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ABSTRACT

Deep neural networks (DNN) can perform cognitive tasks such as speech recog-

nition and object detection with high accuracy. However, the computational cost to

perform inference tasks with DNNs is a challenge for mobile applications, whereas

the time and energy required to train DNN models can be prohibitive even at large

data centers. The computational cost of Deep Neural Networks (DNN) is dominated

by memory access and multiply accumulate operations. For this reason, it has been

proposed to use resistive crossbar arrays to minimize data movement and perform

efficient multiply accumulate operations. These architectures store the weight value

in multilevel resistive memory elements, and perform matrix-vector multiplications

in the analog domain. One of the main challenges of these architectures is the limited

resolution and nonlinearity of resistive memories available today. In this thesis, this

limitation is addressed in two ways: by developing a model to design and optimize

multilevel memories based on ferroelectric materials, and by designing an architecture

to mitigate the limitations of resistive crossbars for DNN training.

First, ferroelectrics are studied for multilevel memory devices in resistive crossbar

arrays. Ferroelectrics are ceramic materials that can have two nonvolatile polariza-

tion states. In their polycrystalline form, these materials are composed of a multi-

tude of grains with independent polarization states, allowing for dense, nonvolatile,

multilevel memories compatible with standard semiconductor fabrication processes.

However, modeling the dynamics of polycrystalline ferroelectrics is challenging due to

the statistical variations in the composition of its grains. For this purpose, a model

to extract the statistical properties of a ferroelectric film and a Monte Carlo simu-
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lation that can describe and predict its polarization dynamics and variability were

developed. This model provides the tools to characterize and optimize ferroelectric

materials, and to design and evaluate devices, circuits and architectures for deep

learning and other applications.

Secondly, architecture improvements to train DNN models in resistive crossbar ar-

rays are presented. An accurate scheme for parallel weight update in resistive crossbar

arrays is proposed and evaluated. By using pulse width- and frequency-modulated

signals, the value of resistive elements in a crossbar array can be updated in parallel

with higher accuracy than that of existing techniques based on stochastic multipli-

cation. This scheme produces an unbiased multiplication with stochastic rounding,

which is optimal for training neural networks with limited resolution. Finally, the

mapping of DNN models to hardware with nonnegative weights is studied. To ana-

lyze different mapping schemes, a general vector-matrix multiplication is decomposed

into a vector-matrix multiplication with nonnegative weight elements performed in

a crossbar array, followed by a limited set of addition and subtraction operations

described by a connection matrix. The mathematical conditions for the existence

of such decomposition are derived and applied to fully connected and convolutional

layers. Based on this analysis, an efficient mapping scheme is designed, which mit-

igates the effect of weight nonlinearity and limited resolution. These architectures

are evaluated with low-level simulations of DNN training implemented in MATLAB

and by extending the Keras open-source framework to incorporate nonideal weight

elements and the connection matrix decomposition.
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RESUMEN

Las redes neuronales profundas (DNN, por sus siglas en inglés) pueden realizar

tareas cognitivas como el reconocimiento de voz y la detección de objetos con alta

precisión. Sin embargo, el costo computacional para realizar tareas de inferencia con

DNNs es un desaf́ıo para las aplicaciones móviles, mientras que el tiempo y la en-

erǵıa necesarios para entrenar los modelos pueden ser prohibitivos incluso en grandes

centros de datos. El costo computacional de las redes neuronales profundas está

dominado por multiplicaciones y acceso a memoria. Por esta razón, se ha propuesto

utilizar matrices de elementos resistivos para minimizar el movimiento de datos y

realizar multiplicaciones de manera eficiente en el dominio analógico. Uno de los

principales desaf́ıos de estas arquitecturas es la resolución limitada y la no linealidad

de las memorias resistivas disponibles en la actualidad. En esta tesis, esta limitación

se aborda de dos maneras: desarrollando un modelo para diseñar y optimizar memo-

rias multiniveles basadas en materiales ferroeléctricos, y diseñando una arquitectura

para mitigar las limitaciones de matrices resistivas para el entrenamiento de DNNs.

Primero, se estudian los dispositivos ferroeléctricos para implementar memorias

multinivel. Los ferroeléctricos son materiales cerámicos que pueden tener dos es-

tados de polarización no volátiles. En su forma policristalina, estos materiales se

componen de una multitud de granos con estados de polarización independientes, lo

que permite memorias densas, no volátiles y multinivel compatibles con los procesos

estándar de fabricación de semiconductores. Sin embargo, modelar la dinámica de los

ferroeléctricos policristalinos es un desaf́ıo debido a las variaciones estad́ısticas en la

composición de sus granos. Para este propósito, se desarrolló un modelo para extraer
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las propiedades estad́ısticas de un ferroeléctrico y una simulación de Monte Carlo que

puede describir y predecir su dinámica de polarizacin y variabilidad. Este modelo

proporciona las herramientas para caracterizar y optimizar materiales ferroeléctricos,

y para diseñar y evaluar dispositivos, circuitos y arquitecturas para redes neuronales

y otras aplicaciones.

En segundo lugar, se presentan mejoras en la arquitectura para entrenar modelos

de redes neuronales en matrices resistivas. Se propone y evalúa un esquema pre-

ciso para la actualización de pesos en paralelo en una matriz resistiva. Al utilizar

señales de ancho de pulso y modulación en frecuencia, el valor de los elementos resis-

tivos puede actualizarse en paralelo con mayor precisión que las técnicas existentes

basadas en la multiplicación estocástica. Este esquema produce una multiplicación

con redondeo estocástico, que es óptimo para entrenar redes neuronales con res-

olución limitada. Finalmente, se estudia el mapeo de modelos de redes neuronales a

hardware con pesos no negativos. Para analizar diferentes esquemas de mapeo, una

multiplicación general de matrices se descompone en una multiplicacin de matrices

con elementos no negativos realizados en una matriz resistiva, seguida de un conjunto

limitado de operaciones de suma y resta descritas por una matriz de conexiones. Las

condiciones matemáticas para la existencia de esta descomposicin se derivan y aplican

a modelos de redes neuronales. Sobre la base de este análisis, se diseña un esquema

de mapeo eficiente, que mitiga el efecto de la no linealidad y la resolución limitada de

los elementos resistivos. Estas arquitecturas se evalúan con simulaciones implemen-

tadas en MATLAB y mediante la extensión del software de código abierto Keras para

incorporar elementos de peso no ideal y la descomposición de la matriz de conexiones.
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1

CHAPTER 1

INTRODUCTION

The time and energy required to train a Deep Neural Network (DNN) could

be dramatically reduced by architectures based on resistive crossbar arrays, which

store the weight value in multilevel resistive memory elements and perform matrix-

vector multiplications in the analog domain. One of the main challenges of these

architectures is the limited resolution of resistive memories available today, as well

as their asymmetric and nonlinear response to programming pulses applied during

training.

In this thesis, these challenges are addressed from a device perspective by identify-

ing, characterizing and modeling the potential of ferroelectrics for multilevel memory

storage. From an application perspective, the impact of device nonidealities on the

overall training performance is analyzed, and architectural approaches to mitigate

their impact are proposed.

This chapter introduces basic concepts of DNNs that will be used throughout

this thesis, and recent trends in the computational cost of DNNs are presented to

motivate the need for application-specific hardware designed to efficiently implement

DNNs. The use of resistive crossbar arrays to accelerate the training of DNN and

their challenges are presented to motivate this thesis work.

1.1 Deep neural networks

Deep neural networks can perform cognitive tasks such as speech recognition

and object detection with high accuracy [1]. Although neural networks have been
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Figure 1.1. Diagram of a neuron: the basic computational unit of a neural
network. The neuron computes a weighted sum of its inputs xi and a bias
b. The output is then computed by applying an activation function f(z).

Figure adapted from [4].

known for decades, their dramatic success in the last decade has been driven by the

use of the backpropagation algorithm [2], the growth of computing power and the

availability of large datasets [3]. These factors have made possible to implement and

train large DNNs that outperform the state-of-the-art algorithms in tasks such as

image recognition and natural language processing.

The basic computational unit in a neural network is the artificial neuron, shown

in Fig. 1.1. An artificial neuron typically has multiple inputs and a single output.

The neuron performs a weighted sum of its inputs, where wi is the weight given to

input xi. A bias parameter b is added to the weighted sum, resulting in a scalar value

given by

z = b+
∑

i

wixi. (1.1)

The weights represent the connection strength given to each input, and are called

synapses or synaptic weights in reference to biological neurons. The neuron then

applies a transformation f(z), called an activation function, to compute its output
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a) b)

Figure 1.2. Logistic regression implemented with a single neuron with
binary threshold activation function. Two inputs x1 and x2 define a plane,
which is divided by the threshold w1x1 + w2x2 + b = 0. Colored symbols
represent two data classes. (a) Linearly separable data can be classified
correctly with a single neuron. (b) Data that is not linearly separable
cannot be classified by a single neuron. Example adapted from [3]

as

y = f

(
b+

∑

i

wixi

)
. (1.2)

The activation function is typically a nonlinear function. The choice of the activa-

tion function and the length of the input vector are structural parameters, called

hyperparameters to distinguish them from the weights and biases, which are tunable

parameters.

To understand the representational capability of a neuron, consider a simple ex-

ample with inputs x1 and x2, and a binary threshold activation function, defined

as

f(z) =

⎧
⎪⎨
⎪⎩

0 z ≤ 0

1 z > 0
(1.3)
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a)
b)

Figure 1.3. Neural network formed by a sequence of two layers of neurons.
(a) The inputs x1 and x2 are fed to an intermediate layer of 2 neurons

(hidden layer). The output of the hidden layer is fed to the output neuron,
which performs the classification. (b) Boundary obtained with the neural

network, which separates data with a nonlinear boundary. Example
adapted from [3]

The plane defined by x1 and x2 is divided into 2 regions by the line w1x1+w2x2+b = 0.

The parameters w1, w2 and b determine the position of the threshold. With this

simple model, the neuron can be used to perform a logistic regression. Consider the

example shown in Fig. 1.2a, where 2 classes of data denoted by blue circles and red

squares are distributed in the plane. Suppose we assign the label “1” to class circle,

and the label “0” to class square. With the right set of parameters, the threshold

defined by z = 0 can effectively separate the 2 classes. The neuron can then perform

an inference for an arbitrary input (x1, x2), for which it assigns either a 1 or a 0 label.

The process of finding the parameters w1, w2, b that provide a good representation of

the data is called learning or training.

Given that the argument of the activation function is a linear combination of the

input vector, a single neuron can only classify data that are linearly separable [5].

Consider the case shown in Fig. 1.2b, which has a nonlinear boundary. There is no
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Figure 1.4. Commonly used activation functions: a) binary threshold, b)
Sigmoid logistic function, c) hyperbolic tangent and d) Rectified linear unit.

set of parameters w1, w2, b that can correctly separate these data.

This limitation can be overcome by stacking multiple layers of neurons, as shown

in Fig. 1.3a. The input features (x1 and x2) are fed to an intermediate layer of neurons,

referred to as a hidden layer. The output of the hidden layer is fed to an output neuron

that performs the classification. By tuning the parameters in the hidden layer, we can

obtain nonlinear transformations of the input features that enable the output neuron

to separate the data. Note that the activation function in the hidden layer needs to

be nonlinear. Otherwise, the sequence of linear transformations performed at each

layer would be reduced to a single linear transformation of the form in Eq. (1.1).

Figure 1.4 shows commonly used activation functions. The sigmoid function and

the hyperbolic tangent are commonly used for classification in the output neuron.

These functions have a continuous transition between two saturated values, as op-

posed to the threshold function we have been using so far. Sigmoid and hyperbolic

tangent activations are also used for hidden layers, although the rectifier linear unit

(ReLu) has gained popularity over the past years. The activation functions in Fig. 1.4

are scalar functions computed independently for each neuron in a layer. Other acti-

vation functions compute a vector operation of the neurons in a layer. For example,

a softmax activation is similar to a sigmoid function with the output normalized to

represent a probability distribution with multiple classes [6].
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Figure 1.5. 4-layer DNN comprised of input layer with N0 neurons
(circles), two hidden layers with N1 and N2 neurons and an output layer
with N3 neurons. Bias units are not shown for simplicity. Layer numbers

are indicated by superscript, whereas neuron rows are indicated by
subscript. Weight matrices W1, W2, and W3 contain the weights that

connect the respective layers.

Increasing the number of hidden layers allows the network to represent increas-

ingly complex nonlinear functions, and this is one of the key principles of DNNs.

Figure 1.5 shows a DNN example with 4 layers of neurons (Li). The input layer

L0 represents the input vector, which is connected to the first hidden layer L1 by

a weight matrix W1. Each row j of W1 stores the weights that connect the input

vector in L0 to neuron j in L1. Therefore, if layer 0 has N0 neurons, and layer 1 has

N1 neurons, the weight matrix W1 has dimension N1×N0. Likewise, L
1 is connected

to L2 through the weights W2, and L2 is connected to the output layer L3 through

W3. Each neuron in the output layer corresponds to one of the available classes, and

the label assigned by the network corresponds to that of the neuron with the highest

output. The DNN in Fig. 1.5 is one of the basic topologies used today, where all the
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neurons in one layer are connected to all the neurons in the following layer, so it is

called a fully-connected DNN. There are neither connections between neurons in the

same layer, nor connections between neurons in nonconsecutive layers. The number

of layers in the neural network is referred to as length or depth, whereas the number

of neurons in a layer is referred to as the width of that layer.

More complex DNNs can have different topologies such as convolutional neural

networks and recurrent neural networks, which are not introduced here. For an

introduction to DNNs, the reader is referred to [7], whereas an in-depth review of

deep learning can be found in [6].

1.2 Computational cost of DNN inference

The basic operation required for DNNs is the multiply accumulate (MAC) op-

eration to compute the weighted sum in a neuron. Depending on the specific DNN

topology, the MAC operation can be part of a matrix-vector multiplication, matrix-

matrix multiplication or a convolution. Large DNN models have a large computa-

tional complexity due to the number of weights that need to be stored and MAC

operations that are computed. Table 1.1 shows six DNN applications that represent

95% of the workload in Google’s data centers running tensor processing units (TPU),

a custom co-processor to accelerate inference in DNNs [8]. These DNN have between

5 million and 100 million parameters (weights and biases), which are determined by

the number of layers, the type of layers and their width. The number of MAC op-

erations can be roughly estimated by the number of operations performed for each

weight byte, and exceeds a billion operations in most cases.

Furthermore, DNNs computational complexity and memory consumption has

been growing exponentially [9]. Figure 1.6 shows the exponential increase in the

number of parameters in popular DNN models for image recognition over the past

2 decades [9]. A similar trend was observed between the accuracy of different DNN
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TABLE 1.1

SIX DNN APPLICATIONS THAT REPRESENT 95% OF GOOGLE’S

TPU WORKLOAD

DNN Number of layers by type Weights Ops/

name FC Conv Vector Pool Total (millions) weight byte

MLP0 5 5 20 200

MLP1 4 4 5 168

LSTM0 24 34 58 52 64

LSTM1 37 19 56 34 96

CNN0 16 16 8 2888

CNN1 4 72 13 89 100 1750

Layers are fully connected (FC), convolutional (Conv), vector operations (Vector), and Pooling
(Pool), which does nonlinear downsizing. The last two columns show the number of weights, and
number of operations performed for each weight byte [8].

models and their size (number of parameters and operations) [9].

The energy cost of DNNs is directly related to the number of operations performed

by the network, both due to the MAC operations and memory access. As depicted

in Fig. 1.7, a MAC operation comprises one multiplication and one addition, and

requires 3 inputs: the activation from a previous layer (xL−1
i ) and the filter weight

(wL
ji), which are the factors, and the partial sum that will be updated with the

product. The updated sum is then written back to memory. Therefore, if no data is

locally stored for reuse, every MAC operation would require 3 memory reads and 1

memory write, which severely impacts the throughput and the energy efficiency [10].

Over the past decade, the growth of DNNs has been largely driven by the com-

putational power provided by graphics processing units (GPU) [1], which perform

highly parallel MAC operations. However, this has also led to a dramatic increase in
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Figure 1.6. Exponential increase in DNN parameter number over time.
DNNs with optimization are those designed for computational efficiency.

Image reprinted from [9].

Figure 1.7. MAC operation comprises one multiplication and one addition,
and reads 3 data from memory: the activation from a previous layer

(xL−1
i ), the filter weight (wL

ji), and the partial sum that will be updated
with the product. The updated sum is then written back to memory.

Figure adapted from [10].



10

their power consumption [11]. Given that memory access dominates the energy con-

sumption, architectures with memory hierarchies that optimize data reuse for DNN

requirements can achieve a better energy efficiency [10], and major improvements in

cost-energy-performance must now come from domain-specific hardware [8].

1.3 Training a DNN

Training a DNN model is much more expensive than inference in terms of time

and energy. In general, the training is performed by exposing the network to a

large amount of labeled data. The DNN performs inferences on these data, and its

predictions are compared against the actual labels to compute a measure of error,

called a loss function. The parameters of the DNN are typically updated in an

iterative manner using gradient descent. The gradients of the loss function with

respect to each of the parameters (weights and biases) are computed through the

backpropagation algorithm [2]. Although there can be some variations in the specific

training algorithm depending on the DNN topology, it can be described in general by

three steps: forward propagation, backpropagation and weight update. These steps

will be explained in detail for the fully-connected DNN of Fig. 1.5. For other network

topologies, the reader is referred to [6, 7, 12].

Consider a set of N labeled training examples {x,y}k, k = 1..N , where x is the

input vector and y is a vector containing the example’s label. The length of the

vector of labels y corresponds to the number of classes and is encoded as a one-hot

vector. That is, a vector with a single “1” indicates the correct class, whereas all

other elements are “0”.

Forward propagation: this step is equivalent to performing an inference task,

as was depicted in Section 1.1. The input vector x is applied at the input layer

L0, and each of the neurons in layer L1 computes its weighted sum and applies the

nonlinear activation function. The output of a neuron, its activation, is then input
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to the following layer. This process is repeated until the output layer is reached. The

neuron activation from Eq. (1.2) can be written in general as

xL
j = f

(
bLj +

NL−1∑

i=1

xL−1
i wL

ji

)
(1.4)

where wL
ji are the elements of the weight matrix WL, bLj are bias parameters and f(z)

is the nonlinear activation function. The initialization and range for these parameters

will be discussed in Chapter 6. Expressed in vector notation,

xL = f
(
bL +WLxL−1

)
(1.5)

Each of the output neurons represents one of the available classes, so the output

of the DNN is a vector ŷ with the activations of these neurons. For example, if a

sigmoid activation function is used in the output layer, each of the output neurons

will have an activation ranging from 0 to 1, which represents the likelihood that

the input corresponds to each of the classes. This vector will be used to compute

a measure of error, as opposed to inference where a label would be assigned to the

neuron with the highest activation.

Backpropagation: the loss function is computed as a measure of distance be-

tween the output vector ŷ and the correct label y. The details of the choice of loss

function are beyond the scope of this short introduction, and the reader is referred to

[7] for details. With an appropriate choice of loss function, the gradients with respect

to the activations of the output layer, δLout, can be computed as [7]

δLout = ŷ − y. (1.6)

According to the backpropagation algorithm [2], the error in a layer L, δL, can be



12

computed in terms of the error in the following layer, δL+1, as

δL =
{(

WL+1
)T

δL+1
}
⊙ f ′(zL), (1.7)

where
(
WL+1

)T
is the transpose of the weight matrix WL+1, f ′(zL) is the derivative

of the activation function in layer L, and ⊙ is the elementwise vector multiplication

(Hadamard product). Although this equation may seem complicated, note the sim-

ilarity with Eq. (1.5). The term
(
WL+1

)T
δL+1 is simply the weighted sum of the

error in layer L+ 1 measured from layer L, and is computed in the same way as the

forward propagation. Then, each neuron multiplies its weighted sum by the deriva-

tive of its activation function, in a similar fashion in which the activation function is

applied during forward propagation.

Weight update: Once the backpropagation is completed, each layer of neu-

rons has a vector of activations from the forward propagation xL and a vector of

backpropagated error δL. The weights and biases are updated according to the rule

[6, 7]

wL
ji ← wL

ji − ηδLj x
L−1
i (1.8)

bLj ← bLj − ηδLj (1.9)

where wL
ji is the weight that connects the neuron i in layer L − 1 (preneuron) to

the neuron j in layer L (postneuron), xL−1
i is the preneuron activation, δLj is the

backpropagated error fed by the postneuron, and η is the learning rate. The learning

rate is a global parameter that is typically adjusted by experimentation [6]. The

update can be expressed in vector notation as

WL ← WL − ηδL ⊗ xL−1 (1.10)

bL ← bL − ηδL (1.11)
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where ⊗ is the vector outer product.

The weight update is usually performed by averaging Eq. (1.8) from several ex-

amples. The term gradient descent is typically used when the weights are updated

by averaging over all the training examples. When the weights are updated with a

smaller number of examples, it is called stochastic gradient descent and the number

of examples is referred to as the batch size. The extreme case where the weights are

updated after every example is sometimes referred to as online learning. The training

is performed by iterating several times over the full set of training examples, and each

iteration is called a training epoch or simply an epoch.

Instead of computing one training example at a time, a fully-connected DNN can

operate in batch mode by applying a matrix X with M columns of input vectors.

Likewise, the vectors z, y and δ are converted into matrices with M columns Z, Y

and ∆. Equations (1.5), (1.6), (1.7), (1.10) and (1.11) are modified as:

XL = f
(
bL +WLXL−1

)
(1.12)

∆Lout = Ŷ −Y (1.13)

∆L =
{(

WL+1
)T

∆L+1
}
⊙ f ′(ZL) (1.14)

WL ← WL − η

M
∆L

(
XL−1

)T
(1.15)

bL ← bL − η

M

∑

rows

∆L. (1.16)

The bias parameters remain as columns vectors, so it is assumed that the addition

of a column vector to a matrix is performed columnwise. The sum in Eq. (1.16)

represents a summation within the rows of ∆L, which yields a column vector of the

same dimensions as bL.

Given that in general there is no ambiguity, the superscripts will be omitted in
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the following chapters and the weight update rule will simply be expressed as:

wji ← wji − ηxiδj. (1.17)

1.4 Hardware accelerators for DNNs

In this section, a review of hardware accelerators for DNN is presented, high-

lighting the different architectural approaches and their main constraints. A more

comprehensive review of DNN accelerators can be found in [3, 10, 13]. The accelera-

tors presented here are designed and implemented with standard CMOS technology.

The special case of hardware accelerators that leverages multilevel resistive memories

to perform computation in the analog domain is presented in the following section.

The workload of DNN is dominated by MAC operations, which are executed

within matrix multiplications or convolutions. These operations are repeated for ev-

ery inference task, while only the inputs of the network change. For training, the

same operations are repeated iteratively for several cycles. These operations govern

all control flow and memory access patterns, and can be statically scheduled for ef-

ficient memory access and maximal parallelism [3, 13]. As a point of comparison,

the memory hierarchy for general purpose computing is optimized to exploit spa-

tial and temporal locality of data with different levels of cache memory for on-chip

storage [14]. However, the memory access patterns can vary widely for different ap-

plications, and only a limited fraction of the memory access can be predicted during

compilation. Therefore, the optimization relies on dynamic speculation techniques

that are optimized to achieve a good overall performance for benchmarks with a wide

variety of workloads [14]. On the other hand, the static scheduling of DNNs and the

limited number of different operations they require offers a great potential for hard-

ware accelerators [3]. Furthermore, DNN are robust to reduced-precision operations

and approximations [15, 16], which allows for further optimization and trade-offs
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between MAC resolution and DNN accuracy [10, 13].

In general, two paths to improve DNN performance can be identified: parallel,

dense and low-energy MAC hardware; and an efficient memory hierarchy to minimize

access to main memory.

As explained in [10], two architecture paradigms for highly parallel operations

have been explored. Temporal architectures exploit vector operations with a central-

ized control unit and many arithmetic logic units (ALU), as depicted in Fig. 1.8a.

This is the case of central processing units (CPUs) and GPUs. The data is always

fetched directly from the memory hierarchy, with no internal data communication

between the ALUs. In spatial architectures, also called systolic arrays, depicted in

Fig. 1.8b, the ALUs form a processing chain so that they can pass data from one to

another directly. In addition, the ALUs can have a local memory and control logic.

Two representative implementations of this architecture can be found in [8, 17].

The memory hierarchy for a DNN accelerator is depicted in Fig. 1.9, showing

representative values for storage density and the energy required to fetch data at

different levels of the hierarchy [13]. The extent to which data can be reused at local

hierarchy levels depends on the number of parameters in a model and the amount

of intermediate data that is generated (partial sums, hidden layer activations, etc),

and is ultimately limited by the size of the on-chip buffers. The size of local buffers

is mainly limited by the chip area and the space occupied by the MAC array. For

example, 24% of the die area in Google’s TPU [8] is occupied by a systolic MAC array,

29% is used for a unified buffer for local activations and 6 % is used to accumulate

partial sums. The remaining area is mainly occupied by input/output interfaces

(including 2 ports for off-chip memory access), whereas the control logic only uses

2% of the overall die area. Increasing the on-chip memory size reduces the main

memory access by leveraging data reuse. On the other hand, increasing the density

of MAC units results in a higher throughput and potentially more data reuse, as
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Figure 1.8. Architecture paradigms for highly parallel operations. a)
Temporal architecture with a centralized control unit and many arithmetic
logic units (ALU). Black arrows indicate that the register communicates
directly with each ALU, without internal communication between ALUs.
b) Spatial architecture consisting of an array of ALUs with local memory
and control logic that can pass data from one to another directly. Figure

reprinted from [10].

