2)Φ(y3)Φ(y4)〉con =

− λ
∫
K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)K(x1, ~y4)

(3.135)

but these values are nothing but the boundary n-point functions just obtained
through the AdS/CFT procedure for the operator O∆(~x) dual to the field Φ(x), eq.
(3.129)! This fact confirms the boundary/bulk n-point functions equivalence eqs. (3.78)
and (3.79), known as holographic dictionary, for a Φ4 theory on AdS in the classical
approximation of the AdS/CFT correspondence. The validity of this dictionary for a Φ4

theory at the full quantum level of the AdS/CFT correspondence will be put to the test
in the next chapter.



Chapter 4

Quantum Scalar Theories in
AdS/CFT

Having studied and gained some insight on the AdS/CFT conjecture through its classical
approximation for interacting scalar field theories on AdS, we will proceed to study these
same theories but now embracing the full quantum nature of the correspondence. The ob-
jective of this chapter then is to develop a systematic scheme that adds order by order the
respective quantum corrections to the previous holographic correlators obtained through
the approximated correspondence, to then study and compute each one of these new con-
tributions that will have the form of loop integrals in the bulk, process that will also force
us to introduce sensitive regularization and renormalization schemes. This chapter will
contain most of the original work done in this thesis.

Section 4.1 will cover the complete study of a Φ3 theory on AdS and its renormal-
ized, quantum corrected holographic CFT correlators. In particular, in section 4.1.1 we
will present the scheme that adds order by order in λ the quantum corrections to the AdS
path integral, in section 3.1.2 the resulting holographic n-point functions obtained from
this corrected quantity, in section 3.1.3 how these same holographic correlators can be
obtained from the holographic dictionary, in section 3.1.4 how in the properly normalized
Φ3 theory all the tadpole contributions to the correlators are canceled, in section 3.1.5
the introduction of the corresponding IR and UV regularization schemes to be used on
the loop integrals throughout this work, in sections 4.1.6, 4.1.7 and 4.1.8 the study and
computation of these regularized integrals present in the 2-, 3- and 4-point functions re-
spectively together with their proper renormalization, process which is summarized in the
final section 4.1.9.

Lastly, section 4.2 will cover the same study but now for an interacting Φ4 theory on
AdS and its resulting renormalized, quantum corrected CFT correlators. In particular, in
section 4.2.1 we will present the scheme that adds order by order in λ the quantum correc-
tions to its AdS path integral, in section 4.2.2 the resulting holographic n-point functions
obtained from this corrected quantity, in section 4.2.3 how these same holographic cor-
relators can be obtained from the holographic dictionary, in section 4.2.4 the application
of the same IR and UV regularization schemes introduced before to the loop integrals, in
sections 4.2.5 and 4.2.6 the study and computation of these regularized integrals present
in the 2- and 4-point functions respectively together with their proper renormalization,
process which is summarized in the section 4.2.7. Finally, in section 4.2.8 we study a
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concrete example of a Φ4 theory on AdS and its resulting CFT correlators, applying the
general ideas developed throughout the chapter.

4.1 Φ3 Theory

4.1.1 Semiclassical Approximation

In the previous chapter we studied in detail how to obtain the corresponding CFTd correla-
tors for the cases of a free scalar field, a Φ3 scalar theory and a Φ4 scalar theory on a AdSd+1

background using the classical or saddle point approximation of the AdS/CFT correspon-
dence, where we looked for solutions to the bulk fields Φ(x) as quantum fluctuations h(x)
around the classical solution φ(x) of the AdS actions of the form of Φ(x) = φ(x) + h(x),
and kept only the resulting on-shell contributions in the AdS path integrals, truncating
the remaining off-shell terms. Of course under this approximation we only got a part
of the full answer, yet the pieces we obtained in every n-point function were completely
consistent with the expected for conformal theories. The objective that we will set our-
selves in this chapter is to compute the remaining parts of the n-point functions obtained
previously for the self-interacting theories, fully embracing the quantum nature of the
path integrals. This study will not only give a more complete and satisfactory answer to
the holographic correlators for these theories, showing in the process the concrete role of
the quantum corrections coming from the off-shell part of the path integrals, but also a
much stronger verification of the validity of the AdS/CFT correspondence.

We will start this study in the same order as before, tackling the Φ3 self-interacting
scalar theory first and then, following the same steps and using the same ideas developed
here, leaving the Φ4 case for last. The starting point will be the Φ3 theory defined in eq.
(3.80), together with its holographic renormalization eq. (3.61):

ZAdS[ϕ0] =

∫
DΦ e−SAdS[Φ]−

∫
ddx
√
γ B(Φ(x))|x0=0 (4.1)

where SAdS[Φ] is the Φ3 action:

SAdS[Φ] =

∫
dd+1x

√
g
[1

2
gµν∂µΦ(x)∂νΦ(x) +

1

2
m2Φ2(x) +

λ

3!
Φ3(x)

]
(4.2)

and where B(Φ(x)) is the boundary term eq. (3.63), counterterm responsible for
the renormalization of the infrared divergences coming from the on-shell part of the path
integral:

B
(
Φ(x)

)
=

1

2
(d−∆)Φ2(x) + ν ln (x0)CνΦ(x)�ν

γΦ(x) +
1

2
CνΦ(x)�ν

γΦ(x)

+
1

4(ν − 1)
Φ(x)�γΦ(x) + · · · (4.3)
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where the triple dots represent higher order derivative terms. We will proceed then
in the same way as we did before for the saddle point approximation of the correspondence,
looking at quantum fluctuations h(x) around the classical solution φ(x) of the AdS action
through the change of variable Φ(x) = φ(x) + h(x), but now keeping track of every
quantity resulting from this separation. Under this change of variable the AdS path
integral transforms as:

ZAdS[ϕ0] = e−
∫
ddx
√
γ B(φ(x))|x0=0

∫
Dh e−SAdS[φ+h] (4.4)

where we used that the on-shell field is functionally fixed, i.e., Dφ = 0, and postu-
lated that the quantum fluctuations of the bulk field are only contained in the interior of
the AdS space, vanishing sufficiently fast at its boundaries. In other words, all the non-
normalizable behavior of Φ(x) is contained in φ(x). This assumption for the quantum
fluctuations further allows us to write the resulting AdS action as:

SAdS[φ+ h] = SAdS[φ] + SAdS[h] +
λ

2

∫
dd+1x

√
g φ(x)h2(x) (4.5)

where we integrated by parts dropping the quantum fluctuations h(x) being eval-
uated at the boundaries of the AdS space, used the classical equation satisfied by φ(x)
and finally identified the original form of the AdS action now for the different fields. We
see that the Φ3 AdS action does not act as a linear functional under the field’s change
of variable (SAdS[φ + h] 6= SAdS[φ] + SAdS[h]) due to the presence of the last term in
eq. (4.5) coming from the self-interaction. This quantity, where the on-shell part of the
bulk field is directly coupled to its quantum fluctuations, can be seen as a deformation
to the linearity of the action and it will be precisely the responsible for the quantum
corrections to the classical correlators found in the previous chapter. Indeed, replacing
eq. (4.5) back into eq. (4.4), the resulting Φ3 AdS path integral under the change of
variable Φ(x) = φ(x) + h(x) is:

ZAdS[ϕ0] = e
−SAdS[φ]−

∫
ddx
√
γ B(φ(x))

∣∣
x0=0

∫
Dh e−SAdS[h]−λ

2

∫
dd+1x

√
g φ(x)h2(x) (4.6)

and if we think of the parameter λ, which mediates the strength of the self-
interaction, as being in some sense ”small”, we can resort to perturbation theory solving
for the form of the AdS path integral as an expansion in this parameter:

ZAdS[ϕ0] =e
−SAdS[φ]−

∫
ddx
√
γ B(φ(x))

∣∣
x0=0

[∫
Dh e−SAdS[h] − λ

2

∫
φ(x1)

∫
Dh h2(x1)e−SAdS[h]

+
λ2

8

∫ ∫
φ(x1)φ(x2)

∫
Dh h2(x1)h2(x2)e−SAdS[h]

− λ3

48

∫ ∫ ∫
φ(x1)φ(x2)φ(x3)

∫
Dh h2(x1)h2(x2)h2(x3)e−SAdS[h]

]
+O(λ4)

(4.7)
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where we expanded the deformation term up to order λ3 and separated the integral
in h into the 4 resulting terms, defining in the process

∫ ∫
· · · ≡

∫
dd+1x1

√
g
∫
dd+1x2

√
g · · ·

to keep the notation short. Note that in this expansion we come across path integrals
in the field h(x) of the form

∫
Dh h(x1) · · ·h(xn)e−SAdS[h]. Since this field h(x), unlike

the complete bulk field Φ(x), is thought to be perfectly regular at the boundaries of the
current space under consideration, these resulting path integrals can be solved in exactly
the same way as the ones encountered in ordinary quantum field theories. This realization
motivates us to define the ordinary n-point functions in the bulk:

Gn(x1, . . . , xn) ≡
∫
Dh h(x1) · · ·h(xn)e−SAdS[h]∫

Dh e−SAdS[h]
(4.8)

where these quantities are expected to be solved, again, as an expansion in λ with
each resulting term involving only the bulk-bulk propagator. In terms of these functions
each path integral in the field h(x) present in eq. (4.7) can be solved directly obtaining,
up to order λ3 in the coupling constant, the normalized AdS path integral:

ZAdS[ϕ0]

ZAdS[ϕ0 = 0]
=e
−SAdS[φ]−

∫
ddx
√
γ B(φ(x))

∣∣
x0=0

[
1− λ

2

∫
φ(x1)G2(x1, x1)

+
λ2

8

∫ ∫
φ(x1)φ(x2)G4(x1, x1, x2, x2)

− λ3

48

∫ ∫ ∫
φ(x1)φ(x2)φ(x3)G6(x1, x1, x2, x2, x3, x3)

]
+O(λ4) (4.9)

where, since φ(x)
∣∣
ϕ0=0

= 0 (eq. (3.90)), we used that ZAdS[ϕ0 = 0] =
∫
Dh e−SAdS[h].

Now, as we just said, each one of these n-point functions in the bulk Gn(x1, . . . , xn) can
be solved in exactly the same way as in ordinary QFT, this is, using the same regular
methods of adding an external source coupled to the field in the generating functional,
then performing the resulting integral with the use again of perturbation theory and
finally computing the desired n-point function through the corresponding derivatives of
the source, which at the end of the calculation are set to 0. This process for the particular
n-point functions present in eq. (4.9) results in, first for G2(x1, x1) up to order λ2:

G2(x1, x1) =G(x1, x1) +
λ2

2

∫ ∫
G(x1, x2)G(x1, x3)G2(x2, x3)

+
λ2

4

∫ ∫
G(x1, x2)G(x1, x3)G(x2, x2)G(x3, x3)

+
λ2

2

∫ ∫
G2(x1, x2)G(x2, x3)G(x3, x3) +O(λ3) (4.10)

where
∫ ∫
≡
∫
dd+1x2

√
g
∫
dd+1x3

√
g, then for G4(x1, x1, x2, x2) up to order λ1:

G4(x1, x1, x2, x2) = 2G2(x1, x2) +G(x1, x1)G(x2, x2) +O(λ2) (4.11)
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and finally for G6(x1, x1, x2, x2, x3, x3) up to order λ0:

G6(x1, x1, x2, x2, x3, x3) =8G(x1, x2)G(x2, x3)G(x3, x1) +G(x1, x1)G(x2, x2)G(x3, x3)

+
[
2G(x1, x1)G2(x2, x3) + (x1 ↔ x2) + (x1 ↔ x3)

]
+O(λ)

(4.12)

where the quantities G(x, z) are the usual bulk-bulk propagators. These results
allow us to finally express the complete expansion of the normalized AdS path integral
up to order λ3 in the self-interacting coupling constant as:

ZAdS[ϕ0]

ZAdS[ϕ0 = 0]
=e
−SAdS[φ]−

∫
ddx
√
γ B(φ(x))

∣∣
x0=0

[
1− λ

2

∫
φ(x1)G(x1, x1)

− λ3

4

∫ ∫ ∫
φ(x1)G(x1, x2)G(x1, x3)G2(x2, x3)

− λ3

8

∫ ∫ ∫
φ(x1)G(x1, x2)G(x1, x3)G(x2, x2)G(x3, x3)

− λ3

4

∫ ∫ ∫
φ(x1)G2(x1, x2)G(x2, x3)G(x3, x3)

+
λ2

4

∫ ∫
φ(x1)φ(x2)G2(x1, x2)

+
λ2

8

∫ ∫
φ(x1)φ(x2)G(x1, x1)G(x2, x2)

− λ3

6

∫ ∫ ∫
φ(x1)φ(x2)φ(x3)G(x1, x2)G(x2, x3)G(x3, x1)

− λ3

48

∫ ∫ ∫
φ(x1)φ(x2)φ(x3)G(x1, x1)G(x2, x2)G(x3, x3)

− λ3

8

∫ ∫ ∫
φ(x1)φ(x2)φ(x3)G(x1, x1)G2(x2, x3)

]
+O(λ4) (4.13)

remembering that the on-shell field φ(x) in this same λ expansion is given by eq.
(3.90):

φ(x) =

∫
ddy K(x, ~y)ϕ0(~y)− λ

2

∫
dd+1x1

√
g G(x, x1)

[∫
ddy K(x1, ~y)ϕ0(~y)

]2

+
λ2

2

∫
dd+1x1

√
g G(x, x1)

[∫
ddy K(x1, ~y)ϕ0(~y)

]
×
∫
dd+1x2

√
g G(x1, x2)

[∫
ddy K(x2, ~y)ϕ0(~y)

]2

+O(λ3) (4.14)

Eq. (4.13) together with eq. (4.14) give us the concrete and explicit dependence of
the Φ3 AdS path integral as a functional of the dual source ϕ0(~y), ready to be differentiated
with the intention to compute the quantum corrected CFT holographic correlators.
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4.1.2 Correlation Functions

Plugging the explicit form of the on-shell field φ(x) (eq. (4.14)) into the normalized AdS

path integral ZAdS[ϕ0]
ZAdS[ϕ0=0]

(eq. (4.13)) and keeping terms of order λ3, the obtention of the

holographic correlators eqs. (3.7) and (3.8) up to this order in the coupling constant is
reduced to a simple exercise of taking derivatives, where since the on-shell part of the path
integral is holographic renormalized the variation of this part is understood to be given by
eq. (3.94). The resulting quantum corrected holographic correlators from this process for
some primary scalar operator O∆(~x) of scaling dimension ∆ dual to a Φ3 self-interacting
scalar field in AdSd+1 are given by the 1-point functions:

〈O∆(~y1)〉CFT = 〈O∆(~y1)〉CFT,con =− λ

2

∫
K(x1, ~y1)G(x1, x1)

− λ3

4

∫ ∫ ∫
K(x1, ~y1)G(x1, x2)G(x1, x3)G2(x2, x3)

− λ3

8

∫ ∫ ∫
K(x1, ~y1)G(x1, x2)G(x1, x3)G(x2, x2)G(x3, x3)

− λ3

4

∫ ∫ ∫
K(x1, ~y1)G2(x1, x2)G(x2, x3)G(x3, x3) +O(λ4)

(4.15)

the 2-point functions:

〈O∆(~y1)O∆(~y2)〉CFT =
2νc∆

|~y1 − ~y2|2∆
+
λ2

2

∫ ∫
K(x1, ~y1)K(x1, ~y2)G(x1, x2)G(x2, x2)

+
λ2

4

∫ ∫
K(x1, ~y1)K(x2, ~y2)G(x1, x1)G(x2, x2)

+
λ2

2

∫ ∫
K(x1, ~y1)K(x2, ~y2)G2(x1, x2) +O(λ4)

〈O∆(~y1)O∆(~y2)〉CFT,con =
2νc∆

|~y1 − ~y2|2∆
+
λ2

2

∫ ∫
K(x1, ~y1)K(x1, ~y2)G(x1, x2)G(x2, x2)

+
λ2

2

∫ ∫
K(x1, ~y1)K(x2, ~y2)G2(x1, x2) +O(λ4) (4.16)

the 3-point functions:
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〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT =− λ
∫
K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)

− λ3

2

∫ ∫ ∫
K(x1, ~y1)K(x2, ~y2)K(x2, ~y3)G(x1, x2)G(x1, x3)G(x3, x3)× 3

− λ3

4

∫ ∫ ∫
K(x1, ~y1)K(x2, ~y2)K(x2, ~y3)G(x1, x1)G(x2, x3)G(x3, x3)× 3

− λ3

2

∫ ∫ ∫
K(x1, ~y1)K(x2, ~y2)K(x2, ~y3)G2(x1, x3)G(x3, x2)× 3

− λ3

∫ ∫ ∫
K(x1, ~y1)K(x2, ~y2)K(x3, ~y3)G(x1, x2)G(x2, x3)G(x3, x1)

− λ3

8

∫ ∫ ∫
K(x1, ~y1)K(x2, ~y2)K(x3, ~y3)G(x1, x1)G(x2, x2)G(x3, x3)

− λ3

4

∫ ∫ ∫
K(x1, ~y1)K(x2, ~y2)K(x3, ~y3)G(x1, x1)G2(x2, x3)× 3

+
2νc∆

|~y1 − ~y2|2∆

[
−λ

2

∫
K(x1, ~y3)G(x1, x1)

− λ3

4

∫ ∫ ∫
K(x1, ~y3)G(x1, x2)G(x1, x3)G2(x2, x3)

− λ3

8

∫ ∫ ∫
K(x1, ~y3)G(x1, x2)G(x1, x3)G(x2, x2)G(x3, x3)

− λ3

4

∫ ∫ ∫
K(x1, ~y3)G2(x1, x2)G(x2, x3)G(x3, x3)

]
×3 +O(λ4)

〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con =− λ
∫
K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)

− λ3

2

∫ ∫ ∫
K(x1, ~y1)K(x2, ~y2)K(x2, ~y3)G(x1, x2)G(x1, x3)G(x3, x3)× 3

− λ3

2

∫ ∫ ∫
K(x1, ~y1)K(x2, ~y2)K(x2, ~y3)G2(x1, x3)G(x3, x2)× 3

− λ3

∫ ∫ ∫
K(x1, ~y1)K(x2, ~y2)K(x3, ~y3)G(x1, x2)G(x2, x3)G(x3, x1) +O(λ4)

(4.17)

and finally by the 4-point functions:
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〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT =
2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

+ λ2

∫ ∫
K(x1, ~y1)K(x1, ~y2)G(x1, x2)K(x2, ~y3)K(x2, ~y4)× 3

+
λ2

2

∫ ∫
K(x1, ~y1)G(x1, x1)K(x2, ~y2)K(x2, ~y3)K(x2, ~y4)× 4

+
2νc∆

|~y1 − ~y2|2∆

[λ2

2

∫ ∫
K(x1, ~y3)K(x1, ~y4)G(x1, x2)G(x2, x2)

+
λ2

4

∫ ∫
K(x1, ~y3)K(x2, ~y4)G(x1, x1)G(x2, x2)

+
λ2

2

∫ ∫
K(x1, ~y3)K(x2, ~y4)G2(x1, x2)

]
+O(λ4)

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con =

λ2

∫ ∫
K(x1, ~y1)K(x1, ~y2)G(x1, x2)K(x2, ~y3)K(x2, ~y4)× 3 +O(λ4)

(4.18)

where, with the intention to keep the notation short, we defined∫ ∫
· · · ≡

∫
dd+1x1

√
g
∫
dd+1x2

√
g · · · and represented the different permutations of the

integrals as a multiplicative factor at the end of each. Notice the new contributions to the
correlators in comparison with those obtained under the classical approximation of the
AdS/CFT correspondence, eq. (3.95). Pictorially, these new terms correspond exactly to
the loops diagrams expected from a regular QFT Φ3 self-interacting theory resulting from
a perturbative expansion in the self-interacting coupling constant, even agreeing with
the same coefficients! Since these new integrals are contributing to specific correlators
which are conjectured to be of the form dictated by eq. (2.41), the functional form of
their results is strongly conditioned purely from conformal symmetry arguments. We will
proceed then to study these quantities in detail through their explicit computation.

4.1.3 Holographic Dictionary

Before jumping straight into the calculations of the new contributions to the holographic
correlators it will be useful to check if the holographic dictionary defined in eqs. (3.78)
and (3.79), which relates the desired boundary correlators for the operator O∆(~x) with
the simple and known bulk correlators for the field Φ(x), is still valid for the recently
obtained quantum corrected 1-, 2-, 3- and 4-point functions since if this is the case it will
allow us to use nice (and even desired, as we will discuss shortly) properties of Φ3 theories
which will result in a simplification to the explicit form of these correlators.

To keep the discussion clean and short, the validity of the holographic dictionary
for the present case can be argued to hold without doing any computation through the
understanding of why it holds for its classical counterpart in the first place. In that case,
under the appropriate limits the values of the bulk tree-level n-point functions obtained
from the usual Feynman rules of scalar Φ3 theories (eq. (3.115)) matched exactly the
boundary correlators obtained through the classical approximation of the AdS/CFT cor-
respondence (eq. (3.95)) mainly because the latter essentially contained the same type
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of diagrams expected from Feynman rules as the former, even with the same coefficients,
with the exception that the external legs of said diagrams had been replaced with bulk-
boundary propagators. But this replacement precisely matched the effective dictionary
coming from the nice expansions of the bulk-bulk propagators eqs. (3.75) and (3.76)
which for the bulk correlators implied the simple recipe ”replace external G’s with K’s”,
inevitably resulting in exactly the same correlators as those found through the classical
approximation of the AdS/CFT correspondence. These facts unequivocally led us to re-
late the boundary n-point functions with the bulk n-point functions simply as the former
being the extension of the internal points of the latter to the conformal boundary of the
AdS space.

Having said this, it is straightforward to see that exactly the same is happening
to the now quantum corrected boundary correlators for the operator O∆(~x) just found,
eqs. (4.15), (4.16), (4.17) and (4.18). Indeed, these correlators correspond exactly to the
ones obtained from Feynman rules where the external bulk-bulk propagators have been
replaced with bulk-boundary propagators, but this is precisely the effective action of the
holographic dictionary, implying that we can always formulate these boundary correlators
as the appropriate limit of some bulk correlators which follow the Feynman rules of a Φ3

theory. Unsurprisingly, these bulk correlators are nothing but the correlators for the bulk
field Φ, confirming in this way for the present case the boundary/bulk n-point functions
equivalence.

4.1.4 Tadpole Renormalization

So far the discussion of the holographic dictionary has been a mere curiosity, which al-
lowed us to relate the correlators living at the conformal boundary of the AdS space to
those living in its interior. However, as we will see in this segment, this curiosity taken
seriously has some profound implications for the boundary correlators we are interested
in computing. These implications come from the fact that these desired correlators can
be thought of simply as the limit of some ordinary and well-known Φ3 theory, being able
then to use the familiar machinery known for these theories. One of the many features
of Φ3 theories which will be extremely useful and revealing for our current purpose of
computing eqs. (4.15), (4.16), (4.17) and (4.18), is the liberty to redefine the value of the
vacuum expectation (the VEV) of the field Φ(x) through the simple addition of a coun-
terterm linear in the field of the form Y (λ)Φ(x), where the parameter Y (λ) that helps
fixing the desired value for the VEV of the field can be determined perturbatively in the
coupling constant. In general one is interested in normalizing the VEV of the field to
0, which for Φ3 theories has the remarkable result of renormalizing not only the tadpole
diagrams present in the 1-point function but also those present in higher point functions
[16]! But notice precisely how the tadpole contributions present in the holographic 1-point
function just derived (eq. (4.15)) are spoiling the conformal structure of this correlator,
expected to be of the form dictated by eq. (2.41). With the recent discussion we can
already understand why this is the case: the bulk field Φ is simply not well normalized.

Considering then the properly normalized theory
SAdS[Φ] → SAdS[Φ] +

∫
dd+1x

√
g Y (λ)Φ(x), where the parameter Y (λ) is chosen accord-

ingly, the holographic dictionary assures us that the resulting boundary 1-, 2, 3-, and
4-point functions for some operator O∆(~x) will be the same as those obtained previously,
with the exception that the tadpole contributions have been renormalized from every
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n-point function:

1-pt fn: 〈O∆(~y1)〉CFT = 〈O∆(~y1)〉CFT,con = 0

2-pt fn: 〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con =
2νc∆

|~y1 − ~y2|2∆

+
λ2

2

∫ ∫
K(x1, ~y1)K(x2, ~y2)G2(x1, x2) +O(λ4)

3-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT = 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con =

− λ
∫
K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)

− λ3

2

∫ ∫ ∫
K(x1, ~y1)K(x2, ~y2)K(x2, ~y3)G2(x1, x3)G(x3, x2)× 3

− λ3

∫ ∫ ∫
K(x1, ~y1)K(x2, ~y2)K(x3, ~y3)G(x1, x2)G(x2, x3)G(x3, x1) +O(λ4)

4-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT =
2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

+ λ2

∫ ∫
K(x1, ~y1)K(x1, ~y2)G(x1, x2)K(x2, ~y3)K(x2, ~y4)× 3

+
2νc∆

|~y1 − ~y2|2∆

λ2

2

∫ ∫
K(x1, ~y3)K(x2, ~y4)G2(x1, x2)× 6 +O(λ4)

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con =

λ2

∫ ∫
K(x1, ~y1)K(x1, ~y2)G(x1, x2)K(x2, ~y3)K(x2, ~y4)× 3 +O(λ4)

(4.19)

Since this properly normalized theory is the one that delivers conformal correlators,
these are the ones that will be of interest to us and that therefore we will proceed to
calculate.

4.1.5 Regularization Schemes

We are one step away from fully diving into the computation of the quantum corrections
to the holographic correlators dual to a Φ3 theory on AdS. The last matter that we will
see before this, with the intention to keep these computations organized and clean, is
the introduction of the appropriate regularization schemes that we will use in this study,
necessary for the handling of the different divergent quantities (as we will see in detail)
present in the n-point functions, eq. (4.19).

IR Regularization

The first type of divergences that we will deal with are those of the type IR (infrared)
coming from the different loops integrals in eq. (4.19) as their internal points xi being
integrated approach the conformal boundary of the AdS space at xi,0 = 0. But we have
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already discussed this type of divergence, it was precisely the divergence we encountered
when we were trying to compute the tree-level contributions to the holographic correla-
tors, motivating the entire holographic renormalization program. As discussed in there
(section 3.1.5) this infrared divergence was completely expected due to the weak/strong
duality that the AdS/CFT correspondence implies, since we are in fact computing the
correlators for some strongly coupled quantum theory, correlators which are usually UV-
divergent due to loops contributions. Since the quantum contributions to the holographic
correlators are out of the scope of the holographic renormalization, procedure which only
renormalizes the on-shell contributions coming from the AdS path integral, these new
terms in eq. (4.19) given the reasons just said are expected to be IR-divergent as well.
The renormalization of these infinities will be identical in spirit with those found in or-
dinary QFTs as we will see later but with regards to their regularization, it will be
extremely satisfactory to find that the same regularization scheme introduced in the holo-
graphic renormalization procedure which captured the correct structure of the classical
contributions to the holographic correlators, also does it for their quantum contributions.
This scheme consisted in manipulating the IR-divergent quantities not in the conformal
boundary itself at x0 = 0 but instead at some small distance from it at x0 = ε, where
the limit ε → 0 is understood. In our present case this scheme gives us a natural, and
rather obvious, approach on how to treat these possible IR-divergent integrals: simply
integrate them up to some small distance ε! The resulting correlators from this scheme
can be simply put into the form:

1-pt fn: 〈O∆(~y1)〉CFT = 〈O∆(~y1)〉CFT,con = 0

2-pt fn: 〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con =
2νc∆

|~y1 − ~y2|2∆

+
λ2

2

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)G2(x1, x2) +O(λ4)

3-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT = 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con =

− λ
∫
K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)

− λ3

2

∫
ε

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)K(x2, ~y3)G2(x1, x3)G(x3, x2)× 3

− λ3

∫
ε

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)K(x3, ~y3)G(x1, x2)G(x2, x3)G(x3, x1) +O(λ4)

4-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT =
2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

+ λ2

∫ ∫
K(x1, ~y1)K(x1, ~y2)G(x1, x2)K(x2, ~y3)K(x2, ~y4)× 3

+
2νc∆

|~y1 − ~y2|2∆

λ2

2

∫
ε

∫
ε

K(x1, ~y3)K(x2, ~y4)G2(x1, x2)× 6 +O(λ4)

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con =

λ2

∫ ∫
K(x1, ~y1)K(x1, ~y2)G(x1, x2)K(x2, ~y3)K(x2, ~y4)× 3 +O(λ4)

(4.20)
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where we regularized the quantum contributions in eq. (4.19), defining in the pro-
cess the IR-regularized integrals

∫
ε

∫
ε
· · · ≡

∫
x1,0=ε

dd+1x1
√
g
∫
x2,0=ε

dd+1x2
√
g · · · . When

we need to keep these regulators or when can we safely take them as 0 will be an interest-
ing study which we will leave pending for a brief moment when we finally start computing
these integrals. But before this, we still need to introduce one more regulator to able to
compute the delicate value of these integrals, which we will proceed to do next.

