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ABSTRACT

Every year radiologists face an increasing demand of image-based diagnosis from pa-

tients, and computer-aided diagnosis (CAD) systems seem like a promising way to alleviate

their workload. In recent years, many authors have proposed deep learning models to gen-

erate reports from medical images, but they mainly focus on improving Natural Language

Processing (NLP) metrics, such as BLEU and CIDEr, which may not be suitable to mea-

sure clinical correctness in the reports, as indicated by multiple authors. Additionally, most

approaches are end-to-end black box models that are difficult or impossible to understand

by a human, which would make it very hard to implement in a clinical scenario.

In this thesis, we contest the state-of-the-art models and evaluations in the report gen-

eration from chest X-rays task. We provide further evidence showing that traditional NLP

metrics are not enough to evaluate this task, by showing their lack of robustness in mul-

tiple cases. For example, we show NLP metrics are not able to discriminate sentences

with opposite clinical meaning, and we show that slightly altering report wording from a

model can increase its NLP performance while maintaining high clinical performance. We

also propose a template-based report generation model that detects a set of abnormalities

and verbalizes them via fixed sentences into a structured report. We benchmark our model

in the IU X-ray and MIMIC-CXR datasets against naive baselines, deep learning-based

models, and literature models, by employing the CheXpert labeler and NLP metrics. The

proposed model is much simpler and inherently interpretable than other state-of-the-art

methods, and achieves better results in medical correctness metrics, though worse in NLP.

We conclude there is a need to improve the assessment methods in this research area, by

analyzing the available data in detail, performing more extensive evaluations and involving

expert physicians.

Keywords: medical image report generation, deep learning, templates, diagnostic caption-

ing, chest X-rays.
xiv



RESUMEN

Cada año aumenta la demanda por exámenes de imágenes de radiologı́a, y sistemas

para diagnóstico apoyados por computador (CAD, por su sigla en inglés) parecen una

opción prometedora para aliviar esta carga de trabajo. En los últimos años, muchos autores

han propuesto modelos de aprendizaje profundo para generar reportes a partir de imágenes,

pero se enfocan principalmente en mejorar métricas de Procesamiento de Lenguaje Natural

(NLP, por su sigla en inglés), como BLEU y CIDEr, que pueden no ser apropiadas para

medir correctitud médica en los reportes, como han indicado varios autores. Además, la

mayorı́a de las propuestas son modelos de caja negra que son difı́ciles o imposibles de

entender por humanos, lo que dificultarı́a su implementación en un escenario clı́nico real.

En esta tesis, analizamos los modelos y evaluaciones usadas por el estado del arte en la

tarea de generar reportes a partir de radiografı́as de tórax. Mostramos evidencia indicando

que las métricas tradicionales de NLP no son robustas para esta tarea, por ejemplo, no

discriminan bien oraciones que tienen significado contrario en términos médicos, y que se

puede alterar levemente la escritura de los reportes de un modelo para subir su rendimiento

en NLP, mientras se mantiene su alto rendimiento en términos clı́nicos. Además, pro-

ponemos un modelo basado en plantillas que detecta anormalidades y usa oraciones pre-

definidas para escribir un reporte estructurado. Evalúamos el modelo en los datasets IU

X-ray y MIMIC-CXR, usando la herramienta CheXpert labeler y métricas de NLP. El

modelo propuesto es más simple e interpretable que otros métodos del estado del arte, y

obtiene mejores resultados en métricas de correctitud médica, aunque peores en NLP. Con-

cluı́mos que se necesita mejorar los métodos de evaluación en esta área de investigación,

haciendo evaluaciones más exhaustivas e involucrando a médicos expertos.

Palabras Claves: generación de reportes médicos a partir de imágenes, aprendizaje pro-

fundo, plantillas, radiografı́as de tórax.
xv
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1. INTRODUCTION

Writing a report from medical images is an important daily activity for radiologists,

yet it is a time-consuming and error-prone task, even for experienced radiologists (Jones et

al., 2021). Furthermore, Topol (2019) indicates that the need for diagnosis and reporting

from image-based examinations far exceeds the current medical capacity of physicians in

the US. Artificial Intelligence (AI) could alleviate this workload by providing computer-

aided diagnosis (CAD) systems that can analyze an imaging study and generate a written

report, which could be used as a starting point by a radiologist to iterate until producing

a final report. For chest X-rays, typically, the radiologists examine one or more images

from a patient, indicate if there are abnormalities, describe their visual characteristics, and

provide a diagnostic or conclusion (Demner-Fushman et al., 2015; A. E. W. Johnson et

al., 2019). Figure 1.1 shows a chest X-ray imaging study and report example from the

MIMIC-CXR dataset (A. E. W. Johnson et al., 2019).

Many deep learning models are proposed in the literature to generate written reports

from one or more images (Messina et al., 2020). Most works employ an encoder-decoder

architecture, following ideas from the image captioning task in the general domain (Vinyals

et al., 2015; Xu et al., 2015), using a CNN-based network as encoder to map the image into

a latent space, and the decoder to generate the text. As decoder, there are mainly LSTM-

based networks with attention mechanisms (e.g. Boag et al., 2020; Jing et al., 2018, 2019),

and Transformer-based networks (e.g. Z. Chen et al., 2020; Lovelace & Mortazavi, 2020).

Other approaches replace the decoder by a retrieval approach (e.g. Li et al., 2018; Biswal

et al., 2020; Syeda-Mahmood et al., 2020; Kougia et al., 2021).

Despite the advances, it is hard to compare these approaches from a clinical perspec-

tive, since they are primarily evaluated by Natural Language Processing (NLP) metrics,

such as BLEU (Papineni et al., 2002) or CIDEr-D (Vedantam et al., 2015), and these may

not be suitable to measure correctness in the medical domain, as multiple authors suggest
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Findings: 
The cardiac silhouette size is top normal. The aorta is mildly
tortuous. Mediastinal and hilar contours are unremarkable.
Pulmonary vasculature is not engorged. Minimal patchy
opacities are demonstrated in the right lower lobe which may
be infectious in etiology. Left lung is clear. No
pneumothorax or pleural effusion is identified. No acute
osseous abnormalities seen. 

Impression: 
Minimal patchy right lower lobe opacity which is concerning
for infection in the correct clinical setting.

Indication: history: ___ with cough and fever 

Comparison: Chest radiograph ___ and chest CT ___

Clinical information Output report

Figure 1.1. Report example from the MIMIC-CXR dataset (A. E. W. John-
son et al., 2019), with sections indication, comparison, findings and im-
pression. The underscore tokens (“ ”) represent obfuscated information
to de-identify the patients, such as dates and gender.

(e.g. Boag et al., 2020; G. Liu et al., 2019; Pino et al., 2020; Syeda-Mahmood et al., 2020;

Pino et al., 2021). Furthermore, some of these metrics have been challenged in general

domain tasks, such as machine translation or image captioning (Kilickaya et al., 2017;

Reiter, 2018; Mathur et al., 2020; van Miltenburg et al., 2021). To overcome this prob-

lem, some authors have used metrics to evaluate the clinical correctness of the generated

reports, including the CheXpert labeler (Irvin et al., 2019), MIRQI (Zhang et al., 2020),

and other approaches (e.g. Xue et al., 2018; X. Huang, Yan, Xu, & Li, 2019; Alfarghaly,

Khaled, Elkorany, Helal, & Fahmy, 2021), although these have not been tested with expert

clinicians nor defined as a standard yet.

In addition to dealing with the correctness of the reports, there is the need to apply

eXplainable AI (XAI) (Gunning et al., 2019) in a critical domain like medicine, since an

application in a clinical setting would have a direct impact on patients (Reyes et al., 2020).

The explainability aspect in the report generation task is still understudied (Messina et al.,

2020), as most approaches use a post-hoc method to provide a local explanation, typically

generating a saliency map indicating the pixels of most importance, using methods such
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as Grad-CAM (Selvaraju et al., 2017) for CNN networks or visualizing attention maps for

LSTM or Transformer networks. Nonetheless, some authors have argued against using

isolated saliency maps as an explanation. For example, Rudin (2019) advocates for using

inherently interpretable models, systems constrained by domain knowledge so they are

transparent for humans to understand, instead of black-box models with post-hoc explana-

tions. Ghassemi et al. (2021) argue current post-hoc methods are useful for troubleshoot

and audit processes, but not suitable to explain decisions in a clinical setting. Furthermore,

they suggest authors should favor testing rigorously their AI systems rather than proposing

current post-hoc explanation methods for clinical practice.

In this thesis, we address the task of report generation from chest X-rays, and focus

on the clinical correctness of the reports and the inherent interpretability of our model.

Specifically, we state two hypotheses to contest:

• Hyp 1: traditional NLP metrics are not the most suitable for evaluating this task,

compared to clinical correctness metrics.

• Hyp 2: a template-based model will be able to outperform state-of-the-art mod-

els measured by clinical correctness metrics, while being more understandable

or transparent to a human, i.e. more inherently interpretable.

Our main contribution resides on approaching the problem by analyzing the data and eval-

uations available, and challenging the current state-of-the-art in these aspects. Sambasivan

et al. (2021) indicated AI research usually undervalues data centered research, even though

data quality is very important in high-stakes applications such as healthcare. Similarly, we

believe there is too much emphasis in the models in the report generation task, and data

and evaluations are being left out.
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1.1. Problem definition

From an AI perspective, the following is the main task addressed by most articles in

the literature:

Definition 1.1. Given as input one or more chest X-rays of a patient, generate an

output report as similar as possible to the one written by a radiologist.

However, we argue that to generate the full report, it would be necessary to have

additional context that is critical in clinical tasks (Cabitza, Rasoini, & Gensini, 2017).

Thus, we narrow this definition, by focusing only in the content that (1) our model can

generate and (2) the evaluations can measure, as will be detailed next.

The typical report structure is shown in Figure 1.1, that presents an example from

the MIMIC-CXR dataset (A. E. W. Johnson et al., 2019), showing frontal and lateral

X-rays, and the report with four different sections. The indication section describes the

reason to perform the exam, comparison mentions previous patient exams, findings mainly

describes the abnormalities present in the images, and impression summarizes the findings

and may provide or suggest a diagnostic (Demner-Fushman et al., 2015; A. E. W. Johnson

et al., 2019). Typically, the physician asking for the imaging exam is the primary care

physician or a medical specialist. Then, to review the images, the radiologist receives

the patient clinical information in the indication and comparison sections, and write their

findings in findings and impression. Most authors in the report generation literature choose

one or both of findings and impression to be generated automatically from the images, as

indicated in the survey by Messina et al. (2020).

We narrow the problem considering four main aspects. First, the comparison and in-

dication sections of the main datasets (Demner-Fushman et al., 2015; A. E. W. Johnson et

al., 2019) are rather scarce, and most works do not take them into account (Messina et al.,

2020). Hence, we rule out clinical information as additional input, even though it could
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be very important in a real scenario, as mentioned by some authors in the medical domain

(Oakden-Rayner, 2020; Summers, 2021). Additionally, radiologists may refer to clinical

information in the findings and/or impression sections, for example, by directly mention-

ing past exams (e.g. “comparison with previous exam”), or by indirectly mentioning a

past condition (e.g. “size unchanged”). Consequently with the inputs, we consider these

mentions as information that is out of reach for the model, i.e. is considered impossible to

be generated with the available information.

Second, radiologists may suggest a secondary exam to the primary doctors given the

initial findings (e.g. “recommend follow-up CT abdomen or CT torso for further evalu-

ation”, “opacities concerning for pneumonia, follow-up in four weeks”). We argue that

to generate these suggestions the radiologists require clinical information, multiple views

or exams if available, and domain knowledge that cannot necessarily be inferred from the

images alone. Therefore, this information is also considered out of reach, even though

complementing with more imaging exams and giving recommendations to the referring

physician is an important step in a clinical scenario (Lukaszewicz, Uricchio, & Gerasym-

chuk, 2016).

Third, frontal views display much more important information regarding abnormalities

than lateral views (Rodrigues & Qureshi, 2014), in particular, most abnormalities can

still be detected if analyzing only frontal views, but not if analyzing only lateral views.

Consequently, we define the frontal view as a mandatory input, either postero-anterior

(PA) or antero-posterior (AP) projection, and the lateral view is optional.

Lastly, we argue that the findings section contains more descriptive information, in

contrast to the impression section that summarizes, make inferences or conclusions, which

may need additional patient information. Thus, we decide to generate the findings section

of reports, since it is more likely to be generated with information from the input image

only.
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To sum up, for this thesis we define the task of report generation from chest X-rays

as the following:

Definition 1.2. Given one or more frontal, plus optionally one or more lateral images

of a patient, automatically generate the findings section of a report, focusing on describing

the abnormalities that are ascertainable on the images alone.

