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ABSTRACT 

 

 
The stratocumulus (Sc) cloud, responsible of the formation of advective fog at the coast of 

the Atacama Desert, is a valuable untapped freshwater source with potential to face the 

water scarcity in this region. However, little is known about features such as seasonal fog 

variability and cloud vertical structure that are essential to assess fog harvesting water 

potential. To investigate these features, a thermodynamic characterization of potential 

temperature () and specific humidity (q) in the marine boundary layer (MBL), and a 

Ground Optical Fog Observation System (GOFOS) that directly measures local fog 

spatiotemporal variability, were combined. The vertical  and q gradients are employed to 

find seasonal thresholds that define the MBL regimes related to fog formation (well-mixed 

MBL) and dissipation (stratified MBL); the lifting condensation level (LCL) and artificial 

neural networks (ANNs) are used to estimate the Sc cloud base (CB) elevation; and multiple 

linear regression models (MLRM) and ANNs are utilized to find the elevation of the Sc 

cloud top (CT). Even when a seasonal variability of the  and q gradients was observed, the 

thresholds that defines the MBL regimes related to fog formation are nearly constant along 

the year. Fog detection using the   vertical gradients agreed 95% of the time during winter 

and spring, whereas fog detection using the q gradients agreed in ~69% in the same seasons. 

A logistic regression analysis demonstrated that fog events can be classified with a good 

accuracy (0.82) using only  as predictive variable. The CB estimated with ANNs show a 

better agreement (r2=0.67) with GOFOS observations throughout the year than the LCL 

method; with errors smaller than 4%. Finally, both MLRM and ANNs show a good 

agreement with GOFOS observations to estimate CT (r2=0.84 and r2=0.92, respectively; 

with errors smaller than 4%). Our results reveal that the essential features of fog formation 

and its seasonal variability can be approximated through standard meteorological 

observations. 

 

Keywords: advective fog, marine boundary layer, Atacama Desert, cloud base, cloud top. 
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RESUMEN 

 

La nube estratocúmulo (Sc), responsable de la formación de niebla advectiva en la costa del 

Desierto de Atacama, es una valiosa fuente de agua dulce sin explotar con potencial para 

enfrentar la escasez de agua en esta región. Sin embargo, se sabe poco acerca de 

características como la variabilidad estacional de la niebla y la estructura vertical de la nube 

que son esenciales para evaluar el potencial hídrico de recolección de niebla. Para investigar 

estas características, se combinó una caracterización termodinámica de la temperatura 

potencial () y la humedad específica (q) en la capa límite marina (MBL) con un sistema de 

observación óptico de niebla (GOFOS) que mide directamente la variabilidad 

espaciotemporal de la niebla. Los gradientes verticales  y q se emplean para encontrar 

umbrales estacionales que definen los regímenes de MBL relacionados con la formación 

(MBL bien mezclada) y disipación de niebla (MBL estratificada); la elevación del nivel de 

condensación (LCL) y redes neuronales artificiales (ANN) se utilizaron para estimar la 

elevación de la base de la nube Sc (CB). Además, se utilizaron modelos de regresión lineal 

múltiple (MLRM) y ANNs para encontrar la elevación del techo de la nube Sc (CT). A pesar 

de que se observó una variabilidad estacional de los gradientes verticales de  y q, los 

umbrales que definen los regímenes de MBL relacionados con la formación de niebla son 

casi constantes a lo largo del año. La detección de niebla usando los gradientes verticales de 

 coincidió el 95% del tiempo durante el invierno y la primavera, mientras que la detección 

de niebla usando los gradientes q coincidió en ~69% en las mismas estaciones. Un análisis 

de regresión logística demostró que los eventos de niebla se pueden clasificar con una buena 

precisión (0,82), utilizando solamente  como variable predictiva. Los CB’s estimados con 

ANNs muestran una mejor concordancia (r2 = 0.67) con las observaciones de GOFOS a lo 

largo del año, en comparación con el método LCL; con errores menores al 4%. Finalmente, 

tanto MLRM como ANN muestran una buena concordancia con las observaciones de 

GOFOS para estimar CT (r2 = 0.84 y r2 = 0.92, respectivamente; con errores menores al 

4%). Los resultados de este estudio revelan que las características esenciales de la formación 

de niebla y su variabilidad estacional se pueden aproximar a través de observaciones 

meteorológicas estándar. 
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Palabras clave: niebla advectiva, capa límite marina, desierto de Atacama, base de la nube, 

techo de la nube.
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I. INTRODUCTION 

 

 

1.1. Background 

 

Fog is a meteorological phenomenon that originates from the contact of saturated air 

masses with the Earth’s surface (Fessehaye et al., 2014). Based on geographic 

characteristics, this phenomenon can be classified in three types: radiation, orographic 

and advective fog (Cereceda et al., 2002). Radiation fog occurs overnight when the air is 

cooled by contact with a cold surface, causing water vapor condensation in the air 

(Straub et al., 2012; Domen et al., 2014). Orographic fog happens when the humid air 

parcel rises due to the presence of the topography and adiabatically condenses (Lobos-

Roco et al.,2018). Advective fog, which is the focus of this research, arises over the 

ocean where moist air cools as it passes over cooler waters, forming low-altitude 

stratocumulus (Sc) clouds that are then transported toward the coast (Domen et al., 2014; 

Fessehaye et al., 2014).  

Fog has been investigated as a valuable freshwater resource with potential to face the 

water scarcity (Cereceda et al., 2008a, b; Klemm et al., 2012), and the sole water supply 

of fragile ecosystems in arid and semi-arid regions, such as those located at the coast of 

the Atacama Desert (Cereceda et al., 2002, 2008a; Osses et al., 2005; Pinto et al., 2006; 

Koch et al., 2019). Here, advective fog is frequent (Cereceda et al., 2002; del Río et al., 

2021a). Its formation is related with the Sc cloud that occurs under statically stable 

lower-tropospheric conditions (Wood, 2012), and it is influenced by the interaction of 

two physical processes (Duynkerke, 1995; Lobos-Roco et al., 2018): subsidence and 

longwave radiative cooling (Figure 1a). As a result of the strong subsidence produced by 

the Hadley cell (Chang, 1995) and enhanced by the backward diurnal circulation 

between the Pacific Ocean and the Andes Altiplano (Rutllant et al., 2003; Lobos-Roco et 

al., 2021), a warm/dry air above the Sc cloud top (CT) is developed. When this 

warm/dry air interacts with the cold/wet and well-mixed marine boundary layer (MBL), 
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it generates a thermal inversion layer that together with the longwave radiative cooling 

promotes formation of semi-permanent Sc low clouds (Duynkerke et al., 1995; 

Bretherton and Park, 2009). The longwave radiative cooling generates a convective 

instability due to the heat exchange by entrainment of warm/dry air coming from the 

free troposphere that mixes into the MBL (See Figure 1a), raising the cloud base (CB) 

and thinning the cloud (Wood, 2012). The convective instability can be removed by the 

turbulence generated by cool downdrafts coming from the Sc CT and by warm 

compensating updrafts coming from the Sc CB that are generated by surface warming 

