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ABSTRACT

In the last few years, language models have made great advances in Natural Language

Processing (NLP). In particular, the pre-training and fine-tuning of models such as BERT

(Bidirectional Encoder Representations from Transformers) and its derivatives have be-

come the state of the art in many language understanding tasks (Devlin et al., 2018). One

interesting research field that uses NLP language models is the one that studies the similar-

ity between texts (Shahmirzadi, Lugowski, & Younge, 2019; Wang & Dong, 2020). These

texts can be anything from large documents or paragraphs, to sentences or short phrases.

Much of the difficulty with this problem is that text, in general, is not well structured.

Different techniques have been used to try to understand the context of texts and thus un-

derstand the semantics of the documents. Naturally, if the texts are longer, this becomes

a more difficult task. Within the study of similarity between texts, recent attempts have

been made to study the relationship between pairs of scientific articles (Knoth, Novotny,

& Zdrahal, 2010; Knoth et al., 2017; Tarnavsky, Harpaz, & Perets, 2021). When com-

paring scientific articles, it is possible to take advantage of the fact that the document is

divided in different parts, such as the title, abstract, conclusions, and other sections. Al-

though the text is still unstructured data, this partition gives some structure to the input

text. This property also allows to work with smaller pieces of text, and thus, getting a

better understanding of the context. In this work we use BERT to propose a pipeline that,

given a publication, delivers related publications: scientific articles that may be of inter-

est to the reader. To achieve this we deal with two NLP problems applied to scientific

articles: text classification and sentence-pair classification. The labels of these problems

come from hierarchical strutured information provided by the authors. We use the base

version of BERT to understand the semantic meaning of the publications using only the

information from the abstracts and the title, and build models for each task. These models

are evaluated in terms of precision, recall, and F1 score.
xii



Keywords: natural language processing, BERT, sentence pair classification, similarity

measures.
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RESUMEN

En los últimos años, los modelos de lenguaje han experimentado grandes avances en el

Procesamiento del Lenguaje Natural (NLP). En concreto, el pre-entrenamiento y el desar-

rollo de modelos como BERT (Bidirectional Encoder Representations from Transformers)

y sus derivados se han convertido en el estado del arte para muchas tareas de comprensión

del lenguaje. Un campo de investigación interesante que utiliza modelos lingüı́sticos de

PNL es el que estudia la similitud entre textos (Shahmirzadi et al., 2019; Wang & Dong,

2020). Estos textos pueden ser desde grandes documentos o párrafos, hasta oraciones o

frases cortas. Gran parte de la dificultad de este problema radica en que los textos, en gen-

eral, no están bien estructurados. Se han utilizado distintas técnicas para tratar de entender

el contexto de los textos y comprender ası́ la semántica de los documentos. Naturalmente,

si los textos son más largos, esto se convierte en una tarea más difı́cil. Dentro del estudio

de la similitud entre textos, recientemente se ha intentado estudiar la relación entre pares

de artı́culos cientı́ficos (Knoth et al., 2010, 2017; Tarnavsky et al., 2021). Al comparar

artı́culos cientı́ficos, aprovechamos que el documento está dividido en distintas partes,

como el tı́tulo, el resumen, las conclusiones y otras áreas. Aunque siguen siendo datos

no estructurados, dan cierta estructura al texto de entrada. Esta propiedad también nos

permite trabajar con fragmentos de texto más pequeños y, por tanto, comprender mejor

el contexto. En este trabajo utilizamos BERT para proponer un pipeline que, dada una

publicación, entregue publicaciones relacionadas: artı́culos cientı́ficos que puedan ser de

interés para el lector. Para ello, abordamos dos problemas de NLP aplicados a artı́culos

cientı́ficos: la clasificación de textos y la similitud entre pares de textos. Las etiquetas para

los conjuntos de datos de estos problemas proceden de información jerárquica estructurada

provista por los autores. Además, utilizamos la versión base de BERT para comprender

el significado semántico de las publicaciones utilizando únicamente la información del
xiv



resumen y el tı́tulo, mediante la construcción de modelos para cada tarea. Estos modelos

fueron evaluados en términos de precisión, recall y puntuación F1.

Conceptos Clave: procesamiento del lenguaje natural, BERT, similitud entre pares de

textos, medidas de similitud.
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1. INTRODUCTION

1.1. Motivation

The last decade has seen many advances in the study of natural language processing

(NLP). This branch of artificial intelligence (AI) is about learning to process language

like humans do. Specifically, language models such as BERT (Devlin et al., 2018) or its

derivatives have had great achievements in tasks in this area, and have radically changed

the paradigm of how language problems are treated: starting from understanding the con-

text, one can begin to succesfully solve difficult problems.

In this work we are interested in comparing and relating scientific articles using NLP

techniques. In particular, given an article submitted by a reader, we want to find articles

related to it that are of interest to this reader. As the publications are long texts and the

number of publications grows at a high rate, doing the work of comparing and finding

relationships between scientific articles becomes a very difficult task for humans. This is

why we have to take advantage of the new technologies and techniques that allow us to

process large volumes of data, in order to learn how to make comparisons automatically.

To narrow down our problem, we only focused on computer science scientific articles,

since they are easy to access and their information is generally well structured.

We believe that we can use a small part of the documents to make comparisons between

different publications and determine which ones are related under some predefined criteria,

as in our case: that they are of interest to the reader. Moreover, we propose that using only

the title and the abstract of the documents, which is in general open source information,

we can find the relationships between the publications. We argue that the techniques that

are based on making clusters or graphs using citations are not enough to solve the problem,

since they carry the bias that authors present when referencing. This is due to the fact that

authors can have citation niches, or self-citations (Hyland, 2003; Aksnes, 2003; Engqvist

& Frommen, 2008; Teodorescu & Andrei, 2014). Although self-citations and citation
1



niches can strengthen the author’s knowledge claims (Hyland, 2003), and thus can be

positive, we believe that making recommendations based solely on this aspect leaves out

other interesting articles that may be from other niches or authors. These methods also

do not take into account that the main function of referencing other research is to provide

relevant information for the understanding of the study, not to indicate which documents

are related.

Our research involves using hierarchical structures provided by the authors to classify sci-

entific publications. These structures are trees, and they are organized into nodes that

represent the specific research fields to which the publication belongs. The level of speci-

ficity increases as we move further down the tree. In Figure 1.1 we can see an example

Figure 1.1. Example of a possible instance of a the hierarchical structure
used in this research.

of this type of hierarchical structure. This tree corresponds to a scientific publication. As

mentioned above, the nodes correspond to fields of study related to the scientific article,

and the depth levels give more specificity about the subjects. If we look at the nodes of
2



depth 1 (“Computer Science” and “Linguistics”), we can deduce that, probably, this pub-

lication is about the study of language using computational techniques. If we go down a

level, we have more detailed information. In addition to using computer science to deal

with a language problem, we can see that the area of ”Machine Learning” is used, so we

are probably talking about NLP. On the other hand, not only do we know that we are work-

ing with linguistics, but with semantics in language. This way we can keep going down

levels, getting more specificity and clarification about what are the article main ideas. In

this example, if we take all levels into account, we will probably come to the conclusion

that this is a problem related to the liguistics-sematics field that is related to NLP, using

classification models and linguistic models such as BERT and GPT-3. As one can see from

the example of Figure 1.1, these kind of representation gives a lot of information about

the publications. As the authors are the ones who provide this hierarchical structure rep-

resentation for each document, we can be confident in its accuracy and quality. One of the

main contributions of our research is using this hierarchical information to understand and

classify the content in scientific articles, and because it comes directly from the authors,

we can trust that it is accurate.

1.2. Main results

In this work we focus on the independent components that are necessary to build a rec-

ommender system that solves the problem stated above: given a publication, output a list

of publications related to it, which may be of interest to the reader. Concretely, the main

contributions we make with this research are the following:

• We propose using a hierarchical structure to understand the information in sci-

entific articles, and consider it to be the ground truth of our experiments.

• We reintroduce a measure of similarity for trees that we call the Weighted Jac-

card Index. This similarity measure takes two trees and, in relation to the num-

ber of shared nodes, non-shared nodes and the length of the branches, provides
3



a similarity value. To the best of our knowledge, we present the first modifica-

tion to the Jaccard index that takes into account hierarchical structures, assigning

different weights based on the depth of the tree.

• We build two independent classification models that are the main components

of a recommender system pipeline. The first one consists of a model to classify

a scientific article into a research area. The second consists of a model to deter-

mine how much two publications are related, using the criteria that they are of

common interest to the reader. We do this by fine-tuning BERT using a dataset

that has tree-shaped structures as labels, which were provided by the authors.

• To the best of our knowledge, we propose a new pipeline based on fine tuning

the BERT language model to recommend articles to a reader given a publication.