The problem does not consider additional patient information as input, such as clinical

history, previous images or symptoms, following most of the literature and data availabil-

ity. The output report focus on describing the abnormalities that can be inferred from the

image only, consequently with the model inputs. Other information in the reports, such

as references to previous exams, suggestion of follow-up exams, prognosis or predictions

of health conditions, are considered out of reach, i.e. impossible to generate with the

available input.

1.2. Outline

The thesis is composed by seven chapters, including this one. Chapter 2 (Background

and Related Work) defines background concepts regarding medical and machine learn-

ing topics, describes the datasets, metrics and models used in the related work. Chapter

3 (Proposed Method) states our proposed template-based method, Chapter 4 (Materials)

describes the materials used in our experiments, and Chapter 5 (Results) show the experi-

ment results and main analyses. Lastly, in Chapter 6 (Discussion) we discuss the results in

terms of the proposed hypotheses, and also state limitations and possible avenues of future

work, and Chapter 7 (Conclusion) closes with our main conclusions.
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2. BACKGROUND AND RELATED WORK

There are several surveys reviewing the medical report generation task (Allaouzi et

al., 2018; Pavlopoulos et al., 2019; Monshi et al., 2020; Messina et al., 2020; Ayesha

et al., 2021; Kaur et al., 2021), which mainly describe the datasets, metrics and deep

learning models employed, and discuss limitations and challenges in this area. We believe

the survey by Messina et al. (2020) is the most comprehensive one regarding the topics of

clinical correctness evaluation and explainability, which are both key aspects to this thesis.

Hence, in this thesis we use this survey as the main reference for the related work, and we

additionally consider papers addressing the report generation task that were published after

the survey submission date.

The next sections present background definitions and the related work in the medical

report generation task. The first (2.1) and second (2.2) sections present relevant medical

and machine learning concepts, respectively, the third section (2.3) describes the available

datasets, the fourth section (2.4) discusses the metrics used in this task, and the last section

(2.5) provides an overview of the deep learning models used.

2.1. Medical background

Diagnosis task: to identify the medical condition of a patient, given background in-

formation such as imaging or laboratory exams, clinical information, symptoms, etc.

Prognosis task: to forecast the outcome of a medical condition in a patient in the

future.

Imaging exam pipeline. The typical pipeline for a patient that needs an imaging exam

is as follows. The referring physician, usually the primary doctor or medical specialist,

requests an imaging exam for a patient, indicating the main reason, such as symptoms

or other conditions. Then, the image is analyzed by a radiologist that writes a report
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indicating the findings observed from the study. The written report is the main instrument

for communication between the radiologist and referring physician (Lukaszewicz et al.,

2016). The context of the patient is usually one of: emergency, inpatient (hospitalized) or

outpatient (non-hospitalized); and accordingly, the reports in each of them may describe

different findings and conditions.

Internal vs external validation. In healthcare related literature these terms are usually

defined as follows. Internal validation: evaluation with data from the same original

source; splitting a dataset in training-validation-test splits falls into this category. External

validation: evaluation with data from a different source, typically a different hospital or

clinical facility.

Chest X-ray technical factors when capturing and reviewing chest X-rays. The two

main patient positions are frontal and lateral. For a frontal X-ray, the two possible projec-

tions are Postero-Anterior (PA) and Antero-Posterior (AP), the former is the standard,

provides a better image, and requires the patient to be standing facing the X-ray recep-

tor (Rodrigues & Qureshi, 2014); the latter is typically used for hospitalized patients.

Other technical factors include the rotation and inspiration of the patient, among others,

(Rodrigues & Qureshi, 2014), which may affect the overall quality of the assessment. In

general, the chest X-ray is a somewhat limited exam since the images are a 2-dimensional

representation of the 3-dimensional body, implying there may be important attenuation of

the image, making interpretation more difficult (Jones et al., 2021).

2.2. Machine Learning background

Common image-based tasks. We introduce some machine learning tasks that receive

an image and make a prediction. Binary classification: predict one of two classes, usually

identified as positive or negative. Multi-label (binary) classification: make a binary

classification for N existing labels. Regression: predict a numeric value. Segmentation:
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predict the presence of objects at pixel-level. Image captioning: generate a natural text

description of the image.

Additionally, throughout this thesis we use common classification metrics, such as

accuracy, precision, recall, F1-score and ROC-AUC (Witten, Frank, & Hall, 2011).

Natural Language Processing (NLP) is an area that explores how to analyze, un-

derstand or manipulate natural text using computer systems. Natural Language Genera-

tion (NLG) is a sub-area that specializes in tasks that generate natural text from different

types of data, such as image captioning, machine translation (translate natural text from

one language to another), and more. There are automatic metrics used in this sub-area

to evaluate the quality of the generated text, such as BLEU (Papineni et al., 2002) or

CIDEr (Vedantam et al., 2015), which we refer interchangeably as NLP or NLG metrics

throughout this thesis.

2.3. Datasets

A dataset for the image-based medical report generation task consists in a set of med-

ical images taken from patients alongside a report written by a radiologist. Messina et al.

(2020) identified at least 18 datasets covering multiple image modalities and body parts,

though many of them are not publicly available, and most research efforts focus on two

chest X-rays datasets in English: IU X-ray (Demner-Fushman et al., 2015) and MIMIC-

CXR (A. E. W. Johnson et al., 2019). Consequently, in this thesis we mainly focus on the

chest X-ray image modality, since there is more data and research available. There are

also chest X-ray datasets that only provide abnormalities tagged for each image, i.e. clas-

sification datasets, which are commonly used for pre-training, auxiliary tasks and other

strategies (Messina et al., 2020). Relevant chest X-ray datasets are listed in Table 2.1.
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The next subsections describe the most relevant chest X-ray datasets, report (2.3.1)

and classification (2.3.2) categories, and lastly mention datasets from other modalities or

body parts (2.3.3).

Table 2.1. Chest X-rays datasets used in the literature. Labels were auto-
matically annotated from the reports using automated tools, unless stated
otherwise.

Dataset # Samples Labels Source

IU X-ray,
Demner-Fushman
et al., 2015

Images: 7,470
Reports: 3,955
Patients: 3,955

MeSH and RadLex
concepts (manual).
MTI tags

Indiana University Hos-
pital Network (US), out-
patients only

MIMIC-CXR,
A. Johnson et al.,
2019

Images: 377,110
Reports: 227,827
Patients: 65,379

14 CheXpert labels Beth Israel Deaconess
Medical Center (US), pa-
tients from 2011-2016

PadChest, Bustos
et al., 2019, in
Spanish

Images: 160,868
Reports: 109,931
Patients: 67,625

297 UMLS
concepts (findings,
diagnoses, anatomy)

Hospital Universitario de
San Juan (Spain), pa-
tients from 2009-2017

CheXpert, Irvin et
al., 2019

Images: 224,316
Reports: 0
Patients: 65,240

14 CheXpert labels Stanford Hospital (US),
inpatients and outpa-
tients from 2002-2017

ChestX-ray14,
X. Wang et al.,
2017

Images: 112,120
Reports: 0
Patients: 30,805

14 abnormalities National Institutes of
Health (US), patients
from 1992-2015

2.3.1. Chest X-ray report datasets

Literature (Messina et al., 2020) indicates the main two datasets used in this task are IU

X-ray (Demner-Fushman et al., 2015) and MIMIC-CXR (A. E. W. Johnson et al., 2019);

while PadChest (Bustos et al., 2019) has not been widely used yet. The reports usually

have four sections: indication, comparison, findings and impression (Demner-Fushman et

al., 2015; A. Johnson et al., 2019), the former two are provided by the referring physician,

and the latter two are written by the radiologist analyzing the image. Indication states
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Findings: 
AP upright and lateral views of the chest provided. Suture material is
noted projecting over the left upper lung as on prior compatible with
prior resection. There is focal opacity in the right lower lobe and left
mid lung, could represent pneumonia though follow-up to resolution
advised. There is a retrocardiac opacity containing a fluid level most
compatible with a hiatal hernia.  No large effusion or pneumothorax.
Cardiomediastinal silhouette is unchanged. Bony structures are intact. 

Impression: 
Right lower and left mid lung opacities, concerning for pneumonia,
though follow-up to resolution to exclude underlying mass.

Indication: ___ with fever, hypotension.
Eval for acute process 

Comparison: ___

Clinical information Output report

Figure 2.1. Report example from MIMIC-CXR (A. E. W. Johnson et al.,
2019) with sections indication, comparison, findings and impression. Col-
ors indicate the nature of each sentence, there are sentences describing ab-
normalities: healthy, uncertain and abnormal in green, orange and red, re-
spectively. In blue there is out of reach information (i.e. the model would
require more information to generate it), and in light blue referring to tech-
nical factors.

the main reason to perform the image study (e.g. symptoms), and comparison references

previous exams from the patient. In findings, the radiologist mainly indicates the presence

or absence of abnormalities and describes visual characteristics of the positive findings,

such as location, severity, shape, size, among others. Additionally, the radiologist may

mention technical factors in the image, may reference previous exams from the patient, and

may even suggest additional follow-up exams for the patient. In the impression section,

the radiologist summarizes the observations into a diagnostic or conclusion, usually in one

or a few sentences. See an example in Figure 2.1.

In addition, report datasets have tags or labels annotated from the text, as listed in Table

2.1. For example, IU X-ray (Demner-Fushman et al., 2015) and PadChest (Bustos et al.,

2019) are annotated with broad sets of concepts that include anatomical landmarks, abnor-

malities, diagnoses, and more; namely MeSH (Rogers, 1963), RadLex (Langlotz, 2006),

MTI tags (Mork, Yepes, & Aronson, 2013) and UMLS concepts (Lindberg, Humphreys,
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& McCray, 1993). MIMIC-CXR (A. E. W. Johnson et al., 2019) is annotated with the set

of CheXpert labels (Irvin et al., 2019) that mainly includes specific chest abnormalities

(refer to Table 2.2 in the next subsection for the labels). In all cases, authors typically use

these labels to train their models with auxiliary tasks.

2.3.2. Chest X-ray classification datasets

The most used classification datasets are the ChestX-ray14 (X. Wang et al., 2017) and

CheXpert (Irvin et al., 2019), typically used for pre-training or auxiliary tasks in the report

generation literature (Messina et al., 2020). Both contain chest X-rays annotated with

14 labels (see Table 2.2 for the labels), which were automatically extracted from reports,

though the reports are not publicly available. Alongside the CheXpert dataset, the authors

proposed the CheXpert labeler (Irvin et al., 2019), a rule-based tool to label written reports

with the 14 labels as positive, negative or uncertain (refer to section 2.4.2.1 for details

on the labeler). Both datasets are imbalanced towards having more negative samples, as

commonly occurs in medical related data.

Table 2.2. Abnormality labels in each dataset.

Anatomy CheXpert, Irvin et al., 2019 ChestX-ray14, X. Wang et al., 2017

Heart and
Mediastinum

Cardiomegaly, Enlarged
Cardiomediastinum

Cardiomegaly

Lungs Atelectasis, Consolidation,
Edema, Pneumonia, Lung
Lesion, Lung Opacity

Atelectasis, Consolidation, Edema,
Pneumonia, Emphysema, Fibrosis,
Infiltration, Mass, Nodule

Pleural space Pneumothorax, Pleural Effu-
sion, Pleural Other

Pneumothorax, Effusion, Pleural
Thickening

Other No Finding, Fracture, Sup-
port Devices

Hernia
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2.3.3. Other modalities report datasets

Literature (Messina et al., 2020) shows there are multiple datasets covering different

modalities and body parts beyond chest X-rays. For example, among the publicly available

datasets there is INBreast with mammography X-rays (Moreira et al., 2012), PEIR Gross

with gross lesions (Jing et al., 2018), STARE with retinal fundus images (Hoover, 1975),

ROCO with multiple radiology modalities, such as CT scans, PET scans, Fluoroscopy

images, etc.; (Pelka et al., 2018) and the ImageCLEF datasets from their caption chal-

lenges, containing varied biomedical images extracted from PubMed Central1(Eickhoff et

al., 2017; Garcı́a Seco de Herrera et al., 2018; Pelka et al., 2021). Refer to the appendix

A for the full list and details. From these, the most used datasets are from the Image-

CLEF challenges, for example by recent works in their latest challenges (Schilling et al.,

2021; Quintana et al., 2021; Castro et al., 2021; Schuit et al., 2021). Nonetheless, there is

much less research addressing the report generation task in those sub-domains, compared

to chest X-rays (Messina et al., 2020).

