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RESUMEN

Los modelos de Aprendizaje Profundo ó Deep Learning son vistos y tratados como cajas ne-

gras. Dada una entrada, estos generan una salida a modo de respuesta. Pero no se tiene mas que

una noción vaga de lo que llevó al modelo a responder lo que respondió. Sin embargo, en muchas

aplicaciones (aplicaciones bancarias, compañı́as de seguros, asistentes personales, etc) es de-

seable o incluso necesario saber que llevó al modelo a generar una determinada respuesta. En este

trabajo nos enfocamos en el desafı́o llamado Visual Question Answering (VQA). Este consiste en

lograr que un modelo responda preguntas basadas en imágenes que se le presentan. Logramos in-

corporar una nueva Base de Conocimiento o knowledge base (KB) que contiene relaciones entre

objetos del mundo real, lo que ayuda a mejorar la interpretabilidad y el desempeño del modelo

mediante la identificación y extracción de información relevante acorde a cada pregunta e ima-

gen que se presenta. La extracción de información de la KB fue supervisada directamente para

generar un mapa de atención usado por el modelo para identificar las relaciones relevantes a cada

preguntae imágen. Se muestra cuantitativamente que las predicciones del modelo mejoran con la

introducción de la KB. También mostramos cualitativamente la mejora en cuanto a interpretabil-

idad mediante la atención generada sobre las relaciones de la KB. Adicionalmente, mostramos

cómo la KB ayuda a mejorar el desempeño en modelos de VQA que generan explicaciones. Los

resultados obtenidos demuestran que el mecanismo de atención empleado en la KB ayuda mejo-

rar la interpretabilidad del modelo. Y la información adicional extraida mejora la representación

interna de eśte y por ende también el desempeño.

Keywords: atención, supervición, Base de Conocimiento, interpretabilidad, Aprendizaje Pro-

fundo.
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ABSTRACT

Deep learning models are usually treated as black-boxes. Given an input, an output is gener-

ated without providing any insight about what led the model to reach its prediction. However, in

many applications (Banking, Insurance, Personal Assistants, etc.), interpretability is highly desir-

able, if not required, feature. In this work, we focus on the Visual Question Answering (VQA)

task, in which a model must answer a question based on an image. We introduce a Knowledge

Base (KB) filled with real-world relationships between objects into our model. The information

contained in this KB helps to generate better predictions, and improve interpretability by point-

ing out and retrieving information relevant to the question. We directly supervise this KB to

generate an attention map and select the relevant relationships from the KB for each question-

image pair. We quantitatively show how predictions improve with the KB introduction, we also

qualitatively showcase the KB attention that helps improve interpretability. Additionally, we

demonstrate how the KB can also help improve the quality of a VQA explanation model. The

results obtained demonstrate the benefits of having a KB attention mechanism to improve the

interpretability of the model, and how the external information allows the model to achieve better

internal representations for the problem and therefore, better performance.

Keywords: Attention, Supervision, Knowledge Base, Interpretability, Deep Learning.
xii



1. INTRODUCTION

Visual Question Answering (VQA) is a well-explored task in the computer vision community

Fukui et al. [2014], Kumar et al. [2015], Su et al. [2018], Teney et al. [2017]. The task consists of

answering a textual question formulated in natural language in regards to the contents of an image.

In general, there is virtually an infinite number of questions that can be asked about a single image,

and a single question can be asked about an uncountable number of images resulting in different

answers. As a consequence, VQA is a challenging task that requires a semantic understanding

of both natural language and visual elements. A suitable solution to the VQA problem needs

to correctly parse the input question, being able to identify key structures and relations (verbs,

nouns, etc.), as well as simultaneously understanding in-depth the contents of the input image.

The model must be able to identify relevant regions, objects, and relations between them. Solving

this task with a single model is very demanding, and even more without any previous knowledge

of how the real world works.

Most current models, solve the VQA problem following a discriminative approach [Fukui et

al., 2014, Lu et al., 2017, Teney et al., 2017]. These models pose VQA as a classification problem,

where classes correspond to a set of the most common pre-defined candidate answers. The mod-

els also incorporate an attention mechanism that selects visual cues that will be used to answer

each question. This attention mechanism is commonly applied using an unsupervised training

process, where the so-called attention coefficients are considered as latent variables [Bahdanau

et al., 2015]. Recent works have stressed the limitations of this attention scheme, showing that

it leads to models encoding discriminative cues that cannot ground image attentions to the un-

derlying semantics behind each question-answer pair [Das et al., 2016, Gan et al., 2017, Qiao

et al., 2018, Zhang et al., 2018]. As a result, current VQA models lack of a suitable level of

interpretability.

Interpretability is a highly desirable property because it provides a window to the internal rep-

resentation of a model, and can be used to examine the predictions from the model. Furthermore,

as AI-based systems start to operate in real-world applications, there is an increasing need to
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Figure 1.1. Current models that solve the VQA task lack a suitable mechanisms to
attend relevant image regions or to retrieve relevant facts from an external knowl-
edge base (bar with scores to the right of the image). Our proposed approach aims
to solve those limitations. (A: Answer, P: Prediction, E: Explanation)

provide them with the ability to explain their decisions. This feature is starting to be required by

legal regulations [Goodman & Flaxman, 2016] little by little. To quantify interpretability, recent

VQA models have started to introduce new performance metrics oriented to assess the quality of

the resulting visual groundings [Anderson et al., 2018, Fukui et al., 2014, Lu et al., 2017, Park

et al., 2018, Zhang et al., 2018]. Similarly, others [Kim et al., 2018, Park et al., 2018] introduce

VQA models that include a module to generate an explanation for each answer.

VQA problems are particularly difficult when the relevant information that leads to a correct

answer is not contained in the question-image pair. This is usually the case when relevant back-

ground knowledge, such as common sense knowledge, is required to answer a question correctly.

Efforts in this line have not been able to close the gap between algorithm and human perfor-

mance, especially in terms of interpretability of the resulting models. To face this challenge,

recent methods augment the regular question-image pair with external knowledge that provides

2



complementary information, usually in the form of common-sense rules [Kumar et al., 2015,

A. H. Miller et al., 2016, Su et al., 2018]. Most of these models only use the question information

to retrieve relevant facts (or indirectly use the image), which leads to poor performance when the

question solely depends on the image.

In contrast to current VQA models, humans have an outstanding talent to attend to suitable

visual cues and to retrieve relevant information from previous knowledge to answer visual ques-

tions. Using these skills, humans can fill information gaps, filter out unlikely answers, and build

suitable explanations to support their answers. Following these observations, in this work, we

contribute to the VQA problem by proposing a model that points out and incorporates informa-

tion from the knowledge base (KB) to improve its performance and interpretability. We then

use the proposed model to enhance an explanations model to generate better explanations and

support its answers. Our model can outperform current approaches in terms of interpretability.

Specifically, our model provides an insightful view of the extracted data from theKB, along with

attention coefficients that show the relevance of each piece of information given an image and a

question.

