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abstract: Soay sheep on the island of Hirta exhibit periodic pop-
ulation collapses that have been proposed to result from nonlinear
interactions between weather, population density, and age structure.
Here we employ a diagnostic approach to reanalyze the data from
1985 to 2004 and find that climate mainly affects the equilibrium
population size, thus acting as a lateral perturbation. From this, we
derive a simple energetic model for a population interacting with its
food supply in the presence of variable winter weather. This model
explains the strong nonlinearity in the Soay sheep population reg-
ulation function and provides a framework for evaluating climatic
perturbations. We examined two integrative climatic indexes, one
representing effects on forage production and the other representing
the severity of winter weather. Results suggest that the latter has the
main effect on Soay sheep population dynamics. Models incorpo-
rating this variable provided fairly accurate predictions of Soay sheep
population fluctuations. The diagnostic approach offers an objective
way to develop simple, nonstructured population models that are
useful for understanding the causes of population fluctuations and
predicting population changes, provided they are based on a careful
consideration of the underlying biological and/or ecological
mechanisms.
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Following the groundbreaking work of Royama (1977,
1981, 1992), ecological time series analysis and diagnosis
has become one of the fastest-growing areas of population
ecology. Perhaps the most studied time series is that for
a population of Soay sheep (Ovis aries L.), an ancient
lineage of domesticated sheep living, unmanaged, on the
island of Hirta in the St. Kilda archipelago off northwest
Scotland. There are several reasons why this time series is
of particular interest. First, it is a closed population, so
changes in numbers are completely determined by births
and deaths and, therefore, the redistribution of animals in
space is not part of the problem. Second, because the
census involves counting the entire population, they are
quite accurate, at least over the periods 1959–1969 and
1985–2004 (accurate, that is, relative to many other time
series found in the literature). Finally, additional infor-
mation has been collected on individual animals living on
one part of the island (Village Bay) since 1985—including
sex, age, and parasite load—as well as on the abundance
of forage vegetation (Clutton-Brock and Pemberton 2004).
If we cannot unravel and explain the causes of numerical
fluctuations in this isolated population, what chance do
we have with others?

Clutton-Brock et al. (1991) used the approach of Varley
et al. (1973) to analyze the data from 1955 to 1967, con-
cluding that the key factor affecting population fluctua-
tions was starvation during winter, particularly among
lambs and rams. They also noted that starvation was re-
lated to population density in a nonlinear fashion. Grenfell
et al. (1992) used simple single-species models with and
without age structure to show that the population fluc-
tuations observed between 1985 and 1991 could be ex-
plained by overcompensatory density regulation in age-
structured models. Recently, studies have focused on the
effect of climate on the dynamics of Soay sheep. Grenfell
et al. (1998) analyzed a nonstructured threshold autore-
gressive model (SETAR) to show that the occurrence of
March gales during years of high sheep density increased
the probability of a severe population crash, a result sup-
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ported by the demographic analysis of Catchpole et al.
(2000). Stenseth et al. (2004) used a somewhat different
threshold autoregressive model (FCTAR) to conclude that
climatic fluctuations, as represented by the North Atlantic
Oscillation (NAO; Hurrell 1995; Stenseth et al. 2003),
could drive Soay sheep population fluctuations through
different dynamical regimes via nonlinear interactive ef-
fects. Coulson et al. (2001) employed a structured pop-
ulation model to show that Soay sheep fluctuations could
result from different age classes responding differently to
climatic variation as a function of their life history. Finally,
the age-structured model of Owen-Smith (2002) indicated
that Soay sheep population fluctuations could be caused
by severe overwinter depression of relatively high-quality
food.

At this point, we may well ask whether anything more
needs to be said about Soay sheep dynamics on Hirta.
Obviously there is, and the reasons are as follows. First,
the nonstructured threshold models of Grenfell et al.
(1998) and Stenseth et al. (2004) make assumptions about
the form of the density feedback (i.e., a threshold effect)
that are difficult to justify biologically and leave unan-
swered questions about the biological mechanisms in-
volved. In addition, these models explain only a small
fraction of the total variability in the data, which is hardly
comforting. (Adjusted coefficients of determination for
FCTAR models are all !13% [Stenseth et al. 2004], partly
because of the inclusion of data from 1970 to 1984, which
are of dubious precision [Clutton-Brock and Pemberton
2004].) As far as we know, the predictions of these models
remain untested.