The nature of each of these datasets is very different to chest X-rays. In each sub-

domain there is a different set of target abnormalities and body parts observed; the images

look different, some modalities produce 3D volumes of images (e.g. CT scans); the re-

ports are usually structured differently, by having a different vocabulary, longer or shorter

reports; the patient population may differ, and so on. As an example, consider Figure 2.2

showing two samples from the ImageCLEF caption 2021 dataset (Pelka et al., 2021).

2.4. Metrics

The survey by Messina et al. (2020) categorizes evaluation metrics in the report gen-

eration task in two main categories: text quality measures, which are traditional Natural

Language Processing (NLP) or Natural Language Generation (NLG) metrics, and clinical

1https://www.ncbi.nlm.nih.gov/pmc/

https://www.ncbi.nlm.nih.gov/pmc/
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Contrast enhanced CT of the abdomen
and pelvis demonstrates a large
enhancing mass in the left kidney. The
mass has multiple foci of fat density. Area
of increased density within the mass is
consistent with hemorrhage.

Image Report

Longitudinal ultrasound image of the
right kidney demonstrates diffusely
hyperechoic medullary pyramids.

Figure 2.2. Examples from the ImageCLEF 2021 dataset (Pelka et al.,
2021), including a slice of an abdominal CT (top) and a kidney Ultrasound
(bottom).

correctness measures, which aim to assess the clinical facts stated in the reports. Most

works evaluate the report generation performance using only the first category, NLP met-

rics, namely BLEU (Papineni et al., 2002), CIDEr-D, (Vedantam et al., 2015), ROUGE-L

(Lin, 2004) and METEOR (Lavie & Agarwal, 2007), which measure n-gram matching

between the ground truth and a generated text. These metrics are very popular in machine

translation, image captioning and other NLP tasks; although there is growing evidence

that they may not be suitable to measure correctness in clinical reports (Boag et al., 2020;

G. Liu et al., 2019; Lovelace & Mortazavi, 2020; Pino et al., 2020; Babar et al., 2021;

Pino et al., 2021) or even in other tasks (Kilickaya et al., 2017; Reiter, 2018; Mathur et

al., 2020; van Miltenburg et al., 2021). To overcome this problem, some authors (e.g.

G. Liu et al., 2019; Ni et al., 2020; Pino et al., 2021; Zhang et al., 2020; Biswal et al.,

2020; X. Huang et al., 2019; Jing et al., 2019; Xue et al., 2018) also evaluate their models

using the second category metrics, clinical correctness. The most common approach is



15

to use the CheXpert labeler (Irvin et al., 2019) or a variation of it, though there are other

approaches proposed, and there is still not a defined standard. To the best of our knowl-

edge, none of the clinical metrics have been validated with expert clinicians, but they aim

at assessing medical accuracy, unlike NLP metrics.

The next subsections describe in further detail the NLP metrics (2.4.1) and clinical cor-

rectness metrics (2.4.2), and then both categories are briefly analyzed (2.4.3) to illustrate

why NLP metrics isolated may not be suitable for this task, and clinical metrics appear to

be more appropriate. In each metric subsection, the first paragraphs give an overview of

the metric, while the next paragraphs detail the calculation and formulas; the latter can be

skipped for easier reading.

2.4.1. NLP / NLG metrics

NLG metrics were designed for natural language related tasks in the general domain,

such as machine translation, text summarization or image captioning. As such, the metrics

were designed to give an score between a ground truth (or reference) text, and a generated

(or candidate) text. Furthermore, in the general domain the metrics are designed to receive

one or more references per sample, to account for multiple ways of re-phrasing a sentence

while conveying the same meaning. The next subsections present the details of BLEU

(Papineni et al., 2002), ROUGE-L (Lin, 2004), METEOR (Denkowski & Lavie, 2014),

CIDEr (Vedantam et al., 2015) and SPICE (Anderson et al., 2016). The former four are

calculated based on n-gram matching, while SPICE does a semantic parsing of the text. All

metrics range from 0 (worst) to 1 (best), except for CIDEr-D (the robust variant of CIDEr),

which ranges from 0 to 10. The most common library used in Python for calculating the

metrics derives from the Microsoft COCO Captions Challenge (X. Chen et al., 2015):

coco-caption2.

2https://github.com/tylin/coco-caption

https://github.com/tylin/coco-caption
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2.4.1.1. BLEU

Overview. Papineni et al. (2002) proposed Bilingual Evaluation Understudy (BLEU)

for machine translation, which is a precision-based metric that evaluates n-gram overlaps

from a target text with one or more ground truth texts. For a specific value of n, BLEU-n

can be calculated, such as BLEU-1 using up to unigrams, BLEU-2 using up to bigrams,

etc. In the report generation task, typically BLEU-n are calculated with values from 1 to

4 (Messina et al., 2020). The BLEU metric is oriented to precision and not recall, thus it

measures how consistent is the generated report with the ground truth, but not how much

information from the ground truth is being captured or being left out. To compensate for

this fact, it includes a penalization for brief candidate sentences in its calculation.

Details. The authors propose calculating a modified n-gram precision pn for each value

of n, shown in equation 2.1. The counters i and j sum over all the samples in the corpus,

Ci and Cj are candidate sentences, CountCj
(m-gram) is the amount of times that m-

gram appears in the candidate Cj , CountCi clipGTi(n-gram) is the amount of times n-gram

appears in the candidate Ci and in the ground truth GTi, clipped to disallow matching the

same n-gram multiple times.

pn =

∑
i∈Samples

∑
n-gram∈Ci

CountCi clipGTi(n-gram)∑
j∈Samples

∑
m-gram∈Cj

CountCj
(m-gram)

(2.1)

To compensate for the precision only orientation, the calculation includes a penalization

for short sentences, namely the brevity penalty (BP), shown in equation 2.2, where r is the

length of the reference and c is the length of the candidate text.

BP =

1, c > r

e(1−r/c), c ≤ r
(2.2)
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Lastly, BLEU-N is calculated as the geometric average of the modified precision values

up to N , weighted by custom wn factors. Typically, wn are uniform (e.g. wn = 0.25 for

N = 4).

BLEU-N = BP · exp

(
N∑
n=1

wn log pn

)
(2.3)

2.4.1.2. ROUGE-L

Overview. Lin (2004) presented Recall-Oriented Understudy for Gisting Evaluation

(ROUGE), which is a set of metrics to assess text similarity in the text summarization task,

namely ROUGE-N, ROUGE-L, ROUGE-W and ROUGE-S. Most works in the medical

report generation task use the ROUGE-L metric (Messina et al., 2020), which is based

on measuring the longest common sub-sequence between the generated and ground truth

texts, and it has an hyper-parameter to bias the metric towards precision, recall, or an

average of both (F-score). In practice, the score is slightly biased toward recall in the

coco-caption package.

Details. Let a generated text be a sequence of words Gen = w1 w2 . . . wn and a

ground truth text be a sequence GT = r1 r2 . . . rm. As a reminder, by definition a

sequence X = x1 . . . xN is a subsequence of Y = y1 . . . yM if all of its elements xi appear

in Y in the same order, though there may be other elements yj in between. Then, let

LCS(Gen,GT ) be the length of the longest common subsequence between Gen and GT .

Intuitively, if Gen is more similar to GT , the longer the longest common subsequence

found will be. Hence, a notion of recall (Rlcs) and precision (Plcs) can be computed:

Rlcs =
LCS(Gen,GT )

length(GT )
(2.4)

Plcs =
LCS(Gen,GT )

length(Gen)
(2.5)
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Thus, ROUGE-L is calculated as a harmonic average between the two measures (F-score),

using a hyper-parameter β.

ROUGE-L = Flcs =
(1 + β2) ·Rlcs · Plcs

Rlcs + β2Plcs
(2.6)

Notice if β = 1, the Flcs is exactly the F-1 score; if β = 0 is the precision, and if β →∞

it approximates the recall. In practice, β is set to 1.2 in the coco-caption package.

2.4.1.3. METEOR

Overview. S. Banerjee and Lavie (2005) presented Metric for Evaluation of Transla-

tion (METEOR), which was later updated by the same authors (Lavie & Agarwal, 2007;

Denkowski & Lavie, 2010, 2011, 2014). METEOR attempts to find a uni-gram match-

ing between the generated and ground truth sentences, and then an F-score of the words

matched is computed. The metric includes using synonyms, stemming and paraphrasing

sentences to find word matches, and the calculation includes several hyper-parameters,

which were tuned by the authors to optimize the correlation with human judgment on a

specific machine translation setting and dataset (Denkowski & Lavie, 2014). This may be

appropriate for the general domain in some of their cases, but we believe is not necessarily

appropriate in the medical domain. In the report generation task, most of the times is not

clear which implementation or set of hyper-parameters were used (Messina et al., 2020),

making it difficult to compare results.

Details. METEOR creates a matching by linking a token from the generated text with

a token from the ground truth, which indicates that they have the same meaning (example

in Figure 2.3). The main steps for uni-gram linking are, in order: exact word match,

stem match, WordNet synonym (Miller, 1995) match, and paraphrase match (from a list

of known paraphrases). Linking the same token twice is not allowed. Notice in some

cases multiple matches may be possible between a candidate and reference sentence, so
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the president spoke to the audience

the president then spoke to the public

Candidate:

Reference:

Figure 2.3. METEOR matching example, taken from the original paper
(S. Banerjee & Lavie, 2005). Words are matched if they mean the same,
and each word from the candidate may be matched to only one word from
the reference. In the example there are two chunks matched, i.e. a contigu-
ous group of words matched, shown with blue and orange arrows each.

METEOR has specific rules to optimize the matching (refer to section 2 of the paper for

details, Denkowski & Lavie, 2014).

Given a match between a generated and ground truth sentences, precision (P ) and

recall (R) scores can be computed by counting the amount of words matched in each text.

The specific calculation of P and R includes hyper-parameters δ, wexact, wstem, wsyn and

wpar regarding the different matching steps (refer to the paper for details). Then, an F-

score is proposed with an α hyper-parameter to bias toward precision or recall, shown in

equation 2.7. Additionally, a penalization is added to prefer matchings with longer phrases

(equation 2.8): where a chunk is a contiguous group of uni-grams matched contiguously

to the reference (in Figure 2.3, the number of chunks is 2), and γ and β are additional

hyper-parameters to tune the penalization. Lastly, METEOR is calculated as equation 2.9.

Fmean =
P ·R

α · P + (1− α) ·R
(2.7)

Pen = γ ·
(

#chunks

#unigrams matched

)β
(2.8)

METEOR = (1− Pen) · Fmean (2.9)
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2.4.1.4. CIDEr

Overview. Vedantam et al. (2015) presented Consensus-based Image Description

Evaluation (CIDEr) as a metric for the image captioning task. CIDEr represents each

sentence with a term-frequency and inverse-document-frequency (TF-IDF) score over its

n-grams, where the TF term gives more importance to the presence of each n-gram in

the sentence, while the IDF term gives more importance to the more rare n-grams in the

dataset, assuming those will provide more valuable information. Two sentences are then

similar if their n-gram TF-IDF representations are similar, and the authors argue that this

captures both precision and recall notions, and preserves grammatical and semantic as-

pects and by using multiple n values. They also presented the variant CIDEr-D (Vedantam

et al., 2015), which is less susceptible to gaming effects. The original CIDEr ranges from

0 (worst) to 1 (best), and CIDEr-D ranges from 0 (worst) to 10 (best). In the report gener-

ation task, most of the authors do not specify which variant is used (Messina et al., 2020),

but the implementation from coco-caption is CIDEr-D.

Details. To calculate the TF-IDF score for a given sentence s and an n-gram k, con-

sider the following. Intuitively, the TF term will represent the amount of times the n-gram

k appears in s, with respect to all the n-grams in s. On the other hand, the IDF term will

measure the inverse of how much appears the n-gram k in the whole dataset. Thus, the

TF-IDF score, named gk(s), is roughly calculated as:

gk(s) = TF · IDF (2.10)

gk(s) =
# appearances k in s

# appearances any n-gram in s
· log

(
dataset size

# appearances k in dataset

)
(2.11)

gk(s) =
hk(s)∑

l∈n-grams hl(s)
· log

(
#Images∑

i∈Images
∑m

q=1 hk(GTiq)

)
(2.12)
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where hy(x) is the amount of times the n-gram y appears in the sentence x, and GTiq for

q ∈ {1, . . . ,m} are the m ground truth sentences for the image i3. Then, given all existing

n-grams k1, k2, . . . , kM , a vector ~gn(s) is composed for each sentence s, in each position

containing the TF-IDF score for each n-gram k1, k2, . . . , kM . Lastly, the likeness between

two sentences is calculated as the cosine similarity between their two vectors, as equation

2.13 for a specific n, and equation 2.14 to average up until N-grams. N is typically set to

4, using uniform weights wi = 0.25.