(Stevens et al., 2003). Finally, predominant S-SW winds transport the Sc cloud inland 

where it intercepts the coastal mountain range (del Río et al., 2021a,b).  
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Figure 1. (a) Physical processes for the development of the Sc cloud that penetrates inland where the relief 

intercepts it and fog is formed (Duynkerke et al., 1995; Lobos Roco et al., 2018). The vertical profile of  

and q under well-mixed conditions within the marine boundary layer (MBL) is presented, as well as the 

identification of Sc cloud base (CB) and cloud top (CT), lifting condensation level (LCL), the adiabatic 

mixing ratio ql, and the mixing ratio considering mixing with environment qlm. (b) Profiles of  and q 

under stratified conditions. 
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1.2. Motivation  

 

To successfully find and assess optimal sites for fog harvesting, a better understanding 

of the features of the fog and low cloud (FLC) dynamics is needed. Relevant features of 

advective fog dynamics are fog formation, maintenance, and dissipation (duration), and 

Sc cloud vertical structure (Cereceda et al., 2002; Larrain et al., 2002; Domen et al., 

2014; Lobos- Roco et al., 2018; del Río et al., 2021a).  

1.3. Research gap 

 

Some studies have been carried out to understand fog’s annual variability (Muñoz et al., 

2016; del Río et al., 2018, 2021b), its temporal and spatial distribution (Farias et al., 

2005; Cereceda et al., 2008b; Torregrosa et al., 2016; Andersen & Cermak, 2018; del 

Río et al., 2021b), and its relationship with macroclimatic phenomena (Schulz et al., 

2011; Muñoz et al., 2016; del Río et al., 2018). However, these studies have limitations 

related to the low quality of observations due to its low spatial and temporal resolutions. 

For instance, Farías et al. (2005) studied the spatiotemporal behavior of the FLC through 

Geostationary Operational Environmental Satellite (GOES) images every 90 min at the 

Coastal of the Atacama Desert during 2001-2003. They analyzed the FLC spatial 

dynamics for one representative month in winter and one representative month in 

summer, determining the daily and monthly fog cycles and its frequency. Nonetheless, 

this methodology has two main limitations. The first one is related to the 

characterization of the FLC vertical structure because satellite images do not precisely 

discriminate low clouds from fog. This issue occurs because the cloud is measured from 

above and there is little information regarding the proximity of the cloud base to the 

ground surface. The second limitation is the study period because they only investigated 

two months of the year. Unfortunately, these months did not include spring, which is the 

season that exhibits more fog frequency (e.g., See García et al., 2021).  

Bendix et al. (2005) proposed an algorithm based on Moderate Resolution Imaging 

Spectroradiometer (MODIS) daytime data for Germany to distinguish between fog and 
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low clouds with a better spatial resolution than that used by Farías et al. (2005). 

Although this method represents a step forward in fog detection from space and in the 

characterization of the FLC vertical structure, the results revealed relatively high 

percentage errors and false alarm ratios due to the time lag between satellite overpass 

and ground observations.  

To determine the FLC vertical structure, it is possible to estimate FLC CB and CT 

through sophisticated ground systems and remote sensing. For instance, CB height can 

be detected by lidar ceilometers that receive the backscattered profile with a vertical 

spatial resolution of ~15 m (Hogan et al., 2005; Serpetzoglou, 2008). However, these 

systems do not offer the global coverage of satellite data (Koračin et al., 2014). Lidar 

ceilometers also use complex algorithms to estimate a representative CB from the 

returned cloud signal (Jarraud, 2008). Satellite remote sensing, such as GOES (Ellrod 

and Gultepe, 2007) and MODIS (Bendix et al., 2005), allows identifying CB heights 

through passive visible and infrared imagery with better night performance than 

ceilometers, but with limitations to distinguish between ordinary low stratus clouds and 

fog at the terrain surface (Koračin et al., 2014). Likewise, CT can be calculated through 

active and passive remote sensing or with ground systems, but the most traditional 

method is using brightness temperatures from one or more radiosonde channels to 

calculate CT temperature, and to infer the height from a temperature profile, usually 

derived from a numerical model (Jarraud, 2008) with deviations of ~50 m (Bendix et al., 

2004). However, it is also necessary an algorithm that extracts the CT height of 

extremely low stratus clouds by superimposing the initial binary stratus mask over a 

digital elevation model.  

Although previous methods represent good alternatives for measuring CB and CT, these 

have important limitations such as high economic costs, complex computational 

resources, and low spatiotemporal resolution (Jarraud, 2008; Schween et al., 2020). Our 

motto is to investigate relatively simple and less expensive methods with acceptable 

accuracy to estimate Sc CB and CT and to understand the FLC vertical dynamic. Lobos-

Roco et al. (2018) studied fog formation and dissipation by characterizing the MBL 
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under presence or absence of FLC. They found two MBL regimes based on the 

atmospheric thermal stability that defines FLC formation (well-mixed MBL) and 

dissipation (stratified MBL), through thresholds of vertical gradients of potential 

temperature () and specific humidity (q). Also, they estimated the main FLC 

characteristics, such as CB and adiabatic liquid water mixing ratio (ql), using the lifting-

air parcel method (Wetzel, 1990). This method assumes that an air parcel is lifted dry 

adiabatically through the MBL without mixing during the ascension. Although this study 

is an important advance on this topic, their results are limited to only nine fog events 

during 2015. Recently, del Río et al. (2021a) proposed a novel Ground Optical Fog 

Observation System (GOFOS) that takes advantage of the local topography at the 

Atacama Desert to directly measure local FLC spatiotemporal variability and vertical 

structure. As described below, this system adds more realistic ground features to identify 

FLC dynamics and to understand the physics of the Sc cloud formation. 

 

This study proposes a novel and economic methodology that combines the MBL 

thermodynamic characterization (Lobos-Roco et al., 2018) with GOFOS (del Rio et al., 

2021a), to investigate the seasonal variability of advective fog formation/dissipation, and 

to characterize the FLC vertical structure using standard meteorological stations. 

Moreover, it aims to answer the following questions: 

 

1.4. Research questions 

 

 

1.4.1. General question: 

 

How does the thermodynamic characterization of the marine boundary layer define the 

advective fog variability and the Stratocumulus cloud vertical structure, at the coast of 

the Atacama Desert? 
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1.4.2. Specific questions: 

 

▪ How precise are the classification of the marine boundary layer regimes, when 

considering its seasonal variability to fog detection, at the coast of the Atacama 

Desert? 

▪ How precise is the lifting-air parcel method to estimate the FLC base, at the coast 

of the Atacama Desert? 

▪ Is it possible to estimate the altitude of the FLC base and Top through standard 

meteorological observations? 

 

1.5. Hypothesis 

The thermodynamic characterization of the Marine Boundary Layer through seasonal 

thresholds of  and q gradients allows to predict the advective fog variability and 

estimate the main features of the Sc Cloud vertical structure, at the coast of the Atacama 

Desert. 