This superior interpretability is achieved using direct supervision on the information extrac-

tion mechanism to guide the model’s attention towards relevant information cues. To achieve

this, we automatically generate a KB filled with real-world facts in the form of triplets (Subject,

Relationship, Object) that embed relevant prior knowledge about the visual world. The triplets

are extracted from the scene graphs provided by the Visual Genome (VG) dataset [Krishna et

al., 2017], and the question-answer pairs from both VG and VQA [Antol et al., 2015] datasets.

We then provide our model with the generated KB. Since we use a supervised approach on our

attention mechanism for the KB, we also generate supervision labels to identify relevant facts

for a subset of the questions present in [Antol et al., 2015] and [Krishna et al., 2017]. With the

attention mechanism, our model can retrieve facts from the KB that are relevant to answer a

given question-image pair.

In summary, the main contributions of this work are: (i) We propose a new method to build and

use the common sense KB, with labels to supervise over 400K questions from Visual Genome

3



and VQA. (ii) We implement a integrated model that makes use of (i). (ii) We improve the existing

explanations model by incorporating information from the KB to our model.

Section 2 defines the problem and our main goals. Section 3 presents related work. Section

4 provides general background theory, Section 5 contains a small survey of the datasets used for

our experiments. Section 6 fully describes our methodology. Section 7 states the frameworks,

libraries and hardware used to implement the different models. Section 8 diplays the results

obtained from the experiments. Finally, Section 9 presents overall conclusions and future work.
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2. PROBLEM DESCRIPTION

Machine Learning models are better than humans on an uncountable number of logical tasks,

clustering, finding the best curve to fit some data points, classifying data points in a high dimen-

sional space, and many others. However, they are far from reaching human-level performance on

tasks that require intuition, visual understanding, or using unstructured information to solve new

problems. Navigating through a populated area, self-driving cars, and VQA are some examples

where humans excel, and algorithms fall behind.

Humans are the best VQA solvers. One of the reasons is their ability to take previously

acquired information and use it to solve new problems. Furthermore, they can back up their

answers with facts and explain them. Those are abilities that most machine learning models lack,

and we believe finding a way to replicate them, is a crucial step towards building better models

that can solve the kind of challenges where those skills are necessary.

Our primary goals in this work are to provide Deep Learning models with a framework to

imitate the capabilities of humans in terms of retrieving and using previous knowledge, and ex-

plaining why they answer as they do.

We achieve this by providing our model with a framework that lets it use previously known

facts (or real-world information), and later point out which ones are useful to answer a given

question-image pair. By doing so, we improve the interpretability of the model since we can

observe which facts are being used to answer. If the model answers incorrectly, we can inspect

the knowledge retrieved and have a better idea of where and why the model is failing.

In order to achieve this, we first need a knowledge base to provide the required information,

so we set this as a relevant goal. Specifically, we create a suitable Knowledge Base (KB) that

provides such information.
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3. RELATED WORK

The VQA problem has attracted considerable attention in the computer vision community

[Teney et al., 2017]. The proliferation of suitable datasets, its multimodal nature, and a simple

evaluation protocol partially explain this interest. Most state-of-the-art methods learn to project

the textual and visual inputs to a joint feature space that is then used to build the answer [Antol

et al., 2015, Fukui et al., 2014, Yu, Yu, Xiang, et al., 2017]. Similarly, most methods pose VQA

as a classification problem, where a predefined set of most popular answers is set to be the output

classes. Following [Bahdanau et al., 2015], most models incorporate a soft-attention scheme

that is trained to attend to relevant regions in the input image [Fukui et al., 2014, Teney et al.,

2017, Yu, Yu, Fan, & Tao, 2017, Yu, Yu, Xiang, et al., 2017]. More elaborated soft-attention

mechanisms have also been proposed, such as an iterative attention scheme [Yang et al., 2016]

or a bidirectional co-attention mechanism [Lu et al., 2016]. Das et al. [Das et al., 2016] analyze

the visual grounding provided by models based on soft-attention mechanisms. In particular, they

compare image areas selected by humans and state-of-the-art VQA techniques to answer the

same visual question. Interestingly, they conclude that current machine-generated attention maps

exhibit a poor correlation against their human counterpart, suggesting that humans use different

visual cues to answer the questions.

In terms of works that use an external KB to support or implement a VQA model, [Wu et

al., 2016] augments the usual discriminative approach used by VQA models by introducing in-

formation extracted from an external KB. They, use an image captioning approach where a set

of visual attributes is selected to query the KB. [Wang et al., 2018] introduces the fact-VQA

dataset (FVQA) that focuses on including question-image pairs that need a KB with previous

knowledge to build correct answers. Using a scheme that jointly projects knowledge facts and

question-image pairs to a shared space, [Narasimhan & Schwing, 2018a] achieves state-of-the-

art results on the FVQA dataset. Su et al. [Su et al., 2018] use a Memory Network architecture

[J. Weston, 2015] to jointly embed knowledge facts and attentive visual feature vectors. As a

result, they report state-of-the-art accuracy on questions related to knowledge-reasoning. In con-

trast to our approach, these previous methods do not use the information extracted from the KB

6



to generate an explanation to justify the corresponding answer. A significant difference with our

work and previous ones is that we always use question and image directly to both filter and attend

the information from the KB.

Recently, Park et al. [Park et al., 2018] presents a VQA model that includes a module to

generate a textual explanation to justify each selected answer. This module follows the standard

approach used to generate image captions, but it integrates information from the input question,

attended image regions, and selected answer. Using a similar approach, Kim et al. [Kim et al.,

2018] extend the method to the case of videos coming from a self-driving application. [Riquelme

et al., 2019] adopts a supervised approach, and we extend this model by including information

from the external KB to generate better explanations.
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4. BACKGROUND THEORY

4.1. Deep Learning

Neural Networks (NN) are machine learning algorithms based on the idea of biological neu-

rons that interact with each other creating many circuits or layers. Neurons receive an input

signal and emit an output signal as a response to communicate with one another and generate one

or more final outputs. The idea behind Neural Networks is the same; virtual neurons that connect

to generate an output. A ’neuron’ (Figure 4.1a) in this context is a linear unit that receives one or

more input values ~x, that are then multiplied by a set of weights ~w with the same dimension, and

later summed generating what is known as the weighted sum (ws = Σxi � wi). A single weight

wb known as bias is added to the weighted sum, and an ’Activation function’ f is applied to the

result generating the final output o = f(ws +wb). The bias is used to shift the activation function

by a certain amount.

Neurons can be grouped to form what is called a layer (Figure 4.1b), n neurons form a layer

with n outputs. Layers can be stacked (Figure 4.1c) to form a ”deep neural network”. Where

each layer receives the outputs of the previous one as an input. The intermediate outputs of each

layer, are often used as feature vectors representing the input vector ~x.

All the weights and biases from a Neural Network, are learned from the input data during

training. The output quality is quantified using a Loss Function that measures the error. This

Function tells the Neural Network how off its predictions are. An algorithm called BackPropa-

gation minimizes the error from the Loss function, updating the weights of each layer following

the gradient decent approach, where the gradient of the loss function is computed and weights

are updated on the opposite direction of the gradient (negative gradient) by a small step (the size

of the step is a fixed or dynamic parameter called learning rate) to find weights that produce a

smaller error. The previous stpes are performed in each stage of BackPropagation [Lecun, 1992].