Second, although structured population models (Coul-
son et al. 2001; Owen-Smith 2002) may describe the dy-
namics quite well, they require data on the age and sex of
the animals, information that is not readily available for
many populations. If knowledge of age and sex structure
is indeed necessary to understand and predict fluctuations
of animal populations, then many recent publications and
most population data would have to be dismissed. Thus,
part of our motivation was to demonstrate that simple,
nonstructured models can be helpful in understanding the
causes of population change and can make reasonably ac-
curate predictions. Unlike many of the analyses seen in
the literature, however, we argue that data should be an-
alyzed and interpreted within the context of a sound the-
oretical framework, and models should be developed with
regard to the underlying biological and/or ecological
mechanisms involved. Third, no study to date has con-
sidered the possibility of climate acting as a lateral per-
turbation (Royama 1992) on the Soay sheep regulation
function, even though circumstantial evidence suggests
this possibility. Our reanalysis of the Soay sheep data em-
ploys a diagnostic approach (Berryman 1999) to try to

understand how climate affects population dynamics. On
the basis of this understanding, we develop a conceptual
model for the postulated effects and evaluate two potential
climatic indicators. In this way, we arrive at a new inter-
pretation of the effects of climate on Soay sheep and new
insights into the mechanisms and interactions underlying
their unusual dynamics on the island of Hirta.

The Basic Model

We begin with a simple, nonstructured theoretical model
describing the effects of scramble-like competition (as de-
fined by Nicholson 1954) on the dynamics of a population
composed of a single species (Royama 1992; Berryman
1999):

Q

Nt�1N p N exp R 1 � . (1a)t t�1 m ( ){ [ ]}K

For analytical convenience, we write it in terms of the per
capita rate of population change:

Q

N Nt t�1R p ln p R 1 � , (1b)m( ) ( )[ ]N Kt�1

where Nt is the size of the sheep population in August of
year t (when the census occurs), Rm is the maximum log-
arithmic per capita rate of change over a year (i.e., from
August of year to August of year t), K is the pop-t � 1
ulation size at equilibrium (sometimes called the carrying
capacity), Q is a coefficient of nonlinearity, and R is the
realized logarithmic per capita change over a year. Equa-
tion (1a) is a nonlinear variant of the discrete logistic
equation (Cook 1965), commonly called the Ricker model,
with the nonlinear parameter Q justified on empirical
grounds (Richards 1959; Nelder 1961; Gilpin and Ayala
1973). Equation (1b) describes the process of population
regulation by intraspecific competition for resources—
what we call the R-function (Berryman 1999). Since this
model is different from those used previously to study
Soay sheep dynamics, we should explain why we chose it
as the basis of our analysis.

First, the pattern of oscillation seen in the Soay sheep
on Hirta is typical of overexploitation and collapse re-
sulting from scramble competition. Second, the discrete
logistic model derives from first principles consideration
of a randomly distributed population competing for a
common resource (Royama 1992), an assumption consis-
tent with scramble competition. In contrast, the hyperbolic
logistic used in other analyses (Grenfell et al. 1992, 1998;
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Figure 1: Total counts of Soay sheep on the island of Hirta, showing
two hypotheses for the apparent trend in the average number of sheep
(dotted lines). A, Step trend. B, Linear trend.

Stenseth et al. 2004) is considered to be more represen-
tative of a population regulated by contest competition
(Royama 1992). Although the hyperbolic form is some-
times used to represent scramble situations (Hassell 1975),
we prefer a model derived explicitly from first principles.
We should add, however, that using the hyperbolic version
of the logistic has little or no effect on our results or
conclusions.

Methods

Given the basic R-function (eq. [1b]) for the endogenous
feedback structure regulating Soay sheep population dy-
namics, then the effect of exogenous factors can be vi-
sualized as follows (Royama 1992).

Vertical perturbation effects. Here the exogenous factor
has an additive effect on the total R-function, causing it
to deflect vertically with proportional alterations to both
Rm and K. Vertical perturbations cause changes in the level
of equilibrium, through effects on K, and in the pattern
of oscillation around equilibrium, through effects on Rm;
that is, the period of oscillations is determined by the
product (Berryman 1999).R Qm

Nonlinear perturbation effects. Here the exogenous factor
affects the curvature of the R-function through the pa-
rameter Q. For reasons stated above, nonlinear pertur-
bations affect the pattern of oscillation as well as K.