1.6. Objectives 

 

 

1.6.1. General objective: 

 

To determine the advective fog variability and the Stratocumulus cloud vertical 

structure combining a thermodynamic characterization of the marine boundary 

layer with a Ground Optical Fog Observation System (GOFOS). 

 

1.6.2. Specific Objectives: 

 

▪ To find and validate seasonal thresholds of the   and q vertical gradients that 

defines the fog formation (well-mixed conditions) and dissipation (stratified 

conditions). 
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▪ To evaluate the accuracy of the lifting-air parcel method to estimate the FLC 

Base in the study site. 

▪ To estimate the elevation of FLC Base and Top using different methods 

populated with standard meteorological observations.  

 

This document is organized in five main chapters: Chapter 1 reviews the relevance to 

study fog as potential alternative of freshwater in the face to the water scarcity and 

introduces the research gap existing in the scientific knowledge and literature. Likewise, 

the research questions, the hypothesis, and the objectives of this study are presented. 

Then, Chapter 2 reviews the main concepts related to the Marine Boundary Layer, Sc 

cloud base and Cloud top. Chapter 3 describes the methodology employed in this 

research. It includes the description of the study area and the selected meteorological 

stations, the GOFOS instrumentation, as well as the explanation of the data processing. 

Chapter 4 discusses the results from a quantitative and critical perspective. This section 

is divided as follows: thresholds to classify the Marine Boundary Layer, the estimations 

of FLC base and FLC top. Finally, Chapter 5 presents the main conclusions and outlooks 

for future work. 
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II. THEORICAL FRAMEWORK  

 

 

2.1. Marine boundary layer regimes 

Two types of MBL regimes are associated to advective fog: the well-mixed and the 

stratified regimes. On one hand, the well-mixed regime (Figure 1a) is associated with 

cloudy conditions (Muñoz et al., 2011) and fog formation (Lobos Roco et al., 2018). 

This regime presents a vertical structure within the MBL where the temperature follows 

a near–dry adiabatic lapse rate below the cloud and the moisture is adiabatic within the 

cloud layer (del Río et al., 2021b). On the other hand, the stratified regime (Figure 1b) is 

associated with clear conditions and fog dissipation, since atmosphere stability does not 

allow that the marine air layers mix by themselves and condensate (Muñoz et al., 2011).  

Lobos Roco et al. (2018) established the following thresholds, through the analysis of 

nine fog events during 2015, to classify the well-mixed and the stratified regimes as a 

function of the vertical gradients of potential temperature (∂/∂z) and specific humidity 

(∂q/∂z): 

      Eq. 1 

       Eq. 2 

where z is the height. These thresholds allow to describe the thermodynamic vertical 

structure of the Sc cloud and the diurnal variability of the fog formation/dissipation 

based on the MBL stability using  and q to keep track of the movements of air parcels 

in an adiabatic process (Wang, 2013; Lobos Roco et al., 2018). 
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2.2. Cloud base 

The CB is defined as the height from which the Sc cloud is formed. It corresponds to a 

visible accumulation of condensed water vapor (Forsythe et al., 2000; Zuidema et al., 

2009). The FLC base can be represented by the lifting condensation level (LCL; see 

Figure 1a, Lobos Roco et al., 2018), since the FLC corresponds to a boundary layer 

cloud. At this elevation an air parcel saturates if it is lifted adiabatically (Wetzel, 1990; 

Daidzic, 2019).  

The CB governs the longwave radiative properties from clouds to surface, determines 

the cloud emission temperature and strongly affects the incident infrared radiation at the 

surface (Sharma et al., 2016; Viúdez‐Mora, et al., 2015). Moreover, the CB radiative 

heating is an important process that influences fog dissipation (Rogers and Korac̆in, 

1992). It can contribute to destabilize and decouple the sub-cloud and the cloud layers 

when a temperature discontinuity is developed at the CB. In this case, vertical transport 

of moisture from the surface to the cloud layer would be restricted and it will restrict 

cloud development due to evaporation and an increase in CB height (Stull, 1988).  

2.3. Cloud Top  

The CT refers to the highest part of the Sc cloud, determined by the MBL top, where the 

thermal inversion layer occurs (Figure 1a). This inversion layer prevents the exchange 

between MBL and the free troposphere (Böhm et al., 2020). At the CT, there are two 

important processes that generate the mixing required to maintain/dissipate the Sc cloud 

(Bretherton and Park, 2009). The first one is the radiative cooling, which creates cool-air 

thermals that sink, generating the mixing that maintains the Sc cloud. The second one 

corresponds to the entrainment process at the top of MBL, which introduces air from the 

free troposphere, generating instability when drying and heating the humid and cold air 

of the MBL. This phenomenon causes the cloud to be forced to condense at higher 

altitudes. Thus, the CB height rises and can cause cloud dissipation if it reaches the 

MBL top (Stull, 1988).  
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III. MATERIALS AND METHODS 

 

 

3.1. Study site  

The study site is located on the coast of the Atacama Desert, northern Chile between 19° 

- 21°50’ S and 71° - 69 ° W in the Tarapacá region (Figure 2a). The coast of the 

Atacama Desert is characterized by a steep mountain range that rises a few km from the 

shore until reaching 1,500 m ASL.  This topographic feature generates the optimal 

conditions for fog formation since the topography intercepts the MBL inland advection. 

Moreover, the steep and close-to-the-ocean topography brings exceptional conditions for 

observing the vertical distribution of the marine Sc cloud, working as a permanent 

vertical profile.  
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Figure 2. (a) Study site indicating how GOFOS is deployed in the coast of the Atacama Desert. The inset 

at the right-hand side shows the transects of GOFOS top and bottom. The GOFOS is installed near Cerro 

Oyarbide and the Iquique airport, where meteorological data are available. (b) Scheme of GOFOS with 

time lapse cameras, Red LED light and its solar panels. Approximate distances relative to the Iquique 

airport and elevations above sea level are also shown.
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3.2. Meteorological Stations 

 

Observations of relative humidity (RH), atmospheric pressure (P) and air temperature 

(T) from two nearby meteorological stations (Figure 2a) are available. These 

meteorological variables allowed to estimate   and q using the atmospheric pressure of 

the lowest station as reference (Stull, 1988). The lowest station is at the Iquique airport 

(20.55° S, 70.17° W), less than 15 km from the GOFOS system, and belongs to the 

Meteorological Direction of Chile (DMC). It is located at 48 m ASL and has been 

recording hourly data since 1981. The highest meteorological station is located in Cerro 

Oyarbide (20.49°S, 70.06°W), less than 10 km from the GOFOS system. It is located at 

1,211 m ASL and has been recording 10-min data since November 2016. It belongs to 

Centro UC Desierto de Atacama and Research Group for Earth Observation (RGEO), 

Department of Geography, Heidelberg University of Education, Heidelberg, Germany. 