Figure 1.9. Memory hierarchy and MAC array in a DNN accelerator. The
chip area is mainly occupied by the MAC array and different levels of local
buffers in the memory hierarchy. Smaller buffers offer faster access time and
lower energy, whereas off-chip memory access can be orders of magnitude
more expensive in terms of time and energy. Figure adapted from [13].
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Figure 1.10. Crossbar implementation of matrix-vector multiplication for
acceleration of DNNs. a) Input voltages are weighted by the conductance
and integrated as a current to perform the equivalent of a weighted sum.
b) Crossbar structure for matrix-vector multiplication. Additional circuits
required are digital to analog converters (DAC), sample and hold (S&H),
analog to digital converters (ADC), shift registers and addition. Figure

reprinted from [18].

more operations can be performed simultaneously for a given weight or activation.

1.5 Resistive crossbar accelerators

Hardware accelerators based on resistive crossbar arrays have been proposed

to implement efficient matrix-vector multiplication and minimize the movement of

weights, projecting orders of magnitude of improvement in time and energy consump-

tion over digital implementations [18–23]. The basic principle of resistive crossbar

accelerators is shown in Fig. 1.10. A matrix-vector multiplication is computed by

generating voltage signals from the rows of a crossbar array with resistive devices.

The voltage inputs are weighted by the conductance and integrated as a current

to perform the equivalent of a weighted sum. This implementation requires digital

to analog converters (DAC), sample and hold circuits (S&H) and analog to digital
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converters (ADC) to operate with analog signals. With this approach, a multilevel

memory element is programmed with the weights of a DNN, and the crossbar struc-

ture can be employed to perform inference.

Additionally, it was shown that resistive crossbar arrays can be used to accelerate

DNN training [20–22, 24, 25]. Gokmen and Vlasov [21] proposed the concept of re-

sistive processing unit (RPU), a multilevel resistive element that can be programmed

by voltage pulses. To understand the motivation for an RPU and its requirements,

consider the schematic representation of the weight update rule in Eq. (1.8) applied

in a crossbar array as shown in Fig 1.11a. Each weight in a crossbar structure receives

an activation from the rows of the array (xi), and a backpropagated error from the

columns (δj), which are multiplied to update the weight value. The multiplication

and weight update are traditionally computed in multipliers external to the cross-

bar array and then written to the corresponding resistive element. To perform the

weight update locally, the inputs xi and δj are translated into stochastic bit streams

to perform a stochastic multiplication [21, 26], as shown in Fig. 1.11b). When there

is a pulse coincidence, the weight is updated by a nominal value ∆w, resulting in the

update rule

wji ← wji ±∆w
BL∑

n=1

An
i ∧Bn

j , (1.18)

where BL is the length of the stochastic bit stream, An
i and Bn

j are the values of the

n-th bits, and ∧ is the logic AND operation. An
i is asserted with probability CAxi,

whereas Bn
j is asserted with probability CBδj. It can be shown that the stochastic

multiplication produces, on average, the same result as direct multiplication [21].

To implement the weight update with an RPU, pulses of equal amplitude (VS/2)

and opposite polarity are applied at rows and columns. A pulse coincidence results

in a VS voltage at the device terminals, whereas a single pulse arrival only produces

VS/2, as shown in Fig. 1.11c. The RPU needs to have a nonlinear response to the

applied voltages, so it changes its conductance for a coincidence of pulses and remains
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Figure 1.11. Resistive processing unit operating principle. a) Weight
update rule applied in a crossbar array. Each weight in a crossbar structure

receives an activation from the rows of the array (xi), and a
backpropagated error from the columns (δj), which are multiplied to

update the weight value. b) Weight update performed locally by stochastic
multiplication. The inputs xi and δj are translated into stochastic bit

streams and the weights are updated for each pulse coincidence. c) RPU
implementation as a resistive element that changes its conductance by a
nominal value ∆w for each pulse coincidence and remains unchanged for
single pulse arrivals. d) Forward propagation in a resistive crossbar array

with RPUs implemented by a width-modulated pulse of amplitude
Vin < VS/2. e) Weight update step implemented by applying streams of
pulses of amplitude ±VS/2 and opposite polarity. A pulse coincidence
produces an amplitude VS across the RPU. Figure reprinted from [21].
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unchanged for single pulse arrivals. The sign of the multiplication is determined by

the polarity of the pulses that are used during the update cycles [21, 22].

1.6 Challenges to implement multilevel memory devices for training

TABLE 1.2

RESITIVE PROCESSING UNIT REQUIREMENTS PROPOSED BY

GOKMEN AND VLASOV [21]

Parameter Value

Programming pulse 1 ns

Programming pulse (±VS) ±1 V

Device area 0.04 µm2

Average device resistance 24 MΩ

Maximum device resistance 112 MΩ

Minimum device resistance 14 MΩ

Resistance change at ±VS 100 kΩ

Resistance change at ±VS/2 <10 kΩ

Storage capacity 1000 levels

The requirements for an RPU to implement training with parallel weight update

were outlined in [21], and are summarized in Table 1.2. The conductance (weight)

needs to be updated for each pulse coincidence (resistance change at ±VS), whereas

it has to remain unchanged when a single pulse arrives at either terminal (resistance
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change at ±VS/2). Based on simulations of DNN training, Gokmen and Vlasov also

showed that the symmetry of the RPU response to positive and negative weight

updates was critical, requiring an asymmetry below 5% between conductance incre-

ments and decrements [21]. The importance of symmetric weight updates and other

requirements for mutlilevel resistive elements have also been studied in [27–29].

Phase-change memory (PCM) [28, 30–32] and resistive random access memory

(RRAM) [31–35] have been traditionally studied for multilevel weight elements. How-

ever, these materials exhibit highly asymmetric weight updates and abrupt transi-

tions [31, 32]. There is ongoing research to improve the characteristics of RRAM and

PCM, and several emerging material systems are also being explored [23, 32, 36–38].

Although ferroelecrics had been explored in the past for synaptic weight elements [39–

46], the discovery of ferroelectricity in the CMOS-compatible hafnium oxide [47] has

opened a new venue of research for neuromorphic and other applications [48–56].

Finally, several studies have focused on architectural considerations to mitigate

nonidealities of the memory devices [20, 22, 24, 57–60]. Due to the fundamental

trade-off between programming speed and retention time, it is challenging to real-

ize nonvolatile memories with programming times in the nanosecond range and low

programming voltages. For this reason, it has been proposed to use hybrid memory

cells, where a slower, nonvolatile element is used for long-term retention and a faster

element is used for frequent weight update [61–63]. These studies highlight the tight

relation between devices and architectures, and the need to develop models to design

peripheral circuits and architectures that address the limitations and trade-offs of the

memory cells at the algorithm level.

1.7 Objectives and hypothesis

The general objective of this research has been to study and develop the use

of ferroelectrics for multilevel memory elements for training deep neural networks
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in resistive crossbar arrays. This objective was motivated by the hypothesis that

ferroelectric partial polarization can be leveraged to develop high-density multilevel

memories. In addition, architecture considerations were developed to reduce the

memory requirements to train DNNs in resistive crossbar arrays.

The following objectives were proposed and achieved in the course of this research:

• Demonstrate the partial polarization of ferroelectric hafnium zirconate, a CMOS
compatible ferroelectric material.

• Characterize and model polarization reversal in polycrystalline ferroelectrics to
understand the physics and enable material optimization.

• Develop a model of the polarization dynamics in polycrystalline ferroelectrics
for device and circuit design.

• Design and evaluate a scheme for accurate weight update in resistive crossbar
arrays based on an approximate product obtained by local modulation of pulse
width and frequency.

• Develop a hardware-efficient mapping between signed vector-matrix multipli-
cations and its equivalent implementation in a crossbar array with nonnegative
resistive elements.

1.8 Organization of this thesis

The first part of this thesis is dedicated to exploring the use of ferroelectrics

for multilevel memory storage and its potential application in resistive crossbar ar-

rays. Chapter 2 presents experimental results and analysis of partially polarized

ferroelectrics for multilevel resistive memories for acceleration of deep neural net-

works. This chapter motivates the in-depth exploration of the polarization dynamics

of ferroelectrics and the study of architecture approaches to improve the performance

of resistive crossbar arrays with nonideal RPU cells. Chapter 3 presents the char-

acterization and modeling of polarization reversal of ferroelecric hafnium zirconate

under constant applied field. This is used to characterize the material system and

extract relevant parameters. Then, Chapter 4 presents a general model for simula-
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tion of ferroelectrics under arbitrary input waveforms, which is based on the material

parameters extracted from the polarization reversal.

The second part of this thesis is dedicated to architecture considerations to im-

prove the accuracy of DNN training in resistive crossbar arrays, focusing on the lim-

ited precision and other limitations of resistive weight elements. Chapter 5 presents

a weight update scheme alternative to stochastic multiplication, which enables a par-

allel weight update with a simpler hardware implementation and lower variability.

Chapter 6 presents an architecture to map DNN models efficiently to resistive cross-

bar arrays, considering that resistive weight elements are inherently non-negative

and suffer from limited resolution and nonlinearity. A review of the main results and

conclusions is presented in Chapter 7.
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CHAPTER 2

MULTILEVEL FERROELECTRIC MEMORY FOR RESISTIVE CROSSBAR

ARRAYS

This chapter introduces ferroelectrics (FE) and considers their use for dense mul-

tilevel memory storage. A behavioral simulation is presented to evaluate the potential

performance of FEs for synaptic weight storage, and an FE-based memory device is

proposed for operation in a resistive crossbar array.

2.1 Ferroelectric polarization, hysteresis loops and partial polarization

Figure 2.1. Ferroelectric permanent dipole moment in a
noncentrosymmetric perovskite unit cell. The center atom can be at either
of two stable positions, giving rise to a double-well potential as a function
of the atomic displacement with respect to the center. Figure reprinted

from [64].
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Ferroelectrics materials exhibit a permanent dipole moment that can be config-

ured by the application of an electric field. The ferroelectricity is originated by a

noncentrosymmetric polar crystal phase [65], as depicted in Fig. 2.1. This results in

a dipole moment that points either up or down, and can be switched by the applica-

tion of an electric field. A single FE crystal tends to be in either of two stable states,

where all of its unit cells are polarized in the same direction. In their polycrystalline

form, an FE film is composed of a multitude of grains with independent polarization

states, allowing for stable multilevel polarization of the FE film. More details about

the polarization process will be given in Chapter 3.

The hysteretic polarization-voltage (P−V ) loop depicted in Fig. 2.2 is a typical

signature of ferroelectrics. Consider an FE capacitor with multiple grains, depicted

by arrows separated by boundaries. When the FE is completely polarized in one di-

rection, a saturation polarization −PS [C/cm2] is obtained. Upon the application of a

positive triangular pulse (Fig. 2.2a)), the FE polarization will be completely reversed,

resulting in a +PS polarization, provided that the pulse is long and large enough. The

polarization is then reversed back to −PS by applying a negative pulse. The current

response during this process is shown in Fig. 2.2b), and has 2 components. The first

component is the dielectric response due to the FE capacitance (I = CdV/dt), and

results in a square waveform for the triangular pulse in Fig. 2.2a). The second com-

ponent corresponds to the current peaks produced when the polarization switches.

Fig. 2.2c) shows the current plotted as a function of voltage. By integrating this

current, the plot of Fig. 2.2d) is obtained, which shows the hysteretic P −V loop.

The opening at 0 V corresponds to 2PS.

More interestingly, if the applied pulse is short enough, a polycrystalline FE can

be polarized in an intermediate state, as shown in Fig. 2.3. By applying short pulses

of varying width and amplitude, partially polarized states ranging from −PS to PS

can be obtained. This operation regime results in multilevel memory storage that
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Figure 2.2. Ferroelectric polarization and characteristic P− V loop. a) A
triangular pulse is applied to switch the ferroelectric polarization between

two saturated states ±PS. b) Current due to capacitance and FE
polarization. c) Current-voltage characteristic. d) Polarization-voltage loop

obtained by integrating the current response.

Figure 2.3. Partial polarization in a polycrystalline FE film. a) Starting
from a fully polarized state −PS, a positive voltage is applied at t = 0. The

FE grains switch and increasingly align until the FE reaches the fully
polarized state +PS. b) Partially polarized states ranging from −PS to PS

can be obtained by applying short pulses of varying width and amplitude.
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can be leveraged for several applications, and is the focus of this chapter.

2.2 Characterization of partial polarization of ferroelectric capacitors

To characterize the partial polarization of ferroelectrics, two FE capacitors were

tested: a commercial 255-nm-thick lead zirconate titanate (PZT) capacitor [66], and

a 12-nm-thick Hf0.8Zr0.2O2 (HZO) capacitor, fabricated by Golnaz Karbasian of UC

Berkeley [67]. The cross sections of the PZT and HZO capacitors are shown in

Fig. 2.4. The HZO capacitor fabrication started by sputtering 40 nm TiN on a

Si wafer. The HZO was deposited by atomic layer deposition (ALD) at 250 ◦C

with tetrakis(ethylmethylamino)-hafnium and tetrakis(ethylmethylamino)-zirconium

precursors, and water vapor as the oxidant [67]. The HZO was then capped with 30

nm of sputtered TiN and annealed at 500 ◦C for 30 s in N2. The top TiN was etched

and 60 µm-diameter dots were deposited by evaporation of Ni/Pd and lift-off. Finally,

the HZO was etched and contacts to the back TiN were formed by evaporation of

Ni/Pd and lift-off.

Electrical measurements were performed with a Keithley 4200 parameter analyzer

with a 4225-PMU pulse measurement unit and two 4225-RPM remote preamplifiers.

Before the partial polarization measurements, a triangular waveform with 4 ms period

is applied for 100 cycles as a wake-up procedure, with 5 V amplitude for PZT and 3

V for HZO. The current-voltage and P−V characteristics are measured by applying

the same waveform after wake-up and are shown in Fig. 2.5 for both HZO and PZT.

The measurement protocol designed to characterize the partial polarization is

depicted in Fig. 2.6. A reset pulse of amplitude VR polarizes the FE to the −PS state.

A programming pulse of amplitude VP and width TP is applied to partially polarize

the ferroelectric. The partial polarization is read out by applying two consecutive

triangular pulses. The first pulse polarizes the capacitor back to the −PS state,

and produces a current due to the linear capacitance and the polarization current
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Figure 2.4. Cross section of (a) PZT and (b) HZO FE capacitors. HZO
material provided by Sayeef Salahuddin and Golnaz Karbasian from UC

Berkeley. Sample fabrication by Pratyush Pandey.

Figure 2.5. Ferroelectric polarization characteristics after wake up.
Current-voltage characteristic for (a) HZO and (b) PZT. The P-V loop is
obtained by integrating the current-voltage characteristic for (c) HZO and

(d) PZT.
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of the switched domains. The displacement current due to the linear capacitance

alone is measured by the second pulse, where there is no polarization current. The

current difference ∆I is integrated to calculate the partial polarization produced by

the programming pulse ∆P .

Figure 2.7 shows the partial polarization measurements for PZT and HZO capac-

itors with pulse widths ranging from 200 ns to 200 µs. The reset and readout pulse

amplitudes were 5 and 3 V for PZT and HZO, respectively. The partial polarization

shows a nonlinear response to pulse amplitude, which can be leveraged to implement

stochastic multiplication for parallel weight updates as described in Chapter 1.

2.3 Performance simulation in crossbar-based DNN accelerator

To evaluate the use of partially switched ferroelectrics as synaptic weight storage

elements in crossbar-based accelerators, a behavioral simulation of neural network

training was implemented in MATLAB. The simulation was implemented using the

network in Fig. 1.5 and the MNIST dataset of handwritten digits [68]. The input

layer size is 784 (28×28 pixels, normalized between 0 and 1), followed by two hidden

layers with 256 and 128 neurons, and an output layer with 10 neurons for labels from

0 to 9. Sigmoid activation functions were used in hidden layers, softmax activations at

the output and log-likelihood cost function [6, 7]. A baseline model was implemented

using floating point precision and the ideal weight update

wji ← wji − ηxiδj, (2.1)

where wji is the weight that connects the neuron i in layer L− 1 (preneuron) to the

neuron j in layer L (postneuron). The baseline model achieves a 1.96% accuracy

on the test set (Fig. 2.8), defined as the percentage of misclassified images from a

validation set of 10,000 images [68].
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For crossbar-based accelerators, the layers in the neural network are mapped to a

crossbar structure with a multilevel memory element [21]. To simulate the stochastic

weight update, introduced in Chapter 1, the update rule in Eq. (2.1) is replaced by

wji ← wji ∓∆w0N, (2.2)

where N is the number of pulse coincidences obtained with stochastic multiplication

and ∆w0 is the nominal weight update for each pulse [21]. For an ideal memory

element, the weight value would increase/decrease linearly with the number of pulses

until it reaches its maximum values ±wmax, as shown in Fig. 2.9a). To a first or-

der approximation, the FE polarization reversal can be modeled by an exponential

settling. The update rule is modified to

wji ← wji ∓∆w0N

(
1± wji

wmax

)
(2.3)

and is shown in Fig. 2.9b). The number of levels required for the memory element

can be roughly estimated by the largest ∆w0 and smallest wmax that can be simul-

taneously tolerated.

Figure 2.10 shows the performance of the neural network after 30 epochs (i.e.

iterations of the 60,000 training images), measured as the percentage of mislabeled

images on the test set. The performance is evaluated fo ∆w0 = 0.001, 0.01 and 0.1,

and saturation values wmax ranging from 1 to 100. For ∆w0 = 0.001 and wmax = 10,

the baseline error can be achieved, but the number of levels is prohibitive for practical

implementations (20,000 levels). An error below 5% can be achieved with ∆w0 = 0.01

and wmax = 2 and 400 levels, whereas an error below 10% can be obtained with

∆w0 = 0.1 and wmax = 2 and only 40 levels. The FE area required can be roughly

estimated by the grain size. Considering grain sizes with ∼ 100 nm2 area [69, 70], a

FE could potentially store 10,000 levels in 1 µm2.
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2.4 Polarization-based analog memory for resistive crossbar arrays

Although HZO FE capacitors have a large storage density, many challenges still

need to be addressed to make a useful memory device. To operate in a crossbar-based

accelerator, the FE polarization needs to be read as a conductance state. This can

be accomplished in a 2-terminal FE Tunnel Junction (FTJ), by measuring a change

in tunneling current due to the ferroelectric polarization [71]. One of the challenges

in this implementation is to optimize the asymmetric metal electrodes and scale the

ferroelectric, so that the ON-state current is sufficiently large for fast readout.

Ferroelectric HZO can also be integrated into established CMOS process flows to

form FE field-effect transistors (FeFET) [72]. In the FeFET, the polarization of the

HZO capacitor modulates the charge in the semiconductor channel, and can be read

as a shift in the threshold voltage. For a crossbar-compatible implementation, a two-

terminal FeFET variation is proposed, depicted in Fig. 2.11. The device consists of an

FE on top of a semiconductor channel with contacts at both ends (Fig. 2.11a)). An

overlying top plate is connected to one of the contacts. The FE built-in nonlinearity

is leveraged to alter the polarization by pulsing between the metal contacts at biases

large enough to partially polarize the ferroelectric. The conductance state of the

semiconductor channel is read out at a low bias. A vertical implementation is shown

in Fig. 2.11b). The proposed device led to a US patent application sponsored by the

Semiconductor Research Corporation (see Appendix B).

2.5 Conclusion

The polarization of ferroelectric PZT and HZO capacitors was studied, showing

that they can be partially polarized with pulses down to nanosecond scales. These re-

sults represent the first measurements of partial polarization of FE HZO for multilevel

memory storage and were presented at the 2017 Device Research Conference [73]. The
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polarization response shows a highly nonlinear voltage dependence, which enables the

use of stochastic multiplication for parallel weight update in resistive crossbar arrays.

A neural network for classification of handwritten digits was simulated to provide a

performance evaluation, showing the trade-off between accuracy and dynamic range.

These findings led to a patent filing on a two-terminal multilevel memory for crossbar-

based neural network accelerators proposed to access and program the FE memory

state, included as Appendix B and filed on 5 November 2018.

During the course of this thesis work, many studies of partially polarized ferro-

electrics have been presented in the literature [50, 52, 54, 63, 74–77], highlighting

its potential for multilevel memories. Device and cell structures for neural network

applications have been demonstrated and benchmarked [54, 63], and experimental

studies of programming schemes to improve the linearity and symmetry of the po-

larization response have been presented [52, 54, 63, 74]. To design these devices

and programming schemes, accurate and predictive models are required, which is the

focus of the following chapters.
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Figure 2.6. Measurement protocol for FE partial polarization. a) A reset
pulse is applied to set the capacitor to the −PS state. A programming

pulse (not to scale) of variable width and amplitude is applied to partially
polarize the capacitor. The polarization is measured by two consecutive

negative pulses, by which the displacement current is subtracted to obtain
the polarization current. b) Example of polarization current (top) and
partial P−V loop (bottom) measured for different pulse widths. The

opening of the partial P−V loop corresponds to the polarization produced
by the pulse.
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Figure 2.7. Partial polarization measurements as a function of pulse width
for a) PZT and c) HZO capacitors. Partial polarization measurements as a

function of pulse amplitude for b) PZT and d) HZO capacitors.
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Figure 2.8. Baseline DNN training results obtained using the ideal update
rule from Eq. (2.1) and η =0.01, 0.005 and 0.0025 for epochs 1 to 10, 11 to
20 and 21 to 30 respectively. A 1.96% error is achieved on the test set.

Figure 2.9. Weight update characteristic for a) linear memory element with

symmetric increase/decrease and b) FE memory element.
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Figure 2.10. Simulated test error after 30 epochs with the weight update
rule in Eq. (2.3) for different values of ∆wo.

Figure 2.11. Proposed RPU based on the partial polarization of a
ferroelectric. a) Planar implementation and b) vertical implementation.



37

CHAPTER 3

CHARACTERIZATION AND MODELING OF FERROELECTRIC

POLARIZATION REVERSAL

The discovery of ferroelectricity in the CMOS-compatible HfO2 material sys-

tem [47] has led to a variety of applications including memory [78, 79], steep slope

transistors [53, 56], and neuromorphic computing [52, 73]. Several studies have ana-

lyzed the effect of growth and annealing conditions on the FE properties of HZO, such

as the Zr concentration [67, 80], electrode material [81, 82] and annealing tempera-

ture [83, 84]. These studies usually focus on properties that can be directly measured

from the P -V loops, such as the remanent polarization and endurance, but provide

limited insight into the FE dynamics or speed limitations, a subject that is widely

debated [85, 86].

In this chapter, the polarization reversal of ferroelectric HZO is analyzed to show

that the measurements are well described by a nucleation limited switching model,

which enables extraction of the minimum switching time and the probability distribu-

tion of local electric field variations in the polycrystalline film. This characterization

framework is shown to be useful to quantify, compare and optimize the switching

dynamics of polycrystalline FEs.

3.1 Polarization reversal in a ferroelectric crystal

To understand the polarization dynamics in a polycrystalline FE, it is necessary

to understand the processes that govern the polarization reversal in a single FE crys-

tal, as shown in the diagram in Fig. 3.1. Consider an FE crystal that is completely
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Figure 3.1. Polarization reversal in a single ferroelectric crystal. a) Starting
from a fully polarized state, an electric field that opposes its polarization is
applied. b) The polarization reversal starts with the nucleation of domains
with opposite polarization with a minimum volume Vc. c) Domain wall

expansion: nucleated domains grow until d) an homogeneous polarization is
obtained, which is aligned with the external field.

polarized in one direction. When an external field that opposes this polarization is

applied, the dipole moments will tend to align to the external field. Polarization

reversal typically happens in two steps due to the energy barrier between two po-

larization states. First, small volumes of reversed polarization are nucleated with a

certain rate per unit volume. For these nuclei to be stable, they need to be above a

certain critical size Vc. Once a domain above this critical size is nucleated, it starts

growing by domain wall expansion. The FE polarization is reversed by a combination

of domain nucleation and domain wall expansion until the entire crystal has aligned

to the external applied field.

The physics-based Kolmogorov-Avrami-Ishibashi (KAI) model [87] describes the
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polarization reversal dynamics in an infinite FE crystal by

Q(t) = 1− e−A(t), (3.1)

where the dimensionless factor Q(t) represents the switched fraction of the FE and

A(t) corresponds to Avrami’s extended volume [87]. Assuming a constant nucleation

rate and domain wall velocity, A(t) takes the form (t/to)
n, where to is a bias-dependent

time constant and n is the Avrami exponent given by the dimensionality of the domain

growth (i.e. 1, 2 or 3). The assumption of constant wall velocity is not necessarily

accurate and is a source of noninteger values of dimensionality that result from least-

square fitting of experimental data [88]. Considering the polarization reversal from

−PS to PS, the polarization can be expressed in terms of Q(t) as

P (t) = −PS + 2PSQ(t), (3.2)

where ∆P (t) = 2PSQ(t) is the polarization change due to the switched fraction Q(t).