Lateral perturbation effects. In this case, exogenous fac-
tors affect only the equilibrium level K, causing the R-
function to deflect laterally along the abscissa (N-axis).
Lateral perturbations are normally expected from changes
in an essential resource such as food, nesting sites, and so
on. (Berryman 1999, 2004). Lateral perturbations do not
change the pattern of dynamics around equilibrium since
the sensitive parameters Rm and Q are not affected.

Data

Soay sheep have been counted on the island of Hirta since
1959. However, because the counts from 1970 to 1984 are
of doubtful reliability (Clutton-Brock and Pemberton
2004), we chose to restrict our analysis to the longest con-
tinuous string of reliable data (i.e., 1985–2004; fig. 1; see
also app. A in the online edition of the American Natu-
ralist). In our opinion, information obtained from a short
series of reliable data is more credible than that obtained
from a long string containing unreliable data.

The normalized difference vegetation index (NDVI) is
a satellite-generated index strongly correlated with the
fraction of photosynthetically active radiation absorbed by
vegetation. We used the March to September values as an
index of annual forage production (Myneni et al. 1997).
Since Hirta is too small to obtain a good NDVI reading,

we used values from the Outer Hebrides reported by Du-
rant et al. (2005; see app. A).

The NAO was used as an index of the severity of winter
weather (see app. A); for example, a positive NAO is as-
sociated with more gales, rainfall, and higher temperatures
(Hurrell 1995) and has been previously associated with
Soay sheep winter mortality (Catchpole et al. 2000; Coul-
son et al. 2001; Stenseth et al. 2004).

Analysis

Rather than making a priori assumptions about the struc-
ture of the density-feedback function, we employed a di-
agnostic approach that lets the data direct us toward an
appropriate model and its relationship to external pertur-
bations such as climate (Berryman 1999). Analysis was en-
abled by the population analysis system (see app. B in the
online edition of the American Naturalist). Nonstationary
data were detrended to allow calculation of diagnostic sta-
tistics that assist in determining the period of oscillation,
the order of the endogenous dynamics (time lags), and the
curvature of the R-function. Parameters were estimated by
nonlinear convergence (i.e., Marquardt/Newton-Raphson
algorithm), and simulations were performed in determin-
istic and variable environments. Models including climatic
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Table 1: Diagnostic analysis of the detrended Soay sheep time series 1985–2004

Statistic Linear detrended Step detrendeda

Oscillation period 3.167 � .373 3.167 � .373
Return timeb 1.015 � .442 .975 � .372
Parameters estimated for model (1):

Rm .606 .444 (.416; .450)
Q 2.878 5.189 (5.258; 9.211)
K 1,399 1,716 (1,220; 1,756)
100r2 70.65 79.70

Variation explained (100r2; %):
Exogenous trend 27.28 26.08
Endogenous feedbackc 51.38 58.91
Total deterministic model 78.66 84.99
Residual random variability 21.34 15.00

Stability properties:
Deterministic (RmQ)d 1.74 (damped stable) 2.3 (2-year cycle)
Stochastic (oscillation period)e 2.53 � .794 2.80 � .938

Note: See appendix B in the online edition of the American Naturalist.
a Numbers in parentheses are statistics for each sequence (1985–1994 and 1995–2004).
b Average time taken to return to the mean following a displacement from the mean (see app. D in the online

edition of the American Naturalist).
c Calculated as variation not explained by trend (i.e., ) times variation explained by model fit to detrended100 � 27.28

data (i.e., 70.65) divided by 100.
d Deterministic stability of equation (1) is determined by the product RmQ (Berryman 1999).
e Stochastic oscillation period determined by simulation of the model in randomly varying environment, that is, by

adding a standard normal deviate with standard deviation 0.1 to the deterministic R calculated from the model.

effects were fit by minimizing the Akaike Information
of parame-Criterion p �2[log (likelihood)] � 2(number

ters), using nonlinear regression from the nls library in the
program R (Bates and Watts 1988; see app. C in the online
edition of the American Naturalist). Models were fit to the
sequence from 1985 to 1999 and used to predict the se-
quence 2000–2005.

Results

Diagnosis

Since the Soay sheep time series is not stationary (fig. 1),
the trend was removed by sequencing (i.e., splitting the
series into two stationary segments, as in fig. 1A) and linear
rotation (i.e., rotating the series around the linear trend
in fig. 1B). The two stationary (detrended) series were then
used to calculate the statistics (table 1) that led to the
following diagnosis (for details, see app. B).