1.3. Organization of the document

We start with the related work and explain the differences with the problem we try to solve

in Section 2 and then present the main terminology used throughout this work in Section

3. We introduce and reformulate the definitions needed for the theory behind our research

in Section 4. In Section 5 we present the pipeline of our solution. We then give in Section

6 the detailed design of our experiments, and in Section 7 we discuss the obtained results.

Finally, we provide the summary of the research, some conclusions and mention possible

lines of future work in Section 8.

4



2. RELATED WORK

There are different approaches that try to solve the problem of building relationships be-

tween scientific articles. We will briefly present these solutions and explain why we con-

sider they are not sufficient for solving our problem.

One solution that can be observed in practice is the CORE recommender tool (Knoth et

al., 2010, 2017). CORE is an aggregator of open access research papers from repositories

and journals. One of the tools provided by the CORE platform is the CORE recommender,

which is responsible for obtaining instant recommendations and discovering articles of in-

terest given a user. CORE’s initial approach in 2010 (Knoth et al., 2010) was to search

for relationships between publications by vectorizing the documents using Tf-Idf (Jones,

1972) and then calculating cosine similarity. In this way they linked articles in pairs. To

evaluate their performance they had human-made links, which they considered as ground

truth. Then, CORE presented in 2017 a new solution based on vectorizing the title, ab-

stract, authors and the year of publication, and then applying cosine similarity (Knoth et

al., 2017) to compute the relation between publications. For this research, they evaluated

the model using co-citation (Small, 1973) and citation networks as ground truth. Although

this solution is focused on understanding the text, the language models used in our work

have shown to have a considerably higher performance than the methods mentioned above

(Devlin et al., 2018). In addition, we do not use the entire body of the article and focus on

a very small part of the text corpus, which helps to reduce the noise generated by many

sections of the articles.

Another tool that tries to solve the problem of relating scientific publications is the one

provided by Connected Papers (Tarnavsky et al., 2021). They compute the similarity be-

tween texts using co-citation and bibliographic coupling (Kessler, 1963) over publications.

We believe that this approach is not sufficient to solve the problem of relating two scien-

tific articles, since we can often see patterns of self-citations and reference niches between
5



the authors (Hyland, 2003; Aksnes, 2003; Engqvist & Frommen, 2008; Teodorescu & An-

drei, 2014). In this way, the relationship graph generated by Connected Papers is biased

by these closed niches, which limits the circle of papers that the system can recommend.

Finally, the Toronto Paper Matching System (Charlin & Zemel, 2013) tries to solve a re-

lated problem: assignment of reviewers to articles at conferences. The relationship of this

solution to our problem is that one step of the recommender system consists of comparing

the articles written by the readers and the publications to be reviewed at the conference.

The technique they use is word count representation to build vectors and then apply cosine

similarity to get the relationship between the items. They evaluated their models using two

conference reviewer-article datasets. Again, language models like BERT achieve much

higher performance than the techniques used in this work.

The ideal scenario to evaluate the quality of the models that we build is to compare the

performance metrics obtained in the experiments with those of other related works (for

example, the mentioned above). However, to the best of our knowledge, there is no work

in the literature that uses the ground truth we use, which are hierarchical structured labels

called Index Terms (see Section 3.3). This is why we cannot use the evaluation datasets of

the related works mentioned above, since their ground truth structures are different from

the one we use.

6



3. PRELIMINARIES

In this section, we will describe the definitions and the notation we will use that is already

defined in the literature.

3.1. Similarity measures

Similarity measures are something we work with frequently. For example, in graph theory

we can use them to assign the weights of the edges between vertices. In this work, we

repeatedly use similarity measures, which is why we think that readers should know well

this concept. Definition 1 states the axioms of a similarity measure (S. Chen, Ma, &

Zhang, 2009).

DEFINITION 1 (Symmetric similarity measure). Given a set X , we say that a real-valued

function s(x, y) on the Cartesian product X ⇥X is a symmetric similarity measure if, for

every x, y, z 2 X , it satisfies the following conditions:

(i) s(x, y) = s(y, x),

(ii) s(x, x) � 0,

(iii) s(x, x) � s(x, y),

(iv) s(x, y) + s(y, z)  s(x, z) + s(y, y),

(v) s(x, x) = s(y, y) = s(x, y) if and only if x = y.

Furthermore, a normalized symmetric similarity measure is a symmetric similarity mea-

sure that satisfies the following property:

0  s(x, y)  1

For those readers who want a better understanding and a more detailed analysis of what

these axioms mean and their relation to a distance metric, we strongly recommend further
7



reading the topic (S. Chen et al., 2009; Kosub, 2019; Rozinek & Mareš, 2021). Through-

out this work we will omit the term symmetric, since we will only work with symmetric

similarity measures. For example, instead of writing normalized symmetric similarity

measure we will write normalized similarity measure. A typical example of a normalized

similarity measure is the Jaccard index. The Jaccard index between two sets A and B is the

total number of elements they have in common, divided by the total number of elements:

J(A,B) :=
|A \B|
|A [B|

We leave it as an exercise for the reader to prove that it is indeed a normalized similarity

measure.

3.2. Subtrees of a fixed tree T

Given a fixed tree T , we are interested in the subtrees of T . Since T is fixed we can

represent each subtree of it as the set of nodes the subtree contains. Also, we are going to

say that a subtree of T is a valid subtree of T if and only if the root of T is also in the

subtree. We are going to use some set notations to refer to trees and subtrees and we are

going to illustrate the main ideas along with some simple examples.

1

2

76 8

4

5

3

9

Figure 3.1. Example of a fixed tree T = {1, 2, 3, 4, 5, 6, 7, 8, 9}, whose
root is the node 1.

8



If we look at Figure 3.1, we can say that 1 2 T since the node 1 belongs to the tree. Also,

the tree defined as T1 = {1, 2, 3, 4} is a sub-tree of T , and if T2 = {1, 2, 3, 4, 7, 9}, then

T1 is a subtree of T2.

However if T3 = {2, 5, 6}, then we will say that T3 is not a valid subtree of T because

1 62 T3 (the root of T is 1, and 1 62 T3). We can also use all the other operations over

sets: for example, given two trees A and B, the intersection will be denoted as A \ B

and the union A[B. The complement and the difference between trees will be written as

usual. The symmetric difference between A and B, which is defined as (A\B)[ (B \A),

will be denoted as A�B. Note that unlike the intersection and the union of two trees,

the complement, the difference and the symmetric difference can generate sets that are

not trees (simply sets of nodes). Throughout this work, we will treat these operations as

clearly as possible for the reader to understand it correctly.

On the other hand, we are also going to make use of some functions that are going to help

us to formalize some properties that we are going to use. Given a subtree T of T with

the same root as T and N 2 T , depth(N, T ) will be the function that returns the depth of

node N in the tree T (considering that the root of T has depth 0). In Figure 3.1, we have

that depth(1, T ) = 0, depth(5, T ) = 2, and so on. The function addChild(T,N) will

return the tree T adding the node N , as long as the parent of N is in T . For example in

Figure 3.1 if T1 = {1, 2, 3}, then addChild(T1, 9) = {1, 2, 3, 9} but addChild(T1, 8) is

not a valid use of this function, because 4 62 T1. In any case, for the purpose of this work

we will always use this operator in a valid way. As we mentioned before, we will use a

fixed tree for this whole investigation. This will allow us to lighten the notation throughout

this work by omitting the fixed tree in the functions. From now on, the reader will be able

to deduce it from the context. For example, we will no longer need to write depth(1, T ),

because if we know that we are working with T , depth(1) will be enough to know we are

referring to the depth of node 1 of the tree T .
9



Since we are working with sets, we are also going to make use of functions over sets. We

are going to focus on two properties in particular. Let ⌦ be a finite domain and f : 2⌦ ! R
a set function. We say that the function f is an increasing function if f(A)  f(B) holds

for all A ✓ B ✓ ⌦. Furthermore, we say that f satisfies the submodularity property

(Filmus, 2013) if f(A [ B) + f(A \B)  f(A) + f(B) for all A,B ✓ ⌦.

Figure 3.2. Example of the ACM Index Term for the article Computational
complexity theory (Loui, 1996).

3.3. ACM Computer Classification System

The 2012 ACM Computer Classification System (CCS) is a standardized classification

system for scientific publications. Although this system is adaptable to specific needs

over time and can be modified, the ACM CCS provides a clear and standard classification

structure. This system consists of a Directed Acyclic Graph (DAG) starting with 13 base

categories defined in ACM (for more information you can see (for Computing Machinery,

2012)).

Every time a scientific article is submitted to ACM, the author must provide the corre-

sponding indexing of the categories to which the publication belongs. The specific cat-

egorization of a publication is called the Index Terms. Such a specific categorization,

10



containing the knowledge of the authors themselves, leads to a very reliable classifica-

tion system (obviously subject to the study areas provided by ACM). For example, the

Index Term the article “Computational complexity theory” (Loui, 1996) is shown in Fig-

ure 3.2. We can see that Figure 3.2 shows “tree-structured” Index Terms, however we can

also get other types of Index Terms structures. We can see in Figure 3.3 that the article

“Algorithm-based recovery for iterative methods without checkpointing” (Z. Chen, 2011)

has “DAG-structured” Index Terms: the sub-area “Parallel programming languages” has

two different parents. Moreover, this node has diferent depths in the two paths shown in

Figure 3.3.