UV Regularization

The second type of divergences that we will deal with are those of the type UV (ultraviolet)
coming from the different loops integrals in eq. (4.20) as the bulk-bulk propagators
contained in them get integrated at more closer and closer points. Indeed, take for example
the loop integral found in the 2-point functions. In this case, both x1 and x2 integrals
are carried out in the entire region of the AdS space, thus they will contain contributions
coming from when both points coincide with each other at x1 = x2. But how does its
integrand behave in this region, in particular its bulk-bulk propagator? For tree-level
computations this question did not concern us and a naive approach to the resulting
integrals involving the bulk-bulk propagator fortunately resulted in finite and convergent
values. However in general this will no longer be true for loops computations, forcing us
to take action on the matter. An easy way to see that this study of integrals involving
G(x1, x2) becomes delicate is to observe how this propagator behaves in this conflictive
region where x1 = x2. From the definition of the bulk-bulk propagator in terms of the
parameter ξ, eq. (3.74), it is direct to check that in this region of coincident points ξ
takes the simple value of 1, which reduces the form of the propagator into:

G(x1, x1) =
2−∆c∆

2ν
2F1

(∆

2
,
∆ + 1

2
; ν + 1; 1

)
(4.21)

Generalized hypergeometric functions of real parameters and unit argument of
the form p+1Fp(a1, . . . , ap+1; b1, . . . , bp; 1) are convergent if

∑
bi −

∑
aj > 0 [17]. For

the hypergeometric function in G(x1, x1) this criteria implies the convergence condition
ν + 1 − ∆

2
− ∆+1

2
= 1−d

2
> 0, i.e., d < 1. In fact, the explicit divergence of the bulk-bulk

propagator can be extracted out from its hypergeometric function representation using
the known Euler’s transformation for hypergeometric functions eq. (B.29), which puts
the propagator in the equivalent form:

G(x1, x2) =
2−∆c∆

2ν

ξ∆

(1− ξ2)
d−1

2

2F1

(∆− d
2

+ 1,
∆− d+ 1

2
; ν + 1; ξ2

)
(4.22)

The convergence criteria applied to this new form for the hypergeometric function
is summarized in d > 1, therefore for dimensions greater than 1 all the divergence of
the bulk-bulk propagator as its internal points x1 and x2 gets closer one to another,
i.e., as ξ → 1, is contained in its factor 1

(1−ξ2)
d−1

2
. Of course we will be interested in

studying theories on the boundary of the AdS space of dimensions greater than 1 as well,
meaning that we will be usually carrying ultraviolet divergences coming from the loops
computations present on the AdS side.
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Since we do not want to reduce the range of our study to the small region of d < 1,
we will have to find a way to regularize these ultraviolet infinities coming from the bulk-
bulk propagator hoping that eventually the theory itself will have the capacity to absorb
them, which as we will see will lead to interesting renormalizability conditions for the
resulting dual theories coming from scalar theories on AdS. There are many sensitive ways
in which we can regularize these infinities occurring from the physics at small distances,
but the scheme we finally opted for is highly satisfactory not only because it has a clear
picture and interpretation of the mechanism behind it, but also because it keeps intact
the AdS symmetry of every quantity, which translates into the conservation of the CFT
symmetry in the resulting holographic correlators. This scheme can be understood simply
as a point-splitting approach whose motivation comes from observing how ξ, the parameter
that contains the combination of how G(x1, x2) depends on x1 and x2, behaves as x2

approaches x1 while keeping a small proper AdS distance towards it, i.e., for x2 = x1 +dx1

where dx1 satisfies ds2 = gµνdx
µ
1dx

ν
1, gµν being the AdS metric gµν = δµν

x2
1,0

. In this case it

is easy to check that ξ behaves as:

ξ(x1, x1 + dx1) = 1− ds2

2
+O(dx2<

1 ) (4.23)

in which calling κ ≡ ds2

2
, we can rewrite it up to this order in κ simply as:

ξ(x1, x1 + dx1) =
1

1 + κ
(4.24)

Here κ constitutes the UV-regulator that we will use in our study, which since
ds2 is a small positive number, then so is κ, implying that keeping separated the points
x1 and x2 by a small proper AdS distance results in a value for ξ arbitrarily close to 1
depending on the specific value of κ but not 1, which is exactly what we are interested
in achieving. This feature for the point-splitting approach is nice because if we are able
to redefine ξ such that for the case x1 6= x2 it reduces to its ordinary value, while for
the case x1 = x2 it reduces to its regularized form eq. (4.24), we would have solved the
problem of ultraviolet regularization since simply replacing this new parameter into G(ξ)
we will have cured the divergences coming from its integration at coincident points. This
realization motivates us to define the regularized ξ (same regularization scheme used by
Bertan, Sachs and Skvortsov in [18]):

ξκ ≡
ξ

1 + κ
(4.25)

which in turn allows us to define the regularized version of the bulk-bulk propaga-
tor:

Gκ(ξ) ≡ G(ξκ) = G
( ξ

1 + κ

)
(4.26)

Since under AdS isometry transformations the parameter ξ is invariant, it is trivial
to check that this regulator preserves the AdS symmetry of the propagator. Moreover, for
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x1 6= x2 we can always take κ = 0 recovering the original form of the propagator, while
for x1 = x2 the regulator κ precisely handles the ultraviolet divergences coming from
it. The resulting holographic correlators from this regularization scheme can be simply
stated then as:

1-pt fn: 〈O∆(~y1)〉CFT = 〈O∆(~y1)〉CFT,con = 0

2-pt fn: 〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con =
2νc∆

|~y1 − ~y2|2∆

+
λ2

2

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)G2
κ(x1, x2) +O(λ4)

3-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT = 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con =

− λ
∫
K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)

− λ3

2

∫
ε

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)K(x2, ~y3)G2
κ(x1, x3)Gκ(x3, x2)× 3

− λ3

∫
ε

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)K(x3, ~y3)Gκ(x1, x2)Gκ(x2, x3)Gκ(x3, x1) +O(λ4)

4-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT =
2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

+ λ2

∫ ∫
K(x1, ~y1)K(x1, ~y2)G(x1, x2)K(x2, ~y3)K(x2, ~y4)× 3

+
2νc∆

|~y1 − ~y2|2∆

λ2

2

∫
ε

∫
ε

K(x1, ~y3)K(x2, ~y4)G2
κ(x1, x2)× 6 +O(λ4)

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con =

λ2

∫ ∫
K(x1, ~y1)K(x1, ~y2)G(x1, x2)K(x2, ~y3)K(x2, ~y4)× 3 +O(λ4)

(4.27)

where we UV-regularized the quantum contributions in eq. (4.20). These are the
integrals that we will finally compute, process which we will proceed to do next.

4.1.6 2-Point Function

The regularized holographic 2-point functions dual to a Φ3 self-interacting theory on AdS
are given by:

〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con

=
2νc∆

|~y1 − ~y2|2∆
+
λ2

2

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)G2
κ(x1, x2) +O(λ4)

(4.28)

from where we see the quantum correction they receive coming from the loop
integral:
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I(~y1, ~y2) =
λ2

2

∫
x1,0=ε

dd+1x1
√
g

∫
x2,0=ε

dd+1x2
√
g K(x1, ~y1)K(x2, ~y2)G2

κ(x1, x2) (4.29)

In order to compute the complete 2-point function up to this order in the expansion
of λ, we will proceed then to compute this quantity.

The ”Eye” Diagram

~y1 ~y2

Figure 4.1: Pictorial representation of the ”eye” diagram.

In terms of the unnormalized bulk-boundary propagator we can rewrite the loop
integral eq. (4.29) (which we will refer to it as the ”eye” diagram) as:

I(~y1, ~y2) =
λ2c2

∆

2

∫
x1,0=ε

dd+1x1
√
g K̃∆(x1, ~y1)

∫
x2,0=ε

dd+1x2
√
g G2

κ(x1, x2)K̃∆(x2, ~y2)

(4.30)

As we have done for past integrals, the solving strategy for this quantity will be
brute force. We will start by first computing one of the integrals, say the x2 integral,
hoping that the remaining integral in x1 will be familiar to us, which as we will see will
indeed be the case. The first question that we will be interested in answering is when in
this x2 integral we can safely take the IR-regulator ε equal to 0. The infrared convergence
region of this integral can be seen directly by studying how its integrand behaves as it
approaches the boundary of AdS. In this case, using the explicit form of the metric and
the known expansion of both propagators, we obtain that:

√
g G2

κ(x1, x2)K̃∆(x2, ~y2) ∼
x2,0→0

x−d−1
2,0 x2∆

2,0x
d−∆
2,0 = x−1+∆

2,0 (4.31)

From here we conclude that the x2 integral will be IR-convergent as long as ∆
is a positive number. Since in this work we are considering the cases where ∆ > d

2
(as

discussed in section 3.1.4), where d is the dimension of the CFT theory living on the
boundary of the AdS space, ∆ will be always positive, implying that we can always take
in this integral ε = 0.
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As we will see for every integral contributing to the holographic correlators, a
remarkable feature of them is that their general structure can be derived by simply using
AdS isometries transformations as change of variables. For the case of this x2 integral
performing the sequence of translation, inversion, translation and rescaling, allows us to
extract all the external dependence from the integral:

∫
dd+1x2

√
g G2

κ(x1, x2)K̃∆(x2, ~y2) =

∫
dd+1x2

√
g G2

κ(x
′
1, x2)K̃∆(x2,~0)

=

∫
dd+1x2

√
g G2

κ(x
′′
1, x2)x∆

2,0

=

∫
dd+1x2

√
g G2

κ

(
(x′′1,0,~0), x2

)
x∆

2,0

= x′′∆1,0

∫
dd+1x2

√
g G2

κ

(
(1,~0), x2

)
x∆

2,0

≡ CG2K(κ)K̃∆(x1, ~y2) (4.32)

where, using the invariance of the AdS measure and the bulk-bulk propagator
and the transformation rules of the bulk-boundary propagator, in the first equality we
performed the translation x2 → x2 + ~y2 and defined x′1 ≡ x1 − ~y2, in the second equality

we performed the inversion xµ2 →
xµ2
x2

2
and defined x′µ1 ≡

x′′µ1

x′′21
, in the third equality we

performed the translation x2 → x2 + ~x1
′′, in the fourth equality the rescaling x2 → x′′1,0x2

and in the final equality we remembered that x′′µ1 =
x′µ1
x′21

where x′1 = x1 − ~y2, also noticing

that the remaining integral of this sequence of change of variables is just a function of the
UV-regulator κ which we simply called CG2K(κ). This result is noteworthy, it is telling us
that the integral

∫
G2K is proportional to K where all the possible ultraviolet divergence

coming from the bulk-bulk propagator being evaluated at coincident points is contained
in the proportionality constant. In fact, notice that the power of G did not play any role
in this demonstration, which implies that this statement is true whenever the integral is
IR-convergent. Doing the same infrared convergence study as in eq. (4.31) now for a
general power n of the bulk-bulk propagator it is easy to verify that the integral will be
IR-convergent for n > 1. This implies then the more general result:

∫
dd+1x2

√
g Gn

κ(x1, x2)K̃∆(x2, ~y2) = CGnK(κ)K̃∆(x1, ~y2), for n > 1 (4.33)

where CGnK(κ) contains all the possible UV-divergence coming from the integral.
The explicit form of this quantity is obtainable through the brute force calculation of
the integral, process which will also show its ultraviolet convergence region. Let us then
proceed to do this study for the particular integral that we are interested in computing,
that is,

∫
G2K. For this calculation, it will turn out to be useful to use the representation

eq. (4.22) of the bulk-bulk propagator, where all its UV-divergence has been extracted
out from the hypergeometric function. In terms of this representation then, we can write
its regularized version squared simply as:
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G2
κ(x1, x2) =

(2−∆c∆

2ν

)2 ξ2∆
κ

(1− ξ2
κ)
d−1

[
2F1

(∆− d
2

+ 1,
∆− d+ 1

2
; ν + 1; ξ2

κ

)]2

(4.34)

where ξκ = ξ
1+κ

. Using the double sum property
∑∞

k=0

∑∞
l=0 ak,l =

∑∞
k=0

∑k
l=0 ak−l,l,

the square of the hypergeometric function can be written as a single sum in the regularized
parameter ξκ:

[
2F1

(∆− d
2

+ 1,
∆− d+ 1

2
; ν + 1; ξ2

κ

)]2

=
∞∑
k=0

a
(2)
k ξ2k

κ (4.35)

where we defined the coefficient:

a
(2)
k ≡

k∑
l=0

(∆−d
2

+ 1)k−l(
∆−d+1

2
)k−l(

∆−d
2

+ 1)l(
∆−d+1

2
)l

(ν + 1)k−l(ν + 1)l (k − l)! l!
(4.36)

This nice form for the square of the hypergeometric function further allows us to
express the square of the regularized propagator in the form of:

G2
κ(x1, x2) =

(2−∆c∆

2ν

)2
∞∑
k=0

a
(2)
k

∞∑
l=0

(d− 1)l
l!

( ξ

1 + κ

)2∆+2k+2l

(4.37)

where we used that 1
(1−ξ2

κ)d−1 = 1F0(d − 1; ξ2
κ) =

∑∞
l=0

(d−1)l
l!

ξ2l
κ and the explicit

form of ξκ. Therefore, the integral of
∫
G2K with the bulk-bulk propagator written in

this form can be expressed as:

∫
dd+1x2

√
g G2

κ(x1, x2)K̃∆(x2, ~y2) =
(2−∆c∆

2ν

)2
∞∑
k=0

a
(2)
k

∞∑
l=0

(d− 1)l
l!

( 1

1 + κ

)2∆+2k+2l

×
∫
dd+1x2

√
g ξ2∆+2k+2lK̃∆(x2, ~y2)

(4.38)

The complete study of this type of integrals can be found in section B.3 of Appendix
B, concluding in its value in eq. (B.24). Using this formula then for the particular values
∆1 = 2∆ + 2k + 2l and ∆2 = ∆, we find that the result of the x2 integral is given by:

∫
dd+1x2

√
g G2

κ(x1, x2)K̃∆(x2, ~y2) =K̃∆(x1, ~y2)π
d+1

2

(2−∆c∆

2ν

)2
∞∑
k=0

a
(2)
k

Γ(3∆−d
2

+ k)Γ(∆
2

+ k)

Γ(∆ + k)Γ(∆ + 1
2

+ k)

×
( 1

1 + κ

)2∆+2k

3F2

(
d− 1,

3∆− d
2

+ k,
∆

2
+ k; ∆ + k,∆ +

1

2
+ k;

( 1

1 + κ

)2)
≡ CG2K(κ)K̃∆(x1, ~y2) (4.39)



4.1. Φ3 THEORY 78

where we identified the representation of the generalized hypergeometric function

3F2 and denoted all the terms not dependent on the external points simply by CG2K(κ).
This result for the

∫
G2K integral obtained from its explicit computation has precisely

the structure expected from AdS isometry arguments eq. (4.33), where in this case the
value of the constant CG2K(κ) is found to be:

CG2K(κ) = π
d+1

2

(2−∆c∆

2ν

)2
∞∑
k=0

a
(2)
k

Γ(3∆−d
2

+ k)Γ(∆
2

+ k)

Γ(∆ + k)Γ(∆ + 1
2

+ k)

( 1

1 + κ

)2∆+2k

× 3F2

(
d− 1,

3∆− d
2

+ k,
∆

2
+ k; ∆ + k,∆ +

1

2
+ k;

( 1

1 + κ

)2)
(4.40)

where in turn the coefficient a
(2)
k was defined in eq. (4.36). Notice how the ul-

traviolet convergence region of this quantity can be read directly from its generalized
hypergeometric function. Indeed, as κ→ 0 the argument of this function goes to 1, which
applying the corresponding convergence criteria introduced in the last section implies the
convergence condition ∆ + k+ ∆ + 1

2
+ k− (d− 1)− (3∆−d

2
+ k)− (∆

2
+ k) = 3−d

2
> 0, that

is, d < 3. In other words, the
∫
G2K integral is UV-divergent for values of the dimension

d equal or greater than 3, and UV-convergent otherwise, being able to safely take κ = 0
in this case.

Remember that we are trying to compute the loop integral contributing to the
holographic 2-point function dual to a Φ3 theory on AdS, eq. (4.30). Replacing then the
nice result just found for the x2 integral back into the quantity we are trying to compute
it reduces to:

I(~y1, ~y2) =
λ2CG2K(κ)c2

∆

2

∫
x1,0=ε

dd+1x1
√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2) (4.41)

If we were to put the normalization factors c∆ back to the unnormalized bulk-
boundary propagators K̃∆ it would result in the integral of 2 normalized bulk-boundary
propagators times some number. As we will see during the calculations of these loops
integral, it will be practical to name this overall number resulting from this process.
Let us define then what eventually will be understood as the one-particle irreducible (or
simply 1PI) contributions to the correlators:

Π(κ) ≡ λ2CG2K(κ)

2
(4.42)

In terms of this quantity, the integral we are trying to compute is written as:

I(~y1, ~y2) = Π(κ)c2
∆

∫
x1,0=ε

dd+1x1
√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2) (4.43)
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The remaining integral in x1, if it were not for the IR-regulator ε, should remind
you of the D-functions defined in eq. (A.1) of Appendix A. Indeed, it is an integral of
just bulk-boundary propagators. However, as it is discussed in detail in section A.4 of
this appendix, a simple power counting of this integral suggests that it is logarithmically
divergent in the lower limit of integration of the radial coordinate x1,0. As we have
already discussed previously, these infinities coming from quantities being evaluated at
the conformal boundary of AdS spaces are no surprise since we are actually computing
CFT correlators which are expected to be divergent. This realization was precisely what
motivated the introduction of the IR-regulator ε in the first place, which in turn also
motivates the definition of the regularized version of this particular D-function in eq.
(A.37). Therefore, in terms of this function we can express the integral we are interested
in computing in the form of:

I(~y1, ~y2) = Π(κ)c2
∆D

(ε)
∆∆(~y1, ~y2) (4.44)

The complete study of this particular D-function can be found in section A.4 of
Appendix A, concluding in its value in eq. (A.43). Using this value then in our present
case we find that the final result of the integral eq. (4.29) is given by:

I(~y1, ~y2) = − 2νc∆

|~y1 − ~y2|2∆

Π(κ)

ν
ln
( ε

|~y1 − ~y2|

)
(4.45)

where we have written it conveniently for the upcoming study. The presence of the
logarithm in this result seems to break the conformal structure expected for contributions
to the 2-point function of a CFT as it was derived in eq. (2.41), however as we will
see next when we consider the complete correlator, we will realize that the result just
found corresponds exactly to the expansion of a conformal anomaly up to this same
order in the self-interacting coupling constant, realization that will also provide us with a
natural renormalization scheme of both IR and UV divergences equivalent to those used
in ordinary QFTs.

Correlator Renormalization

Replacing the result just found then for the ”eye” diagram back into the holographic
2-point functions, we find that they can be factorized into the form:

〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con

=
2νc∆

|~y1 − ~y2|2∆

[
1− Π(κ)

ν
ln
( ε

|~y1 − ~y2|

)]
+O(λ4) (4.46)

The terms inside the square bracket, up to this same order in λ, correspond to the
known Taylor series of an exponent:

1− Π(κ)

ν
ln
( ε

|~y1 − ~y2|

)
=
( ε

|~y1 − ~y2|

)−Π(κ)
ν

+O(λ4) (4.47)
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This fact allows us to express the regularized holographic 2-point functions in the
nice compact form:

〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con = ε−
Π(κ)
ν

2νc∆

|~y1 − ~y2|2∆−Π(κ)
ν

+O(λ4) (4.48)

With the correlators written in this form, it is direct to see what are the effects
of the quantum corrections coming from the off-shell part of the AdS path integral to
the 2-point function found previously under the classical approximation of the AdS/CFT
correspondence. Indeed, they contribute with an overall rescaling to the correlator along
with a shift in its scaling dimension! Now, of course as we take the understood limits
ε→ 0 and κ→ 0 this correlator becomes divergent so it is necessary the introduction of a
delicate renormalization scheme in order to absorb the respective infinities. Fortunately,
the nice form of eq. (4.48) allows us to renormalize it in exactly the same spirit as it is
done for ordinary QFTs, this is, by understanding the parameters of the theory not as
physical constants but bare quantities, opening the possibility of a renormalization scheme
through their definition. Take for example the anomalous dimension of the correlators.
Notice that their exponent can be written as:

2∆− Π(κ)

ν
= 2
[d

2
+

√(d
2

)2

+m2 − Π(κ)
]
+O(λ4) (4.49)

where we used that ∆ = d
2

+ν, ν =
√

(d
2
)2 +m2 and the known Taylor series of the

square root. The exponent written in this form strongly suggests the renormalization of
the UV-divergences coming from Π(κ) (that is, whenever d > 2) through a redefinition of
the bulk’s mass parameter m2. Indeed, redefining this parameter in the AdS bulk action
simply as:

m2 → m2 + δm2 (4.50)

where the counterterm is expected to be of order δm2 = O(λ2) adds, up to order
λ3, a new counterterm interaction to the holographic 2-point function eq. (4.48) of the
form:

〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con

= ε−
Π(κ)
ν

2νc∆

|~y1 − ~y2|2∆−Π(κ)
ν

− δm2

∫
x0=ε

dd+1x
√
g K(x, ~y1)K(x, ~y2) +O(λ4)

(4.51)

This new contribution to the correlator can be solved in terms of the D-function
eq. (A.43):
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− δm2

∫
x0=ε

dd+1x
√
g K(x, ~y1)K(x, ~y2) =

2νc∆

|~y1 − ~y2|2∆

δm2

ν
ln
( ε

|~y1 − ~y2|

)
(4.52)

which ultimately results in:

〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con

= ε
δm2−Π(κ)

ν
2νc∆

|~y1 − ~y2|2∆+
δm2−Π(κ)

ν

+O(λ4) (4.53)

Therefore, denoting the 1PI contributions Π(κ) as Π(κ) = Π∞(κ) + Π0(κ), where
all its UV-divergent terms are contained in Π∞(κ), the infinities present in the correlators
coming from the ultraviolet divergences of the loops integrals can be renormalized away
through the convenient choice of the counterterm δm2 as:

δm2 = Π∞(κ) (4.54)

resulting in the UV-renormalized holographic 2-point functions:

〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con = ε−
Π0(0)
ν

2νc∆

|~y1 − ~y2|2∆−Π0(0)
ν

+O(λ4) (4.55)

where we safely took the limit κ = 0. We are still half way in the renormalization
process as we still have to deal with the infrared divergence of the correlators. However,
noticing that it acts simply as an overall factor, this strongly suggests its renormalization
through a redefinition of the bulk field Φ(x). Indeed, redefining it in the AdS bulk action
simply as:

Φ(x)→
√
Z(λ)Φ(x) (4.56)

adds a new factor to the holographic 2-point function of the form:

〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con =
ε−

Π0(0)
ν

Z(λ)

2νc∆

|~y1 − ~y2|2∆−Π0(0)
ν

+O(λ4) (4.57)

Therefore, the infinities present in the correlators coming from the infrared diver-
gences of the loops integrals can be renormalized away through the convenient choice of
the counterterm Z(λ) as:
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Z(λ) = ε−
Π0(0)
ν = 1− Π0(0)

ν
ln (ε) +O(λ4) (4.58)

resulting in both IR and UV renormalized holographic 2-point functions:

〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con =
2νc∆

|~y1 − ~y2|2∆−Π0(0)
ν

+O(λ4) (4.59)

where the limits ε = κ = 0 have been taken and where Π0(0) denote the UV-finite
part of the 1PI contributions Π(κ). Since for d < 3 the quantity Π(κ) is already UV-finite,
this implies that in these cases Π0(κ) = Π(κ).

4.1.7 3-Point Function

The regularized holographic 3-point functions dual to a Φ3 self-interacting theory on AdS
are given by:

〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT =〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con =

− λ
∫
K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)

− λ3

2

∫
ε

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)K(x2, ~y3)G2
κ(x1, x3)Gκ(x3, x2)× 3

− λ3

∫
ε

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)K(x3, ~y3)Gκ(x1, x2)Gκ(x2, x3)Gκ(x3, x1)

+O(λ4) (4.60)

from where we see the quantum corrections they receive coming from the loop
integrals:

I1(~y1, ~y2, ~y3) =− λ3

2

∫
ε

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)K(x2, ~y3)G2
κ(x1, x3)Gκ(x3, x2)

+ (~y1 ↔ ~y2) + (~y1 ↔ ~y3) (4.61)

I2(~y1, ~y2, ~y3) = −λ3

∫
ε

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)K(x3, ~y3)Gκ(x1, x2)Gκ(x2, x3)Gκ(x3, x1)

(4.62)

In order to compute the complete 3-point function up to this order in the expansion
of λ, we will proceed then to compute these quantities. We will start by studying I1,
leaving I2 for last.
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The Reducible ”Eye” Diagram

~y1 ~y2

~y3

Figure 4.2: Pictorial representation of the reducible ”eye” diagram.

In terms of the unnormalized bulk-boundary propagator we can rewrite the loop
integral I1 (which we will refer to it as the reducible ”eye” diagram) as:

I1(~y1, ~y2, ~y3) =− λ3c3
∆

2

∫
x2,0=ε

dd+1x2
√
g K̃∆(x2, ~y2)K̃∆(x2, ~y3)

∫
x3,0=ε

dd+1x3
√
g Gκ(x3, x2)

×
∫
x1,0=ε

dd+1x1
√
g G2

κ(x3, x1)K̃∆(x1, ~y1) + (~y1 ↔ ~y2) + (~y1 ↔ ~y3)

(4.63)

Continuing in the same line we have followed so far for the integrals that we have
stumble upon, we will try to solve these that are present in eq. (4.63) one by one hoping
that every resulting integral from this iteration will be familiar to us, which as we will
see will indeed be the case. We will start this study by noticing that the x1 integral is
nothing but the IR-convergent x2 integral that we just faced for the 2-point function, eq.
(4.39). Therefore, safely taking ε = 0 in this integral and replacing its known result, we
find that I1 reduces to:

I1(~y1, ~y2, ~y3) =− λ3c3
∆CG2K(κ)

2

∫
x2,0=ε

dd+1x2
√
g K̃∆(x2, ~y2)K̃∆(x2, ~y3)

×
∫
x3,0=ε

dd+1x3
√
g Gκ(x2, x3)K̃∆(x3, ~y1) + (~y1 ↔ ~y2) + (~y1 ↔ ~y3)

(4.64)

The resulting integral in x3, as it was discussed in the last section for the ”eye”
diagram of the 2-point function and also as it is discussed in detail in section B.5 of
Appendix B, a simple power counting suggests that, if it were not for the ε-regulator, it
would be logarithmically divergent in the lower limit of integration of the radial coordinate
x3,0. Precisely the role of this regulator is not only to tame this divergence but also to
capture the correct behavior of the integral hidden in it. The complete study of the x3

integral can be found in the section of the appendix mentioned above, concluding in its
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value in eq. (B.44). Using this value then in our present case we find that I1 further
reduces to:

I1(~y1, ~y2, ~y3) =λc3
∆

Π(κ)

2ν

∫
dd+1x1

√
g K̃∆(x1, ~y1) ln

(
εK̃(x1, ~y1)

)
K̃∆(x1, ~y2)K̃∆(x1, ~y3)

+ (~y1 ↔ ~y2) + (~y1 ↔ ~y3) (4.65)

where we wrote the constant factors in terms of Π(κ) (eq. (4.42)), called the inte-
grated variable x2 → x1, and performed a simple power counting in the radial coordinate
x1,0 as it approaches the boundaries, realizing that the integral is IR-convergent and there-
fore allowing us to simply take the regulator ε equal to 0. As we will see shortly, instead
of trying to compute this integral it will turn out to be much simpler to keep it in this
form for now, since later when grouping it with the other contributions to the 3-point
function it will result in a natural factorization into a known integral. Let us proceed
then to study the second loop contribution, I2.

The ”O” Diagram

~y1 ~y2

~y3

Figure 4.3: Pictorial representation of the ”O” diagram.

In terms of the unnormalized bulk-boundary propagator we can rewrite the loop
integral I2 (which we will refer to it as the ”O” diagram) as:

I2(~y1, ~y2, ~y3) = −λ3c3
∆

∫
ε

∫
ε

∫
ε

K̃∆(x1, ~y1)K̃∆(x2, ~y2)K̃∆(x3, ~y3)Gκ(x1, x2)Gκ(x2, x3)Gκ(x3, x1)

(4.66)

Unfortunately, the integration formulas developed in this work do not allow us
to compute integrals involving more than one bulk-bulk propagator being evaluated at
different points, however this does not stop us from studying the structure of this quantity
through AdS isometries transformations as we did for the integral

∫
G2K in eq. (4.32).

Indeed, this can be achieved by first noticing that a simple power counting in the radial
coordinates suggests that the ”O” diagram is IR-convergent allowing us to compute the
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integrals up to xi,0 = 0, fact which further allows us to extract all the external dependence
from the integrals through the sequence of translation, inversion, translation and rescaling:

∫ ∫ ∫
K̃∆(x1, ~y1)K̃∆(x2, ~y2)K̃∆(x3, ~y3)Gκ(x1, x2)Gκ(x2, x3)Gκ(x3, x1)

=

∫ ∫ ∫
K̃∆(x1, ~y13)K̃∆(x2, ~y23)K̃∆(x3,~0)Gκ(x1, x2)Gκ(x2, x3)Gκ(x3, x1)

= | ~y13
′|2∆| ~y23

′|2∆

∫ ∫ ∫
K̃∆(x1, ~y13

′)K̃∆(x2, ~y23
′)x∆

3,0Gκ(x1, x2)Gκ(x2, x3)Gκ(x3, x1)

= | ~y13
′|2∆| ~y23

′|2∆

∫ ∫ ∫
K̃∆(x1, ~y13

′ − ~y23
′)K̃∆(x2,~0)x∆

3,0Gκ(x1, x2)Gκ(x2, x3)Gκ(x3, x1)

=
| ~y13

′|2∆| ~y23
′|2∆

| ~y13
′ − ~y23

′|∆

∫ ∫ ∫
K̃∆(x1, n̂)K̃∆(x2,~0)x∆

3,0Gκ(x1, x2)Gκ(x2, x3)Gκ(x3, x1)

=
1

| ~y12|∆| ~y23|∆| ~y31|∆

∫ ∫ ∫
K̃∆(x1, n̂)K̃∆(x2,~0)x∆

3,0Gκ(x1, x2)Gκ(x2, x3)Gκ(x3, x1)

(4.67)

where, using the invariance of the AdS measure and the bulk-bulk propagator
and the transformation rules of the bulk-boundary propagator, in the first equality we
performed the translations xi → xi+ ~y3, in the second equality we performed the inversions

xµi →
xµi
x2
i

and defined ~yij
′ =

~yij
| ~yij |2 , in the third equality we performed the translations

xi → xi + ~y23
′, in the fourth equality we performed the rescaling xi → | ~y13

′ − ~y23
′|xi and

defined the unit vector n̂ ≡ ~y13
′− ~y23

′

| ~y13
′− ~y23

′| , and in the final equality we wrote the external

points in terms of the originals. This result is noteworthy, it is telling us that the ”O”
diagram has exactly the conformal form expected for contributions to the 3-point function
of a CFT, where all its possible UV-divergence coming from the integrals is contained in
its overall factor. In fact, for the upcoming calculations it will be useful to write the
conformal dependence of the diagram in terms of the D-function eq. (A.21):

1

| ~y12|∆| ~y23|∆| ~y31|∆
=

2

π
d
2

Γ(∆)3

Γ(3∆−d
2

)Γ(∆
2

)3
D∆∆∆(~y1, ~y2, ~y3) (4.68)

which allows us to write the loop integral more compactly:

∫ ∫ ∫
K̃∆(x1, ~y1)K̃∆(x2, ~y2)K̃∆(x3, ~y3)Gκ(x1, x2)Gκ(x2, x3)Gκ(x3, x1)

=
2

π
d
2

Γ(∆)3

Γ(3∆−d
2

)Γ(∆
2

)3
D∆∆∆

∫ ∫ ∫
K̃∆(x1, n̂)K̃∆(x2,~0)x∆

3,0Gκ(x1, x2)Gκ(x2, x3)Gκ(x3, x1)

≡ CGGG(κ)D∆∆∆(~y1, ~y2, ~y3) (4.69)

where in the second line we denoted all the constant factors simply as CGGG(κ).
Finally then, with the result of the integrals written in this form, the complete ”O”
diagram I2 can be expressed as:
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I2(~y1, ~y2, ~y3) = −λ3c3
∆CGGG(κ)D∆∆∆(~y1, ~y2, ~y3) (4.70)

Next we will see how these loops contributions to the 3-point function, I1 and I2,
can be understood as the expansion of not any conformal anomaly, but to the exact same
anomaly dictated by the 2-point function, where in the present case the effective coupling
constant also receives a correction. This realization will provide us with a natural and
consistent renormalization scheme of both IR and UV divergences for all the holographic
n-point functions, equivalent to those schemes used in ordinary QFTs.