Endogenous Feedback. Mean return times !2 (table 1; see
also app. D in the online edition of the American Natu-
ralist) and the highly significant negative peak at lag 1 in
the partial autocorrelation function (fig. 2A) indicate the
presence of strong first order negative feedback, from
which we conclude that Soay sheep numbers are probably
regulated by intraspecific competition for resources (Ber-
ryman 1999). Since starvation is the major cause of sheep

mortality (Clutton-Brock et al. 1991), it seems likely that
annual forage production is the resource involved. Ac-
cording to our analysis, endogenous negative feedback ac-
counts for 50%–60% of the variation in observed R values
(table 1). These results support our choice of model (1)
to describe Soay sheep dynamics and are generally in line
with those of previous authors (Grenfell et al. 1998; Coul-
son et al. 2001; Stenseth et al. 2004).

Exogenous Effects. Systematic linear or step changes in an
unknown exogenous factor (climate?) accounted for
around 27% of the variation in observed R values (fig. 1;
table 1). Although the linear trend accounted for slightly
more variability, a deterministic resolution containing the
linear trend and endogenous feedback accounted for less
variability (79%) than that based on a step trend plus
endogenous feedback (85%). In addition, the stability
properties and pattern of fluctuations of the step model
were more consistent with those observed in the data in
both deterministic and stochastic environments (table 1;
cf. oscillation periods in the first and last rows). Several
clues suggest that exogenous factor(s) acted as a lateral
perturbation on the parameter K. First, the parameter K
increased by 44%, whereas Rm increased by only 8% over
the step trend (table 1; fig. 2B). Since vertical perturbations
are expected to cause a proportional increase in both pa-
rameters, this explanation seems unlikely. On the other
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hand, Q increased by a large amount (75%), which sug-
gests a possible nonlinear perturbation effect. However,
such a large increase in Q without a corresponding decline
in Rm (which was not observed) should cause a noticeable
increase in the period of oscillation (which was also not
observed in the data; see fig. 1). In contrast, exogenous
effects on K would cause changes in the average level of
abundance without influencing the period of oscillation.
It is worth noting that the typical pattern of 3-year os-
cillations seen in the data (fig. 1) is possible only over a
very limited range of the parameter combination ofR Qm

model (1); that is, strict 3-year oscillations are seen only
when . In stochastic environments, this3.1 ! R Q ! 3.24m

criterion is even more restrictive. Thus, it seems highly
unlikely that the observed changes in Soay sheep dynamics
can be explained by environmental factors that affect Rm

or Q. The final clue comes from the observation that food
is likely to be the limiting factor on Hirta (Clutton-Brock
et al. 1991; Crawley et al. 2004), and food is known to
mainly affect K without influencing the other parameters
(see, e.g., Berryman 2004).

Modeling

Accepting, for the purpose of argument, that exogenous
factors operate as a step function (fig. 1A), then we can
separate the data into two sequences (1985–1994 and
1995–2004) and fit nonlinear R-functions (eq. [1b]) to
each approximately stationary sequence (fig. 2B; see also
app. B). Notice how both R-functions have strongly down-
curving or convex shapes because of large Q values (i.e.,

), as does the model fit to the detrended series (tableQ k 1
1). It is not clear, however, why they have this shape and
what role climate plays in it. To understand this requires
us to think more deeply about the interaction between
population size, food supplies, and winter weather.

Since the production of food plants on the island during
a given year is expected to determine, along with popu-
lation size, the amount of food available to an average
sheep (Illius and Gordon 2000; Crawley et al. 2004), then
the food (or energy) accumulated by an individual during
that year should approach some maximum level (the en-
ergy demand, Em) as food becomes very abundant or the
population becomes very sparse. A simple way to express
this is

N
E p E � , (2)m bF

where F is the total amount of forage produced during
the year and b measures the efficiency of conversion of
available food into utilizable energy. Note that the energy
gained can be negative if F is small or N is large, in which

case the average animal can lose energy (or weight). This
simple model is probably reasonable as long as the total
amount of forage produced in a given year does not ap-
proach 0 (which seems an unlikely event). In addition, the
use of more complicated models does not substantially
affect our argument.

We now try to imagine how winter weather can affect
this relationship. Suppose an animal needs to acquire Ew

units of energy to survive a winter of severity W, then the
probability of that individual dying during that particular
winter can be defined as

0; E ≥ EwD p . (3){1; E ! Ew

Furthermore, following the reasoning above, we can say
that there is a particular population size Nw that would
gain exactly Ew units of energy from any given level of
forage production F:

NwE p E � , (4)w m bF

and, therefore,

N p bF(E � E ). (5)w m w

Notice that this particular population size varies according
to the energy gain needed to survive a given winter (Ew)
and the food produced during the growing season (F),
both of which could be related to climate. This is quite
important since it provides a natural framework for in-
troducing the effects of weather into our model.