3.3. GOFOS 

 

The GOFOS is a novel system proposed by del Río et al. (2021a). It was installed at the 

coast of the Atacama Desert (Figure 2a), at ~20 km from the shoreline to have in-situ 

measurements of the Sc cloud presence, CB, and CT. It is composed of two optical time-

lapse cameras that capture images every 10 min, and a series of autonomous pole-lights 

that are in an altitudinal profile covering the entire range of regular fog presence (Figure 

2b). The cameras were installed at 600 m ASL (20.63° S, 70.06° W) and at 1,350 m 

ASL (20.58° S, 70.03° W), on plastic tripods and were connected to 10-W solar panels. 

The lights consist of 44 LEDs in a red mode, installed on a 1.5 m galvanized iron pole 

and energized by a 6-W solar panel. The lights are spaced at a vertical distance of 50 m. 

As shown in the inset of Figure 2a, the bottom camera covers a first transect of six pole-

lights installed between 600 and 900 m ASL and captured images from January to 

December 2017. The top camera covers a second transect of nine pole-lights located 

between 850 and 1,350 m ASL, in the E-W direction and captured images from August 
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2016 to December 2017. This analysis considered the period between January 19th and 

December 31st, 2017, in which both cameras were operative. 

The GOFOS’ dataset is a binary database obtained from images extracted from the 

recorded videos where (1) indicates fog presence, when the lights are not visible, and (0) 

indicates fog absence, when the lights are visible. The CB and CT heights were 

determined considering the location and height of pole-lights in the transect. 

3.4. Data processing  

3.4.1. Threshold estimation to classify the MBL regimes. 

 

Following the methodology proposed by Lobos-Roco et al. (2018), first the hourly  and 

q were calculated for each meteorological station using the pressure observed at 48 m 

ASL as a reference. From this calculation, the differences of   and q over a vertical 

gradient from the reference level (48 m ASL, i.e., the elevation of the first 

meteorological station) to the highest level (1,211 m ASL, i.e., the elevation of the 

second meteorological station) were estimated. To do this, the following equations were 

used: 

 

                                  Eq.3 

 

where:   is the Potential temperature, T (K) is absolute temperature, P0 (Pa) is the 

reference pressure at 48 m ASL in this case, P (Pa) is the observed pressure at 1211 m 

ASL, and R/cp (0.286) is the Gas constant and specific heat capacity at a constant 

pressure. 

 

                                                         Eq.4 

                                                        Eq.5 

      Eq.6 



15 

 

 
 

Where:  is the saturated mixing ratio,  is the saturation vapor pressure,  (611 Pa) is 

the actual vapor pressure, = rh/100 is the relative humidity, b (17.2694) is a 

dimensionless parameter,  (o C)  is the air temperature at the meteorological station,  

(273.16 K) and  (35.86 K) are temperature conversion factors. 

 

Then, the hours with fog presence/absence were identified using the GOFOS’ database, 

which was previously filtered. The filtering process consisted in choosing measurements 

where the inversion layer is located higher or equal to 1,211 m ASL to ensure that the 

meteorological measurements performed at this elevation are within the MBL. Also, the 

hours with incomplete GOFOS data were removed from the database. This filtering 

process resulted in a total of 5989 hours to analyze.  

The hours used in the analysis are associated to 346 days, which were grouped by season 

to evaluate the temporal evolution of  and q gradients throughout the year. The data 

consisted in 73 summer days (December to February), 91 autumn days (March to May), 

92 winter days (June to August) and 90 spring days (September to November). Each 

season was divided in 150 steps to test different thresholds that allow to have a first 

classification of the MBL regimes (well-mixed or stratified). The results of this 

classification were compared with the GOFOS’ dataset considering the following 

criterion: there is “agreement” if a) GOFOS indicates fog presence and the MBL regime 

is well-mixed, or if b) GOFOS indicates fog absence and the MBL regime is stratified. 

These agreements were expressed in percentage and the errors were calculated through 

their complement to sum up 100%. The best seasonal thresholds of daily ∂∂z and 

∂q/∂z were defined as those that have the greater agreement and the smallest error for 

both regimes in each analyzed season.  

To investigate the predictive power of daily ∂∂z and ∂q/∂z, two Logistic Regression 

Models (LRMs) were generated using the logit link function (Nielsen, 1998), and 

considering compliance with relevant assumptions, such as independence of errors, 

linearity in the logit for continuous variables, absence of multicollinearity, and lack of 

outliers and strongly influential values (Stoltzfus, 2011). The LRMs use the maximum 
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likelihood to find the highest probability that an event will occur based on predictors 

whenever the category to be estimated follows a binomial distribution (Hedeker, 2003). 

Thus, this regression model estimates the probability of a binary outcome category by 

transforming the linear regression equation of the independent variables in a logit scale 

(Stoltzfus, 2011). In this study, two LRMs were constructed: LRM1 (GOFOS-) and 

LRM2 (GOFOS- q); where fog presence and fog absence are the outcome categories, 

and  and q hourly gradients are the independent variables used as single predictors in 

each model.  

Before generating the LRMs, the data was randomly split in two sets for 

training/validation and for evaluation (Raykar and Saha, 2015; Korjus et al., 2016; Xu 

and Goodacre, 2018). The training and inner validation set comprised 4792 hours (80% 

of the data), whereas the evaluation set had 1197 hours (20% of the data). As the 

training dataset had 299 hours with fog events and 4493 days with fog absence (1:15 

ratio), the data were balanced by using a weight of 15 in the fog events. This process 

avoids a biased classification in each LRM. Then, an internal validation was carried out 

applying the K-fold cross validation technique, which consists in randomly partition the 

dataset into K equal sized subsamples or folds where the single subsample is used to the 

validation data, and the remaining k − 1 subsamples are used as training data (Rodriguez 

et al., 2010). This process was repeated K = 5 times with each of the k subsamples, to 

allow a large fraction of data for the training process (See Figure 3). The selection of K 

= 5 equilibrates the tradeoff between bias and computational costs (Fushiki, 2011; 

Anguita et al., 2012).  
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Figure 3. Scheme of the process to generate and validate the Logistic Regression models. 

 

Model performance was evaluated using two global indicators: the confusion matrix and 

the receiver operating characteristic (ROC) curve (Giancristofaro and Salmaso, 2003). 

On one hand, the confusion matrix allows analyzing the proportion of a correct fog event 

classification performed by the model, with four possible outcomes: true positives (TP), 

which indicates that the model correctly forecasts a fog event; true negatives (TN) that 

are associated to correct model predictions of fog absence; false positives (FP), which 

occurs when the model forecasts a fog event that does not exist; and false negatives (FN) 

that happens when the model predict fog absence instead of an event. On the other hand, 

the ROC curve represents the trade-off between model’s sensitivity (proportion of TP 

that are correctly identified, also known as true positive rate) and specificity (proportion 

of TN that are properly identified, also known as true negative rate). The area under the 

ROC curve ranges from 0 to 1. The larger the area under the ROC curve, the more 

accurate the model prediction is (Stoltzfus, 2011). These global indicators allow 
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obtaining model’s accuracy, sensitivity, specificity, and precision (Giancristofaro and 

Salmaso, 2003).  