If we connect all the labels provided by the ACM CCS (connecting the parents study

areas with their children) we get a fixed DAG that we will call DAGACM, which contains

1903 nodes. Thus, each publication in ACM can be viewed as a sub-DAG of DAGACM.

However, later we transform this DAG into a tree so that operations can be performed

more conveniently. We will be left with an ACM fixed tree TACM that contains 1773 nodes

and covers over 82, 6% of all the ACM publications we scraped. The entire transformation

process can be seen in detail in Section 6.1.2.

3.4. BERT

In this NLP research we work with the BERT language model. BERT stands for Bidirec-

tional Encoder Representations from Transformers which is presented in 2018 by Google

(Devlin et al., 2018). Specifically, we work with both the base and large uncased versions

of this language model, which were introduced in the original paper. BERT is designed

in a way such that it comes with pre-trained bidirectional representations from unlabeled

text. This method gives the model the “intuition” of what the language is, understanding

its context. BERT was pre-trained using a book corpus (800 million words) and English

Wikipedia (2.5 billion words) as input corpus in a self-supervised way. As a result of this

pre-training, the BERT model can be adjusted to different NLP tasks, such as text clas-

sification and question answering, only by adding few simple layers and fine-tuning it (a
11



Figure 3.3. ACM Index Term for the article Algorithm-based recovery for
iterative methods without checkpointing (Z. Chen, 2011).

specific way of training an existing model). We will briefly explain how these processes

are carried out. If the reader wishes to understand further and delve in this model we

recommend to read the original paper (Devlin et al., 2018).

The BERT pre-training process is done using two techniques: Mask Language Modeling

and Next Sentence Prediction. In simple words, Mask Language Modeling consists of,

given a phrase from the pre-training dataset, hiding some words from it and predicting

them using the context given by the phrase. This action allows the model to learn how

to contextualize words in sentences. On the other hand, Next Sentence Prediction is per-

formed by taking two sentences, A and B, and solving the task of deciding if sentence B

comes after A. This allows a better understanding of the continuity relationship between

sentences. Note that BERT models and their derivatives come pre-trained with a corpus.

However, you can continue pre-training with your own corpus.

On the other hand, the Bert fine-tuning process consists of, for each task, simply plugging

the task-specific inputs and outputs into BERT and fine-tune a part or all the parameters
12



of the model. This is considerably faster than the pre-training part. The amount of data

for this process is in the order of thousands of samples (it requires more data depending

on the difficulty of the problem), which is considerably smaller than the amount of data

used for the pre-training process. However, in most tasks we need good labeled datasets,

which we know are difficult to obtain, so fine-tuning BERT can be very hard without the

right data. Both pre-training and fine-tuning processes are depicted in Figure 3.4.

Figure 3.4. Pre-training and fine-tuning process ilustrations of BERT
(Devlin et al., 2018).

As we mentioned before in the document, we plan on fine-tuning BERT for both compo-

nents of the solution. We will explain this process in detail in Section 6.
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4. METHODOLOGY

In this section we are going to delve deeper into what is the theory behind our research.

We are going to introduce and reformulate some definitions that will be important to un-

derstand the experiments and results.

4.1. Similarity measure for ACM CCS

In section 3.2 we described the data structure that we use throughout this work. Much of

this research has to do with calculating similarity between the sub-trees of TACM presented

in section 3.3. Furthermore, we must measure similarity between many pairs of these sub-

trees. We would like to use a similarity measure s(·, ·) that meets some conditions. Let

T1, T2, T3, T4 be sub-trees of T . Then:

C.1 If T1 ✓ T2, N1, N2 2 T2, N2 62 T1, depth(N1)  depth(N2) and T 0
1, T

00
1 are the

subtrees generated as follows

T 0
1 := T1 [ {N1}

T 00
1 := T1 [ {N2},

then s(T 0
1, T2)  s(T 00

1 , T2) and s(T1, T 0
1) � s(T1, T 00

1 ).

C.2 Assume that T1 ✓ T3 and T2 ✓ T4.

(a) If T1 \ T2 = T3 \ T4 then s(T1, T2) � s(T3, T4).

(b) If T1�T2 = T3�T4 then s(T1, T2)  s(T3, T4).

Property C.1 indicates that when calculating the similarity of two trees, the deeper a shared

node is, the more it must contribute (positively) to the similarity, because the subtrees

share more detailed information. For example, in Figure 4.1 we can see that T 0
1 and T 00

1

have been created from the tree T1. Since T 0
1 was built by adding node 5 (depth 2) and T 00

1

by adding node 3 (depth 1) then s(T 0
1, T2) � s(T 00

1 , T2). Property C.2 (a) indicates that a

greater difference of nodes between the sub-trees imply a greater negative contribution to
14



the similarities. In order to visualize what C.2 (a) says, let us look at Figure 4.2a. One can

observe that T1 ✓ T3, T2 ✓ T4 and T1 \ T2 = T3 \ T4. It would be reasonable for the

similarity between T1 and T2 to be higher than the similarity between T3 and T4, since the

only difference when comparing T1 with T2 vs. T3 with T2 is the set of nodes in B and E.

These two sets make T3 and T4 “more” different. On the other hand, C.2 (b) states that a

greater co-occurrence of nodes between the sub-trees imply a greater positive contribution

to the similarities. To visualize what this condition is trying to say, let us look at Figure

4.2b. We see that T1 ✓ T3, T2 ✓ T4 and T1�T2 = T3�T4. Since the difference between

T1 and T2 is the same as the difference between T3 and T4, then it makes sense that the

pair of trees with the most parts in common is the most similar pair. Since T3 and T4, in

addition to having the nodes of D in common, have the nodes of C in common, then T3

with T4 are more similar than T1 with T2.

One property that can be derived from C.2 is the following one: if T1 ✓ T2 ✓ T3 then

s(T1, T3)  s(T2, T3) and s(T1, T2) � s(T1, T3). The proof of this implication is left as an

exercise for the reader.

In the following section we are going to introduce a normalized similarity measure that

satisfies the properties stated above.

4.2. Weighted Jaccard Index for tree similarity

Given two trees T1, T2 subtrees of T the Jaccard index J(T1, T2) is well defined and can be

calculated as usual (because we see every tree as a set). However, this similarity measure

does not meet our requierements since we want it to fulfill the conditions C.1 and C.2.

This is why we define the Weighted Jaccard Index for this data structure as follows.

DEFINITION 2 (Weighted Jaccard Index). Let T be a fixed tree and T1, T2 subtrees of it.

Let f be a monotonically increasing function. We define the sum transformed by f over a
15



(a) T1 = {1, 2, 4} (b) T2 = {1, 2, 3, 4, 5, 6, 7, 8, 9}

(c) T 0
1 = {1, 2, 4, 5} (d) T 00

1 = {1, 2, 3, 4}

Figure 4.1. Examples of valid sub-trees of the fixed tree presented in Fig-
ure 3.1.

set of nodes S ✓ T as

Sumf (S) :=
X

N2S

f(depth(N))

Then the Weighted Jaccard Index for a function f is defined as

Jf (T1, T2) :=
Sumf (T1 \ T2)

Sumf (T1 [ T2)

Notice that every formula in Definition 2 is constructed based on T . Having said this,

note that by construction, the function Sumf is a non-negative increasing set function.

Moreover, it is easy to see that it satisfies the submodular property introduced in Section

3.2:

Sumf (S [ T ) =
X

x2S[T

f(depth(x))
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(a) T1 = {Root} [A [ C
T2 = {Root} [D [ C
T3 = {Root} [A [B [ C
T4 = {Root} [ C [D [ E

(b) T1 = {Root} [A [D
T2 = {Root} [B [D
T3 = {Root} [A [ C [D
T4 = {Root} [B [ C [D

.

Figure 4.2. Instances of trees created to illustrate Conditions C.1 and C.2

=
X

x2S

f(depth(x)) +
X

x2T

f(depth(x))�
X

x2S\T

f(depth(x))

= Sumf (S) + Sumf (T )� Sumf (S \ T )

THEOREM 1. The Weighted Jaccard Index is a normalized measure of similarity. More-

over, it satisfies conditions C.1 and C.2.