Returning to equation (3) and substituting equations
(2) and (4) for E and Ew lead to a death function expressed
in terms of population size rather than energy:

0; N ≤ NwD p . (6){1; N 1 Nw

This D-function assumes that all animals obtain the same
amount of food and require the same amount to survive
winter, an assumption that we will relax later. Under these
conditions, Nw defines a critical population size above
which all animals die and below which all survive (fig.
3A), given a winter of severity W. We can translate this
into an R-function by noting that R p ln [1 � B(1 �

, where B is the per capita annual birth rate andD ) � D ]l a

Dl and Da are the probabilities of death for lambs and
adults, respectively (Berryman 1999). Assuming, without
loss of generality, that the death rates for lambs and adults
are equal, then we see that when andR p R D p 0m

when (fig. 3B). (Note that the conditionR p �� D p 1
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Figure 2: A, Partial correlation between R and , with d the lag in the feedback response, for Soay sheep data detrended by linear regressionNt�d

(open bars) and by sequencing (gray bars). B, R-functions (eq. [1b]) fit to data from 1985–1994 (gray) and 1995–2004 (black), with an open point
for the transition year. See table 1 for statistics and appendix B in the online edition of the American Naturalist for methods.

means that all animals die within the interval ofR p ��
observation, in this case a year.) From figure 3B, we see
that the equilibrium level K is, in fact, equal to the critical
population density, so equation (5) can be written as

K p bF(E � E ). (7)m w

Since both F and Ew could be affected by climate while
Em is a species-specific constant, we can write the following
model for K as a function of our two climate indices:

K p F(NDVI)[E � W(NAO)], (8)m

where NDVI and NAO are proxies for forage production
and winter severity, respectively.

Of course, the assumptions of equal food partitioning
and equal food requirements are unlikely to be true, but
this does not change our basic argument. In the case of
random food partitioning and a normal distribution of
individual food requirements, the D-function is expected
to have the sigmoid shape of a cumulative normal prob-
ability density function (fig. 3C), and the R-function would
be sharply convex (fig. 3D), just like the real data (fig. 2B).
Thus, in addition to providing a theoretical link between
climate and K, our argument also provides a logical ex-
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Figure 3: Probability of death (D-function) for Soay sheep under the following assumptions. A, Identical individuals obtain the same amount of
food and require the same quantity to survive winter; B, graph of the corresponding R-function. C, Food is randomly distributed among diverse
individuals in a population so that the probability of death is now a normal random variable; D, graph of the corresponding R-function, showing
the effect of a lateral perturbation caused by increased food or decreased winter severity. The variable Nw is the number of individuals that would
obtain enough food to survive a winter of severity W given a particular annual supply of forage, and K is the equilibrium population.

planation for the strongly nonlinear form of the Soay sheep
R-function.

Evaluating Climatic Effects

The energetic model (eq. [8]) leads to the following hy-
potheses for the effect of climate on the Soay sheep equi-
librium density K: H0, the null model that climate does
not affect K, in which case andW(NAO) p 0 F p

; H1, climate affects K only through forage pro-constant
duction, in which case andW(NAO) p 0 K p

; H2, climate affects K only through winter se-F(NDVI)
verity, in which case andF p constant K p K �m

, with Km the value of K under the most favorableW(NAO)
winter conditions; H3, climate affects K through both for-
age production and winter survival, in which case K p

.F(NDVI)[E � W(NAO)]m

We fit the nonlinear logistic model (eq. [1b]) with K-
functions defined by one of the models above to the data
from 1985 to 1999 (see app. C), with the remaining data
being saved for testing predictions. To maintain simplicity,
we assumed that the functions C and W were linear. Pa-

rameters were aggregated so that no K-function had more
than two fitting parameters. Parameters were estimated in
two ways. (a) Since our diagnostic analysis of the entire
data series led to the conclusion that exogenous factors
had no effect on the parameters Rm and Q, we set them
to the values estimated from the total series after step
detrending (table 1; , ). The modelsR p 0.444 Q p 5.189m

were then fit to the 1985–1999 data with these parameters
fixed, with the remaining two being estimated by regres-
sion. (b) We let all parameters be freely estimated by non-
linear regression. Models were evaluated on the basis of
their coefficients of determination, Akaike Information
Criterion (Burnham and Anderson 1998), and their pre-
diction of counts from 2000 to 2005 (table 2).