3.4.2. Cloud Base estimation 

The CB elevation was estimated only during days that showed well-mixed conditions or 

Sc cloud-fog formation (104 days) by applying two methods. The first one, was the 

lifting-air parcel method (Wetzel, 1990), which assumes that the LCL of a boundary 

layer cloud is similar to the CB height (Lobos-Roco et al., 2018), as shown in Figure 1a. 

This method uses thermodynamic variables, such as , q and the liquid water mixing 

ratio ( ) to estimate the elevation at which the air condensates (i.e., the LCL) that is 

where the saturated specific humidity (qs) is equal to q. 

To determine the LCL, the surface pressure at 48 m ASL was used as the reference in 

the calculations. Then, the changes of an air parcel lifting from there by using the values 

of P,  and q at 48 m ASL, and of the station located at 1,211 m ASL, were estimated. 

The  was calculated following a simple criterion:  (if  ), which 

allows obtaining a first order estimate of ql. This estimation was further improved by 

incorporating a mixing factor, m, which is the fraction of surface air contained in the 

parcel as it reaches the top of the MBL (Wetzel, 1990). It represents how the 

surrounding air mixes with the lifted-air parcel (Wetzel and Boone, 1995): m = 0 means 

that there is no air entrained and the parcel conserves its original   from the surface to 

the top of the mixed layer; whereas m = 1 describes the condition when the air in the 

parcel is identical to that of its surroundings when it reaches the top of the MBL (Lobos- 

Roco et al., 2018). Hence, the parcel’s  and q at a height z for different mixing factors 

were calculated as (Lobos-Roco et al., 2018):  

 

     Eq. 7 

      Eq. 8 
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where  and  are the potential temperature and specific humidity of the air 

parcel that is at a height z, respectively;  is the height of the LCL;  and  

are the MBL’s potential temperature and specific humidity (average between   and q at 

48 m ASL and 1,211 m ASL , respectively; and are the potential temperature 

and specific humidity at the surface (at 48 m ASL), respectively. The best mixing factor 

was determined by comparing the LCL results (CB calculated) with the CB observed by 

GOFOS (as described above). The error between predicted and observed values was 

quantified using the mean absolute error (MAE), and the root mean square error 

(RMSE).  

The second method used artificial neural networks (ANNs) considering RH, P and T 

from the thermodynamic profile in the MBL as predictor variables. The ANNs were 

generated with the Neural Network toolbox of Matlab® using 80% (83 days) of the 

dataset for training/validation, whereas 20% (21 days) of the data was used for 

evaluation. To compare the results of CB through LCL and ANNs, the performance 

metrics of the entire data set are reported. The best ANN parameters were determined 

using the Levenberg-Marquardt backpropagation algorithm to minimize network error 

(Lourakis, 2005). The feedforward network structure included 10 hidden layers, which is 

the default value provided by Matlab®, as variations in the hidden layers did not 

significantly change the CB estimations. Finally, the MAE and the RMSE were 

calculated to compare the simulated values with the observations reported by GOFOS. 

 

3.4.3. Cloud Top estimation 

 

With the aim of predicting CT in a simple way using known parameters, linear 

regression models and ANNs were constructed to relate LCL,  and q vertical gradients, 

percentage of daily hours when fog is present according to the MBL regimes 

classification, i.e., fog presence percentage (FPP), and meteorological variables (RH, P, 

T, wind speed) with CT.  
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For both methodologies, only the days under well-mixed conditions were analyzed (104 

days), of which 80% (83 days) were used as training set/validation, and the remainder of 

the data was used for evaluation (21 days).  

First, for the linear regression models, the input data were rescaled into a range between 

0 and 1 with the aim of improving the interpretation of the predictor’s influence on the 

response variable (Ali et al., 2014). Then, the correlation between the independent 

variables and the dependent variable (CT) was evaluated to choose the predictors with 

more incidence to estimate CT. With the selected predictors, different models were 

generated considering compliance with relevant assumptions of the linear regressions 

(Jacob, 2013), such as independence of errors, linearity for continuous variables, 

absence of multicollinearity, and homoscedasticity. These models were assessed using 

the Student’s t-distribution with a significance level of 0.05. The r2 and the Akaike 

information criterion (AIC) (Kabacoff, 2011) were used to determine the goodness of fit 

of these models. Finally, the best models were internally validated through the K-fold 

cross validation method (K = 5) and were tested with the 100% of the dataset, where the 

MAE and the RMSE between the simulated and observed (GOFOS) data were used as a 

regression diagnosis (Hastie et al., 2009; Jacob, 2013). 

Second, CT was also estimated through ANNs considering RH, P and T from both 

meteorological stations as predictor variables and using the Levenberg-Marquardt 

backpropagation algorithm with 10 hidden layers to the feedforward neural network. To 

compare the results of ANNs with the linear regression models, the performance metrics 

of the entire data set are reported. Finally, the MAE and the RMSE were calculated to 

compare the simulated values with the observations reported by GOFOS. 
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IV. RESULTS 

 

 

4.1. Seasonal thresholds of MBL regimes. 

On one hand, the vertical gradients of  (Figure 4a) and q (Figure 4b) measured during 

FLC presence are smaller than those under FLC absence. These results demonstrate that 

the small or large gradients can be related to the well-mixed (fog formation) or stratified 

(fog dissipation) regimes within the MBL, respectively (Lobos-Roco et al. 2018, García 

et al.,2021).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Descriptive statistics of (a) potential temperature vertical gradients (∂∂z) and (b) specific 

humidity vertical gradients (∂q∂z) separated by fog and non-fog events. Each boxplot rectangle represents 

the interquartile range, the whiskers correspond to the minimum and maximum data values (excluding 

outliers), the horizontal line within the rectangle represents the median, and the yellow circles correspond 

to the average. The dashed-red line represents the reference thresholds proposed by Lobos- Roco et al. 

(2018) and the cyan line represents the seasonal thresholds found in this study. 
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On the other hand, under FLC conditions a small seasonal variability of  and q 

gradients is observed (with differences of ~2.5 K and ~1 g/kg between the lowest and 

highest meteorological stations, respectively), whereas the opposite occurs under fogless 

conditions where the variability is larger and noticeable (~10 K and ~2 g/kg, in average 

respectively). These latter differences are larger during winter and spring compared to 

summer and autumn. This behavior is explained by the seasonal thermal variability of 

the free troposphere. 

Figures 5 and 6 presents examples of the methodology utilized to estimate the thresholds 

of  and q vertical gradients. These thresholds, which were calculated for the different 

seasons of the year, are also presented in Figure 4 and compared to those presented by 

Lobos-Roco et al. (2018). On one hand, the greatest ∂/∂z thresholds occur in winter 

(4.9910-3 K/m) and spring (4.5810-3 K/m). These values exceed the Lobos-Roco et al. 