PROOF. (Theorem 1) We will first show that it is a normalized similarity measure. For

this we must show the five axioms of Definition 1 and then show that the values of the

function fluctuate between 0 and 1. The axioms 1, 2, 3 and 5 can be easily proven. We

leave them as exercise to the reader. We also know that it is normalized since

0  Sumf (T1 \ T2)

Sumf (T1 [ T2)
= Jf (T1, T2)  1

because Sumf (T1\T2)  Sumf (T1[T2). The more interesting and slightly complicated

axiom to prove is axiom 4. Since Jf (A,A) = 1 for every sub-tree A, it is enough to

show that Jf (A,C) + Jf (C,B)  Jf (A,B) + 1. If A,B or C are the empty set then the
17



inequality trivially holds. Let us suppose then that A,B,C 6= ;. We will use the following

lemma and corollary directly in this proof.

LEMMA 1 ((Kosub, 2019)). Let f : 2⌦ ! R be a non-negative increasing set function

that satisfies the submodular property and let A,B,C ✓ ⌦. Then,

f(A \ C)f(B [ C) + f(A [ C)f(B \ C)  f(C)(f(A) + f(B))

COROLLARY 1 ((Kosub, 2019)). Let f : 2⌦ ! R be a non-negative increasing set func-

tion that satisfies the submodular property and let S, T ✓ ⌦. Then,

f(S \ T )f(S [ T )  f(S)f(T )

As we stated previously, f is a non-negative, increasing function that satisfies the submod-

ular property. We can now finish proving that Jf is a normalized similarity measure by

using these tools.

Jf (A,C) + Jf (C,B)

=
Sumf (A \ C)

Sumf (A [ C)
+

Sumf (B \ C)

Sumf (B [ C)

=
Sumf (A \ C) · Sumf (B [ C) + Sumf (A [ C) · Sumf (B \ C)

Sumf (A [ C) · Sumf (B [ C)

 Sumf (C)(Sumf (A) + Sumf (B))

Sumf (A [ C) · Sumf (B [ C)
(by Lemma 1)

Using Corollary 1 and taking S := A [ C and T := B [ C we have that

Sumf (C)(Sumf (A) + Sumf (B))

Sumf (A [ C) · Sumf (B [ C)

 Sumf (C)(Sumf (A) + Sumf (B))

Sumf ((A [ C) \ (B [ C)) · Sumf (A [B [ C)

 Sumf (C)(Sumf (A) + Sumf (B))

Sumf ((A [ C) \ (B [ C)) · Sumf (A [B)
(Sumf (A [B)  Sumf (A [ B [ C))
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=
Sumf (C)

Sumf ((A [ C) \ (B [ C))
· Sumf (A) + Sumf (B)

Sumf (A [ B)

=
Sumf (C)

Sumf ((A \B) [ C))
· Sumf (A) + Sumf (B)

Sumf (A [ B)

 Sumf (C)

Sumf (C)
· Sumf (A) + Sumf (B)

Sumf (A [B)
(Sumf (C)  Sumf ((A \B) [ C))

=
Sumf (A [ B) + Sumf (A \B)

Sumf (A [ B)

=
Sumf (A \ B)

Sumf (A [ B)
+ 1

= Jf (A,B) + 1

So far we have shown that Jf is a normalized similarity measure. It remains for us to show

that it satisfies the conditions C.1 and C.2.

To prove C.1 let T1 ✓ T2, N1, N2 2 T2, N2 62 T1, depth(N1)  depth(N2) and T 0
1, T

00
1 be

T 0
1 := T1 [ {N1}

T 00
1 := T1 [ {N2}

Then, assuming that N1 62 T1 we have that

Jf (T
0
1, T2) =

Sumf (T 0
1 \ T2)

Sumf (T 0
1 [ T2)

=
Sumf (T1 \ T2) + f(depth(N1)

Sumf (T2)

Jf (T
00
1 , T2) =

Sumf (T 00
1 \ T2)

Sumf (T 00
1 [ T2)

=
Sumf (T1 \ T2) + f(depth(N2)

Sumf (T2)

Jf (T1, T
0
1) =

Sumf (T1 \ T 0
1)

Sumf (T1 [ T 0
1)

=
Sumf (T1)

Sumf (T 0
1)
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=
Sumf (T1)

Sumf (T1) + f(depth(N1)

Jf (T1, T
00
1 ) =

Sumf (T1 \ T 00
1 )

Sumf (T1 [ T 00
1 )

=
Sumf (T1)

Sumf (T 00
1 )

=
Sumf (T1)

Sumf (T1) + f(depth(N2)

Since f is monotonically inscreasing and depth(N1)  depth(N2), we have f(depth(N1)) 

f(depth(N2)). This gives us Jf (T 0
1, T2)  Jf (T 00

1 , T2) and Jf (T1, T 0
1) � Jf (T1, T 00

1 ). If

N1 2 T2 then we do the same process and get the same results. This proves Condition C.1.

Finally, to prove Condition C.2 let us suppose that T1 ✓ T3 and T2 ✓ T4. First, if T1\T2 =

T3 \ T4 then

Jf (T1, T2) =
Sumf (T1 \ T2)

Sumf (T1 [ T2)

=
Sumf (T3 \ T4)

Sumf (T1 [ T2)

� Sumf (T3 \ T4)

Sumf (T3 [ T4)
, since T1 [ T2 ✓ T3 [ T4

= Jf (T3, T4)

On the other hand, we want to prove that if T1�T2 = T3�T4 then Jf (T1, T2) 

Jf (T3, T4). We will expand this inequality to see what conditions must be satisfied for

it to be true.

Jf (T1, T2)  Jf (T3, T4)

, Sumf (T1 \ T2)

Sumf (T1 [ T2)
 Sumf (T3 \ T4)

Sumf (T3 [ T4)
, Sumf � 0 so we can cross multiply

, Sumf (T1 \ T2) · Sumf (T3 [ T4)  Sumf (T3 \ T4) · Sumf (T1 [ T2) (4.1)
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To simplify the notation we will define the following values:

A = Sumf (T1 \ T2)

B = Sumf (T3�T4)

C = Sumf ((T3 \ T4) \ (T1 \ T2))

If we rearrange A, B and C in equation 4.1 we have that

Sumf (T1 \ T2) · Sumf (T3 [ T4)  Sumf (T3 \ T4) · Sumf (T1 [ T2)

, A · (A+B + C)  (A+ C) · (A+B)

, A · (A+B) + AC  A · (A+B) + C · (A+B)

, AC  C · (A+B)

, AC  AC +BC

, 0  BC

Since A,B,C � 0, the last inequality is always true. Therefore, Jf (T1, T2)  Jf (T3, T4)

is always satisfied under these conditions. This concludes the proof of Theorem 1. ⇤
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5. ROADMAP

In this section we are going to explain how we are going to deal with the problem that we

set out to solve. We will also present the process that will take place from the arrival of

an abstract (input) to the generation of a list of related publications (output). Recall that

while we present a complete outline of how the recommender system will work, in this

research we focus on the training and testing of the two main components it must have.

In order to solve our problem, we propose a pipeline that, given an abstract, returns related

publications in a way that are of interest for the reader. To achieve this, we divided the

problem into two phases. The first consists in determining, given an abstract, to which area

of research it belongs. The second phase consists of determine how related two abstracts

are. Within the same area of study, there may be publications that are more related than

others. With this second phase we want to be able to determine which publications are

strongly related. From now on we will refer to these phases as Phase 1 and Phase 2.

In general terms, the final pipeline consists of the concatenations of the resulting models

for Phase 1 and Phase 2. Given a publication, the procedure to obtain the most related

publications will be carried out as follows. First, it must be determined to which area

of study the abstract belongs. This will be done by training a ML model to learn how to

classify text into different classes. If the model resulting from Phase 1 predicts the research

area of the input publication with high probability then we will take all the publications of

that study area and compute the similarity with the model of that particular area. We will

refer to these models as “class-specific models” If, on the contrary, the model of Phase

1 fails to determine with certainty the research area of the input abstract, then those that

are most related to the input abstract will be searched among all the publications through

a model who was trained using all classes. These models will be refered as “general

models”. Although we have not yet defined what does “high probability” stands for, we

will after we extensively experiment on the pipeline. The reason behind this decision is

that the values returned by a prediction model depend on the training of the model and can
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change between different models. Defining the “high probability” value will not be a part

of this work.

In order to better visualize and understand this pipeline, let us look at Figure 5.1. Suppose

that, given an input abstract, we want to look for the top 3 most related articles. Let us

also suppose we set the “high probability” value to 0.50. This means that if the Phase 1

classification model manages to classify the input abstract into some class with probability

greater than 0.5, then we trust the model’s decision and believe that the publication really

belongs to the area the model predicted. The first possible scenario is illustrated in Figure

5.1a. The Phase 1 model predicted that the publication belonged to Area 3 with probability

0.65 > 0.5. Since we have exceeded the “high probability” value , we proceed to search

for the most similar publications within all publications in Area 3. We do this with the

class-specific model that we train using only publications from Area 3 and we obtain the

top 3 articles most related to the input. The other possible scenario is illustrated in Figure

5.1b. Although the Phase 1 model predicted that the input corresponded to an instance of

Area 2, it did not exceed the “high probability” value . Therefore we are not sure if the

classification of the model is correct. So, we use the general model that was trained with

all publications areas and we get the top 3 articles most related to the input.