3.2 Nucleation-limited switching in polycrystalline ferroelectrics

In thin FE films, the grain size is comparable to the film thickness [89], and

the KAI model is no longer accurate due to the contribution of multiple grains and

interaction with grain boundaries [90]. The Nucleation-Limited Switching (NLS)

model was proposed to account for multigrain polarization by characterizing the

thin film as an ensemble of elementary regions that switch independently with a

distribution of switching time constants [91]. The nucleation-limited switching can

be described as shown in Fig. 3.2. The FE film is composed of a set of grains,

which are fully polarized and point in the same direction. Upon the application of

an external field that opposes its polarization, the polarization reversal will start
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Figure 3.2. Polarization reversal in a polycrystalline FE crystal. a) Starting
from a fully polarized state, where all grains are polarized in the same

direction, an electric field that opposes its polarization is applied. b) As in
an infinite crystal, the polarization reversal start with domain nucleation.
c) Domain wall expansion stops at grain boundaries. d) Grains continue to

switch independently by domain nucleation.

by domain nucleation, as in the case of a single crystal. However, it is assumed

that domain wall motion stops at the grain boundary and does not propagate to an

adjacent grain. Therefore, each grain in the FE film switches independently when

a domain of reversed polarization is nucleated within its boundaries, but it is not

affected by the switching of adjacent grains.

The NLS theory presented in [91] also assumed that the wait time for a nucleation

event is much larger than the time needed for the expanding domain to occupy the

entire grain. Under this assumption, the switching of a grain occurs instantaneously

when a nucleation event occurs within its boundaries. Considering a constant nucle-

ation rate 1/τ , the switching of a grain can be modeled as a Poisson process, where
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the cumulative distribution function (CDF) of the switching time tS is

P (tS < t|τ) = 1− exp

(
− t

τ

)
. (3.3)

The average polarization of the film is given by

P (t) = −PS + 2PS

∫ ∞

0

P (tS < t|τ)θ(τ)dτ, (3.4)

where θ(τ) represents a distribution of switching times. This distribution of switching

times was later attributed to variations in the local electric field when a uniform

external field is applied, due to impurities or crystal defects [92], or the intrinsic

inhomogeneity of the FE film [93]. In addition, as will be discussed in Chapter 4, the

assumption of a constant nucleation rate can be inaccurate for thin-film FEs, and

Eq. 3.3 was generalized to a stretched exponential with parameter β [92, 93]. Taking

these modifications into account, the field-dependent NLS model can be summarized

as follows:

The switching of a single elementary region is described by a stretched exponential

with parameter β [92, 93]

p(t, τ) = 1− exp

{
−
(
t

τ

)β
}
. (3.5)

The characteristic switching time τ is a function of the local field E and an activation

field Ea, expressed by the empirical relation [88, 93]

τ(Ea, E) = τ∞exp

{(
Ea

E

)α}
, (3.6)

where τ∞ is the time constant obtained for an infinite applied field, and α is an

empirical parameter. Assuming an inhomogeneous and field-independent dielectric
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permittivity, the local electric field value is expressed as E = ηEext, where Eext is the

constant applied field and η is a random variable with a probability density function

(PDF) f(η) and unity mean, defined in the [0,∞) interval [93]. As a result, the

polarization reversal from −PS to +PS is computed as

P (Eext, t)=−PS + 2PS

∫ ∞

0

p(t, τ(Ea, ηEext))f(η)dη (3.7)

With this mathematical formulation, the FE film is characterized by the parameters

PS, Ea, β, α, τ∞ and the probability density function f(η).

3.3 Experimental results and parameter extraction

Although it has been shown that the polarization reversal of FE HfO2 occurs in

the nucleation limited regime [48, 50, 94], only one prior study reports parameter

extraction by applying an NLS model to Al-doped HfO2 [77]. In this section, the

field-dependent NLS model is applied to characterize an 8 nm thick Hf0.5Zr0.5O2 FE

capacitor, fabricated by doctoral student Pratyush Pandey. The cross section and

transmission electron microscopy (TEM) of the capacitor are shown in Fig. 3.3a) and

b). The device fabrication started by sputtering 65 nm W on a Si wafer. The HZO

was deposited by atomic layer deposition at 300 ◦C with tetrakis-(ethylmethylamino)-

hafnium and tetrakis-(ethylmethylamino)-zirconium precursors, and water vapor as

the oxidant. The HZO was then capped with 65 nm of sputtered W and annealed at

500 ◦C for 30 s in N2. Then, 60 µm-diameter dots were deposited by shadow mask

evaporation of Ti/Pd. Finally, the top W and HZO were etched using the Ti/Pd

electrodes as a hard mask. A Hf:Zr ratio of 1:1 was verified with energy dispersive

X-ray linescans.

Electrical measurements were performed with a Keithley 4200 parameter analyzer

with a 4225-PMU pulse measurement unit and two 4225-RPM remote preamplifiers.
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150 nm Pd
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a) b)

c) d) e)

Figure 3.3. a) Cross section and b) TEM of 8 nm thick Hf0.5Zr0.5O2 FE
capacitor with 60 µm-diameter top electrode. c) Capacitance-Voltage

measurements with 1 V/s sweep rate and 30 mV, 100 kHz AC signal. d)
Current-voltage characteristic of Hf0.5Zr0.5O2, measured with a 2.5 V

triangular waveform with 4 ms period. e) P -V loop obtained by integrating
the current-voltage characteristic.

The experimental setup and the capacitor diameter were designed so that the partial

polarization measurements are not limited by RC delays. The combined resistance

of the 50 Ω output resistance of the remote amplifier and the series resistance of the

probes was measured to be 54 Ω, which with the measured capacitance (Fig. 3.3c))

results in a time constant in the order of 5 ns. A 2.5 V triangular waveform with 4 ms

period was applied for 500 cycles for wake up. The current-voltage and P -V charac-

teristics are shown in Fig. 3.3d) and e), measured after wake up. The measurement

sequence performed to characterize the polarization reversal is depicted in Fig. 3.4.

Conditioning pulses of amplitude VR = 2.5 V are applied to reset the FE. The pro-
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Conditioning Pulse
VP , tP

Read

-VR

VR
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Figure 3.4. Measurement protocol for polarization reversal. Conditioning
pulses of amplitude VR = 2.5 V are applied to reset the FE. A

programming pulse of varying width and amplitude is applied, and the
polarization is measured by two pulses of amplitude VR = 2.5 V.

gramming pulse width (tP ) was stepped from 200 ns to 7.6 ms in increments of 1.5×,

then the amplitude (VP ) was stepped from 0.8 V to 2 V in increments of 100 mV. The

polarization is measured by two consecutive negative pulses of amplitude VR = 2.5 V

and 1 ms rise time. The first pulse polarizes the capacitor back to the −PS state,

and produces a current due to the linear capacitance and the polarization current of

the switched domains. The displacement current due to the linear capacitance alone

is measured by the second pulse, where there is no polarization current. The current

difference is integrated to calculate the partial polarization. The pulse amplitude VP

is translated to field Eext by dividing by the film thickness (TFE).

Figure 3.5 shows the polarization reversal measurements (dots) and the fitted

model (solid lines) as a function of pulse width and pulse amplitude. In addition,

polarization measurements with 2.5 V pulses (diamonds) are shown to verify that the

conditioning and read pulses produce a saturated polarization.

The distribution of local field variations f(η) was extracted from measurements

with the method presented in [93]. The logarithmic derivative of the polarization

with respect to the applied field exhibits a maximum at a certain field Emax that
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Pulse time tP
200 ns to 7.6 ms
1.5⨉ step

VP = 
10 V
5
2.5

0.8 to  2 V
0.1 V step

Figure 3.5. Measured partial polarization (dots) vs. pulse width (left) and pulse

amplitude (right) show close agreement with model (solid line) over 5 decades of

pulse times. Extracted parameters are PS = 26.4 µC/cm2, τ∞ = 236 ns,

Ea = 2.42 MV/cm, α = 3.73 and β = 2.06. Measurements with 2.5 V pulse

amplitude (diamonds) were not used for parameter extraction, which

demonstrates the predictive capability of the model.

depends on the pulse time tP , as shown in Fig. 3.6a). When the x-axis is normalized

by Emax for each pulse time tP , the derivatives overlap into a master curve Φ(x)

(Fig. 3.6b)). The distribution f(η) is obtained from the master curve as

f(η) =
1

η
Φ

(
1

γη

)
, (3.8)

where γ is a proportionality constant derived from the condition of unity mean [93].

As shown in Fig. 3.6c), the data is well described by a generalized beta distribution

of type 2, whose PDF is

GB2(η|a, b, p, q) =
|a|
b

(
η
b

)ap−1

B(p, q)
(
1 +

(
η
b

)a)p+q , (3.9)

where B(p, q) is the beta function. The distribution parameters are a = 9.0986,

b = 1.3935, p = 1.1101 and q = 15.197. The parameters PS, Ea, β, α and τ∞ were

then extracted by performing a least square fit of Eq. (3.7) with the polarization

reversal data. Alternatively, once the analytic form of the distribution is known, its
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Figure 3.6. Extraction of the distribution of local field variations f(η) [93]. a)

Derivatives of the polarization with respect to applied field. b) The derivatives

overlap into a master curve Φ(x) when the x-axis is normalized by the field at

which the derivatives are peaked. c) Distribution of local fields obtained from

Φ(x) (red), with the proportionality constant γ derived from condition of unity

mean. The same distribution was obtained by fitting the distribution parameters

directly from the polarization reversal data (blue).
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parameters can be extracted with the least square fit directly from the polarization

reversal data. The resulting distribution is not sensitive to the extraction method, as

shown in Fig. 3.6c), and the fitted parameters vary by less than 1%. Furthermore, the

fitted model is able to predict the measured polarization reversal with 2.5 V pulses,

which was not used for parameter extraction.

According to Eq. (3.6), as the applied field increases, τ asymptotically reaches

its minimum value τ∞ = 236 ns, which imposes a hard limit on the switching speed.

This limitation is shown in Fig. 3.5 by extrapolating the pulse amplitude to 2.5, 5

and 10 V. The relative speed at which the FE grains switch is determined by the

spread of the distribution of local field variations: grains at the higher end of the

distribution have a smaller time constant and will switch sooner than those with

smaller values of η. Therefore, a large variance in the local field distribution favors

partial polarization, but is not desirable for fast transitions between saturated states

(±PS). Furthermore, a narrow distribution is needed for memory writing schemes

that leverage the nonlinearity of the FE response to applied field [79].

3.4 Study of thickness dependence in ferroelectric HZO capacitors

To study the thickness dependence of the NLS parameters, another set of FE

W/HZO/W capacitors were fabricated with HZO thickness being 8.3, 10.6, and 15

nm (fabrication by doctoral student Pratyush Pandey). Polarization reversal mea-

surements were carried out by applying the measurement protocol in Fig. 3.4. The

pulse width was stepped from 200 ns to 10 ms in increments of 1.5×, then amplitude

was stepped in increments of 100 mV. Reset and read amplitude of 2.5, 3 and 3.5

V were used for 8.3, 10.8 and 15 nm capacitors, respectively. The complete proce-

dure was repeated 3 times for each sample to verify that no significant aging effects

are observed. The polarization reversal measurements and the fitted NLS model are

shown in Fig. 3.7a). Note that due to the form of Eq. (3.6), a distribution of local
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Figure 3.7. a) Partial polarization data for 3 runs (dots) show close
agreement with fitted NLS model (solid line) over 5 decades. b) Measured
dielectric constant from capacitance-voltage data (0.2 V/s sweep rate and
25 mV, 100 kHz AC). c) Extracted distributions of activation field reflect

minor variations in the statistical properties with film thickness.
d) Extracted parameters: PS and τ∞ decrease by 0.6× and 0.25×
respectively for thickness from 8.3 to 15 nm, whereas α and β show

variations below 10% for different samples and thickness.
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field variations is mathematically equivalent to a distribution of effective activation

fields E ′
a = Ea/η with probability density

g(E ′
a) =

η2

Ea

f (η) , (3.10)

which is also a generalized beta distribution of type II. The definition of an effective

activation field can represent other physical phenomena, in addition to local field

variations, that may cause variations in the switching time constants. With this

approach, the activation field is incorporated into the distribution, and the FE pa-

rameters are PS, τ∞, α and β, in addition to the distribution of activation fields. The

extracted distributions and parameters are shown in Fig. 3.7c) and Fig. 3.7d), respec-

tively. As previously shown [84], the remanent polarization decreases with increasing

film thickness without significant change in the extracted activation field distribu-

tions. The extracted minimum switching time constant τ∞ also decreases with film

thickness, reaching a minimum value in the order of 100 ns, imposing a hard limit on

the switching speed of these FEs. Note that this limitation is not universal and can

vary significantly for different film compositions and growth conditions.

3.5 Conclusion

The polarization reversal dynamics of polycristalline HZO was characterized and

modeled. The results show that the field-dependent NLS model provides a compre-

hensive description of the polarization reversal for varying pulse amplitudes and pulse

width spanning over 5 decades. The extracted probability distribution characterizes

the local electric field variations in the FE film, and a minimum switching time con-

stant of 100 ns was obtained for these deposition conditions and electrodes. This

characterization framework provides the tools to quantify, compare and optimize the

switching dynamics and the nonlinear response of HZO films. These results were
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published in IEEE Electron Device Letters in November 2018 [95].
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CHAPTER 4

MONTE CARLO SIMULATION OF POLARIZATION DYNAMICS IN

POLYCRYSTALLINE FERROELECTRICS

NLS models [91–93] provide an accurate description of the polarization reversal

dynamics of FE thin films. However, NLS models are limited as they are polarization

reversal models, and can only describe the switching dynamics of an FE starting from

a fully polarized state and under the application of a constant field. To design devices

and circuits that leverage FE polarization, reliable and predictive models of the FE

polarization dynamics are needed. Describing the switching behavior of thin-film

polycrystalline FEs is complicated by the fact that they are composed of a multitude

of grains having different switching thresholds, the distribution of which is highly

dependent on the growth conditions. Therefore, to predict the time evolution of a

FE film it is necessary to keep track of the configuration of switched grains.

Prior dynamic models have been based on the static Preisach model [96–98], which

approximate the P−V hysteresis loops by a hyperbolic tangent function, while the

dynamic component is included by using equivalent circuits having either fixed or

bias dependent time constants [98]. Due to these approximations, these models do

not keep track of the distributions of switched grains, and resort to interpolation

and scaling of parameters to replicate the history dependence of partially polarized

FEs [96, 97].

The field-dependent NLS model characterizes the FE film as an ensemble of ele-

mentary regions that switch independently with a distribution of field-dependent time

constants, effectively coupling the distribution of switching thresholds and the switch-
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ing dynamics. These models have been experimentally validated in FE HfO2 [95, 99],

lead zirconate titanate [91–93, 100] and other material systems [100]. In this chapter,

we present a Monte Carlo simulation approach that describes the dynamic, history-

dependent switching of a polycrystalline FE. In this framework, the field-dependent

NLS model is generalized for use with arbitrary input waveforms. After a parameter

extraction from polarization reversal measurements, the model is able to accurately

predict the dynamical behavior of FE hafnium zirconate (HZO) under various ap-

plied waveforms without further parameter tuning, showing the predictive capability

of the model.

4.1 Revisit NLS model and nucleation rate

In the NLS model, it is assumed that the switching of a grain occurs once a domain

of reversed polarization is nucleated, and the wait time for the first nucleation event

is much larger than the time needed for a nucleated domain wall to expand and

occupy the entire grain. The NLS theory presented in [91] originally assumed that

nucleation events occur spontaneously at a constant rate 1/τ , so the switching of a

grain was modeled as a Poisson process, where the cumulative distribution function

(CDF) of the switching time tS is

P (tS < t|τ) = 1− exp

(
− t

τ

)
. (4.1)

However, according to classical nucleation theory, the nucleation rate is not con-

stant [101]. Domain nucleation occurs in a series of stages, starting with an incu-

bation period where small clusters with reversed FE polarization continuously form

and decompose, the distribution of which evolves over time until a quasi-steady-state

distribution is reached. During this period, the nucleation rate increases monotoni-

cally until it becomes almost constant [101]. The assumption of constant nucleation
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rate was originally introduced as a special case to model the polarization reversal in

an infinite crystal [87], where multiple nucleation events occur until the FE volume

has reversed its polarization. In this regime, the incubation period could be safely ig-

nored, but it can be the dominant factor in a polycrystalline FE where the switching

time is determined by the first nucleation event.

Based on experimental results, Eq. (4.1) was generalized to a stretched exponential

with parameter β [92, 93], which can be interpreted as a Weibull process [102] where

the CDF for the switching time is given by

P (tS < t|τ, β) = 1− exp

[
−
(
t

τ

)β
]
. (4.2)

This results in a time-dependent switching rate

r(t) =
β

τ

(
t

τ

)β−1

, (4.3)

as opposed to a constant nucleation rate. Note that for β = 1, this reduces to a

Poisson process with constant rate 1/τ . With β > 1 a monotonically increasing

nucleation rate is obtained, which provides an approximation for the FE nucleation

during the incubation period.

As described in Chapter 3, the time constant τ is a function of applied field EFE

and an activation field Ea

τ(Ea, EFE) = τ∞exp

[(
Ea

EFE

)α]
. (4.4)

The polarization reversal is computed as

P (EFE, t) = −PS + 2PS

∫ ∞

0

P (tS < t|τ(Ea, EFE), β)g(Ea)dEa. (4.5)
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TABLE 4.1

HZO PARAMETERS EXTRACTED FROM POLARIZATION

REVERSAL MEASUREMENTS.

Parameter Value

PR 22.9 µC/cm2

τ∞ 387 ns

α 4.11

β 2.07

a 12.1

b 1.79 MV/cm

p 0.691

q 0.633

where g(Ea) is the distribution of activation fields, whose probability distribution is

given by

GB2(η|a, b, p, q) = (|a|/b) (η/b)ap−1

B(p, q) [1 + (η/b)a]
p+q , (4.6)

where B(p, q) is the beta function.

The FE parameters extracted from polarization reversal measurements are shown

in Table 4.1. An offset voltage of VOS = 80 mV was measured from P−V loops, such

that VFE = VA + VOS, where VA is the applied voltage and VFE is the actual voltage

across the FE. This offset was considered during parameter extraction and applied

to all simulations. The field at the FE is computed as EFE = VFE/TFE.
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4.2 Monte Carlo simulation of polarization reversal

For the Monte Carlo simulation, a set of N grains g(i), i ∈ (1, N) is initialized by

sampling values of activation fields E
(i)
a from the distribution g(E ′

a). The parameters

PS, β, α, and τ∞ are common to all the FE grains. Each FE grain can have one of

two possible orientations, corresponding to a positive or negative polarization state

(s(i) = ±1), and the time evolution of each grain is governed by Eq. (4.2) and (4.4).

For a polarization reversal simulation from −PS to PS, all grains are initialized

to the state s(i) = −1. Under a constant applied field, a grain g(i) has a fixed

time constant τ (i) given by Eq. (4.4). The simulation is performed by dividing the

time into discrete time intervals and computing the probability of transition for each

unswitched grain according to Eq. (4.2). This is expressed as the probability that

the switching time tS is in the time interval [t, t +∆t], given that the grain has not

switched until t,

P (i)(tS < t+∆t|tS > t)=1−exp

[(
t

τ (i)

)β
−
(
t+∆t

τ (i)

)β]
. (4.7)

For each grain, the switching probability is evaluated as a Bernoulli trial with proba-

bility P (i), and the state s(i) is updated to +1 in case of success. The total polarization

due to the orientation of the FE grains is computed as

PFE(t) =
PS

N

N∑

i=1

s(i)(t). (4.8)

The Monte Carlo simulation for polarization reversal is summarized in Algorithm 1.

Note that this model does not consider a distribution of grain sizes and orientations.

Although these effects can easily be added to the simulation, further experimen-

tal work is required to characterize these effects and their correlation with the FE

parameters and the activation fields.
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Algorithm 1 Monte Carlo polarization reversal

Instantiate FE:
Define parameters {PS, β, α, τ∞}
Sample N activation fields E

(i)
a from g(E ′

a)
Initialization: for grains g(i), i ∈ (1, N)

s(i) ← −1
τ (i) ← τ∞exp

[(
E

(i)
a /EFE

)α]

Simulation: for timestep [t, t+∆t] and grains g(i), i ∈ (1, N)
if s(i) = −1

P (i) ← 1− exp
[
(t/τ (i))β − ((t+∆t)/τ (i))β

]

if Bernoulli(P (i)) = 1
s(i) ← 1

end if
end if

VP = 1.8 V

1.4 V

1 V

0.6 V

NLS

Monte Carlo
5000 grains
100 grains

Figure 4.1. Polarization reversal simulation with NLS model (dashed red
lines) and Monte Carlo simulation with 5000 grains (black) are

indistinguishable. Monte Carlo simulations with 100 grains (gray) show
variation around the mean value (10 repetitions).
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Figure 4.1 shows Monte Carlo simulations of polarization reversal and the ana-

lytic polarization reversal computed with the NLS model with the same parameters

(Table 4.1). A Monte Carlo simulation with 5000 grains is indistinguishable from the

NLS model, whereas 10 runs with 100 grains show variability around the mean value.

Note that, as shown in Eq. (4.7), the switching probability has an accumulation

effect over time, even for a constant applied field. Therefore, the state of a grain is not

only determined by its polarization s(i) = ±1, but also depends on the accumulated

stimuli t/τ .

4.3 Monte Carlo simulation for arbitrary input waveforms

For an arbitrary field EFE(t), the time constant τ (i) is a function of time, so

the accumulated stimuli (previously computed as t/τ), is obtained by integrating the

instantaneous values of 1/τ . This accumulated stimuli is defined as history parameter

h(i)(t), which is computed as

h(i)(t) =

∫ t

to

dt′

τ
(
EFE(t′), E

(i)
a

) , (4.9)

where to indicates the moment at which the stimuli to switch the grain starts. The

switching rate is expressed as

r(i)(t) =
β

τ (i)(t)

(
h(i)(t)

)β−1
, (4.10)

which results in a switching probability

P (i)(tS < t+∆t|tS > t)= 1−exp
[(
h(i)(t)

)β−
(
h(i)(t+∆t)

)β]
. (4.11)

The Monte Carlo simulation is performed as outlined in Algorithm 2. After

instantiating a FE with N grains, the state of each grain is initialized by defining its
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Algorithm 2 General Monte Carlo simulation

Instantiate FE:
Define parameters {PS, β, α, τ∞}
Sample N activation fields E

(i)
a from g(E ′

a)
Initialization: for grains g(i), i ∈ (1, N)

s(i) ← 1 or s(i) ← −1
h(i) ← 0

Simulation: for timestep [t, t+∆t] and grains g(i), i ∈ (1, N)
if s(i)E(t) < 0

τ (i) ← τ∞exp
[(

E
(i)
a /|E(t)|

)α]

h
(i)
new ← h(i) +∆t/τ (i)

P (i) ← 1− exp
[
(h(i))β − (h

(i)
new)β

]

h(i) ← h
(i)
new

if Bernoulli(P (i)) = 1
Update s(i)

h(i) relaxation
end if

end if

polarization s(i) = ±1 and setting the history parameter to 0. Note that only a scalar

value h(i) is stored for each grain, and updated during the simulation. Given that

the FE switching can occur in both directions (i.e. from 1 to −1 or from −1 to 1),

it is first verified that a grain is not already aligned with the external field. For the

grains that are not aligned with the external field, the history parameter is updated

to compute the switching probability, which is evaluated as a Bernoulli trial and the

state of the grain is updated in case of success. Finally, the history parameter is

updated when a grain switches according to a given relaxation rule, which needs to

be determined. For a first approximation, two possible cases are evaluated: reset h(i)

to 0 after a grain has switched, or keep its current value.

The experimental protocol in Fig. 4.2(a) was applied to validate the Monte Carlo

simulation and evaluate the relaxation condition for h(i). Starting with the FE fully

polarized to the +PS state that has been resting for a minute, a double triangular

waveform is applied. The first pulse completely polarizes the FE to the −PS state,
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5 ms

Measured
Simulated

1

2

3

4

1 23 4

1 23 4

a)

b)

c)

Figure 4.2. a) Experimental protocol to measure P−V loops. A double
triangular waveform VA is applied: the first triangle produces a current due
to the linear capacitance and the polarization reversal. The displacement
current due to the linear capacitance alone is measured by the second

triangle, where there is no polarization current. A hold time TH is applied
between polarization pulses. Measured and simulated P−V loops with

b) 10 s hold time and c) 1 ms hold time.
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whereas the second pulse is used to measure and subtract the current due to the

dielectric response and leakage. After a hold time TH , a double triangular waveform

of opposite polarity is applied to polarize the FE to the +PS state. After another hold

time TH , the procedure is repeated. The measured polarization response is plotted

over the applied voltage in Fig. 4.2(b) with a 10 s hold time between pulses, which

shows that transitions 1 and 3 (from +PS to −PS) follow the same trajectories.