8



(a) Single linear perceptron, the
bias weight is ommited. (b) Single Layer Network (c) 2 Layers deep neural network

Figure 4.1. (a) represents a single perceptron that can be grouped to form a layer
(b), that can be stacked to create a deep neural network (c).

Deep learning has evolved fast in the last years, and multiple architectures emerged to solve

different problems. On image related tasks, using Convolutional Neural Networks (CNN) [Lecun

et al., 1998] has become the standard approach. They work by learning multiple filters (small

tensors of weights) used to perform convolutions over the input image. For a filter F ∈ RN×M×D

and an image I , the following equation gives the resulting convolution Iconv on each position

(x, y).(
Iconv[x, y] = F ∗ Image[x, y, c] =

D∑
d=0

N∑
n=0

M∑
m=0

F [n,m, d]� I[x− n, y −m, c− d]

)

The convolution over the image can be thought of as a sliding window that performs a weighted

sum on every position it slides to, as represented in Figure 4.2a for a single channel Image.

For Natural Language Processing (NLP), the usual is to use Recurrent Neural Networks (RNN)

[Rumelhart et al., 1986] Chung et al. [2014]. RNNs are networks with loops that allow them to

maintain information through time. They have an internal state h that behaves like a memory.

Here the input is not processed at once and is broken into multiple time steps (i.e., one word at

a time for NLP problems). On each time step, part of the input is processed, and the memory is

updated iteratively.

9



(a) Convolutional layer representation

(b) Lstm Layer

Figure 4.2. Sub-figure (a) is a simplified representation of a CNN convolution
over a single channel image. The filter slides to the first position, and later the
weighted sum is performed, outputing -3. The weights from the filter of the
CNN are learned with BackPropagation during training. Sub-figure (b) represents
a RNN. On the right side of (b), we can see an equivalent unrolled version of
the RNN, where each part of the input is processed, and the hidden state is up-
dated within de RNN ht for each time step. Figure 4.2a was taken from [Simple
Introduction to Convolutional Neural Networks, 2019], and Figure 4.2b form [Un-
derstanding LSTM Networks, 2015].

4.2. Embeddings

An embedding in the context of Neural Networks is a low-dimensional numeric representa-

tion of a discrete or continuous variable. If we want to represent some variable with a vector

x ∈ Rn, one way is using one-hot encodings. This encoding is a zero vector that contains a single

one. For example, if there are n animal races in the world, we can view them as different cate-

gories represented by one-hot vectors. The one-hot vector would contain a one on the dimension

assigned to the category we want to represent. This is what is called a handcrafted embedding

(designed by humans, not learned by machines).
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Deep Neural Networks are much more powerful and can learn complex embeddings able to

represent not only an animal’s race, but also how long their legs are, how much it weighs, its

color, etc. If we train a Deep NN to classify animal pictures, we can take the intermediate layer

outputs, and use them as an embedding of the picture. i.e., an embedding of how the animal looks.

4.3. Attention Mechanisms

In some cases, it is useful to have a way of filtering out useless data or reducing the noise that

it introduces. Attentions are mechanisms widely used across different neural networks. Given a

vector ~x that represents something from the real world, the main idea is to learn a set S of coeffi-

cients {si ∈ [0, 1]|Σsi = 1∧si ∈ [0, 1]}, that represent the level of importance of each dimension

along ~x, we then multiply each dimension of the vector by the corresponding attention coefficient

si resulting on the attended vector ~xs. If sj is ∼ 1, then the dimension j of ~x is considered useful

and xsj ∼ xj , the rest of the dimensions values will be much smaller in comparison, and ~xs will

be a better representation of the object that ~x is representing.

If we want to extend the attention mechanism to work with a set of vectors ~Sx and attend the

most informative ones. The idea is the same, we learn a set of attention coefficients S, one for

each vector ~xi ∈ ~Sx, and depending on what we want to achieve, we could perform a weighted

sum (Σsi · ~xi) to reduce the set to just one vector that represents the whole set. Or alternatively,

we could perform a argmax selection of the k vectors with the highest attention coefficients and

choose them as the representatives.
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5. DATA

In order to train our models and generate the KB, we make use of three datasets listed and

briefly described below.

5.1. VQA v2.0

VQA v2.0 [Goyal et al., 2016] is a dataset that contains multiple triplets (Image, Question

Answer). VQA v2.0 builds upon the VQA dataset [Antol et al., 2015]. The dataset consists of

three different splits, train, val, test. The test split has two splits own called test-dev and test-std,

which are not publicly available to avoid overfitting and malpractices during the official VQA

challenge competition. VQA v2.0 tries to fix the unbalanced nature of the VQA dataset, which

has 614K free-form natural language questions (3 per image), and over 6 million different answers

(10 answers per question).

VQA v2.0 addresses the balancing issues on VQA by collecting (Image, Question, Answer)

triplets that use complementary images to make questions more dependable on the image. For

a particular triplet (I,Q,A), they collect a complimentary one (I ′, Q,A′). Where the image

I ′ changes the answer to A′ for the same question Q. This prevents models from exploiting

underlying dataset biases. They collected 443K (I,Q,A) triplets for the train split, 214K for val

and 453K for the test set. Throughout this work, VQA v2.0 is referred to as VQA for notation

convenience.

5.2. VQA-X

VQA-X [Park et al., 2018] is an extension of a subset of question-image pairs from VQA.

They collected human Explanations for question-answer pairs that would require the intelligence

of at least a 9-year-old person to avoid trivial cases. The dataset contains approximately 32.8K

question-answer pairs from VQA v2. They divide the collected data into three splits, 24.8k

question-answer pairs with explanations for train, 1.4k for val and 1.9K for test.
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5.3. Visual Genome

Visual Genome [Krishna et al., 2017] is a well known multipurpose dataset for computer vi-

sion. It contains image descriptions, objects, attributes, relationships, and question-answer pairs.

There are over 108K images taken from the intersection between MS-COCO and YFCC100M

[Thomee et al., 2015]. Each one with an average of 21 objects, 16 attributes, and 18 pairwise

relationships between objects. There are seven main annotation components for each image:

(i) Regions and Descriptions: Since a short caption often cannot describe in-depth an im-

age, multiple regions are identified and annotated with bounding boxes and captions

describing the region. There are, on average, 42 regions per image.

(ii) Objects and Bounding Boxes: Every object has a bounding box annotation. There are

21 objects per image on average.

(iii) Set of Attributes: Annotated objects can have zero or more attributes, such as color,

states, length, and some others. Objects with visible attributes have the corresponding

attribute annotated; on average, there are 16 attributes for objects per image.

(iv) Set of Relationships: Objects present in an image might be interacting with each other.

To reflect this, they provide an average of 18 relationships between different annotated

Objects per image.

(v) Set of region graphs: Using the objects, attributes, relationships, and regions, they build

a localized graph for each region. Connecting each object within the region with their

respective attributes and connecting pairs of objects with a third node representing the

relationship between them within the region.

(vi) Scene Graph: It is the union of all-region the region graphs, thus containing all objects,

attributes, and relationships.