The model H2 with NAO acting alone on K fit the data
best (table 2), and model H2a (parameters Rm and Q fixed)
provided the best prediction of the observed 3-year pop-
ulation fluctuations (fig. 4). Predictions of this model de-
viated, on average, !10% (range 2%–25%) from the ob-
served values, while the predictions of all other models
were very poor (table 2). We note that the 2005 forecast
was made before the sheep count and can therefore be
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Table 2: Parameters, statistics, and predictions of the nonlinear logistic (eq. [1b])

Model Rm Q K DET AIC TRA STP

H0(a) .444 5.189 1,607.378 .31 17.72 20 61
H0(b) 1.677 .557 1,243.576 .46 3.97 32 65
H1(a) .444 5.189 232.283 # NDVI � 233.686 .39 16.66 1100 1100
H1(b) .916 1.096 98.792 # NDVI � 718.747 .46 15.77 38 96
H2(a) .444 5.189 2,434.365 � 237.315 # (NAO � 2.65) .63 8.96 10 12
H2(b) .402 2.916 2,289.235 � 242.272 # (NAO � 2.65) .65 9.45 18 18
H3(a) .444 5.189 NDVI # [444.69 � 44.78 # (NAO � 2.65)] .58 10.85 1100 1100
H3(b) .350 3.470 NDVI # [423.76 � 45.41 # (NAO � 2.65)] .59 11.86 95 333

Note: Logistic with K a constant or a function of the normalized difference vegetation index (NDVI) and/or the North

Atlantic Oscillation (NAO), as specified by hypotheses H0–H3. Models were fit to Soay sheep and climatic data from 1985

to 1999 (see app. C in the online edition of the American Naturalist). In model a, the parameters Rm and Q are fixed at

values obtained from the step-detrended model (table 1), while in model b, all parameters are estimated from these data.

of determination; Information Criterion; percent deviation of observedDET p coefficient AIC p Akaike TRA p mean

from total trajectory predictions; percent deviations of observed from one-step-ahead predictions, calculatedSTP p mean

as . Boldface values are the parameters of the selected models according to the AIC criteria.(� 100FO � PF/P)/6

Figure 4: Comparison of observed Soay sheep counts (circles) for the period 1999–2005, with predictions from models H2a (solid line; Rm and Q
fixed) and H2b (dashed line; all parameters free) fit to 1985–1999 data. Left, total trajectory predictions initiated with 933 sheep in 1999. Right,
step-ahead predictions using real data in year to predict numbers in year t.t � 1

considered a “true prediction.” Total trajectory forecast
with model H2a was for 1,434 sheep in 2005 (1,486 with
model H2b), while step-ahead forecast was 1,091 sheep
(1,249 with model H2b). The actual census was 1,365
sheep.

Discussion

Diagnostic analysis of the Soay sheep time series suggested
that climatic factors act mainly on K, causing what Royama
(1992) calls a lateral perturbation effect (fig. 5, top). Per-
turbations of this kind have strong effects on the average
level of abundance but little on the intrinsic periodicity
induced by endogenous feedback. In contrast, previous
models assume that climate acts differently when the pop-
ulation exceeds a particular threshold density. In the

SETAR model (Grenfell et al. 1998), climate effects are
discontinuous, which makes them difficult to interpret in
Royama’s framework (fig. 5, middle). In this model, the
average level of abundance is affected little by climate, but
since endogenous dynamics are “perfectly” stable, popu-
lation fluctuations are expected to closely follow climatic
variations. Under these conditions, we would not expect
a strongly periodic component to the dynamics. Finally,
the FCTAR model (Stenseth et al. 2004) can be interpreted
as a nonlinear perturbation because climate is assumed to
affect the steepness of the R-function above the assumed
threshold (fig. 5, bottom). In this model, climate can have
a strong, coincident effect on the average level of abun-
dance and the period of population fluctuations. Since
Soay sheep dynamics seem to be dominated by a strongly
periodic (3-year) oscillation that does not change appre-
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Figure 5: Comparison of maps of single-species, nonstructured models
of Soay sheep dynamics and proposed climatic perturbation effects. Top,
nonlinear logistic model from this article. Middle, SETAR model of Gren-
fell et al. (1998). Bottom, FCTAR model of Stenseth et al. (2004). Diagonal
45� line on which at interception, with the populationN p N p Kt t�1

growth function . Vertical line indicates the thresholdN p N R(N )t t�1 t�1

in TAR models. Gray circles, 1985–1994. Black circles, 1995–2004. Thin
lines indicate hypothesized effects of climate change.