(2018) reference threshold (3.1010-3 K/m) by ~61% and ~48%, respectively. On other 

hand, the lowest ∂/∂z thresholds occur in summer (2.8810-3 K/m) and autumn 

(4.1310-3 K/m) being ~7% less and ~33% more than the reference threshold, 

respectively. Also, as shown in Figure 4b, the estimated ∂q/∂z thresholds in all the 

seasons, are smaller than the reference threshold (1.6010-3 g/kg-m) proposed by Lobos-

Roco et al. (2018). The ∂q/∂z thresholds for summer (9.6210-4 g/kg-m) and autumn 

(4.1910-4 g/kg-m) are ~40% and ~74% less than the reference threshold, respectively. 

While in winter (1.1510-3 g/kg-m) and spring (1.0910-3 g/kg-m), the thresholds are 

~6% and ~32% less than the reference threshold, respectively. However, these 

differences are relevant only for summer and autumn where both fog events (well-mixed 

regime) and non-fog events (stratified regime) are below the reference threshold.  
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Figure 5. Percentage of agreement between the ∂∂z seasonal thresholds to classify the MBL regimes and 

GOFOS observations by season. The blue line represents the agreements between fog and the well-mixed 

MBL regime, whereas the orange line represents the agreement between non-fog and the stratified MBL 

regime. The dashed cyan line represents the seasonal threshold that maximizes the agreement of both fog 

and non-fog conditions, whereas the dashed red line represents the reference threshold proposed by 

Lobos-Roco et al. (2018). 
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Figure 6. Percentage of agreement between the ∂q∂z seasonal thresholds to classify the MBL regimes and 

GOFOS observations by season. The blue line represents the agreements between fog and the well-mixed 

MBL regime, whereas the orange line represents the agreement between non-fog and the stratified MBL 

regime. The dashed cyan line represents the seasonal threshold that maximizes the agreement of both fog 

and non-fog conditions, whereas the dashed red line represents the reference threshold proposed by 

Lobos-Roco et al. (2018). 

 

 

Fog detection using the proposed ∂/∂z seasonal thresholds, as shown in Figure 7a, 

agrees in ~95% of the time for winter and spring, and in ~86% of the time for summer 

and autumn. When using the ∂/∂z reference threshold, fog detection agreement reaches 

~79% for winter and spring, and ~87% for summer and autumn. Similarly, fog absence 

detection using either seasonal or reference ∂/∂z thresholds result in good agreements 
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(~97% during winter/spring and ~87% for summer/autumn) when compared to the 

GOFOS observations (Figure 7b). Figures 7c and d also shows that the agreement 

percentage of fog detection when using the proposed ∂q/∂z seasonal thresholds is ~69% 

in winter and spring, and ~49% in summer and autumn. Note also that even when the 

∂q/∂z threshold proposed by Lobos-Roco et al. (2018) in some cases achieves ~98% of 

agreement for the well-mixed regime, it has much lower agreements for the stratified 

regime compared to the proposed seasonal thresholds (see Figure 6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Percentage of agreement between  and q vertical gradient thresholds to classify the MBL 

regimes and GOFOS observations for the different seasons. (a) Well-mixed regime; and (b) stratified 

regime. The orange and light green stars correspond to the percentage of agreement achieved with the 

reference thresholds proposed by Lobos-Roco et al. (2018). 
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As presented in Table 1, the LRMs generated between GOFOS- (LMR1) and GOFOS-

q (LMR2) supports the previous findings. LRM1 shows a greater prediction power and 

accuracy than LRM2. For instance, LRM1 has a better quality and fit to the data because 

its AIC (398) is less than that of LRM2 (739). On one hand, the LMR1 prediction has 66 

true positives (TPs), 206 false positives (FPs), 8 false negative (FN), and 917 true 

negatives (TNs). Hence, this logistic model correctly classifies 983 out of 1197 

datapoints, reaching an accuracy of 0.82. On the other hand, LMR2 has 60 TPs, 589 FPs, 

14 FNs, and 534 TNs. In this case, the logistic model correctly classifies 594 datapoints 

and has an accuracy of 0.50. 

 

Table 1. Summary of the Logistic Regression Models (LRMs) results. LMR1 refers to the GOFOS- 

LRM, whereas LRM2 corresponds to the GOFOS-q LRM. For the Akaike information criterion (AIC), 

five independent variables were used (K = 5) and L is the maximum value of the likelihood function 

obtained for each model. 

 

 
INDICATOR FORMULA LRM 1  LRM 2 

Akaike information criterion (AIC) 2 K – 2 ln(L) 398 739 

True positives (TPs) - 66 60 

True negatives (TNs) - 917 534 

False Positives (FPs) - 206 589 

False Negatives (FNs) - 8 14 

Accuracy (Acc) (TP+TN)/(TP+TN+FP+FN) 0.82 0.50 

False Positive Rate (FPR) FPR= FP/(FP+TN) 0.18 0.52 

False Negative Rate (FNR) FNR= FN/ (FN+TP) 0.11 0.14 

Sensitivity or true positive rate (TPR) TPR = 1-FNR 0.89 0.86 

Specificity or true negative rate (TNR) TNR= 1-FPR 0.82 0.48 

 

 

The ROC curve for each model is shown in Figure 8. On one hand, there is a very good 

relationship between sensitivity and specificity in LRM1, because the area under the 

ROC curve indicates that there is a probability of ~91% that the model will distinguish 

between TPs and FPs. On the other hand, LRM2 has a probability of 65% to distinguish 

between FNs and TNs, but it has a poor prediction of TPs and FPs. 
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Figure 8. Receiver operating characteristic (ROC) curve of q (red line) and q (green line) vertical 

gradients. AUC indicates the area under the curve of each ROC curve. 

 

 

4.2. Cloud base 

The best agreement between CB observed by GOFOS and CB estimated by the LCL 

method occurs when the mixing factor is m = 1.0 (see Figure 9).  
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Figure 9. Seasonal variability of the Sc cloud base (CB) observed by GOFOS (CB GOFOS) and that 

estimated with the lifting condensation level (LCL) using different mixing factors (m). 

 

 

The CB seasonal variability reported by GOFOS, LCL and ANNs during the year under 

investigation is presented in Figures 10 and 11a. The lowest average GOFOS-estimated 

CB elevation is observed in autumn and winter (898 and 857 m ASL, respectively), 

while the highest average GOFOS-estimated CB altitudes occur in spring and summer 

(919 and 910 m ASL, respectively). In general, the LCLs presented in Figures 10 and 

11a show lower altitudes in autumn and spring (725 and 702 m ASL, respectively), and 

higher altitudes in summer and winter (749 and 781 m ASL). When comparing the 

GOFOS-estimated CB with the LCL, an average annual difference of 154 ± 95 m is 

obtained, and the smallest error occurs in winter with a difference of 98 ± 69 m. These 
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differences represent less than 17% of the annual average of the GOFOS-estimated CB 

and are similar to those obtained by Lobos-Roco et al. (2018), which obtained 

differences of ~110 m when they applied the LCL method to estimate CB. In both cases 

the lifting-air parcel method underestimates the CB values, especially in summer and 

spring where errors of 173 ± 104 m and 217 ± 84 m, respectively, were found. 