Likewise, transitions 2 and 4 (from −PS to +PS) also overlap. When the history

parameter is reset after a grain switches (i.e. h(i) = 0), the Monte Carlo simulation

closely matches the experiment, shown with red lines in Fig. 4.2(b). When the hold

time is reduced to 10 ms, a different behavior is observed. The first transition from

−PS to PS follows the same path as the case with a 10 s hold time, given that

the initial condition is the same. However, subsequent transitions occurs at a lower

voltage (earlier in time), as shown in Fig. 4.2(c). This apparent speed-up has been

observed in similar experiments, and could be related to the distribution of clusters

after a grain switches [103]. A simulation performed for the extreme case, where

h(i)(t) is not reset between transitions, produces a similar behavior (red lines in

Fig. 4.2(b)).

Having verified that the Monte Carlo model closely matches measurements of

saturated P−V loops, the model predictions were evaluated for minor loops. Fig-

ures 4.3(a) and (b) show experimental and simulated data taken with a triangular

waveform of varying amplitude. Under these conditions, the dielectric response is

not cancelled as in Fig. 4.2, so the total FE charge is modeled as

QFE(t) = PFE(t) + ϵFEE(t), (4.12)

where ϵFE is the permitivitty of the FE film. For this simulation, h(i)(t) was not

reset between transitions as in Fig. 4.2(c). The Monte Carlo simulation accurately
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Figure 4.3. Experimental validation of Monte Carlo simulation framework. a)

Measured and simulated polarization vs. time for an 8.3 nm HZO capacitor with

a triangular input waveform of varying amplitude. b) Measured and simulated

major and minor loops obtained from a) with detail of the transition between

minor loops and major loops.

predicts the behavior of the FE as it enters and exits the minor loops, as well as the

drifting of the minor loops with field cycling. Small differences between the measured

and simulated characteristics occur in part due to the assumption of a constant FE

capacitance, whereas the measured capacitance exhibits the well-known butterfly

shape [95].

4.4 Accumulation and relaxation of the history-dependent switching rate

Based on experimental results, it has been observed that resetting the history

parameter when a grain switches works well when a long resting period is applied

between pulses. For shorter resting periods or for periodic stimuli, not resetting h(t)

produces a close match with experimental measurements, although this extreme case

results in a continuously increasing rate that will slowly depart from experiments.

Therefore, a more general reset condition would be to set h(i) to a certain reset value

hS that represents the distribution of clusters immediately after a grain switches,
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which may be a function of the history parameter before switching and the grain

parameters. In addition, a relaxation rule for the history parameter could be in-

corporated when there is no applied field or when the grain is already aligned with

the external field. Such effects could be incorporated to the simulation as depicted

in Algorithm 3, although its functional form remains to be determined. Note that

other effects such as FE wake-up and fatigue shall not be modeled by the history

parameter, but by variations in the FE parameters and the distribution activation

fields.

The measurement protocol in Fig. 4.4 was applied to better understand the

timescale of the relaxation behavior. Starting with a FE fully polarized in the −PS

state, either a single pulse of varying width or a train of pulses with equivalent accu-

mulated pulsed time are applied. The width-modulated pulse ranges from 1 to 20 µs.

The train of pulses has a constant pulse width of 1 µs, with off time between pulses

tOFF of either 1 or 10 µs. Amplitudes of 1, 1.25 and 1.5 V are applied for both the

width-modulated pulse and the train of pulses.

The Monte Carlo simulation was implemented according to Algorithm 3, by ap-

plying a simple relaxation rule during the off time between pulses, defined as

h(i) ← h(i) × γ(tOFF ). (4.13)

By setting γ = 0.55 for a 1 µs off time between pulses, and γ = 0.3 for 10 µs off

time, the simulation closely matches the experiment for pulses of 1, 1.25 and 1.5 V

amplitude. It is proposed that further investigation of the dynamics of formation

and decomposition of clusters in the incubation period will lead to a direct relation

between the switching rate and the underlying distribution of clusters, in order to

define improved accumulation and relaxation equations.
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Algorithm 3 Monte Carlo simulation with proposed relaxation

Instantiate FE:
Define parameters {PS, β, α, τ∞}
Sample N activation fields E

(i)
a from g(E ′

a)
Initialization: for grains g(i), i ∈ (1, N)

s(i) ← 1 or s(i) ← −1
h(i) ← 0

Simulation: for timestep [t, t+∆t] and grains g(i), i ∈ (1, N)
if s(i)E(t) < 0

τ (i) ← τ∞exp
[(

E
(i)
a /|E(t)|

)α]

h
(i)
new ← h(i) +∆t/τ (i)

P (i) ← 1− exp
[
(h(i))β − (h

(i)
new)β

]

h(i) ← h
(i)
new

if Bernoulli(P (i)) = 1
Update s(i)

h(i) ← hS

end if
else

Relax h(i) // when s(i)E(t) ≥ 0
end if
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Figure 4.4. Measured (markers) and simulated (solid lines) polarization

obtained by pulse width modulation (diamonds) and a train of pulses (dots) with

equivalent accumulated time.



64

C
ha

rg
e 

Q
FE

D
E

[μ
C

/c
m

2 ]

Applied voltage [V]

L-K model Monte Carlo

Time [μs]

N
or

m
al

iz
ed

 p
ol

ar
iz

at
io

n 
[P

S]

4 V  5 μs

3 V  5 μs

4 V  2 μs

3 V  2 μs

CDE/CFE = 
5
2.5 
1

a) b)

8.3 nm
HZO

CDE/CFE = 2.5
1

5 8.3 nm
HZO

Figure 4.5. (a) Simulation of ferroelectric-dielectric P−V loops with L-K
model for single-grain FE and Monte Carlo simulation of polycrystalline
FE. (b) Monte Carlo simulation of polarization vs. time of a FE capacitor
and FE-DE structures with different dielectric capacitance, programmed

with square waveforms of amplitudes 3 and 4 V with 2 µs and 5 µs period.

4.5 Model predictions

Ferroelectric-dielectric (FE-DE) stacks are integral to many proposed FE devices,

in both memory and logic [56]. The Monte Carlo simulation framework was applied to

model these structures and understand the key differences between polycrystalline FE

films and a single-grain FE described by the Landau-Khalatnikov (L-K) model [98].

Figure 4.5(a) shows simulated P−V loops for an 8.3 nm HZO capacitor and a FE-

DE stack of an 8.3 nm HZO film and a series dielectric with different capacitance

ratios CDE/CFE. The P−V loops are simulated with a triangular waveform of 4 ms

period and 3 V amplitude. According to the L-K model, adding a series capacitor

results in a decreased switching voltage with an abrupt transition, suggesting that

the programming voltage of a FE-DE stack can be lower than that of a FE capacitor.

However, this behavior is not observed with a polycrystalline FE [104]. As shown

in the Monte Carlo simulation in Fig. 4.5(a), the switching starts at a lower voltage

due to the depolarizing field of the DE, but the transition is not abrupt. The depo-

larizing field of the DE aids switching only when the magnitude of FE polarization

is decreasing (i.e. from ±PS to 0), but opposes the switching when its magnitude
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Figure 4.6. Simulated device-to-device variations of 200 devices (black)
with 500, 100 and 20 grains for (a) 8 nm-thick FE and (b) FE-DE

capacitor with CDE = 8CFE. With 20 grains, the memory window of the
FE is reduced by 50% with respect to the mean value (red) for a 1.5 V
programming voltage, and is completely lost with 1.25 V. With the same
number of grains, the FE-DE requires a programming voltage above 1.5 V

to a obtain a memory window.

is increasing (i.e. from 0 to ±PS). Therefore, as the DE capacitance decreases (DE

thickness increases), fewer FE grains switch under the same programming conditions.

Figure 4.5(b) shows Monte Carlo simulations of the polarization vs. time for the same

FE and FE-DE capacitors when a square programming waveform is applied, with 2

and 5 µs period and amplitudes of 3 and 4 V. Irrespective of the pulse duration, the

FE-DE starts switching earlier than the FE, but takes a longer time to settle. As

the DE capacitance decreases, the switched polarization is reduced due to the effect

of the depolarizing field.

Finally, the Monte Carlo modeling approach allows for the investigation of the

effects of device-to-device variability due to the grains having a distribution of ac-

tivation fields. Figure 4.6(a) shows simulated device-to-device variations of an 8.3

nm FE capacitor initialized with 500, 100 and 20 grains, programmed with a square

waveform with 20 µs period. For each case, the simulation is repeated 200 times
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and plotted with black lines, whereas the red line shows the mean value of all sim-

ulations. With a 1.5 V programming amplitude, a 2PS memory window is obtained

for 500 grains, which is reduced by approximately 50% for 20 grains. For a 1.25 V

programming voltage, the memory window collapses with 20 grains. Figure 4.6(b)

shows device-to-device variations of a FE-DE stack with CDE = 8CFE under the same

conditions. In this case, a 1.5 V programming voltage produces a memory window

close to PS for 500 grains, which close to 0 with 20 grains. The programming voltage

needs to be increased to 2 V to obtain similar memory windows than a FE with 1.5 V

programming voltage.

It is important to emphasize that this is a model for polycrystalline FEs in a

nucleation-limited regime. A fundamental assumption of nucleation-limited models is

that the nucleation time dominates the polarization dynamics, whereas the transient

of domain growth within a grain is negligible and is considered to occur instanta-

neously. Therefore, this model cannot accurately describe the transient behaviour of

a single-grain FE.

4.6 Conclusion

A Monte Carlo simulation framework, capable of predicting the dynamic, history-

dependent response of a FE under arbitrary input waveforms was developed. After

a parameter extraction procedure from polarization reversal measurements, the pro-

posed model was used predict the polarization response of an HZO FE capacitor

under different experimental conditions with the same set of parameters. The model

was applied to characterize the dynamic response of FE-DE bilayer structures, show-

ing that the response of polycrystalline FE is significantly different than that of

single-grain FE. With this proposed model, the reduction in memory window due to

device variability was quantified, both for FE capacitors and FE-DE stacks. Finally,

an accumulation effect that leads to grain switching was studied and modeled for the
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first time by a history parameter. This effect is in agreement with classical nucle-

ation theory, and further theoretical and experimental study is suggested to establish

a direct relation between the history-dependent switching probability and the under-

lying distribution of clusters during the incubation period of domain nucleation. This

Monte Carlo simulation framework was presented at the 2018 International Electron

Devices Meeting [104].
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CHAPTER 5

PARALLEL WEIGHT UPDATE IN RESISTIVE CROSSBAR ARRAYS BY

LOCAL MODULATION OF PULSE WIDTH AND FREQUENCY

The parallel weight update operation proposed in [21] relies on the use of stochas-

tic multiplication to compute an approximated weight update locally at the memory

element. As described in Chapter 1, the weight update operation is computed as

wji ← wji − ηxiδj, (5.1)

where wji is the weight that connects the output from neuron i in layer L − 1 to

neuron j in layer L. In a resistive crossbar array implementation, wji corresponds to

the weight that connects row i to column j. For the weight update operation, the

inputs xi (from the rows) and δj (from the columns) are translated into stochastic

bit streams to perform a stochastic multiplication [21, 26]. When there is a pulse

coincidence, the weight is updated by a nominal value ∆w, resulting in the update

rule

N =

NBL∑

n=1

An
i ∧Bn

j

wji ← wji ±∆wN (5.2)

where N is the number of pulse coincidences, NBL is the length of the stochastic bit

stream, An
i and Bn

j are the values of the n-th bits, and ∧ is the logic AND operation.

It can be shown that the stochastic multiplication produces, on average, the same

result that direct multiplication [21]. However, this approach has significant noise
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that introduces errors in the weight updates. Combined with the limited resolution

achievable in a resistive weight element, the overall accuracy of DNN training can

be significantly impacted. In this chapter, an alternative approximate multiplica-

tion is proposed by using local modulation of pulse width and frequency to perform

an accurate, parallel weight update. A statistical analysis of both multiplication

mechanisms is presented, showing the superior accuracy of the proposed method. A

behavioral simulation of DNN training is presented to evaluate the impact of the dif-

ferent multiplication approaches as a function of the number of levels in the resistive

element.

5.1 Analysis of stochastic multiplication

Consider the diagram in Fig. 5.1, which represents the stochastic multiplication

of two positive factors x and δ. These factors are encoded as bit streams of length

NBL, where each bit has a probability of being asserted given by

x −→ P (Ak = 1) = CAx ≤ 1 (5.3)

δ −→ P (Bk = 1) = CBδ ≤ 1, (5.4)

where CA and CB are proportionality constants. Given that the probability cannot

exceed 1, values of CAx or CBδ larger than 1 are truncated. The number of pulse

coincidences N is computed as

N =

NBL∑

k=1

Ak ∧Bk, (5.5)

which is a sequence of NBL Bernoulli trials with probability P (Ak ∧Bk) = xδCACB.

This results in a binomial distribution B(NBL, p), where p = xδCACB. The mean
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Figure 5.1. Stochastic multiplication.

number of pulse coincidences N is given by

µN = NBLCACBxδ, (5.6)

which is proportional to the desired product γ = x× δ. Replacing the mean value in

Eq. (5.2),

wji ← wji ±∆wNBLCACBxδ, (5.7)

which results in a learning rate η = ∆wNBLCACB. The variance of the number of

pulse coincidences is given by

σ2
N = NBLCACBxδ (1− CACBxδ) . (5.8)

Considering pulses with period Tc and frequency fc = 1/Tc, the time required to

perform the stochastic multiplication is NBLTc.
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Figure 5.2. Rate-Width multiplication.

5.2 Multiplication by pulse width and frequency modulation

Consider now the diagram in Fig. 5.2, which represents the proposed multipli-

cation for weight update operation. One of the factors is encoded as a frequency

modulated signal

x −→ fs = xCAfc, (5.9)

where fc is the maximum frequency and CA is a proportionality constant. As in the

case of stochastic multiplication, values of xCA larger than 1 are truncated. The

other factor is encoded as a pulse-width-modulated signal

δ −→ Tp = δCBTmax, (5.10)

where Tmax is the maximum pulse width and CB is a proportionality constant. Values

of δCB are also truncated to 1. To impose the same timing constraints than in
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Figure 5.3. Phase difference between the frequency- and width-modulated
signals.

stochastic multiplication, Tmax = NBLTc.

To compute the number of pulse coincidences, consider the diagram in Fig. 5.3.

The time between the last falling edge of the frequency-modulated signal, and the

rising edge of the width-modulated signal is defined as tθ. Consider first the case

where tθ = 0. The number of pulse coincidences during Tp is given by

N = ⌊Tpfs⌋ = ⌊xδCACBfcTmax⌋ = ⌊xδCACBNBL⌋, (5.11)

where ⌊ ⌋ is the integer part, or floor, operation. The number of pulse coincidences

is proportional to the desired product, rounded down to an integer.

Consider now the general case where tθ is in the range [0, 1/fs). The number of

pulse coincidences is given by

N = ⌊(Tp + tθ)fs⌋ = ⌊xδCACBNBL + tθfs⌋ = ⌊xδCACBNBL + θ⌋, (5.12)

where θ is in the range [0, 1). For θ = 0.5, N is proportional to the desired product

rounded to the nearest integer. If the phases of both signals are not synchronized,

such that θ is a uniform random variable in the range [0, 1), N will be proportional
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the desired product with stochastic rounding [78]. The mean and variance are given

by

µN = xδCACBNBL (5.13)

σ2
N = ∆(1−∆), (5.14)

where ∆ = xδCACBNBL−⌊xδCACBNBL⌋. For example, 3.5 will be rounded up with

probability 0.5, whereas 3.2 will be rounded up with probability 0.2.

This multiplication mechanism can also be used as a stand-alone architecture

for DNN training or inference, as has been recently demonstrated [105, 106]. This

approach was also studied to implement a counter-based DNN and is presented in

Appendix C.

5.3 Comparison of stochastic and rate-width multiplication

5.3.1 Hardware resources

The stochastic multiplication is typically implemented in the digital domain by

a random number generator and a magnitude comparator [108, 109], as shown in

Fig. 5.4a). The random number generator is typically implemented by linear feedback

shift registers (LFSR) [108, 110], which require a sequence ofB registers with feedback

taps to generate pseudo-random numbers in the range [1, 2B−1] [109]. The magnitude

comparator is equivalent to a full adder of B bits [111].

The pulse width and frequency modulation can be implemented in several ways,

and two specific implementations that allow for a direct comparison with a stochastic

translator are presented. The pulse width modulation can be implemented by a sim-

ple counter, as shown in Fig. 5.4b). Therefore, the pulse width modulation requires

a similar hardware than the LFSR alone. The frequency modulation can be imple-

mented by the direct-digital frequency synthesizer (DDS) proposed in [107], shown
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Figure 5.4. Hardware implementations of a) stochastic translators, b) pulse
width modulation and c) frequency modulation. Figure reprinted from [107]

in Fig. 5.4c). The DDS is comprised of a full adder and a register of B bits. The

DDS output (the most significant bit of the register) is given by fclk = fREFx/2
B for

x in the range [0, 2B − 1] [107].

Therefore, the hardware required to implement both pulse width and frequency

modulation is comparable to that of a single stochastic translator. Furthermore,

pulse-width-modulated signals are also used in the forward and backpropagation

cycles in a resistive crossbar array [24], so no additional hardware is actually required

for its implementation.

5.3.2 Multiplication accuracy

To visually compare the different multiplication methods, a simulation was per-

formed by sampling 105 values for x and δ uniformly between 0 and 2. Values higher

than 1 are truncated to 1. The proportionality constants CA and CB are set to 1. The

number of pulse coincidences are computed for rate-width multiplication with aligned

phases (tθ = 0) and unsynchronized phases (θ U(0, 1)). For stochastic multiplication,

the number of pulse coincidences are drawn from a Binomial distribution with NBL

trials and probability xδ. Simulations were repeated for NBL = 10 and NBL = 20.

It is shown that rate-width multiplication with aligned phases rounds down, whereas
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Figure 5.5. Comparison of approximated multiplication methods for
x× δ = γ with CA = CB = 1. The y−axis shows γ̂ = N/NBL. Solid red
lines show the ideal case γ = γ̂. Cases with NBL = 10 for a) rate-width

multiplication with tθ = 0 (b) rate-width multiplication with
unsynchronized phases (c) stochastic multiplication. Cases with NBL = 20
for d) rate-width multiplication with tθ = 0 (e) rate-width multiplication

with unsynchronized phases (f) stochastic multiplication.

the case with random phases produces stochastic rounding. Stochastic multiplication

has a visibly larger variability, with its maximum at γ = 0.5.

5.4 Performance evaluation in a resistive crossbar array

Given that neural networks can be tolerant to noise, it is not guaranteed that a

lower-variance multiplication will improve the accuracy obtained after training. To

evaluate the impact of the proposed weight update scheme, a behavioral simulation

of neural network training was implemented in MATLAB. The simulation was im-

plemented using a fully-connected network with the MNIST dataset of handwritten

digits [68]. The network has 784 input neurons, hidden layers with size 256 and 128,

and an output layer with 10 elements for labels from 0 to 9. ReLU activations were
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Figure 5.6. DNN training with stochastic and rate-width multiplication.
a) Training for different values of the minimum weight update ∆wo as a
function of the number of bits. b) Test error for different values of the
minimum weight update ∆wo as a function of the number of bits. c)

Training and test error obtained by selecting the best value of ∆wo at each
resolution B
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used for hidden layers and softmax activation at the output.

The weight update is performed according to Eq. (5.2) for stochastic multiplica-

tion and rate-width multiplication with stochastic rounding, using NBL = 10 for both

cases. It is assumed that the weight elements increase/decrease linearly with a mini-

mum update ∆wo and saturate at values ±∆w2B−1, where 2B represents the number

levels. Figure 5.6 shows the training and test errors obtained after 30 training cycles

for different values of ∆wo as a function of the number of bits B. Figure 5.6c) shows

the best training and test errors obtained by selecting the best value of ∆wo at each

resolution B. It is shown that a DNN trained with rate-width achieves lower train

and test error than the equivalent network trained with stochastic multiplication.

The difference becomes larger as the resolution of the weights is reduced. Only for

resolutions above 7 bits, the test error is slightly lower for stochastic multiplication.

This effect is caused by the regularization effect of noise during training [112], but is

only useful when the training accuracy is not limited by the resolution of its weights.

5.5 Conclusion

An accurate scheme for parallel weight update in resistive crossbar arrays is

proposed and evaluated. By using pulse width- and frequency-modulated signals,

the value of resistive elements in a crossbar array can be updated in parallel with

higher accuracy than existing techniques based on stochastic multiplication. This

scheme produces an unbiased multiplication with stochastic rounding, which is op-

timal for training neural networks with limited resolution. Furthermore, the pulse

width and frequency modulation can be implemented with fewer hardware resources

than stochastic translators. It is shown that a DNN trained with rate-width multi-

plication achieves lower train and test error than the equivalent network trained with

stochastic multiplication.
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CHAPTER 6

EFFICIENT MAPPING OF NEURAL NETWORK MODELS TO RESISTIVE

CROSSBAR ARRAYS WITH LIMITED WEIGHT RESOLUTION

DNN accelerators based on multiplication performed in the analog domain us-

ing resistive elements can potentially reduce the time and energy consumption of

DNN training by orders of magnitude [21]. However, these implementations natu-

rally perform multiplication with nonnegative weights, given that the resistance can

only have positive values. The DNN simulations presented in Chapters 2 and 5 have

been performed with signed weight elements, which implicitly assumes that there is

a mechanism to map the nonnegative conductance to a signed value. In this chapter,

the mapping of DNN models to hardware with nonnegative weights is studied. To

analyze different mapping schemes, a general vector-matrix multiplication is decom-

posed into a vector-matrix multiplication with nonnegative elements performed in

a crossbar array, followed by a limited set of addition and subtraction operations

described by a connection matrix. The mathematical conditions for the existence of

such decomposition are derived and applied to fully connected and convolutional lay-

ers. Based on this analysis, an efficient mapping scheme is designed, which mitigates

the effect of weight nonlinearity and limited resolution without additional overhead.

6.1 Prior approaches to map DNN model to resistive crossbar arrays

There are two approaches typically used to map a DNN model to a reistive cross-

bar array. The first case, shown in Fig. 6.1a), uses two resistive elements to represent

each weight [18, 22, 28, 59, 114, 115]. With this approach, the output from two



79

Figure 6.1. Prior approaches to map DNN model to crossbar array. a)
Using two resistive elements to represent each weight. Figure reprinted
from [22]. b) Using a single column of resistive elements as reference.

Figure reprinted from [59]. c) General approach to implement a DNN with
nonnegative weights by using inhibitory neurons. Figure reprinted

from [113].
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columns of the crossbar array are subtracted to compute the signed weighted sum

of a single neuron, which results in roughly 2× area and power consumption of the

crossbar array. The second case, shown in Fig. 6.1b), uses a single bias column that is

fixed in the middle value of the resistive element [57, 59, 116]. The output from this

column is subtracted from to the output of all other columns to compute the signed

weighted sum of each neuron. In both cases, a vector-matrix multiplication with

nonnegative weights is performed in the crossbar array, followed by a combination

of the outputs from its columns to obtain an equivalent vector-matrix multiplication

with signed weights. In both cases it can be shown that an equivalent signed multi-

plication is obtained, and it is straightforward to map a DNN model to its hardware

equivalent.

A more general approach to implement a DNN with nonnegative weights is the

use of inhibitory neurons [113], as shown in Fig. 6.1c). In this case, an additional

set of neurons are computed from the input, which are then subtracted from the

output neurons to produce a signed weighted sum. This general approach provides

a wider range of combinations that can produce an equivalent signed multiplication,

although it is not straightforward to map a DNN model to its hardware equivalent.

More importantly, the double element and bias column approaches can be seen as

particular cases of inhibitory neurons.

This can be extended to decompose a signed vector-matrix multiplication into

a vector-matrix multiplication with nonnegative elements followed by a connection

matrix, which represents the combination of the outputs from columns of the crossbar

array. With this formulation, more efficient mapping schemes can be explored and

evaluated. The analysis is presented first for the case of matrix multiplication in fully

connected layers, and then extended to convolutional layers.
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Figure 6.2. Diagram of connection matrix decomposition. The original
fully-connected layer is decomposed as a sequence of a nonnegative layer
with weights M and ND elements, followed by a connection matrix S.

6.2 Connection matrix decomposition for fully-connected layers in a resistive cross-

bar array

A fully connected layer with NO elements receives an input X with dimensions

[NI , BS], where BS is the batch size and NI is the number of elements from the

previous layer, as shown in Fig. 6.2a). The output of the layer is computed as

Z = f (WX + b) , (6.1)

where Z has dimension [NO, BS], W is the weight matrix with dimensions [NO, NI ],

b is the bias vector, and f() represents the activation function of the layer.

To perform the multiplication with nonnegative weights only, the weight matrixW

is decomposed into a matrix with nonnegative elements M , followed by a connection

matrix S, as shown in Fig. 6.2b). For this purpose, a dummy layer Y with ND

elements is defined, so that

Y = MX

Z = f (SY + b) , (6.2)
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where M is a matrix of nonnegative elements with dimensions [ND, NI ] and S is a

connection matrix of dimensions [NO, ND].