CIDErn(Geni, GTi) =
1

m

m∑
j=1

~gn(Geni) · ~gn(GTij)
||~gn(Geni)|| ||~gn(GTij)||

(2.13)

CIDEr(Geni, GTi) =
N∑
n=1

wn CIDErn(Geni, GTi) (2.14)

Lastly, the same authors presented the variant CIDEr-D that is more robust against gaming

effects, by including a penalization for length differences between the sentences, and using

a more robust counting mechanism that clips n-gram matches, i.e. disallows matching the

same n-gram multiple times.

2.4.1.5. SPICE

Overview. Anderson et al. (2016) proposed Semantic Propositional Image Caption

Evaluation (SPICE) as a metric for image captioning, which captures the underlying mean-

ing of the sentences describing an image, by parsing each caption to a graph representing

the objects in the scene, relations between them and their attributes. SPICE is then the F-1

score for the match between the generated graph and ground truth’s graph, assuming two

captions have a similar meaning if and only if their graphs are similar.

Although this metric is essentially different from the previously described n-gram

based metrics, SPICE is still categorized as a text quality metric by Messina et al. (2020),

3In the medical report generation task, this is limited to one ground truth report, but CIDEr is designed to
work with more than one ground truth.
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young
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young girl standing on top of a tennis courtCaption

Universal
Dependencies

Scene graph
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det
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on top of

Figure 2.4. SPICE parsing example. The caption is parsed with universal
dependencies and part-of-speech tagging, and then a scene graph is gen-
erated to represent the image. In the scene graph, blue nodes are objects,
yellow nodes are attributes, and the edges may convey a specific meaning
between nodes. Example inspired from the original paper (Anderson et al.,
2016).

since the objects, relations and automated tools used in the parsing are not necessarily

designed for the medical domain. As reported by Kilickaya et al. (2017), the quality of

this metric highly depends on the quality of the parsing. From the chest X-rays report

generation literature, B. Hou, Kaissis, Summers, and Kainz (2021) is the only work that

uses SPICE as a metric, though they do not analyze or make particular comments on the

performance measured by this metric.

Details. First, the text is parsed as universal dependencies with a Probabilistic Context-

Free Grammar dependency parser (Klein & Manning, 2003), and then parsed to a scene

graph with hand-crafted linguistic rules. Each node of the graph represents either an object

or the attribute of an object, and each edge provides a meaning between objects or objects

and attributes (e.g. is in, looks like, etc). See a scene graph example in Figure 2.4.

Second, the scene graph of a caption is represented as a set of tuples (object), (object,

attribute) and (object1, relation, object2), containing all of its nodes and edges. Then, the

ground truth and generated scene graphs are matched through their tuple representations

in a tuple-wise fashion, and calculating precision, recall and F-1 score, where the SPICE

metric is the final F1-score. Similar to METEOR, lemmatization and WordNet (Miller,
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1995) synonymy are included to further improve the semantic matching between objects

and attributes.

2.4.2. Clinical Correctness Metrics

Clinical correctness metrics are designed by authors addressing the report generation

task in a medical sub-domain. Their objective is to capture the health condition of the

patient written in the report, specifically, by detecting abnormalities, diseases, pathologies,

or a diagnostic mentioned. Unlike NLP metrics, only one ground truth report is considered

in this case, tailored for medical datasets. Notice a positive finding in an abnormality refers

to a non-healthy or abnormal patient, while a negative finding refers to a healthy patient.

The next subsections describe the CheXpert labeler (Irvin et al., 2019) (2.4.2.1), which

is the most commonly used metric in chest X-rays, MIRQI (Zhang et al., 2020) (2.4.2.2)

and other approaches (2.4.2.3) found in the literature. From these approaches, there is

still no defined standard, and to the best of our knowledge, they have not been evaluated

against physicians judgment.

2.4.2.1. CheXpert Labeler

Overview. The CheXpert labeler4 (Irvin et al., 2019) is a rule-based tool that clas-

sifies a set of abnormalities from a written report into positive, negative, uncertain, or

unmentioned; by using manually curated patterns and a dependency parser to obtain se-

mantic relations between the words and sentences. Then, the abnormality classification

is simplified to a binary classification setting: the unmentioned class is merged with the

negative class, as both indicate the patient is healthy; and positive with uncertain, since

the latter usually indicates that an abnormality should not be ruled out. Lastly, the ab-

normality classification is used to compute binary classification metrics (precision, recall,

4Official implementation: https://github.com/stanfordmlgroup/chexpert-labeler.

https://github.com/stanfordmlgroup/chexpert-labeler
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F-1, ROC-AUC) between a generated and ground truth reports, also known as CheXpert

labeler metrics.

Thirtheen works in the chest X-ray report generation task used the CheXpert metric

(G. Liu et al., 2019; Boag et al., 2020; Z. Chen et al., 2020; Nishino et al., 2020; Ni et

al., 2020; Lovelace & Mortazavi, 2020; F. Liu, Yin, et al., 2021; D. Hou et al., 2021;

Nguyen et al., 2021; B. Hou et al., 2021; Najdenkoska et al., 2021; Miura et al., 2021;

Kougia et al., 2021), though to the best of our knowledge the tool has not been tested

against expert judgment as a report generation metric. Nonetheless, the authors (Irvin

et al., 2019) evaluated the labeling tool against a set of 1,000 reports manually labeled

by two board-certified radiologists, achieving F1 scores macro averaged across labels of:

0.948 for positive, 0.899 for negative, and 0.777 for uncertain; demonstrating a good

performance, and particularly showing better results than other labelers (e.g. NegBio,

Peng et al., 2018).

Some authors have proposed improvements over the CheXpert labeler. McDermott et

al. (2020) proposed CheXpert++, which is a BERT-based network trained to predict the 14

labels from the text. Similarly, Smit et al. (2020) proposed CheXbert, and they evaluated it

further with a manually labeled test set of their own, showing it has slightly better results

than CheXpert. Furthermore, Jain et al. (2021) proposed VisualCheXbert, which improves

CheXbert by also using the chest X-rays during training, to address discrepancies they

found between images and reports. In the report generation task, some authors used a

variation instead of the original CheXpert labeler tool for the evaluation; for example,

some used an LSTM model trained to predict the original labels (Lovelace & Mortazavi,

2020; Nguyen et al., 2021), and others used CheXbert (Miura et al., 2021).

Details. The process to label a report consists of three steps, namely extraction, clas-

sification and aggregation (Figure 2.5). First, textual mentions of the observations are

extracted using pre-fixed patterns manually curated by radiologists. Second, the text is
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Frontal and lateral images.
The heart is mildly enlarged.
Right lower lobe opacities
most suggestive of atelectasis.
No left opacities are noted.

Report 1. Extract

The heart is mildly enlarged
Right lower lobe opacities 
most suggestive of atelectasis
No left opacities are noted.

2. Classify

Noun

Verb Adj

pattern 1 
pattern 2 
...

Pre-defined patterns Universal Dependencies
parser

The heart is mildly enlarged
Right lower lobe opacities 
most suggestive of atelectasis
No left opacities are noted.

3. Aggregate

Abnormality Value

Cardiomegaly Positive

Lung Opacity Positive

Atelectasis Uncertain

Pneumothorax Unmention

... ...

Figure 2.5. CheXpert labeler process comprising three main steps: (1) ex-
tracting abnormality mentions using pre-defined patterns, (2) parsing into
Universal Dependencies to then classify the mentions, and lastly (3) aggre-
gate the results.

parsed with the Bllip parser (Charniak & Johnson, 2005) trained with a biomedical model

(McClosky, 2010), and then the universal dependency graph of the sentence is obtained

using the Stanford CoreNLP tool (De Marneffe et al., 2014). With this information, each

textual mention is classified into one of three classes, negative, positive or uncertain. No-

tice the latter captures both uncertainties about the diagnostic itself (e.g. “diffuse opacity

may represent pneumonia”) or an ambiguous report (e.g. “heart size is unchanged”).

Third, the classifications are aggregated into a final vector, where each observation can

be one of the above classes, or else is considered unmentioned. The 14 labels or ob-

servations are: No Finding, Enlarged Cardiomediastinum, Cardiomegaly, Lung Lesion,

Lung Opacity, Edema, Consolidation, Pneumonia, Atelectasis, Pneumothorax, Pleural

Effusion, Pleural Other, Fracture and Support Devices. Notice all labels except for No

Finding can be considered abnormalities.

To use as an evaluation metric, the labeler is applied over the generated and ground

truth reports, and the outputs are then simplified to a binary setting. The unmentioned

class is merged with the negative class, as both indicate the absence of an abnormality,

and the uncertain class is merged with the positive class, since most of the uncertain cases

indicate that an abnormality should not be ruled out, as shown in the examples before.

Lastly, the findings are evaluated using classification metrics, such as precision, recall,
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F-1 score or accuracy. The metrics can be shown disaggregated by each abnormality

(e.g. Lung Opacity precision and recall), and/or aggregated into an average (e.g. recall

macro averaged across 14 labels). Since most datasets are imbalanced towards having less

abnormal cases, commonly accuracy is not very meaningful, and precision, recall and F-1

scores are more useful.

2.4.2.2. MIRQI

Overview. Zhang et al. (2020) proposed the metric Medical Image Report Quality In-

dex (MIRQI)5 to measure correctness in chest X-ray reports in terms of abnormalities and

attributes mentioned. MIRQI works similar to the CheXpert labeler plus a few improve-

ments: uses manually designed patterns and a dependency parser to classify a set of 20

abnormalities, and leverages the semantic dependencies to capture fine-grained attributes

or modifiers related to the findings, such as body parts, abnormality severity, size, shape,

etc. Then, both the abnormality classification (positive/negative/uncertain) and the mod-

ifiers are used to perform a matching between the generated and ground truth findings,

and classification like metrics are calculated, with notions of precision (MIRQI-p), recall

(MIRQI-R) and F1-score (MIRQI-F1). Figure 2.6 shows an extraction example; notice

there are some general words mistakenly captured as modifiers, such as present and is.

Details. The process to extract and classify abnormalities is very similar to the CheX-

pert labeler, though expanding the rules to include 20 abnormalities (refer to the official

code implementation for more details). However, the score calculations differ signifi-

cantly. MIRQI is calculated with notions of precision (MIRQI-p), recall (MIRQI-r) and

F-1 score (MIRQI-F1), with slight differences from the common classification metrics.

First, the abnormalities and attributes from the ground-truth and generated reports are

5Official implementation: https://github.com/xiaosongwang/MIRQI.

https://github.com/xiaosongwang/MIRQI
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Heart size is normal.
Right effusion is
present. There is a
moderate hiatal hernia.

Ground truth report Abnormality Value Modifiers

Cardiomegaly Negative normal/clear

Pleural Effusion Positive right/present

Hernia Positive is/moderate/hiatal

Right effusion with mild
atelectasis. Left effusion
is also present.
Cardiomegaly is
present.

Abnormality Value Modifiers

Pleural Effusion Positive right

Pleural Effusion Positive left/present

Atelectasis Positive mild

Cardiomegaly Positive present

Generated report

Final scores

MIRQI-p = 0.62 

MIRQI-r = 1.00 

MIRQI-F1 = 0.77 

Figure 2.6. MIRQI extraction and matching example. Abnormalities with
modifiers are extracted from each report, then matched, and MIRQI scores
are calculated.

matched, and the score of true positives (TP) is calculated as shown in equation 2.15.

TP = (1− wattr) · TPabn + wattr · TPattributes (2.15)

Where TPabn are the true positives in terms of positive or uncertain abnormalities matched

(i.e. positive and uncertain are merged, same as the CheXpert labeler), and TPattributes are

the true positives modifiers detected (accounting only the matched abnormalities cases).

Thus, the true positive TP value accounts for detection of abnormalities and also of their

modifiers. wattr is a hyper-parameter set to 0.2 in the original paper (Zhang et al., 2020)

(although is set to 0.3 in the original code implementation).