Correlator Renormalization

Replacing the results just found then for the reducible ”eye” diagram and the ”O” diagram
back into the holographic 3-point functions, we find that they can be written as:

〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT = 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con

= −λc3
∆

∫
dd+1x1

√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2)K̃∆(x1, ~y3)

+ λc3
∆

Π(κ)

2ν

∫
dd+1x1

√
g K̃∆(x1, ~y1) ln

(
εK̃(x1, ~y1)

)
K̃∆(x1, ~y2)K̃∆(x1, ~y3)

+ (~y1 ↔ ~y2) + (~y1 ↔ ~y3)− λ3c3
∆CGGG(κ)D∆∆∆(~y1, ~y2, ~y3) +O(λ4)

(4.71)

Now, up to this same order in the coupling constant, it is easy to see that the
tree-level term together with the reducible ”eye” diagrams can be factorized into a known
integral by realizing that they can be written in the form:

− λc3
∆

∫
dd+1x1

√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2)K̃∆(x1, ~y3)

+ λc3
∆

Π(κ)

2ν

∫
dd+1x1

√
g K̃∆(x1, ~y1) ln

(
εK̃(x1, ~y1)

)
K̃∆(x1, ~y2)K̃∆(x1, ~y3)

+ (~y1 ↔ ~y2) + (~y1 ↔ ~y3)

= ε−
3Π(κ)

2ν ×−λc3
∆D∆−Π(κ)

2ν
∆−Π(κ)

2ν
∆−Π(κ)

2ν

(~y1, ~y2, ~y3) +O(λ4) (4.72)

where we wrote the resulting integral in terms of the D-function. This result allows
us to express the 3-point correlators in terms of these functions as:

〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT =〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con

=ε−
3Π(κ)

2ν ×−λc3
∆D∆−Π(κ)

2ν
∆−Π(κ)

2ν
∆−Π(κ)

2ν

(~y1, ~y2, ~y3)

− λ3c3
∆CGGG(κ)D∆∆∆(~y1, ~y2, ~y3) +O(λ4) (4.73)
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With the correlators written in this form, it is direct to see what are the effects of
the quantum corrections coming from the off-shell part of the AdS path integral to the
3-point functions found previously under the classical approximation of the AdS/CFT
correspondence. Indeed, up to order λ4 in the coupling constant, they contribute with
an overall rescaling to the correlator along with a shift in its scaling dimension, just like
for the 2-point functions, with the difference that in the current case the effective self-
interacting coupling constant between the bulk fields also receives a correction coming
from the ”O” diagram. What is remarkable however about eq. (4.73) is that the resulting
rescaling and anomalous dimension of the 3-point functions are exactly the same as those
dictated by the 2-point function! This fact implies that the very same redefinitions of the
bulk’s parameters done for the 2-point function not only have the effect of renormalizing
the divergences present there, but also for the divergences present in the 3-point function,
where now a redefinition of the coupling constant λ is also needed. To see this, consider
a redefinition of the bulk’s self-interacting coupling constant λ in the AdS bulk action of
the form:

λ→ λ+ δλ (4.74)

where the counterterm is expected to be of order δλ = O(λ3). This redefinition of
λ adds, up to order λ3, a new counterterm interaction to the holographic 3-point function
eq. (4.73) of the form:

〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT =〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con

=ε−
3Π(κ)

2ν ×−λc3
∆D∆−Π(κ)

2ν
∆−Π(κ)

2ν
∆−Π(κ)

2ν

(~y1, ~y2, ~y3)

−
[
δλ+ λ3CGGG(κ)

]
c3

∆D∆∆∆(~y1, ~y2, ~y3) +O(λ4) (4.75)

Therefore, denoting the constant CGGG(κ) as CGGG(κ) = C∞GGG(κ) + C0
GGG(κ),

where all its UV-divergent terms are contained in C∞GGG(κ), the infinities present in the
correlators coming from the ultraviolet divergence of this quantity can be renormalized
away through the convenient choice of the counterterm δλ as:

δλ = −λ3C∞GGG(κ) (4.76)

resulting in the partially renormalized holographic 3-point functions:

〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT =〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con

=ε−
3Π(κ)

2ν ×−λc3
∆D∆−Π(κ)

2ν
∆−Π(κ)

2ν
∆−Π(κ)

2ν

(~y1, ~y2, ~y3)

− λ3c3
∆C

0
GGG(κ)D∆∆∆(~y1, ~y2, ~y3) +O(λ4) (4.77)
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We are not done with the renormalization process as we still have to deal with the
other divergences of the correlators. However, as we already anticipated, the very same
redefinitions for the bulk’s parameters introduced in the study of the 2-point function
exactly renormalize the divergences present in the current case for the 3-point function.
Take for example the divergent anomalous dimension. The redefinition of the bulk’s mass
parameter m2 as m2 + δm2 in the AdS bulk action (where δm2 = O(λ2)) adds, up to
order λ3, new counterterms interactions to the holographic 3-point function of the form:

〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT, 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con

→ 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT, 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con

+ λδm2

∫
ε

∫
ε

K(x1, ~y1)G(x1, x2)K(x2, ~y2)K(x2, ~y3)

+ (~y1 ↔ ~y2) + (~y1 ↔ ~y3) +O(λ4) (4.78)

But notice that these new contributions to the correlators have exactly the same
form as the reducible ”eye” diagrams, where the coefficient Π(κ) has been replaced by
−δm2. This implies that considering such counterterm interactions coming from the re-
definition of m2 in a earlier step in the computation of the 3-point function, both contri-
butions can be exactly factorized resulting for the current expressions in the replacement
of Π(κ) → Π(κ) − δm2. Therefore, the exact same choice for the counterterm δm2 as
δm2 = Π∞(κ) made in the renormalization of the 2-point function also renormalizes the
UV-divergences of the anomalous dimension present in the 3-point function, resulting in
the UV-renormalized correlators:

〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT =〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con

=ε−
3Π0(0)

2ν ×−λc3
∆D∆−Π0(0)

2ν
∆−Π0(0)

2ν
∆−Π0(0)

2ν

(~y1, ~y2, ~y3)

− λ3c3
∆C

0
GGG(0)D∆∆∆(~y1, ~y2, ~y3) +O(λ4) (4.79)

where we safely took κ = 0. Finally, the redefinition of the bulk field Φ(x) as
Φ(x)→

√
Z(λ)Φ(x) in the AdS bulk action adds a new factor to the holographic 3-point

function of the form:

〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT =〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con

=
ε−

3Π0(0)
2ν

Z(λ)
3
2

×−λc3
∆D∆−Π0(0)

2ν
∆−Π0(0)

2ν
∆−Π0(0)

2ν

(~y1, ~y2, ~y3)

− λ3c3
∆C

0
GGG(0)D∆∆∆(~y1, ~y2, ~y3) +O(λ4) (4.80)

where in the last term we used that Z(λ) = 1 + O(λ2), ignoring contributions of
the order λ4. With the correlator written in this form, it is direct to see that the exact
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same choice for the counterterm Z(λ) as Z(λ) = ε−
Π0(0)
ν made in the renormalization of

the 2-point functions also renormalizes the IR-divergence of the overall rescaling of the
3-point function, resulting in both IR and UV renormalized holographic 3-point functions:

〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT =〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con

=− λc3
∆D∆−Π0(0)

2ν
∆−Π0(0)

2ν
∆−Π0(0)

2ν

(~y1, ~y2, ~y3)

− λ3c3
∆C

0
GGG(0)D∆∆∆(~y1, ~y2, ~y3) +O(λ4) (4.81)

where the limits ε = κ = 0 have been taken. The complete study of these type
of D-functions can be found in section A.2 of Appendix A, concluding in its value in eq.
(A.21). Using this formula then in our present case we find that the explicit form of the
renormalized 3-point functions can be expressed as:

〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT =〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con

= −λc3
∆

π
d
2

2

Γ(3∆−d
2
− 3Π0(0)

4ν
)

Γ(∆− Π0(0)
2ν

)3

Γ(∆
2
− Π0(0)

4ν
)3

|~y1 − ~y2|∆−
Π0(0)

2ν |~y2 − ~y3|∆−
Π0(0)

2ν |~y3 − ~y1|∆−
Π0(0)

2ν

− λ3c3
∆C

0
GGG(0)

π
d
2

2

Γ(3∆−d
2

)

Γ(∆)3

Γ(∆
2

)3

|~y1 − ~y2|∆|~y2 − ~y3|∆|~y3 − ~y1|∆
+O(λ4)

(4.82)

where the coefficients Π0(0) and C0
GGG(0) denote the UV-finite parts of the 1PI

contributions Π(κ) and the ”O” diagram, respectively.

4.1.8 4-Point Function

The regularized holographic 4-point functions dual to a Φ3 self-interacting theory on AdS
are given by:

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT =
2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

+ λ2

∫ ∫
K(x1, ~y1)K(x1, ~y2)G(x1, x2)K(x2, ~y3)K(x2, ~y4)× 3

+
2νc∆

|~y1 − ~y2|2∆

λ2

2

∫
ε

∫
ε

K(x1, ~y3)K(x2, ~y4)G2
κ(x1, x2)× 6 +O(λ4)

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con =

λ2

∫ ∫
K(x1, ~y1)K(x1, ~y2)G(x1, x2)K(x2, ~y3)K(x2, ~y4)× 3 +O(λ4)

(4.83)
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from where we see the quantum corrections they receive coming from the loop
integral:

I(~y1, ~y2, ~y3, ~y4) =
2νc∆

|~y1 − ~y2|2∆

λ2

2

∫
x1,0=ε

dd+1x1
√
g

∫
x2,0=ε

dd+1x2
√
g K(x1, ~y3)K(x2, ~y4)G2

κ(x1, x2)

+ (~y1 ↔ ~y3) + (~y1 ↔ ~y4) + (~y2 ↔ ~y3) + (~y2 ↔ ~y4) + (~y1 ↔ ~y3, ~y2 ↔ ~y4)
(4.84)

In order to compute the complete 4-point function up to this order in the expansion
of λ, we will proceed then to compute this quantity.

The Disconnected ”Eye” Diagram

~y1

~y3

~y2

~y4

Figure 4.4: Pictorial representation of the disconnected ”eye” diagram.

The integrals present in this contribution (which we will refer to it as the discon-
nected ”eye” diagram) are nothing but the ”eye” diagram that we just faced for the 2-point
function, eq. (4.45). Therefore, replacing its known result we find that the disconnected
”eye” diagrams in the 4-point function can be written as:

I(~y1, ~y2, ~y3, ~y4) =− 2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆

Π(κ)

ν
ln
( ε

|~y3 − ~y4|

)
+ (~y1 ↔ ~y3)

+ (~y1 ↔ ~y4) + (~y2 ↔ ~y3) + (~y2 ↔ ~y4) + (~y1 ↔ ~y3, ~y2 ↔ ~y4) (4.85)

As in the previous cases, the presence of the logarithm in this result seems to break
the conformal structure expected for contributions to the 4-point function of a CFT,
however as we will see next when we consider the complete correlator, we will realize that
the result just found corresponds to the expansion of not any conformal anomaly, but
to the exact same anomaly dictated by the 2-point function, realization which will result
in a natural and consistent renormalization scheme of both IR and UV divergences for
the holographic 2-, 3- and 4-point functions (and thus expected to hold for higher point
functions) equivalent to those schemes used in ordinary QFTs.
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Correlator Renormalization

Replacing the result just found then for the disconnected ”eye” diagram back into the
holographic 4-point functions, we find that they can be written as:

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT =
2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

+ λ2

∫ ∫
K(x1, ~y1)K(x1, ~y2)G(x1, x2)K(x2, ~y3)K(x2, ~y4)× 3

− 2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆

Π(κ)

ν
ln
( ε

|~y3 − ~y4|

)
+ (~y1 ↔ ~y3)

+ (~y1 ↔ ~y4) + (~y2 ↔ ~y3) + (~y2 ↔ ~y4) + (~y1 ↔ ~y3, ~y2 ↔ ~y4)

+O(λ4)

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con =

λ2

∫ ∫
K(x1, ~y1)K(x1, ~y2)G(x1, x2)K(x2, ~y3)K(x2, ~y4)× 3 +O(λ4)

(4.86)

Now, up to this same order in the coupling constant, it is easy to see that the
tree-level terms together with the disconnected ”eye” diagrams can be factorized into the
form:

2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)− 2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆

Π(κ)

ν
ln
( ε

|~y3 − ~y4|

)
+ (~y1 ↔ ~y3) + (~y1 ↔ ~y4) + (~y2 ↔ ~y3) + (~y2 ↔ ~y4) + (~y1 ↔ ~y3, ~y2 ↔ ~y4)

= ε−
2Π(κ)
ν × 2νc∆

|~y1 − ~y2|2∆−Π(κ)
ν

2νc∆

|~y3 − ~y4|2∆−Π(κ)
ν

+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4) +O(λ4)

(4.87)

Notice that these contributions, apart from the IR rescaling, are nothing but the
derivation of eq. (3.70) where the scaling dimension ∆ has been replaced by ∆ − Π(κ)

2ν
.

Therefore, following the same steps shown there, we can rewrite eq. (4.87) in the form of:

2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)− 2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆

Π(κ)

ν
ln
( ε

|~y3 − ~y4|

)
+ (~y1 ↔ ~y3) + (~y1 ↔ ~y4) + (~y2 ↔ ~y3) + (~y2 ↔ ~y4) + (~y1 ↔ ~y3, ~y2 ↔ ~y4)
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With these contributions to the 4-point functions written in this form, along with
the known result for the connected scalar exchange diagram eq. (3.112), we can express
the correlators as:
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With the correlators written in this form, it is direct to see what are the effects
of the quantum corrections coming from the off-shell part of the AdS path integral to
the 4-point function found previously under the classical approximation of the AdS/CFT
correspondence. Indeed, up to order λ4 in the coupling constant, they contribute with an
overall rescaling to the correlator along with a shift in its scaling dimension, just like for
the 2-point functions. What is remarkable however about eq. (4.89) is that the resulting
rescaling and anomalous dimension of the 4-point functions are exactly the same as those
dictated by the 2-point function! This fact implies that the very same redefinition of the
bulk’s parameters done for the 2-point function not only have the effect of renormalizing
the divergences present there, but also for the divergences present in the 4-point function.
Take for example the divergent anomalous dimension. The redefinition of the bulk’s mass
parameter m2 as m2 + δm2 in the AdS bulk action (where δm2 = O(λ2)) adds, up to
order λ3, new counterterms interactions to the holographic 4-point functions of the form:
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〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con → 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con +O(λ4)
(4.90)

But notice that these new contributions to the correlators have exactly the same
form as the disconnected ”eye” diagrams, where the coefficient Π(κ) has been replaced
by −δm2. This implies that considering such counterterm interactions coming from the
redefinition of m2 in a earlier step in the computation of the 4-point function, both contri-
butions can be exactly factorized resulting for the current expressions in the replacement
of Π(κ) → Π(κ) − δm2. Therefore, the exact same choice for the counterterm δm2 as
δm2 = Π∞(κ) made in the renormalization of the 2-point function also renormalizes the
UV-divergences of the anomalous dimension present in the 4-point function, resulting in
the UV-renormalized correlators:
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where we safely took κ = 0. Finally, the redefinition of the bulk field Φ(x) as√
Z(λ)Φ(x) in the AdS bulk action adds a new factor to the holographic 4-point functions

of the form:
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where in the last terms of both correlators we used that Z(λ) = 1+O(λ2), ignoring
contributions of the order λ4. With the correlators written in this form, it is direct to

see that the exact same choice for the counterterm Z(λ) as Z(λ) = ε−
Π0(0)
ν made in the

renormalization of the 2-point function also renormalizes the IR-divergence of the overall
rescaling of the 4-point function, resulting in both IR and UV renormalized holographic
4-point functions:
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where we safely took ε = κ = 0. This result concludes the renormalization of the
holographic correlators coming from a Φ3 theory on AdS.

4.1.9 Renormalized Correlators

The objective of this section is to summarize the key points of the recent renormalization
study of the quantum corrected holographic correlators resulting from the consideration
of a self-interacting scalar Φ3 theory on a fixed AdS background through the use of the
AdS/CFT correspondence. As we saw, these correlators were infrared divergent as their
different contributions approached the conformal boundary of the AdS space, and also
ultraviolet divergent as their loops integrals involving the bulk-bulk propagator got inte-
grated at coincident points. In order to compute finite and predictive correlators, these
divergences demanded not only a delicate regularization scheme but also a delicate renor-
malization scheme, in order to absorb in a sensitive way the corresponding infinities.
The infrared divergences present at the on-shell level of the AdS path integral were both
regulated and renormalized through the holographic renormalization procedure with the
addition of a covariant boundary term in the AdS action. This procedure for the infrared
divergences present at the off-shell level of the AdS path integral naturally translated into
their regularization by simply solving the loops contributions to the correlators up to the
same radial regulator introduced in the holographic renormalization. While for the ultra-
violet divergences present at the off-shell level of the AdS path integral, a point-splitting
approach was taken, resulting in regularized bulk-bulk propagators which conserved their
symmetry under AdS transformations. By explicitly computing these regularized corre-
lators, their nice form allowed us to renormalize them in exactly the same spirit as it is
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done for ordinary QFTs, that is, by understating the parameters of the theory, Φ(x), m2

and λ, not as physical constants but bare quantities, opening the possibility of a renor-
malization scheme through their definition. This turned out to be indeed the case, where
the redefinition of these parameters in the AdS bulk action as:

Φ(x)→
√
Z(λ)Φ(x), m2 → m2 + δm2, λ→ λ+ δλ (4.94)

exactly renormalized every single divergence present in the holographic n-point
functions through the convenient choice of the counterterms Z(λ), δm2 and δλ as:

Z(λ) = ε−
Π0(0)
ν , δm2 = Π∞(κ), δλ = −λ3C∞GGG(κ) (4.95)

where ε and κ are the IR and UV regulators introduced in the regularization
scheme, Π∞(κ) and Π0(0) are the UV-divergent and UV-convergent parts of the 1PI
contributions Π(κ):
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(4.96)

where the coefficient a
(2)
k was defined in eq. (4.36), and where C∞GGG(κ) is the

UV-divergent part of CGGG(κ) coming from the ”O” diagram in the 3-point function:

CGGG(κ) =
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(4.97)

where n̂ is a unit vector and the notation
∫ ∫ ∫

≡
∫
dd+1x1

√
g
∫
dd+1x2

√
g
∫
dd+1x3

√
g

is understood. The renormalized correlators up to order λ3 in the coupling constant re-
sulting from the redefinition of the bulk’s theory parameters, along with their convenient
choice for the counterterms, can be summarized into the holographic 1-, 2-, 3- and 4-point
functions:
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where C0
GGG(0) is the UV-convergent part of eq. (4.97). The form of these cor-

relators are exactly the expected for a conformal theory as it is dictated by eq. (2.41)
up to conformal anomalies, where their overall factors, scaling dimension and effective
coupling constant receive small corrections coming from the 1PI loop diagrams resulting
from a perturbatively approach in the parameter λ. These results, while showing the clear
role of the quantum corrections to the holographic correlators, also greatly motivate and
contribute to the belief of the validity of the AdS/CFT conjecture.
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4.2 Φ4 Theory

4.2.1 Semiclassical Approximation

We have reviewed in detail how starting from a Φ3 self-interacting theory on a fixed AdS
background we can obtain the corresponding renormalized dual CFT correlators, through
the use of the AdS/CFT correspondence at its full quantum nature. Continuing in the
line of complicating the current picture with the intention to not only construct more
interesting theories but also to further test the validity of the AdS/CFT correspondence,
we will study another self-interacting scalar theory on the AdS side. Consider now the Φ4

theory defined in eq. (3.116), together with its holographic renormalization eq. (3.61):

ZAdS[ϕ0] =

∫
DΦ e−SAdS[Φ]−

∫
ddx
√
γ B(Φ(x))|x0=0 (4.99)

where SAdS[Φ] is the Φ4 action:

SAdS[Φ] =

∫
dd+1x

√
g
[1

2
gµν∂µΦ(x)∂νΦ(x) +

1

2
m2Φ2(x) +

λ

4!
Φ4(x)

]
(4.100)

and where B(Φ(x)) is the boundary term eq. (3.63), counterterm responsible for
the renormalization of the infrared divergences coming from the on-shell part of the path
integral:

B
(
Φ(x)

)
=

1

2
(d−∆)Φ2(x) + ν ln (x0)CνΦ(x)�ν

γΦ(x) +
1

2
CνΦ(x)�ν

γΦ(x)

+
1

4(ν − 1)
Φ(x)�γΦ(x) + · · · (4.101)

where the triple dots represent higher order derivative terms. We will proceed then
in the same way as we did before for the saddle point approximation of the correspondence,
looking at quantum fluctuations h(x) around the classical solution φ(x) of the AdS action
through the change of variable Φ(x) = φ(x) + h(x), but now keeping track of every
quantity resulting from this separation. Under this change of variable the AdS path
integral transforms as:

ZAdS[ϕ0] = e−
∫
ddx
√
γ B(φ(x))|x0=0

∫
Dh e−SAdS[φ+h] (4.102)

where we used that the on-shell field is functionally fixed, i.e., Dφ = 0, and postu-
lated that the quantum fluctuations of the bulk field are only contained in the interior of
the AdS space, vanishing sufficiently fast at its boundaries. In other words, all the non-
normalizable behavior of Φ(x) is contained in φ(x). This assumption for the quantum
fluctuations further allows us to write the resulting AdS action as:
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SAdS[φ+ h] = SAdS[φ] + SAdS[h] + λ

∫
dd+1x

√
g
[1

6
φ(x)h3(x) +

1

4
φ2(x)h2(x)

]
(4.103)

where we integrated by parts dropping the quantum fluctuations h(x) being eval-
uated at the boundaries of the AdS space, used the classical equation satisfied by φ(x)
and finally identified the original form of the AdS action now for the different fields. We
see that the Φ4 AdS action doesn’t act as a linear functional under the field’s change of
variable (SAdS[φ + h] 6= SAdS[φ] + SAdS[h]) due to the presence of the last term in eq.
(4.103) coming from the self-interaction. This quantity, where the on-shell part of the
bulk field is directly coupled to its quantum fluctuations, can be seen as a deformation
to the linearity of the action and it will be precisely the responsible for the quantum
corrections to the classical correlators found in the previous chapter. Indeed, replacing
eq. (4.103) back into eq. (4.102), the resulting Φ4 AdS path integral under the change of
variable Φ(x) = φ(x) + h(x) is:

ZAdS[ϕ0] = e
−SAdS[φ]−

∫
ddx
√
γ B(φ(x))

∣∣
x0=0

∫
Dh e−SAdS[h]−λ

∫
dd+1x

√
g
[

1
6
φ(x)h3(x)+ 1

4
φ2(x)h2(x)

]
(4.104)

and if we think of the parameter λ, which mediates the strength of the self-
interaction, as being in some sense ”small”, we can resort to perturbation theory solving
for the form of the AdS path integral as an expansion in this parameter:

ZAdS[ϕ0] =e
−SAdS[φ]−

∫
ddx
√
γ B(φ(x))

∣∣
x0=0

[∫
Dh e−SAdS[h] − λ

6

∫
φ(x1)

∫
Dh h3(x1)e−SAdS[h]

− λ

4

∫
φ2(x1)

∫
Dh h2(x1)e−SAdS[h]

+
λ2

72

∫ ∫
φ(x1)φ(x2)

∫
Dh h3(x1)h3(x2)e−SAdS[h]

+
λ2

24

∫ ∫
φ(x1)φ2(x2)

∫
Dh h3(x1)h2(x2)e−SAdS[h]

+
λ2

32

∫ ∫
φ2(x1)φ2(x2)

∫
Dh h2(x1)h2(x2)e−SAdS[h]

]
+O(λ3) (4.105)

where we expanded the deformation term up to order λ2 and separated the integral
in h into the 6 resulting terms, defining in the process

∫ ∫
· · · ≡

∫
dd+1x1

√
g
∫
dd+1x2

√
g · · ·

to keep the notation short. Note that in this expansion we come across path integrals
in the field h(x) of the form

∫
Dh h(x1) · · ·h(xn)e−SAdS[h]. Since this field h(x), unlike

the complete bulk field Φ(x), is thought to be perfectly regular at the boundaries of the
current space under consideration, these resulting path integrals can be solved in exactly
the same way as the ones encountered in ordinary quantum field theories. This realiza-
tion motivated us to define the ordinary n-point functions in the bulk Gn(x1, . . . , xn) (eq.
(4.8)) where these quantities are expected to be solved, again, as an expansion in λ with
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each resulting term involving only the bulk-bulk propagator. In terms of these functions
each path integral in the field h(x) present in eq. (4.105) can be solved directly obtaining,
up to order λ2 in the coupling constant, the normalized AdS path integral:

ZAdS[ϕ0]

ZAdS[ϕ0 = 0]
=e
−SAdS[φ]−

∫
ddx
√
γ B(φ(x))

∣∣
x0=0

[
1− λ

6

∫
φ(x1)G3(x1, x1, x1)

− λ

4

∫
φ2(x1)G2(x1, x1) +

λ2

72

∫ ∫
φ(x1)φ(x2)G6(x1, x1, x1, x2, x2, x2)

+
λ2

24

∫ ∫
φ(x1)φ2(x2)G5(x1, x1, x1, x2, x2)

+
λ2

32

∫ ∫
φ2(x1)φ2(x2)G4(x1, x1, x2, x2)

]
+O(λ3) (4.106)

where, since φ(x)
∣∣
ϕ0=0

= 0 (eq. (3.124)), we used that ZAdS[ϕ0 = 0] =
∫
Dh e−SAdS[h].

Now, as we just said, each one of these n-point functions in the bulk Gn(x1, . . . , xn) can
be solved in exactly the same way as in ordinary QFT, this is, using the same regular
methods of adding an external source coupled to the field in the generating functional,
then performing the resulting integral with the use again of perturbation theory and fi-
nally computing the desired n-point function through the corresponding derivatives of
the source, which at the end of the calculation are set to 0. This process for the par-
ticular n-point functions present in eq. (4.106) results in, first for G3(x1, x1, x1) and
G5(x1, x1, x1, x2, x2) at all orders in λ:

G3(x1, x1, x1) = G5(x1, x1, x1, x2, x2) = 0 (4.107)

then for G2(x1, x1) up to order λ1:

G2(x1, x1) = G(x1, x1)− λ

2

∫
G2(x1, x2)G(x2, x2) +O(λ2) (4.108)

where
∫
≡
∫
dd+1x2

√
g, then for G6(x1, x1, x1, x2, x2, x2) up to order λ0:

G6(x1, x1, x1, x2, x2, x2) = 9G(x1, x1)G(x1, x2)G(x2, x2) + 6G3(x1, x2) +O(λ) (4.109)

and finally for G4(x1, x1, x2, x2) up to order λ0:

G4(x1, x1, x2, x2) = G(x1, x1)G(x2, x2) + 2G2(x1, x2) +O(λ) (4.110)

where the quantities G(x, z) are the usual bulk-bulk propagators. These results
allow us to finally express the complete expansion of the normalized AdS path integral
up to order λ2 in the self-interacting coupling constant as:
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ZAdS[ϕ0]

ZAdS[ϕ0 = 0]
=e
−SAdS[φ]−

∫
ddx
√
γ B(φ(x))

∣∣
x0=0

[
1− λ

4

∫
φ2(x1)G(x1, x1)

+
λ2

8

∫ ∫
φ2(x1)G2(x1, x2)G(x2, x2)

+
λ2

8

∫ ∫
φ(x1)φ(x2)G(x1, x1)G(x1, x2)G(x2, x2)

+
λ2

12

∫ ∫
φ(x1)φ(x2)G3(x1, x2)

+
λ2

32

∫ ∫
φ2(x1)φ2(x2)G(x1, x1)G(x2, x2)

+
λ2

16

∫ ∫
φ2(x1)φ2(x2)G2(x1, x2)

]
+O(λ3) (4.111)

remembering that the on-shell field φ(x) in this same λ expansion is given by eq.
(3.124):

φ(x) =

∫
ddy K(x, ~y)ϕ0(~y)− λ

6

∫
dd+1x1

√
g G(x, x1)

[∫
ddy K(x1, ~y)ϕ0(~y)

]3

+O(λ2)

(4.112)

Eq. (4.111) together with eq. (4.112) give us the concrete and explicit depen-
dence of the Φ4 AdS path integral as a functional of the dual source ϕ0(~y), ready to
be differentiated with the intention to compute the quantum corrected CFT holographic
correlators.

4.2.2 Correlation Functions

Plugging the explicit form of the on-shell field φ(x) (eq. (4.112)) into the normalized AdS

path integral ZAdS[ϕ0]
ZAdS[ϕ0=0]

(eq. (4.111)) and keeping terms of order λ2, the obtention of the

holographic correlators eqs. (3.7) and (3.8) up to this order in the coupling constant is
reduced to a simple exercise of taking derivatives, where since the on-shell part of the
path integral is holographic renormalized the variation of this part is understood to be
given by eq. (3.128). The resulting quantum corrected holographic correlators from this
process for some primary scalar operator O∆(~x) of scaling dimension ∆ dual to a Φ4

self-interacting scalar field in AdSd+1 are given by:
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1-pt fn: 〈O∆(~y1)〉CFT = 〈O∆(~y1)〉CFT,con = 0

2-pt fn: 〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con =
2νc∆

|~y1 − ~y2|2∆

− λ

2

∫
K(x1, ~y1)K(x1, ~y2)G(x1, x1)

+
λ2

4

∫ ∫
K(x1, ~y1)K(x1, ~y2)G2(x1, x2)G(x2, x2)

+
λ2

6

∫ ∫
K(x1, ~y1)K(x2, ~y2)G3(x1, x2)

+
λ2

4

∫ ∫
K(x1, ~y1)K(x2, ~y2)G(x1, x1)G(x1, x2)G(x2, x2) +O(λ3)

3-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT = 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con = 0

4-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT =
2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

− λ
∫
K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)K(x1, ~y4)

+
λ2

2

∫ ∫
K(x1, ~y1)K(x2, ~y2)K(x2, ~y3)K(x2, ~y4)G(x1, x1)G(x1, x2)× 4

+
λ2

2

∫ ∫
K(x1, ~y1)K(x1, ~y2)K(x2, ~y3)K(x2, ~y4)G2(x1, x2)× 3

+
λ2

4

∫ ∫
K(x1, ~y1)K(x1, ~y2)K(x2, ~y3)K(x2, ~y4)G(x1, x1)G(x2, x2)× 3

+
2νc∆

|~y1 − ~y2|2∆

[
−λ

2

∫
K(x1, ~y3)K(x1, ~y4)G(x1, x1)

+
λ2

4

∫ ∫
K(x1, ~y3)K(x1, ~y4)G2(x1, x2)G(x2, x2)

+
λ2

6

∫ ∫
K(x1, ~y3)K(x2, ~y4)G3(x1, x2)

+
λ2

4

∫ ∫
K(x1, ~y3)K(x2, ~y4)G(x1, x1)G(x1, x2)G(x2, x2)

]
×6 +O(λ3)

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con = −λ
∫
K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)K(x1, ~y4)

+
λ2

2

∫ ∫
K(x1, ~y1)K(x2, ~y2)K(x2, ~y3)K(x2, ~y4)G(x1, x1)G(x1, x2)× 4

+
λ2

2

∫ ∫
K(x1, ~y1)K(x1, ~y2)K(x2, ~y3)K(x2, ~y4)G2(x1, x2)× 3 +O(λ3)

(4.113)

where, with the intention to keep the notation short, we defined∫ ∫
· · · ≡

∫
dd+1x1

√
g
∫
dd+1x2

√
g · · · and represented the different permutations of the

integrals as a multiplicative factor at the end of each. Notice the new contributions to the
correlators in comparison with those obtained under the classical approximation of the
AdS/CFT correspondence, eq. (3.129). Pictorially, these new terms correspond exactly to
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the loops diagrams expected from a regular QFT Φ4 self-interacting theory resulting from
a perturbative expansion in the self-interacting coupling constant, even agreeing with
the same coefficients! Since these new integrals are contributing to specific correlators
which are conjectured to be of the form dictated by eq. (2.41), the functional form of
their results is strongly conditioned purely from conformal symmetry arguments. We will
proceed then to study these quantities in detail through their explicit computation.

4.2.3 Holographic Dictionary

Before jumping straight into the calculations of the new contributions to the holographic
correlators, as a consistency check we want to see if the holographic dictionary defined
in eqs. (3.78) and (3.79), which relates the desired boundary correlators for the operator
O∆(~x) with the simple and known bulk correlators for the field Φ(x), is still valid for the
recently obtained quantum corrected 1-, 2-, 3- and 4-point functions.

As we did for the Φ3 theory case, to keep the discussion clean and short the validity
of the holographic dictionary for the present case can be argued to hold without doing
any computation through the understanding of why it holds for its classical counterpart
in the first place. In that case, under the appropriate limits the values of the bulk
tree-level n-point functions obtained from the usual Feynman rules of scalar Φ4 theories
(eq. (3.135)) matched exactly the boundary correlators obtained through the classical
approximation of the AdS/CFT correspondence (eq. (3.129)) mainly because the latter
essentially contained the same type of diagrams expected from Feynman rules as the
former, even with the same coefficients, with the exception that the external legs of
said diagrams had been replaced with bulk-boundary propagators. But this replacement
precisely matched the effective dictionary coming from the nice expansions of the bulk-
bulk propagators eqs. (3.75) and (3.76) which for the bulk correlators implied the simple
recipe ”replace external G’s with K’s”, inevitably resulting in exactly the same correlators
as those found through the classical approximation of the AdS/CFT correspondence.
These facts unequivocally led us to relate the boundary n-point functions with the bulk
n-point functions simply as the former being the extension of the internal points of the
latter to the conformal boundary of the AdS space.