ciably with respect to average abundance, the data seem
to support the interpretation that climate acts as a lateral
perturbation on K (fig. 5, top)

Lateral perturbations are the result of exogenous factors
like climate acting on the population equilibrium (or car-
rying capacity; Royama 1992). Surprisingly, few analyses

of population dynamics under the influence of climatic
change seem to consider this possibility (but see Owen-
Smith 2000; Jacobson et al. 2004; Lima et al. 2006). Since
equilibrium levels are usually set by a resource in short
supply (Berryman 1999, 2004), we should anticipate lateral
perturbation effects whenever exogenous factors are sus-
pected of influencing the supply of food or, for that matter,
any other essential resource. On Hirta, food is assumed
to be the resource in short supply since most of the mor-
tality is from starvation. Hence, explanations of climatic
effects on Soay sheep dynamics need to consider the pos-
sible effects of climate on food supplies, that is, lateral
perturbation effects (Royama 1992). What our study seems
to indicate is that total food production does not vary
much from year to year but that food requirements for
survival can change dramatically in response to variable
winter weather. Thus, although equilibrium levels may be
set by annual food production, they are modified in un-
expected ways by winter weather. In addition, the effects
of winter weather are experienced only when the sheep
population is close to equilibrium. At other times, winter
weather is of little import. It is interesting to speculate
that, under such unpredictable circumstances, it would be
difficult for sheep to evolve behavioral or physiological
mechanisms for avoiding the drastic consequences of
overpopulation.

Previous authors have postulated that Soay sheep pop-
ulation dynamics are the result of a nonlinear interaction
between climate and population density (Stenseth et al.
2004) and/or population structure (Coulson et al. 2001).
Our analysis, however, suggests that the nonlinearity is
caused by a fine line (or sharp transition) between having
and not having enough food to survive winter; that is,
when the population is below this transition point, most
animals have sufficient food, while when it is above this
point, many do not. This can be thought of as a threshold
as long as all animals obtain exactly the same amount of
food and have exactly the same energy requirements (i.e.,
fig. 3B). In nature, of course, there is considerable indi-
vidual variability, and this will result in a more gradual
convex relationship (fig. 3D). Hence, our model predicts
that the sharpness of the transition, or the steepness of
the R-function, will be related to variability in resource
acquisition and the energy requirements of individuals of
different age, sex, and/or social status, as well as variability
in food quality (see, e.g., Owen-Smith 2002). In a more
general, theoretical context, the form of the R-function
seems to be mainly determined by physiological charac-
teristics of the species. For example, a recent theoretical
analysis of resource partitioning in single-species popu-
lations indicated that convex R-functions are to be ex-
pected in species that utilize a large fraction of their total
energy consumption for survival and/or have low repro-
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Figure 6: Plot of the per capita rate of change against the initial population size for the Soay sheep data from 1985 toR p ln N � ln N Nt t�1 t�1

2004 (open circles) and data simulated by model H2(a) (solid circles). Vertical dashed line indicates the approximate “threshold” of the SETAR model.

ductive potentials (K. Johst, A Berryman, and M. Lima,
unpublished manuscript). Since Soay sheep and many
other large herbivores possess both of these characteristics,
it is not surprising that they also tend to have convex R-
functions.

Our interpretation of the Soay sheep R-function seems
to be generally in line with that of Owen-Smith (2002).
Although Owen-Smith’s model is written in weekly time
steps, numerical integration over a year gives rise to a
strongly convex R-function (see his fig. 13.7). The reason
for this convex shape, according to Owen-Smith, is that
high sheep density results in severe overwinter depression
of a high-quality food supply, resulting in mass starvation,
while a slightly lower density does not reach this critical
threshold of food availability. Since our model is based on
a discrete annual time step, it cannot be expected to explain
seasonal details. What is encouraging, however, is that both
models lead to the same general conclusions about the
shape of the sheep’s R-function and the resulting popu-
lation dynamics.