Then, to calculate the final scores both positive (abnormal) and negative (healthy) pre-

dictions are considered, as MIRQI-r takes both recall and specificity into account (equation

2.17); and MIRQI-p takes both precision and the negative predictive value (NPV) into ac-

count (equation 2.19). The ture negatives (TN ), false positives (FP ) and false negatives

(FN ) are calculated as usual in binary classification. wpos is a hyper-parameter to balance

between favoring positives or negative predictions, which is set to 0.8 in the paper (Zhang
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et al., 2020). Lastly, the MIRQI metric is defined as the F-1 score shown in equation 2.20.

MIRQI-r = wpos ·
TP

TP + FN
+ wneg ·

TN

TN + FP
(2.16)

= wpos · recall + wneg · specificity (2.17)

MIRQI-p = wpos ·
TP

TP + FP
+ wneg ·

TN

TN + FN
(2.18)

= wpos · precision+ wneg ·NPV (2.19)

MIRQI = MIRQI-F1 =
MIRQI-r ·MIRQI-p
MIRQI-r + MIRQI-p

(2.20)

2.4.2.3. Other clinical metrics

Overview. In several works the authors evaluated their model with other methods

to assess the clinical performance of the generated reports. Most of the approaches de-

tect abnormalities in the text and use classification metrics for the evaluation, similar to

the CheXpert labeler, though each of them using a different procedure. Other simpler ap-

proaches use a set of keywords and compare the number of appearances in the ground truth

and generated reports with classification metrics. Despite these methods may have been

useful in their experiments, the authors do not provide enough details or an official im-

plementation, and they did not perform a formal evaluation of the correlation with expert

judgment or similar. Thus, no consensus or standard can be drawn from these proposals

yet (Messina et al., 2020). The methods are cited and briefly mentioned next.

Details. Among the abnormality-based methods, which attempt to classify abnor-

malities from the report and then use classification-like metrics: Jing et al. (2019) used

manually designed patterns to classify findings; Biswal et al. (2020) used a character-level

CNN to classify CheXpert labels; and Moradi et al. (2016) used a proprietary software

to extract semantic descriptors. Other approaches are keyword-based, which compute the

ratio of a set of keywords found between the generated report and ground truth: X. Huang

et al. (2019) used MeSH terms (Rogers, 1963); Xue et al. (2018) used 438 MTI terms
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Table 2.3. NLP wrong scoring examples: ground truth (GT) and gener-
ated (Gen) reports examples with metrics BLEU (B, average BLEU 1-4),
ROUGE-L (R-L), CIDEr-D (C-D, ranges from 0 to 10) and CheXpert F-1
(macro-averaged across abnormalities mentioned). Correct and incorrect
sentences are in green and red, respectively, while out of reach information
for the model is in blue.

Report B R-L C-D F-1

GT 1 Heart size is mildly enlarged. Small right pneumoth-
orax is seen.

Gen 1 Heart size is normal. No pneumothorax is seen. 0.493 0.715 2.34 0
Gen 2 The cardiac silhouette is enlarged. No pneumothorax. 0.146 0.464 1.09 0.5
Gen 3 Mild cardiomegaly. Pneumothorax on right lung. 0.075 0.289 0.15 1

GT 2 Comparison to previous exam. Heart size is enlarged.
Dr XXXX was contacted.

Gen 1 Comparison to previous exam. Heart size is enlarged.
Dr was contacted.

0.655 0.846 5.03 1

Gen 2 Heart size is enlarged. 0.135 0.458 0.70 1

(Mork et al., 2013); Li et al. (2018) calculated precision and false positive rate of the 10

most frequent abnormality-related terms in the dataset; and L. Wu et al. (2017) calcu-

lated accuracy, sensitivity and specificity for a set of keywords. Lastly, Alfarghaly et al.

(2021) used a different approach by measuring the similarity between reports using cosine

similarity between the average of the word embeddings, vector extrema (Forgues, Pineau,

Larchevêque, & Tremblay, 2014) or greedy matching (Rus & Lintean, 2012).

2.4.3. NLP vs Clinical Correctness: design differences

NLP metrics have been widely used in general domain tasks such as machine transla-

tion and image captioning (Kilickaya et al., 2017; Mathur et al., 2020). However, some

authors have already contested their efficacy in tasks in the general domain (Kilickaya et

al., 2017; Reiter, 2018; Mathur et al., 2020; van Miltenburg et al., 2021), and in the med-

ical report generation task (e.g. Boag et al., 2020; Pino et al., 2021). Regarding clinical
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metrics there is still no standard defined or validated by expert judgment, but the CheXpert

labeler stands out as the most used in the literature. The next paragraphs describe multiple

disadvantages from NLP metrics, to argue that they are not the most suitable by design for

the medical report generation task.

First, the NLP metrics reviewed are designed to work with more than one ground

truth sentence (Papineni et al., 2002; Lin, 2004; S. Banerjee & Lavie, 2005; Vedantam

et al., 2015), to account for multiple ways of rephrasing the same sentence. However, in

the medical domain the datasets contain just one report written for each imaging study,

thus the metrics are limited to one ground truth per sample. This implies that the n-gram

matching approach may (1) overlook negation and uncertainties in the sentences, which

are very important in clinical reports (Irvin et al., 2019); (2) be unaware of synonyms

or different ways of mentioning the same findings; and (3) evaluate a generated report

against noisy ground truths. Consider the examples from Table 2.3, showing ground truth

and generated examples, and the performance they achieve using NLP and CheXpert F-1

metrics. In the first example (GT 1), the first generated report is clinically incorrect and

achieves high NLP scores, while the third sample is correct but achieves low NLP scores,

due to the specific wording and synonyms used in the reports. In the second example (GT

2), there is out of reach information, i.e. data that the model is not able to infer only from

the input image (a comparison to a previous patient exam, and the contact with a doctor).

However, those sentences are accounted for with the n-gram approach, giving a higher

score to the output that replicates the ground truth more closely.

Second, detecting type of errors, inspecting error gradations or other error analysis

would be essential in a clinical setting (Oakden-Rayner, Dunnmon, Carneiro, & Re, 2020),

and to this end, NLP scores provide too coarse information in contrast to clinical metrics.

For example, if a generated report achieves low BLEU, the score alone does not provide

much information into what is wrong with the prediction. In contrast, a low score in
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Table 2.4. Error gradation examples: ground truth (GT) and generated
(Gen) reports with metrics BLEU (B, average BLEU 1-4), ROUGE-L (R-
L), CIDEr-D (C-D, ranges from 0 to 10) and CheXpert F-1. Wrong words
are marked in red.

Report B R-L C-D F-1

GT 1 There is a large right sided effusion.

Gen 1 There is a minimal right sided effusion. 0.711 0.875 4.88 1
Gen 2 There is a large left sided effusion. 0.711 0.875 5.06 1
Gen 3 There is a large right sided mass. 0.779 0.875 5.90 0

GT 2 Opacities in the lung bases may represent atelectasis.

Gen 1 Opacities in the left lung may represent atelectasis. 0.675 0.888 4.57 1
Gen 2 Opacities in the lung bases may represent pneumonia. 0.809 0.888 6.98 0.5

CheXpert Cardiomegaly recall indicates that the model is predicting too many false nega-

tives (i.e. not capturing all the Cardiomegaly cases from the dataset). In general, a metric

carefully designed for the medical domain could be stronger than general domain NLP

metrics in this aspect. Regarding error gradation in the general domain, van Miltenburg

et al. (2020) performed error analysis in NLG tasks and showed examples where metrics

were not necessarily able to differentiate multiple kind of errors. Inspired by this, we built

Table 2.4 with different error gradation examples in chest X-ray reports. In such cases,

clinicians may need to define which ones are critical and which ones are less bad in each

situation, and evaluation methods should help instead of hindering the process.

Lastly, design decisions for NLP metrics are intended for the general domain. Hence,

implementations may be not specific enough for clinical reports, for example (1) when

considering synonyms using databases like WordNet (Miller, 1995) (e.g. METEOR,

SPICE), (2) when detecting objects and its relations (e.g. SPICE), or (3) when tuning

hyper-parameters (e.g. METEOR). Consider the CheXpert labeler, that works in a similar

fashion to SPICE by parsing the text to universal dependencies and then classifying men-

tions of interest, it uses a parser trained with a biomedical model (McClosky, 2010), and
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uses text patterns manually curated by radiologists to detect the abnormalities. Further-

more, we argue that for different medical sub-domains different implementations may be

needed, such as chest X-rays, abdominal CTs, histopathology images, and others; since

the specific target vocabulary (abnormalities, body parts, synonyms, and more) may differ

significantly.

2.5. Models

The survey by Messina et al. (2020) shows most models follow the design pattern

depicted in Figure 2.7. The input is one or more images, there is a Visual Component to

handle the image, a Language Component for the report generation, the main output is

the generated report, and optional outputs are an auxiliary classification and/or a heatmap

over the image, for example using CNN saliency methods such as Grad-CAM (Selvaraju

et al., 2017), or leveraging the attention mechanisms from the Language Component. For

the Visual Component, most works use networks based on common Convolutional Neural

Networks (CNNs), such as Densenet (G. Huang et al., 2017) or ResNet (He et al., 2016),

that outputs features in a latent space, and optionally an auxiliary classification (e.g. using

as target the set of CheXpert abnormalities). In contrast, there are more varied approaches

as Language Component, where the most common approach derives from the general

domain image captioning task with an LSTM-based or Transformed-based decoder, but

there are also retrieval and hybrid retrieval-generation approaches proposed (Messina et

al., 2020). Most authors that propose end-to-end models use the traditional teacher-forcing

method to train recurrent networks (Williams & Zipser, 1989), though a few have tried

Reinforcement learning.

The next subsections summarize the main models proposed in the literature for chest

X-ray report generation, focusing on the differences in the Language component, cate-

gorizing in deep learning decoders (2.5.1) and retrieval-based approaches (2.5.2). Lastly,

other learning approaches are briefly described (2.5.3).
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LSTM-based
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LSTMw
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Retrieval-based

Transformer-based

Heart size is normal. There
is pneumothorax. The
mediastinal contour  is
normal. ...

Heart size is normal. There is
pneumothorax. The mediastinal
contour  is normal. There is a
pleural effusion in the...

Heart size is normal.
There is pneumothorax.
Opacities are noted in the lower right lobe

Sentences

Full reports

Output report

CNN saliency 
or 

Language Attention
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layers

Preprocessed
reports

heart is...
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Figure 2.7. Overview of the models proposed in the literature. The Visual
Component is a CNN-based network that outputs latent features and/or an
optional auxiliary classification vector. The Language Component shows
multiple variations, LSTM-based network (arranged in a hierarchical man-
ner), Transformer-based networks, and Retrieval-based approaches. As ad-
ditional output, some approaches output visual heatmap and the auxiliary
classification.

2.5.1. Deep learning language components

The simplest approach uses a RNN to generate the output report word by word, such as

an LSTM (Boag et al., 2020) or a GRU (Nishino et al., 2020), based on the image caption-

ing model by Vinyals et al. (2015), and commonly incorporating an attention mechanism,

based on Xu et al. (2015). Furthermore, some works (Jing et al., 2019, 2018; G. Liu et

al., 2019; D. Hou et al., 2021; Zhang et al., 2020) have employed two LSTMs arranged

hierarchically to generate sentences and words in each step. In most cases an attention

mechanism is also included, either at every sentence step or every word step.

Some works (Z. Chen et al., 2020; Lovelace & Mortazavi, 2020; Xiong, Du, & Yan,

2019; Najdenkoska et al., 2021; You et al., 2021; B. Hou et al., 2021; Nguyen et al.,
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2021; Miura et al., 2021) have used transformer-based networks (Vaswani et al., 2017) as

a decoder to generate the report. The usual approach is to use one or more transformer

encoder layers to receive the image features from the CNN and further process them, and

then one or more transformer decoder layers to generate the text in a recurrent manner.

Additionally, Z. Chen et al. (2020) included an external memory with the transformer in

the decoding process.

2.5.2. Retrieval-based language components

Three papers have proposed purely retrieval methods. Syeda-Mahmood et al. (2020)

manually curated a set of around 70 fine-grained labels (i.e. mentions of abnormalities and

their characteristics), proposed a CNN-based model that detects the labels in the images,

and then retrieves sentences with the found labels to generate the output report. Kougia

et al. (2021) searches the most similar image in the training set, considering an image

embedding and a set of predicted tags (both by a CNN), and returns its caption as out-

put report. Lastly, Ni et al. (2020) trained cross-modal embeddings between images and

sentences to relate abnormal image regions with abnormalities described in the reports;

then, given an input image the embeddings are used to retrieve meaningful sentences and

generate a report.