Having said this, it is straightforward to see that exactly the same is happening to
the now quantum corrected boundary correlators for the operator O∆(~x) just found eq.
(4.113). Indeed, these correlators correspond exactly to the ones obtained from Feynman
rules where the external bulk-bulk propagators have been replaced with bulk-boundary
propagators, but this is precisely the effective action of the holographic dictionary, im-
plying that we can always formulate these boundary correlators as the appropriate limit
of some bulk correlators which follow the Feynman rules of a Φ4 theory. Unsurprisingly,
these bulk correlators are nothing but the correlators for the bulk field Φ, confirming in
this way for the present case the boundary/bulk n-point functions equivalence.

4.2.4 Regularization Schemes

We are one step away from fully diving into the computation of the quantum corrections
to the holographic correlators dual to a Φ4 theory on AdS. The last matter that we will
see before this, with the intention to keep these computations organized and clean, is
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the introduction of the appropriate regularization schemes that we will use in this study,
necessary for the handling of the different divergent quantities (as we will see in detail)
present in the n-point functions, eq. (4.113).

As we discussed in section 4.1.5 where we introduced the different regulators to be
used in this work, there are 2 type of divergences present in the quantum corrections to the
holographic correlators: of the type IR (infrared) coming from the different loops integrals
as their internal points xi being integrated approach the conformal boundary of the AdS
space at xi,0 = 0, and also of the type UV (ultraviolet) coming from the same loops
integrals as the bulk-bulk propagator contained in them get integrated at more closer
and closer points. We regularized the former type of divergence extending the scheme
used for the classical contributions to the correlators, which for their quantum corrections
naturally translated into simply integrating the loops up to the same radial regulator.
For the latter type of divergence we regularized it through a point-splitting approach,
where we kept the internal points of the bulk-bulk propagators from being integrated
at coincident points by a small proper distance. For the Φ3 theory these regularization
schemes not only handled the infinities satisfactorily, but also resulted in a natural and
consistent renormalization scheme identical to those used in ordinary QFTs. These facts
motivate us to treat the divergences present in the current loops integrals in exactly the
same way. Therefore, adopting the same regularization schemes as before, the resulting
holographic correlators from these procedures can be simply stated as:
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1-pt fn: 〈O∆(~y1)〉CFT = 〈O∆(~y1)〉CFT,con = 0

2-pt fn: 〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con =
2νc∆

|~y1 − ~y2|2∆

− λ

2

∫
ε

K(x1, ~y1)K(x1, ~y2)Gκ(x1, x1)

+
λ2

4

∫
ε

∫
ε

K(x1, ~y1)K(x1, ~y2)G2
κ(x1, x2)Gκ(x2, x2)

+
λ2

6

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)G3
κ(x1, x2)

+
λ2

4

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)Gκ(x1, x1)Gκ(x1, x2)Gκ(x2, x2) +O(λ3)

3-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT = 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con = 0

4-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT =
2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

− λ
∫
K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)K(x1, ~y4)

+
λ2

2

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)K(x2, ~y3)K(x2, ~y4)Gκ(x1, x1)Gκ(x1, x2)× 4

+
λ2

2

∫
ε

∫
ε

K(x1, ~y1)K(x1, ~y2)K(x2, ~y3)K(x2, ~y4)G2
κ(x1, x2)× 3

+
λ2

4

∫
ε

∫
ε

K(x1, ~y1)K(x1, ~y2)K(x2, ~y3)K(x2, ~y4)Gκ(x1, x1)Gκ(x2, x2)× 3

+
2νc∆

|~y1 − ~y2|2∆

[
−λ

2

∫
ε

K(x1, ~y3)K(x1, ~y4)Gκ(x1, x1)

+
λ2

4

∫
ε

∫
ε

K(x1, ~y3)K(x1, ~y4)G2
κ(x1, x2)Gκ(x2, x2)

+
λ2

6

∫
ε

∫
ε

K(x1, ~y3)K(x2, ~y4)G3
κ(x1, x2)

+
λ2

4

∫
ε

∫
ε

K(x1, ~y3)K(x2, ~y4)Gκ(x1, x1)Gκ(x1, x2)Gκ(x2, x2)
]
×6 +O(λ3)

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con = −λ
∫
K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)K(x1, ~y4)

+
λ2

2

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)K(x2, ~y3)K(x2, ~y4)Gκ(x1, x1)Gκ(x1, x2)× 4

+
λ2

2

∫
ε

∫
ε

K(x1, ~y1)K(x1, ~y2)K(x2, ~y3)K(x2, ~y4)G2
κ(x1, x2)× 3 +O(λ3)

(4.114)

where we IR- and UV-regularized the quantum contributions in eq. (4.113). These
are the integrals that we will finally compute, process which we will proceed to do next.
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4.2.5 2-Point Function

The regularized holographic 2-point functions dual to a Φ4 self-interacting theory on AdS
are given by:

〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con =
2νc∆

|~y1 − ~y2|2∆

− λ

2

∫
ε

K(x1, ~y1)K(x1, ~y2)Gκ(x1, x1)

+
λ2

4

∫
ε

∫
ε

K(x1, ~y1)K(x1, ~y2)G2
κ(x1, x2)Gκ(x2, x2)

+
λ2

6

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)G3
κ(x1, x2)

+
λ2

4

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)Gκ(x1, x1)Gκ(x1, x2)Gκ(x2, x2) +O(λ3)

(4.115)

from where we see the quantum corrections they receive coming from the loop
integrals:

I1(~y1, ~y2) = −λ
2

∫
ε

K(x1, ~y1)K(x1, ~y2)Gκ(x1, x1) (4.116)

I2(~y1, ~y2) =
λ2

4

∫
ε

∫
ε

K(x1, ~y1)K(x1, ~y2)G2
κ(x1, x2)Gκ(x2, x2) (4.117)

I3(~y1, ~y2) =
λ2

6

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)G3
κ(x1, x2) (4.118)

I4(~y1, ~y2) =
λ2

4

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)Gκ(x1, x1)Gκ(x1, x2)Gκ(x2, x2) (4.119)

In order to compute the complete 2-point functions up to this order in the expansion
of λ, we will proceed then to compute these quantities. We will start by studying I1, then
I2, then I3 and lastly, I4.

The ”Head” Diagram

In terms of the unnormalized bulk-boundary propagator we can rewrite the loop integral
I1 (which we will refer to it as the ”head” diagram) as:

I1(~y1, ~y2) = −λc
2
∆Gκ(1)

2

∫
x1,0=ε

dd+1x1
√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2) (4.120)
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~y1 ~y2

Figure 4.5: Pictorial representation of the ”head” diagram.

where we used that the regularized bulk-bulk propagator being evaluated at co-
incident points is just a constant: Gκ(x1, x1) = Gκ(ξ = 1) ≡ Gκ(1). As we have seen
repeatedly, the resulting integral is nothing but the D-function defined in eq. (A.38),
whose value is found to be given by eq. (A.43). Therefore, replacing its known result we
obtain that the ”head” diagram can be written as:

I1(~y1, ~y2) =
2νc∆

|~y1 − ~y2|2∆

λGκ(1)

2ν
ln
( ε

|~y1 − ~y2|

)
(4.121)

where we have written it conveniently for the upcoming study. Similarly to the
loops contributions for the 2-point functions dual to a Φ3 theory, the presence of the
logarithm in this result seems to break its expected conformal structure as it was derived
in eq. (2.41), however as we will see when we consider the complete correlator, we will
realize that the result just found has exactly the same interpretation as before, that is, the
expansion of a conformal anomaly up to this same order in the self-interacting coupling
constant.

The ”Eight” Diagram

~y1 ~y2

Figure 4.6: Pictorial representation of the ”eight” diagram.

In terms of the unnormalized bulk-boundary propagator we can rewrite the loop
integral I2 (which we will refer to it as the ”eight” diagram) as:
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I2(~y1, ~y2) =
λ2c2

∆Gκ(1)

4

∫
x1,0=ε

dd+1x1
√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2)

∫
x2,0=ε

dd+1x2
√
g G2

κ(x1, x2)

(4.122)

where we used that the regularized bulk-bulk propagator being evaluated at coin-
cident points is just a constant. As we have done for past integrals, the solving strategy
for this quantity will be brute force. We will start by first computing the x2 integral
hoping that the remaining integral in x1 will be familiar to us, which as we will see will
indeed be the case. The first question that we will be interested in answering is when in
this x2 integral we can safely take the IR-regulator ε equal to 0. The infrared convergence
region of this integral can be seen directly by studying how its integrand behaves as it
approaches the boundary of AdS. In this case, using the explicit form of the metric and
the known expansion of the bulk-bulk propagator, we obtain that:

√
g G2

κ(x1, x2) ∼
x2,0→0

x−d−1
2,0 x2∆

2,0 = x−1+2ν
2,0 (4.123)

From here we conclude that the x2 integral will be IR-convergent as long as ν ≡
∆ − d

2
is a positive number, but as it is discussed in section 3.1.4 in this work this will

always be the case, implying that we can always take in this integral ε = 0.

As we will see for every integral contributing to the holographic correlators, a
remarkable feature of them is that their general structure can be derived by simply using
AdS isometries transformations as change of variables. For the case of this x2 integral
performing the sequence of translation and rescaling, allows us to extract all the external
dependence from the integral:

∫
dd+1x2

√
g G2

κ(x1, x2) =

∫
dd+1x2

√
g G2

κ

(
(x1,0,~0), x2

)
=

∫
dd+1x2

√
g G2

κ

(
(1,~0), x2

)
= CG2(κ) (4.124)

where, using the invariance of the AdS measure and the bulk-bulk propagator,
in the first equality we performed the translation x2 → x2 + ~x1, in the second equality
we performed the rescaling x2 → x1,0x2, and in the final equality we noticed that the
remaining integral of this sequence of change of variables is just a function of the UV-
regulator κ which we simply called CG2(κ). This result is noteworthy, it is telling us
that the integral

∫
G2 is just a constant, where all the possible ultraviolet divergence

coming from the bulk-bulk propagator being evaluated at coincident points is contained
in it. In fact, notice that the power of G did not play any role in this demonstration,
which implies that this statement is true whenever the integral is IR-convergent. Doing
the same infrared convergence study as in eq. (4.123) now for a general power n of the
bulk-bulk propagator it is easy to verify that the integral will be IR-convergent whenever
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n∆− d > 0, that is, for any n > 1 or in the particular case n = 1, whenever ∆ > d. This
implies then the more general result:

∫
dd+1x2

√
g Gn

κ(x1, x2) = CGn(κ), for n > 1, or n = 1,∆ > d (4.125)

where CGn(κ) contains all the possible UV-divergence coming from the integral.
The explicit form of this quantity is obtainable through the brute force calculation of
the integral, process which will also show its ultraviolet convergence region. Let us then
proceed to do this study for the particular integral that we are interested in computing,∫
G2. For this calculation, it will turn out to be useful to use the representation eq.

(4.22) of the bulk-bulk propagator, where all its UV-divergence has been extracted out
from the hypergeometric function, which as we saw in section 4.1.6, its square can be
further expressed as in eq. (4.37). Therefore, the integral of

∫
G2 with the bulk-bulk

propagator written in this form can be expressed as:

∫
dd+1x2

√
g G2

κ(x1, x2) =
(2−∆c∆

2ν

)2
∞∑
k=0

a
(2)
k

∞∑
l=0

(d− 1)l
l!

( 1

1 + κ

)2∆+2k+2l

×
∫
dd+1x2

√
g ξ2∆+2k+2l(x1, x2)

(4.126)

The complete study of this type of integrals can be found in section B.2 of Appendix
B, concluding in its value in eq. (B.20). Using this formula then for the particular value
∆1 = 2∆ + 2k + 2l, we find that the result of the x2 integral is given by:

∫
dd+1x2

√
g G2

κ(x1, x2) =π
d+1

2

(2−∆c∆

2ν

)2
∞∑
k=0

a
(2)
k

Γ(ν + k)

Γ(∆ + 1
2

+ k)

( 1

1 + κ

)2∆+2k

× 2F1

(
d− 1, ν + k; ∆ +

1

2
+ k;

( 1

1 + κ

)2)
≡CG2(κ) (4.127)

where we identified the representation of the hypergeometric function 2F1 and
denoted the constant result of the integral simply by CG2(κ). This result for the

∫
G2

integral obtained from its explicit computation has precisely the structure expected from
AdS isometry arguments eq. (4.125), where in this case the value of the constant CG2(κ)
is found to be:

CG2(κ) = π
d+1

2

(2−∆c∆

2ν

)2
∞∑
k=0

a
(2)
k

Γ(ν + k)

Γ(∆ + 1
2

+ k)

( 1

1 + κ

)2∆+2k

× 2F1

(
d− 1, ν + k; ∆ +

1

2
+ k;

( 1

1 + κ

)2)
(4.128)
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where in turn the coefficient a
(2)
k was defined in eq. (4.36). Notice how the ultra-

violet convergence region of this quantity can be read directly from its hypergeometric
function. Indeed, as κ → 0 the argument of this function goes to 1, which applying the
corresponding convergence criteria introduced in section 4.1.5 implies the convergence
condition ∆ + 1

2
+ k − (d − 1) − (ν + k) = 3−d

2
> 0, that is, d < 3. In other words, the∫

G2 integral is UV-divergent for values of the dimension d equal or greater than 3, and
UV-convergent otherwise, being able to safely take κ = 0 in this case.

Remember that we are trying to compute the ”eight” diagram eq. (4.122). Re-
placing then the nice result just found for the x2 integral back into the quantity we are
trying to compute it reduces to:

I2(~y1, ~y2) =
λ2c2

∆Gκ(1)CG2(κ)

4

∫
x1,0=ε

dd+1x1
√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2) (4.129)

This resulting integral in x1 is the known D-function eq. (A.38), whose value is
found to be given by eq. (A.43). Therefore, replacing its known result we obtain that the
”eight” diagram can be written as:

I2(~y1, ~y2) = − 2νc∆

|~y1 − ~y2|2∆

λ2Gκ(1)CG2(κ)

4ν
ln
( ε

|~y1 − ~y2|

)
(4.130)

where we have written it conveniently for the upcoming study. Again, as we will
see when we consider the complete correlator, we will realize that the result just found has
exactly the same interpretation as before, that is, the expansion of a conformal anomaly
up to this same order in the self-interacting coupling constant.

The ”Sunset” Diagram

~y1 ~y2

Figure 4.7: Pictorial representation of the ”sunset” diagram.

In terms of the unnormalized bulk-boundary propagator we can rewrite the loop
integral I3 (which we will refer to it as the ”sunset” diagram) as:
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I3(~y1, ~y2) =
λ2c2

∆

6

∫
x1,0=ε

dd+1x1
√
g K̃∆(x1, ~y1)

∫
x2,0=ε

dd+1x2
√
g G3

κ(x1, x2)K̃∆(x2, ~y2)

(4.131)

Continuing in the same line we have followed so far for the integrals that we
have stumble upon, we will try to solve these that are present in I3 by brute force, first
computing the x2 integral and hoping that the remaining integral in x1 will be familiar. As
before, the first question that we will be interested in answering is when in this x2 integral
we can safely take the IR-regulator ε equal to 0. But as we discussed in section 4.1.6 when
we studied the ”eye” diagram present in the holographic 2-point functions dual to a Φ3

theory, integrals of the form
∫
GnK with n > 1 are always IR-convergent. Moreover, by

AdS isometry arguments one can show that their value must be proportional to K (eq.
(4.33)), where all their UV-divergences are contained in the proportionality constant. The
explicit form of these constants are obtainable through the brute force calculation of the
integrals, process which will also show their ultraviolet convergence region. Let us then
proceed to do this study for the particular integral that we are interested in computing,
that is,

∫
G3K. For this calculation, it will turn out to be useful to use the representation

eq. (4.22) of the bulk-bulk propagator, where all its UV-divergence has been extracted
out from the hypergeometric function. In terms of this representation then, we can write
its regularized version cubed simply as:

G3
κ(x1, x2) =

(2−∆c∆

2ν

)3 ξ3∆
κ

(1− ξ2
κ)

3(d−1)
2

[
2F1

(∆− d
2

+ 1,
∆− d+ 1

2
; ν + 1; ξ2

κ

)]3

(4.132)

where ξκ = ξ
1+κ

. Using the triple sum property∑∞
k=0

∑∞
l=0

∑∞
n=0 ak,l,n =

∑∞
k=0

∑k
l=0

∑k−l
n=0 ak−l−n,l,n, the cube of the hypergeometric func-

tion can be written as a single sum in the regularized parameter ξκ:

[
2F1

(∆− d
2

+ 1,
∆− d+ 1

2
; ν + 1; ξ2

κ

)]3

=
∞∑
k=0

a
(3)
k ξ2k

κ (4.133)

where we defined the coefficient:

a
(3)
k ≡

k∑
l=0

k−l∑
n=0

(∆−d
2

+ 1)k−l−n(∆−d+1
2

)k−l−n

(ν + 1)k−l−n (k − l − n)!

(∆−d
2

+ 1)l(
∆−d+1

2
)l(

∆−d
2

+ 1)n(∆−d+1
2

)n

(ν + 1)l(ν + 1)n l! n!

(4.134)

This nice form for the cube of the hypergeometric function further allows us to
express the cube of the regularized propagator in the form of:

G3
κ(x1, x2) =

(2−∆c∆

2ν

)3
∞∑
k=0

a
(3)
k

∞∑
l=0

(3(d−1)
2

)l

l!

( ξ

1 + κ

)3∆+2k+2l

(4.135)
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where we used that 1

(1−ξ2
κ)

3(d−1)
2

= 1F0(3(d−1)
2

; ξ2
κ) =

∑∞
l=0

(
3(d−1)

2
)l

l!
ξ2l
κ and the explicit

form of ξκ. Therefore, the integral of
∫
G3K with the bulk-bulk propagator written in

this form can be expressed as:

∫
dd+1x2

√
g G3

κ(x1, x2)K̃∆(x2, ~y2) =
(2−∆c∆

2ν

)3
∞∑
k=0

a
(3)
k

∞∑
l=0

(3(d−1)
2

)l

l!

( 1

1 + κ

)3∆+2k+2l

×
∫
dd+1x2

√
g ξ3∆+2k+2lK̃∆(x2, ~y2)

(4.136)

The complete study of this type of integrals can be found in section B.3 of Appendix
B, concluding in its value in eq. (B.24). Using this formula then for the particular values
∆1 = 3∆ + 2k + 2k and ∆2 = ∆, we find that the result of the x2 integral is given by:

∫
dd+1x2

√
g G3

κ(x1, x2)K̃∆(x2, ~y2) =K̃∆(x1, ~y2)π
d+1

2

(2−∆c∆

2ν

)3
∞∑
k=0

a
(3)
k

Γ(2∆− d
2

+ k)Γ(∆ + k)

Γ(3∆
2

+ k)Γ(3∆+1
2

+ k)

×
( 1

1 + κ

)3∆+2k

3F2

(3(d− 1)

2
, 2∆− d

2
+ k,∆ + k;

3∆

2
+ k,

3∆ + 1

2
+ k;

( 1

1 + κ

)2)
≡CG3K(κ)K̃∆(x1, ~y2) (4.137)

where we identified the representation of the generalized hypergeometric function

3F2 and denoted all the terms not dependent on the external points simply by CG3K(κ).
This result for the

∫
G3K integral obtained from its explicit computation has precisely

the structure expected from AdS isometry arguments eq. (4.33), where in this case the
value of the constant CG3K(κ) is found to be:

CG3K(κ) = π
d+1

2

(2−∆c∆

2ν

)3
∞∑
k=0

a
(3)
k

Γ(2∆− d
2

+ k)Γ(∆ + k)

Γ(3∆
2

+ k)Γ(3∆+1
2

+ k)

( 1

1 + κ

)3∆+2k

× 3F2

(3(d− 1)

2
, 2∆− d

2
+ k,∆ + k;

3∆

2
+ k,

3∆ + 1

2
+ k;

( 1

1 + κ

)2)
(4.138)

where in turn the coefficient a
(3)
k was defined in eq. (4.134). Notice how the

ultraviolet convergence region of this quantity can be read directly from its generalized
hypergeometric function. Indeed, as κ→ 0 the argument of this function goes to 1, which
applying the corresponding convergence criteria introduced in section 4.1.5 implies the
convergence condition 3∆

2
+k+ 3∆+1

2
+k− 3(d−1)

2
−(2∆− d

2
+k)−(∆+k) = 2−d > 0, that

is, d < 2. In other words, the
∫
G3K integral is UV-divergent for values of the dimension

d equal or greater than 2, and UV-convergent otherwise, being able to safely take κ = 0
in this case.
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Remember that we are trying to compute the ”sunset” diagram eq. (4.131). Re-
placing then the nice result just found for the x2 integral back into the quantity we are
trying to compute it reduces to:

I3(~y1, ~y2) =
λ2c2

∆CG3K(κ)

6

∫
x1,0=ε

dd+1x1
√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2) (4.139)

This resulting integral in x1 is the known D-function eq. (A.38), whose value is
found to be given by eq. (A.43). Therefore, replacing its known result we obtain that the
”sunset” diagram can be written as:

I3(~y1, ~y2) = − 2νc∆

|~y1 − ~y2|2∆

λ2CG3K(κ)

6ν
ln
( ε

|~y1 − ~y2|

)
(4.140)

where we have written it conveniently for the upcoming study. Again, as we will
see when we consider the complete correlator, we will realize that the result just found has
exactly the same interpretation as before, that is, the expansion of a conformal anomaly
up to this same order in the self-interacting coupling constant.

The ”Double Head” Diagram

~y1 ~y2

Figure 4.8: Pictorial representation of the ”double head” diagram.

In terms of the unnormalized bulk-boundary propagator we can rewrite the loop
integral I4 (which we will refer to it as the ”double head” diagram) as:

I4(~y1, ~y2) =
λ2c2

∆G
2
κ(1)

4

∫
x1,0=ε

dd+1x1
√
g K̃∆(x1, ~y1)

∫
x2,0=ε

dd+1x2
√
g Gκ(x1, x2)K̃∆(x2, ~y2)

(4.141)

where we used that the regularized bulk-bulk propagator being evaluated at coin-
cident points is just a constant. These resulting integrals in x1 and x2, as it is discussed
in detail in section B.6 of Appendix B, a simple power counting suggests that, if it were
not for the ε-regulator, they would be divergent in the lower limits of integration of their
radial coordinates x1,0 and x2,0. Precisely the role of this regulator is not only to tame
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these divergences but also to capture the correct behavior of these integrals hidden in
them. The complete study of this quantity can be found in the section of the appendix
mentioned above, concluding in its value in eq. (B.52). Using this value then in our
present case we find that the result of I4 is given by:

I4(~y1, ~y2) =
2νc∆

|~y1 − ~y2|2∆

λ2G2
κ(1)

8ν2
ln2
( ε

|~y1 − ~y2|

)
(4.142)

where we have written it conveniently for the upcoming study. As we will see
next when we consider the complete correlator, we will realize that the result just found
contributes to the exact same interpretation as before, that is, the expansion of a conformal
anomaly up to this same order in λ.

Correlator Renormalization

Replacing the results just found then for the ”head” diagram, the ”eight” diagram, the
”sunset” diagram and the ”double head” diagram back into the holographic 2-point func-
tion, we find that they can be factorized into the form:

〈O∆(~y1)O∆(~y2)〉CFT =〈O∆(~y1)O∆(~y2)〉CFT,con

=
2νc∆

|~y1 − ~y2|2∆

{
1− 1

ν

[
−λGκ(1)

2
+
λ2Gκ(1)CG2(κ)

4
+
λ2CG3K(κ)

6

]
ln
( ε

|~y1 − ~y2|

)
+

1

2ν2

[λ2G2
κ(1)

4

]
ln2
( ε

|~y1 − ~y2|

)}
+O(λ3) (4.143)

Notice how the one-particle irreducible (1PI) diagrams are proportional to a single
logarithm, while the one-time reducible (1TR) is proportional to a logarithm squared.
Tracing the steps back this is due to the nice results of the integrals eqs. (4.33) and
(4.125), which for all the 1PI integrals allow to reduce them to the form

∫
KK and for

all the 1TR integrals to the form
∫
K
∫
GK. The terms inside the first square bracket in

eq. (4.143) correspond exactly to the overall factor of this resulting
∫
KK integral. As

we did for the Φ3 theory then, this fact motivates us to define these quantities as the 1PI
contributions to the correlators Π(κ):

Π(κ) = −λGκ(1)

2
+
λ2Gκ(1)CG2(κ)

4
+
λ2CG3K(κ)

6
(4.144)

Moreover, the term inside the second square bracket in eq. (4.143) correspond
exactly to the overall factor of the resulting

∫
K
∫
GK integral. But notice that, up to

this order in λ, it is nothing but the square of the 1PI contributions Π(κ)! This gives
us a nice picture of the quantum corrections to the correlators as an expansion in Π(κ)
similar to those found in regular QFT theories, with the difference that in our current case
the external legs of this diagrammatic expansion have been replaced by bulk-boundary
propagators. In terms of Π(κ) then, we can rewrite the 2-point functions as:
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〈O∆(~y1)O∆(~y2)〉CFT =〈O∆(~y1)O∆(~y2)〉CFT,con

=
2νc∆

|~y1 − ~y2|2∆

[
1− Π(κ)

ν
ln
( ε

|~y1 − ~y2|

)
+

Π2(κ)

2ν2
ln2
( ε

|~y1 − ~y2|

)]
+O(λ3)

(4.145)

The terms inside the square bracket, up to this same order in λ, correspond to the
known Taylor series of an exponent:

1− Π(κ)

ν
ln
( ε

|~y1 − ~y2|

)
+

Π2(κ)

2ν2
ln2
( ε

|~y1 − ~y2|

)
=
( ε

|~y1 − ~y2|

)−Π(κ)
ν

+O(λ3) (4.146)

This fact allows us to express the regularized holographic 2-point functions in the
nice compact form:

〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con = ε−
Π(κ)
ν

2νc∆

|~y1 − ~y2|2∆−Π(κ)
ν

+O(λ3) (4.147)

With the correlators written in this form, it is direct to see that the effects of
the quantum corrections coming from the off-shell part of the AdS path integral to the
2-point function found previously under the classical approximation of the AdS/CFT
correspondence are the same as those obtained for a Φ3 theory. Indeed, they contribute
with an overall rescaling to the correlator along with a shift in its scaling dimension.
Now, of course as we take the understood limits ε→ 0 and κ→ 0 this correlator becomes
divergent so it is necessary the introduction of a delicate renormalization scheme in order
to absorb the respective infinities. For a Φ3 theory on AdS we saw that the nice form
of the regularized correlator allowed us to renormalize it in exactly the same spirit as it
is done for ordinary QFTs, through the redefinition of the bulk’s theory parameters. It
is satisfactory to find then that the exact same scheme also works for the present case.
Take for example the anomalous dimension of the correlators, which is expected to be
renormalized through a redefinition of the bulk’s mass parameter m2. Indeed, redefining
this parameter in the AdS bulk action simply as m2 → m2 + δm2 (where the counterterm
is expected to be of order δm2 = O(λ)) adds, up to order λ2, new counterterm interactions
to the holographic 2-point function eq. (4.147) of the form:

〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con

= ε−
Π(κ)
ν

2νc∆

|~y1 − ~y2|2∆−Π(κ)
ν

− δm2

∫
ε

K(x, ~y1)K(x, ~y2)

+ δm2λ

2

∫
ε

K(x1, ~y1)Gκ(x1, x1)

∫
ε

Gκ(x1, x2)K(x2, ~y2) + (~y1 ↔ ~y2)

+ (δm2)2

∫
ε

K(x1, ~y1)

∫
ε

Gκ(x1, x2)K(x2, ~y2) +O(λ3) (4.148)
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These new contributions to the correlators can be solved in terms of eqs. (A.43)
and (B.52):

−δm2

∫
ε

K(x, ~y1)K(x, ~y2) =
2νc∆

|~y1 − ~y2|2∆

δm2

ν
ln
( ε

|~y1 − ~y2|

)
δm2λ

2

∫
ε

K(x1, ~y1)Gκ(x1, x1)

∫
ε

Gκ(x1, x2)K(x2, ~y2) =
2νc∆

|~y1 − ~y2|2∆

δm2λGκ(1)

4ν2
ln2
( ε

|~y1 − ~y2|

)
(δm2)2

∫
ε

K(x1, ~y1)

∫
ε

Gκ(x1, x2)K(x2, ~y2) =
2νc∆

|~y1 − ~y2|2∆

(δm2)2

2ν2
ln2
( ε

|~y1 − ~y2|

)
(4.149)

which ultimately results in:

〈O∆(~y1)O∆(~y2)〉CFT =〈O∆(~y1)O∆(~y2)〉CFT,con

=ε
δm2−Π(κ)

ν
2νc∆

|~y1 − ~y2|2∆+
δm2−Π(κ)

ν

+O(λ3) (4.150)

Therefore, denoting the 1PI contributions Π(κ) as Π(κ) = Π∞(κ) + Π0(κ), where
all its UV-divergent terms are contained in Π∞(κ), the infinities present in the correlators
coming from the ultraviolet divergences of the loops integrals can be renormalized away
through the convenient choice of the counterterm δm2 as:

δm2 = Π∞(κ) (4.151)

resulting in the UV-renormalized holographic 2-point function:

〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con = ε−
Π0(0)
ν

2νc∆

|~y1 − ~y2|2∆−Π0(0)
ν

+O(λ3) (4.152)

where we safely took the limit κ = 0. We are still half way in the renormalization
process as we still have to deal with the infrared divergence of the correlators. However,
as we saw for the Φ3 theory, this divergence is expected to be renormalized through a
redefinition of the bulk’s field Φ(x). Indeed, redefining it in the AdS bulk action simply
as Φ(x)→

√
Z(λ)Φ(x) adds a new factor to the holographic 2-point function of the form:

〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con =
ε−

Π0(0)
ν

Z(λ)

2νc∆

|~y1 − ~y2|2∆−Π0(0)
ν

+O(λ3)

(4.153)
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Therefore, the infinities present in the correlators coming from the infrared diver-
gences of the loops integrals can be renormalized away through the convenient choice of
the counterterm Z(λ) as:

Z(λ) = ε−
Π0(0)
ν = 1− Π0(0)

ν
ln (ε) +

Π0(0)2

2ν2
ln2 (ε) +O(λ3) (4.154)

resulting in both IR and UV renormalized holographic 2-point functions:

〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con =
2νc∆

|~y1 − ~y2|2∆−Π0(0)
ν

+O(λ3) (4.155)

where the limits ε = κ = 0 have been taken and where Π0(0) denote the UV-finite
part of the 1P1 contributions Π(κ).