(vii) Set of Question-Answer Pairs: Finally, they collect six types of questions for every

image (what, when how, where who, why). Adding to a total of 1,773,258 QA pairs.

There are 2 types of questions, region based and free form questions. For Region-

Based questions, annotators use a particular region and formulate a question based on
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the contents of that region. If there is no region assigned to a question, then it is a free

form question that has no region as visual grounding.

The dataset has three splits, train with 80% of the data, val 10%, and test 10%.
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6. METHOD DESCRIPTION

Figure 6.1 illustrates the overall architecture of the proposed VQA model, including the expla-

nations module. Using the image, question, and KB, the model predicts an answer and generates

the corresponding visual and textual explanation, along with a visualization of th kB to support

it. The model has three main components: the answering module (green), the KB module (blue),

and the explanations module (orange). The answering module takes the image I , question Q, and

the feature vector fKB to predict the answer A. The KB module takes the question and image

feature vectors fQ and fIα extracted from the answering module to generate the feature vector

fKB. The latter contains the relevant information from the KB. Finally, the explanations module

takes the generated answer A, alongside with the image embedding fI , question embedding fQ,

fKB embedding, and intermediate representations, to generate a textual and visual explanation.

Figure 6.1. Model architecture. Answering module in green, explanations module
in orange, KB module in blue. For a detailed version of this diagram, see Figure
A.1 in the Appendix

6.0.1. Answering Module

The answering module builds upon a modified version of the Attn-MCB model from [Zhang

et al., 2018], which in turn extends the work of Multimodal Compact Bilinear Pooling (MCB)

[Fukui et al., 2014]. In this thesis, we replace all MCB layers with fully connected layers followed
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by element-wise operators; by doing so, we boost speed and decrease memory usage with low

impact on performance. In this section, we provide a summarized description of the modified

version of the Attn-MCB model.

First, to incorporate the image information, we extract the image feature vector fI from a

pre-trained CNN model. In particular we use layer res5c from the ResNet-152 model [He et al.,

2015]. The output of this layer is a tensor of size 14× 14× 2048.

fI(I) = ResNet152res5c(I) (6.1)

We then process the question Q to generate a 2048-dimensional vector fQ using the concate-

nation of two LSTM layers.

flstm(Q) = LSMT1(Q) (6.2)

fQ(flstm) = [LSTM2(flstm); flstm] (6.3)

To combine the information from these two modalities (textual and visual), we use an FC

layer to take fI and fQ to a joint embedding space of size 2048, to then combine them using

an element-wise multiplication (�) to generate an image-question feature vector fIQ. Since the

shape of fQ is 2048, we first tile fQ a total of 14 × 14 times to match the dimensions of fI . In

this way, the question is going to be multiplied by each one of the 14 × 14 regions. After the

element-wise multiplication, we apply signed square root (represented by SgnSqrt()) and L2

normalizations to keep the weights small. Eq (6.4) summarizes these operations.

fIQ(fQ, fI) = L2(SgnSqrt(Tile(FC1(fQ), 14× 14)� (FC2(fI)))) (6.4)

We use the fIQ feature vector to generate a spatial image attention αI(fIQ). We take fIQ

and apply two convolutional layers (Conv), followed by a Softmax activation layer. αI(fIQ) is a

tensor of size 14× 14× 2 that contains two attention maps (region-level and object-level)Zhang

et al. [2018]:
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αI(fIQ) = Softmax(Conv2(Conv1(fIQ))) (6.5)

As described in [Zhang et al., 2018], the attention map αI is used to create the final image

feature vector fIα applying Soft-Attention (SoftAtt) [Fukui et al., 2014] over fI . As in the

following equation:

fIα(fI , αI) = SoftAtt(fI , αI) (6.6)

We supervise αI using a Kullback-Leibler (KL) Divergence Loss. We use the labels extracted

by [Zhang et al., 2018] from Visual Genome as follows:

AttLossans(αlabel, αI) = KL(αlabel, αI) (6.7)

We extend the answering module architecture with a KB module (blue boxes from Figure

6.1) capable of extracting and pointing out information from the KB. The KB module is de-

scribed later on (subsection 6.1.1.6), for now we assume we have the feature vector fKB with

the information from the KB. To predict the answer, we need to combine all sources of infor-

mation: the attended image feature vectors fIα , the original question fQ, and the KB feature

vector fKB. To combine these feature vectors, each one is passed through a fully connected layer

and then fused using an element-wise product. The resulting feature vector fIαQKB contains the

information from all sources.

fIαQKB = L2(SgnSqrt(FC3(fQ)� FC4(fKB)� FC5(fIα))) (6.8)

Finally, we embed fIαQKB with a fully connected layer using a Softmax activation. This

outputs a L = 3000 dimensional feature vector that represents the probability distribution over

the possible answers. We select the answer with the highest probability as the output. L = 3000
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is the answer space corresponding to the most frequent words in the VQA dataset answers, as

used in Ben.

A = Argmax(Softmax(FC6(fIαQKB))) (6.9)

6.1. Knowledge Base Module

As mentioned before, our primary goal is to improve the interpretability and performance

of current VQA models. To do so, we provide models with an external KB with additional

information that the model can point out and consume. We develop a method to access the

KB to achieve it. When integrating previous knowledge from the real-world into the model, an

insightful view of its internal representation becomes available by pointing out information that

is considered relevant by the model. In our framework, the KB module (in blue in Figure 6.1)

plays this role. The following subsections describe the structure of the KB and our automated

mechanism to populate it, as well as the method to make it accessible by the model.

6.1.1. An automatically mined Knowledge Base

The KB is a collection of triplets that represent interactions between many objects from the

real world. Our triplets are formated as {Object (Obj), Relationship (Rel) , Subject (Subj)}, for

example: {Man, Playing, Tennis}. We automatically mine these triplets from VG and VQA,

which makes its construction faster and cheaper as opposed to manual annotation.

Specifically, for every question-answer pair, we collect one or more relationships that are

considered relevant and store them as triplets for the KB. To extract triplets from VG, we follow

the next steps; Step 1) Identify relevant regions, Step 2) Identify relevant objects, Step 3) Store

valuable relationships. Finally, for both VG and VQA, we follow Step 4) Store new relationships

and labels, using just the question and answers text. Steps 1, 2, and 3 are only applicable to VG
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since VQA has less annotations. The strategy from Step 1) is an adaptation of the method used in

Zhang et al. [2018] to extract image attention supervision labels.

6.1.1.1. Step 1) Identify relevant regions

To identify the important regions in an image, we take all the question-answer pairs, and

region descriptions from that image, and use the words to match them against each other. If

there is an overlap of two or more words between a particular question-answer pair and a region

description, then the region with that description is considered relevant for the question-answer

pair.

We process each word from the question-answer pairs and region descriptions using the Natu-

ral Language Processing Toolkit (NLTK) [Manning et al., 2014] from Stanford. Using NLTK, we

tokenize and lemmatize the words; we also remove all non-informative words. For each question-

answer pair and each region description, we separate the words into two sets: nouns and verbs.