From the algorithm perspective, it is necessary to find sufficient conditions for S

that guarantee that the decomposition exists, such that a model that was trained

with signed weights can be mapped to an implementation in a resistive crossbar

array. More importantly, this guarantees that a model trained with the connection

matrix decomposition has the equivalent capacity of the original model. From the

hardware perspective, it is desired that the connection matrix is “simple”, so it

does not introduce significant overhead. Furthermore, it is desirable to minimize the

number of weight elements in the resistive crossbar array required to represent the

equivalent signed matrix, which is determined by the size of the dummy layer.

6.2.1 Sufficient conditions for existence

It is sought to find sufficient conditions for a matrix S, such that any arbitrary

matrix W can be decomposed as

SM = W, M ≥ 0, (6.3)

where M ≥ 0 means that all elements of M are nonnegative. Considering W with

dimensions NO×NI , S has dimensions NO×ND andM has dimensions ND×NI . This

problem can be formulated independently for each column of W and M , expressed

as:

Smk = wk, m ≥ 0 (6.4)

where mk and wk are the k-est columns of M and W with k = 1..NI .

A necessary condition for the existence of a solution to Eq. (6.4) is that wk is in



83

the column space of S. This is true for any arbitrary wk if and only if

rank(S) = NO. (6.5)

This implies that the NO original neurons are computed from linearly independent

combinations of the ND neurons in the dummy layer. When ND = NO, there is a

unique solution to the system Smk = wk, but in general it is not guaranteed to be

nonnegative.

In addition to the necessary condition for the existence of a solution, a sufficient

condition for the existence of a nonnegative solution is that there exists a vector xh

in the null space of S with strictly positive elements. This condition guarantees that

any particular solution xp to the system Smk = wk can be shifted as x′
p = xp + αxh

to be nonnegative. The conditions are summarized as:

1. rank(S) = NO

2. There exists xh > 0 ∈ RND , such that Sxh = 0. (6.6)

If these conditions are met, any fully-connected layer with weights W can be

mapped to a connection matrix layer. Furthermore, a fully-connected can be trained

as a connection matrix layer in hardware with nonnegative weights. Once the layer

has been trained, the equivalent weight matrix is simply obtained as

W = SM. (6.7)

Finally, note that ND = rank(S)+nullity(S), and nullity(S) ≥ 1 given that there

is at least one element (xh) in the null space of S. Therefore, the dummy layer ND

has at least one extra element than the original layer NO, which results in one extra

column in the crossbar array. A particular case that satisfies condition 2 is xh = 1,
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which implies that the elements of the rows of S add up to 0. Therefore, a solution

is guaranteed if the original neurons are computed by a balanced combination of

inhibitory (negative) and excitatory (positive) inputs from the dummy layer.

6.2.2 Implementation in a crossbar array

The connection matrix defines how the neurons from the dummy layer are com-

bined as an input to the original neurons, which can be seen as a generalization of

previous architectures, as depicted in Fig. 6.3. The original layer (Fig. 6.3a) can be

implemented by using two weight elements to compute each of the original weights,

represented by a connection matrix as shown in Fig. 6.3b, where ND = 2NO. As an

alternative, the bias column approach can also be mapped to a connection matrix

as shown in Fig. 6.3c) where ND = NO + 1 . In both cases, the connection matrix

represents only addition and subtraction operations (i.e. with only −1, 0 and +1

elements), so condition 2 is satisfied given that every neuron receives an even number

of positive and negative inputs.

The crossbar array implementation for both approaches in shown in Fig. 6.4. The

outputs of the columns are combined by addition operations (top) described by the

connection matrix S (bottom). Note that the connection matrix defines a small set of

subtraction operations, whereas most of its elements are zeros. Although the dummy

layer Y is defined for the purpose of the analysis, it is not implemented in hardware as

an additional crossbar array, given that the elements from the columns are combined

by simple adders after the crossbar array. Moreover, the intermediate tensor Y needs

not be stored after the forward propagation cycle, given that there is no activation in

the dummy layer and the connection matrix is not updated during training. During

back-propagation, the gradients are simply propagated to the corresponding columns

of the crossbar array.

It is straightforward to see that both the double element and bias column ap-
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Figure 6.3. Diagram of connection matrix representation of prior
approaches. a) Original layer. b) Double element implementation

represented by a connection matrix with ND = 2NO. c) Bias column
implementation represented by a connection matrix with ND = NO + 1.

proaches satisfy the conditions stated in Eq. (6.6) and a single addition is com-

puted for each of the original neurons. However, the double element approach has

ND = 2NO columns, whereas the bias column has the minimum number of columns,

ND = NO + 1. Therefore, in terms of the number of resistive elements and the over-

head of the connection matrix, the bias column approach uses the minimum hardware

resources. However, if the conductance values are limited in the range M = [0, Gmax],

the weights of the bias column will be in the range W = [−Gmax/2, Gmax/2], given

that the bias column is fixed to Gmax/2. For the double element approach, the range

of weights will be [−Gmax, Gmax] at the expense of using twice as many weight ele-

ments. In addition, computing the weights by the difference of adjacent elements is

expected to result in a better tolerance to device nonlinearity and process variations.

A connection matrix is proposed based on these considerations, which computes

the original neurons as a combination of adjacent columns with alternating signs as
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ND = NO + 1 ColumnsND = NO + 1 ColumnsND = 2NO Columns

NO OutputsNO OutputsNO Outputs

c) Adjacent Connection Matrixa) Double Element b) Bias Column

S = 

1 −1 0
0 				0 1
0 				0 0

⋯
				0 0 				0
				0 0 				0
				0 0 				0

				⋮ ⋱ ⋮
0 				0 0
0 				0 0
0 				0 0

⋯
				0 0 				0
−1 0 				0
				0 1 −1

S = 

1 0 0
0 1 0
0 0 1

⋯
0 0 −1
0 0 −1
0 0 −1

⋮ ⋱ ⋮
0 0 0
0 0 0
0 0 0

⋯
0 0 −1
1 0 −1
0 1 −1

S = 

1 −1 				0
0 				1 −1
0 				0 				1

⋯
				0 				0 				0
				0 				0 				0
				0 				0 				0

⋮ ⋱ 			⋮
0 			0 				0
0 			0 				0
0 			0 				0

⋯
−1 			0 			0
				1 −1 			0
				0 			1 −1

Figure 6.4. Crossbar implementation of a) double element, b) bias column
and c) adjacent connection matrix.

shown in Fig. 6.4c), which will be referred to as Adjacent Connection Matrix (ACM).

As opposed to the double element case, the dummy layer has ND = NO +1 elements

to use the minimum amount of resistive elements, so each column in the crossbar

arrays is used for more than one of the original neurons. The hardware complexity

due to the subtractions is the same as in the bias column case, with the difference

that adjacent columns are subtracted instead of having a single reference column

subtracted from all other columns in the array. As will be shown in Section 6.4,

the three cases produce equivalent results when trained without any constraint in

the resolution of the resistive elements, given that all cases satisfy the conditions

in Eq. (6.6). The advantages of the proposed approach will become apparent in

Section 6.5, where limited resolution and nonlinearity restrictions are applied during

training.
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Figure 6.5. Convolutional layer implemented as a sequence of matrix
multiplications. Each kernel is mapped to a row vector of dimensions K2C,

which results in a matrix with D rows of kernels. The input image is
partitioned into slices of dimensions K ×K × C, which correspond to one
step of the spatial convolution. The N = H ×W slices are transformed into
a vector of size K2C and sequentially multiplied to the matrix of kernels.
The output is finally reshaped to H ×W ×D. Figure reprinted from [4]

6.3 Connection Matrix decomposition applied to convolutional layers

In convolutional layers, typically used for image recognition, a set of filters are

applied to an input image to capture spatial information that is otherwise lost in

fully-connected layers. A brief introduction of convolutional neural networks can be

found in [3, 10], whereas a detailed treatment can be found in [6]. Consider an image

of dimensions H×W×C, where H is the height, W is the width and C is the number

of channels. A filter, also called kernel, of dimensions K × K × C is applied by a

2-dimensional convolution across the height and width of the image, producing an

output feature map of dimensions H ×W × 1 (it is assumed that padding is used at

the edges of the image for simplicity). By applying D filters, an output of dimensions

H×W×D is obtained. The parameters of the layer correspond to the K×K×C×D

elements of the filters, in addition to the biases (H ×W × D, one for each output

neuron).
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A convolutional layer with D kernels can be implemented as a sequence of matrix

multiplications as shown in Fig. 6.5, with a procedure called im2col [4]. Each kernel

is mapped to a row vector of dimensions K2C, which results in a matrix with D

rows of kernels. The input image is partitioned into slices of dimensions K ×K ×C,

which correspond to one step of the spatial convolution. The N = H ×W slices are

transformed into vectors of size K2C and sequentially multiplied by the matrix of

kernels. The output is finally reshaped to H ×W ×D.

Once the convolution has been mapped to a matrix multiplication, it can be

implemented and trained in a crossbar array [24]. Furthermore, the conditions in

Eq. (6.6) can be directly applied to map the vector-matrix multiplications obtained

with im2col approach to a multiplication with nonnegative elements followed by a

connection matrix, as shown in Fig. 6.6. The matrix of kernels is mapped to a crossbar

array with K2C rows and D + 1 columns followed by a connection matrix to per-

form an equivalent matrix multiplication. Therefore, the hardware implementation

is equivalent to that of a fully-connected layer. Finally, this sequence of operations is

equivalent to applying D + 1 kernels with nonnegative weights, followed by D filters

of size 1×1×D+1. Each of these filters is defined by a row of the connection matrix.

This abstraction will be useful to simulate the behavior of the connection matrix in

convolutional layers.

6.4 Experimental validation with MNIST and CIFAR-10 datasets

To evaluate the proposed connection matrix and validate the theoretical analysis,

a set of simulations were implemented using the Keras [117] open-source framework.

Different networks were tested with the MNIST [68] and CIFAR-10 [118] datasets

for image recognition. The networks that were evaluated are described in Table 6.1.

Max pooling and dropout [112] are standard layers in convolutional networks, but

their details are not essential for the implementation of the connection matrix. An
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Figure 6.6. Connetion matrix decomposition applied to a convolutional
layer. a) Original convolutional filters. b) Convolutional filters mapped to a

weigh matrix with the im2col approach to implement convolution as
vector-matrix multiplication. c) Weight matrix implemented with

connection matrix decomposition and nonnegative filters F ′. d) Mapped
back to convolutional domain, the connection matrix decomposition is

equivalent to D + 1 nonnegative filters followed by 1× 1×D + 1
convolutions defined by the rows of the connection matrix.
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TABLE 6.1

STRUCTURE OF DNNS USED FOR VALIDATION

interested reader is referred to [6].

Keras is a modular, high-level library for Tensorflow [119], Google’s deep learning

platform. Keras has a set of defined layers, among them convolutional and fully

connected layers. In simple terms, a DNN model in Keras is defined by specifying

an input size, a sequence of layers and a loss function associated with the output

layer. The training is handled by an optimizer, which computes the error from

labelled training data, backpropagates the gradients and updates the weights. The

parameters in a Keras layer are associated with an initializer object, which specifies

the initial conditions of the parameters. In addition, a constraint object can be

associated with the parameters.

The connection matrix is implemented in Keras as shown in Fig. 6.7. Consider

a layer from a model with signed weights, which will be referred to as baseline.
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Figure 6.7. Keras implementation of connection matrix. A layer from the
baseline model is implemented by a nonnegative layer followed by a

connection matrix.

This layer can be either fully-connected or convolutional, and has an initialization

object but no constraints. The connection matrix equivalent is defined as two layers.

The first layer is of the same type, but with ND outputs and nonnegative weights

implemented by a constraint object. The second layer has non-trainable weights

corresponding to the connection matrix for a fully-connected layer, or a 1× 1×ND

convolution for a convolutional layer. The biases and activations are applied at the

second layer. Unless otherwise specified, the models were trained with stochastic

gradient descent with a batch size of 128 images.

In this section, the networks are trained with floating point precision to validate

that the different approaches produce equivalent results. The effect of limited weight

resolution and nonliniearity will be analyzed in the following section. Four cases are

evaluated:

1. Baseline model: original network trained with signed weights.

2. Double element (DE): network implemented with the connection matrix defined
in Fig. 6.4a).
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3. Bias column (BC): network implemented with the connection matrix defined in
Fig. 6.4b).

4. Adjacent connection matrix (ACM): network implemented with the proposed con-
nection matrix, defined in Fig. 6.4c).

Unless otherwise specified, the weights are initialized by sampling from a normal

distribution with zero mean according to He normal initialization [120]. For the

nonnegative layer, the weights are initialized with the same variance, but centered

around a positive value, so the left-side of the distribution is not truncated. When

the weight resolution is restricted, the weights are initialized around the middle value

of their range. For the simulations presented in this section, the weight resolution is

not limited, so the weights are initialized around 10, an arbitrary value that has no

effect on the simulation results.

Figure 6.8 shows the training and test errors of the fully-connected network in Ta-

ble 6.1a) for two different learning rates. Figure 6.8 shows the training and test errors

of the convolutional network in Table 6.1b) with and without dropout. It is shown

that all models trained with the connection matrix decomposition are equivalent to

the baseline model trained with signed weights.

The network in Table 6.1c) was trained with the CIFAR-10 dataset for the base-

line and ACM models under different conditions. Figure 6.10a) shows the training

without dropout, whereas Figure 6.10b) shows the training with dropout rates of

0.25, 0.25 and 0.5 for dropout 1, dropout 2 and dropout 3. Figure 6.10c) shows

the training results with data augmentation [121], where the training images are

randomly shifted horizontally and vertically by ± 10% to improve generalization.

Finally, Figure 6.10d) shows the training results with both data augmentation and

dropout. These experiments show that a network trained with the connection matrix

decomposition produces equivalent results than the baseline models. Furthermore,

the training and test errors follow similar trajectories as a function of the number of

epochs. This is consistently observed for different networks and training conditions
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Figure 6.8. Fully-connected network for MNIST dataset trained with signed
weights (baseline), adjacent connection matrix (ACM), double element

(DE) and bias column (BC) for learning rates of a) 0.1 and b) 0.3. Training
error is shown with dashed lines and test error is shown in solid lines.

Figure 6.9. Convolutional network for MNIST dataset trained with signed
weights (baseline), adjacent connection matrix (ACM), double element
(DE) and bias column (BC). Training was performed with a 0.1 learning
rate and a) no dropout or b) dropout with rates of 0.25 in dropout 1 and
0.5 in dropout 2. Training error is shown with dashed lines and test error is

shown in solid lines.
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Figure 6.10. Convolutional network for CIFAR-10 dataset trained with
signed weights (baseline) and adjacent connection matrix (ACM). Training
was performed with a) no dropout, b) dropout with rates of 0.25, 0.25 and
0.5, c) data augmentation and d) data augmentation and dropout with

rates of 0.1, 0.1 and 0.2. Training error is shown with dashed lines and test
error is shown in solid lines.
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for two datasets, which validates the proposed connection matrix decomposition and

the conditions derived in Eq. (6.6).

6.5 Evaluation with limited weight resolution and nonlinearity

After validating the connection matrix approach and verifying that it produces

equivalent results as the baseline model, the effect of limited weight precision for the

different mapping schemes is studied. The simulations were implemented in Keras

by a custom constraint object that receives the gradients computed by the optimizer

∆IDEAL, and performs a constrained weight update operation. Two quantized weight

updates were evaluated. The first case is a quantized weight element with linear and

symmetric weight updates, defined by the expressions

∆Q ← w0 × Round {∆IDEAL/w0} (6.8)

w ← w +∆Q (6.9)

w ← Clip
{
w : min = 0,max = w02

B
}
, (6.10)

where ∆Q is the quantized gradient, w0 is the minimum weight step and B is the

number of bits. The Round{} function produces either rounding to the nearest integer

or stochastic rounding. The Clip{} function limits the weight value to the specified

min and max values. The second case is a nonlinear weight element defined by the

weight update operations

∆Q ← w0 × Round {∆IDEAL/w0} (6.11)

w ← w +∆Q

(
1− w

w02B

)
(6.12)

w ← Clip
{
w : min = 0,max = w02

B
}
, (6.13)
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which produces a nonlinear weight update with symmetric increase/decrease steps,

similar to the requirements outlined in [122] and some RPU demonstrations [54, 63,

123].

Figure 6.11 and Figure 6.12 show the training results for the fully connected

network in Table 6.1a) and the convolutional network in Table 6.1b), respectively.

The test and training errors are shown as a function of the number of bits B for

the quantized and nonlinear weight updates. For the quantized training without

stochastic rounding, the error of the double element case is equivalent to the error

of the bias column shifted by 1 bit. This is expected, given that the double element

basically has twice the number of elements, which results in an extra bit of resolution.

The error in the adjacent connection matrix is in-between the bias column and the

double element, while using the same hardware resources than the bias column. When

stochastic rounding is applied, the differences become smaller, but follow the same

trends. For the case of nonlinear training, the differences between the double element

and bias column become larger than 1 bit. Due to the nonlinear weight update,

the weights tend not to be around their middle value, so subtracting the fixed bias

column results in a larger performance degradation than combining trainable adjacent

elements. As before, the error of the adjacent connection matrix is in-between the

error of double element and bias column schemes. However, when stochastic rounding

is applied, the performance gain of the adjacent connection matrix with respect to

the bias column becomes more significant. These results show that the adjacent

connection matrix achieves better accuracy than the bias column in every case, while

using the same hardware resources. The largest difference is obtained for nonlinear

weights with stochastic rounding, with a gain of up to 2 bits for the convolutional

network.
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Figure 6.11. Classification error of fully-connected network trained with the
MNIST dataset with quantized and nonlienar weights. Training error is

shown with dashed lines and test error is shown in solid lines.
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Figure 6.12. Classification error of convolutional network trained with the
MNIST dataset with quantized and nonlienar weights. Training error is

shown with dashed lines and test error is shown in solid lines.
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6.6 Conclusion

A mathematical framework to analyze the mapping of neural network layers to

implementations with nonnegative weights was developed. By decomposing a general

vector-matrix multiplication into a vector-matrix multiplication with nonnegative el-

ements followed by a limited set of addition and subtraction operations described by

a connection matrix, mapping schemes were evaluated and compared. The mathe-

matical conditions for the existence of such decomposition were derived and applied

to fully connected and convolutional layers implemented in resistive crossbar arrays.

Based on this analysis, it was determined that a crossbar array requires a minimum of

one additional column to represent an equivalent signed matrix multiplication, which

can be achieved with one subtraction operation for each neuron. Finally, a connec-

tion matrix that mitigates the effect of reduced weight resolution and nonlinearity

while using minimum resources was proposed. Experimental results were presented

by training different networks with MNIST and CIFAR-10 datasets to validate the

connection matrix decomposition. Finally, training experiments with limited resolu-

tion and nonlinearity were presented, showing that the adjacent connection matrix

effectively mitigates the effect of weight nonidealities without hardware overhead.



100

CHAPTER 7

CONCLUSION

In this thesis, the challenges of implementing DNN training accelerators with

resistive crossbar arrays were addressed in two ways. First, a ferroelectric-based

memory was proposed and a model to design and optimize multilevel memories based

on ferroelectric materials was developed. Second, an architecture to mitigate the

effect of weight nonidealities and improve the accuracy of the parallel weight update

operation was designed.

The first approach to this problem was to investigate the use of ferroelectrics for

multilevel memory storage. The polarization of ferroelectric PZT and HZO capaci-

tors was studied, showing that they can be partially polarized with pulses down to

nanosecond scales. These results were the first measurements of partial polarization

of FE HZO for multilevel memory storage and were presented at the 2017 Device

Research Conference [73]. The polarization response shows a highly nonlinear volt-

age dependence, which enables the use of stochastic multiplication for parallel weight

update in resistive crossbar arrays. A neural network for classification of handwrit-

ten digits was simulated to provide a performance evaluation, showing the trade-off

between accuracy and dynamic range. These findings led to a patent application on a

two-terminal multilevel memory for crossbar arrays proposed to access and program

the FE memory state.

After identifying ferroelectrics as a promising material for multilevel memory ap-

plications, the polarization reversal dynamics of polycrystalline HZO was character-

ized and modeled. The results show that the field-dependent NLS model provides a
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comprehensive description of the polarization reversal for varying pulse amplitudes

and pulse width spanning over 5 decades. The extracted probability distribution

characterizes the activation field variations in the FE film, and a minimum switching

time constant of 100 ns was obtained for the deposition conditions and electrodes

that were measured. This characterization framework provides the tools to quantify,

compare and optimize the switching dynamics and the nonlinear response of HZO

films. These results were published in IEEE Electron Device Letters in November

2018 [95].

Based on the parameters obtained from polarization reversal, a Monte Carlo sim-

ulation framework, capable of predicting the dynamic, history-dependent response

of a FE under arbitrary input waveforms was developed. This framweork was pre-

sented at the 2018 International Electron Devices Meeting and a manuscript has

been submitted to IEEE Transactions on Electron Devices. It was shown that after

a well-defined parameter extraction procedure, the proposed model can predict the

polarization response of an HZO ferroelectric capacitor under different experimental

conditions with the same set of parameters. The model was applied to character-

ize the dynamic response of FE-DE bilayer structures, showing that the response

of polycrystalline FE is significantly different than that of single-grain FE. With

this proposed model, the reduction in memory window due to device variability was

quantified, both for FE capacitors and FE-DE stacks. Finally, an accumulation ef-

fect that leads to grain switching was studied and modeled for the first time by a

history parameter. This effect is in agreement with classical nucleation theory, and

further theoretical and experimental study is suggested to establish a direct relation

between the history-dependent switching probability and the underlying distribution

of clusters during the incubation period of domain nucleation.

From the architecture perspective, an accurate scheme for parallel weight update

in resistive crossbar arrays was proposed and evaluated. By using pulse width- and
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frequency-modulated signals, the value of resistive elements in a crossbar array can be

updated in parallel with higher accuracy than existing techniques based on stochas-

tic multiplication. This scheme produces an unbiased multiplication with stochastic

rounding, which is optimal for training neural networks with limited resolution. Fur-

thermore, the pulse width and frequency modulation can be implemented with fewer

hardware resources than stochastic translators. It was shown that a DNN trained

with rate-width multiplication achieves lower train and test error than the equivalent

network trained with stochastic multiplication.

Finally, a mathematical framework to analyze the mapping of neural network

layers to implementations with nonnegative weights was developed. By decomposing

a general vector-matrix multiplication into a vector-matrix multiplication with non-

negative elements followed by a limited set of addition and subtraction operations

described by a connection matrix, different mapping schemes can be evaluated and

compared. The mathematical conditions for the existence of such decomposition were

derived and applied to analyze fully connected and convolutional layers implemented

in resistive crossbar arrays. Based on this analysis, it was determined that a crossbar

array requires a minimum of one additional column to represent an equivalent signed

matrix multiplication, which can be achieved with one subtraction operation for each

neuron. A connection matrix that mitigates the effect of reduced weight resolution

and nonlinearity was proposed and experimental results were presented to validate

the connection matrix decomposition by training different networks with MNIST and

CIFAR-10 datasets. Finally, training experiments with limited resolution and non-

linearity showed that the adjacent connection matrix effectively mitigates the impact

of weight nonidealities without hardware overhead.

Overall, this thesis work has been driven by a comprehensive understanding of the

application domain and the interaction between devices, circuits and architectures.

This allowed me to identify, characterize and model a promising material system for
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multilevel memory storage and design the architecture based on the characteristics

and limitations of the memory devices. Furthermore, the model that I developed will

benefit several applications for ferroelectrics that are currently being studied, which

also require accurate and predictive models for circuit design.



104

BIBLIOGRAPHY

1. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.
7553, pp. 436–444, 05 2015. [Online]. Available: http://dx.doi.org/10.1038/
nature14539

2. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 10 1986.
[Online]. Available: http://dx.doi.org/10.1038/323533a0

3. B. Reagen, R. Adolf, P. Whatmough, G.-Y. Wei, and D. Brooks,
“Deep learning for computer architects,” Synthesis Lectures on Computer
Architecture, vol. 12, no. 4, pp. 1–123, 2017. [Online]. Available:
https://doi.org/10.2200/S00783ED1V01Y201706CAC041

4. F.-F. Li, A. Karpathy, and J. Johnson. Stanford CS class CS231n: Convolutional
neural networks for visual recognition. [online] http://cs231n.stanford.edu/.