4.2.6 4-Point Function

The regularized holographic 4-point functions dual to a Φ4 self-interacting theory on AdS
are given by:
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〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT =
2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

− λ
∫
K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)K(x1, ~y4)

+
λ2

2

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)K(x2, ~y3)K(x2, ~y4)Gκ(x1, x1)Gκ(x1, x2)× 4

+
λ2

2

∫
ε

∫
ε

K(x1, ~y1)K(x1, ~y2)K(x2, ~y3)K(x2, ~y4)G2
κ(x1, x2)× 3

+
λ2

4

∫
ε

∫
ε

K(x1, ~y1)K(x1, ~y2)K(x2, ~y3)K(x2, ~y4)Gκ(x1, x1)Gκ(x2, x2)× 3

+
2νc∆

|~y1 − ~y2|2∆

[
−λ

2

∫
ε

K(x1, ~y3)K(x1, ~y4)Gκ(x1, x1)

+
λ2

4

∫
ε

∫
ε

K(x1, ~y3)K(x1, ~y4)G2
κ(x1, x2)Gκ(x2, x2)

+
λ2

6

∫
ε

∫
ε

K(x1, ~y3)K(x2, ~y4)G3
κ(x1, x2)

+
λ2

4

∫
ε

∫
ε

K(x1, ~y3)K(x2, ~y4)Gκ(x1, x1)Gκ(x1, x2)Gκ(x2, x2)
]
×6 +O(λ3)

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con = −λ
∫
K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)K(x1, ~y4)

+
λ2

2

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)K(x2, ~y3)K(x2, ~y4)Gκ(x1, x1)Gκ(x1, x2)× 4

+
λ2

2

∫
ε

∫
ε

K(x1, ~y1)K(x1, ~y2)K(x2, ~y3)K(x2, ~y4)G2
κ(x1, x2)× 3 +O(λ3)

(4.156)

from where we see the quantum corrections they receive coming from the loop
integrals:

I1(~y1, ~y2, ~y3, ~y4) =
λ2

2

∫
ε

∫
ε

K(x1, ~y1)K(x2, ~y2)K(x2, ~y3)K(x2, ~y4)Gκ(x1, x1)Gκ(x1, x2)× 4

(4.157)

I2(~y1, ~y2, ~y3, ~y4) =
λ2

2

∫
ε

∫
ε

K(x1, ~y1)K(x1, ~y2)K(x2, ~y3)K(x2, ~y4)G2
κ(x1, x2)× 3 (4.158)

I3(~y1, ~y2, ~y3, ~y4) =
λ2

4

∫
ε

∫
ε

K(x1, ~y1)K(x1, ~y2)K(x2, ~y3)K(x2, ~y4)Gκ(x1, x1)Gκ(x2, x2)× 3

(4.159)
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I4(~y1, ~y2, ~y3, ~y4) =
2νc∆

|~y1 − ~y2|2∆

[
−λ

2

∫
ε

K(x1, ~y3)K(x1, ~y4)Gκ(x1, x1)

+
λ2

4

∫
ε

∫
ε

K(x1, ~y3)K(x1, ~y4)G2
κ(x1, x2)Gκ(x2, x2)

+
λ2

6

∫
ε

∫
ε

K(x1, ~y3)K(x2, ~y4)G3
κ(x1, x2)

+
λ2

4

∫
ε

∫
ε

K(x1, ~y3)K(x2, ~y4)Gκ(x1, x1)Gκ(x1, x2)Gκ(x2, x2)
]
×6

(4.160)

In order to compute the complete 4-point functions up to this order in the expansion
of λ, we will proceed then to compute these quantities. We will start by studying I1, then
I2, then I3 and lastly, I4.

The Reducible ”Head” Diagram

~y1

~y3

~y2

~y4

Figure 4.9: Pictorial representation of the reducible ”head” diagram.

In terms of the unnormalized bulk-boundary propagator we can rewrite the loop
integral I1 (which we will refer to it as the reducible ”head” diagram) as:

I1(~y1, ~y2, ~y3, ~y4) =
λ2c4

∆Gκ(1)

2

∫
x2,0=ε

dd+1x2
√
g K̃∆(x2, ~y2)K̃∆(x2, ~y3)K̃∆(x2, ~y4)

×
∫
x1,0=ε

dd+1x1
√
g Gκ(x2, x1)K̃∆(x1, ~y1) + (~y1 ↔ ~y2) + (~y1 ↔ ~y3) + (~y1 ↔ ~y4)

(4.161)

where we used that the regularized bulk-bulk propagator being evaluated at coin-
cident points is just a constant. As we have seen repeatedly, the value of the x1 integral
is given by eq. (B.44). Therefore, replacing its known result:

I1(~y1, ~y2, ~y3, ~y4) =
λc4

∆Π(κ)

2ν

∫
dd+1x1

√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2)K̃∆(x1, ~y3)K̃∆(x1, ~y4)

× ln
(
εK̃(x1, ~y1)

)
+ (~y1 ↔ ~y2) + (~y1 ↔ ~y3) + (~y1 ↔ ~y4) +O(λ3)

(4.162)
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where we wrote, up to order λ2, the constant factors in terms of Π(κ) (eq. (4.144)),
called the integrated variable x2 → x1, and performed a simple power counting in the
radial coordinate x1,0 as it approaches the boundaries, realizing that the integral is IR-
convergent and therefore allowing us to simply take the regulator ε equal to 0. As we will
see shortly, instead of trying to compute this integral it will turn out to be much simpler
to keep it in this form for now, since later when grouping it with the other contributions
to the 4-point function it will result in a natural factorization into a known integral. Let
us proceed then to study the second loop contribution, I2.

The ”Scalar Exchange” Diagram

~y1

~y2

~y3

~y4

Figure 4.10: Pictorial representation of the ”scalar exchange” diagram.

In terms of the unnormalized bulk-boundary propagator we can rewrite the loop
integral I2 (which we will refer to it as the ”scalar exchange” diagram) as:

I2(~y1, ~y2, ~y3, ~y4) =
λ2c4

∆

2

∫
x1,0=ε

dd+1x1
√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2)

×
∫
x2,0=ε

dd+1x2
√
g G2

κ(x1, x2)K̃∆(x2, ~y3)K̃∆(x2, ~y4) + (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

(4.163)

Continuing under the same approach as before, we will solve the x2 integral first
hoping that the remaining integral in x1 will be familiar. As we will see, this will be indeed
the case in a similar way as how it happens for the tree-level scalar exchange diagram
present in the Φ3 theory, eq. (3.99). The first question that we will be interested in
answering however is when in this x2 integral we can safely take the IR-regulator ε equal
to 0. The infrared convergence region of this integral can be seen directly by studying
how its integrand behaves as it approaches the boundary of AdS. In this case, using the
explicit form of the metric and the known expansions of the propagators, we obtain that:

√
g G2

κ(x1, x2)K̃∆(x2, ~y3)K̃∆(x2, ~y4) ∼
x2,0→0

x−d−1
2,0 x2∆

2,0x
d−∆
2,0 x∆

2,0 = x−1+2∆
2,0 (4.164)
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From here we conclude that the x2 integral will be IR-convergent as long as ∆ is
a positive number, but in this work this will always be the case, implying that we can
always take in this integral ε = 0.

For the computation of the x2 integral it will turn out to be useful to use the
representation eq. (4.22) of the bulk-bulk propagator, where all its UV-divergence has
been extracted out from the hypergeometric function, which as we saw in section 4.1.6,
its square can be further expressed as in eq. (4.37). Therefore, the integral of

∫
G2KK

with the bulk-bulk propagator written in this form can be expressed as:

∫
dd+1x2

√
g G2

κ(x1, x2)K̃∆(x2, ~y3)K̃∆(x2, ~y4) =
(2−∆c∆

2ν

)2
∞∑
k=0

a
(2)
k

∞∑
l=0

(d− 1)l
l!

( 1

1 + κ

)2∆+2k+2l

×
∫
dd+1x2

√
g ξ2∆+2k+2lK̃∆(x2, ~y3)K̃∆(x2, ~y4)

(4.165)

The complete study of this type of integrals can be found in section B.4 of Appendix
B, concluding in its value in eq. (B.32). Using this formula then for the particular values
∆1 = 2∆ + 2k + 2l, ∆2 = ∆ and ∆3 = ∆, we find that the result of the x2 integral is
given by:

∫
dd+1x2

√
g G2

κ(x1, x2)K̃∆(x2, ~y3)K̃∆(x2, ~y4)

= K̃∆(x1, ~y3)K̃∆(x1, ~y4)π
d+1

2

(2−∆c∆

2ν

)2
∞∑
l=0

Γ(2∆− d
2

+ l)Γ(∆ + l)

Γ(∆ + 1
2

+ l)Γ(2∆ + l)

( 1

1 + κ

)2∆+2l

× 2F1

(
∆,∆; 2∆ + l; 1− K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

) l∑
k=0

a
(2)
k

(d− 1)l−k
(l − k)!

(4.166)

where we used the double sum property
∑∞

l=0

∑∞
k=0 al,k =

∑∞
l=0

∑l
k=0 al−k,k. A nice

clue on how to proceed with the calculations is to note that if we are able to write this
hypergeometric function being summed as a power series in K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2 the
value of the x2 integral would consist of a sum of 2 bulk-boundary propagators of different
scaling dimensions, value which when replaced back into the original integral eq. (4.163)
would result in a sum of integrals of 4 bulk-boundary propagators in the x1 variable.
But we have already discussed these integrals involving only bulk-boundary propagators,
these are precisely the D-functions reviewed in detail in Appendix A. Therefore, if we are
able to write the hypergeometric function in eq. (4.166) as a series in the bulk-boundary
propagators, we can solve for eq. (4.163) in terms of D-functions similar to how we did for
the scalar exchange diagram present in the Φ3 theory. But for our present case this can
be easily achieved using the known linear transformation of the hypergeometric function
[19]:
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2F1(a, b; a+ b+ n; z) =
Γ(n)Γ(a+ b+ n)

Γ(a+ n)Γ(b+ n)

n−1∑
i=0

(a)i(b)i
(1− n)i i!

(1− z)i

+
Γ(a+ b+ n)

Γ(a)Γ(b)
(z − 1)n

∞∑
i=0

(a+ n)i(b+ n)i
(i+ n)! i!

×
[
− ln (1− z) + ψ(i+ 1) + ψ(i+ n+ 1)− ψ(i+ n+ a)− ψ(i+ n+ b)

]
(1− z)i

(4.167)

for some integer value n, where ψ(x) is the digamma function. This transformation
for the particular values a = ∆, b = ∆, n = l and z = 1− K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2, let us
rewrite eq. (4.166) as:

∫
dd+1x2

√
g G2

κ(x1, x2)K̃∆(x2, ~y3)K̃∆(x2, ~y4) = K̃∆(x1, ~y3)K̃∆(x1, ~y4)π
d+1

2

(2−∆c∆

2ν

)2

×
{ ∞∑
l=0

Γ(2∆− d
2

+ l)Γ(l)

Γ(∆ + 1
2

+ l)Γ(∆ + l)

( 1

1 + κ

)2∆+2l
l−1∑
i=0

(∆)i(∆)i
(1− l)i i!

[
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

]i
+

1

Γ(∆)2

∞∑
l=0

Γ(2∆− d
2

+ l)Γ(∆ + l)

Γ(∆ + 1
2

+ l)

( 1

1 + κ

)2∆+2l[
−K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

]l
×
∞∑
i=0

(∆ + l)i(∆ + l)i
(i+ l)! i!

[
− ln

(
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

)
+ ψ(i+ 1) + ψ(i+ l + 1)

− 2ψ(i+ l + ∆)
][
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

]i} l∑
k=0

a
(2)
k

(d− 1)l−k
(l − k)!

(4.168)

Using known properties of sums and Pochhammer symbols, the first sum can be
rewritten as:

∞∑
l=0

Γ(2∆− d
2

+ l)Γ(l)

Γ(∆ + 1
2

+ l)Γ(∆ + l)

( 1

1 + κ

)2∆+2l
l−1∑
i=0

(∆)i(∆)i
(1− l)i i!

[
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

]i
×

l∑
k=0

a
(2)
k

(d− 1)l−k
(l − k)!

=
∞∑
i=0

ai(κ)
[
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

]i
(4.169)

where we used that the l = 0 term is 0 and redefined
∑∞

l=1 al →
∑∞

l=0 al+1, used

that
∑∞

l=0

∑l
i=0 al,i =

∑∞
l=0

∑∞
i=0 al+i,i, rewrote and simplified terms accordingly and

finally defined the coefficient ai(κ):
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ai(κ) =
(∆)i(∆)i

i!

Γ(2∆− d
2

+ 1 + i)

Γ(∆ + 3
2

+ i)Γ(∆ + 1 + i)

( 1

1 + κ

)2∆+2i+2

(−1)i

×
∞∑
l=0

(2∆− d
2

+ 1 + i)l(1)l(1)l

(∆ + 3
2

+ i)l(∆ + 1 + i)l l!

( 1

1 + κ

)2l
l+i+1∑
k=0

a
(2)
k

(d− 1)l+i+1−k

(l + i+ 1− k)!
(4.170)

The UV-finiteness of this coefficient can be determined by noticing that for every
value of i it consists in a sum of terms of the form:

ai(κ) =(d− 1)
(∆)i(∆)i(d)i

(2)i i!

Γ(2∆− d
2

+ 1 + i)

Γ(∆ + 3
2

+ i)Γ(∆ + 1 + i)

( 1

1 + κ

)2∆+2i+2

(−1)i

× 4F3

(
2∆− d

2
+ 1 + i, 1, 1, d+ i; ∆ +

3

2
+ i,∆ + 1 + i, 2 + i;

( 1

1 + κ

)2)
+ · · ·
(4.171)

where we identified the representation of the generalized hypergeometric func-
tion 4F3. The triple dots represent other contributions to the coefficient, whose UV-
convergence conditions turn out to be exactly the same as the term in eq. (4.171).
Therefore, the ultraviolet convergence region of the ai(κ) coefficient can be read directly
from this generalized hypergeometric function. Indeed, as κ → 0 the argument of this
function goes to 1, which applying the corresponding convergence criteria introduced in
section 4.1.5 implies the convergence condition ∆ + 3

2
+ i+ ∆ + 1 + i+ 2 + i− (2∆− d

2
+

1 + i) − 1 − 1 − (d + i) = 3−d
2

+ i > 0, that is d < 3 + 2i. In other words, for d < 3 all
the coefficients ai(κ) are UV-finite, for d = 3, 4 only the coefficient a0(κ) is UV-divergent,
for d = 5, 6 the coefficients a0(κ) and a1(κ) are UV-divergent, for d = 7, 8 the coefficients
a0(κ), a1(κ) and a2(κ) are UV-divergent, and so on.

Similarly for the second sum in eq. (4.168) it can be rewritten as:

1

Γ(∆)2

∞∑
l=0

Γ(2∆− d
2

+ l)Γ(∆ + l)

Γ(∆ + 1
2

+ l)

( 1

1 + κ

)2∆+2l[
−K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

]l
×
∞∑
i=0

(∆ + l)i(∆ + l)i
(i+ l)! i!

[
− ln

(
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

)
+ ψ(i+ 1) + ψ(i+ l + 1)

− 2ψ(i+ l + ∆)
][
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

]i l∑
k=0

a
(2)
k

(d− 1)l−k
(l − k)!

=
∞∑
i=0

[
bi(κ) + ci(κ) ln

(
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

)][
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

]i
(4.172)

where we used that
∑∞

i=0

∑∞
l=0 ai,l =

∑∞
i=0

∑i
l=0 ai−l,l, rewrote and simplified terms

accordingly and finally defined the coefficients bi(κ) and ci(κ):
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bi(κ) =
Γ(2∆− d

2
)

Γ(∆)Γ(∆ + 1
2
)

(∆)i(∆)i
i!2

i∑
l=0

(2∆− d
2
)l(−i)l

(∆ + 1
2
)l(∆)l

( 1

1 + κ

)2∆+2l

×
[
ψ(i− l + 1) + ψ(i+ 1)− 2ψ(i+ ∆)

] l∑
k=0

a
(2)
k

(d− 1)l−k
(l − k)!

(4.173)

ci(κ) = −
Γ(2∆− d

2
)

Γ(∆)Γ(∆ + 1
2
)

(∆)i(∆)i
i!2

i∑
l=0

(2∆− d
2
)l(−i)l

(∆ + 1
2
)l(∆)l

( 1

1 + κ

)2∆+2l
l∑

k=0

a
(2)
k

(d− 1)l−k
(l − k)!

(4.174)

The UV-finiteness of these coefficients can be determined by noticing that for every
value of i they consist in a terminating sum of finite coefficients. Therefore, they are always
UV-finite and we can always take in these coefficients κ = 0. All the UV-divergence of
the integral

∫
G2KK is contained then in the coefficient ai(κ).

Eq. (4.169) together with eq. (4.172) allow us to express the result for the
∫
G2KK

integral eq. (4.168) in the nice form:

∫
dd+1x2

√
g G2

κ(x1, x2)K̃∆(x2, ~y3)K̃∆(x2, ~y4) =K̃∆(x1, ~y3)K̃∆(x1, ~y4)π
d+1

2

(2−∆c∆

2ν

)2

×
∞∑
i=0

[
ai(κ) + bi(0) + ci(0) ln

(
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

)]
×
[
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

]i
(4.175)

where we safely took κ = 0 in the coefficients bi(κ) and ci(κ). Remember that we
are trying to compute I2, eq. (4.163). Replacing then the result for the x2 integral just
found back into this quantity that we are trying to compute, we find that it reduces to:

I2(~y1, ~y2, ~y3, ~y4) =
λ2c4

∆

2
π
d+1

2

(2−∆c∆

2ν

)2

×
∞∑
i=0

∫
dd+1x1

√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2)K̃∆+i(x1, ~y3)K̃∆+i(x1, ~y4)| ~y34|2i

×
[
ai(κ) + bi(0) + ci(0) ln

(
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

)]
+(~y2 ↔ ~y3) + (~y2 ↔ ~y4)

(4.176)

As we mentioned before, the solving strategy for this resulting integral in x1 is
identical in spirit as the one used for the tree-level scalar exchange diagram present in the
Φ3 theory, that is, writing it as a sum of D-functions. For our current case, this can be
achieved by noticing that the logarithmic term can be written as:

ln
(
K̃(x1, ~y3)K̃(x1, ~y4)| ~y34|2

)
=

d

dα

[
K̃α(x1, ~y3)K̃α(x1, ~y4)| ~y34|2α

]∣∣∣
α=0

(4.177)
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representation that let us express I2 in the form of:

I2(~y1, ~y2, ~y3, ~y4) =
λ2c4

∆

2
π
d+1

2

(2−∆c∆

2ν

)2

×
∞∑
i=0

{[
ai(κ) + bi(0)

]∫
dd+1x1

√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2)K̃∆+i(x1, ~y3)K̃∆+i(x1, ~y4)| ~y34|2i

+ ci(0)
d

dα

[∫
dd+1x1

√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2)K̃∆+i+α(x1, ~y3)K̃∆+i+α(x1, ~y4)| ~y34|2i+2α

]∣∣∣
α=0

}
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4) (4.178)

where we separated the integral in two. Finally then, the definition of the D-
functions allows us to write these integrals in the desired form:

I2(~y1, ~y2, ~y3, ~y4) =
λ2c4

∆

2
π
d+1

2

(2−∆c∆

2ν

)2
∞∑
i=0

{[
ai(κ) + bi(0)

]
D∆∆∆+i∆+i(~y1, ~y2, ~y3, ~y4)| ~y34|2i

+ ci(0)
d

dα

[
D∆∆∆+i+α∆+i+α(~y1, ~y2, ~y3, ~y4)| ~y34|2i+2α

]∣∣∣
α=0

}
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4) (4.179)

All the UV-divergence of this quantity are contained in the coefficients ai(κ). Since
each one of these coefficients is proportional to a certain D-function, as we will see when
we consider the complete correlator this fact will lead to the renormalization conditions
of the theory.

The Disconnected ”Heads” Diagram

~y1

~y3

~y2

~y4

Figure 4.11: Pictorial representation of the disconnected ”heads” diagram.

In terms of the unnormalized bulk-boundary propagator we can rewrite the loop
integral I3 (which we will refer to it as the disconnected ”heads” diagram) as:
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I3(~y1, ~y2, ~y3, ~y4) =
λ2c4

∆G
2
κ(1)

4

∫
x1,0=ε

dd+1x1
√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2)

×
∫
x2,0=ε

dd+1x2
√
g K̃∆(x2, ~y3)K̃∆(x2, ~y4) + (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

(4.180)

where we used that the regularized bulk-bulk propagator being evaluated at coin-
cident points is just a constant. As we have seen repeatedly, the values of the x1 and x2

integrals are given by eq. (A.43). Therefore, replacing their known results:

I3(~y1, ~y2, ~y3, ~y4) =
Π2(κ)

ν2

2νc∆

|~y1 − ~y2|2∆
ln
( ε

|~y1 − ~y2|

) 2νc∆

|~y3 − ~y4|2∆
ln
( ε

|~y3 − ~y4|

)
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4) +O(λ3) (4.181)

where we wrote, up to order λ2, the constant factors in terms of Π(κ) (eq. (4.144)).
As we will see when we consider the complete correlator, we will realize that the result just
found has exactly the expected interpretation, that is up to this order in λ, the expansion
of the same conformal anomaly dictated by the 2-point function.

The Disconnected Diagrams

~y1

~y3

~y2

~y4

~y1

~y3

~y2

~y4

~y1

~y3

~y2

~y4

~y1

~y3

~y2

~y4

Figure 4.12: Pictorial representation of the disconnected diagrams.
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Finally for the loop integrals I4 (which we will refer to them simply as the dis-
connected diagrams), notice that the terms inside the square bracket are nothing but the
loop integrals present in the 2-point functions (the ”head”, ”eight”, ”sunset” and ”double
head” diagrams) whose value were found to be given by eqs. (4.121), (4.130), (4.140)
and (4.142) respectively. Therefore, replacing their known results we find that I4 can be
expressed as:

I4(~y1, ~y2, ~y3, ~y4) =− 2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆

Π(κ)

ν
ln
( ε

|~y3 − ~y4|

)
× 6

+
2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆

Π2(κ)

2ν2
ln2
( ε

|~y3 − ~y4|

)
× 6 +O(λ3) (4.182)

where we wrote, up to order λ2, the constant factors in terms of Π(κ). Next we
will see how all the contributions to the 4-point functions nicely factorize to give rise to
the same conformal anomaly dictated by the 2-point function, together with a correction
to its coupling constant. This realization, similarly to the Φ3 study, will provide us with
a natural and consistent renormalization scheme of both IR and UV divergences for all
the holographic n-point functions, equivalent to those schemes used in ordinary QFTs.

Correlator Renormalization

Replacing the results just found then for I1, I2, I3 and I4 back into the holographic 4-point
functions, we find that they can be written as:
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〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT =
2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

− λc4
∆

∫
dd+1x1

√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2)K̃∆(x1, ~y3)K̃∆(x1, ~y4)

+
λc4

∆Π(κ)

2ν

∫
dd+1x1

√
g K̃∆(x1, ~y1) ln

(
εK̃(x1, ~y1)

)
K(x1, ~y2)K(x1, ~y3)K(x1, ~y4)

+ (~y1 ↔ ~y2) + (~y1 ↔ ~y3) + (~y1 ↔ ~y4)

+
λ2c4

∆

2
π
d+1

2

(2−∆c∆

2ν

)2
∞∑
i=0

{[
ai(κ) + bi(0)

]
D∆∆∆+i∆+i(~y1, ~y2, ~y3, ~y4)| ~y34|2i

+ ci(0)
d

dα

[
D∆∆∆+i+α∆+i+α(~y1, ~y2, ~y3, ~y4)| ~y34|2i+2α

]∣∣∣
α=0

}
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

+
Π2(κ)

ν2

2νc∆

|~y1 − ~y2|2∆
ln
( ε

|~y1 − ~y2|

) 2νc∆

|~y3 − ~y4|2∆
ln
( ε

|~y3 − ~y4|

)
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4)

− 2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆

Π(κ)

ν
ln
( ε

|~y3 − ~y4|

)
+ (~y1 ↔ ~y3) + (~y1 ↔ ~y4)

+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4) + (~y1 ↔ ~y3, ~y2 ↔ ~y4)

+
2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆

Π2(κ)

2ν2
ln2
( ε

|~y3 − ~y4|

)
+ (~y1 ↔ ~y3) + (~y1 ↔ ~y4)

+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4) + (~y1 ↔ ~y3, ~y2 ↔ ~y4) +O(λ3)

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con =

− λc4
∆

∫
dd+1x1

√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2)K̃∆(x1, ~y3)K̃∆(x1, ~y4)

+
λc4

∆Π(κ)

2ν

∫
dd+1x1

√
g K̃∆(x1, ~y1) ln

(
εK̃(x1, ~y1)

)
K(x1, ~y2)K(x1, ~y3)K(x1, ~y4)

+ (~y1 ↔ ~y2) + (~y1 ↔ ~y3) + (~y1 ↔ ~y4)

+
λ2c4

∆

2
π
d+1

2

(2−∆c∆

2ν

)2
∞∑
i=0

{[
ai(κ) + bi(0)

]
D∆∆∆+i∆+i(~y1, ~y2, ~y3, ~y4)| ~y34|2i

+ ci(0)
d

dα

[
D∆∆∆+i+α∆+i+α(~y1, ~y2, ~y3, ~y4)| ~y34|2i+2α

]∣∣∣
α=0

}
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4) +O(λ3) (4.183)

Now, up to this same order in the coupling constant, it is easy to see that the
disconnected contributions to the correlators can be factorized into the form:
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2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
× 3 +

Π2(κ)

ν2

2νc∆

|~y1 − ~y2|2∆
ln
( ε

|~y1 − ~y2|

) 2νc∆

|~y3 − ~y4|2∆
ln
( ε

|~y3 − ~y4|

)
× 3

− 2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆

Π(κ)

ν
ln
( ε

|~y3 − ~y4|

)
× 6

+
2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆

Π2(κ)

2ν2
ln2
( ε

|~y3 − ~y4|

)
× 6

= ε−
2Π(κ)
ν

2νc∆

|~y1 − ~y2|2∆−Π(κ)
ν

2νc∆

|~y3 − ~y4|2∆−Π(κ)
ν

+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4) +O(λ3)

(4.184)

Notice that these contributions, apart from the IR rescaling, are nothing but the
derivation of eq. (3.70) where the scaling dimension ∆ has been replaced by ∆ − Π(κ)

2ν
.

Therefore, following the same steps shown there, we can rewrite eq. (4.184) in the form
of:

2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆
× 3 +

Π2(κ)

ν2

2νc∆

|~y1 − ~y2|2∆
ln
( ε

|~y1 − ~y2|

) 2νc∆

|~y3 − ~y4|2∆
ln
( ε

|~y3 − ~y4|

)
× 3

− 2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆

Π(κ)

ν
ln
( ε

|~y3 − ~y4|

)
× 6

+
2νc∆

|~y1 − ~y2|2∆

2νc∆

|~y3 − ~y4|2∆

Π2(κ)

2ν2
ln2
( ε

|~y3 − ~y4|

)
× 6

= ε−
2Π(κ)
ν × (2νc∆)2∏

i<j| ~yij|
2
3

(
∆−Π(κ)

2ν

)u− 2
3

(
∆−Π(κ)

2ν

)
v

1
3

(
∆−Π(κ)

2ν

)
+
(
u, v → 1

u
,
v

u

)
+ (u, v → v, u) +O(λ3) (4.185)

Similarly for the connected contributions to the correlators (ignoring the ”scalar
exchange” diagram), it can be directly seen that they can be factorized into the form:

− λc4
∆

∫
dd+1x1

√
g K̃∆(x1, ~y1)K̃∆(x1, ~y2)K̃∆(x1, ~y3)K̃∆(x1, ~y4)

+
λc4

∆Π(κ)

2ν

∫
dd+1x1

√
g K̃∆(x1, ~y1) ln

(
εK̃(x1, ~y1)

)
K(x1, ~y2)K(x1, ~y3)K(x1, ~y4)× 4

= ε−
2Π(κ)
ν ×−λc4

∆D∆−Π(κ)
2ν

∆−Π(κ)
2ν

∆−Π(κ)
2ν

∆−Π(κ)
2ν

(~y1, ~y2, ~y3, ~y4) +O(λ3) (4.186)

where we wrote the resulting integral in terms of the D-function. The results eqs.
(4.185) and (4.186) allow us to express the 4-point functions in the nice compact forms:
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〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT = ε−
2Π(κ)
ν × (2νc∆)2∏

i<j| ~yij|
2
3

(
∆−Π(κ)

2ν

)u− 2
3

(
∆−Π(κ)

2ν

)
v

1
3

(
∆−Π(κ)

2ν

)
+
(
u, v → 1

u
,
v

u

)
+(u, v → v, u)

+ ε−
2Π(κ)
ν ×−λc4

∆D∆−Π(κ)
2ν

∆−Π(κ)
2ν

∆−Π(κ)
2ν

∆−Π(κ)
2ν

(~y1, ~y2, ~y3, ~y4)

+
λ2c4

∆

2
π
d+1

2

(2−∆c∆

2ν

)2
∞∑
i=0

{[
ai(κ) + bi(0)

]
D∆∆∆+i∆+i(~y1, ~y2, ~y3, ~y4)| ~y34|2i

+ ci(0)
d

dα

[
D∆∆∆+i+α∆+i+α(~y1, ~y2, ~y3, ~y4)| ~y34|2i+2α

]∣∣∣
α=0

}
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4) +O(λ3)

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con = ε−
2Π(κ)
ν ×−λc4

∆D∆−Π(κ)
2ν

∆−Π(κ)
2ν

∆−Π(κ)
2ν

∆−Π(κ)
2ν

(~y1, ~y2, ~y3, ~y4)

+
λ2c4

∆

2
π
d+1

2

(2−∆c∆

2ν

)2
∞∑
i=0

{[
ai(κ) + bi(0)

]
D∆∆∆+i∆+i(~y1, ~y2, ~y3, ~y4)| ~y34|2i

+ ci(0)
d

dα

[
D∆∆∆+i+α∆+i+α(~y1, ~y2, ~y3, ~y4)| ~y34|2i+2α

]∣∣∣
α=0

}
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4) +O(λ3) (4.187)

With the correlators written in this form, it is direct to see what are the effects of
the quantum corrections coming from the off-shell part of the AdS path integral to the
4-point functions found previously under the classical approximation of the AdS/CFT
correspondence. Indeed, up to order λ2 in the coupling constant, they contribute with
an overall rescaling to the correlator along with a shift in its scaling dimension, just like
for the 2-point function, with the difference as we will see briefly that in the current
case the effective self-interacting coupling constant between the bulk fields also receives
a correction coming from the ”scalar exchange” diagram. What is remarkable however
about eq. (4.187) is that the resulting rescaling and anomalous dimension of the 4-point
functions are exactly the same as those dictated by the 2-point function! This fact implies
that the very same redefinitions of the bulk’s parameters done for the 2-point function
not only have the effect of renormalizing the divergences present there, but also for the
divergences present in the 4-point function, where now a redefinition of the coupling
constant λ is also needed. To see this, consider a redefinition of the bulk’s self-interacting
coupling constant λ in the AdS bulk action of the form:

λ→ λ+ δλ (4.188)

where the counterterm is expected to be of order δλ = O(λ2). This redefinition of
λ adds, up to order λ2, a new counterterm interaction to the holographic 4-point functions
eq. (4.187) of the form:
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〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT, 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con

→ 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT, 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con

− δλ
∫
dd+1x1

√
g K(x1, ~y1)K(x1, ~y2)K(x1, ~y3)K(x1, ~y4) +O(λ3)

= 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT, 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con

− δλc4
∆D∆∆∆∆(~y1, ~y2, ~y3, ~y4) +O(λ3) (4.189)

Given the form of this counterterm interaction we conclude that the UV-divergences
coming from each ai(κ) coefficient present in the ”scalar exchange” diagram will be renor-
malizable through a redefinition of λ for only those coefficients that are writable as terms
proportional to D∆∆∆∆. Take for example the coefficient i = 0. It is direct to see that
this is indeed possible in this case:

a0(κ)D∆∆∆∆ + (~y2 ↔ ~y3) + (~y2 ↔ ~y4) = 3a0(κ)D∆∆∆∆ (4.190)

resulting in a contribution proportional to D∆∆∆∆ and thus renormalizable. For
the coefficient i = 1 it turns out that this is also possible thanks to the nice property eq.
(A.33) satisfied by the D-functions:

a1(κ)D∆∆∆+1∆+1| ~y34|2 + (~y2 ↔ ~y3) + (~y2 ↔ ~y4) =

− a1(κ)
(2∆− d

2
)

∆2

(
y2

34

∂

∂y2
34

+ y2
24

∂

∂y2
24

+ y2
23

∂

∂y2
23

)
D∆∆∆∆ (4.191)

But notice from eq. (A.32) that the D-function can be written as D∆∆∆∆ =

f(u, v)
∏

i<j y
− 2∆

3
ij , therefore using the product rule for derivatives:

a1(κ)D∆∆∆+1∆+1| ~y34|2 + (~y2 ↔ ~y3) + (~y2 ↔ ~y4) = a1(κ)
(2∆− d

2
)

∆
D∆∆∆∆ (4.192)

where when differentiating the quantity f(u, v) we used the chain rules y2
34

∂
∂y2

34
=

u ∂
∂u

, y2
24

∂
∂y2

24
= −u ∂

∂u
− v ∂

∂v
and y2

23
∂

∂y2
23

= v ∂
∂v

, resulting in contributions that cancel each

other out. Just like the coefficient i = 0, it results in a contribution proportional toD∆∆∆∆

and thus renormalizable. However, for the terms coming from the i = 2 coefficients and
higher this feature is no longer true and the UV-divergences present in these coefficients
cannot be renormalized under the current renormalization scheme through a redefinition
of λ. Remembering that a0(κ) is UV-divergent for d > 2, a1(κ) is UV-divergent for
d > 4, a2(κ) is UV-divergent for d > 6, and so on, since the only coefficients that are
renormalizable are a0(κ) and a1(κ), this fact gives us directly the region of renormalization
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of the theory: CFT theories of dimensions greater than 6 dual to Φ4 theories on AdS are
non-renormalizable.