The reasoning behind this pipeline is the following: in case the model is sure of its deci-

sion, the items most related to the input have to belong to the research area of the input.

But if it is not sure of the decision it makes, then we cannot afford to blindly dismiss

publications from the other research areas, because the input could belong to one of them.
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(a) An abstract which was classified by the Phase 1 model as a publication of area 3 with probability
0.65.

(b) An abstract which was classified by the Phase 1 model as a publication of area 2 with probability
0.30.

Figure 5.1. Two possible pipeline flow scenarios. In this examples the
“high probability” value is set to be 0.5.
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6. EXPERIMENTS

In this section we will explain in detail the experiments that we carried out. We are also

going to show where we got the data from and the preprocessing we had to do in order

to feed our ML models. Along with this we will show the technology we use to train our

models and the performance metrics we chose to evaluate the results of the models.

6.1. Data description

In this section, we will provide an overview of the data source and the pre-processing steps

required to generate the input data for the machine learning models.

6.1.1. Data collection

The first step in building our dataset was to download the XML file containing raw data

from the computer science bibliography website DBLP (DBLP, 2019). This file contains

the basic metadata of the publications in DBLP, such as the name, authors, electronic edi-

tion links, among other information. In particular, we worked with the electronic edition

link of each publication, which we will call e.e. link. Readers who are interested in find-

ing out more about what information is available from DBLP can check out DBLP - Some

Lessons Learned (Ley, 2009). The e.e. link refers each publication to the journal or con-

ference page in which it was published. This page contains more specific metadata about

the article, such as abstracts and bibliographic references. Each journals has different in-

formation structured in different ways. The majority of the records contain fields for the

authors, abstract, and references of publications found in DBLP, in addition to the pub-

lication date and DOI. However, as we stated before, ACM has a mandatory field called

the Index Terms of the ACM CCS (which is presented in Section 3.3). As we explained

in Section 3.3, these are DAGs that can be seen as a label for each publication. We can

build labeled datasets by comparing these graphs. It is this feature of ACM publications

and the fact that ACM covers hundreds of thousand of papers that motivated us to focus

only the publications provided by this association. In this way we proceeded to fetch
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the information provided by ACM (open source information) on all the e.e. links in the

XML document available in DBLP. First, we scraped web data from e.e. links. Next, we

processed the scraped data and built a dataset containing four columns: title, e.e. links,

abstracts, and the article’s Index Terms. We call this dataset the ACM dataset.

6.1.2. Data preprocessing

The ACM dataset has 336,439 different publications. As previously mentioned, each entry

in the table includes the title, the e.e. link, the abstract, and the Index Terms DAG. This

DAG is given as a set of paths from an artificial root to each leaf over a total of 1,903

possible nodes. For example, the publication in Figure 3.2 would be given as the following

set of lists:

{[Artificial root, Theory of computation,

Computational complexity and cryptography,

Complexity classes],

[Artificial root, Theory of computation,

Design and analysis of algorithms]}

We noticed some convenient properties that hold for most articles when we did an ex-

ploratory analysis of the ACM dataset’s Index Terms. First, we observed that there are

116,737 different DAGs (a DAG can be used by more than one publication). This allows

us to work with the different graphs instead of all of them, which reduces considerably the

amount of time consumed by the algorithms applied to the dataset. Second, we noticed that

exactly 326,049 of the DAGs were actually trees. This corresponds to more than 96.9% of

all the DAGs in the dataset. Working with trees is easier than working with DAGs, which

is convenient. Third, we found that most of the tree nodes had unique ancestors. We say

that a node has unique ancestors if, across all trees that mention the node, the node has

the same father, grandfather, and so on up to the artificial root. Out of 1,903 nodes, 1,773

have unique ancestors, which consists of more than 93.1% of all Index Terms trees. For

example, Figure 3.3 shows that the node “Parallel programming languages” has at least
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two whole different lines of ancestors, so in the complete DAGACM this node must have at

least two different lines of ancestors. Having said the above, we kept the 1,773 nodes that

had unique ancestors and the trees that only mentioned these nodes. We ended up with a

dataset with 278,061 publications, which corresponds to the 82.64% of the total number

of collected documents, containing 84,244 different Index Terms trees. Even though we

reduced the size of our dataset, the deletion process resulted in labels with more structure.

Each Index Terms tree of the new dataframe is a subtree of big fixed tree TACM (obtained

by removing nodes that have no unique ancestors from DAGACM). In addition to this pre-

processing, we also performed other small transformations to the dataset to simplify some

parts of the experiments, such as creating a column defining the label trees only by the

edges (since our new tree structure allows it), lowercasing all the abstracts, maping the

name of the nodes (research areas) to a unique ID, among other small adjustments. To

keep the notation simple, we will now refer to the tree Index Terms as Index Terms or

labels of the publications.

6.2. Experiments datasets construction

As we have stated before, in order to achieve our goal we we want to solve two problems:

to classify articles into some kind of grouping, and to determine, given an article, which

articles may be of interest to the reader. After we solve these tasks, we will join the

resulting models into one pipeline. For this reason we need to create two new datasets

from the one built in Section 6.1.2 one for each phase. In this section we describe them. In

each phase the data is divided into train and test (80% and 20% of the data respectively).

The train set is used throughout the experiments for the model to learn (it is further divided

into smaller sets to validate the training process), while the test set remains unseen until

the final evaluation.

6.2.1. Publication classification

Given the large number of Index Terms we have, we decided to use (i) the first and (ii)

the second depth levels of TACM for this task: we cannot expect good performance on a
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model that trains by classifying in more than 80,000 different labels. We have thirteen

possible study areas for (i), which are shown in Table 6.1. We also decided to use the

publications whose Index Terms only contained a single class, as each Index Terms tree

could have more than one tag in the first level of depth. For example, the Index Terms

tree of Figure 3.2 only has one class at depth one: “Theory of computation” so we would

consider this publication, but the Index Terms tree of Figure 3.3 has two research areas

at depth one: “Computing methodologies” and “Software and its engineering”, so we do

not include this publication in our dataset. This resulted in a dataset containing 151,316

entries, with the same columns as before. Looking at the TACM, one can see that, although

the first labels are accurate classifications, they are very broad and general. This is why

we decided to also try and solve the classification task by going down one level of depth,

which leads us to (ii). In the second level of TACM there are 67 different areas. Because we

cannot have so many classes, we built clusters of these areas, according to our knowledge

of computer science, forming eight classification classes for our data. These groups can

be seen in Table 6.2. As we did earlier, we decided to work with one-label classification,

so we kept only those entries that belonged to a single class. This resulted in a dataset of

126,600 entries.

Table 6.1. List of research areas in the first level of depth of TACM.

Research areas
General and reference Hardware Computing methodologies
Computer systems organization Networks Applied computing
Software and its engineering Theory of computation Social and professional topics
Mathematics of computing Information systems
Security and privacy Human-center computing

6.2.2. Publications of shared interest

For this task we refer to the problem of sentence-pair classification, a sub-area of sentence-

pair modeling (Yin, Schütze, Xiang, & Zhou, 2016; W. Lan & Xu, 2018), among others.

In simple terms, this consists of, given two sentences, deciding if they belong to the same
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Table 6.2. List of research areas in the second level of depth of TACM with
our proposed clusters.

Research areas and their clusters
Printed circuit boards 1 Intrusion/anomaly det. and malware mitig. 4
Comm. hardware, interfaces and stor. 1 Models of computation 5
Integrated circuits 1 Formal languages and automata theory 5
Very large scale integration design 1 Comput. complexity and cryptography 5
Embedded and cyber-physical systems 1 Logic 5
Power and energy 1 Design and analysis of algorithms 5
Electronic design automation 1 Randomn., geom. and discrete structures 5
Hardware validation 1 Theory and algor. for application domains 5
Hardware test 1 Semantics and reasoning 5
Robustness 1 Discrete mathematics 5
Security in hardware 1 Probability and statistics 5
Architectures 2 Information theory 5
Real-time systems 2 Cryptography 5
Parallel computing methodologies 2 Formal methods and theory of security 5
Distributed computing methodologies 2 Data management systems 6
Concurrent computing methodologies 2 Information storage systems 6
Network architectures 3 Information systems applications 6
Network protocols 3 Information retrieval 6
Network components 3 Database and storage security 6
Network algorithms 3 Document management and text processing 6
Network performance evaluation 3 Artificial intelligence 7
Network properties 3 Machine learning 7
Ubiquitous and mobile computing 3 Modeling and simulation 7
Network services 3 Electronic commerce 8
Network types 3 Enterprise computing 8
World wide web 3 Physical sciences and engineering 8
Systems security 3 Life and medical sciences 8
Network security 3 Law, social and behavioral sciences 8
Accessibility 3 Computer forensics 8
Software organization and properties 4 Arts and humanities 8
Software notations and tools 4 Computers in other domains 8
Software creation and management 4 Operations research 8
Security services 4 Education 8
Software and application security 4

class. A subtask of this problem is given two sentences, classify whether they are equiv-

alent or not. Here, the word “equivalent” can mean different things depending on what
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one considers to be similar. In our task, we will talk about “Index Terms equivalent” (IT-

equivalent), which will mean that the Index Terms are identical. In this work we consider

two articles to be of common interest for the reader when their Index Terms are similar (IT-

similar). As we explained in Section 4 we will use the Weighted Jaccard Index introduced

in Definition 2 to measure similarities between publications.