5. M. Minsky and S. Papert, Perceptrons: An Introduction to Computational Ge-
ometry. The MIT Press, 1969.

6. I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

7. M. A. Nielsen, Neural Networks and Deep Learning. Determination Press, 2015.

8. N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami,
R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu,
R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan,
D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary,
Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang,
E. Wilcox, and D. H. Yoon, “In-datacenter performance analysis of a tensor
processing unit,” SIGARCH Comput. Archit. News, vol. 45, no. 2, pp. 1–12,
Jun. 2017. [Online]. Available: http://doi.acm.org/10.1145/3140659.3080246

http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/323533a0
https://doi.org/10.2200/S00783ED1V01Y201706CAC041
http://doi.acm.org/10.1145/3140659.3080246


105

9. X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi, “Scaling for
edge inference of deep neural networks,” Nature Electronics, vol. 1, no. 4, pp.
216–222, 2018. [Online]. Available: https://doi.org/10.1038/s41928-018-0059-3

10. V. Sze, Y. H. Chen, T. J. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105,
no. 12, pp. 2295–2329, Dec 2017.

11. S. Mittal and J. S. Vetter, “A survey of methods for analyzing and improving
GPU energy efficiency,” ACM Comput. Surv., vol. 47, no. 2, pp. 19:1–19:23,
Aug. 2014. [Online]. Available: http://doi.acm.org/10.1145/2636342

12. V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learn-
ing,” ArXiv e-prints, Mar. 2016.

13. M. Verhelst and B. Moons, “Embedded deep neural network processing: Algo-
rithmic and processor techniques bring deep learning to iot and edge devices,”
IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 55–65, Fall 2017.

14. J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach, 5th ed., ser. The Morgan Kaufmann Series in Computer Architecture
and Design. Morgan Kaufmann, 2011.

15. S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning
with limited numerical precision,” in Proceedings of the 32Nd International
Conference on International Conference on Machine Learning - Volume
37, ser. ICML’15. JMLR.org, 2015, pp. 1737–1746. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3045118.3045303

16. P. Merolla, R. Appuswamy, J. V. Arthur, S. K. Esser, and D. S.
Modha, “Deep neural networks are robust to weight binarization and other
non-linear distortions,” CoRR, vol. abs/1606.01981, 2016. [Online]. Available:
http://arxiv.org/abs/1606.01981

17. Y. H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks,” in 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA), June 2016,
pp. 367–379.

18. A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan,
M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A convolutional neu-
ral network accelerator with in-situ analog arithmetic in crossbars,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA), June 2016, pp. 14–26.

19. J. Hasler and H. Marr, “Finding a roadmap to achieve large neuromorphic
hardware systems,” Frontiers in Neuroscience, vol. 7, p. 118, 2013. [Online].
Available: https://www.frontiersin.org/article/10.3389/fnins.2013.00118

https://doi.org/10.1038/s41928-018-0059-3
http://doi.acm.org/10.1145/2636342
http://dl.acm.org/citation.cfm?id=3045118.3045303
http://arxiv.org/abs/1606.01981
https://www.frontiersin.org/article/10.3389/fnins.2013.00118


106

20. G. W. Burr, P. Narayanan, R. M. Shelby, S. Sidler, I. Boybat, C. di Nolfo,
and Y. Leblebici, “Large-scale neural networks implemented with non-volatile
memory as the synaptic weight element: Comparative performance analysis
(accuracy, speed, and power),” in 2015 IEEE International Electron Devices
Meeting (IEDM), Dec 2015, pp. 4.4.1–4.4.4.

21. T. Gokmen and Y. Vlasov, “Acceleration of deep neural network
training with resistive cross-point devices: Design considerations,” Frontiers
in Neuroscience, vol. 10, p. 333, 2016. [Online]. Available: http:
//journal.frontiersin.org/article/10.3389/fnins.2016.00333

22. P. Narayanan, L. L. Sanches, A. Fumarola, R. M. Shelby, S. Ambrogio, J. Jang,
H. Hwang, Y. Leblebici, and G. W. Burr, “Reducing circuit design complex-
ity for neuromorphic machine learning systems based on non-volatile memory
arrays,” in 2017 IEEE International Symposium on Circuits and Systems (IS-
CAS), May 2017, pp. 1–4.

23. S. Yu, “Neuro-inspired computing with emerging nonvolatile memorys,” Pro-
ceedings of the IEEE, vol. 106, no. 2, pp. 260–285, Feb 2018.

24. T. Gokmen, M. Onen, and W. Haensch, “Training deep convolutional neural
networks with resistive cross-point devices,” Frontiers in Neuroscience, vol. 11,
p. 538, 2017. [Online]. Available: https://www.frontiersin.org/article/10.3389/
fnins.2017.00538

25. T. Gokmen, M. J. Rasch, and W. Haensch, “Training LSTM networks with
resistive cross-point devices,” Frontiers in Neuroscience, vol. 12, p. 745,
2018. [Online]. Available: https://www.frontiersin.org/article/10.3389/fnins.
2018.00745

26. C. Merkel and D. Kudithipudi, “A stochastic learning algorithm for neuromem-
ristive systems,” in 2014 27th IEEE International System-on-Chip Conference
(SOCC), Sept 2014, pp. 359–364.

27. M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W. Linderman, “Memristor
crossbar-based neuromorphic computing system: A case study,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 25, no. 10, pp. 1864–1878,
Oct 2014.

28. G. W. Burr, R. M. Shelby, S. Sidler, C. di Nolfo, J. Jang, I. Boybat, R. S. Shenoy,
P. Narayanan, K. Virwani, E. U. Giacometti, B. N. Kurdi, and H. Hwang,
“Experimental demonstration and tolerancing of a large-scale neural network
(165 000 synapses) using phase-change memory as the synaptic weight element,”
IEEE Transactions on Electron Devices, vol. 62, no. 11, pp. 3498–3507, Nov
2015.

29. S. Agarwal, S. J. Plimpton, D. R. Hughart, A. H. Hsia, I. Richter, J. A. Cox,
C. D. James, and M. J. Marinella, “Resistive memory device requirements for a

http://journal.frontiersin.org/article/10.3389/fnins.2016.00333
http://journal.frontiersin.org/article/10.3389/fnins.2016.00333
https://www.frontiersin.org/article/10.3389/fnins.2017.00538
https://www.frontiersin.org/article/10.3389/fnins.2017.00538
https://www.frontiersin.org/article/10.3389/fnins.2018.00745
https://www.frontiersin.org/article/10.3389/fnins.2018.00745


107

neural algorithm accelerator,” in 2016 International Joint Conference on Neural
Networks (IJCNN), July 2016, pp. 929–938.

30. B. L. Jackson, B. Rajendran, G. S. Corrado, M. Breitwisch, G. W. Burr,
R. Cheek, K. Gopalakrishnan, S. Raoux, C. T. Rettner, A. Padilla, A. G.
Schrott, R. S. Shenoy, B. N. Kurdi, C. H. Lam, and D. S. Modha,
“Nanoscale electronic synapses using phase change devices,” J. Emerg. Technol.
Comput. Syst., vol. 9, no. 2, pp. 12:1–12:20, May 2013. [Online]. Available:
http://doi.acm.org/10.1145/2463585.2463588

31. D. Kuzum, S. Yu, and H.-S. P. Wong, “Synaptic electronics: materials, devices
and applications,” Nanotechnology, vol. 24, no. 38, p. 382001, 2013. [Online].
Available: http://stacks.iop.org/0957-4484/24/i=38/a=382001

32. G. W. Burr, R. M. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani,
M. Ishii, P. Narayanan, A. Fumarola, L. L. Sanches, I. Boybat, M. L. Gallo,
K. Moon, J. Woo, H. Hwang, and Y. Leblebici, “Neuromorphic computing
using non-volatile memory,” Advances in Physics: X, vol. 2, no. 1, pp. 89–124,
2017. [Online]. Available: http://dx.doi.org/10.1080/23746149.2016.1259585

33. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing
memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, 05 2008. [Online].
Available: http://dx.doi.org/10.1038/nature06932

34. H. . P. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu, P. Chen, B. Lee, F. T. Chen,
and M. Tsai, “Metal–oxide RRAM,” Proceedings of the IEEE, vol. 100, no. 6,
pp. 1951–1970, June 2012.

35. Z. Xu, A. Mohanty, P.-Y. Chen, D. Kadetotad, B. Lin, J. Ye, S. Vrudhula,
S. Yu, J. sun Seo, and Y. Cao, “Parallel programming of resistive
cross-point array for synaptic plasticity,” Procedia Computer Science,
vol. 41, pp. 126 – 133, 2014, 5th Annual International Conference on
Biologically Inspired Cognitive Architectures, 2014 BICA. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050914015397

36. J. Shen, J. Cong, D. Shang, Y. Chai, S. Shen, K. Zhai, and Y. Sun, “A
multilevel nonvolatile magnetoelectric memory,” Scientific Reports, vol. 6, pp.
34 473 EP –, 09 2016. [Online]. Available: http://dx.doi.org/10.1038/srep34473

37. B. Rajendran and F. Alibart, “Neuromorphic computing based on emerging
memory technologies,” IEEE Journal on Emerging and Selected Topics in Cir-
cuits and Systems, vol. 6, no. 2, pp. 198–211, June 2016.

38. Y. van de Burgt, E. Lubberman, E. J. Fuller, S. T. Keene, G. C.
Faria, S. Agarwal, M. J. Marinella, A. Alec Talin, and A. Salleo, “A
non-volatile organic electrochemical device as a low-voltage artificial synapse
for neuromorphic computing,” Nat Mater, vol. 16, no. 4, pp. 414–418, 04 2017.
[Online]. Available: http://dx.doi.org/10.1038/nmat4856

http://doi.acm.org/10.1145/2463585.2463588
http://stacks.iop.org/0957-4484/24/i=38/a=382001
http://dx.doi.org/10.1080/23746149.2016.1259585
http://dx.doi.org/10.1038/nature06932
http://www.sciencedirect.com/science/article/pii/S1877050914015397
http://dx.doi.org/10.1038/srep34473
http://dx.doi.org/10.1038/nmat4856


108

39. H. Ishiwara, “Proposal of adaptive-learning neuron circuits with ferroelectric
analog-memory weights,” Japanese Journal of Applied Physics, vol. 32,
no. 1S, p. 442, 1993. [Online]. Available: http://stacks.iop.org/1347-
4065/32/i=1S/a=442

40. D. Lee, S. M. Yang, T. H. Kim, B. C. Jeon, Y. S. Kim, J.-G. Yoon, H. N. Lee,
S. H. Baek, C. B. Eom, and T. W. Noh, “Multilevel data storage memory using
deterministic polarization control,” Advanced Materials, vol. 24, no. 3, pp.
402–406, 2012. [Online]. Available: http://dx.doi.org/10.1002/adma.201103679

41. A. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouane, S. Fusil, X. Moya,
S. Xavier, H. Yamada, C. Deranlot, N. D. Mathur, M. Bibes, A. Barthélémy,
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D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

120. K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 1026–1034.

121. P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convolutional
neural networks applied to visual document analysis,” in Seventh International
Conference on Document Analysis and Recognition, 2003. Proceedings., Aug
2003, pp. 958–963.

122. W. Haensch, T. Gokmen, and R. Puri, “The next generation of deep learning
hardware: Analog computing,” Proceedings of the IEEE, vol. 107, no. 1, pp.
108–122, Jan 2019.

123. S. Kim, T. Gokmen, H. M. Lee, and W. E. Haensch, “Analog cmos-based re-
sistive processing unit for deep neural network training,” in 2017 IEEE 60th
International Midwest Symposium on Circuits and Systems (MWSCAS), Aug
2017, pp. 422–425.

124. B. Moons, K. Goetschalckx, N. Van Berckelaer, and M. Verhelst, “Minimum
Energy Quantized Neural Networks,” ArXiv e-prints, Nov. 2017.

125. A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross, “VLSI
implementation of deep neural network using integral stochastic computing,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, pp. 2688–2699, Oct 2017.

https://keras.io
https://www.tensorflow.org/


117

126. H. Sim and J. Lee, “A new stochastic computing multiplier with application to
deep convolutional neural networks,” in 2017 54th ACM/EDAC/IEEE Design
Automation Conference (DAC), June 2017, pp. 1–6.

127. V. T. Lee, A. Alaghi, J. P. Hayes, V. Sathe, and L. Ceze, “Energy-efficient
hybrid stochastic-binary neural networks for near-sensor computing,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2017, March 2017,
pp. 13–18.



118

APPENDIX A

LIST OF PUBLICATIONS AND PATENTS

Along with the work presented in the body of this thesis, I completed other

research projects during the beginning of the dual degree, which are not directly

related to hardware acceleration for DNNs. These projects were published in peer-

reviewed journals and are included as appendices.

Journal Publications

1. C. Alessandri, P. Pandey, A. Abusleme, and A. Seabaugh, Monte Carlo simula-
tion of switching dynamics in polycrystalline ferroelectrics IEEE Transactions on
Electron Devices, Under Review

2. C. Alessandri, P. Pandey, A. Abusleme, and A. Seabaugh, Switching dynamics
of ferroelectric Zr-doped HfO2, IEEE Electron Device Letters, vol. 39, no. 11, pp.
17801783, 2018.

3. M. Jara, C. Alessandri, A. Abusleme,: Time-domain 1/f noise analysis of a
charge-redistribution track-and-hold circuit, IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 65, no. 2, pp. 161-165, 2018

4. C. Alessandri, S. Fathipour, H. Li, I. Kwak, A. Kummel, M. Remskar, A. C.
Seabaugh: Reconfigurable electric double layer doping in an MoS2 nanoribbon tran-
sistor, IEEE Trans. Electron Devices, vol. 64, no. 12, pp. 5217-5222, 2017.
(Appendix D)

5. C. Alessandri, A. Abusleme, D. Guzman, I. Passalacqua, E. Alvarez-Fontecilla,
M. Guarini: Optimal CCD readout by digital correlated double sampling, Monthly
Notices of the Royal Astronomical Society, vol. 455, pp. 1443-1450, 2015. (Ap-
pendix E)

Conference Publications

1. C. Alessandri, P. Pandey, and A. Seabaugh, Experimentally validated, predictive
Monte Carlo modeling of ferroelectric dynamics and variability, IEEE Interna-
tional Electron Devices Meeting (IEDM), pp. 162, IEEE, 2018.



119

2. E. Kinder,C. Alessandri, P. Pandey, G. Karbasian, S. Salahuddin, A. C. Seabaugh:
Partial switching of ferroelectrics for synaptic weight storage, 2017 75th Annual
Device Research Conference (DRC), Notre Dame, IN, 2017

3. J. Zhang, C. Alessandri, P. Fay, A. C. Seabaugh, T.Ytterdal, E. Memisevic, L.E.
Wernersson: Projected performance of experimental InAs/GaAsSb/GaSb TFET
as millimeter-wave detector, 2017 IEEE SOI-3D-Subthreshold Microelectronics
Technology Unified Conference (S3S), Burlingame, CA, 2017

Patent Applications

1. C. Alessandri, E. Kinder, A. Seabaugh. Partial polarization resistive electronic
devices, neural network systems including partial polarization resistive electronic
devices and methods for operating the same. United States Patent Application
No. 16,180,453. 2018, Nov 5. (Appendix B)
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APPENDIX C

COUNTER-BASED NEURAL NETWORK ARCHITECTURE WITH

RATE-WIDTH MULTIPLICATION

Deep learning models are challenging to implement in embedded devices due

to their high computational complexity, which is dominated by memory access and

multiply accumulate operations (MAC). Several hardware accelerators have been pro-

posed to reduce the computational cost of DNNs for embedded devices [3, 10]. These

approaches exploit data reuse by storing data in local buffers, and parallel hardware

for efficient MAC operations. Furthermore, the resolution of MAC operations can be

reduced to minimize energy consumption, although this requires configurable reso-

lution to meet the requirements of different models [13, 124]. In this appendix, an

architecture to perform reduced-precision vector multiply accumulate operations is

developed by encoding the factors as pulse width and frequency signals. With this

approach, the multiplication itself is performed by an AND gate and a counter. The

effort of the signal encoding is mitigated by performing vector operations, where

each encoded signal is used for many multiplications. A statistical analysis of the

bias and variance of the proposed method is presented and compared against inte-

ger multiplication and multiplication based on stochastic bit streams. Experimental

results with the MNIST dataset show that the proposed architecture achieves equiv-

alent or better performance over integer multiplication with the same bit resolution,

while potentially reducing the area and energy consumption. Furthermore, precision

and throughput can be dynamically traded to meet different deep learning model

requirements.
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Figure C.1. Basic structure of (a) multiplication by stochastic pulses and
(b) width-rate multiplication.

Variable-precision MAC operations can be implemented by stochastic multiplica-

tion [26, 110, 125–127]. The basic operation of this method is depicted in Fig. C.1a.

The two factors are encoded as a stream of stochastic pulses with the same length,

where the probability of each pulse to be asserted is proportional to the factor value.

The encoded signals are fed to an AND gate and a counter, which produces an output

proportional to the desired multiplication [21, 26]. Although this method produces

an unbiased multiplication, it suffers from a large variance.

The proposed architecture is depicted in Fig. C.1b for two scalar factors. One of

the factors is encoded as a single pulse with variable width WP and the other factor

is encoded as a sequence of short pulses with variable frequency fS. The number of

counts is proportional to WP × fS, and the output of a sequence of inputs can be

accumulated in the counter.

The basic structure can be replicated as shown in Fig. C.2 to perform vector-scalar

multiplication. Matrix-vector multiplication is performed with the same structure

by sequentially feeding the elements of the vector and the columns of the matrix.

Replicating this structure vertically, as depicted in Fig. C.3, enables both vector

outer product and matrix multiplication.

In Section C.1 the multiplication mechanisms depicted in Fig. C.1a and C.1b

are analyzed to evaluate the multiplication bias (mean) and noise (variance). In

Section C.2, the proposed architecture is extended to perform signed multiplication
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Figure C.2. Structure for vector-scalar multiplication and matrix-vector
MAC.

with dynamic fixed point precision. In Section C.3 simulated results are provided

to evaluate the performance of DNN training with integer multiplication, stochastic

multiplication and the proposed architecture for different MAC resolutions.

C.1 Statistical analysis

Consider two factors α and β to be unsigned integers with length B bits. The

product γ = α × β is an unsigned integer, with length up to 2B. Consider also

a minimum pulse width Tmin and maximum clock rate fc, which are related by

Tmin = 1/fc.

C.1.1 Stochastic pulse multiplication

The two factors are encoded as bit streams of length NL, where each bit has a

probability of being asserted given by

α → P (Ak = 1) = C1α (C.1)

β → P (Bk = 1) = C2β, (C.2)
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Figure C.3. Structure for vector outer product and matrix multiplication.

where C1 and C2 are proportionality constants. The number of pulse coincidences N

is computed as

N =

NL∑

k=1

Ak ∧Bk, (C.3)

which is a sequence of NL Bernoulli trials with probability P (Ak ∧ Bk) = γC1C2, so

its mean and variance are given by

µN = γNLC1C2 (C.4)

σ2
N = µN (1− µN/NL) . (C.5)

The time required to perform the stochastic multiplication is NLTmin.
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Figure C.4. Phase difference between the frequency- and width-modulated
signals.

C.1.2 Rate-width multiplication

Considering the maximum frequency fc, the frequency corresponding to the least

significant bit (LSB) of the frequency modulated signal is fc2
−B. The two factors are

encoded as

α → fs = αfc2
−B (C.6)

β → Tp = βTmin = β/fc (C.7)

Consider the timing diagram depicted in Fig. C.4, where the time difference be-

tween the frequency- and width-modulated signals is defined as tθ ∈ (0, 1/fs). The

number of pulses is given by

N = ⌊(β/fc + tθ)αfc2
−B⌋

= ⌊γ2−B + θ⌋ (C.8)

where ⌊x⌋ denotes the integer part of x and θ ∈ (0, 1). If the signals have non-

synchronized clock sources, they will have a random phase, so θ ∼ U(0, 1). This
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results in stochastic rounding [78], so its mean and variance are given by

µN = γ2−B (C.9)

σ2
N = ∆(1−∆), (C.10)

where ∆ = γ2−B − ⌊γ2−B⌋. For example, γ2−B = 3.5 will be rounded up with

probability 0.5 and variance σ2 = 0.25, whereas γ2−B = 3.2 will be rounded up

with probability 0.2 and variance σ2 = 0.16. The time required to perform the

multiplication is 2BTmin. To make a fair comparison with stochastic multiplication,

we set NL = 2B so both multiplication methods use the same number of clock cycles.

With C1 = C2 = 2−B, the mean value for both methods is the same, but the variance

is significantly larger for stochastic multiplication. According to Eq. (C.9), scaling

N by 2B gives an unbiased product γ̂, where the B least significant bits will be zero

due to quantization.

C.2 Signed multiplication with dynamic fixed point precision

The proposed approach can be extended to perform signed multiplication with

dynamic fixed point precision. Consider first the case for integer multiplication as

depicted in Fig. C.5a. The data is stored with resolution BS plus the sign bit and

the multiplications are performed with resolution B. The point position is set as a

configuration parameter for each factor independently (p1 and p2), but kept constant

throughout the MAC operations. For each multiplication, the multiplier receives

the B most significant bits of the data and performs an integer multiplication. The

sign of the multiplication is determined by the exclusive OR of the sign bits, and

the accumulator is updated accordingly. Once all the MAC operations have been

executed, the output is read as an integer with resolution BS and point position

po (also a configuration parameter). This is done by shifting right the accumulated
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Figure C.5. Block diagram for signed multiplication with dynamic fixed
point precision with (a) integer MAC unit and (b) rate-width

multiplication. The number of shift right bits SR for readout depends on
the configuration parameters BS, B, the inputs point position (p1 and p2)

and the output point position po.
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output by SR = 2 (BS −B)− p1 − p2 + po and reading the BS least significant bits.

If any bit higher than BS is 1, the result overflows and is set to its maximum value.

Consider now the case for rate-width multiplication, depicted in Fig.C.5b. The B

most significant bits of the factors are encoded and fed to the AND gate as before. An

UP/DOWN counter is used for the accumulator, and its direction is controlled by the

exclusive OR of the sign bits. According to Eq. (C.8), the result of the multiplication

is already scaled by 2−B, so the output is now shifted by SR = 2BS−B−p1−p2+po for

readout. Note that the rate-width multiplication requires a smaller accumulator than

integer multiplication because the B least significant bits are stochastically rounded

at each multiplication. Also note that the sign bit doubles the dynamic range, but

does not require a longer NL. The implementation of variable point multiplication

for stochastic pulses is equivalent to that of rate-width multiplication. Finally, for

practical neural network implementations it is sometimes convenient to scale the

accumulated sums. This can also be done by adding an additional output scaling

parameter So, which is added to the shift right SR.

C.3 Experimental evaluation

To evaluate the inference and training performance of the proposed architecture,

we use the MNIST dataset of handwritten digits [68], comprised of gray-scale images

of handwritten digits, size-normalized and centered in a fixed-size 28 × 28 image.

This dataset has a training set of 60,000 examples, and a test set of 10,000 examples.

Although it is considered a low-complexity task, it is well benchmarked and the

models used for this dataset are manageable for simulations. The neural network in

Fig. 1.5 was implemented with and input layer size of 784 (determined by the input),

hidden layers of 256 and 128 elements with ReLu activations, and an output layer

with 10 categories. The output activations are sigmoid functions with log-likelihood

loss function.
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The weights, biases and activations are stored as integer values with resolution

BS plus the sign bit. Each layer has 3 parameters to define the point position for its

activations, weights and biases. The multiplications were implemented with integer,

stochastic and rate-with multiplication with resolution B ≤ BS. The same multipli-

cation precision is implemented for the forward propagation, back propagation and

weight update. The learning rate is defined as

η = 2−η1−η2 , (C.11)

where η1 is a user-defined parameter and η2 = ⌊Nbatch⌋. With this definition, the

learning rate can be applied directly by shift operations with the parameter So, and

accounts for the size of the minibatch Nbatch.

The training set of 60,000 images was divided into 10 stratified sets of 6,000 images

for a 10-fold cross validation [6]. The training was performed with gradient descent

for 40 epochs in minibatches of Nbatch = 36 images, with η1 = 2 for the first 20 epochs

and η1 = 3 for epochs 21 to 40. The weights were initialized to be in the range

WL ∈

(
−
√

6

NL−1 +NL
,

√
6

NL−1 +NL

)
. (C.12)

The equivalent integer range was determined according to Eq. (C.12) and the weight

point position WL
p , and integer values were drawn from a uniform distribution. The

same random seed was used for all training initializations. The biases for ReLu layers

1 and 2 were initialized to 2−3, whereas the biases for layer 3 were initialized to 0.

A baseline model was tested with BS = 24 and integer multiplication with the

same resolution. The point position was set to 16 for all the weights, activations

and biases. Two reduced precision models were implemented: RP1 with BS = 12

and RP2 with BS = 8. For these models, the three multiplication methods were

tested with resolution varying from 3 to 8 bits. The point positions were tuned for
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TABLE C.1

PARAMETERS FOR BASELINE DNN MODEL AND TWO REDUCED

MODELS (RP1 AND RP2).

Parameter Baseline RP1 RP2

BS 24 12 8

B 24 3-8 3-8

AL
p 16,16,16,16 12,9,8,7 8,5,4,3

WL
p 16, 16, 16 13,12,11 13,12,11

bLp 16, 16, 16 12,12,12 12,12,12

DL
p 16, 16, 16 12,12,12 12,12,12

each layer to minimize overflow and underflow, and are shown in Table C.1. The

parameters are storage resolution BS, multiplication resolution B, activations point

position AL
p (layers 0 to 3), weights point position WL

p (layers 1 to 3), bias point

position bLp (layers 1 to 3) and backpropagated error point position DL
p (layers 1 to

3). Note that the storage resolution is only relevant for training. For inference, the

storage resolution is reduced to the multiplication resolution.