Additionally, we retrieve and store all words synset (synonyms set) from WordNet [G. A. Miller,

1995] to extend each set of words and increase the chances of a match between them. Since some

questions from VG already have a region assigned (region-based questions described in Subsec-

tion5.3), we select that region as relevant and skip the matching process. We only detect relevant

regions for free form question-answer pairs (described in Subsection 5.3).

6.1.1.2. Step 2) Identify relevant objects

Once we identify relevant regions for each question-answer pair on the image, we proceed

to extract all the annotated objects that are present in a relevant region and match their names

against the question-answer nouns set. Only the objects that have a match are considered as

relevant objects and are stored to identify useful relationships later.
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6.1.1.3. Step 3) Store useful relationships and labels

As described in Section 5, each image from VG has a set of relationships containing the

interactions between the different objects in the image. We keep only those relationships that

mention at least one of the relevant objects for that image. Using the same text processing from

Step 1), we proceed to intersect the words present in each relationship with the words from each

question-answer pair. We store all the relationships that have an overlap of two or more words as

part of the KB and store them as additional labels for the question-answer pair that generated it.

6.1.1.4. Step 4) Store additional relationships and labels, using just the question and an-

swers text

Finally, we collect more relationships and labels for each question-answer pair on every image

for both VQA and VG. We first generate a massive set of triplets containing the relationships

present in every single image from VG and store them all together in one set. The words of the

relationships on this set are processed as in Step 1). For every question-answer pair from either

VG or VQA, we intersect the word sets from each relationship with the words from the question-

answer pair, and only keep the relationships that have an overlap of three or more words to avoid

uninformative triplets (without using relevant regions or objects). The added relationships are

stored as labels for the question-answer pairs that had a word match with it. For example, if the

question-answer pair text is ’Q: What is the man going to eat? A: Hot-dog’, we should get a

match with the triplet {man, eat,hot-dog}, the relationship will be stored as part of the KB, and

as a label for the given question.

6.1.1.5. KB construction.

We feed our model a KB built with one of the following methods:

A Most frequent: using the frequency of the relationships present in all labels, we select

the top 12,000 with more presence. Since using a KB of 12,000 triplets is expensive in

terms of computation and memory usage, we found it useful to create clusters.
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B Clustering: we took the glove embedding for each component of the triplet. The glove

embedding form the Subject, Relationship, and Object of the relationships are con-

catenated to obtain a 900-dimensional feature vector for each triplet. Using K-Means

[MacQueen, 1967], we find N clusters with different groups of relationships represent-

ing different concepts. To represent all the triplets from one cluster, we took the average

of the concatenated glove embedding of the triplets in the cluster. For N = 12000, we

cluster the 36K most frequent triplets, and for N = 3000 we used the 12K KB from

(a). We find that clustering is a good way to reduce the size of the KB, or include more

information while maintaining the size since there are many triplets with redundant in-

formation (e.g., {man, fly, kite}, {person, fly, kite}, {woman, fly, kite}). However,

there is a chance that triplets that have different information end up on the same cluster.

That is why we propose the third and final method.

C Question-Image Pre-filtering: we do a question-image pair pre-filtering and build a

KB of sizeN = 1000 specifically tailored for each question-answer pair. First, we take

all the collected triplets (over 640K) and remove those that appeared 3 or fewer times

as labels, which leaves approximately 36K relations. We then filter the 36K triplets

according to the matching words present in the question and the names of the objects

from the image. Since we don’t have the answer during test and validation, and we

can’t know what objects are present in an image (only VG has that information, and it

is not used to test the model), we use an object detector to get the name of the objects,

and combine them with the nouns and verbs from the question. The same pre-filtering

is performed for every question-image pair regardless of the split they come from. We

use the object detector YoloV3 [Redmon & Farhadi, 2018] to find objects within the

image. To generate our subset of N triplets, we first get the relationships that match

three words from both the words on the question and detected object names, if there are

less thanN matching triplets, we proceed to store those that have two and one matching

words respectively.
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6.1.1.6. Module Structure

This module generates an attention map over the KB triplets and uses it to select only the

most informative subset of top−k triplets for the given question, to later generate the final vector

containing a reduced representation of the selected triplets. Here, both information from the

question and the image are combined to generate this KB attention map. We supervise the KB

attention to lead the attention towards relevant triplets and improve the quality of the attention

map. Once the model predicts an answer, we generate a visualization of the attention map over

the top − k triplets from the KB to improve interpretability and not only performance with the

KB.

The KB module is based on the idea of Key-Value Memory Networks [A. H. Miller et al.,

2016] used for reading comprehension placed under the context of VQA. Here, the image and

question feature vectors fIα and fQ (from the answering module - subsection 6.0.1) are used to

address and identify relevant triplets from the KB using the supervised attention mechanism.

Due to the size of the KB, all embedding sizes from this module are of kbs = 1024 to reduce

memory usage.

First, we embedd the KB using a FC layer.

fKBemb(KB) = FC7(KB) (6.10)

A new embedding of size kbs is generated for fQ and fIα . We then fuse these feature vectors

via element-wise multiplication into fkbIQ into a joint embedding that represents both the attended

image and the question:

fKBIQ (fIα , fQ) = L2 (SgnSqrt(FC8(fIα)� FC9(fQ))) (6.11)

Now, to address the triplets from the KB, fKBIQ is tiled and multiplied by each triplet embed-

ding from the KB. The resulting vectors will have high weights if fKBIQ is aligned with the triplet

on the joint space.
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fKBaddressed(f
KB
IQ , fKBemb) = L2

(
SgnSqrt(Tile(fKBIQ , |KB|)� fKBemb)

)
(6.12)

Finally, we create an attention map using two FC layers with a final softmax activation to

reduce fKBaddressed to a feature vector of size |KB|. The resulting vector represents the probability

distribution over all the KB triplets.

αKB(fKBaddressed) = Softmax(FC11(FC10(fKBaddressed))) (6.13)

We supervise this attention with a softmax cross-entropy loss using the collected triplet labels.

Since more than one label can be present for a single image-question pair, on each iteration, we

randomly sample one label (l) and use it as the ground truth for this loss.

LossKB(αKB, l) = −
|KB|∑
i=1

li · log(αKBi) (6.14)

Once we have the KB attention map, we use it to select the top − k = 5 triplets with the

highest coefficients. By doing so, we reduce the noise from all the other triplets in the KB. Then

we concatenate the top− k triplets with their corresponding attention coefficients (6.18).

First we get the index of the highest scoring triplets:

top kindices(αKB, k) = argmax(αKB, k) (6.15)

We get the embedding for the top− k triplets, and the corresponding attention coefficients:

fKBk(fKBemb , top kindices) = fKBemb |top kindices (6.16)

αKBk(αKB, top kindices) = αKB|top kindices (6.17)

23



And we concatenate respective the attention coefficients to each one of the top − k triplets

embedding:

fKBkα(fKBk , αKBk) = [fKBk ;αKBk ] (6.18)

The final step is to generate an embedding that contains only the information from the top−k

triplets. We do this using two fully connected layers of size 2048 (6.19). This vector is used to

predict the answer as described on subsection 6.0.1 (equations (6.17) through (6.19)).

fKB(fKBkα) = FC13(FC12(fKBkα)) (6.19)

Previous works have used only question information or image textual attributes [Kumar et al.,

2015, Su et al., 2018] to address the KB instead of directly using a joint embedding. This might

work on some cases but for questions that require visual information, such as “what is the man

holding”, global understanding of the image and the interaction between its contents is required.