To use this similarity measure we had to choose a monotonically increasing function f .

Naturally, the first step of this process was to use the identity function. Figure 6.1a shows

a graphic view of the distribution using f(x) = x and the nine clusters of the first level

labels (see Table 7.1 for the research areas). We realized that we needed a function f that

would try to distribute the values as evenly as possible (or at least try to depolarize the

values) through the interval [0, 1], and not concentrate only in the extreme points, since

we planned to sample positive and negative samples to feed the BERT model. We tried

common increasing functions such as power function and the root function. This test are

shown in Figure 6.1. We decided to use the root square function, since it distributed the

data in a more even way than the other functions we tested. Our Weighted Jaccard Index

was defined as

Jf := Jsqrt

Note that if we take a function f that satisfies the properties stated in Definition 2, used

it in Jf , and then apply it to every possible pair of trees, the order of the similarity scores

may change from the choice of f . In fact, even if we decided to add more constraints to

the function f , for example forcing it to be strictly monotone or to be continuous, it is not

clear that the order of the similarity values is maintained. To clarify this statement, let us

observe Figure 6.2. Using different valid functions f1 and f2 in Jf we could be changing

the order of the similarity values of the pairs (x1, y1) and (x2, y2).

For training the models we cosidered that two publications would be IT-equivalent if their

similarity score was greater or equal than 0.9.
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For each of the class-specific classifiers, a dataset containing 8,000 IT-equivalent pairs and

8,000 non-IT-equivalent pairs was constructed. For the general area classifier, a dataset

was built by joining all the class-specific datasets. As we mentioned before, these datasets

were divided into train (which was further divided to get validation data) and test, so that

the test set was not seen until the model and its parameters were chosen and fixed.

6.3. Adopted technology

As we mentioned before, we chose to use the BERT language model to solve the proposed

tasks (explained in Section 3.4). In most of the experiments we use the base-uncased

version of BERT, and the large-uncased version few times. The reason behind mainly

using the base-uncased model is because it has performed well in other applications and

on similar tasks (Geetha & Renuka, 2021; Yao, Mao, & Luo, 2019). Although other more

complex models that have proven to be state of the art in different language comprehension

tasks, such as BERT’s large-uncased version (Devlin et al., 2018) or its derivatives like

AlBert (Z. Lan et al., 2019), RoBertA (Liu et al., 2019), among others, we decided to start

with the base version for a few practical reasons. First, the model has 110 million fine-

tuneable parameters, which is almost a third of the parameters of the large version. This

allowed us to train the model with tools that do not require as much disk memory. The

second reason is that, being the base model, it makes sense to try this model before trying

more complex or new ones, and then scale it depending on the quality of the results.

6.4. Performance metrics

When planning the experiments, the following question naturally arises: How do we get

the most accurate model? This brings us to the next question: What problem are we

attempting to solve?

Before the two experiments are carried out, performance metrics must be determined in

order to compare the different resulting models and try to understand the scope of this

work. The most common performance metrics in machine learning are accuracy, precision
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and recall. In binary classification these metrics can be defined counting the true positives

(TP), true negatives are (TN), false positives (FP) and false negatives (FN) of the outcome

of the model. These are defined as

TP := instances correctly predicted to be in the positive class.

TN := instances correctly predicted to be in the negative class.

FP := instances incorrectly predicted to be in the positive class.

FN := instances incorrectly predicted to be in the negative class.

Accuracy is the number of correctly predicted outcomes divided by the total number of

predicted outcomes, precision is the ratio of correctly-predicted positive instances to all

instances predicted as positive, and recall is the fraction of positive instances that were

retrieved. Formally,

accuracy =
TP + TN

TP + TN + FP + FN

precision =
TP

TP + FP

recall =
TP

TP + FN

Although our first problem is not binary, we are going to analyze which of these metrics

make sense for our experiments. We will then extrapolate to the non-binary case. For

the first experiment we are trying to correctly classify the publications in their respective

areas, so accuracy is an important metric. However, since the classes are unbalanced

we care about the accuracy on a balanced sample as well. On the other hand, taking

precision and recall individually as a performance metric does not provide an accurate

model evaluation, since all classes are relevant. This is why we would like to take both

metrics into account. We can do this with the F1 score, which is defined as the harmonic
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mean between precision and recall:

F1 = 2 · precision · recall
precision+ recall

In multiclass classification precision, recall and F1 score are not well defined, since there is

no “positive” class. However, the definitions of these metrics can be extended to multiclass

classification by taking a weighted average over all classes, where the weight of each value

(or metric) is determined by the percentage of the class in the test data.

The second experiment is a binary classification problem, since we need to decide, given

a pair of publications, whether or not they are IT-equivalent. We want the model to have

a high degree of certainty when it predicts that two publications are similar. The cost of

the model saying that two articles are not similar but in fact they were is much lower than

the cost of being wrong in saying that they are similar (since it is a type of recommender

system). This is why we have our main focus on the precision score, since we want false

positives to be as few as possible. However, we do not want our model to have recall

score 0, because we want it to retrieve something. That is why we are also interested in

observing the recall score (mainly getting a non-zero recall score).

Finally, let us recall that the model outputs the probability that the instance belongs to the

positive class. This is why we must set a decision threshold that will make all instances

with a probability greater than this threshold to be considered positive. Since we want a

high precision score, we must set a high threshold. For the class-specific models we define

this threshold as 0.7, while for the general model we set it to 0.95. This difference is due

to the fact that the general model is tested with much more data, so the precision must

be higher. Although we could have defined the threshold for the class-specific models

to be a higher value, we could not do this because there is a class that its recall score

decreases sharply when we increase this value (see Section 7.2). This threshold difference

has to be taken into account when analyzing the values of the performance metrics’ tables.
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The performance values of class-specific models are not comparable with those of general

models if we use different thresholds.
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(a) Distribution plot using f(x) = x in Jf .

(b) Distribution plot using f(x) = 2x in Jf .

(c) Distribution plot using f(x) =
p
x in Jf .

Figure 6.1. Distribution of the Weighted Jaccard Index for a sample of
10,000 publications pairs using different functions f(x) in Jf .
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Figure 6.2. Possible similarity values and their relative position R axis for
pairs (x1, y1) and (x2, y2) using valid functions f1, f2 in Jf .
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7. RESULTS AND DISCUSSION

As explained in the previous section, we divided our dataset into three sets: training,

validation, and final testing. The construction phase of the final model was carried out

iteratively, trying to improve the models as the performance metrics were reported on the

validation set. The final test set was not used until the final model was fully constructed:

the idea is to never have seen this data until the end to really see how well the model

performes. The timeline of how the models were built in the experiments is described

below. In each task we trained different models with little modifications until we got the

best result. We will refer to these little modifications as sub-experiments of the task. The

main features used in the iterations were the confusion matrix and the accuracy of each

sub-experiment.

7.1. Phase 1 - Publication classification

Recall that TACM is a tree whose nodes represent different computer science research areas.