The test error obtained with 10-fold cross validation is shown in Fig. C.6. The

reduced precision networks with BS = 12 and BS = 8 are compared against the base-

line model. The mean error is plotted with 95% confidence intervals for the different

multiplication methods. There is no statistically significant difference between rate-

width multiplication for BS = 12 and B ranging from 4 to 8 bits, whereas rate-with

is statistically significantly better for B = 3. With a storage resolution BS = 8, the

rate-width multiplication is better for multiplication resolutions ranging from 3 to

5 bits. When compared with stochastic multiplication, the difference is statistically
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a) b)

Figure C.6. Test error for 10-fold cross validation and different
multiplication methods. Reduced precision networks with (a) BS = 12 and
(b) BS = 8 compared with baseline model. The mean error is plotted with

95% confidence intervals.

significant for multiplication resolutions ranging from 3 to 6 bits. Overall, the rate-

width multiplication method achieves the same or better accuracy than the integer

and stochastic multiplication with the same bit resolution.

C.4 Conclusion

An architecture to implement reduced precision vector MAC operations was pro-

posed and evaluated. The MAC hardware is reduced to AND and XOR logic gates

and a counter in an array structure, which enables the implementation of signed ma-

trix multiplication with dynamic fixed point precision. Experimental results show

that the proposed architecture achieves equivalent or better accuracy than inte-

ger multiplication with the same bit resolution, while potentially reducing the area

and energy consumption. Furthermore, precision and throughput can be dynami-

cally traded to meet different deep learning model requirements. An analysis of the

transistor-level implementation is required to evaluate the area and energy efficiency
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of the proposed architecture as a function of the array size and the multiplication

resolution, which is proposed as future work.



161

APPENDIX D

RECONFIGURABLE ELECTRIC DOUBLE LAYER DOPING IN AN MoS2

NANORIBBON TRANSISTOR
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Reconfigurable Electric Double Layer Doping
in an MoS2 Nanoribbon Transistor

Cristobal Alessandri , Sara Fathipour, Huamin Li, Iljo Kwak, Andrew Kummel,
Maja Remškar, and Alan C. Seabaugh

Abstract— A back-gated multilayer nanoribbon molybde-
num disulfide (MoS2) transistor grown by chemical vapor
transport and doped using polyethylene oxide cesium per-
chlorate is fabricated and characterized. Ions in the poly-
mer dielectric are directed by side gates to the source
and drain access regions where they form electric dou-
ble layers (EDLs) that control the carrier densities. This
allows the junctions of the same transistor channel to be
reconfigured as an n-MOSFET, p-MOSFET, and as a tun-
nel field-effect transistors. The EDLs are formed at room
temperature and then locked into place by cooling the
polymer below the glass transition temperature (∼240 K).
Transport measurements are presentedand explainedusing
simulated band diagrams. Both n and p-conduction in MoS2
is demonstrated using solid polymer ion doping, enabling
characterization of a semiconductor in which the doping
of the same channel has been reconfigured to form three
different transistor configurations.

Index Terms— Electric double layer, ion doping, molybde-
num disulfide, multilayer nanoribbon molybdenum disulfide
(MoS2), tunnel field-effect transistor (FET) (TFET), TFET.

I. INTRODUCTION

2 -D SEMICONDUCTORS are being widely explored
for beyond-CMOS electronics [1]. Electric double lay-

ers (EDLs) formed using solid polymers, such as polyethylene
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oxide (PEO) containing cesium perchlorate (CsClO4), and
2-D crystals can induce degenerate sheet electron and hole
densities exceeding 1 × 1014 cm−2 [2], [3], beyond the
limits of substitutional doping in bulk semiconductors. Using
PEO:CsClO4, n-contact resistance as low as 200 � μm has
been achieved in multilayer multilayer nanoribbon molybde-
num disulfide (MoS2), with a record current of 300 μA/μm
at 1.6 V for a channel length of 0.8 μm [4]. As a point
of reference, an n-MOSFET with a 0.5-μm gate length and
biased at VDS = VGS = 1.6 V has a current of roughly
170 μA/μm [5].

While the use of electrolytes to gate transition metal
dichalcogenide field-effect transistors (FETs) has been previ-
ously discussed [6]–[10] this is not the approach taken here.
We use the PEO:CsClO4 to dope the access regions of the
transistor. Once the doping is established, the temperature
is lowered to lock the ions in place. With this transistor
structure, where only the access regions are exposed to the
ions, the device can then be operated with a metal/Al2O3 back
gate. This doping and locking approach using PEO:CsClO4
has also been successfully applied to the formation of p-n
junctions in MoTe2 [11] and in WSe2 [12]. Other approaches
for n-doping [13]–[16] or p-doping [16]–[18] of MoS2 have
been reported, but here the focus is on ion doping which
enables the reconfigurability.

II. DEVICE FABRICATION AND DOPING

The MoS2 was grown by chemical vapor transport (CVT)
from MoS2 powder, using a two-zone furnace and an iodine
transport agent [19]. This method enables the vapor-phase
growth of nanotubes and nanoribbons [4], [19]. The CVT
growth method is being explored to avoid the unpassivated
dangling bonds that are obtained at the edges of exfoliated
materials [20]. While thicknesses at the few nanometer level
are desired, the nanoribbons and nanotubes produced by the
CVT growth method, as currently applied, are in the range
10 ± 5 nm. The device, with cross section shown in Fig. 1,
has a 13-nm body thickness and a 700-nm width. This will
be referred to as a nanoribbon. The fabrication started with
electron-beam (e-beam) evaporation of Ti/Au (5/100 nm) on
the back of a p+ Si wafer. The nanoribbons were tape
transferred from the CVT source onto a 27-nm Al2O3 oxide
formed by atomic layer deposition (ALD) on the wafer top
surface. E-beam lithography and lift off were used to form

0018-9383 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Nanoribbon MoS� transistor cross-sectional schematic and
transmission electron micrograph (TEM) along the 700-nm width. This
TEM was made on completion of the measurements discussed in this
paper.

Ti/Au (5/100 nm) source/drain contacts using e-beam evap-
oration. Side gates, not shown in Fig. 1, were also formed
in the source/drain metallization step and are located 30 μm
from the channel.

The ALD of Al2O3 on the MoS2 nanoribbon utilized a
two-step process consisting of a low-temperature physisorption
step at 50 °C followed by ALD at 120 °C. In this way,
conformal deposition of Al2O3 is achieved, wrapping around
and under the nanoribbon edge without pinholes, as shown
in Fig. 1. A top gate was formed by e-beam evaporation
of Ti/Pd (1/120 nm), and the Al2O3 was etched in buffered
HF using the gate as a mask to form access regions for
the ion doping. The drain current was not notably reduced
after etching indicating that the MoS2 etch was insignificant.
The top-gate pad away from the channel was mechanically
damaged which prevented use of the gate terminal, but left the
transistor fully functional when operated using the back gate.

The PEO and CsClO4 were dissolved in acetonitrile and
drop-cast to cover the entire surface of the wafer, followed by
a 3 min anneal at 90 °C in an Ar-filled glove box. At room
temperature, Cs+ and ClO−

4 ions move on the polymer chains
in the PEO in response to potentials applied between the side
gates and the channel. With the source and drain grounded,
a negative side gate bias VSG pushes ClO−

4 ions into the
channel access regions inducing hole conduction for the p-
MOSFET. A positive side gate bias pushes Cs+ into the
access regions and induces electron conduction to set up the
n-MOSFET. After positioning the ions with the side gates,
the transistor is cooled below the glass transition temperature
of the electrolyte (∼240 K) to lock the ions in place and
fix the doping. Measurements were carried out using an

Agilent B1500 semiconductor parameter analyzer in a Cascade
PLC50 vacuum probe station at 1.2 × 10−6 Torr.

Dozens of transistors have been fabricated based on this
approach. The transistor reported here, however, was tested
extensively over several months and represents the most thor-
oughly characterized of the CVT MoS2 transistors we have
tested to date. The doping results are reproducible and after
locking the ions, I–V curves are reproducible with insignif-
icant hysteresis. When the devices were reset and doped,
the results were repeatable and reproducible. This device was
initially tested with double sweeps and no noticeable hysteresis
was observed after the ions are locked (below 220 K). The
measurements reported in this paper are for single sweeps.
It was verified that the polymer does not contribute any
significant current below the glass transition temperature by
measuring 2-μm long gaps without an MoS2 channel and
filled with PEO:CsClO4. These measurements showed less
than 1 pA/μm currents in the PEO:CsClO4 for biases up
to 4.5 V.

To provide a simple description of the connections and a
consistent analysis, the left and right contacts in Fig. 1 will
be referred to as the source and drain, respectively. To isolate
the effect of the EDL doping on the channel, the same biasing
conditions are measured for all configurations, even though
for some transistor configurations this will not always be the
usual transistor reporting convention.

III. MOS2 N- AND P-DOPING CONFIGURATIONS

When polymer ion doping is used, it is essential to establish
repeatable and reproducible starting conditions. Before setting
the ion configuration, all the device terminals were grounded
for 5 min at room temperature to reset any previous ion
configuration. The EDL was then formed at room temper-
ature by applying a potential to the side gate and ground-
ing the drain–source, and back-gate contacts. A hold time
of 0 or 3600 s (1 h) was applied before cooling at selected
biases. The potentials on the terminals were maintained during
cooling, which takes approximately 20 min.

Fig. 2(a) shows the transfer characteristics measured for dif-
ferent EDL forming conditions and for a negative drain–source
bias, VDS = −0.4 V. Following each measurement, the tran-
sistor was warmed back to 300 K, reset for 5 min and then
cooled at a different side gate bias condition to set the access
region doping. For VSG = 0 V, an n-type FET characteristic
is established, which suggests that the Fermi level is close
to the MoS2 conduction band, as is commonly observed in
unintentionally doped MoS2 [17]. Without any hold time
before cooling, applying VSG = 2 V produces a small negative
shift in the threshold voltage, whereas applying VSG = −4 V
produces a slight positive shift. This is consistent with weak
n- and p-type doping, respectively.

With a hold time of 1 h, a high n-doping is achieved with
VSG = 2 V, and back-gate modulation becomes negligible.
In contrast, for VSG = −4 V, both n- and p-branches can
be observed with strong back-gate modulation. Increasing the
side gate bias to −4.5 V further reduces the n-branch maxima,
but has no significant effect on the p-branch maxima or the
ability to back-gate the transistor.

163



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
ALESSANDRI et al.: RECONFIGURABLE ELECTRIC DOUBLE LAYER DOPING 3

Fig. 2. (a) Measured back-gate transfer characteristics versus EDL doping condition in the transistor access regions. The EDL positions are specified
by the side gate bias and hold time before cooling to freeze the ions into place. Simulated electrostatic band diagrams at the top of the channel
(top row of band diagrams) and at the bottom of the channel (bottom row). The columns of band diagrams from left to right are for (b) and (c) no
EDL doping, (d) and (e) n-type doping, and (f) and (g) p-type doping.

The induced carrier density from the EDL, similar to a gate,
is peaked in concentration at the surface and decays with
distance away from the surface. Similarly, induced carriers
from the back-gate bias are maximized at the back of the
MoS2 channel and decay toward the surface. For this reason,
the transport results can be expected to depend on thickness.
For a thick device, independent conduction channels are
induced at the surface and back-gate faces of the MoS2. For
layer thicknesses less than a Debye length in the vertical direc-
tion, the capacitances of the surface and back channels become
coupled and a single conduction channel can be expected.
To understand this behavior, a 2-D COMSOL multiphysics
model was implemented across the channel length (source to
drain) and thickness (top to bottom). The ionic charge at the
access regions was modeled as a uniform fixed charge density
at the PEO/MoS2 interface of 2 and −2 μC/cm2 for the
n-doping and p-doping, respectively. These charge densities
are conservative values considering measured EDL capaci-
tances of 4 μF/cm2 [6] have been obtained with PEO:CsClO4.
Electrostatic Poisson simulations were performed under differ-
ent doping configurations and back-gate biases to explain the
transport. Horizontal cuts of the band diagrams at the top and
bottom of the MoS2 channel are plotted in Fig. 2. Given that
the channel is 13-nm thick, the effect of the ion doping is
strong at the channel surface, but the back gate dominates at
the bottom of the channel.

Consider the case where the ions are homogeneously distrib-
uted during cooling to arrest the ion motion, i.e., all terminal
voltages are set to zero during cooling to 220 K as indicated
by the black curve in Fig. 2(a). The band diagrams at the top
and bottom of the channel are shown in Fig. 2(b) and (c),
respectively, simulated with no surface charge in the access
regions. The carrier densities are n-type both in the access
regions and channel; negative back-gate bias raises the channel
barrier and the measurements are consistent with the simulated
band diagrams showing that the transistor turns off with over

six orders of magnitude current ratio. For large, positive back-
gate bias, the ON-current is likely limited by the contact
barriers, and the electron concentration is peaked at the bottom
of the channel.

Fig. 2(d) and (e) depicts the simulated band diagrams
at the top and bottom of the channel for n-doping with
VSG = 2 V and 1 h hold time. Because of the degen-
erate doping induced in the access regions, the Schottky
barrier is much thinner than the case shown in Fig. 2(c) and
a 4× higher ON-current is observed at VBG = 3 V. Given
that the device channel is long (1.5 μm), the energy band in
the middle of the channel is not determined by the doping in
the access regions. Therefore, the back-gate bias should still
allow modulation of the channel (far from the access regions)
in the same way as in Fig. 2(b). However, the measured
current shows a 20% back-gate modulation and the device
cannot be turned off. The observed behavior is similar to what
we observe on ion-doped and locked, back-gated transistor
channels on MoS2 [4] and WSe2 [21] when no top gate is
present. In this case the EDL controls the channel and the
back-gate modulation is weak. This suggests that Cs+ ions
have penetrated under the gate or in the region where the
gate metal goes over the nanoribbon edge. The band diagrams
computed in Fig. 2(d) and (e) follow this assumption. A recent
report by Piatti et al. [22] using polymer ion gating indicates
that Li and Na can intercalate in MoS2 and affect channel
conductance.

When a 1-h hold time is applied at room temperature
for the −4 and −4.5 V side gate biases, the condition of
Fig. 2(f) and (g) is achieved. A degenerate p-type doping
is induced in the access regions at the top of the channel,
which decays toward the bottom. Schottky tunneling of holes
at the source/drain contacts should be enabled by the thin
tunneling barriers. Unlike the Cs+ doping case, the results
suggest that the ClO−

4 does not intercalate or diffuse under-
neath the gate, which is likely because of its larger size.
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TABLE I
MOBILITY AND CONTACT RESISTANCE EXTRACTED FROM BACK-GATE

TRANSFER CHARACTERISTICS, COMPARED WITH RESULTS REPORTED

IN THE LITERATURE. VALUES ARE REPORTED AT ROOM

TEMPERATURE UNLESS OTHERWISE NOTED

The p-branch observed in Fig. 2(a) for negative back-gate
bias is produced by lowering the hole barrier in the channel.
A positive back-gate bias turns off the p-channel as expected.
However, an n-branch is still observed due to conduction at the
bottom of the channel, where the ion doping is weak. When
increasing the side gate bias from −4 to −4.5 V during the ion
configuration, the n-branch is further reduced and shifted to the
right, as shown in Fig. 2(a). The p-branch has no significant
change because it is mainly controlled by the channel barrier,
which does not change with the doping in the access region.

Table I shows the mobility and contact resistance
extracted from the transfer characteristic in linear region
(VDS < VGS − Vt ) using the equation ID =
(μCOXW/L)(VGS − VTH)VDS, where VDS and VGS are
corrected for the series resistance and COX = 0.26 μF/cm2

for 27-nm Al2O3 with 8.1 dielectric constant. The parameters
were extracted for the p-MOSFET doped with VSG = −4 V
and 1 h hold time, and the n-MOSFET doped with VSG = 2 V
and no hold time. The n-MOSFET doped with VSG = 2 V
and 1 h hold time could not be used to extract mobility, but
an upper bound for the contact resistance of 36 k� · μm
was estimated from the saturation current. The p-MOSFET,
on the other hand, compares well with previous reports in
terms of mobility and contact resistance.

IV. MOS2 TFET CONFIGURATION

To form doping with opposite carrier types at the source
and drain contacts, opposite biases are applied to the drain and
source, respectively [12]. The EDL was formed at room tem-
perature by applying +2 V to the drain and −2 V to the source,
while the back gate was grounded. In this way, Cs+ ions are
drawn to the negative source contact and ClO−

4 ions are drawn
to the positive drain contact. A hold time of 1 h was applied
and the device was then cooled to 220 K while keeping the
above biases. The cooling process was again approximately
20 min. After reaching 220 K, the biases were released and
measurements were then taken for six temperatures between
80 and 220 K.

Under this bias condition, associated with biasing the tran-
sistor as a TFET, there is no evidence that ions of either type
intercalate or diffuse under the gate. This is consistent with

Fig. 3. (a) ID versus VD characteristics measured at different back-gate
bias. Simulated band diagram for TFET configuration at the (b) top and
(c) bottom of the channel.

simulations discussed in [12] that show that the ions accumu-
late adjacent to the contacts. The simulated electrostatic band
diagram for the TFET configuration at the top of the channel
is depicted in Fig. 3(b) as an n+np+ profile along the channel.
The back gate modulates the channel and has no significant
effect in the access regions. However, at the bottom of the
channel the ion doping is weak and the back-gate modulation
dominates, as shown in Fig. 3(c). Fig. 3(a) shows the ID −VD

measurements for different back-gate biases, which are readily
explained by the simulated band diagrams. For large positive
back-gate biases, the channel induced at the bottom dominates,
so there is conduction for both negative and positive VDS
with almost no rectification. For zero back-gate bias, a small
rectification is observed, due to the weak junction at the bottom
of the channel.

The back-gate transfer characteristics measured with
VDS = −0.4 V are shown in Fig. 4(a) for different tempera-
tures, and the subthreshold slope (SS) is shown in Fig. 4(b).
At current densities below approximately 10−3μA/μm, a lin-
ear positive temperature dependence in the SS is observed,
as expected in the subthreshold region, i.e., (kT/mq)ln(10),
see the inset, where m is a factor related to gate efficiency.
However, at current densities above 3×10−3 μA/μm the swing
decreases with temperature which suggests that the resistance
is increasing with temperature, perhaps related to mobility
degradation. No clear evidence for tunneling was observed
when biased as a TFET. While high doping can be induced
at the channel surface, tunneling could not be measured by
back-gating the 13-nm-thick MoS2 channel. This is because
an abrupt tunnel junction could not be induced in such a thick
channel.

The electrostatics of the device can be improved by reduc-
ing the channel thickness to a few monolayers to obtain
a homogeneous heavy doping of the access regions and a
better gate control in the channel. Although our simulations
provide a qualitative understanding of the coupling between
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Fig. 4. (a) Temperature dependence of the back-gate transfer charac-
teristic and (b) subthreshold swing for VDS = −0.4 V. The inset shows
the SS temperature dependence at a �� nA/µm drain current density.

the EDL and back-gate capacitances, a more complete model
is needed for a quantitative understanding, including quantum
confinement effects and interlayer conduction. The use of a top
gate (not operational in this device) would further improve the
electrostatics for two reasons: first the top gate would modulate
the doping at the top of the nanoribbon on the same plane as
the EDL doping. Second, the top gate would modulate only
the channel region and would not compete with the doping at
the access regions as the back gate does.

V. CONCLUSION

Experimental measurements of EDL doping in a nanoribbon
MoS2 back-gated transistor have been presented showing
n-MOS, p-MOS, and TFET configurations characterized in
the same FET channel. Simulated band diagrams taking into
account the front and back ends of the channel are used to
explain the behavior showing that the characteristics of the
13-nm-thick channel can be readily explained. While band-
to-band tunneling has been sought in these transistors for
operation as TFETs, we show that the temperature depen-
dence indicates the subthreshold transport is predominantly
thermionic. To enable band-to-band tunneling, the device
electrostatics must be improved by reducing the nanoribbon
thickness to a few monolayers.
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ABSTRACT
Digital correlated double sampling (DCDS), a readout technique for charge-coupled devices
(CCD), is gaining popularity in astronomical applications. By using an oversampling ADC
and a digital filter, a DCDS system can achieve a better performance than traditional analogue
readout techniques at the expense of a more complex system analysis. Several attempts to
analyse and optimize a DCDS system have been reported, but most of the work presented in
the literature has been experimental. Some approximate analytical tools have been presented
for independent parameters of the system, but the overall performance and trade-offs have not
been yet modelled. Furthermore, there is disagreement among experimental results that cannot
be explained by the analytical tools available. In this work, a theoretical analysis of a generic
DCDS readout system is presented, including key aspects such as the signal conditioning stage,
the ADC resolution, the sampling frequency and the digital filter implementation. By using a
time-domain noise model, the effect of the digital filter is properly modelled as a discrete-time
process, thus avoiding the imprecision of continuous-time approximations that have been used
so far. As a result, an accurate, closed-form expression for the signal-to-noise ratio at the
output of the readout system is reached. This expression can be easily optimized in order to
meet a set of specifications for a given CCD, thus providing a systematic design methodology
for an optimal readout system. Simulated results are presented to validate the theory, obtained
with both time- and frequency-domain noise generation models for completeness.

Key words: instrumentation: detectors – methods: analytical – techniques: imaging spec-
troscopy – telescopes.

1 IN T RO D U C T I O N

Charge-coupled devices (CCDs) are widely used for scientific imag-
ing because of their high quantum efficiency, linearity and photon
dynamic range. However, the dynamic range of astronomical CCDs
is usually limited by the readout noise produced by the on-chip
amplifier and the reset noise at the sensing capacitor (White et al.
1974; Barbe 1975; Janesick 2001). A correlated double sampling
(CDS) scheme removes the reset noise and attenuates low-frequency
noise components (White et al. 1974; Barbe 1975). White noise
components can also be reduced by using a limited-bandwidth pre-
amplifier. However, lowering the bandwidth requires a longer sep-
aration between samples due to the signal settling, which increases
the pixel time and the low-frequency noise contribution (Kansy
1980; Hopkinson & Lumb 1982).

⋆ E-mail: calessa2@uc.cl (CA); angel@uc.cl (AA); mguarini@ing.puc.cl
(MG)

In the search for a better noise reduction, a differential-averaging
scheme was proposed, which was proven to be optimal for white
noise components (Hegyi & Burrows 1980). The usual implementa-
tion, known as dual slope integration, comprises analogue switches
and an integrator (Janesick 2001). By using this technique on a
standard CCD, the noise can be lowered at the expense of a reduced
frame rate by using longer pixel integration times. However, the
readout noise cannot be reduced without bound due to the contri-
bution of low-frequency noise, which imposes a noise floor that
limits the performance of CCDs for low-light applications. A com-
prehensive analysis of analogue readout schemes can be found in
Hopkinson & Lumb (1982), which provides analytical expressions
useful for design.

The development of low-noise readout techniques was inactive
for over two decades, until Gach et al. (2003) proposed the digital
correlated double sampling (DCDS) scheme. In this scheme, most
of the analogue circuitry is replaced by an oversampling ADC and a
digital filter. Due to the development of high-speed, high-resolution
ADCs, the digital implementation of the differential-averaging has

C⃝ 2015 The Authors
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outperformed the traditional dual slope integration. Furthermore,
the DCDS scheme allows us to implement any arbitrarily shaped
filter instead of a simple averaging filter, thus increasing the design
complexity compared to that of the well-studied analogue tech-
niques.

Based on a qualitative understanding of noise correlation prop-
erties, Gach et al. (2003) experimentally found that, for a particular
CCD, a weighted filter performs better than an averaging filter.
However, this result was only optimal for a specific setup and was
not supported by an analytical framework. Using a different exper-
imental setup, Clapp (2012) tested similar weighted profiles, but
reported a better performance for the averaging filter. Clapp also
presented an approximated expression to compute the noise of the
DCDS system, although it was derived only for an averaging filter.
Therefore, the theory failed to explain the disagreement with Gach
et al. (2003). Afterwards, Tulloch (2013) simulated the performance
of several weighted filters and reported a marginal noise reduction
over the averaging filter at low pixel rates. A first approach to com-
pute optimal weights analytically was presented by Alessandri et al.
(2013), who analysed the design of the digital filter for noise reduc-
tion under ideal settling conditions of the video signal. Other design
variables such as the ADC sampling frequency and resolution, and
the amplifier bandwidth have been studied independently (Smith
2013; Tulloch 2013; Stefanov & Murray 2014). However, there has
been no analysis for the overall performance of a DCDS readout
system with arbitrary weighted filters.

In this work, an in-depth theoretical analysis of a generic DCDS
readout system is presented as follows: Section 2 provides a math-
ematical description of the DCDS system. In Section 3, the output
statistics of the system are computed with the proper continuous-
and discrete-time treatment of the noise processes involved. The
signal-to-noise ratio (SNR) optimization model is depicted in Sec-
tion 4, and a simulation model for a DCDS readout system is de-
picted in Section 5. Theoretical and simulated results are presented
in Section 6. In Section 7, conclusions are drawn.