 

 

 

 

Figure 10. Seasonal boxplots of GOFOS-estimated cloud base (CB GOFOS), lifting condensation level 

(LCL), which is the approximation of the CB calculated by the lifting-air parcel method with a mixing 

factor of m = 1.0, and CB estimated using artificial neural networks (ANNs). 

 

 



30 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Seasonal cloud base (CB) and cloud top (CT) elevations: (a) CB observed by GOFOS (CB 

GOFOS) and predicted using the lifting condensation level (LCL) and artificial neural networks (ANNs). 

(b) CT observed by GOFOS (CT GOFOS) and predicted using the multiple linear regression model 

(MLRM) and ANNs. 
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Artificial Neural Networks show better estimations of GOFOS-estimated CB than LCL 

throughout the year (Figures 10 and 11a) with an average annual difference of 39 ± 29 

m, which represent less than 4% of the observed annual mean CB. Moreover, Figure 10 

shows that the probability distribution of CB estimated by ANNs resembles that of the 

GOFOS-estimated CB. The best performance of the ANNs occurs in summer and 

autumn, with differences of less than 3% compared to the observed CB elevations in 

these seasons. The lowest errors occurred in summer with a difference of 7 ± 4 m, 

whereas the highest errors occurred in winter with a difference of 45 ± 30 m. 

 

4.3. Cloud Top 

Table 2 shows the best regression models that were found to predict CT. CT showed a 

good correlation (r > 0.7) with LCL, FPP,   and q gradients and a poor correlation with 

wind speed (r = 0.4). The best simple linear regression model (SLRM) only used one 

predictor, i.e., ∂/∂z, to estimate CT, whereas the best multiple linear regression models 

(MLRMs) used FPP, LCL and  gradients as predictors. In MLRM1 and MLRM3, FPP 

and ∂/∂z have the greatest influence on the response variable, while the effect of LCL 

on CT is small. Something similar happens in MLRM2 where among the two predictors 

(FPP and LCL), only FPP has a significant effect on CT estimation. According to the 

AIC and the R2, MLRM3 represents better the evolution of CT. The mean value ± 

standard deviation of CT estimated with MLRM3 is of 1,090 ± 105 m ASL, which is an 

excellent estimation of the observed CT heights estimated with GOFOS, i.e., CT = 1,090 

± 113 m ASL (r2 = 0.84; AIC = 87; Pr(>|t| = 2  10-16). As shown in Figure 11b, the 

MLRM3 and observed CT elevations follow the same trend, with MAE and RMSE of 35 

and 43 m, respectively (less than 4% of the observed annual mean CT). The best 

performance of the MLRM 3 occurs in winter, spring, and summer with differences of 

3% of the CT elevations observed in these seasons. The lowest errors occurred in 

summer with MAE and RMSE of 21 and 29 m, respectively, whereas the highest errors 

occurred in autumn, with MAE and RMSE of 42 and 51 m, respectively. 
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Table 2. Simple linear regression model (SLRM) and the multiple linear regression models (MLRMs) 

used to estimate cloud top (CT). AIC is the Akaike information criterion, LCL is the estimated cloud base, 

∂θ/∂z is the potential temperature gradient, and FPP is the percentage of daily hours when fog is present, 

estimated using the MBL regimes classification. 

 

 

MODEL STANDARDIZED EQUATION SAMPLE 

STATISTICS 

AIC R2 

SLRM                                        
 

Where: Y=  ; a=  

CT is in m; (  is in K/m. 

 

Mean (Y)  

 

Sd (Y) =  

Mean (a)  -5.1 

Sd (a)= 0.6 

142 0.70 

MLRM1   Mean (CT)= 1,090.5 m 
Sd (CT) = 114.6 m 

Mean (LCL)  745.2 

m 

Sd (LCL)=90.8 m 

Mean (FPP)  

 

Sd (FPP)=  

Mean ( )  

K/m 

Sd ( )= 

 K/m 

88 0.84 

MLRM2   

 

Mean (CT)= 1,090.5 m 

Sd (CT) = 114.6 m 

Mean (LCL)  745.2 
m 

Sd (LCL)=90.8 m 

Mean (FPP)  

 

Sd (FPP)=  

95 0.83 

MLRM3   Mean (CT)= 1,090.5 m 

Sd (CT) = 114.6 m 

Mean (FPP)  

 

Sd (FPP)=  

Mean ( )  

K/m 

Sd ( )= 

 K/m 

87 0.84 

 

 

The ANNs used six parameters to predict CT (RH, P and T at 48 and 1,211 m ASL, 

respectively). As depicted in Figure 11b, CT estimations using ANNs were slightly 

better than those performed with MLRM 3, with r2 = 0.92 and a CT of 1,086 ± 107 m 

ASL (a difference of less than ~0.5% with the GOFOS-estimated CT values). ANNs 

allow predictions of CT elevations with small errors (MAE = 25 m and RMSE = 33 m, 



33 

 

 
 

which represent less than 3% the observed annual mean CT). As opposed to MLRM CT 

estimations, ANNs yields excellent results during summer, winter, and spring, with 

differences smaller than 2% with respect to the observed CT, whereas in autumn this 

difference is smaller than 3%. 
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V. DISCUSSION 

 

 

The ∂/∂z and ∂q/∂z have a seasonal variability that can be related to air temperature and 

relative humidity. These meteorological variables change throughout the day and the 

seasons, influencing the available energy for both evaporation and dry-air entrainment 

into the MBL (Raupach, 2000). For instance, in summer, it is common to have the 

highest air temperatures and the lowest relative humidity (Houston, 2006). These 

characteristics do not promote condensation, decreasing ∂q/∂z and increasing ∂/∂z, 

because when the atmosphere warms the excess of available energy is released as 

sensible heat (van Heerwaarden et al., 2009). The vertical gradients variability can also 

be associated with the intensity of air subsidence that changes throughout the year, and 

influences fog formation and dissipation: in warmer seasons there are fewer fog events 

because air subsidence is weak and higher temperatures diminish the thermal inversion 

layer. Hence, air entrainment is stronger and dissipates fog (Stevens et al., 2003; Wood, 

2012). Despite the variability of ∂/∂z and ∂q/∂z, and of the seasonal thresholds obtained 

in this work, the constant thresholds found by Lobos-Roco et al. (2018) and improved by 

del Río et al., (2021a), are robust limits of the MBL regimes, which can be used to detect 

fog formation/dissipation. Nonetheless, the methodology proposed in this work has a 

better performance to classify both MBL regimes (well-mixed and stratified) during all 

the seasons because the proposed thresholds were selected accounting for the best 

agreement and the smallest error for both regimes in each analyzed period. 