In addition to explaining the nonlinearity in Soay sheep
dynamics, the energetic model provides a simple mecha-
nism for incorporating the effects of climate (i.e., through
forage production and the critical amount of food [energy]
required by an individual to survive winter), providing us
with a conceptual framework for evaluating the effects of
climate on Soay sheep dynamics (and perhaps other un-
gulates inhabiting harsh environments). Using NDVI and

NAO as proxies for forage production and winter severity,
respectively, we found that the latter had the greater effect
on sheep dynamics, supporting the conclusions of previous
authors (Clutton-Brock et al. 1991; Grenfell et al. 1992;
Coulson et al. 2001). However, the effect of winter weather
is not independent or additive but, rather, interacts with
food production (see eq. [8]). As far as we know, no pre-
vious model considers this possibility explicitly.

Our analysis also demonstrates that simple, nonstruc-
tured models can offer reasonable explanations and ac-
curate predictions of structured populations, provided
they are based on a sound theoretical framework (see also
Owen-Smith 2000), that is, a general analysis of the un-
derlying causal processes within the context of the model
structure (Royama 1992; Berryman 1999; Turchin 2003).
This is encouraging since most of the available time series
data do not include information on age, sex, or spatial
structure. Of particular importance in our endeavor was
Royama’s classification of exogenous perturbation effects,
without which it would have been difficult to visualize the
ways in which climate could affect the sheep R-function.

During the extensive review of this article by those in-
volved in the Soay sheep project, several questions arose
that required our attention. First, some thought that the
trend in the data over the period 1985–2004 could have
been caused by a change in the efficacy of counting sheep
during this period. If this were true, it would be pretty
serious since our whole argument centers on this trend.
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However, there are two things that support our view that
the trend is real. First, data from the Village Bay subpop-
ulation, which was sampled much more intensively,
showed an identical trend, and the two time series were
almost perfectly correlated (Clutton-Brock and Pemberton
2004; see their fig. 3.1, 3.2). Since the accuracy of the
Village Bay data has not been questioned, we feel that they
support the veracity of total population counts. Second,
more complicated structured population models with cli-
matic forcing (Coulson et al. 2001) also predict a trend
over these years, even though they are not programmed
to do so, which also suggests that the trend is real.

There was also some question as to whether our model
could reproduce the peculiar pattern seen when the data
are plotted in R-N phase space (fig. 6, open circles). Notice
how variability is low to the left of the vertical broken line
and much greater to the right (it was this pattern that
motivated the thresholds in SETAR and FCTAR models).
Since simulated data seem to produce an almost identical
pattern (fig. 6, solid circles), we see no reason to reject our
model on this basis. We might mention here that this
pattern is expected from lateral perturbation effects, which
disturb the steeply convex R-function laterally along the
N-axis and thereby cause the data to scatter more laterally
than vertically.

Also questioned was the number of data points used to
estimate parameters of our climatic effect models. The
largest number of free parameters in our models was four
and the fewest was two, while the number of data points
was restricted to 15 (1985–1999) in order to have some
data for testing predictions. This leaves us with between
four and eight data points per parameter, which is rather
low from a statistical point of view. However, our models
were deduced from biological principles, so what they may
lose in statistical power they may make up for in the power
of biological and theoretical insight. It is for the reader to
judge which is more important. In the end, of course, it
is the predictive and explanatory power of the model that
is most important, and our model seems to do quite well
on both counts.

Finally, we are obliged to respond to questions con-
cerning the generality of our results. For example, some
reviewers thought that our methods would be applicable
only to species living on isolated islands with few or no
natural enemies. On the contrary, the “diagnostic ap-
proach” we used can be applied to any ecological system
in which time series are available for one or more species,
including those in which natural enemies are important
components of the system. Examples can be found in Ber-
ryman (1999, 2001, 2002) and Münster-Swendsen and
Berryman (2005). Second, the energetic model probably
has application to other species that are dependent on
resource availability to survive critical periods, including

those in which predation is a major mortality factor; that
is, energy reserves may be as critical in escaping from
predators as surviving bad weather. Another reviewer won-
dered whether our analysis has made any significant con-
tribution to general ecological theory. We would turn the
question around by saying that our article illustrates how
general ecological theory can be employed to understand
and explain the causes of population changes in a specific
ecological system and to predict future changes in that
system. In other words, it is an example of applied eco-
logical theory, in particular, the application of the logistic
equation and theories pertaining to nonlinear population
dynamics, exogenous perturbations, and resource parti-
tioning. We feel that this is a significant turnaround since
theoretical ecology is frequently criticized for its lack of
practical applications and predictive power (Peters 1991).
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