Let us also recall that a node in a deeper level of TACM gives a more in-depth understanding

of the research field it represents (see Tables 6.1 and 6.2 for more detail). We approached

this classification task using two levels of depth of the TACM. Each model was validated

over two datasets: balanced and unbalanced validation sets. The final model was chosen

by comparing the performance metrics obtained using these datasets. It was then retrain

using both the train and validation data, and tested on a unseen test set. Figures 7.1 and

7.2 show the confusion matrices of each sub-experiment over the balanced and unbalanced

validation set, and Table 7.2 shows in detail the results of each model on the validation

data. The final models’ performance can be found in Table 7.4. In the following sub-

sections we give details on how the sub-experiments were carried out, the analisis that led

us to the different models and the performance metrics that we obtained.
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7.1.1. First level classification

The first sub-experiment consisted on fine-tuning BERT’s base model using the thirteen

labels presented in Table 6.1. Looking at the data and the confusion matrix presented

in Figure 7.1a we can see that the model almost never classifies a sample with label 2,

which corresponds to the “General and Reference” tag. Also, if we look at Figure 7.2a

we can confirm that this class introduces a lot of noise in the data (many false negatives

distributed in the other twelve labels). We think that the reason why the model was not

able to discriminate this class is because it covered many topics that could be related

to more specific areas and it was a small class. This is why the second sub-experiment

consisted on not changing any of the variables of the previous sub-experiment except for

the elimination of the articles that corresponded to the “General and Reference” label,

that is, classifying twelve classes instead of thirteen. The results of this sub-experiment

confirmed the noise hypothesis generated by this label: although the accuracy and the F1-

score increased only approximately 1% on the unbalanced validation set, they increased

approximately 4% one the balanced validation set. However, looking at Figures 7.1b and

7.2b, we could see that there were classes that kept confusing the model. After examining

the data, we came to the realization that there were classes with little data that include

similar areas. This is why we proceeded to manually group some classes that include

similar areas, and the same procedure was carried out but with nine new manually grouped

labels. These new tags can be seen in Table 7.1. This led to a more balanced training set

and thus a more accurate model. Figures 7.1c and 7.2c show the confussion matrix over

the unbalanced validation sets. We can see that although the model still made mistakes, it

had improved with respect to the last one. Specifically, on the balanced validation set, the

model increased over 8% in the F1-score and almost 9% on the accuracy (not to say that it

also performed better on the unbalanced validation set). This shows that the model could

discriminate much better between classes and not just “guessing” that the sample was one

of the bigger classes. Continuing with the small modifications that we believed could

improve the model, we proceeded to add the title of the document at the beginning of the
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abstract: Title.Abstract. This was done because we thought that it could be helpful

for the model (usually when a person reads the abstract of a publications the title gives a

lot of contextual information). This sub-experiment obtained the best overall performance

of all the previous ones. With exception of the balanced F1-score, all the other metrics

were approximately 0.5% better. We can see the change between the confussion matrices

from Figure 7.2c to Figure 7.2d: the false negatives decreased. As an example, in Figure

7.2c there are a lot of publications of the class “Network” that were classified as instances

of the class “Information systems”, but in Figure 7.2d this phenomenon happens less.

We associate this behaviour to an increase of understanding of the text by the model,

since it was given relevant information. Finally, the last sub-experiment was performed by

only changing the fine tuned BERT model: bert-large (Devlin et al., 2018). Although the

number of parameters tripled, this model performed worse than the previous model. This

entire process can be seen in detail in Table 7.2.

Table 7.1. Proposed clustering of the first level research areas in treeTACM.

Clusters
Theory of computation 1 Applied computing 4
Computing methodologies 1 Security and privacy 5
Mathematics of computing 1 Hardware 6
Software and its engineering 2 Information systems 7
Computer systems organizations 2 Human-centered computing 8
Networks 3 Social and professional topics 9

7.1.2. Task 2 - Second level classification

This sub-experiment was started right after the second sub-experiment mentioned in Sec-

tion 7.1.1. From then on it was done in parallel with the sub-experiments in that section.

The first thing that we did was to study the 67 areas of the second level of the TACM and

manually group these areas into eight clusters. As we mentioned before, these clusters

and the specific areas that are in the second level of TACM can be seen in Table 6.2. The

BERT base model was trained in order to learn how to classify these clusters. In the same

way as in the sub-experiment in Section 7.1.1, the title of the publication was added to the
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abstract of the paper, in order to give the model more insight. This led to a growth in the

performance metrics (on both balanced and unbalanced validation set) by approximately

1%. Finally, the fine-tuned model was changed from bert-base to bert-large and retrained.

Again, no major changes were observed in relation to the increase in the number of model

parameters. The results and performance of these sub-experiment can be seen in Table 7.3.

One last thing to notice about these results is that although the performance metrics of the

best classification model using the second level research areas is lower than the best one

using the first level research areas, there are instances where one can find more convenient

to use the second level for study areas clusters because it is more specific. For example,

one can define new clusters based on more complex and personal equivalent rules: knowl-

edge of different areas, team-expertise areas, or just want-to-learn study areas. In these

cases and many more, having the flexibility to choose in a more detailed way is a strong

component of the experiment to have in consideration. This can be also applied to deeper

levels of TACM.

Table 7.2. Performance metrics of the experiments using the first level re-
search areas of TACM.

N° BERT Classes Title F1 Accuracy Balanced F1 Balanced Acc.
1 base 13 No 0.7055 0.6986 0.6191 0.5930
2 base 12 No 0.7180 0.7086 0.6515 0.6377
3 base 9 No 0.7428 0.7370 0.7343 0.7274
4 base 9 Sı́ 0.7491 0.7448 0.7321 0.7317
5 large 9 Sı́ 0.7345 0.7355 0.7245 0.7268

Table 7.3. Performance metrics of the experiments using the second level
research areas of TACM.

N° BERT Classes Title F1 Accuracy Balanced F1 Balanced Acc.
6 base 7 No 0.7076 0.7057 0.6788 0.6825
7 base 7 Sı́ 0.7161 0.7151 0.6957 0.6980
8 large 7 Sı́ 0.7192 0.7183 0.7134 0.7134
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7.1.3. Best models retrain and evaluation

Finally, the model with the best performance in each level were models number 4 and 7,

which used the title and the abstract as input instances. The performance of these models

on the test data can be seen in Table 7.4, along with the confussion matrices in Figure 7.3

(over the balanced and unbalanced test sets).

Table 7.4. Best models’ performance metrics on the test data.

N° BERT Classes Title F1 Accuracy Balanced F1 Balanced Acc.
4 base 9 Yes 0.7471 0.7427 0.7229 0.7209
7 base 7 Yes 0.7248 0.7260 0.7174 0.7188

7.2. Phase 2 - Common interest publications

In this section we present the results of Phase 2 of this work. As stated above, the con-

struction of the models in this phase are directly linked to the results of phase 1. In the

results of Section 7.1.3 we chose two models: one classify into seven classes (TACM sec-

ond level clusters) and the other that classifies the input in nine classes (TACM first level

clusters). In the following sections we show and explain the results we obtained. As we

said in Section 6.4, we would like to evaluate our results mainly using the precision score

but keeping in mind that the recall score cannot be zero. This is why for each experiment

we have to set a threshold to determine when the model predicts that a pair of publications

are IT-equivalent. For the class-specific models we used 0.7 as the classification threshold,

while for the general model we used 0.95 as the classification threshold. We could not use

a higher value for the class-specific models because there is a class that its recall score

decreases sharply as the threshold increases above 0.7 (see class 8 in Table 7.6). This re-

striction does not affect our analysis mainly because we need to compare the models that

try to learn the same tasks (specific-models with specific models and general models with

general models). Also, we will not be using these thresholds in the final pipeline, since

their purpose are only to evaluate the models and give us insights about them.
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7.2.1. First level clusters

Recall that in Section 7.1.3 we chose a model that classifies an abstract into nine study

areas of the first level of TACM. Then, each sub-experiment in this phase must have nine

class-specific models and one model trained with all the study areas together. We created

two types of sub-experiments: the first consisted of simply comparing pairs of abstracts

from publications. The second experiment consisted of comparing not only the abstract,

but also adding the title of the publication before the abstracts. Tables 7.5 and 7.6 show

the precision and recall by study area of the class-specific models, while the performance

metrics of the general model can be seen in Table 7.7.

Table 7.5. Precision score of the class-specific models with a threshold of
0.7 to be classified as a positive instance for the first level of TACM.

N° Tit. C.1 C.2 C.3 C.4 C.5 C.6 C.7 C.8 C.9
1 No 0.8782 0.8447 0.7612 0.8482 0.8684 0.7642 0.7686 0.8000 0.8121
2 Yes 0.8563 0.8533 0.7684 0.8289 0.8525 0.7910 0.8300 0.7888 0.8084

Table 7.6. Recall score of the class-specific models with a threshold of 0.7
to be classified as a positive instance for the first level of TACM.

N° Tit. C.1 C.2 C.3 C.4 C.5 C.6 C.7 C.8 C.9
1 No 0.8324 0.7592 0.4573 0.7884 0.6731 0.6320 0.5636 0.0054 0.8132
2 Yes 0.8928 0.7482 0.5209 0.8406 0.7108 0.6127 0.4610 0.0973 0.8091

Table 7.7. Precision and recall scores of the general model with a threshold
of 0.95 to be classified as a positive instance for the first level of TACM.

N° Title Precision Recall
1 No 0.9406 0.1361
2 Sı́ 0.9287 0.1559

We can see that although precision score is not dominant in any class-specific model,

since there are classes that the first sub-experiment slightly dominates, while in others the

second sub-experiment slightly dominates, large differences in recall score can be seen.

This tells us that our model that includes the title of the publication manages to return

more positive instances. On the other hand, if we look at the performance of the general
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models, we can see that the precision score of the model that did not use the title is higher.

Although the recall is slightly lower in this model, it is not zero.
This is why we chose the sub-experiment that makes use of the title of the publication

for the class-specific models and the one that does not use the title for the general model.