That is why we make use of both question and image to address the KB. Otherwise, the KB

attends every triplet related to “a man holding anything” instead of filtering out useless triplets,

Figure 6.2 shows two examples of similar cases 6.2.

6.1.2. Explanations Module

The final piece of the model is the explanations module we use to demonstrate how the KB

enriches the internal representations of the model. The explanations architecture is based on the

PJ-X model [Park et al., 2018], but our proposed model replaces the answering module with our

answering module plus KB and uses the supervised attention from [Riquelme et al., 2019]. The

explanations module is trained using our pre-trained answering model with KB, whose weights

are frozen during the process. Here we use our best KB model as the answering module.

Information from the question Q, image I , answer A, KB, fKB, and intermediate represen-

tations from the answering module are combined to generate explanations. Following [Park et
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(a) KB addressed using only Question information

(b) KB addressed using information from both Image and Question

Figure 6.2. Here we present some cases where the question alone is not enough
to identify relevant triplets. As seen on figure (b), when we include the image to
address the KB, the selected triplets are more relevant. (Q: Question, A: Ground
truth answer, P: Predicted Answer, E Predicted Explanation).

al., 2018], during training, the ground truth answer is used instead of the predicted answer A. We

create a one-hot vector of size L = 3000 represents the answer, and a d-dimensional embedding

fA before feeding it to the explanations module. The answer embedding consists of two fully

connected layers with a tanh activation function after the first layer:

fA(Â) = FC15(F14(Â)) (6.20)
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We merge fA with the Image+Question feature vector fIQ from the answering module. fIQ

is embedded using a fully connected layer, and then combined with fA through an element-wise

multiplication, followed by a signed square root layer and L2 normalization:

fIQA(fA, fIQ) = L2 (SgnSqrt(Tile(fA)� FC16(fIQ))) (6.21)

Similar to the answering module, this new feature vector is used to create new image attention

maps. Two attention maps (object-level and region-level [Zhang et al., 2018]) are created using

two layers of convolutions, followed by a softmax layer. These attentions are used to create a

final image f expIα
using the Soft Attention mechanism from MCB [Fukui et al., 2014].

αexpIQA
(fIQA) = Softmax(Conv4(Conv3(fIQA))) (6.22)

f expIα
(fI , α

exp
IQA

) = SoftAtt(fI , α
exp
IQA

) (6.23)

Following [Riquelme et al., 2019], textual and visual explanations are boosted by adding

supervision for the Visual Attention of this module. Image supervision is done using a KL-

divergence loss for each attention map, similar to Att-MCB[Zhang et al., 2018].

Finally, we combine the attended image feature vectors f expIα
, the original question fQ, the

answer embedding fA, and also the KB feature vector fKB to enrich the internal representation

of the model. f expIα
, fQ, and fKB are embedded with a fully connected layer, and then fused with

an element-wise product to create fE .

fE(f expIα
, fQ, fA) = L2

(
SgnSqrt(FC17(f

exp
Iα

)� FC18(fQ)� FC19(fKB)� fA)
)

(6.24)

fE is the feature vector that contains the information from all sources, including the KB.

It will generate the answer through an LSTM decoder to generate a sequence of words for the

textual explanations. As is standard, we condition each generated on the previous predicted word
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and the hidden state ht of the RNN. We supervise the generated explanations with a softmax

cross-entropy loss.

ht(fE, wt−1, ht−1) = LSTM(fE, wt−1, ht−1) (6.25)

wt(ht) = Softmax(FC20(ht)) (6.26)
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7. IMPLEMENTATION

All code from the model was implemented using a custom version of Caffe [Jia et al., 2014]

that can be found here, To preprocess the text data and collect theKB, we use Standford’s Natural

Language processing Toolkit [Manning et al., 2014], and Tensorflow to generate the clusters. To

train the VQA-KB model, we use three GeForce GTX1080Ti GPUs for around 49H when using

the full-size KB (12K). We use one GPU and 72H when using prefiltering, and two GPU’s for

around 48 when using KB clustering. The code for our best model can be found here. The KB

formats we use are provided here.
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8. RESULTS AND EXPERIMENTS

To evaluate the answering module, we use the accuracy metric proposed in [Antol et al., 2015]

described in Eq. (8.1). This means that we consider an answer 100% accurate if three or more

annotators gave the same answer. For the Explanation module, we evaluate the impact of the

KB by measuring the quality of the generated explanations using the following scores: BLEU-

4 [Papineni et al., 2002], METEOR [Banerjee & Lavie, 2005], ROUGE [Lin, 2004], CIDEr

[Vedantam et al., 2014], SPICE Anderson et al. [2016]. We also provide the Ranked Correlation

to show that the internal representations of the model improve with the KB.

Accuracy(A) = min

(
# humans that provided answer A

3
, 1

)
(8.1)

8.1. Answering with KB

We successfully create an architecture that extends the ability of current approaches to incor-

porate external information that goes beyond the image and question-answer pair. Thanks to the

KB, we see an improvement of almost 1% on the test-std set of VQA for our best model. But

most importantly, the interpretability of the model is enhanced by our attention mechanism as

seen on Figures 8.1 and 8.2.

As mentioned in Subsection 6.1.1.5, we have three different KB types. i) Most frequent

KB with the 12K most repeated triplets, ii) the Clustering KB, and iii) the Question-Image

Prefiltering, Table 8.1, presents the results with the three versions of the KB. To validate our

design, we display the results of a model that only uses the question to address the KB, one that

only uses the image to address the KB, and a model without KB supervision. These last three

models are all trained using |KB| = 12, 000 (no clustering) and show how each part helps the

model.

29



VQA Accuracy by Model

Model Accuracy
test-dev test-std

Baseline 61.88 62.02
Baseline - KB 12K (No Supervised) 62.73 -
Baseline - KB 12K 62.9 62.96
Baseline - KB 12K Only I 62.63 -
Baseline - KB 12K Only Q 62.54 -
Baseline - KB 3K 12K Clustering 62.16 -
Baseline - KB 12K 31K Clustering 62.81 62.94
Baseline - KB 1K Prefilter 62.09 62.24

Table 8.1. Here we present the global accuracy for VQA using the VQA test-dev
and test-std splits. Since the evaluation server only admits five submissions for
the test-std split, we only evaluate the baselina and the best models for the test-std
split. Results show how each piece of the model improves the baseline and the
effect of the different KB types

Figures 8.1 and 8.2 show qualitative examples of question-answer pairs predicted by our

model using the KB. For the KB attention vector, we shows the top-5 highest scoring triplets

along with their attention coefficient (attention bar to the right of each image).