2 R E A D O U T S Y S T E M

Fig. 1 depicts a generic setup of a DCDS readout system along with
the characteristic waveforms of a CCD. The measurement of each
pixel is performed as follows: the sensing capacitor Cs is reset to Vref

by the analogue switch M1. Due to thermal noise, charge injection
and clock feedthrough, a voltage drop "V produces an uncertain
initial voltage, which will be referred to as the reset voltage. At t = td,
the pixel charge is transferred to the sensing capacitor, discharging
the capacitor by a voltage Vp, which is related to the pixel charge
ne by the output sensitivity Sv, thus

Vp = Svne. (1)

Therefore, the voltage at the sensing capacitor can be expressed as

va(t) = Vr − vp(t), (2)

where Vr = Vref − "V is the reset voltage, vp(t) = Vpu(t − td) is
the pixel signal and u(t) is the Heaviside function. The reset pulse
is left out of equation (2) for simplicity, and it is assumed that the
reset voltage is fully settled.

The voltage at the sensing capacitor is buffered by an on-chip
amplifier, which adds noise to the measurement. This amplifier can
be modelled as a noiseless amplifier (block Amp in Fig. 1) preceded
by an equivalent series noise voltage source with two-sided Power
Spectral Density (PSD) S(iω) (Gray 2009). Hence, the voltage at

Figure 1. Generic setup of a DCDS readout system (top), and typical
waveforms of a CCD (bottom), where va is the voltage at the CCD sensing
capacitor, and vc is the voltage after the on-chip amplifier and the signal
conditioning stage, both described by G(s). The signal is sampled starting
at t = 0, and the digital filter depicted by hj is applied to compute the pixel
value. The amplifier noise, modelled by n(t), is not considered in the plots
for simplicity.

the input of the noiseless amplifier is given by

vb(t) = Vr − vp(t) + n(t), (3)

where n(t) is the amplifier input-referred series noise voltage.
The CCD output is processed by a signal conditioning stage as

depicted in Fig. 1. For analysis purposes, the noiseless amplifier and
the signal conditioning circuit can be described by a single generic
transfer function G(s) with impulse response g(t).

The signal at the ADC input can be computed as a linear convo-
lution between vb(t) and g(t), hence

vc(t) = {Vr ∗ g}(t) − {vp ∗ g}(t) + {n ∗ g}(t), (4)

where ∗ is the convolution operator. Then, the signal is sampled
with a period Ts, where t = 0 is arbitrarily defined before the
first sample, as shown in Fig. 1. A column vector of N samples
x = [x1, . . . , xj, . . . , xN]t is taken at t = jTs, with j = 1, . . . , N,
thus

xj = vj + rj + nj + qj, (5)

wherevj =−{vp ∗ g}(jTs),rj ={Vr ∗ g}(jTs),nj ={n ∗ g}(jTs)and
qj is the quantization and electronic noise introduced by the ADC.
Finally, the digital filter described by h= [h1, . . . , hj, . . . , hN]t is
applied to compute the pixel value as

Px = htx

=
N∑

j=1

hjxj, (6)

which is the output of the DCDS system.
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3 O U TPU T STATISTIC S

Knowing the noise characteristics of the system at the ADC input,
the expression for the SNR after the digital filter is derived as
follows. The mean value of the pixel measurement can be computed
as

µx = E{Px}

=
N∑

j=1

hj(E{vj} + E{rj} + E{nj} + E{qj})

=
N∑

j=1

hj(vj + rj), (7)

since nj and qj are zero-mean random variables (see Section 3.2),
and both vj and rj are deterministic functions of Vr and Vp, which
are constant within a pixel. The variance of the pixel measurement
is given by

σ 2
x = E{

(
htx − µx

)2}

= E

⎧
⎨
⎩

⎛
⎝

N∑

j=1

hjnj + hjqj

⎞
⎠

2⎫⎬
⎭ . (8)

Considering that nj and qj are independent variables (see
Section 3.2), the expected value of their product is zero, thus

σ 2
x =

N∑

j=1

N∑

k=1

hjhkE{njnk} +
N∑

j=1

N∑

k=1

hjhkE{qjqk}

=
N∑

j=1

N∑

k=1

hjhkRn[j, k] +
N∑

j=1

N∑

k=1

hjhkRq[j, k]

= σ 2
amp + σ 2

ADC, (9)

where Rn[j, k] and Rq[j, k] are the terms of the discrete autocorre-
lation matrices of the amplifier and ADC noise, respectively. The
noise models for these processes and the procedures to compute σ 2

amp

and σ 2
ADC are presented separately in the following subsections.

3.1 Output amplifier noise

The noise of the CCD output amplifier usually comprises white
noise and one or more low-frequency noise components (Hopkinson
& Lumb 1982; Janesick 2001). For mathematical purposes, the two-
sided PSD of the amplifier input-referred series noise voltage is
described as a superposition of power-law noise sources given by

S(iω) =
∑

m

Am |ω|αm [V 2/Hz]

=
∑

m

Sm(iω)[V 2/Hz], (10)

which describes white noise (αm = 0) and low-frequency noise,
where αm is usually between −1 and −2. Accordingly, at the ADC
input, the noise spectrum is given by

Sc(iω) =
∑

m

Sm (iω) |G(iω)|2 [V 2/Hz]. (11)

Given the composition of equation (11), the output-referred volt-
age noise will be derived for a single power-law noise source Sm(iω),
and the total noise can be computed as the superposition in quadra-
ture of the contribution of each power-law noise source.

Although the autocorrelation matrix from equation (9) could be
computed by the inverse Fourier transform of Sc(iω), it usually
does not yield a closed-form expression and requires N infinite-
length numerical integrations. Therefore, the resulting expression
for σ 2

x provides little insight for design. An alternative approach,
widely used in instrumentation for detectors in particle physics
experiments, employs a time-domain noise model to design optimal
filters. The noise is modelled as a sequence of pulses with a certain
shape ỹ(t), arriving poissonianly at times ta with an average rate
ν and random sign (Goulding 1972; Radeka 1988; Pullia & Gatti
2001; Pullia & Riboldi 2004; Avila, Alvarez & Abusleme 2013).
The pulse shape that models a noise source Sm(iω) referred to the
ADC input is expressed as (see Appendix A)

ỹm(t) =
√

Am

ν

dαm/2

dtαm/2
g(t). (12)

The total integrated noise σ 2
m measured at the ADC input is com-

puted in the time domain using Campbell theorem (Papoulis & Pillai
2002).

σ 2
m = ν

∫ t

−∞
ỹ2

m(t − ta)dta

=
∫ ∞

−∞
y2

m(ta)dta, (13)

which is equivalent to the amplifier noise autocorrelation function
evaluated at t = 0 (see Appendix B). When the noise converges to
a finite value, and according to Parseval theorem, σ 2

m can also be
computed in the frequency domain (Radeka 1988), thus

σ 2
m = 1

2π

∫ ∞

−∞
Sm(iω) |G(iω)|2 dω. (14)

The total integrated noise can be decomposed into two uncorrelated
noise sources: the noise contribution of pulses that arrive before
sampling (i.e. ta < 0) and the noise generated within the sampling
window (i.e. 0 < ta < NTs), hence

σ 2
m =

∫ 0

−∞
y2

m(t − ta)dta +
∫ t

0
y2

m(t − ta)dta

= σ 2
m,0(t) + σ 2

m,t (t). (15)

Since σ 2
m,0(t) is the contribution of pulses generated before the first

sample, its autocorrelation matrix is given by

Rm,0[j, k] = σm,0(jTs)σm,0(kTs), (16)

and its contribution after the filter is directly computed as

σ̂ 2
m,0 =

⎛
⎝

N∑

j=1

hjσm,0(jTs)

⎞
⎠

2

. (17)

Using equation (15), this can be written as

σ̂ 2
m,0 =

⎛
⎝

N∑

j=1

hj

√
σ 2

m − σ 2
m,t (jTs)

⎞
⎠

2

. (18)

The contribution of the noise generated within the sampling win-
dow is computed by the same principle, which is developed in detail
by Avila et al. (2013). Thus,

σ̂ 2
m,t =

N∑

j=1

(
N−j∑

k=0

hj+k

√
σ 2

m,t ((k + 1)Ts) − σ 2
m,t (kTs)

)2

. (19)
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1446 C. Alessandri et al.

Finally, the output-referred contribution of Sm(iω) is

σ̂ 2
m = σ̂ 2

m,0 + σ̂ 2
m,t (20)

and the total amplifier noise contribution is added in quadrature,
hence

σ 2
amp =

∑

m

σ̂ 2
m. (21)

3.2 ADC noise autocorrelation

Consider an ADC with a resolution of B bits and a full-scale volt-
age range VFSR, so " = VFSR/2B is the least-significant bit (LSB).
If the ADC is not overloaded, and if the input signal is large and
active enough to span over several quantization levels, the quanti-
zation noise is modelled as an uncorrelated, zero-mean white noise
with variance σ 2

q = "2/12 (Widrow 1956). In the case of a DCDS
system, a slow varying but noisy signal is sampled, and the afore-
mentioned conditions are met if " is comparable to the standard
deviation of the independent noise between two samples. This noise
is composed by the CCD noise contribution generated within two
samples and the ADC electronic noise σ 2

e , also called transition
noise. Therefore, the LSB is upper-limited by

" <

√
σ 2

e +
∑

m

σ 2
m,t (Ts). (22)

Under this assumption, the autocorrelation matrix of the ADC noise
is given by

Rq[j, k] = δ[j, k]
(
σ 2

q + σ 2
e

)
, (23)

where δ[j, k] is the Kronecker delta. The ADC noise contribution at
the filter output is directly computed as

σ 2
ADC =

(
σ 2

q + σ 2
e

) N∑

j=1

h2
j . (24)

For larger values of ", the quantization noise may be partially cor-
related and the noise contribution will be higher than that predicted
in equation (24). Therefore, in order to benefit from the quanti-
zation noise reduction of the digital filter, the ADC resolution is
lower-limited by

B > log2

⎛
⎝ VFSR√

σ 2
e +

∑
m σ 2

m,t (Ts)

⎞
⎠ . (25)

Nevertheless, a higher resolution still provides a benefit in the op-
timal setup due to a lower quantization noise, and equation (25) is
rarely an active restriction in low-noise applications. Furthermore,
typical high-resolution ADCs have a transition noise of several LSB,
so this equation is met regardless of the CCD noise. If the ADC res-
olution is fixed, the full-scale range referred to the sensing capacitor
can be adjusted by the gain at the signal conditioning stage, thus
trading the electrons range for a lower quantization noise. Although
there are more thorough models for the quantization noise auto-
correlation matrix (Gray 1990; Gray & Neuhoff 1998), the model
presented here is accurate for the conditions of operation of a DCDS
system and was chosen for its simplicity.

4 SN R O P T I M I Z AT I O N

In order to optimize the SNR, an analytical expression for the im-
pulse response of the signal conditioning stage should be given,

since it determines both the mean value and the variance of the
pixel measurement. A typical signal conditioning stage for a DCDS
system has a transfer function of the form

G(s) = G0
τ2s

(1 + τ2s)(1 + τ1s)
, (26)

which comprises a single-pole high-pass filter defined by τ 2, static
gain G0 and a single-pole low-pass filter with time constant τ 1.
However, it is straightforward to extend the analysis presented here
for higher order systems.

Even though G(s) comprises the effect of the AC coupling capac-
itor, in a well-designed system the coupling capacitor will be large
enough so as to keep the signal integrity within a pixel (Hegyi &
Burrows 1980). Hence G(s) ≈G0/(1 + τ 1s). By setting td = N

2 Ts,
and according to equation (7), the pixel mean value is

µx =G0

⎛
⎝Vp

N∑

j= N
2 +1

hj

(
1−e−

(
j− N

2

)
Ts/τ1

)
+ Vr

N∑

j=1

hj

⎞
⎠ . (27)

Since the reset voltage remains constant within a pixel, it can be
completely removed if the filter coefficients add up to zero, which is
the basis of the differential sampling scheme. Replacing the signal
conditioning impulse response into equation (12), and computing
the fractional derivative, the pulse shape ym(t) can be expressed as

ym(t) =
√

AmG0u(t)
(

τ2/τ1

τ2 − τ1
t−αm/2E1,1−αm/2(−t/τ1)

− 1
τ2 − τ1

t−αm/2E1,1−αm/2(−t/τ2)
)

, (28)

where Ea, b(t) is the Mittag–Leffler function (Mathai & Haubold
2008). Finally the SNR is expressed as

SNR =

(
G0Vp

∑N

j= N
2 +1 hj

(
1 − e−

(
j− N

2

)
Ts/τ1

))2

σ 2
amp + σ 2

ADC
, (29)

which is an analytic function of the CCD noise parame-
ters, the filter coefficients and a set of design variables γ =
{G0, τ1, τ2, Ts, N, B, VFSR}. The signal power, the reset noise and
the amplifier noise are proportional to G2

0, therefore changing the
gain only affects the overall SNR due to the quantization noise.

The optimization is performed as follows. Given a fixed set of de-
sign variables γ̃ = {G̃0, τ̃1, T̃s, Ñ, B̃, ṼFSR}, the noise coefficients
σ 2

m and σ 2
m,t (jTs) can be pre-computed with a single, finite-length

numerical integration, and the SNR can be expressed solely as a
function of the filter coefficients. Since the SNR is a highly non-
linear function, the filter optimization is carried out by fixing the
pixel gain and minimizing the noise. Hence, the optimization prob-
lem is formulated as

minimize
h

σ 2
read(h, γ̃ ) = σ 2

amp + σ 2
ADC

subjectto

N∑

j= N
2 +1

hj

(
1 − e−

(
j− N

2

)
T̃s/τ̃1

)
= 1

N∑

j=1

hj = 0. (30)

This problem can be solved with standard optimization software
tools (Fourer, Gay & Kernighan 2003; Byrd, Nocedal & Waltz
2006). The overall optimization is performed as a semi-exhaustive
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Optimal CCD readout by DCDS 1447

Figure 2. Simulation diagram: for each pixel, the reset voltage, pixel charge
and amplifier noise are randomly generated and added as voltages. Time-
and frequency-domain models can be selected for noise generation. An
analogue filter is emulated with the simulation time-step, and then the signal
is downsampled to Ts. The ADC electronic noise is added and the signal is
quantized. Finally, the digital filter is applied to compute the error.

search in the design space γ , which is usually bounded by the ap-
plication requirements, available hardware and other design-related
trade-offs.

5 D C D S R E A D O U T S Y S T E M S I M U L AT I O N
SETUP

Based on the mathematical description of the DCDS readout system
presented in Section 2, a set of simulations were programmed in
MATLAB. As depicted in Fig. 2, a random reset voltage Vr is generated
for each pixel. The pixel charge is computed as a random, integer
number of electrons ne, which is converted into voltage with the
output sensitivity and added to the reset voltage at t = td. The
amplifier PSD is defined by white noise and a single low-frequency
noise component, hence

S(iω) = As + Af |ω|b, (31)

with −2 ≤ b ≤ −1. It is usual to describe the low-frequency noise
amplitude by the corner frequency fc, defined as the frequency at
which the low-frequency noise power is equal to the white noise
power. In this case,

S(iω) = As

(
1 +

∣∣∣∣
ω

2πfc

∣∣∣∣
b
)

(32)

and Af = As(2πfc)−b.
For completeness, the noise can be generated by two methods.

(i) Time-domain (T-D) generation of noise pulses, based on the
method proposed by Pullia & Riboldi (2004).

(ii) Frequency-domain (F-D) generation of noise, implemented
by the method proposed by Kasdin (1995).

The noise is added to the signal, and the analogue filter, described
by G0, τ 1 and τ 2, is emulated to obtain the signal at the ADC
input. The time-step of the simulation is defined by an oversam-
pling rate over Ts for accuracy in the noise generation and filter-
ing, so the signal is downsampled to Ts at the ADC to generate
N samples. The ADC electronic noise is added to these samples,
which are quantized with resolution B over a voltage range VFSR

and digitally filtered by the FIR described by h. The pixel value
is converted to electrons and compared with ne to compute the er-
ror. The simulation is entirely determined by the design variables

γ = {G0, τ1, τ2, Ts, N, B, VFSR}, the filter coefficients and the sys-
tem parameters ζ = {As, Af, b, Sv, σe}.

6 TH E O R E T I C A L A N D S I M U L AT E D R E S U LTS

A set of theoretical and simulated results are presented to validate
the theory and illustrate the potential of the proposed method. The
results were generated for the two sets of parameters shown in
Table 1, which are characterized by the noise PSD depicted in
Fig. 3. The CCD1 parameters were estimated from Cancelo et al.
(2012), whereas the parameters for CCD2 were taken from Tulloch
(2013), which depicts a typical E2V CCD. The LSB is set to 1
electron, so a full-well of up to 262.144 electrons could be read for
an 18-bit ADC, and the ADC electronic RMS noise σ e was set at
3". The high-pass filter time constant is fixed at 10 Hz to keep the
signal integrity.

Figs 4 and 5 show a set of optimal filter coefficients for different
scenarios. Since CCD2 has a higher corner frequency than CCD1,
the optimal coefficients for CCD2 are always steeper near the charge
dump, which is consistent with the principle introduced by Gach
et al. (2003). Figs 4(a) and (b) show that the coefficients are not
symmetrical for low bandwidths, whereas for a higher bandwidth
as in Figs 4(c) and (d), the optimal filter approaches those already
reported in the literature for ideal signal setting (Alessandri et al.
2013). These results can be understood by considering that a lower
bandwidth enlarges the noise temporal correlation, thus producing
a better noise cancellation by the subtraction near the charge dump.
Therefore, the optimal solution assigns more weights to the middle
coefficients. However, some samples after the charge dump are
attenuated because the charge is not fully settled, thus there is an
optimal bandwidth for this trade-off. In this case, for both CCDs the
noise performance was better at 1 MHz. This approach defies the
accepted convention to use a high bandwidth and discard samples
until the signal is settled after the charge dump. Imposing these
conditions, the optimal coefficients tend to be flat but produce a
sub-optimal result due to the additional restrictions. This explains

Table 1. CCD1 and CCD2 noise parameters and sensitivity. The noise PSD
is described by equation (32).

Parameter CCD1 CCD2

As

(
0.5 nV√

Hz

)2 (
1.5 nV√

Hz

)2

fc 20 kHz 150 kHz
b −1.2 −1
Sv 2.5µV/e− 8µV/e−

Figure 3. Noise PSD of CCD1 and CCD2. The noise amplitude is referred
to the sensing capacitor by the sensitivity Sv and shown in units of e−/

√
Hz

for a fair comparison. The low-frequency noise corner frequency fc is marked
for each CCD.
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1448 C. Alessandri et al.

Figure 4. Normalized filter coefficients for a 10 µs sampling window and
100 samples. The optimal coefficients were computed for both CCDs with
1 and 5 MHz bandwidths.

Figure 5. Normalized filter coefficients for a 10 µs sampling window and
2.5 MHz bandwidth. The optimal coefficients were computed for both CCDs
with 50 and 200 samples.

the disagreement between Gach et al. (2003) and Clapp (2012), and
supports the results reported by Tulloch (2013).

Fig. 6 shows the contribution of all noise sources and the total
RMS noise over the pixel rate, taken with a 40 MSPS ADC and
a fixed bandwidth for every pixel rate. The theoretical predictions
are plotted with solid lines, whereas the error bars were generated
with simulations. The simulated results were obtained with the
frequency-domain method for noise generation, although the time-
domain method produces equivalent results. Each simulation point
was computed for 100 pixels and repeated 20 times to compute the
mean value and the error bars. The pixel rate is computed as the
inverse of the sampling window, so it only depends on the sampling
rate and number of samples. The time required for the reset pulse
and charge transfer is not considered because it can vary for different
CCDs and does not depend on the presented method, so the actual

Figure 6. RMS noise along with white and flicker noise contributions
versus pixel rate. The results were generated with a 40 MSPS ADC and
500 kHz bandwidth. The theoretical predictions are plotted with solid lines
and the simulation results are shown by the error bars.

Figure 7. RMS noise versus pixel rate for both CCDs. The standard av-
eraging filter (flat) is compared with the optimal filter computed by the
proposed method (opt). The results were generated with a 20 MSPS ADC
and different bandwidths at the signal conditioning stage.

pixel rate is slightly lower. Due to the corner frequency location,
white noise is dominant in CCD1 over most of the plotted range,
whereas its contribution in CCD2 is dominant below 200 kHz.

The optimal setup was compared with the standard setup for a
DCDS system with flat weights. In the latter, half of the samples
are taken at the reset level. After the charge dump, some samples
are discarded until the signal is settled to "/2 and the remaining
samples are used to compute a simple differential average. Fig. 7
depicts the RMS noise over the pixel rate for both configurations
and different bandwidths at the signal conditioning stage. Since the
optimal filter is computed as a function of the bandwidth for every
pixel rate, the proposed method performs adequately for a typical
range of pixel frequencies, even if the bandwidth is fixed. This is
an appealing feature, since it does not require to modify electronic
components. Furthermore, the proposed method performs better
than the averaging filter for any given bandwidth.
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Optimal CCD readout by DCDS 1449

Figure 8. RMS noise versus pixel rate for both CCDs. The standard averag-
ing filter (flat) is compared with the optimal filter computed by the proposed
method (opt). The results were generated with a 40 MSPS ADC. For each
setup and pixel rate, the bandwidth that produced the lowest noise was se-
lected in order to make a fair comparison of the achievable performance of
both methods.

The overall optimal setup is reached by selecting the best band-
width at each pixel rate, which is a result of the semi-exhaustive
search depicted in Section 4. Fig. 8 shows the RMS noise for both
CCDs read out with an averaging filter and with an optimal filter,
where the optimal bandwidth was selected independently for both
setups in order to make a fair comparison of the achievable perfor-
mance. The optimal filter noise is always lower, and a significant
noise reduction is achieved at high pixel rates due to the use of low
bandwidths and the settling period of the CCD. When white and
low-frequency noise contributions are commensurable, the optimal
coefficients are successful in lowering the noise floor, particularly
at low pixel rates.

7 C O N C L U S I O N

A detailed and thorough mathematical model to describe a DCDS
system was presented. Based on this model, the noise statistics at
the system output were computed as a function of the CCD pa-
rameters and the system design variables. An optimization model
to maximize the SNR was developed, thus providing a systematic
design methodology for an optimal DCDS readout system. Theo-
retical results were compared with realistic simulations to validate
the theory and show the potential of the optimization method. As a
result, the trade-offs involved in the design of a DCDS system were
analysed and previous experimental disagreements were explained.
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APPENDIX A: PULSE SHAPE DERIVATI ON

An arbitrary two-sided noise power spectrum given by

Sm(iω) = Am|ω|αm (A1)

can be expressed as

Sm(iω) = Am
(
(iω)αm/2(−iω)αm/2) (A2)

=
(
A1/2

m (iω)αm/2) (
A1/2

m (iω)αm/2)∗
. (A3)

Following the same procedure shown in Pullia & Riboldi (2004),
the frequency core pulse is given by

H (iω) = A1/2
m (iω)αm/2 (A4)
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1450 C. Alessandri et al.

and the frequency core pulse after a system G(iω) can be computed
as

Ym(iω) = A1/2
m (iω)αm/2G(iω), (A5)

which is a hermitian function. The time-domain core pulse can be
computed in terms of the system impulse response g(t) and the
Fourier derivative property as

ym(t) =
√

Am
dαm/2

dtαm/2
g(t), (A6)

which is a real function. The core pulse is finally scaled in amplitude
to make the noise energy consistent with the arrival rate

ỹm(t) =
√

Am

ν

dαm/2

dtαm/2
g(t). (A7)

A P P E N D I X B : AU TO C O R R E L AT I O N ,
PSD AND STATIONARITY

Consider the Fourier transform pair from Appendix A

ym(t) → Ym(iω). (B1)

The autocorrelation function of ym(t), defined as

Ry(t1, t2) =
∫ ∞

−∞
ym(τ − t1)ym(τ − t2)dτ

=
∫ ∞

−∞
ym(τ ′)ym(τ ′ − (t2 − t1))dτ ′, (B2)

can be expressed only as a function of t = t2 − t1

Ry(t) =
∫ ∞

−∞
ym(τ )ym(τ − t)dτ. (B3)

If Ry(t) is absolutely integrable, its Fourier transform can be com-
puted as

Sy(iω) = Ym(iω)Ym(iω)∗

=
(
A1/2(iω)α/2G(iω)

) (
A1/2(iω)α/2G(iω)

)∗

= A |ω|α |G(iω)|2 , (B4)

which is the noise spectrum of Sm(iω) referred to the ADC input,
whereas the full spectrum Sc(iω) can be computed from superpo-
sition. Therefore, Sc(iω) is a wide sense stationary (WSS) process
if

1
2π

∫ ∞

−∞
Sm(iω) |G(iω)|2 dω < ∞. (B5)

for all m. This means that even if Sm(iω) is not WSS, like flicker
noise components, the noise at the ADC input can behave as a
WSS process if the signal conditioning stage has a high-pass filter.
Furthermore, even in the absence of a high-pass filter, the limited-
bandwidth approximation of flicker noise produces the same result.
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