This models were retrained with the training and validation data and evaluated with the

test data. The results of these final models can be seen in Tables 7.8 and 7.10.

Table 7.8. Performance metrics over the unseen test set of the first level
class-specific models of TACM evaluated using a classification threshold of
0.7.

1 2 3 4 5 6 7 8 9
Prec. 0.8553 0.8688 0.7599 0.8648 0.8385 0.7618 0.7484 0.6858 0.8510
Rec. 0.8557 0.7570 0.5616 0.7838 0.8114 0.7132 0.6753 0.4462 0.8001

Table 7.9. Performance metrics over the unseen test set of the first level
general model of TACM evaluated using a classification threshold of 0.95.

Avg.
Prec. 0.8038
Rec. 0.7115

Table 7.10. Performance metrics over the unseen test set of the first level
general model of TACM evaluated using a classification threshold of 0.95.

General
Prec. 0.9485
Rec. 0.1795

7.2.2. Second level clusters

For the second level clusters, in phase 1 we chose a model that classified the abstracts into

7 different areas of study. Thus, each sub-experiment in this phase must have seven class-

specific models and one model trained with all the research areas. Analogous to Section

7.2.1 we create two types of sub-experiments: one comparing only the abstracts and the

other comparing the title plus the abstract. Table 7.11 and Table 7.12 show the precision
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and recall by study area of the class-specific models, while the performance metrics of the

general model can be seen in Table 7.13.

Table 7.11. Precision score of the class-specific models with a threshold of
0.7 to be classified as a positive instance for the second level of TACM.

N° Tit. C.1 C.2 C.3 C.4 C.5 C.6 C.7
1 No 0.8002 0.8257 0.8925 0.8642 0.8211 0.9043 0.8294
2 Yes 0.8106 0.8039 0.9096 0.8639 0.8035 0.8910 0.9140

Table 7.12. Recall of the class-specific models with a threshold of 0.7 to
be classified as a positive instance for the second level of TACM.

N° Tit. C.1 C.2 C.3 C.4 C.5 C.6 C.7
1 No 0.7386 0.7548 0.7600 0.8939 0.5059 0.7172 0.8328
2 Yes 0.7716 0.8407 0.7961 0.9097 0.7875 0.8234 0.8522

Table 7.13. Precision and recall scores of the general model with a thresh-
old of 0.95 to be classified as a positive instance for the second level of
TACM.

N° Title Precision Recall
1 No 0.9716 0.0874
2 Yes 0.9416 0.4413

Again, the precision score was not decisive in the experiment, since neither class-specific

model significantly outperformed the other. However, it can be seen that the recall scores

of the titled class-specific models are much higher than those without titles. On the other

hand, in the general models, the model without the titles outperforms the one that includes

the title in the precision score. Although the recall score drops sharply in the model that

did not use the title, it is still above 0, so it can be used to achieve our task.

This is why, just like in section 7.2.1, we chose the sub-experiment that makes use of

the title of the publication for the class-specific models, and the one without titles for the

general model. These models were retrained with the training and validation data and
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evaluated with the test data. The results of this final model can be seen in Tables 7.14 and

7.16.

Table 7.14. Performance metrics over the unseen test set of the second
level class-specific models of TACM evaluated using a classification thresh-
old of 0.7.

1 2 3 4 5 6 7
Prec. 0.8851 0.8333 0.9242 0.8738 0.7986 0.8921 0.9011
Rec. 0.6402 0.8188 0.8227 0.9177 0.7970 0.7502 0.8916

Table 7.15. Performance metrics over the unseen test set of the second
level general model of TACM evaluated using a classification threshold of
0.95.

General
Prec. 0.9401
Rec. 0.3022

Table 7.16. Performance metrics over the unseen test set of the second
level general model of TACM evaluated using a classification threshold of
0.95.

Avg.
Prec. 0.8726
Rec. 0.8054

We can observe that the results on the test data were consistent with the results of the

experiments. In addition, we can observe that the model that uses the study areas of the

second level of the TACM achieves better performance metrics, which makes sense since

the clusters at this level were built with much more detail than those at level 1. Again, it

is worth to mention that the only reason we use thresholds is because we need to calculate

performance metrics. In practice, given a scientific article, the predicted similarity value

is used to obtain the most IT-similars.
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(a) Model N°. 1 (b) Model N°. 2

(c) Model N°. 3 (d) Model N°. 4

(e) Model N°. 5 (f) Model N°. 6

(g) Model N°. 7 (h) Model N°. 8

Figure 7.1. Confussion matrices over the balanced validation data of the
publications classification problem.

46



(a) Model N°. 1 (b) Model N°. 2

(c) Model N°. 3 (d) Model N°. 4

(e) Model N°. 5 (f) Model N°. 6

(g) Model N°. 7 (h) Model N°. 8

Figure 7.2. Confussion matrices over the unbalanced validation data of the
publications classification problem.
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(a) Model 4 over the unbalanced test data. (b) Model 4 over the balanced test data.

(c) Model 7 over the unbalanced test data. (d) Model 7 over the balanced test data.

Figure 7.3. Confussion matrices of the final models over balanced and un-
balanced test data of the publications classification problem.
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8. CONCLUSIONS

8.1. Summary of the results

In this work we have worked extensively with similarity measures. We have introduced a

normalized similarity measure called the Weighted Jaccard Index for trees. This similarity

measure takes two trees and assigns greater similarity weight to deeper nodes. This sim-

ilarity measure ensures that trees of different sizes can be treated equally: add similarity

when the intersection is large and subtract similarity when the symmetric difference is

large.

We have built two classification models that are the result of fine tuning the BERT-base

language model. The first consists of, given a scientific publication, classifying the article

in the corresponding research area using only the title and abstract of the publication. We

did this by using the tags at one and two levels of depth in TACM and using the Index

Terms provided by ACM. In this way, we created labeled datasets where the labels had a

tree structure. We obtained a F1 score of 74.71% for the trained model with the first level

labels of the tree TACM and 72.48% for the trained model with the second level labels on

the unbalanced test data. On the balanced test data, 72.29% and 71.74% F1 scores were

obtained, respectively. The second model we built solves the task of determining, given a

pair of publications, a similarity score (or IT-similarity as we call it in this work) using only

the title and the abstract. We did this with a dataset containing pairs of publications and

the similarity value using the Jaccard Weighted Index with the square root function within

the similarity function, applied to the Index Terms of each post. Most of the class-specific

models’ precision scores were over 75% using the first level of the TACM tree, while using

the second level of the tree we got over 80% in almost all classes. The performance in

the general models was very similar, exceeding 94% at both depth levels of the TACM

tree. With these two models in hand, the design of experiments to develop the pipeline

presented in Section 5 can be carried out and properly evaluated, using recommender

system techniques and appropriate performance metrics.
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We also present a flexible solution to other problems. In our case we made clusters using

the criterion that two publications are related if they are from areas of common interest.

Clusters can also be made using other criteria: related areas of expertise, study areas that

are presented in an academic curriculum, among many more that are small modifications

to the original problem.

8.2. Future work

We believe that the possible lines of future work fall into two types: the creation and

implementation of the recommender system, and possible extensions or improvements of

the two components we have built and presented in this work. We will elaborate on both

of them.

For the full implementation of the recommender system, which is discussed in detail in

Section 5, we have to carry out two tasks. First, we need to define the “high probability”

value that we will use to decide when to use a class-specific model and when to use a

general one. Recall that in the recommender system we propose, given an abstract, the

first thing we do is try to predict to which study area it belongs. Next, if the model is

able to classify the input publication into a research area with a probability higher than

our “high probability” value, we use the class-specific models we implemented in Phase

2. If it does not exceed the “high probability” value, then we must use the general model.

The definition of this “high probability” value must be carried out experimentally since

it depends on the ranking performance metrics we decide to use to evaluate the system.

Once the pipeline is assembled and tested, we want to develop a web interface so that the

model remains open to the community. A direct consequence of this step is the possibility

to test and evaluate the recommender system in real scenarios using user feedback, and to

iterate on the model in order to improve it.
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As for the lines of work that consist of extending the capabilities of the recommender

system, either by integrating more techniques for Phase 1 and Phase 2 models or by inter-

fering the training data, we propose the following:

• Experiment both Phases 1 and 2 with other state-of-the-art language models,

specially those implemented after BERT, such as RoBERTa (Liu et al., 2019),

ALBERT (Z. Lan et al., 2019) and Big Bird (Zaheer et al., 2020), among others.

• Use deeper levels of TACM in Phase 1 to make more specific research field clus-

ters.

• Build and perform experiments using other research disciplines.

• Add other variables to the input to complement the input we already use. For ex-

ample, we could try and use the abstracts, titles and the bibliographic references

to train the model.

• Extend the problem definition such that the input of the problem is not a single

publication, but a set of publications. Thus, solve the following task: given a set

of scientific articles, obtain a list of related publications.
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