From now on then we will be only interested in Φ4 theories with d < 7, which
together with the results eqs. (4.190) and (4.192) allow us to express the explicit forms
of the 4-point functions as:

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT = ε−
2Π(κ)
ν × (2νc∆)2∏

i<j| ~yij|
2
3
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∆−Π(κ)

2ν
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3

(
∆−Π(κ)

2ν

)
v

1
3
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∆−Π(κ)

2ν

)
+
(
u, v → 1

u
,
v

u

)
+(u, v → v, u)

+ ε−
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ν ×−λc4

∆D∆−Π(κ)
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2ν

)2[
3a0(κ) + a1(κ)

(2∆− d
2
)

∆

]
−δλ

}
c4

∆D∆∆∆∆(~y1, ~y2, ~y3, ~y4)

+
λ2c4

∆

2
π
d+1

2

(2−∆c∆

2ν
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D∆∆∆+i+α∆+i+α(~y1, ~y2, ~y3, ~y4)| ~y34|2i+2α

]∣∣∣
α=0

}
+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4) +O(λ3)

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con = ε−
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ν ×−λc4
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where since d < 7, we safely took κ = 0 for the coefficients ai>1(κ). Therefore,

denoting the coefficients a0(κ) and a1(κ) as a0(κ) = a
(∞)
0 (κ)+a

(0)
0 (κ) and a1(κ) = a

(∞)
1 (κ)+

a
(0)
1 (κ) respectively, where all their UV-divergent terms are contained in a

(∞)
0 (κ) and

a
(∞)
1 (κ), the infinities present in the correlators coming from the ultraviolet divergence of

the ”scalar exchange” diagram can be renormalized away through the convenient choice
of the counterterm δλ as:
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∆

]
(4.194)
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resulting in the partially renormalized holographic 4-point functions:
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+ (~y2 ↔ ~y3) + (~y2 ↔ ~y4) +O(λ3) (4.195)

We are not done with the renormalization process as we still have to deal with the
other divergences of the correlators. However, as we already anticipated, the very same
redefinitions for the bulk’s parameters introduced in the study of the 2-point function
exactly renormalize the divergences present in the current case for the 4-point function.
Take for example the divergent anomalous dimension. The redefinition of the bulk’s mass
parameter m2 as m2 + δm2 in the AdS bulk action (where δm2 = O(λ)) adds, up to order
λ2, new counterterms interactions to the holographic 4-point functions of the form:
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〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT → 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT

+ λδm2

∫
ε

∫
ε

K(x1, ~y1)G(x1, x2)K(x2, ~y2)K(x2, ~y3)K(x2, ~y4)× 4

+ δm2λ

2

∫
ε

∫
ε

K(x1, ~y1)Gκ(x1, x1)K(x1, ~y2)K(x2, ~y3)K(x2, ~y4)× 6

+ (δm2)2

∫
ε

∫
ε

K(x1, ~y1)K(x1, ~y2)K(x2, ~y3)K(x2, ~y4)× 3

+
2νc∆

|~y1 − ~y2|2∆

[
−δm2

∫
ε

K(x1, ~y3)K(x1, ~y4)

+ δm2λ

2

∫
ε

∫
ε

K(x1, ~y3)Gκ(x1, x1)Gκ(x1, x2)K(x2, ~y4)× 2

+ (δm2)2

∫
ε

∫
ε

K(x1, ~y3)Gκ(x1, x2)K(x2, ~y4)
]
×6 +O(λ3)

〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con → 〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con

+ λδm2

∫
ε

∫
ε

K(x1, ~y1)G(x1, x2)K(x2, ~y2)K(x2, ~y3)K(x2, ~y4)× 4 +O(λ3)

(4.196)

It turns out that considering these new contributions to the correlators coming
from the redefinition of m2 in a earlier step in the computation of the 4-point function
exactly factorize with those terms dependent on Π(κ), resulting for the current expressions
in the replacement of Π(κ) → Π(κ) − δm2. Therefore, the exact same choice for the
counterterm δm2 as δm2 = Π∞(κ) made in the renormalization of the 2-point function
also renormalizes the UV-divergences of the anomalous dimension present in the 4-point
functions. Moreover, the redefinition of the bulk field Φ(x) as Φ(x) →

√
Z(λ)Φ(x) in

the AdS bulk action adds a factor 1
Z(λ)2 to the holographic 4-point functions. It is also

direct to see then that the exact same choice for the counterterm Z(λ) as Z(λ) = ε−
Π0(0)
ν

made in the renormalization of the 2-point function also renormalizes the IR-divergence
of the overall rescaling of the 4-point functions, resulting in both IR and UV renormalized
correlators:
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where the limits ε = κ = 0 have been taken. The complete study of these type
of D-functions can be found in section A.3 of Appendix A, concluding in its value in eq.
(A.31). Using this formula then in our present case we find that the different D-functions
present in eq. (4.197) can be written as:

D∆∆∆∆ =
π
d
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Γ(2∆− d
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Γ(∆)4

u
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H(∆,∆, 1, 2∆;u, v) (4.198)
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)
(4.199)
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(4.201)

which further allow us to express the renormalized 4-point functions in their explicit
forms:
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where we wrote the permutations in terms of the cross ratios u and v. This result
concludes the renormalization of the holographic correlators coming from a Φ4 theory on
AdS.

4.2.7 Renormalized Correlators

The objective of this section is to summarize the key points of the recent renormalization
study of the quantum corrected holographic correlators resulting from the consideration
of a self-interacting scalar Φ4 theory on a fixed AdS background through the use of the
AdS/CFT correspondence. As we saw, these correlators were infrared divergent as their
different contributions approached the conformal boundary of the AdS space, and also
ultraviolet divergent as their loops integrals involving the bulk-bulk propagator got inte-
grated at coincident points. In order to compute finite and predictive correlators, these
divergences demanded not only a delicate regularization scheme but also a delicate renor-
malization scheme, in order to absorb in a sensitive way the corresponding infinities.
The infrared divergences present at the on-shell level of the AdS path integral were both
regulated and renormalized through the holographic renormalization procedure with the
addition of a covariant boundary term in the AdS action. This procedure for the infrared
divergences present at the off-shell level of the AdS path integral naturally translated into
their regularization by simply solving the loops contributions to the correlators up to the
same radial regulator introduced in the holographic renormalization. While for the ultra-
violet divergences present at the off-shell level of the AdS path integral, a point-splitting
approach was taken, resulting in regularized bulk-bulk propagators which conserved their
symmetry under AdS transformations. By explicitly computing these regularized corre-
lators, their nice form for d < 7 allowed us to renormalize them in exactly the same spirit
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as it is done for ordinary QFTs, that is, by understating the parameters of the theory,
Φ(x), m2 and λ, not as physical constants but bare quantities, opening the possibility of
a renormalization scheme through their definition. This turned out to be indeed the case,
where the redefinition of these parameters in the AdS bulk action as:

Φ(x)→
√
Z(λ)Φ(x), m2 → m2 + δm2, λ→ λ+ δλ (4.204)

exactly renormalized every single divergence present in the holographic n-point
functions through the convenient choice of the counterterms Z(λ), δm2 and δλ as:

Z(λ) = ε−
Π0(0)
ν , δm2 = Π∞(κ), δλ =
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]
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where ε and κ are the IR and UV regulators introduced in the regularization
scheme, Π∞(κ) and Π0(0) are the UV-divergent and UV-convergent parts of the 1PI
contributions Π(κ):
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(4.206)

where the coefficients a
(2)
k and a

(3)
k present in Π(κ) were defined in eqs. (4.36) and

(4.134) respectively, and where a
(∞)
0 (κ) and a

(∞)
1 (κ) present in δλ are the UV-divergent

parts of the i = 0 and i = 1 coefficients ai(κ):

ai(κ) =
(∆)i(∆)i
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×
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)2l
l+i+1∑
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(2)
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(l + i+ 1− k)!
(4.207)

The renormalized correlators for d < 7 and up to order λ2 in the coupling constant
resulting from these redefinition of the bulk’s theory parameters, along with their conve-
nient choice for the counterterms, can be summarized into the holographic 1-, 2-, 3- and
4-point functions:
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1-pt fn: 〈O∆(~y1)〉CFT = 〈O∆(~y1)〉CFT,con = 0

2-pt fn: 〈O∆(~y1)O∆(~y2)〉CFT = 〈O∆(~y1)O∆(~y2)〉CFT,con =
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3-pt fn: 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT = 〈O∆(~y1)O∆(~y2)O∆(~y3)〉CFT,con = 0
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〈O∆(~y1)O∆(~y2)O∆(~y3)O∆(~y4)〉CFT,con = −λc4
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where the coefficients bi(0) and ci(0) are given by:

bi(0) =
Γ(2∆− d
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(∆)i(∆)i
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(4.210)

ci(0) = −
Γ(2∆− d

2
)

Γ(∆)Γ(∆ + 1
2
)

(∆)i(∆)i
i!2

i∑
l=0

(2∆− d
2
)l(−i)l

(∆ + 1
2
)l(∆)l

l∑
k=0

a
(2)
k

(d− 1)l−k
(l − k)!

(4.211)

The form of these correlators are exactly the expected for a conformal theory as it
is dictated by eq. (2.41) up to conformal anomalies, where their overall factors, scaling
dimension and effective coupling constant receive small corrections coming from the 1PI
loop diagrams resulting from a perturbatively approach in the parameter λ. These results,
while showing the clear role of the quantum corrections to the holographic correlators, also
greatly motivate and contribute to the belief of the validity of the AdS/CFT conjecture.

4.2.8 Tachyonic Fields on AdS: A Concrete Example

So far we have studied a general Φ4 theory on a fixed AdSd+1 background, obtaining its
dual renormalized CFTd correlators through the use of the AdS/CFT correspondence,
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where the only real restriction we have imposed so far is that the parameter ∆ must
be greater than d

2
, obtaining that the resulting holographic theory is renormalizable for

dimensions lower than 7. With the intention to study this duality in a more concrete way,
as an example we will focus on what are perhaps the most interesting cases. These are,
given a certain boundary theory of dimension d, the corresponding correlators of lowest
integer scaling dimension ∆. In particular, we will focus on those cases where ∆ < d, i.e.,

ν < d
2
. Since ν =

√
(d

2
)2 +m2, these cases are composed of bulk theories of negative mass

parameter m2, also known as tachyonic fields. Having QFT theories on flat space as a
background intuition one may be worried about stability issues of the bulk fields, however
the nice boundary conditions of AdS spaces are such that the resulting field theories of
negative mass parameter are perfectly stable [6].

As a concrete example of CFT theories dual to Φ4 theories on AdS then, we will
focus on those that have an integer value of ∆ such that d

2
< ∆ < d < 7, i.e., for d = 3

in the case ∆ = 2, for d = 4 in the case ∆ = 3, for d = 5 in the cases ∆ = 3 and ∆ = 4
and finally for d = 6 in the cases ∆ = 4 and ∆ = 5. Notice how all these cases can
be summarized simply as either ∆ = d − 1 or ∆ = d − 2. What is remarkable of these
particular values of ∆ is the simple form that the bulk-bulk propagator takes. Indeed,
from its representation eq. (4.22) and using that 2F1(0, b; c; z) = 1, it is direct to see that
it reduces to:

G(x1, x2) =
2−∆c∆

2ν

ξ∆

(1− ξ2)
d−1

2

, ∆ = d− 1 or ∆ = d− 2 (4.212)

Furthermore, in a similar way it is direct to see that the coefficients a
(2)
k and a

(3)
k

defined in eqs. (4.36) and (4.134), which are present in the different quantities defined in

the correlators eqs. (4.208) and (4.209), take the simple values a
(2)
k = δk,0 and a

(3)
k = δk,0

allowing us to express the 1PI contributions Π(κ) in the nice closed form:
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2
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( 1
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(4.213)

along with the coefficients ai(κ), bi(0) and ci(0) present in the 4-point functions,
defined in eqs. (4.207), (4.210) and (4.211):
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2
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2
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)
(4.216)

where we wrote them in terms of generalized hypergeometric functions. The previ-
ous expressions, including Π(κ), are valid whenever ∆ = d− 1 or ∆ = d− 2 which, as we
argued, contain all the cases where ∆ is an integer such that d

2
< ∆ < d < 7. To illustrate

how starting from these expressions one can obtain the exact holographic renormalized
correlators together with the corresponding convenient counterterms, we will proceed to
study one particular case.

Case ∆ = 2 and d = 3

In this case ν = 1
2

and c∆ = 1
π2 , therefore it is straightforward to see that Π(κ) reduces

to:

Π(κ) =− λGκ(1)

2
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48π2
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2
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(4.217)

As we did for the study of a general Φ4 theory, we need to identify the UV-
divergent and UV-convergent parts of this quantity, Π∞(κ) and Π0(0) respectively. Using
the software Mathematica we obtain that every quantity in Π(κ) dependent on the UV-
regulator κ can be expanded as:

Gκ(1) =
1

8π2κ
− 1

16π2
+

κ

32π2
+O(κ2) (4.218)( 1

1 + κ

)4

= 1− 4κ+O(κ2) (4.219)( 1

1 + κ

)6

= 1− 6κ+O(κ2) (4.220)
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2F1

(
2,

1

2
;
5

2
;
( 1

1 + κ

)2)
=
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4
(−1 + ln 2− lnκ) +

3

8
κ(−3 + 4 ln 2− 4 lnκ)

+O(κ2, κ2 lnκ) (4.221)
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2
;
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)2)
=

5

4κ
− 5

8
(−19 + 6 ln 2− 6 lnκ)− 5

16
κ(−107 + 60 ln 2− 60 lnκ)

+O(κ2, κ2 lnκ) (4.222)

which results in the corresponding expansion for Π(κ):

Π(κ) =− λ
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+O(κ, κ lnκ) (4.223)

With the 1PI contributions written in this form, its UV-divergent and UV-convergent
parts are identified as:

Π∞(κ) = − λ

16π2κ
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1536π4
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(4.224)

Π0(0) =
λ

32π2
+

λ2

3072π4
(25− 21 ln 2) (4.225)

For the case of the ai(κ) coefficient present in the 4-point function, when ∆ = 2
and d = 3 it is straightforward to see that it reduces to:

ai(κ) =
(2)i(−1)i

i!

( 1

1 + κ

)6+2i
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( 1
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)2)
(4.226)

We need to identify the UV-divergent and UV-convergent parts of every coefficient,
a

(∞)
i (κ) and a

(0)
i (0) respectively. Since d = 3 only the i = 0 coefficient is expected to be

divergent. Indeed, using the software Mathematica we obtain that the i = 0 coefficient
can be expanded as:

a0(κ) =
( 1

1 + κ

)6

2F1

(
1, 1; 2;

( 1

1 + κ

)2)
= − lnκ− ln 2 +O(κ, κ lnκ) (4.227)

from where we see its UV-divergent and UV-convergent parts:

a
(∞)
0 (κ) = − lnκ, a

(0)
0 (0) = − ln 2 (4.228)
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While for the i > 0 coefficients, safely taking κ = 0 they can be written as:

ai>0(0) =
(2)i(−1)i

i!
2F1(1, 1; 2 + i; 1) =

(2)i(2)iΓ(i)

i!3
(−1)i (4.229)

where we used that 2F1(a, b; c; 1) = Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) . Similarly for the coefficients bi(0)

and ci(0) present in the 4-point function, when ∆ = 2 and d = 3 it is straightforward to
see that they reduce to:

bi(0) = −2
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i!2
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i+ 1
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ci(0) = −(2)i(2)i
i!2

δi,0 (4.231)

where we solved
∑i

l=0
(−i)l
l!
ψ(i − l + 1) = ψ(i + 1)δi,0 + (−1)i+1

i
(1 − δi,0), used that

ψ(i+ 1)− ψ(i+ 2) = − 1
i+1

and also that 1F0(−i; 1) = δi,0.

Finally then, using these particular results for the 1PI contributions Π(κ) and for
the coefficients ai(κ), bi(0) and ci(0) in the summarized study of a general Φ4 theory
found in section 4.2.7, we conclude that for ∆ = 2 and d = 3, conveniently choosing the
counterterms Z(λ), δm2 and δλ as:

Z(λ) = ε−
λ

16π2−
λ2

1536π4 (25−21 ln 2) (4.232)
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δλ = − 3λ2

32π2
lnκ (4.234)

result, up to order λ2 in the coupling constant, in the holographic renormalized 1-,
2-, 3- and 4-point functions:



4.2. Φ4 THEORY 145

1-pt fn: 〈O∆(~y1)〉CFT = 〈O∆(~y1)〉CFT,con = 0
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where Π0(0) = λ
32π2 + λ2

3072π4 (25−21 ln 2). Notice how in the present case the 4-point
functions consist in a finite number of terms, as compared to those obtained for general
values of ∆ and d summarized in section 4.2.7. This is due to the nice form that the
coefficients ai, bi and ci take for the particular case ∆ = 2 and d = 3, where ci becomes
a Kronecker delta, while every coefficient bi>0 exactly cancel those contributions coming
from the coefficients ai>0, resulting in a finite number of contributions to the 4-point
functions coming only from the coefficients a0, b0 and c0.



Conclusions

The holographic nature of gravity is captured by the AdS/CFT correspondence in a
remarkable way: through delicate manipulations we can obtain correlators for some CFT
in d dimensions using as a starting point a field theory on a AdS space in d+1 dimensions.
Now, these manipulations are delicate because the CFT correlators are obtained from
the boundary behavior of the of the field theory on AdS, where both the metric and
the fields living in it diverge. The key point here is that the CFT theory is hidden
in these infrared divergences of the bulk theory, requiring a sensitive renormalization
treatment to its obtention. This fact is no surprise due to the strong/weak duality between
both theories, and it is precisely what has already been known for some time for the
classical approximation of the bulk theory on AdS, motivating the entire holographic
renormalization program.

In this thesis we went beyond the classical approximation, considering the quantum
corrections to the holographic correlators. The first result here of our work was to find that
for scalar Φ3 and Φ4 theories on AdS, these quantum corrections to the CFT correlators
correspond exactly to the expected diagrams obtained from the known Feynman rules for
these theories, where in our case the external legs of the diagrams have been extended
to the conformal boundary of the AdS space. This allowed us to define the holographic
dictionary between the CFT correlators in the boundary with the AdS correlators in the
bulk, simply understanding the former as the limit of the latter.

Then, the second result of our work was to develop the necessary formulas for the
computation of every single one of these quantum corrections present in the holographic
correlators, facing not only the expected infrared divergences but also the ultraviolet di-
vergences coming from the evaluation of the bulk-bulk propagators at coincident points
in the AdS space. Since the physics of the holography is precisely hidden in these di-
vergences this motivated us to introduce regularization schemes, extrapolating the used
for the infrared divergences at the classical level now for the loop integrals, and taking
a point-splitting approach for the new ultraviolet divergences not seen at tree-level cal-
culations. What is remarkable of these schemes is that the resulting holographic 2-point
functions correspond exactly to those of a CFT under anomalies, in particular with the
presence of an anomalous scaling dimension receiving contributions from its one-particle
irreducible loop diagrams. In practice this occurs because the formulas found for the ver-
tices

∫
Gn ∼ 1 and

∫
GnK ∼ K allow us to write the 2-point function in the 1PI expansion

〈OO〉 ∼ 1
y2∆ + Π

∫
KK + Π2

∫
K
∫
GK + · · · , where the constant Π is obtained from the

1PI contributions. This expansion for the correlator along with the formulas found for

the vertices
∫
KK ∼ ln (y)

y2∆ ,
∫
K
∫
GK ∼ ln2 (y)

y2∆ , etc, result exactly in the Taylor series of

an exponent, allowing us to factorize the 1PI expansion in the form of 〈OO〉 ∼ 1
y2∆+γ ,

where γ = −Π
ν

is precisely what is known as the anomalous dimension. In this way, the
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role of the quantum corrections to the holographic 2-point function can be appreciated,
being able to also notice both the role of its IR and UV divergences: the IR give rise to
the logarithmic structure of the correlator, while the UV fix the value of the anomalous
exponent.

For the holographic 3- and 4-point functions, the consideration of the formulas
found for the vertices

∫
GK ∼ K ln(K̃) and

∫
GnKK ∼ KKf(K̃K̃y2) result in the exact

same anomalous structure for the correlators. In summary, for scalar Φ3 and Φ4 theories
on a fixed AdSd+1 background it is obtained that the resulting quantum corrected CFTd

correlators can be factorized into the forms 〈O〉 = 0, 〈OO〉 = C2

y2∆+γ , 〈OOO〉 = C3∏
i<j y

∆+
γ
2

ij

and 〈OOOO〉 = C4(u,v)∏
i<j y

2
3 (∆+

γ
2 )

ij

, where for a Φ4 theory C3 = 0. These correlators correspond

precisely to those of a CFT under the anomaly ∆→ ∆ + γ
2
.

One of the consequences that we found of this nice factorization of the 1PI ex-
pansions in the correlators is that the different IR and UV divergences contained in the
quantities γ, C2, C3 and C4(u, v) can be renormalized in exactly the same way as it is done
for ordinary field theories, this is, through a redefinition of the parameters of the theory
in the bulk, where for a Φ4 theory the only restriction is that d < 7. This might be related
with the fact that for d > 6 there are not SCFT since d = 6 is the highest dimension in
which the superconformal algebra exist [20]. In holographic terms, our results deliver a
possible answer to this fact: there are not SCFT in d > 6 since the resulting theories in
the bulk are non-renormalizable.

Scalar field theories are of course not the only ones that we can consider on a AdS
space. Furthermore, since in general the theory that one will be interested in studying
in the bulk will come from the low energy limit of a certain string theory, the AdS space
will not be fixed either but it will present quantum fluctuations which will contribute to
the holographic correlators through diagrams containing gravitons. Non-scalar theories
and quantum fluctuations of the AdS metric are not studied in this work, however many
of the computations that appear in these cases effectively reduce to those addressed here
for scalar theories, therefore we expect that the different schemes, formulas and tools
developed in this thesis will be of great interest for these cases, not only at the classical
level of the correspondence but at its full quantum nature.
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Appendix A

D-functions

Throughout this work one encounters many integrals in which the difficulty of their resolu-
tion justify a separate treatment from the main text as to not lose the focus of discussion.
Those that fall under this category that we will study in this appendix are the ones in-
volving only bulk-boundary propagators, integrals which are also known as D-functions in
the literature. Pictorially, these functions correspond to diagrams that only have external
lines which coincide at some point in the interior of the AdS space and that extend up to
some arbitrary point on its conformal boundary. By definition, they are represented by:

D∆1···∆n(~y1, . . . , ~yn) ≡
∫
dd+1x

√
g K̃∆1(x, ~y1) · · · K̃∆n(x, ~yn) (A.1)

where the quantities K̃∆i(x, ~yi) are the unnormalized bulk-boundary propagators
of scaling dimension ∆i:

K̃∆i(x, ~yi) =
[ x0

(x− ~yi)2

]∆i

(A.2)

We will proceed, following the work by Muck and Viswanathan [21], to partially
compute the general integral present in eq. (A.1) to write down a more useful repre-
sentation for the D-functions, with the intention to later study the concrete D-functions
encountered in this work more easily.

A.1 General Case

As we said, we will solve the general case eq. (A.1) up to a point in which it makes it
easier to study the concrete cases we are interested in, these are the cases with n = 3,
n = 4 and for last the special case of n = 2. We will start then by explicitly writing the
form of the bulk-boundary propagators in the definition of the general D-function:

D∆1···∆n(~y1, . . . , ~yn) =

∫
dd+1x

x
∑

∆i−d−1
0∏[

(x− ~yi)2
]∆i

(A.3)
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We can make progress in the computation of this integral grouping the factors in
the denominator using Feynman parametrization:

1

Aα1
1 · · ·Aαnn

=
Γ(
∑
αi)∏

Γ(αi)

∫ 1

0

dnu
δ(
∑
ui − 1)uα1−1

1 · · ·uαn−1
n

(u1A1 + · · ·+ unAn)
∑
αi

(A.4)

which results in:

1∏[
(x− ~yi)2

]∆i
=

Γ(
∑

∆i)∏
Γ(∆i)

∫ 1

0

dnu
δ(
∑
ui − 1)u∆1−1

1 · · ·u∆n−1
n[

u1(x− ~y1)2 + · · ·+ un(x− ~yn)2
]∑∆i

=
Γ(
∑

∆i)∏
Γ(∆i)

∫ 1

0

dnu
δ(
∑
ui − 1)u∆1−1

1 · · ·u∆n−1
n[

x2
0 + (~x−

∑
ui~yi)2 +

∑
ui~yi

2 − (
∑
ui~yi)2

]∑∆i

=
Γ(
∑

∆i)∏
Γ(∆i)

∫ 1

0

dnu
δ(
∑
ui − 1)u∆1−1

1 · · ·u∆n−1
n[

x2
0 + (~x−

∑
ui~yi)2 +

∑
i<j uiuj ~yij

2
]∑∆i

(A.5)

where we completed squares, used the fact that the delta function forces
∑
ui = 1

and simplified the resulting sums, defining in the process the quantity ~yij
2 ≡ |~yi − ~yj|2.

Replacing this representation for the denominator back into the original integral and
performing the translation ~x→ ~x+

∑
ui~yi:

D∆1···∆n(~y1, . . . , ~yn) =
Γ(
∑

∆i)∏
Γ(∆i)

∫ 1

0

dnu

∫
dd+1x

δ(
∑
ui − 1)u∆1−1

1 · · ·u∆n−1
n x

∑
∆i−d−1

0[
x2

0 + (~x−
∑
ui~yi)2 +

∑
i<j uiuj ~yij

2
]∑∆i

=
Γ(
∑

∆i)∏
Γ(∆i)

∫ 1

0

dnu

∫
dd+1x

δ(
∑
ui − 1)u∆1−1

1 · · ·u∆n−1
n x

∑
∆i−d−1

0

(x2
0 + ~x2 +

∑
i<j uiuj ~yij

2)
∑

∆i

(A.6)

The resulting integral in the ~x variable can be simply done using spherical coordi-

nates, which can be seen more easily by doing first the rescaling ~x→ ~x
√
x2

0 +
∑

i<j uiuj ~yij
2:

D∆1···∆n(~y1, . . . , ~yn) =
Γ(
∑

∆i)∏
Γ(∆i)

∫ 1

0

dnu

∫ ∞
0

dx0
δ(
∑
ui − 1)u∆1−1

1 · · ·u∆n−1
n x

∑
∆i−d−1

0

(x2
0 +

∑
i<j uiuj ~yij

2)
∑

∆i− d2

×
∫
ddx

1

(1 + ~x2)
∑

∆i
(A.7)

Computing the value of this last integral gives:

∫
ddx

1

(1 + ~x2)
∑

∆i
= π

d
2

Γ(
∑

∆i − d
2
)

Γ(
∑

∆i)
(A.8)
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Then the D-function reduces to:

D∆1···∆n(~y1, . . . , ~yn) = π
d
2

Γ(
∑

∆i − d
2
)∏

Γ(∆i)

∫ 1

0

dnu

∫ ∞
0

dx0
δ(
∑
ui − 1)u∆1−1

1 · · ·u∆n−1
n x

∑
∆i−d−1

0

(x2
0 +

∑
i<j uiuj ~yij

2)
∑

∆i− d2

(A.9)

In the same way, the resulting integral now in the x0 variable can be simply done

which can be seen more easily by doing the rescaling x0 → x0

√∑
i<j uiuj ~yij

2:

D∆1···∆n(~y1, . . . , ~yn) = π
d
2

Γ(
∑

∆i − d
2
)∏

Γ(∆i)

∫ 1

0

dnu
δ(
∑
ui − 1)u∆1−1

1 · · ·u∆n−1
n

(
∑

i<j uiuj ~yij
2)

∑
∆i
2

∫ ∞
0

dx0
x
∑

∆i−d−1
0

(1 + x2
0)

∑
∆i− d2

(A.10)

The value of this last integral is:

∫ ∞
0

dx0
x
∑

∆i−d−1
0

(1 + x2
0)

∑
∆i− d2

=
1

2

Γ(
∑

∆i−d
2

)Γ(
∑

∆i

2
)

Γ(
∑

∆i − d
2
)

(A.11)

Then the D-function further reduces to:

D∆1···∆n(~y1, . . . , ~yn) =
π
d
2

2

Γ(
∑

∆i−d
2

)Γ(
∑

∆i

2
)∏

Γ(∆i)

∫ 1

0

dnu
δ(
∑
ui − 1)u∆1−1

1 · · ·u∆n−1
n

(
∑

i<j uiuj ~yij
2)

∑
∆i
2

(A.12)

This representation for the general D-function is already friendly enough to be
used for the different cases we are interested in, and in fact we will use this specific form
to prove some nice properties of these functions, but there is still one more simplification
we can do which consists of making the change of variable u1 → u1, ui>1 → u1ui>1 and
then trivially performing the u1 integral through the Dirac delta function, process which
finally brings the expression for the general D-function to the form it will be mainly used:

D∆1···∆n(~y1, . . . , ~yn) =
π
d
2

2

Γ(
∑

∆i−d
2

)Γ(
∑

∆i

2
)∏

Γ(∆i)

∫ ∞
0

dn−1u
u∆2−1

2 · · ·u∆n−1
n

(
∑

1<i ui ~y1i
2 +

∑
1<i<j uiuj ~yij

2)
∑

∆i
2

(A.13)

Next we will see how this expression allows us to directly compute some of the
integrals encountered in our study of holographic correlators.
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A.2 Case n = 3

The particular case of eq. (A.1) with n = 3, being the integral of 3 bulk-boundary
propagators, is encountered in our work as contributions to the holographic CFT 3-point
functions from considering Φ3 theories on AdS. Now, as we showed in eq. (2.40), the func-
tional form of CFT 3-point functions is completely fixed purely from the highly restrictive
conformal symmetries. It is very satisfactory then to check that these contributions do
indeed have this expected form. Let us calculate this particular case using as a starting
point the representation for the D-function just obtained eq. (A.13):

D∆1∆2∆3(~y1, ~y2, ~y3) =
π
d
2

2

Γ(
∑

∆i−d
2

)Γ(
∑

∆i

2
)∏

Γ(∆i)

∫ ∞
0

d2u
u∆2−1

2 u∆3−1
3

(u2 ~y12
2 + u3 ~y13

2 + u2u3 ~y23
2)

∑
∆i
2

(A.14)

where i = 1, 2, 3. The resulting integral in the u3 variable can be simply done by

doing first the rescaling u3 → u3

(
u2 ~y12

2

~y13
2+u2 ~y23

2

)
:

D∆1∆2∆3(~y1, ~y2, ~y3) =
π
d
2

2

Γ(
∑

∆i−d
2

)Γ(
∑

∆i

2
)∏

Γ(∆i)

1

|~y1 − ~y2|∆1+∆2−∆3

×
∫ ∞

0

du2
u

∆2+∆3−∆1
2

−1

2

( ~y13
2 + u2 ~y23

2)∆3

∫ ∞
0

du3
u∆3−1

3

(1 + u3)
∑

∆i
2

(A.15)

Computing the value of this last integral gives:

∫ ∞
0

du3
u∆3−1

3

(1 + u3)
∑

∆i
2

=
Γ(∆3)Γ(∆1+∆2−∆3

2
)

Γ(
∑

∆i

2
)

(A.16)

Then the D-function reduces to:

D∆1∆2∆3(~y1, ~y2, ~y3) =
π
d
2

2

Γ(
∑

∆i−d
2

)

Γ(∆1)Γ(∆2)

Γ(∆1+∆2−∆3

2
)

|~y1 − ~y2|∆1+∆2−∆3

∫ ∞
0

du2
u

∆2+∆3−∆1
2

−1

2

( ~y13
2 + u2 ~y23

2)∆3

(A.17)

In exactly the same way, the resulting integral now in the u2 variable can be simply

done by doing first the rescaling u2 → u2
~y13

2

~y23
2 :

D∆1∆2∆3(~y1, ~y2, ~y3) =
π
d
2

2

Γ(
∑

∆i−d
2

)

Γ(∆1)Γ(∆2)

Γ(∆1+∆2−∆3

2
)

|~y1 − ~y2|∆1+∆2−∆3 |~y2 − ~y3|∆2+∆3−∆1|~y3 − ~y1|∆3+∆1−∆2

×
∫ ∞

0

du2
u

∆2+∆3−∆1
2

−1

2

(1 + u2)∆3
(A.18)
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The value of this last integral is:

∫ ∞
0

du2
u

∆2+∆3−∆1
2

−1

2

(1 + u2)∆3
=

Γ(∆2+∆3−∆1

2
)Γ(∆3+∆1−∆2

2
)

Γ(∆3)
(A.19)

Allowing us to compute the D-function completely:

D∆1∆2∆3(~y1, ~y2, ~y3) =
π
d
2

2

Γ(
∑

∆i−d
2

)∏
Γ(∆i)

Γ(∆1+∆2−∆3

2
)Γ(∆2+∆3−∆1

2
)Γ(∆3+∆1−∆2

2
)

|~y1 − ~y2|∆1+∆2−∆3 |~y2 − ~y3|∆2+∆3−∆1|~y3 − ~y1|∆3+∆1−∆2

(A.20)

This result is consistent with was found by Muck and Viswanathan [21] and also
independently by Freedman et. al. [22]. The form of this result, of course, satisfactorily
agrees with the form expected for CFT 3-point functions derived in eq. (2.40). In the
particular case where all the scaling dimensions ∆i are equal ∆i = ∆, the D-function
further reduces to:

D∆∆∆(~y1, ~y2, ~y3) =
π
d
2

2

Γ(3∆−d
2

)

Γ(∆)3

Γ(∆
2

)3

|~y1 − ~y2|∆|~y2 − ~y3|∆|~y3 − ~y1|∆
(A.21)

agreeing again, unsurprisingly, with the expected form derived in eq. (2.41).