Four papers follow the hybrid retrieval-paraphrasing approach. Yang, Ye, You, and Ma

(2021) proposed MedWriter, which uses image embeddings to retrieve relevant reports and

sentences from a database, and then paraphrases them with a hierarchical LSTM model.

Li et al. (2018) proposes HRGR, that consist of a hierarchical LSTM with a gate module

to choose between retrieving from a database or generating with a word LSTM. CLARA

(Biswal et al., 2020) was designed as an interactive tool: a human introduces anchor

words and the prefix of a sentence, and the model uses the retrieval tool Lucene (Branko,

Danijela, & Dušan, 2010) to retrieve sentence templates from a database. A sequence-

to-sequence network then reads and paraphrases each sentence template to get the final
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report. CLARA can also operate fully automatically by receiving an empty prefix and

predicting the anchor words itself. Li, Liang, Hu, and Xing (2019) proposes KERP, a

graph-based network to map the visual input into a sequence of templates from a curated

database, and then paraphrase each sentence with another instance of their graph-based

network.

2.5.3. Other learning approaches

Most works train the proposed models using the traditional teacher-forcing method

(Williams & Zipser, 1989), i.e. predict each word conditioned on the previous words,

therefore imitating the ground truth word by word. Two works use Reinforcement Learn-

ing (RL) to reward the model using a clinically relevant score: G. Liu et al. (2019) used

the CheXpert labeler to define a medical reward, and Nishino et al. (2020) trained a BERT

model to emulate the CheXpert labeler and used it as reward. Three works (Li et al., 2018;

Xiong et al., 2019; Jing et al., 2019) also used RL, but with rewards based on NLP metrics

(CIDEr, ROUGE and BLEU-4). Lastly, Lovelace and Mortazavi (2020) trained an LSTM

to emulate the CheXpert labeler in a differentiable manner, and trained their model with a

clinically coherence loss without requiring RL.

Most recently, F. Liu, Yin, et al. (2021) proposed a contrastive attention approach to

train any encoder-decoder model, which helps discriminating better between normal and

abnormal images. Similarly, F. Liu, Ge, and Wu (2021) proposed a framework to train

any encoder-decoder model in a curriculum learning fashion, by ranking the image-report

samples on different visual and textual difficulty measures.
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3. PROPOSED METHOD

We propose a template-based model that detects a set of abnormalities in the image us-

ing a CNN as a binary classifier, and then relies on fixed sentences as templates for the text

generation, as depicted in Figure 3.1. The reports generated are then structured reports

covering all abnormalities in the set, containing one sentence per abnormality classified as

present or absent. Ganeshan et al. (2018) has advocated for structured reports in radiol-

ogy as a way to reduce diagnostic errors, facilitate the communication with the referring

physician by reducing excessive language and styles, and ultimately reduce obstacles for

optimal patient care. The details of our approach follow in the next subsections.

Cardiomegaly

Pneumothorax

...

Heart size is normal

The heart is enlarged

No pneumothorax is seen

There is pneumothorax
Concatenate

Heart size is normal. There
is pneumothorax. The
mediastinal contour  is
normal. ...

Final report

Densenet-121

Choose template

Figure 3.1. Template-based model for report-generation

3.1. Abnormality classification

To detect abnormalities, we implement a CNN that receives a chest X-ray and performs

multi-label classification of the presence of the 13 abnormalities in the CheXpert set of

labels1(Irvin et al., 2019). We chose the CheXpert set of labels as target since is the

most commonly used in the report generation literature (Messina et al., 2020). We use a

Densenet-121 (G. Huang et al., 2017), which has shown good results in report generation

1All labels except for except for No Finding: namely Cardiomegaly, Enlarged Cardiomediastinum, Atelec-
tasis, Consolidation, Edema, Pneumonia, Pneumothorax, Lung Lesion, Lung Opacity, Pleural Effusion,
Pleural Other, Fracture, Support Devices.
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(Messina et al., 2020) and in multi-label classification in chest X-rays (Rajpurkar et al.,

2017).

For training, we use a weighted binary cross-entropy loss, similar to X. Wang et al.

(2017), to compensate for the unbalanced classes. We initialized the network with the

pre-trained weights from ImageNet (Deng et al., 2009), then pre-trained on the CheXpert

dataset (Irvin et al., 2019) for the same medical classification task, then fine-tuned in the

MIMIC-CXR dataset (weights θM ), and lastly fine-tuned in the IU X-ray dataset (weights

θI). We used the θM weights for the template-based model in the MIMIC-CXR dataset,

and the θI weights for IU X-ray dataset. During training, we augment the images by ran-

dom crop, translation, rotation, shear, changing brightness, contrast and adding gaussian

noise. We optimize the saved model by the PR-AUC metric on the validation test set. At

inference time, the CNN outputs a continuous value, thus, to obtain a binary classification

we apply a threshold for each abnormality. The threshold value for each abnormality is

calculated by finding a value that optimizes the F1-score obtained in the validation set.

3.2. Text generation

We manually curated a set of two sentences per abnormality indicating presence and

absence, totaling 26 sentences. We built the templates by examining the reports and pick-

ing existing sentences or creating new ones. To generate the full report, the image is fed to

the CNN to compute the binary classification, then the corresponding absence or presence

template is chosen for each abnormality, and the sentences are concatenated into the final

report.

We tested the model using three template sets: single, abnormal-only and grouped.

All of them provide the same meaning clinically (in terms of the presence of the 13 abnor-

malities), but are written differently.
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Single. Concise sentences that indicate the presence or absence directly, for example:

“No pleural effusion” and “Pleural effusion is seen”. The presence templates do not

provide detailed visual characteristics, such as location, severity, size, or more, since the

classification model does not predict this information. All sentences are shown in Table

3.1.

Abnormal-only. Contains only the positive sentences (i.e. indicating abnormalities)

from the single set, and replaces the negative sentences by empty sentences. If the pre-

diction for an image is negative for all abnormalities, the output report is filled with the

sentence “No active disease”, to avoid outputting an empty report.

Grouped. To resemble more the reports from each dataset, we grouped multiple ab-

normalities into common sentences from the training set. For example, in IU X-ray, if

all the lung-related abnormalities are classified as absent, the template chosen is “The

lungs are clear”, instead of using their individual absence templates. If at least one of the

abnormalities does not match the group, the model falls back to a set of individual sen-

tences. For the IU X-ray dataset we use the single set as the individual fallback, and for

MIMIC-CXR, we modified some of the sentences from the single set to further resemble

the reports from the dataset. Full set of sentences are detailed on Appendix B.

3.3. Implementation details

Our implementation is available online2. We used the pytorch implementation3 of the

Densenet-121 (G. Huang et al., 2017) architecture. Specifically, given an input image, we

(1) use the features layer to extract a feature vector of size 1024×H ×W , (2) apply

global average pooling to obtain a vector of size 1024, (3) apply a dropout layer with p =

0.5, (4) pass through a fully connected layer to obtain a vector of size 13 with predicted

values, and (5) apply a threshold to obtain a binary classification for each abnormality.

2https://pdpino.github.io/clinically-correct
3https://pytorch.org/vision/stable/models.html

https://pdpino.github.io/clinically-correct
https://pytorch.org/vision/stable/models.html
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Table 3.1. Sentences in the single template set.

Abnormality Absence template Presence template

Cardiomegaly Heart size is normal The heart is enlarged
Enlarged Cardiomed. The mediastinal contour is

normal
The cardiomediastinal silhouette
is enlarged

Consolidation No focal consolidation There is focal consolidation
Lung Opacity The lungs are free of focal

airspace disease
One or more airspace opacities
are seen

Atelectasis No atelectasis Appearance suggest atelectasis
Pleural Effusion No pleural effusion Pleural effusion is seen
Pleural Other No fibrosis Pleural thickening is present
Pneumonia No pneumonia There is evidence of pneumonia
Pneumothorax No pneumothorax is seen There is pneumothorax
Edema No pulmonary edema Pulmonary edema is seen
Lung Lesion No pulmonary nodules or

mass lesions identified
There are pulmonary nodules or
mass identified

Fracture No fracture is seen A fracture is identified
Support Devices – A device is seen

The specific threshold value for each label is calculated by finding a value that optimizes

the F1-score obtained in the validation set.

When training, the weights from the convolutional layers were initialized with Ima-

geNet pre-trained weights from pytorch, and the full model (convolutional and fully con-

nected layer) were pre-trained in the CheXpert dataset. When pre-training in CheXpert,

we used a batch size of 54, trained with the Adam optimizer for 15 epochs with learning

rate 0.0001 and weight decay (L2-norm) 0.00001. When training in MIMIC-CXR or IU

X-ray, we used a batch size of 110, trained with the Adam optimizer for 30 epochs with

learning rate 0.00003 and weight decay 0.002. In both cases, we resized the input images

to 256 × 256, and saved the model with the best PR-AUC evaluated in the validation set.

We used a GPU Nvidia RTX 3090 and a GPU Nvidia RTX 2080 for the experiments.
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4. MATERIALS

4.1. Datasets

We perform the experiments with two publicly available datasets: IU X-ray1 (Demner-

Fushman et al., 2015) and MIMIC-CXR2 (A. Johnson et al., 2019; A. E. W. Johnson et

al., 2019). For both datasets we used the findings section of the reports and kept only

frontal X-rays (AP and PA projections). We used the official train-validation-test split for

MIMIC-CXR, and we split the IU X-ray dataset in 8:1:1 proportions. To pre-process the

reports we applied tokenization, manually corrected some typos, and kept all the tokens in

the vocabulary. The amount of final images and dataset statistics is detailed in Table 4.1,

and the distributions of number of words and number of sentences per report are shown in

Figure 4.1. MIMIC-CXR presents somewhat longer and potentially more complex reports,

which is consistent with the sources and sizes of the datasets.

Table 4.1. Datasets statistics. Abnormal images are those with one or more
abnormalities present, as labeled by the CheXpert labeler.

Amount IU X-ray MIMIC-CXR

Total images 7,470 377,110
Total reports 3,955 227,827

Frontal images 3,311 243,326
Train images 2,638 (80%) 237,964 (97.8%)
Validation images 336 (10%) 1,959 (0.8%)
Test images 337 (10%) 3,403 (1.4%)

Healthy images 1,297 (39.2%) 40,165 (16.5%)
Abnormal images 2,014 (60.8%) 203,161 (83.5%)

Unique sentences 6,435 361,440
Unique tokens 1,578 11,598
Average number of words 37 56.5
Average number of sentences 4.6 5.2

1https://openi.nlm.nih.gov/faq
2https://physionet.org/content/mimic-cxr-jpg/2.0.0/

https://openi.nlm.nih.gov/faq
https://physionet.org/content/mimic-cxr-jpg/2.0.0/
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Figure 4.1. Word and sentence distributions.
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Figure 4.2. CheXpert label distributions.

We applied the CheXpert labeler (Irvin et al., 2019) to the processed reports to obtain

the ground truth labels for the classification training task. Figure 4.2 shows the distribu-

tions of CheXpert abnormalities in each dataset, exhibiting the unbalance toward more

negative samples in each label, as commonly seen in the medical domain. For example, in

the MIMIC-CXR dataset, the five least common labels have less than 10% positive cases

each; and in IU X-ray only four abnormalities have more than 200 positive cases.
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4.2. Metrics

We used three NLP metrics: BLEU-N (B-N) (Papineni et al., 2002), ROUGE-L (R-

L) (Lin, 2004), and CIDEr-D (C-D) (Vedantam et al., 2015), implemented in a publicly

available python library3. CIDEr-D ranges from 0 (worst) to 10 (best), while the others

from 0 (worst) to 1 (best).

As clinical correctness metrics, we used the CheXpert labeler4 (Irvin et al., 2019) and

MIRQI5 (Zhang et al., 2020), which were detailed in section 2.4.2. In both cases, we

provide F1-score (F-1), precision (P), and recall (R). The CheXpert average values are the

macro average across the 14 labels.

4.3. Baselines

4.3.1. Naive Models

We implement five simple baselines that are not clinically useful, but provide a refer-

ence value for the metrics. The first four models are unconditioned upon the query image,

and all of them except by Top-words-N are grammatically correct.

• Constant: returns the same report for all the images, manually curated using

sentences describing a healthy subject. We created four constant report versions

for the different experiments, two using common sentences from each dataset

(version 1 and version 2), a short and a long variant (Table 4.2).