Positive examples in Figure 8.1 illustrate how the KB provides previous knowledge and

contextual information to facilitate the answering process. Specifically, the KB provides factual

information that is useful to build and support both the answer and the explanation. In many

cases, the answer to the question is contained explicitly in one of the components of the KB

triplets with the highest attention coefficient (first, third, fifth, sixth, and seventh positive examples

from Figure 8.1). An interesting idea could be to replace the prediction from the answering

module with the information contained in the KB triplet following the approach in Narasimhan

& Schwing [2018b], where they predict a flag that indicates if the answer is present in the KB

information and answer accordingly. In general, we notice that by using the KB the selected

answer is semantically closer to the ground truth answer. This is a factor that helps to explain the

great increase in the scores related to the quality of explanations generated by the model.

Negative cases are examples where the model fails in one of the three tasks: answer predic-

tion,KB selection, and generation of explanations. Seeing what information comes from theKB
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(a) Positive

Figure 8.1. Positive Qualitative Examples (Q: Question, A: Ground truth answer,
P: Predicted Answer, E Predicted Explanation). The bar to the right of each image
represents the attention vector for the top − 5 triplets used by the answering and
explanations module.
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(a) Negative

Figure 8.2. Negative Qualitative Examples (Q: Question, A: Ground truth answer,
P: Predicted Answer, E Predicted Explanation). The bar to the right of each image
represents the attention vector for the top − 5 triplets used by the answering and
explanations module.
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helps us understand better why the model is failing. In Figure 8.2, useful insights are provided in

cases where the model fails to provide the correct answer. We notice that when the KB attends

irrelevant or wrong triplets, this prior might lead to incorrect predictions as seen on the fifth neg-

ative example from Figure 8.2. Overfitting and bias problems related to the training dataset are

also present, for example, on the fourth negative example from Figure 8.2, the model incorrectly

attends to multiple triplets that relate to the wii video game console for no apparent reason.

For further analysis of the results, Table B.1 of the appendix, contains the accuracy by each

question category. The KB helps in almost all categories, but as expected fails to improve cate-

gories with questions like ”what time”, where it can not provide useful information.

8.2. Textual and Visual Explanations

The KB affects both visual and textual explanations in a positive way, we demonstrate this

with quantitative and qualitative results that show how the KB leads to better internal represen-

tations and thus a better performance in regards to the explanations module.

Figure 8.1 shows qualitative results of explanations with our best model (BE + KBans +

ImageSup+KBExp). In the positive cases, the visual explanation of the image (attention map) is

usually focused on visual cues that are relevant to the question. The respective textual explanation

is coherent and refers to visual elements pointed out in the visual explanation. For example,

the visual explanation from the second positive example of Figure 8.1, is focused on a single

broccoli, and accordingly, the textual explanation correctly refers to a green stemmed vegetable

with sprouts, which also aligns with the top-5 triplets selected by the KB.

On negative cases, the model fails to explain a correctly predicted answer (third and fourth

negative example from figure 8.1), which probably shows overfitting and bias problems related

to the training dataset. But even though the textual explanation is wrong, in some cases it gives

us a useful insight to understand why the model predicted an incorrect answer. In the fifth neg-

ative example from Figure 8.1, the model predicts sitting, and the explanation shows the model

incorrectly believes the two children are sitting in front of a store.
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Table 8.2 shows the quantitative results for the explanations module, each model is evaluated

using the ground truth answer of the question and alternatively the predicted answer. We obtain a

significant improvement in every score for all the metrics either indirectly incorporating the KB

through the answering module, or directly with the KB vector as described in subsection 6.1.2.

Approach GT-ans
Conditioning

VQA-X Test Set Score
BLEU-4 METEOR ROUGE CIDEr SPICE

ME [Park et al., 2018] Yes 19.8 18.6 44.0 73.4 15.4
Baseline Explanations (BE) Yes 19.8 18.7 43.4 72.6 15.5
BE + KBAns Yes 21.9 19.6 45.5 80.7 16.5
BE + ImageSup Yes 21.5 19.0 44.7 76.8 16.2
BE + KBAns + ImageSup Yes 22.1 19.1 45.2 78.6 15.7
BE + KBAns + ImageSup + KBExp Yes 22.4 19.4 45.7 81.1 16.1

ME [Park et al., 2018] No 19.5 18.2 43.4 71.3 15.1
Baseline Explanations (BE) No 19.2 18.3 42.8 69.7 15.0
BE + KBAns No 20.9 19.2 44.6 76.5 15.9
BE + ImageSup No 20.8 18.6 44.4 74.32 15.7
BE + KBAns + ImageSup No 21.4 18.8 44.7 75.6 15.2
BE + KBAns + ImageSup + KBExp No 21.8 19.1 45.3 78.3 15.6

Table 8.2. Evaluation of textual explanations using the automatic metrics: BLEU-
4, METEOR, ROUGE, CIDEr, and SPICE. Reference sentence for human and
automatic evaluation is always an explanation — all in %. Our models compare
favorably to baseline. ImageSup is the image supervision added in [Riquelme et
al., 2019]

Table 8.3 shows the Ranked Correlation of the visual explanations attention maps. The KB

usage helps improve the internal visual representations of the model, we can see that the attentions

generated using the KB are more correlated with human attention.
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Approach Rank Correlation
VQA-X VQA-X gt

ME [Park et al., 2018] + 0.3423
Baseline Explanations (BE) + 0.3465 + 0.3467
BE + KBAns + 0.3468 + 0.3456
BE + ImageSup + 0.3897 + 0.3902
BE + KBAns + ImageSup + 0.3938 + 0.3945
BE + KBAns + ImageSup + KBExp + 0.4007 + 0.4015

Table 8.3. Evaluation results for the explanations Image Attention (without the
use of ground truth answer). Compared against the VQA-X test set attention la-
bels using the Rank Correlation Metric - higher is better. Our models compare
favorably to the baselines thanks to the enriched internal representations that come
from theKB. ImageSup is the image supervision added in [Riquelme et al., 2019]
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9. CONCLUSIONS

In this work, we focus on improving the interpretability and performance of VQA models. In

particular, we measure interpretability by measuring the quality of explanations generated by the

VQA framework, and the inclusion of the KB visualization with the top-5 triplets. We achieve

state-of-the-art explanation performance by introducing an effective mechanism that leverages an

external Knowledge Base (KB) to produce better answers and explanations. We show that such

KB can be mined automatically from scene graphs in Visual Genome. Furthermore, we show

that our algorithm can attend to a small number of relevant facts among a large number of entries

in the KB.

Interpretability is a feature that opens up the black-box nature of deep neural networks, as

demonstrated with the qualitative results from Section 8, the attention visualization of the KB in

conjunction with the visual and textual explanations, is a powerful tool to examine the answers

from the model and evaluate whether it is failing due to miss interpretation, overfitting problems,

or shortcomings.

However, the power of this tool comes at a price. On the one hand, the model needs to

balance multiple losses (prediction, kb attention, visual explanations, and textual explanations)

and use multiple datasets to train each one of the supervised auxiliary tasks (either one at a time

or simultaneously) which is difficult. On the other hand, the size of the KB makes training slow

and requires special care. We had to optimize the memory usage, and reduce the number of

parameters of the model to be able to work with the available hardware. We reduced the number

of parameters form the answering and KB modules, besides training the explanations module

apart from the latter. Otherwise, it did not fit into the GPUs memory.