A.3 Case n = 4

Continuing our study of D-functions, the particular case of eq. (A.1) now with n =
4, being the integral of 4 bulk-boundary propagators, is encountered in our work as
contributions to the holographic CFT 4-point functions from both Φ3 and Φ4 theories on
AdS. Now, the functional form of CFT 4-point functions is also strongly restricted purely
from conformal symmetry arguments, as we showed in eq. (2.40). It is very satisfactory
then to check that this D-function do indeed have this non-trivial form. Just like how we
did before, let us calculate this particular case using as a starting point the representation
for the D-function eq. (A.13):

D∆1∆2∆3∆4(~y1, ~y2, ~y3, ~y4) =
π
d
2

2

Γ(
∑

∆i−d
2

)Γ(
∑

∆i

2
)∏

Γ(∆i)

×
∫ ∞

0

d3u
u∆2−1

2 u∆3−1
3 u∆4−1

4

(u2 ~y12
2 + u3 ~y13

2 + u4 ~y14
2 + u2u3 ~y23

2 + u2u4 ~y24
2 + u3u4 ~y34

2)
∑

∆i
2

(A.22)

where i = 1, 2, 3, 4. The resulting integral in the u4 variable can be simply done

by doing first the rescaling u4 → u4

(
u2 ~y12

2+u3 ~y13
2+u2u3 ~y23

2

~y14
2+u2 ~y24

2+u3 ~y34
2

)
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D∆1∆2∆3∆4(~y1, ~y2, ~y3, ~y4) =
π
d
2

2

Γ(
∑

∆i−d
2

)Γ(
∑

∆i

2
)∏

Γ(∆i)

×
∫ ∞

0

d2u
u∆2−1

2 u∆3−1
3

(u2 ~y12
2 + u3 ~y13

2 + u2u3 ~y23
2)

∑
∆i
2
−∆4( ~y14

2 + u2 ~y24
2 + u3 ~y34

2)∆4

×
∫ ∞

0

du4
u∆4−1

4

(1 + u4)
∑

∆i
2

(A.23)

Computing the value of this last integral gives:

∫ ∞
0

du4
u∆4−1

4

(1 + u4)
∑

∆i
2

=
Γ(∆4)Γ(

∑
∆i

2
−∆4)

Γ(
∑

∆i

2
)

(A.24)

Then the D-function reduces to:

D∆1∆2∆3∆4(~y1, ~y2, ~y3, ~y4) =
π
d
2

2

Γ(
∑

∆i−d
2

)Γ(
∑

∆i

2
−∆4)

Γ(∆1)Γ(∆2)Γ(∆3)

×
∫ ∞

0

d2u
u∆2−1

2 u∆3−1
3

(u2 ~y12
2 + u3 ~y13

2 + u2u3 ~y23
2)

∑
∆i
2
−∆4( ~y14

2 + u2 ~y24
2 + u3 ~y34

2)∆4

(A.25)

The resulting integral now in the u3 variable can be done more simply by doing

first the rescaling u3 → u3

(
~y14

2+u2 ~y24
2

~y34
2

)
:

D∆1∆2∆3∆4(~y1, ~y2, ~y3, ~y4) =
π
d
2

2

Γ(
∑

∆i−d
2

)Γ(
∑

∆i

2
−∆4)

Γ(∆1)Γ(∆2)Γ(∆3)

× 1

|~y1 − ~y2|
∑

∆i−2∆4|~y3 − ~y4|2∆3|~y1 − ~y4|2∆4−2∆3

∫ ∞
0

du2
u

∆2+∆4−
∑

∆i
2
−1

2

(1 + u2
~y24

2

~y14
2 )∆4−∆3

×
∫ ∞

0

du3
u∆3−1

3

(1 + u3)∆4
[
1 + u3( ~y13

2+u2 ~y23
2

u2 ~y12
2 )( ~y14

2+u2 ~y24
2

~y34
2 )

]∑
∆i
2
−∆4

(A.26)

This last integral is nothing more than the integral representation of Gauss’ hy-
pergeometric function 2F1, up to constant factors:

2F1(a, b; c; 1− z) =
Γ(c)

Γ(b)Γ(c− b)

∫ ∞
0

dx
xb−1

(1 + x)c−a(1 + xz)a
(A.27)

Writing it then in terms of this function allows us to further reduce the expression
for the D-function to:
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D∆1∆2∆3∆4(~y1, ~y2, ~y3, ~y4) =
π
d
2

2

Γ(
∑

∆i−d
2

)Γ(
∑

∆i

2
−∆3)Γ(

∑
∆i

2
−∆4)

Γ(∆1)Γ(∆2)Γ(
∑

∆i

2
)

× 1

|~y1 − ~y2|
∑

∆i−2∆4|~y3 − ~y4|2∆3|~y1 − ~y4|2∆4−2∆3

∫ ∞
0

du2
u

∆2+∆4−
∑

∆i
2
−1

2

(1 + u2
~y24

2

~y14
2 )∆4−∆3

× 2F1

(∑∆i

2
−∆4,∆3;

∑
∆i

2
; 1−

[ ~y13
2 + u2 ~y23

2

u2 ~y12
2

][ ~y14
2 + u2 ~y24

2

~y34
2

])
(A.28)

Let us make one last change of variable u2
~y24

2

~y14
2 = x, and conveniently write the

external points ratios in terms of the conformal invariant cross ratios u and v defined in
eq. (2.38). This process brings the expression for the D-function into the form:

D∆1∆2∆3∆4(~y1, ~y2, ~y3, ~y4) =
π
d
2

2

Γ(
∑

∆i−d
2

)Γ(
∑

∆i

2
−∆3)Γ(

∑
∆i

2
−∆4)

Γ(∆1)Γ(∆2)Γ(
∑

∆i

2
)

u
∆4
2
−∆3

2
−

∑
∆i
6 v

∆2
2

+
∆3
2
−

∑
∆i
6∏

i<j|~yi − ~yj|∆i+∆j−
∑

∆n
3

×
∫ ∞

0

dx
x∆2+∆4−

∑
∆i
2
−1

(1 + x)∆4−∆3
2F1

(∑∆i

2
−∆4,∆3;

∑
∆i

2
; 1− 1

u

[
1 + v +

1

x
+ vx

])
(A.29)

which is, of course, consistent with [21]. Written this way, it is already clear
enough that it satisfactorily agrees with the form expected for CFT 4-point functions
derived in eq. (2.40)! The remaining integral in the x variable can be solved in terms of
the H(. . . ;u, v) function defined by Dolan and Osborn in [23], which simply consists in
a particular series expansion on the cross ratios u and v:

∫ ∞
0

dx
x∆2+∆4−

∑
∆i
2
−1

(1 + x)∆4−∆3
2F1

(∑∆i

2
−∆4,∆3;

∑
∆i

2
; 1− 1

u

[
1 + v +

1

x
+ vx

])
=

Γ(
∑

∆i

2
)

Γ(∆3)Γ(∆4)Γ(
∑

∆i

2
−∆3)Γ(

∑
∆i

2
−∆4)

u
∑

∆i
2
−∆4

×H
(

∆2,

∑
∆i

2
−∆4,∆1 + ∆2 −

∑
∆i

2
+ 1,∆1 + ∆2;u, v

)
(A.30)

Plugging this result into eq. (A.29) finally brings the D-function to the final form
that we will be interested in this work:

D∆1∆2∆3∆4(~y1, ~y2, ~y3, ~y4) =
π
d
2

2

Γ(
∑

∆i−d
2

)∏
Γ(∆i)

u
∆1
2

+
∆2
2
−

∑
∆i
6 v

∆2
2

+
∆3
2
−

∑
∆i
6∏

i<j|~yi − ~yj|∆i+∆j−
∑

∆n
3

×H
(

∆2,

∑
∆i

2
−∆4,∆1 + ∆2 −

∑
∆i

2
+ 1,∆1 + ∆2;u, v

)
(A.31)
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which is consistent with what was found by Dolan and Osborn in [15]. In the
particular case where all the scaling dimensions ∆i are equal ∆i = ∆, the D-function
takes the relatively simple form:

D∆∆∆∆(~y1, ~y2, ~y3, ~y4) =
π
d
2

2

Γ(2∆− d
2
)

Γ(∆)4

u
∆
3 v

∆
3∏

i<j|~yi − ~yj|
2∆
3

H(∆,∆, 1, 2∆;u, v) (A.32)

agreeing again, unsurprisingly, with the expected form derived in eq. (2.41).

There is a nice derivative recurrence relation followed by these quantities which
relate D-functions of different scaling dimensions that can be proved starting from their
representation in eq. (A.12). Indeed, differentiating both sides of this representation with
respect to y2

12 it is direct to see that it reduces to [24]:

∂

∂y2
12

D∆1∆2∆3∆4(~y1, ~y2, ~y3, ~y4) = − ∆1∆2

(
∑

∆i−d
2

)
D∆1+1∆2+1∆3∆4(~y1, ~y2, ~y3, ~y4) (A.33)

and generalizing this equality iteratively:

∂n

∂(y2
12)n

D∆1∆2∆3∆4(~y1, ~y2, ~y3, ~y4) =
(−1)n(∆1)n(∆2)n

(
∑

∆i−d
2

)n
D∆1+n∆2+n∆3∆4(~y1, ~y2, ~y3, ~y4)

(A.34)

This nice property of the D-functions will be useful in the study of the quantum
corrected holographic 4-point functions dual to a Φ4 theory on AdS.

A.4 Special Case n = 2

The last D-function we will be interested in is a delicate one in which, as we will see shortly,
its proper treatment will reveal the correct structure of the quantum corrections to the
holographic correlators. It is the particular case of eq. (A.1) with n = 2, representing
the integral of 2 bulk-boundary propagators. This function is encountered in our work
as loops one-particle irreducible contributions to the holographic CFT 2-point functions
from both Φ3 and Φ4 theories on AdS. Since the functional form of these CFT 2-point
functions is completely fixed purely from conformal symmetry arguments, as we showed
in eq. (2.40), and also CFT loops diagrams can very well be UV-divergent, we expect
these particular D-functions to have the functional form of CFT 2-point correlators up to
eventual anomalies coming from the possible need to IR-regularize them (IR in this case
due to the weak/strong duality). We can quickly convince ourselves that this is indeed
the case if we try to naively compute this D-function in the same way we have done it
for the previous ones, using as a starting point the representation for the D-function eq.
(A.13):
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D∆1∆2(~y1, ~y2) =
π
d
2

2

Γ(∆1+∆2−d
2

)Γ(∆1+∆2

2
)

Γ(∆1)Γ(∆2)

∫ ∞
0

du2
u∆2−1

2

(u2 ~y12
2)

∆1+∆2
2

=
π
d
2

2

Γ(∆1+∆2−d
2

)Γ(∆1+∆2

2
)

Γ(∆1)Γ(∆2)

1

|~y1 − ~y2|∆1+∆2

∫ ∞
0

du2 u
−1+

∆2−∆1
2

2 (A.35)

The resulting integral in the u2 variable is clearly divergent for any pair of values ∆1

and ∆2, polynomically divergent for ∆1 6= ∆2 and logarithmically divergent for ∆1 = ∆2.
In fact, this same behavior can already be seen from the original definition of the D-
function as the integrated radial coordinate x0 approaches the conformal boundary of the
AdS space at x0 = 0. Indeed, the integrand of eq. (A.1) with n = 2 in this limit where
x0 → 0 behaves like:

√
g K̃∆1(x, ~y1)K̃∆2(x, ~y2) =

x0→0
x−d−1

0

[
c−1

∆1
xd−∆1

0 δd(~x− ~y1) + · · ·+ x∆1
0

1

|~x− ~y1|2∆1
+ · · ·

]
×
[
c−1

∆2
xd−∆2

0 δd(~x− ~y2) + · · ·+ x∆2
0

1

|~x− ~y2|2∆2
+ · · ·

]
= (contact terms) + x−1+∆2−∆1

0

c−1
∆1
δd(~x− ~y1)

|~x− ~y2|2∆2

+ x−1+∆1−∆2
0

c−1
∆2
δd(~x− ~y2)

|~x− ~y1|2∆1
+ (subleading terms) (A.36)

where we used the expansion of the bulk-boundary propagator eq. (3.43). Again,
the resulting integral now in the radial coordinate x0 is clearly divergent as it approaches
x0 = 0, polynomically divergent for ∆1 6= ∆2 and logarithmically divergent for ∆1 = ∆2.
The realization of this fact strongly suggests the regularization of the x0 integral in its
lower limit of integration since in this region is where the divergences are emerging. But
we have already encountered the need for such a regulator in what would appears to be a
completely different context, when regularizing the variation of the AdS path integral in
the holographic renormalization procedure with the intention to compute the tree-level
contributions to the holographic correlators, introducing the IR-regulator ε for the first
time in eq. (3.50). The regularization scheme in this case correctly captures the structure
of these classical contributions, so it is extremely satisfying to find that it also does it
for the quantum contributions to the correlators as well. In fact, keeping track of this
regulator carefully throughout the manipulations of the AdS path integral, it naturally
IR-regularize every single one of the loops integrals found in the study of the holographic
n-point functions! All this discussion is to motivate the definition of the regularized
version of the D-function which is the quantity that one actually encounters:

D
(ε)
∆1∆2

(~y1, ~y2) ≡
∫
x0=ε

dd+1x
√
g K̃∆1(x, ~y1)K̃∆2(x, ~y2) (A.37)

We will proceed to show how one can easily compute the value of this integral using
a very clever trick, in the case where both scaling dimensions are the same ∆1 = ∆2 = ∆
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which is, of course, the case in which one is most interested. For the case when ∆1 6= ∆2

the arguments presented here easily generalize. We will be interested then in the value of
the integral:

D
(ε)
∆∆(~y1, ~y2) =

∫
x0=ε

dd+1x
√
g K̃∆(x, ~y1)K̃∆(x, ~y2) (A.38)

The strategy will be to extract all the dependence on the external points of the
integrand through AdS isometry transformations eq. (2.60), remaining dependence only
in the limits of integration, for then solving the differential equation followed by the
resulting integral instead of solving the integral directly, which will turn out to be much
simpler to do. With these goals in mind then, we will start computing eq. (A.38) by
performing the translation ~x→ ~x+ ~y2:

D
(ε)
∆∆(~y1, ~y2) =

∫
x0=ε

dd+1x
√
g K̃∆(x, ~y12)K̃∆(x,~0) (A.39)

where we used that under AdS isometry transformations the AdS measure is in-
variant and that the bulk-boundary propagator transforms according to eq. (3.45). The
leftover dependency of the integrand on the external points can be removed by doing the
rescaling x→ |~y1 − ~y2|x:

D
(ε)
∆∆(~y1, ~y2) =

∫
x0= ε

| ~y1− ~y2|

dd+1x
√
g

1

|~y1 − ~y2|∆
K̃∆
(
x,

~y12

|~y1 − ~y2|

) 1

|~y1 − ~y2|∆
K̃∆(x,~0)

=
1

|~y1 − ~y2|2∆

∫
x0=σ

dd+1x
√
g K̃∆(x, n̂)K̃∆(x,~0) (A.40)

where we used the transformation rules of the measure and bulk-boundary propa-
gator, and defined the quantities σ ≡ ε

| ~y1− ~y2| and n̂ = ~y12

| ~y1− ~y2| , n̂ being a unit vector pointing

in the direction of ~y12. Notice how under these transformations we managed to extract
all the dependence of the external points of the integrand, remaining only in the lower
limit of integration of the x0 integral in the form of σ. It remains to compute the value
of this last integral in the limit ε→ 0, which in terms of σ translates to σ → 0. The key
realization here is that in this limit the differential equation in σ satisfied by the integral
is much easier to solve than the integral itself thanks to the convenient presence of Dirac
deltas in the expansion of the integrand coming from the bulk-boundary propagators, as
it can be seen from eq. (A.36). Indeed, differentiating the integral in eq. (A.40) with
respect to σ in the limit σ → 0:
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d

dσ

[∫
x0=σ

dd+1x
√
g K̃∆(x, n̂)K̃∆(x,~0)

]
=−

∫
ddx
√
g K̃∆(x, n̂)K̃∆(x,~0)

∣∣∣
x0=σ

=
σ→0

(contact terms)

− 1

c∆σ

∫
ddx

[δd(~x− n̂)

|~x|2∆
+

δd(~x)

|~x− n̂|2∆

]
+O(σ−1<)

=(contact terms)− 2

c∆σ
+O(σ−1<) (A.41)

where in the first line we used the fundamental theorem of calculus, in the second
line we expanded the integrand using eq. (A.36) and in the last line we trivially computed
the integrals with the Dirac deltas coming from the bulk-boundary propagators, using the
fact that the vector n̂ is unitary. Notice how the resulting equation for the integral is very
easy to solve! Simply integrating both sides with respect to σ we find, up to integration
constants, that the value of the integral is given by:

∫
x0=σ

dd+1x
√
g K̃∆(x, n̂)K̃∆(x,~0) = (contact terms)− 2

c∆

ln (σ) +O(σ0<) (A.42)

Notice how the subleading terms of order O(σ0<) simply go to 0 in the limit σ → 0.
Therefore, plugging this result for the integral back into eq. (A.40) and remembering that
σ ≡ ε

| ~y1− ~y2| , the value we find for the regularized D-function eq. (A.38) (up to contact

terms which can always be renormalized with appropriate local counterterms) is given by:

D
(ε)
∆∆(~y1, ~y2) = − 2c−1

∆

|~y1 − ~y2|2∆
ln
( ε

|~y1 − ~y2|

)
(A.43)

This result seems to break the conformal structure expected for contributions to the
2-point function of a CFT, however as it is discussed in the main text, its form corresponds
exactly to the expansion of a conformal anomaly, realization which will lead not only to
a clear picture of the role of the quantum corrections to the holographic correlators, but
also to a clear picture in their renormalization scheme.



Appendix B

Integral Formulas

In Appendix A we studied the set of integrals encountered in our work of holographic CFT
correlators that only involve bulk-boundary propagators, integrals which are known in
the AdS/CFT literature as D-functions. There we not only presented a possible approach
on how to solve these quantities but also, since they represent contributions to specific
CFT correlators, we checked that they have precisely the functional form expected from
conformal symmetry arguments. In the present appendix we will continue the study
of the integrals encountered in our work but now focusing on those that also contain
the complicated bulk-bulk propagator. One come across these integrals mainly from
the quantum corrections to the holographic correlators, which pictorially correspond to
loops diagrams in the interior of the AdS space. The representation of the bulk-bulk
propagator however as a hypergeometric function in the ξ variable, eq. (3.74), makes these
integrals extremely difficult to evaluate. Fortunately, one can express this hypergeometric
function in a much useful form thanks to the fact that in the entire region of integration
its argument is constrained between the values 0 and 1, allowing us to write it in its
convergent power series representation which greatly facilitates the resulting integrals to
solve. The claim of the codomain of ξ can be seen directly from the Euclidean distance
between the two points of the bulk-bulk propagator G(x, z):

0 ≤ (x− z)2

= (x0 − z0)2 + (~x− ~z)2

= x2
0 − 2x0z0 + z2

0 + (~x− ~z)2 (B.1)

Adding 2x0z0 to both sides of the inequality and then dividing by x2
0 +z2

0 +(~x−~z)2:

=⇒ 0 ≤ 2x0z0 ≤ x2
0 + z2

0 + (~x− ~z)2

=⇒ 0 ≤ 2x0z0

x2
0 + z2

0 + (~x− ~z)2
≤ 1 (B.2)

where, since both radial coordinates x0 and z0 are always positive, we trivially
added 0 as the lower limit of the inequality. The quantity between the inequality symbols

160
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is precisely ξ, confirming our claim. This fact let us express the bulk-bulk propagator as
a power series in this variable:

G(x, z) =
2−∆c∆

2ν

∞∑
k=0

(∆
2

)k(
∆+1

2
)k

(ν + 1)k k!
ξ∆+2k, ξ =

2x0z0

x2
0 + z2

0 + (~x− ~z)2
(B.3)

where we introduced the Pochhammer symbol (a)k = Γ(a+k)
Γ(a)

. The strategy of
resolution for these complicated integrals involving the bulk-bulk propagator will then be
to write G(x, z) in its power series representation, which will lead to simpler integrals
involving powers of ξ and bulk-boundary propagators. It will turn out that, this process
for the particular integrals encountered in this work, when written explicitly most of them
will have the form:

I(z0, ~y1, ~y2) =

∫
dd+1x

xa0
(x2

0 + z2
0 + |~x− ~y1|2)b(x2

0 + |~x− ~y2|2)c
(B.4)

We will then proceed to compute the general formula for this integral, to later
use it and study more easily the concrete cases encountered in our work of holographic
correlators in which we are interested.

B.1 General Formula

As we said, we will solve for the general formula of eq. (B.4) with the intention to use
it for the concrete integrals involving the bulk-bulk propagator that we are interested in,
propagator which written as a power series in ξ will result in simpler integrals involv-
ing powers of this parameters and bulk-boundary propagators. We will start then the
computation of eq. (B.4) by grouping the factors in the denominator using Feynman
parametrization eq. (A.4), resulting in:

I(z0, ~y1, ~y2) =
Γ(b+ c)

Γ(b)Γ(c)

∫ 1

0

d2u

∫
dd+1x

δ(u1 + u2 − 1)ub−1
1 uc−1

2 xa0[
u1(x2

0 + z2
0 + |~x− ~y1|2) + u2(x2

0 + |~x− ~y2|2)
]b+c

=
Γ(b+ c)

Γ(b)Γ(c)

∫ 1

0

d2u

∫
dd+1x

δ(u1 + u2 − 1)ub−1
1 uc−1

2 xa0[
x2

0 + (~x− u1 ~y1 − u2 ~y2)2 + u1 ~y1
2 + u2 ~y2

2 − (u1 ~y1 + u2 ~y2)2 + u1z2
0

]b+c
=

Γ(b+ c)

Γ(b)Γ(c)

∫ 1

0

d2u

∫
dd+1x

δ(u1 + u2 − 1)ub−1
1 uc−1

2 xa0[
x2

0 + (~x− u1 ~y1 − u2 ~y2)2 + u1u2 ~y12
2 + u1z2

0

]b+c
(B.5)

where we completed squares, used the fact that the delta function forces u1+u2 = 1
and simplified the resulting terms, defining in the process the quantity ~y12

2 ≡ |~y1 − ~y2|2.
The resulting integral in the ~x variable can be simply done by first doing the translation
~x→ ~x+ u1 ~y1 + u2 ~y2:
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I(z0, ~y1, ~y2) =
Γ(b+ c)

Γ(b)Γ(c)

∫ 1

0

d2u

∫
dd+1x

δ(u1 + u2 − 1)ub−1
1 uc−1

2 xa0
(x2

0 + ~x2 + u1u2 ~y12
2 + u1z2

0)b+c
(B.6)

followed by the rescaling ~x→ ~x
√
x2

0 + u1u2 ~y12
2 + u1z2

0 :

I(z0, ~y1, ~y2) =
Γ(b+ c)

Γ(b)Γ(c)

∫ 1

0

d2u

∫ ∞
0

dx0
δ(u1 + u2 − 1)ub−1

1 uc−1
2 xa0

(x2
0 + u1u2 ~y12

2 + u1z2
0)b+c−

d
2

∫
ddx

1

(1 + ~x2)b+c

(B.7)

Computing the value of this last integral gives:

∫
ddx

1

(1 + ~x2)b+c
= π

d
2

Γ(b+ c− d
2
)

Γ(b+ c)
(B.8)

Then I(z0, ~y1, ~y2) reduces to:

I(z0, ~y1, ~y2) = π
d
2

Γ(b+ c− d
2
)

Γ(b)Γ(c)

∫ 1

0

d2u

∫ ∞
0

dx0
δ(u1 + u2 − 1)ub−1

1 uc−1
2 xa0

(x2
0 + u1u2 ~y12

2 + u1z2
0)b+c−

d
2

(B.9)

In the same way, the resulting integral now in the x0 variable can be done more

simply by doing first the rescaling x0 → x0

√
u1u2 ~y12

2 + u1z2
0 :

I(z0, ~y1, ~y2) = π
d
2

Γ(b+ c− d
2
)

Γ(b)Γ(c)

∫ 1

0

d2u
δ(u1 + u2 − 1)ub−1

1 uc−1
2

(u1u2 ~y12
2 + u1z2

0)b+c−
a+d+1

2

∫ ∞
0

dx0
xa0

(1 + x2
0)b+c−

d
2

(B.10)

The value of this last integral is:

∫ ∞
0

dx0
xa0

(1 + x2
0)b+c−

d
2

=
1

2

Γ(a+1
2

)Γ(b+ c− a+d+1
2

)

Γ(b+ c− d
2
)

(B.11)

Then I(z0, ~y1, ~y2) further reduces to:

I(z0, ~y1, ~y2) =
π
d
2

2

Γ(a+1
2

)Γ(b+ c− a+d+1
2

)

Γ(b)Γ(c)

∫ 1

0

d2u
δ(u1 + u2 − 1)u

a+d+1
2
−c−1

1 uc−1
2

(z2
0 + u2 ~y12

2)b+c−
a+d+1

2

=
π
d
2

2

Γ(a+1
2

)Γ(b+ c− a+d+1
2

)

Γ(b)Γ(c)

∫ 1

0

du1
u
a+d+1

2
−c−1

1 (1− u1)c−1

(z2
0 + ~y12

2 − u1 ~y12
2)b+c−

a+d+1
2

=
π
d
2

2

Γ(a+1
2

)Γ(b+ c− a+d+1
2

)

Γ(b)Γ(c)(z2
0 + ~y12

2)b+c−
a+d+1

2

∫ 1

0

du1
u
a+d+1

2
−c−1

1 (1− u1)c−1(
1− u1

~y12
2

z2
0+ ~y12

2

)b+c−a+d+1
2

(B.12)
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where we trivially computed the u2 integral through the Dirac delta function and
extracted the z2

0 + ~y12
2 factor from the denominator. This last integral is nothing more

than the integral representation of Gauss’ hypergeometric function 2F1, up to constant
factors [25]:

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

dx
xb−1(1− x)c−b−1

(1− xz)a
(B.13)

Writing it then in terms of this function allows us to finally solve for the general
formula of eq. (B.4):

∫
dd+1x

xa0
(x2

0 + z2
0 + |~x− ~y1|2)b(x2

0 + |~x− ~y2|2)c
=
π
d
2

2

Γ(a+1
2

)Γ(b+ c− a+d+1
2

)Γ(a+d+1
2
− c)

Γ(b)Γ(a+d+1
2

)(z2
0 + |~y1 − ~y2|2)b+c−

a+d+1
2

× 2F1

(
b+ c− a+ d+ 1

2
,
a+ d+ 1

2
− c; a+ d+ 1

2
; 1− z2

0

z2
0 + |~y1 − ~y2|2

)
(B.14)

Next we will see how this formula can be applied to the different resulting integrals
encountered in our study of holographic correlators coming from writing the bulk-bulk
propagator in its power series representation.