• Random retrieval: returns a random report from the training set.

• Top-words-N: generates a report randomly using the N most common words

from the training set. First, it defines the number of words for the output report

3https://github.com/salaniz/pycocoevalcap
4https://github.com/stanfordmlgroup/chexpert-labeler
5https://github.com/xiaosongwang/MIRQI

https://github.com/salaniz/pycocoevalcap
https://github.com/stanfordmlgroup/chexpert-labeler
https://github.com/xiaosongwang/MIRQI
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by choosing randomly a length K from the training set, and then samples K

words from the N most common words and returns them in a random order. We

tested with N ∈ {10, 50, 100, 500} and kept the best results in terms of clinical

metrics.

• Top-sentences-N: same procedure as Top-words-N, using N most common sen-

tences instead of words.

• 1-NN (Nearest-Neighbor): given a test image, search for the most similar im-

age in the training set and return its report. It uses the embedded space by the

last layer of features from a CNN to search for the closest image, using cosine

distance.

Table 4.2. Reports used in the Constant models. The first two versions are
based on common sentences from the two datasets.

Version Constant report

Version 1 (IU
X-ray)

The heart is normal in size. The mediastinum is unremarkable. The
lungs are clear. There is no pneumothorax or pleural effusion. No focal
airspace disease. No pleural effusion or pneumothorax.

Version 2
(MIMIC-CXR)

In comparison with the study of xxxx, there is little change and no ev-
idence of acute cardiopulmonary disease. The heart is normal in size.
The mediastinum is unremarkable. No pneumonia, vascular congestion,
or pleural effusion.

Short No acute findings.
Long Heart size is normal. The mediastinal contour is normal. No pulmonary

nodules or mass lesions identified. The lungs are free of focal airspace
disease. No pulmonary edema. No focal consolidation. No pneumo-
nia. No atelectasis. No pneumothorax is seen. No pleural effusion. No
fibrosis. No fracture is seen.

4.3.2. CNN-LSTM based Models

We re-implemented two encoder-decoder models from the image captioning task,

Show and Tell (ST) (Vinyals et al., 2015) and Show, Attend and Tell (SAT) (Xu et al.,
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Figure 4.3. Show and Tell model (Vinyals et al., 2015). FC stands for
fully-connected layer, where FCI encodes the image features into the word
embedding space, and FCw receives the LSTM state and generates the re-
port word by word.
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Figure 4.4. Show Attend and Tell model (Xu et al., 2015). FC stands for
fully-connected layer, where FCI encodes the global image features to ini-
tialize the LSTM hidden state, and FCa, FCh and FCw are used to generate
each word in each step.

2015). Both use the CNN from the template-based model as encoder and a LSTM net-

work as decoder to generate the full report word by word, as depicted in Figures 4.3
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and 4.4. Show, Attend and Tell uses a visual attention mechanism that receives the local

features from the image and the hidden state from the previous step, which is detailed

below. The word embeddings are of size 100 and we initialized them with the RadGlove

(Zhang, Ding, Qian, Manning, & Langlotz, 2018), which was pre-trained with radiology

reports. The models are trained with a cross-entropy loss to generate the report word by

word, using teacher forcing (Williams & Zipser, 1989). During training, in each epoch

the CheXpert F-1 score was measured in the validation set, and the model with the best

performance was kept.

Show, Attend and Tell attention mechanism. In each time step t, the attention is

calculated as: zt = Attention({ai}, ht−1), where ht−1 is the LSTM hidden state in the

previous step, {ai} are the local features in each image region i, and the attention output

is the context vector zt. Attention weights αi are computed with a two-layer perceptron

fatt (equations 4.1 and 4.2), where W1, W2, W3 and b are learnable weights and bias. A

βt scalar is used as a gating mechanism to let the model decide whether to emphasize lan-

guage or context in each step, and is computed with the fully-connected layer fβ followed

by a sigmoid activation (equation 4.3). Lastly, the context vector zt is computed as the

weighted sum of weights αi and features ai (soft attention), multiplied by the gating βt

factor (equation 4.4).

αti = softmax (fatt(ai, ht−1)) (4.1)

= softmax (W1 tanh (W2ai +W3ht−1 + b)) (4.2)

βt = σ(fβ(ht−1)) = σ(W4ht−1) (4.3)

zt = βt
∑
i

αti ai (4.4)
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4.3.3. Chest X-ray report-generation literature

We compare our approach with the results from nineteen models from the literature:

seven LSTM-based (Jing et al., 2018; G. Liu et al., 2019; Boag et al., 2020; Nishino et al.,

2020; Zhang et al., 2020; D. Hou et al., 2021; F. Liu, Yin, et al., 2021), six Transformer-

based (Z. Chen et al., 2020; Lovelace & Mortazavi, 2020; Nguyen et al., 2021; Naj-

denkoska et al., 2021; Miura et al., 2021; B. Hou et al., 2021) three fully-retrieval (Syeda-

Mahmood et al., 2020; Ni et al., 2020; Kougia et al., 2021), and three hybrid retrieval-

generation based (Li et al., 2018, 2019; Biswal et al., 2020). We re-implemented the

CoAtt model (Jing et al., 2018), and for the rest we show the results from their papers.
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5. RESULTS

5.1. Report generation benchmark

We benchmark the naive baselines, baseline encoder-decoder models, state-of-the-art

methods and our template-based model in the report generation task, using CheXpert and

NLP metrics. We leave out MIRQI since it does not pass a minimal criterion detailed in

the Stress tests results subsection. Tables 5.1 and 5.2 show the benchmark in the IU X-ray

and MIMIC-CXR datasets, CheXpert metrics are macro averaged across 14 labels, and

Table 5.3 show the benchmark in each CheXpert label in the MIMIC-CXR dataset. There

are several remarks from these results, discussed next.

Template sets. The clinical performance for all the sets of the template-based model

is the same, as expected, but their NLP performance are highly varied. The abnormal-only

has the lowest NLP performance, probably due to its much shorter reports. The grouped

set is able to achieve much higher NLP performance than the single set, particularly in

the IU X-ray dataset, only by using sentences that appear more commonly in the dataset.

Thus, we show that we can improve NLP metrics by changing the report wording while

preserving the clinical correctness in terms of the seen abnormalities, suggesting NLP

metrics are not robust enough to measure performance in this task.

NLP vs Clinical Correctness. From the whole benchmark, the medical correctness

metrics seem to be better than NLP metrics at differentiating naive baselines versus deep

learning models, considering the naive models are not clinically useful by design. The

baselines that are unconditioned upon the query image, namely Constant, Top-words-N,

Top-sentences-N and Random retrieval, achieve comparable performance to our template-

based model, and even to some literature models, especially in the IU X-ray dataset. On

the contrary, these naive models mostly achieve lower performance on CheXpert, whereas

encoder-decoder, literature and template-based models show higher values. One exception
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Table 5.1. IU X-ray report generation benchmark. CheXpert metrics are
macro-averaged across 14 labels. f+i indicates they generated both find-
ings and impression sections concatenated, while the rest generated find-
ings only; ∗ indicates we re-implemented the code; super script letters R,
T and L indicate Retrieval, Transformer and LSTM-based approaches; su-
per scripts RL and CA indicates the use of Reinforcement Learning and
Contrastive Attention strategies.

CheXpert NLP
Model F-1 P R B-1 B-4 R-L C-D

Constant-v1 0.038 0.026 0.071 0.462 0.173 0.366 0.307
Top-words-50 0.040 0.052 0.102 0.401 0.000 0.228 0.127
Top-sentences-100 0.051 0.043 0.072 0.387 0.104 0.296 0.160
Random retrieval 0.066 0.065 0.068 0.382 0.084 0.284 0.145
1-NN 0.153 0.143 0.170 0.407 0.106 0.303 0.207

ST∗, Vinyals et al.L 0.065 0.103 0.089 0.246 0.072 0.292 0.192
SAT∗, Xu et al.L 0.119 0.153 0.131 0.374 0.102 0.328 0.213
CoAtt∗, Jing et al.L 0.144 0.162 0.147 0.403 0.114 0.316 0.221

CoAtt, Jing et al.L,f+i - - - 0.517 0.247 0.447 0.327
Zhang et al.L,f+i - - - 0.441 0.147 0.367 0.304
ARL, D. Hou et al.L,RL - - - - 0.125 0.262 0.366
F. Liu, Yin, et al.L,CA - - - 0.492 0.169 0.381 -
Nguyen et al.T 0.152 0.142 0.173 0.515 0.235 0.362 -
Najdenkoska et al.T,f+i - - - 0.493 0.154 0.375 -
Miura et al.T,RL 0.269 0.285 0.294 - 0.120 - 0.996
CLARA, Biswal et al.R - - - 0.471 0.199 - 0.359
HRGR, Li et al.R - - - 0.438 0.151 0.369 0.343
KERP, Li et al.R - - - 0.482 0.162 0.339 0.280
RTEX, Kougia et al.R - 0.193 0.222 - 0.055 0.202 -
Syeda-Mahmood et al.R,f+i - - - 0.560 0.490 0.580 -

Templ. abnormal-only 0.304 0.311 0.355 0.018 0.002 0.125 0.006
Templ. single 0.304 0.311 0.355 0.299 0.073 0.282 0.033
Templ. grouped 0.304 0.311 0.355 0.450 0.145 0.352 0.252

to this trend is worth noticing, the Top-words-100 model achieves high CheXpert scores

in the MIMIC-CXR dataset, even though its sentences are not necessarily grammatically

correct. This could indicate a weak point of the CheXpert labeler, since its parser is not
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Table 5.2. MIMIC-CXR report generation benchmark. CheXpert metrics
are macro-averaged across 14 labels. f+i indicates they generated both find-
ings and impression sections concatenated, while the rest generated find-
ings only; ∗ indicates we re-implemented the code; Ab indicates they used
a subset of the data only with reports that have one or more abnormal find-
ings; super script letters R, T and L indicate Retrieval, Transformer and
LSTM-based approaches; super scripts RL and CA indicates the use of
Reinforcement Learning and Contrastive Attention strategies.

CheXpert NLP
Model F-1 P R B-1 B-4 R-L C-D

Constant-v2 0.009 0.005 0.071 0.245 0.036 0.226 0.060
Top-words-100 0.212 0.234 0.237 0.326 0.002 0.189 0.052
Top-sentences-100 0.043 0.093 0.075 0.190 0.040 0.204 0.029
Random retrieval 0.203 0.236 0.186 0.277 0.040 0.198 0.035
1-NN 0.361 0.371 0.355 0.331 0.061 0.222 0.069

ST∗, Vinyals et al.L 0.189 0.331 0.180 0.273 0.067 0.235 0.054
SAT∗, Xu et al.L 0.275 0.400 0.256 0.263 0.067 0.248 0.083
CoAtt∗, Jing et al.L 0.185 0.381 0.186 0.256 0.071 0.260 0.076

Boag et al.L 0.186 0.304 - 0.305 0.092 - 0.850
ARL, D. Hou et al.L,RL 0.156 0.218 0.135 - 0.148 0.329 0.402
G. Liu et al.L,RL - 0.309 0.134 0.313 0.103 0.306 1.046
Nishino et al.L,RL 0.217 - - 0.217 0.048 - -
F. Liu, Yin, et al.L,CA 0.303 0.352 0.298 0.350 0.109 0.283 -
Z. Chen et al.T 0.276 0.333 0.273 0.353 0.103 0.277 -
Lovelace and MortazaviT 0.228 0.333 0.217 0.415 0.146 0.318 0.316
Nguyen et al.T 0.412 0.432 0.418 0.495 0.224 0.390 -
RATCHET, B. Hou et al.T 0.276 0.332 0.271 0.232 - 0.240 0.493
Najdenkoska et al.T,f+i 0.210 0.350 0.151 0.418 0.109 0.302 -
Miura et al.T,RL 0.310 0.364 0.360 - 0.111 - 0.492
CVSE, Ni et al.R,Ab 0.253 0.317 0.224 0.192 0.036 0.153 -
RTEX, Kougia et al.R - 0.229 0.284 - 0.059 0.205 -

Templ. abnormal-only 0.462 0.442 0.547 0.084 0.008 0.171 0.008
Templ. single 0.462 0.442 0.547 0.282 0.044 0.209 0.046
Templ. grouped 0.462 0.442 0.547 0.324 0.076 0.225 0.078

being able to detect the lack of grammatical structure while parsing the reports for this

model.
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Template-based clinical correctness. Regarding clinical metrics, our template-based

models outperforms all other models in terms of CheXpert F-1, precision and recall macro-

averaged across 14 labels in both datasets (Tables 5.1 and 5.2), and individual F-1 scores

in 12 out of 13 abnormalities in MIMIC-CXR (Table 5.3). Specifically, the template-based

model achieves much better performance than (1) the naive methods, showing it surpasses

the first lower standard; and (2) the deep learning models, proving the approach to be more

effective while simpler. The 1-NN baseline is also very strong, as it achieves CheXpert

average scores higher than the encoder-decoder baselines, comparable to some literature

models, and reached the highest F-1 score for the Pleural Other abnormality.