We propose two methods to reduce the size of the KB and tackle the problem of an extensive

KB that does not fit into memory. The two approaches are as follows: i) Clustering and ii)

Question-Image Prefiltering. With i), we reduced the KB from 12K to 3K and still surpassed the

base model. We also manage to use a KB of size 31K clustered to a version of 12K obtaining

a much better result. This demonstrates that regardless of the model, the amount of information
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has a significant impact on performance, and a bigger KB might yield even better results with

the same model. Clustering is a great method to reduce the size, but it reduces the interpretability

of the model since each element of the KB represents a group of triplets instead of just one. With

ii), we were able to get a smaller KB while maintaining interpretability.

Here we present some of the most interesting ideas left for future work. The focus of future

work should be on improving the quality of the clusters, text embeddings, and the extraction

of triplets from different sources to improve the quality and amount of knowledge a model can

use. So we propose the following: i) Clustering yielded good results, but not as good as we

expected. We believe that using an algorithm that can learn the appropriate number of clusters

should generate better clusters than K-Means and increase the performance for this approach.

So we propose the usage of an unsupervised clustering algorithm like Gaussian Mixtures Model

[Frigui & Krishnapuram, 1997]. ii) Using a combined approach of clustering and prefiltering

to remove uninformative clusters according to each question-image pair might be a better way

to reduce even more the size of the KB without losing the relevant information. iii) Increase

the collected triplets by exploiting a structured knowledge base like ConceptNet [Liu & Singh,

2004] to feed the model a vast amount of information about the world. Finally, iv) we believe that

using a better initial embedding for the question and triplets can help the KB module improve

the triplets selection due to a semantically better embedding. To this end, we propose the use of

a transformer network like BERT [Devlin et al., 2018].

This work demonstrates that incorporating mechanisms that grant models the ability to incor-

porate, use, and point out external information from aKB, is an essential step towards generating

models with a richer internal representation of our world, and thus are more semantically under-

standing and interpretable.
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Here, we provide further analysis of the performance of our proposed model. In particular,

we extend our discussion of the accuracy by category of the KB model.

In this section, we provide further details about the architecture of our model. We also de-

scribe the pre-filtering approach left for future work on section 6.1.1.5, and an analysis of the

accuracy by questions categories of our model.

A. DETAILED MODEL ARCHITECTURE

Figure A.1. Detailed model architecture. Answering module in green, explana-
tions module in orange, KB module in blue. Dimensions are specified in gray for
some intermediate feature vectors. Reference points for intermediate features are
provided in red.

Figure A.1 shows the detailed architecture of our model. The answering module (green) takes

the image fI , question fQ, and KB feature vector fKB (from the KB module) to predict an

answer. We start by combining the image and a question embedding to create fIQ (point a in

Figure A.1). We use this feature vector to generate an attention map over the image, which is

supervised using Kullback-Leibler (KL) divergence loss. The attention map is used to create an

attended image feature vector fIα (point b in Figure A.1). Finally, this attention is combined

with the question embedding and the KB feature vector to predict an answer (point d in Figure
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A.1) as a classification task over the 3000 most repeated answers of VQA. This classification is

supervised via Softmax Cross Entropy Loss.

The KB module (blue) takes the question fQ, attended image fIα and the Knowledge Base

KB as inputs in order to generate a KB feature vector fKB (point c in Figure A.1). We generate

a new embedding for the question fQ, image feature vector fIα and KB, these embeddings are

combined via element-wise multiplication to generate an attention map over the KB. We super-

vise this attention map with a softmax cross-entropy loss. The attention map is used to select the

top k = 5 triplets from the KB. These k triplets are embedded using two fully connected layers

that generate our final KB feature vector fKB. This feature vector carries all the relevant KB

information for the given input image and question.

The explanations module (orange), takes the question fQ, image plus question fIQ, predicted

answer A and image fI to generate both visual and textual explanations. We generate an em-

bedding for the answer and fIQ, and combine them via element-wise multiplication. This feature

vector is used to generate a new attention map over the image, which corresponds to the visual

pointing explanations (point e in Figure A.1). We supervise the image attention with a KL diver-

gence loss. To generate the attended image embedding, we use the attention map Exp
iα

to do an

element-wise multiplication with fIQ. The attended image, the question embedding, the KB em-

bedding, and the predicted answer embedding are fused by another element-wise multiplication

to generate an explanations feature vector fE (point f in Figure A.1). This feature vectoris fed

to an LSTM decoder to produce the final textual explanations (point g in Figure A.1), which is

supervised with Softmax Cross-Entropy Loss.

B. KB PERFORMANCE BY CATEGORY

Since the test-dev and test-std split of VQA are not public, we present the accuracy by cate-

gory on the validation split from VQA. Here our best KB model achieves an accuracy of 60.5,

and the baseline 59.57 (both models were trained only using the train split for this study).
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The KB helps to increase the performance of almost every category of questions in the VQA

dataset [Antol et al., 2015] (53 out of 65 question types). In Table 3, we list the categories that

present either a positive or negative accuracy variation of more than 1%. It is interesting to note

that most categories in this table are questions that begin with ’What’. Questions beginning with

’What’ usually have an answer that is a verb followed by a noun, or just a noun (E.g., Q: what is

the man doing?, A: playing tennis). ’What’ questions usually benefit from information within the

KB, since most relations in the KB are formatted as {Subj(Noun), Rel(V erb), Obj(Noun)}.

The 12 categories in which the KB has a negative impact are related to questions that require

knowledge about the properties of objects instead of relationships between them, which makes

sense since we collected most of the KB triplets from the visual genome relationships [Krishna

et al., 2017] that depicts relations between objects.
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Type Baseline Baseline-KB Gain

can you +++ 74.071 71.881 2.19
could ++ 79.66 78.657 1.003
how ++ 29.195 27.733 1.462
how many people are in ++ 45.713 44.663 1.05
is he +++ 79.126 77.029 2.098
is it +++ 87.487 84.924 2.563
is the ++ 76.003 74.642 1.361
is the man ++ 74.851 73.56 1.29
is this a ++ 78.344 77.286 1.057
is this an ++ 77.944 76.506 1.438
what are ++ 53.952 52.763 1.189
what color ++ 66.947 65.784 1.162
what color are the ++ 70.581 69.567 1.013
what is ++ 43.685 42.318 1.367
what is in the ++ 49.342 47.715 1.627
what is the ++ 47.399 46.318 1.081
what is the man +++ 56.425 53.857 2.569
what is the person +++ 58.811 56.233 2.578
what is this +++ 60.33 58.166 2.164
what kind of ++ 54.723 53.56 1.163
what number is ++ 9.539 8.172 1.367
what sport is ++ 87.569 86.565 1.004
what type of ++ 54.356 53.025 1.332
which ++ 43.86 42.819 1.042
why is the ++++ 21.887 17.665 4.222
has — 72.685 74.81 -2.125
what time – 23.013 24.044 -1.031

Table B.1. Answer accuracy by category. We only present categories with a vari-
ation of over 1% with respect to our baseline.
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