B.2
∫
ξ-type Integrals

The first type of integrals we are going to consider are those resulting from
∫
Gn, being

the integral of the n-th power of the bulk-bulk propagator. The particular case with n = 2
is encountered in our work in the ”eight” or ”double-scoop” loop diagram coming from
Φ4 theories on AdS. Using the power series representation of G(x, z) as an expansion in
the variable ξ, these type of integrals simply reduce to a sum of integrals of powers of ξ,
each one having the general form:∫

dd+1x
√
g ξ∆1(x, z) (B.15)

for some number ∆1. Each one of these integrals can be solved directly from the
formula eq. (B.14) under the particular case c = |~y1 − ~y2| = 0, where the formula simply
reduces to:

∫
dd+1x

xa0
(x2

0 + z2
0 + |~x− ~y1|2)b

=
π
d
2

2

Γ(a+1
2

)Γ(b− a+d+1
2

)

Γ(b)z2b−a−d−1
0

(B.16)

where we used that 2F1(. . . ; 0) = 1. Let us see how eq. (B.15) can be directly
solved from the reduced version of the general formula eq. (B.16):
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∫
dd+1x

√
g ξ∆1(x, z) =

∫
dd+1x x−d−1

0

( 2x0z0

x2
0 + z2

0 + |~x− ~z|2
)∆1

= 2∆1z∆1
0

∫
dd+1x

x∆1−d−1
0

(x2
0 + z2

0 + |~x− ~z|2)∆1
(B.17)

This last integral is precisely the reduced formula eq. (B.16) under the particular
case a = ∆1 − d− 1 and b = ∆1. Therefore, replacing its value:

∫
dd+1x

√
g ξ∆1(x, z) = 2∆1z∆1

0

π
d
2

2

Γ(∆1−d
2

)Γ(∆1

2
)

Γ(∆1)z∆1
0

= 2∆1
π
d
2

2

Γ(∆1−d
2

)Γ(∆1

2
)

Γ(∆1)
(B.18)

In principle, the form of this result is already nice enough to be used, but for the
specific calculations that we want to carry out it will be useful to simplify it using what
is known as Legendre duplication formula [26]:

Γ(z)Γ
(
z +

1

2

)
= 21−2z

√
π Γ(2z) (B.19)

which, for the particular value z = ∆1

2
, allows us to write the final result of the

integral as:

∫
dd+1x

√
g ξ∆1(x, z) = π

d+1
2

Γ(∆1−d
2

)

Γ(∆1+1
2

)
(B.20)

Notice how the value of this integral is just a number, not dependent of the external
point. Since the integral

∫
Gn can be written as a sum of integrals of powers of ξ this

result implies that, whenever
∫
Gn is convergent, its value is just a constant! As it is

discussed in the main text, this fact is completely consistent with the expected purely
from AdS isometry arguments.

B.3
∫
ξK-type Integrals

Another type of integrals that we are going to consider are those resulting from
∫
GnK,

being the integral of the n-th power of the bulk-bulk propagator times the bulk-boundary
propagator. Many particular cases of these integrals are found throughout our study of
holographic correlators, e.g., the case with n = 2 in the ”eye” loop diagram coming from
Φ3 theories, the case with n = 3 in the ”sunset” loop diagram coming from Φ4 theories,
and of course the special case with n = 1 in the one-time reducible diagrams coming from
both theories. Using the power series representation of G(x, z) as an expansion in the
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variable ξ, these type of integrals simply reduce to a sum of integrals of powers of ξ times
K, each one having the general form:∫

dd+1x
√
g ξ∆1(x, z)K̃∆2(x, ~y2) (B.21)

for some numbers ∆1 and ∆2, where K̃∆2(x, ~y2) is the unnormalized bulk-boundary
propagator of scaling dimension ∆2, eq. (A.2). Each one of these integrals can be solved
directly from the general formula eq. (B.14). Let us see how this is done:

∫
dd+1x

√
g ξ∆1(x, z)K̃∆2(x, ~y2) =

∫
dd+1x x−d−1

0

( 2x0z0

x2
0 + z2

0 + |~x− ~z|2
)∆1
( x0

x2
0 + |~x− ~y2|2

)∆2

= 2∆1z∆1
0

∫
dd+1x

x∆1+∆2−d−1
0

(x2
0 + z2

0 + |~x− ~z|2)∆1(x2
0 + |~x− ~y2|2)∆2

(B.22)

This last integral is precisely the general formula eq. (B.14) under the particular
case a = ∆1 + ∆2 − d− 1, b = ∆1, c = ∆2. Therefore, replacing its value:

∫
dd+1x

√
g ξ∆1(x, z)K̃∆2(x, ~y2) =2∆1z∆1

0

π
d
2

2

Γ(∆1+∆2−d
2

)Γ(∆1+∆2

2
)Γ(∆1−∆2

2
)

Γ(∆1)Γ(∆1+∆2

2
)(z2

0 + |~z − ~y2|2)
∆1+∆2

2

× 2F1

(∆1 + ∆2

2
,
∆1 −∆2

2
;
∆1 + ∆2

2
; 1− z2

0

z2
0 + |~z − ~y2|2

)
=2∆1z∆1

0

π
d
2

2

Γ(∆1+∆2−d
2

)Γ(∆1−∆2

2
)

Γ(∆1)(z2
0 + |~z − ~y2|2)

∆1+∆2
2

× 1F0

(∆1 −∆2

2
; 1− z2

0

z2
0 + |~z − ~y2|2

)
=2∆1z∆1

0

π
d
2

2

Γ(∆1+∆2−d
2

)Γ(∆1−∆2

2
)

Γ(∆1)(z2
0 + |~z − ~y2|2)

∆1+∆2
2

( z2
0

z2
0 + |~z − ~y2|2

)∆2−∆1
2

=2∆1
π
d
2

2

Γ(∆1+∆2−d
2

)Γ(∆1−∆2

2
)

Γ(∆1)
K̃∆2(z, ~y2) (B.23)

where we used that 2F1(a, b; a; z) = 1F0(b; z) = (1 − z)−b. In principle, the form
of this result is already nice enough to be used, but for the specific calculations that we
want to carry out it will be useful to simplify it using Legendre duplication formula eq.
(B.19) which, for the particular value z = ∆1

2
, allows us to write the final result of the

integral as:

∫
dd+1x

√
g ξ∆1(x, z)K̃∆2(x, ~y2) = π

d+1
2

Γ(∆1+∆2−d
2

)Γ(∆1−∆2

2
)

Γ(∆1

2
)Γ(∆1+1

2
)

K̃∆2(z, ~y2) (B.24)
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Notice how the value of this integral is proportional to a bulk-boundary propagator
of the same scaling dimension as the one being integrated. Since the integral

∫
GnK can

be written as a sum of integrals of powers of ξ times K this result implies that, whenever∫
GnK is convergent, its value will be proportional to K!. As it is discussed in the

main text, this fact is completely consistent with the expected purely from AdS isometry
arguments.

B.4
∫
ξKK-type Integrals

The most challenging type of integrals that we are going to consider in this work are those
resulting from

∫
GnKK, being the integral of the n-power of the bulk-bulk propagator

times two bulk-boundary propagators. The particular cases with n = 1 and n = 2 are
encountered in the scalar exchange diagrams coming from Φ3 and Φ4 theories on AdS,
respectively. Using the power series representation of G(x, z) as an expansion in the
variable ξ, these type of integrals simply reduce to a sum of integrals of powers of ξ times
KK, each one having the general form:∫

dd+1x
√
g ξ∆1(x, z)K̃∆2(x, ~y2)K̃∆3(x, ~y3) (B.25)

for some numbers ∆1, ∆2 and ∆3, where K̃∆i(x, ~yi) is the unnormalized bulk-
boundary propagator of scaling dimension ∆i, eq. (A.2). Each one of these integrals can
be solved directly from the general formula eq. (B.14) after a couple of AdS isometry
transformations, where one tries to simplify the expression for one of the bulk-boundary
propagators by translating its external boundary dependence to ~0 and then referring
its interior point to infinity through an inversion transformation, resulting for the bulk-
boundary propagator in a simple power of the radial coordinate x0. Let us see how this
is done. Under this spirit then of simplifying the expression for one of the bulk-boundary
propagators we will start by performing the translation ~x → ~x + ~y3, also conveniently
defining in the process z = z′ + ~y3:

∫
dd+1x

√
g ξ∆1(x, z)K̃∆2(x, ~y2)K̃∆3(x, ~y3) =

∫
dd+1x

√
g ξ∆1(x, z′)K̃∆2(x, ~y23)K̃∆3(x,~0)

(B.26)

where we used that under AdS isometry transformations both the AdS measure
and variable ξ are invariant and that the bulk-boundary propagator transforms according
to eq. (3.45). As we anticipated, the form of the second bulk-boundary propagator which
has its external boundary dependence translated to ~0, can be greatly simplified to a simple
power of x0 through an inversion of its interior point. Therefore, performing the inversion
xµ → xµ

x2 , also conveniently defining in the process z′µ = z′′µ

z′′2
and ~y23 = ~y23

′

~y23
′2 :
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∫
dd+1x

√
g ξ∆1(x, z)K̃∆2(x, ~y2)K̃∆3(x, ~y3)

=

∫
dd+1x

√
g ξ∆1(x, z′′)| ~y23

′|2∆2K̃∆2(x, ~y23
′)x∆3

0

= | ~y23
′|2∆2

∫
dd+1x x−d−1

0

( 2x0z
′′
0

x2
0 + z′′20 + |~x− ~z′′|2

)∆1
( x0

x2
0 + |~x− ~y23

′|2
)∆2

x∆3
0

= 2∆1z′′∆1
0 | ~y23

′|2∆2

∫
dd+1x

x
∑

∆i−d−1
0

(x2
0 + z′′20 + |~x− ~z′′|2)∆1(x2

0 + |~x− ~y23
′|2)∆2

(B.27)

where, again, we used the transformation rules of the measure, the variable ξ
and the bulk-boundary propagator. Notice how this last integral is precisely the general
formula eq. (B.14) under the particular case a =

∑
∆i − d − 1, b = ∆1 and c = ∆2.

Therefore, replacing its value:

∫
dd+1x

√
g ξ∆1(x, z)K̃∆2(x, ~y2)K̃∆3(x, ~y3)

= 2∆1z′′∆1
0 | ~y23

′|2∆2
π
d
2

2

Γ(
∑

∆i−d
2

)Γ(∆1+∆2−∆3

2
)Γ(∆3+∆1−∆2

2
)

Γ(∆1)Γ(
∑

∆i

2
)(z′′20 + |~z′′ − ~y23

′|2)
∆1+∆2−∆3

2

× 2F1

(∆1 + ∆2 −∆3

2
,
∆3 + ∆1 −∆2

2
;

∑
∆i

2
; 1− z′′20

z′′20 + |~z′′ − ~y23
′|2
)

(B.28)

There are many transformation formulas satisfied by the hypergeometric functions
that allows one to relate hypergeometric functions of different parameters and arguments.
Among them is a linear transformation of the argument known as Euler’s transformation
[13]:

2F1(a, b; c; z) = (1− z)c−a−b 2F1(c− a, c− b; c; z) (B.29)

which, for the hypergeometric function present in eq. (B.28), this transformation
will turn out to be extremely revealing since it will allows us to write the final result of
the integral in terms of the original bulk-boundary propagators. Indeed, performing this
transformation:
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∫
dd+1x

√
g ξ∆1(x, z)K̃∆2(x, ~y2)K̃∆3(x, ~y3)

= 2∆1z′′∆1
0 | ~y23

′|2∆2
π
d
2

2

Γ(
∑

∆i−d
2

)Γ(∆1+∆2−∆3

2
)Γ(∆3+∆1−∆2

2
)

Γ(∆1)Γ(
∑

∆i

2
)(z′′20 + |~z′′ − ~y23

′|2)
∆1+∆2−∆3

2

×
( z′′20

z′′20 + |~z′′ − ~y23
′|2
)∆2+∆3−∆1

2

2F1

(
∆2,∆3;

∑
∆i

2
; 1− z′′20

z′′20 + |~z′′ − ~y23
′|2
)

= 2∆1
π
d
2

2

Γ(
∑

∆i−d
2

)Γ(∆1+∆2−∆3

2
)Γ(∆3+∆1−∆2

2
)

Γ(∆1)Γ(
∑

∆i

2
)

× | ~y23
′|2∆2

z′′∆2+∆3
0

(z′′20 + |~z′′ − ~y23
′|2)∆2

2F1

(
∆2,∆3;

∑
∆i

2
; 1− z′′20

z′′20 + |~z′′ − ~y23
′|2
)

= 2∆1
π
d
2

2

Γ(
∑

∆i−d
2

)Γ(∆1+∆2−∆3

2
)Γ(∆3+∆1−∆2

2
)

Γ(∆1)Γ(
∑

∆i

2
)

× | ~y23
′|2∆2K̃∆2(z′′, ~y23

′)z′′∆3
0 2F1

(
∆2,∆3;

∑
∆i

2
; 1− K̃(z′′, ~y23

′)z′′0

)
(B.30)

and remembering that ~y23
′ = ~y23

~y23
2 and z′′µ = z′µ

z′2
, where z′ = z − ~y3:

∫
dd+1x

√
g ξ∆1(x, z)K̃∆2(x, ~y2)K̃∆3(x, ~y3)

= 2∆1
π
d
2

2

Γ(
∑

∆i−d
2

)Γ(∆1+∆2−∆3

2
)Γ(∆3+∆1−∆2

2
)

Γ(∆1)Γ(
∑

∆i

2
)

× K̃∆2(z′, ~y23)K̃∆3(z′,~0) 2F1

(
∆2,∆3;

∑
∆i

2
; 1− K̃(z′, ~y23)K̃(z′,~0)| ~y23|2

)
= 2∆1

π
d
2

2

Γ(
∑

∆i−d
2

)Γ(∆1+∆2−∆3

2
)Γ(∆3+∆1−∆2

2
)

Γ(∆1)Γ(
∑

∆i

2
)

× K̃∆2(z, ~y2)K̃∆3(z, ~y3) 2F1

(
∆2,∆3;

∑
∆i

2
; 1− K̃(z, ~y2)K̃(z, ~y3)| ~y23|2

)
(B.31)

where we used the transformation rules of the bulk-boundary propagator. The
form of this result is already nice enough to be used, but for the specific calculations that
we want to carry out it will be useful to simplify it using Legendre duplication formula
eq. (B.19) which, for the particular value z = ∆1

2
, allows us to write the final result of the

integral as:
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∫
dd+1x

√
g ξ∆1(x, z)K̃∆2(x, ~y2)K̃∆3(x, ~y3)

= π
d+1

2
Γ(

∑
∆i−d
2

)Γ(∆1+∆2−∆3

2
)Γ(∆3+∆1−∆2

2
)

Γ(∆1

2
)Γ(∆1+1

2
)Γ(

∑
∆i

2
)

× K̃∆2(z, ~y2)K̃∆3(z, ~y3) 2F1

(
∆2,∆3;

∑
∆i

2
; 1− K̃(z, ~y2)K̃(z, ~y3)| ~y23|2

)
(B.32)

Notice how the value of this integral is proportional to bulk-boundary propagators
of the same scaling dimension as the ones being integrated times some function of them.
Since the integral

∫
GnKK can be written as a sum of integrals of powers of ξ times KK

this result implies that, whenever
∫
GnKK is convergent, its value will be proportional

to KKf(K̃K̃y2), where the function f(K̃K̃y2) can in general be written as a series in its
argument.

B.5 Special Case
∫
GK

There are many integrals involving the bulk-bulk propagator that are encountered in the
study of holographic correlators, however the formulas developed so far only help us to
solve those that are infrared convergent. In the case of the integrals that are infrared
divergent the introduction of an IR-regulator is needed and the study of the obtention
of their regularized values becomes much more delicate, requiring a completely different
approach from the one followed up to now. One of these integrals that require special
attention is:

I(z, ~y) =

∫
dd+1x

√
g G(x, z)K̃∆(x, ~y) (B.33)

where both propagators are of the same scaling dimension ∆. This integral is found
throughout our study of correlators in the reducible diagrams coming from both Φ3 and
Φ4 theories on AdS, where the irreducible parts of the diagrams are connected by a single
bulk-bulk propagator. The IR-divergence of this integral can be seen directly by studying
how its integrand behaves as it approaches the boundary of AdS. In this case, using the
explicit form of the metric and the known expansions of both propagators we obtain that:

√
g G(x, z)K̃∆(x, ~y) ∼

x0→0
x−d−1

0 x∆
0 x

d−∆
0

= x−1
0 (B.34)

behavior which clearly shows the divergence (logarithmic in this case) of the inte-
gral, for any value of ∆, as it gets integrated closer and closer to the conformal boundary
of the AdS space at x0 = 0. As it has been discussed throughout this work, this particular
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type of divergence is to be expected due to the IR/UV duality that the AdS/CFT corre-
spondence implies, motivating the introduction of the ε-regulator not only for the on-shell
contributions coming from the AdS path integral through the study of the holographic
renormalization procedure, but also for the off-shell contributions coming from it, where
the regularization scheme used in the former naturally translates into the latter by simply
performing the loops integral up to this same small distance ε. This brief discussion is
to motivate the regularized version of the integral which is the quantity that one actually
encounters:

I(z, ~y) =

∫
x0=ε

dd+1x
√
g G(x, z)K̃∆(x, ~y) (B.35)

There are many ways in which we can solve for the value of this integral not only
as a function of the external points z and ~y, but also as a function of the IR-regulator
ε. For instance, we could follow the same strategy used for the integral

∫
KK studied in

Appendix A, where simply using AdS isometry transformations we extract all the depen-
dence on the external points of the integrand, remaining dependence only in the limits
of integration for then solving the differential equation followed by the resulting integral.
However, for the sake of diversity and completeness regarding the different approaches
that one can take for these divergent integrals, here we will present an alternative ap-
proach. It is of course satisfactory that the method we will use next delivers exactly
the same result as the one described above. Its motivation comes from noticing the easy
differential equation that the integral satisfies when acting with the wave operator:

(−�z +m2)I(z, ~y) =

∫
x0=ε

dd+1x
√
g (−�z +m2)G(x, z)K̃∆(x, ~y)

=

∫
x0=ε

dd+1x δd+1(x− z)K̃∆(x, ~y)

= K̃∆(z, ~y) (B.36)

where we used that the bulk-bulk propagator is the Green’s function of the wave
operator and in the last line the limit ε → 0 is understood. In other words, the integral
we are trying to compute satisfies the equation:

(−�z +m2)I(z, ~y) = K̃∆(z, ~y) (B.37)

But the solution to this equation is already known! It is given by− 1
2ν
K̃∆(z, ~y) ln

(
K̃(z, ~y)

)
.

Indeed:
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(−�z +m2)
[
− 1

2ν
K̃∆(z, ~y) ln

(
K̃(z, ~y)

)]
=(−�z′ +m2)

[
− 1

2ν
K̃∆(z′,~0) ln

(
K̃(z′,~0)

)]
=(−�z′′ +m2)

[
− 1

2ν
z′′∆0 ln (z′′0 )

]
=
[
−z′′20 ∂

2
0′′ − (1− d)z′′0∂0′′ − z′′20 ∂

2
i′′ +m2

][
− 1

2ν
z′′∆0 ln (z′′0 )

]
=

1

2ν
∆(∆− 1)z′′∆0 ln (z′′0 ) +

1

2ν
(2∆− 1)z′′∆0

+
1

2ν
(1− d)∆z′′∆0 ln (z′′0 ) +

1

2ν
(1− d)z′′∆0

− 1

2ν
m2z′′∆0 ln(z′′0 )

=
1

2ν

[
∆(∆− 1) + (1− d)∆−m2

]
z′′∆0 ln(z′′0 )

+
1

2ν

[
(2∆− 1) + (1− d)

]
z′′∆0

=
1

2ν

[
∆(∆− d)−m2

]
z′′∆0 ln(z′′0 ) +

1

2ν
(2∆− d)z′′∆0

=z′′∆0

=K̃∆(z, ~y)

(B.38)

where, using the invariance of the wave operator under isometries and the known
transformation rules of the bulk-boundary propagator, in the first and second equalities
we defined the translated point z′ = z − ~y followed by the inverted point z′′µ = z′µ

z′2
, in

the third equality using eq. (3.13) we wrote the wave equation explicitly, in the fourth
equality we computed every derivative, in the fifth equality we conveniently factorized
the resulting terms, in the sixth equality we simplified terms, in the seventh equality we
used that ∆(∆ − d) = m2 and 2∆ − d = 2ν, and in the final equality we wrote the
result in terms of the original coordinates. By arguments of unicity and uniqueness of the
solution then, this implies that the general solution of I(z, ~y) is given by this quantity up
to homogeneous solutions to the wave equation. But we already solved the homogeneous
case, its solution are given by eq. (3.35). Thus, the value of the integral eq. (B.35) can
be written as:

∫
x0=ε

dd+1x
√
g G(z, x)K̃∆(x, ~y) = − 1

2ν
K̃∆(z, ~y) ln

(
K̃(z, ~y)

)
+ c1K̃

∆(z, ~y) + c2K̃
d−∆(z, ~y)

(B.39)

for some constants c1 and c2, determined by the boundary conditions of the integral.
As z0 →∞ it is direct to see that the LHS goes to 0, yet the last term of the RHS diverges.
This implies the boundary condition c2 = 0. Similarly, we can completely determine the
coefficient c1 studying the limit z0 → 0. However as we have already seen repeatedly for
quantities being evaluated at the conformal boundary of AdS, the correct physics of their
infrared behavior comes from studying them not at the boundary itself but at some small
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distance ε from it, where of course this regulator is understood to be a small positive
number. As expected, it turns out that the present case under study is no exception.
Therefore, with the intention to study the boundary behavior of eq. (B.39) in the limit
z0 → 0, let us call z0 = ε where of course this is the same IR-regulator as before:

∫
x0=ε

dd+1x
√
g G
(
(ε, ~z), x

)
K̃∆(x, ~y) = − 1

2ν
K̃∆
(
(ε, ~z), ~y

)
ln
(
K̃
(
(ε, ~z), ~y

))
+c1K̃

∆
(
(ε, ~z), ~y

)
(B.40)

In the limit ε→ 0, using the known expansion of both propagator and keeping the
terms of order ε∆, the resulting equation for c1 is:

c∆

2ν
ε∆

∫
x0=ε

dd+1x
√
g K̃∆(x, ~z)K̃∆(x, ~y) = − 1

2ν

ε∆

|~z − ~y|2∆
ln
( ε

|~z − ~y|2
)

+ c1
ε∆

|~z − ~y|2∆

(B.41)

In other words, we can determine the coefficient c1 using the fact that in the
appropriate limit the integral

∫
GK must reduce to the value of the integral

∫
KK!

Indeed, we already found the value of this integral in Appendix A, it is given by eq.
(A.43). Therefore, replacing its value we find the condition for c1:

− 1

ν

ε∆

|~z − ~y|2∆
ln
( ε

|~z − ~y|

)
= − 1

2ν

ε∆

|~z − ~y|2∆
ln
( ε

|~z − ~y|2
)

+ c1
ε∆

|~z − ~y|2∆
(B.42)

Multiplying both sides by |~z−~y|
2∆

ε∆
and solving for c1:

c1 =
1

2ν
ln
( ε

|~z − ~y|2
)
− 1

ν
ln
( ε

|~z − ~y|

)
=

1

2ν
ln (ε)− 1

2ν
ln
(
|~z − ~y|2

)
− 1

ν
ln (ε) +

1

ν
ln
(
|~z − ~y|

)
= − 1

2ν
ln (ε) (B.43)

This result is noteworthy. It is not just a number as of course it should, but it is
a divergent one. All the logarithmic infrared divergence of the integral

∫
GK is correctly

captured by this coefficient. Finally then, replacing it in the general form of the solution
we find that the value of the regularized

∫
GK integral is given by:

∫
x0=ε

dd+1x
√
g G(z, x)K̃∆(x, ~y) = − 1

2ν
K̃∆(z, ~y) ln

(
K̃(z, ~y)

)
− 1

2ν
K̃∆(z, ~y) ln (ε)

= − 1

2ν
K̃∆(z, ~y) ln

(
εK̃(z, ~y)

)
(B.44)
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This result not only satisfies the correct wave equation and shows the explicit
logarithmic divergence of the integral, but also in the appropriate limit it reduces to the
known value of the

∫
KK integral. Moreover, as it is discussed in the main text, the form

of this result allow us to factorize exactly the reducible diagrams present on both Φ3 and
Φ4 theories, leading not only to a clear picture of the role of the quantum corrections to
the holographic correlators, but also to a clear picture in their renormalization scheme.

B.6 Special Case
∫
K
∫
GK

Another infrared divergent integral involving the bulk-bulk propagator that is encountered
in the computation of holographic correlators, whose study becomes delicate due to the
need of introducing an IR-regulator and that therefore requires special attention is:

I(~y1, ~y2) =

∫
dd+1x1

√
g K̃∆(x1, ~y1)

∫
dd+1x2

√
g G(x1, x2)K̃∆(x2, ~y2) (B.45)

where all propagators are of the same scaling dimension ∆. This integral is found
throughout our study of correlators in the ”double head” diagram present in the holo-
graphic 2-point function dual to a Φ4 theory on AdS. The IR-divergence of this quantity
can be seen directly by analyzing first one of the integrals, say the x2 integral, and then
the remaining integral in x1. Indeed, as we just saw in the previous section, the integral
in x2 is nothing but the special case

∫
GK whose value was found to be IR-divergent as it

gets integrated closer and closer to the conformal boundary of the AdS space. Moreover,
since its value is proportional to K, the resulting integral in x1 will be proportional to KK
and as we discussed in section A.4 of appendix A, such integral is also IR-divergent in the
same region of integration. This fact suggests the regularization of both integrals in the
lower limit of their radial coordinate. As it has been discussed repeatedly, this particular
type of divergence is to be expected due to the IR/UV duality that the AdS/CFT corre-
spondence implies, motivating the introduction of the ε-regulator not only for the on-shell
contributions coming from the AdS path integral through the study of the holographic
renormalization procedure, but also for the off-shell contributions coming from it, where
the regularization scheme used in the former naturally translates into the latter by simply
performing the loops integral up to this same small distance ε. This brief discussion is
to motivate the regularized version of the integral which is the quantity that one actually
encounters:

I(~y1, ~y2) =

∫
x1,0=ε

dd+1x1
√
g K̃∆(x1, ~y1)

∫
x2,0=ε

dd+1x2
√
g G(x1, x2)K̃∆(x2, ~y2) (B.46)

The solving strategy for this quantity will be the same as the one used for the∫
KK integral, that is, extracting all the dependence on the external points of the inte-

grand through AdS isometry transformations, remaining dependence only in the limits
of integration, for then solving the differential equation followed by the resulting integral
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instead of solving the integral directly, process which will turn out to be much simpler to
do. With these goals in mind then, we will start computing eq. (B.47) by first performing
the translations xi → xi + ~y2:

I(~y1, ~y2) =

∫
x1,0=ε

dd+1x1
√
g K̃∆(x1, ~y12)

∫
x2,0=ε

dd+1x2
√
g G(x1, x2)K̃∆(x2,~0) (B.47)

where we used that under AdS isometry both the AdS measure and the bulk-bulk
propagator are invariant and that the bulk-boundary propagators transform according
to eq. (3.45). The leftover dependency of the integrand on the external points can be
removed by doing the rescaling xi → |~y1 − ~y2|xi:

I(~y1, ~y2) =

∫
x1,0= ε

| ~y1− ~y2|

dd+1x1
√
g

1

|~y1 − ~y2|∆
K̃∆
(
x1,

~y12

|~y1 − ~y2|

)
×
∫
x2,0= ε

| ~y1− ~y2|

dd+1x2
√
g G(x1, x2)

1

|~y1 − ~y2|∆
K̃∆(x2,~0)

=
1

|~y1 − ~y2|2∆

∫
x1,0=σ

dd+1x1
√
g K̃∆(x1, n̂)

∫
x2,0=σ

dd+1x2
√
g G(x1, x2)K̃∆(x2,~0)

(B.48)

where, again, we used the transformation rules of the measure and propagators,
and defined the quantities σ ≡ ε

| ~y1− ~y2| and n̂ = ~y12

| ~y1− ~y2| , n̂ being a unit vector pointing in

the direction of ~y12. Notice how under these transformations we managed to extract all
the dependence of the external points of the integrand, remaining only in the lower limits
of integration of the x1 and x2 integrals in the form of σ. It remains to compute the value
of this last integral in the limit ε→ 0, which in terms of σ translates to σ → 0. The key
realization here is that in this limit the differential equation in σ satisfied by the integral
is much easier to solve than the integral itself thanks to the convenient presence of Dirac
deltas in the expansion of the integrand coming from the bulk-boundary propagators.
Indeed, differentiating the integral in eq. (B.48) with respect to σ in the limit σ → 0:

d

dσ

[∫
x1,0=σ

dd+1x1
√
g K̃∆(x1, n̂)

∫
x2,0=σ

dd+1x2
√
g G(x1, x2)K̃∆(x2,~0)

]
= −

∫
ddx1
√
g K̃∆(x1, n̂)

∫
x2,0=σ

dd+1x2
√
g G(x1, x2)K̃∆(x2,~0)

∣∣∣
x1,0=σ

−
∫
x1,0=σ

dd+1x1
√
g K̃∆(x1, n̂)

∫
ddx2
√
g G(x1, x2)K̃∆(x2,~0)

∣∣∣
x2,0=σ

=
σ→0
− 1

2νσ

∫
ddx1 δ

d( ~x1 − n̂)

∫
x2,0=σ

dd+1x2
√
g K̃∆(x2, ~x1)K̃∆(x2,~0)

− 1

2νσ

∫
x1,0=σ

dd+1x1
√
g K̃∆(x1, n̂)

∫
ddx2 K̃

∆(x1, ~x2)δd( ~x2) +O(σ−1<)

= − 1

νσ

∫
x0=σ

dd+1x
√
g K̃∆(x, n̂)K̃∆(x,~0) +O(σ−1<) (B.49)
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where in the first line we used the fundamental theorem of calculus, in the second
line since σ is understood to be small we used the known expansions of the propagators,
and in the last line we trivially computed the respective integrals using the Dirac deltas
coming from the bulk-boundary propagators. We can proceed with the calculation of this
integral by multiplying both sides with σ and then differentiating again with respect to
σ:

d

dσ

{
σ
d

dσ

[∫
x1,0=σ

dd+1x1
√
g K̃∆(x1, n̂)

∫
x2,0=σ

dd+1x2
√
g G(x1, x2)K̃∆(x2,~0)

]}
=

d

dσ

[
−1

ν

∫
x0=σ

dd+1x
√
g K̃∆(x, n̂)K̃∆(x,~0) +O(σ0<)

]
=

1

ν

∫
ddx
√
g K̃∆(x, n̂)K̃∆(x,~0)

∣∣∣
x0=σ

+O(σ−1<)

=
σ→0

(contact terms) +
1

νc∆σ

∫
ddx

[δd(~x− n̂)

|~x|2∆
+

δd(~x)

|~x− n̂|2∆

]
+O(σ−1<)

= (contact terms) +
2

νc∆σ
+O(σ−1<) (B.50)

where in the second line we used the fundamental theorem of calculus, in the third
line since σ is understood to be small we used the known expansions of the propagators,
and in the last line we trivially computed the respective integrals using the Dirac deltas
coming from the bulk-boundary propagators, using the fact that the vector n̂ is unitary.
Notice how the resulting equation for the integral is very easy to solve! Simply integrating
both sides with respect to σ twice we find, up to integration constants, that the value of
the integral is given by:

∫
x1,0=σ

dd+1x1
√
g K̃∆(x1, n̂)

∫
x2,0=σ

dd+1x2
√
g G(x1, x2)K̃∆(x2,~0)

= (contact terms) +
1

νc∆

ln2 (σ) +O(σ0<) (B.51)

Notice how the subleading terms of order O(σ0<) simply go to 0 in the limit σ → 0.
Therefore, plugging this result for the integral back into eq. (B.48) and remembering that
σ ≡ ε

| ~y1− ~y2| , the value we find for the
∫
K
∫
GK integral eq. (B.46) (up to contact terms

which can always be renormalized with appropriate local counterterms) is given by:

∫
x1,0=ε

dd+1x1
√
g K̃∆(x1, ~y1)

∫
x2,0=ε

dd+1x2
√
g G(x1, x2)K̃∆(x2, ~y2) =

ν−1c−1
∆

|~y1 − ~y2|2∆
ln2
( ε

|~y1 − ~y2|

)
(B.52)

This result seems to break the conformal structure expected for contributions to the
2-point function of a CFT, however as it is discussed in the main text, its form corresponds
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exactly to the expansion of a conformal anomaly, realization which will lead not only to
a clear picture of the role of the quantum corrections to the holographic correlators, but
also to a clear picture in their renormalization scheme.
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