We found that ∂/∂z is a better predictor of fog formation than ∂q/∂z. This result was 

expected because ∂/∂z is less sensible than ∂q/∂z to physical processes, such as 

evaporation, which modulate the moist in the MBL (van Heerwaarden et al., 2010). The 

sensitivity of q also occurs because the contribution of heat entrainment to the total 

temperature tendency is smaller than the contribution of dry-air entrainment to the 

tendency of specific humidity (van Heerwaarden et al., 2009). Consequently, q 

variations have a strong impact on the MBL evolution in the presence of low 
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temperatures, whereas the impact of q variations is less pronounced in the presence of 

high temperatures. As a result, the MBL evolution is mostly determined by temperature 

variations (van Heerwaarden et al., 2009; van Heerwaarden et al., 2010; Wood, 2012). 

Fog detection using the MBL regimes agrees well with GOFOS observations and thus, 

the proposed methodology for determining vertical Sc cloud variability is reliable. 

However, GOFOS is a system that presents some uncertainties, such as its spatial 

resolution (that depends on the number of red LED lights) and installation range, which 

significantly influence the observations through topography and slope (del Río et al., 

2021a). The GOFOS’ spatial resolution can be improved and adapted by incorporating 

more sensors that allows to measure meteorological variables at different altitudes 

within the MBL, to achieve more representative observations of the vertical profile of 

this layer. 

Regarding the CB estimations, as expected, more fog events appeared when radiation 

decreases the surface heat fluxes and increases the moisture sources, allowing 

condensation at lower levels (Lobos-Roco et al., 2018). In our study, these conditions 

occurred between winter and spring. The best estimations of the CB elevation, when 

using the LCL as a surrogate for CB, were achieved with a mixing factor of m = 1.0, 

which means that the air in the parcel is identical to that of its surroundings when it 

reaches the top of the MBL (Lobos-Roco et al., 2018). The underestimation of CB using 

the lifting-air parcel method can be explained by the location of the meteorological 

stations (48 m ASL and 1,211 m ASL), as they may be not representative of the entire 

thermodynamic profile in the MBL used in the LCL calculation. More accurate LCL 

values can be obtained installing a meteorological station nearer to the coastline at an 

elevation in between 48 and 1,211 m ASL. For instance, García et al. (2021) used a 

meteorological station at 750 m ASL that was nearer to the coastline. In that 

meteorological station, they found that fog events were more common than those 

observed at 1,211 m ASL, because as relative humidity values are greater, the marine 

conditions are more uniform, and the exchange between marine and continental air is 

lower than their meteorological stations located at higher altitudes. Moreover, García et 
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al. (2021) used a station at 750 m ASL in the middle of our transect. They found that fog 

presence and fog water yield in this location is greater than that registered at 1,211 m 

ASL. So, there is a negative relationship between fog presence to both the distance to the 

coast and elevation of the meteorological stations. Unfortunately, the meteorological 

station located at 750 m ASL used by García et al. (2021) only had two months of data 

in our investigation period and thus, it was not considered in the analysis. 

ANNs allow estimating CB using RH, P and T directly from two meteorological stations 

located within the MBL with good accuracy. This method offers a low-cost alternative 

with simple parameters to estimate Sc CB elevations. However, ANNs do not consider 

the physical processes that determine the CB height, which are explained better by the 

LCL. Unfortunately, it is still unknown how the surface fluxes and the topography affect 

the LCL estimation in the coast of the Atacama Desert. Thus, this research area must be 

further explored in the future. 

Even when CT heights correlated well with LCL, FPP, and ∂/∂z and ∂q/∂z, it showed a 

poor correlation with wind speed (data not shown). This poor correlation may occur 

because wind speed within the MBL has a stronger influence on the sub-cloud layer than 

the cloud layer. In the sub-cloud layer, the surface turbulent fluxes increase with higher 

wind speeds, whereas in the cloud layer is common that radiative cooling drives 

entrainment generation at the CT (Man-Kui Wai, 1987; Rieck et al., 2012). The 

observed seasonal changes in CT elevations can be associated to the location of the 

Southeast Pacific Anticyclone (SEPA) and the air mass subsidence that influence fog 

presence (Myers and Norris, 2013; del Río et al., 2021a). This air mass causes the 

thermal inversion layer to occur at lower altitudes and, at the same time, induces cooler 

air temperatures than usual. Consequently, lower CT elevations are observed in winter 

due to changes in the SEPA orientation (towards north). This phenomenon increases 

subsidence and limits the MBL growth. 

The MLRM 3 estimated well the Sc CT during the year in a simple way only using two 

predictors (FPP and ∂/∂z), whereas ANNs needed six traditional meteorological 

parameters. However, ANNs offer the possibility to estimate CT using RH, P and T that 
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are variables that can be obtained directly from the meteorological stations in the 

thermodynamic profile in the MBL; whereas the MLRM 3 requires additional 

processing to determine FFP and ∂/∂z. Hence, we conclude that ANN models are a 

low-cost alternative to estimate Sc CT with good accuracy. As a future perspective, 

additional independent variables should be investigated to improve the Sc CT prediction. 

We suggest exploring the vertical wind speed profile at a higher spatial resolution than 

that used in this work, especially near CT, where these variables can enhance 

entrainment. 
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VI. CONCLUSIONS AND OUTLOOKS 

 

Fog variability and the thermodynamic Sc cloud vertical structure in the coastal 

Atacama Desert were characterized using novel ground observations and a 

thermodynamic characterization of the MBL. 

On one hand, the ∂/∂z seasonal thresholds found in this study, or the reference 

threshold proposed by Lobos-Roco et al. (2018) can be successfully used to determine 

fog formation/dissipation. On the other hand, even when the ∂q/∂z reference threshold 

proposed by Lobos-Roco et al. (2018) has a good performance to detect fog 

presence/absence, it can lead to errors in the identification of the stratified regimes, 

especially in summer and autumn. For these seasons, the ∂q/∂z seasonal thresholds 

proposed in this work perform better to identify the MBL regimes. 

Fog presence prediction using LRMs generated by GOFOS data and vertical gradients of 

 and q was successful, with fog event detection up to 82%. A comparison between 

these models revealed that when using ∂/∂z, there is a probability of ~91% to 

distinguish between fog presence and absence, compared to 65% when using ∂q/∂z. 

Hence, fog detection using the ∂/∂z threshold is a better predictor than that based on 

∂q/∂z. 

The lifting-air parcel method underestimates CB elevations with a systematic mean error 

of 154 m during the year. To obtain more realistic values of CB with this method, a 

meteorological station installed between 48 and 1,211 m ASL should be used to improve 

the estimations of  and q throughout the MBL. Moreover, ANN models are a good-

accuracy alternative to estimate Sc CB through simple meteorological parameters, 

although they do not have a physical basis.  

Finally, MLRM 3 and ANNs were used to predict CT. Both models represented well the 

temporal evolution of the GOFOS-based CT estimates during the year, but we propose 

the application of ANNs since it is a low-cost alternative that only needs to 

meteorological observations (RH, P and T) from the thermodynamic profile in the MBL. 
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Our findings reveal that the essential features of fog formation analyzed using one year 

of data can be approximated through standard meteorological observations, which 

contributes to the prediction of this phenomenon. It is suggested exploring the vertical 

wind speed profile at a higher spatial resolution than that used in this work, especially 

near CT, where these variables can enhance entrainment. 
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