NLP metrics. Regarding NLP metrics, the naive and encoder-decoder baselines we

trained perform closer to the literature models in IU X-ray than MIMIC-CXR, indicating

that better results might be easier to achieve in the former dataset than the latter. This is

consistent with the sizes and sources of the data, since MIMIC-CXR is much larger and

varied in terms of patients and their conditions. Additionally, from the results in MIMIC-

CXR (Table 5.2), CIDEr-D appears to be the most difficult to increase up to literature

levels, from all the NLP metrics used.

5.2. Stress test on clinical metrics

We design and implement a simple stress test for the clinical correctness metrics to as-

sess their validity, inspired by the behavioral tests for NLP models proposed in the Check-

List methodology (Ribeiro, Wu, Guestrin, & Singh, 2020). The test consists of producing

a set of generated reports with a baseline method, then manipulating the wording of the re-

ports without changing their clinical meaning, and evaluate them both (i) baseline and (ii)

manipulated methods with a target metric. Then, a clinical correctness metric is expected

to stay constant between both methods, since the reports mention the same abnormal find-

ings, just with different words. Otherwise, the metric may have specific design failures
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Table 5.3. MIMIC-CXR report generation benchmark by CheXpert label.
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No Finding 0.237 0.266 0.407 0.541 0.451 0.454 0.300 0.354
Enlarged Cardiom. 0.294 0.272 0.134 0.059 0.015 0.077 0.061 0.449
Cardiomegaly 0.595 0.661 0.390 0.433 0.446 0.482 0.555 0.708
Lung Lesion 0.162 0.083 0.001 0.014 0.069 0.038 0.148 0.277
Lung Opacity 0.512 0.326 0.077 0.171 0.344 0.174 0.345 0.644
Edema 0.496 0.518 0.271 0.298 0.407 0.622 0.273 0.622
Consolidation 0.182 0.085 0.014 0.073 0.041 0.089 0.151 0.274
Pneumonia 0.209 0.160 0.030 0.039 0.234 0.267 0.270 0.376
Atelectasis 0.485 0.412 0.146 0.322 0.411 0.516 0.398 0.610
Pneumothorax 0.152 0.150 0.043 0.098 0.110 0.190 0.060 0.237
Pleural Effusion 0.655 0.679 0.473 0.480 0.633 0.730 0.539 0.739
Pleural Other 0.152 0.000 0.001 0.009 0.000 0.000 0.058 0.073
Fracture 0.143 0.084 0.001 0.000 0.000 0.071 0.056 0.260
Support Devices 0.782 0.787 0.613 0.660 0.697 0.635 0.334 0.846

Macro average 0.361 0.320 0.186 0.228 0.276 0.310 0.253 0.462

that make it unreliable or non-robust in some cases. We describe the test design, test

cases, and present the results next.

Test design: unmention vs negative. In the context of clinical reports, when radiol-

ogists mentions an abnormality negatively they mean the same as not mentioning the ab-

normality. Consider the following reports: “the heart is normal in size, no pneumothorax

or pleural effusion observed”; and “no acute findings”. The former mentions explicitly

the abnormalities Cardiomegaly, Pneumothorax and Pleural Effusion as negative, though

in the latter report they are unmentioned and the patient is assumed to be healthy in those
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aspects. This is very common in real reports, as different radiologists adopt different styles

when writing reports (Ganeshan et al., 2018). Hence, the test consists of manipulating the

reports by replacing negative sentences by unmentions, or vice versa.

Test cases. As a first example, we used the proposed Template-based method with the

single set of templates as baseline, and the abnormal-only set as the manipulated method:

both contain abnormality predictions from the same CNN, but write different reports. The

single set produces a maximum of 12 negative sentences1, while the abnormal-only does

not produce any negative sentence. Refer to the Proposed Method Chapter for details on

the template sets. As a second example, we used the Constant model with the version 1

as baseline, and the long and short versions as manipulated: the three of them describe a

healthy subject, but with more or less sentences. The version 1 has 6 negative sentences,

long has 13 negative sentences, and short has no negative sentences. Refer to Table 4.2 in

the Materials Chapter for the full reports.

Table 5.4. Stress tests results for CheXpert and MIRQI metrics, in IU X-
ray and MIMIC-CXR datasets. Marks −, ↑ and ↓ indicate that the values
stayed the same, increased and decreased from the baseline, respectively.

CheXpert MIRQI
Model F-1 P R F-1 P R

IU
X

-r
ay

Templ. single 0.239 0.225 0.357 0.529 0.534 0.540
Templ. abn-only 0.239 − 0.225 − 0.357 − 0.457 ↓ 0.447 ↓ 0.478 ↓
Constant-v1 0.038 0.026 0.071 0.469 0.462 0.481
Constant-short 0.038 − 0.026 − 0.071 − 0.356 ↓ 0.356 ↓ 0.356 ↓
Constant-long 0.038 − 0.026 − 0.071 − 0.462 ↓ 0.452 ↓ 0.481 −

M
IM

IC
-C

X
R Templ. single 0.462 0.442 0.547 0.739 0.801 0.720

Templ. abn-only 0.462 − 0.442 − 0.547 − 0.833 ↑ 0.801 − 0.897 ↑
Constant-v1 0.009 0.005 0.071 0.134 0.118 0.167
Constant-short 0.009 − 0.005 − 0.071 − 0.038 ↓ 0.038 ↓ 0.038 ↓
Constant-long 0.009 − 0.005 − 0.071 − 0.121 ↓ 0.102 ↓ 0.176 ↑

1All abnormalities except of Support Devices, which is an empty sentence.
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Results (Table 5.4). The CheXpert metrics pass both tests, as it does not change its

value with any manipulation, while MIRQI does not pass the tests, since the scores are

modified in almost all cases. To better understand this result, we studied the metrics de-

sign by inspecting their code in detail. By design, the CheXpert labeler merges the unmen-

tion and negative classes into one, as discussed in the Background subsection. However,

MIRQI only considers negative, uncertain and positive mentions in its matching process,

and unmentioned abnormalities are ignored. Thus, explaining why the MIRQI scores can

be altered by manipulating reports with negative and unmention sentences.

Furthermore, notice that MIRQI changes differently in each case and in each dataset.

In the Constant case it mostly decreases its score, except by MIRQI-r; and in the Template-

based case increases in MIMIC-CXR and decreases in IU X-ray. We further inspect the

Template-based test case by comparing the CheXpert label distribution in both datasets,

grouped by unmention, negative, and positive+uncertain, and added across abnormalities

(Figure 5.1). Notice that if we discard the unmentions (blue bar), as MIRQI does, both

datasets present very different distributions between the other two classes; in particular,

in IU X-ray there are more negative mentions, while in MIMIC-CXR there are more pos-

itive+uncertain mentions. Thus, a model biased to generate more abnormal than normal

sentences could have more chances at a better performance in MIMIC and worse in IU;

and vice versa with a model biased towards normal sentences. This could be a possi-

ble explanation to the observed discrepancy, but we believe it requires further analysis to

understand to what extent we can game MIRQI.

To sum up, the CheXpert metric is able to pass our minimal stress test, and even

though it has not been tested thoroughly in the literature, we believe is good enough to use

as clinical correctness metric in this thesis. However, MIRQI does not pass the test, and we

found at least one severe problem that makes it unreliable and even vulnerable to gaming

effects. For example, we could leverage the biases in the datasets to create a model that

achieves better performance, without changing the clinical meaning or actual usefulness
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Figure 5.1. CheXpert distribution of labels in both datasets, considering
test sets only.

of the generated reports. Hence, we decided not to use MIRQI as a clinical metric in

the other experiments. It is worth mentioning MIRQI has some interesting ideas, as it also

attempts to capture attributes and modifiers of the abnormalities, such as location, severity,

shape, and more, which can also be significant in reports (Datta & Roberts, 2020).

5.3. NLP metrics in corpora with controlled clinical meaning

We test the NLP metrics in corpora with manually controlled clinical meaning to (1)

observe the metrics behavior in different scenarios, and to (2) measure how well they dif-

ferentiate clinically correct and incorrect text samples. Specifically, we refer to a corpus as

a set of ground truth reports paired with generated texts, and we build a corpus by choos-

ing the reports by their output from the CheXpert labeler. Assuming the labeler is correct

most of the times2, we argue we are building a corpus with controlled clinical meaning. We

2As detailed in the (Background subsection), the authors (Irvin et al., 2019) tested the labeler against samples
manually assessed by radiologists, achieving near 0.8-0.9 F-1 score classification results.



55

also remark that CheXpert only accounts for the presence, absence or uncertainty of ab-

normalities, but ignores additional attributes mentioned, such as severity, location, shape,

and more; hence, the controlled meaning will also ignore these details. The full analysis

is divided in five main steps, which are detailed next.

Step 1: Label and group sentences. First, we list all unique sentences in a dataset

and label them using the CheXpert labeler. Then, for each abnormality, we group the sen-

tences according to one of the four outputs given by the labeler: positive (pos), uncertainty

(unc), negative (neg) or unmention (none). See example sentences for Lung Opacity and

Cardiomegaly in Table 5.5. The amount of unique sentences per dataset is 6, 435 in IU

X-ray and 361, 440 in MIMIC-CXR, and the amount of sentences per CheXpert group

and per abnormality for each dataset is detailed in the Appendix C.1 (Table C.1).

Table 5.5. Example sentences grouped by their CheXpert output, regard-
ing Lung Opacity and Cardiomegaly abnormalities. Words marked in red
indicate a positive finding, in orange an uncertainty, and in green a healthy
finding.

Unmention Negative Uncertain Positive

L
un

g
O

pa
ci

ty No acute findings. No focal opacity. Definite infiltrate
is not excluded.

Left basilar retro-
cardiac opacity.

Heart size is upper
normal.

No infiltrates or
masses in the
lungs.

Question left
basilar atelec-
tasis versus
infiltrate.

Bibasilar and
perihilar intersti-
tial opacities.

C
ar

di
om

eg
al

y Overall clear
lungs.

Heart size and
mediastinal
contours are
normal.

Borderline heart
size.

Slight car-
diomegaly.

No edema or pneu-
monia.

The heart is not
enlarged.

Heart size is sta-
ble

The heart size is
mildly enlarged.
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Step 2: Build controlled corpus. For a given abnormality (e.g. Cardiomegaly), we

select two of its sentences groups (e.g. negative and positive), and we build a corpus

with a controlled clinical meaning by using sentences from the first group as ground truth

reports and sentences from the second group as generated reports (e.g. all ground truth are

negative and all generated are positive). Notice we control the meaning of all the pairs in

the corpus, with the aforementioned assumption that the labeler is correct always or most

of the times. We use the notation “Abnormality gt-gen”, where gt represents the group

chosen for the ground truth, gen the group chosen for the generated, and the abnormality

may be omitted if it can be inferred from the context (the example would be Cardiomegaly

neg-pos, and all samples would be false positives detections). Table 5.6 shows two corpora

examples with some report samples.

The most exhaustive way to create a corpus with two groups is to take the Cartesian

product between all sentences in the groups, i.e. pair all sentences in the first group with

all the sentences in the second, in which we end up with a quadratic amount of samples.

Considering the amount of sentences in each dataset, specially in MIMIC-CXR, working

with a corpus this size is not feasible, so we apply a random sampling strategy to select

pairs, detailed in the appendix C.2.

Step 3: Compute metrics. Given a corpus with clinically controlled meaning, we

can compute NLP metrics for the full corpus. Notice that for each abnormality we can

build a corpus between all pairs of CheXpert groups, totalling 4× 4 = 16 corpora. Thus,

we can compose a 4 × 4 matrix summarizing NLP scores for each abnormality and each

NLP metric, see left of Figure 5.2 with an example for Lung Opacity and ROUGE-L. The

cell in the first row and first column of the matrix shows ROUGE-L calculated with the

corpus none-none, in the second row and first column for the corpus neg-none, and so on.

Matrices for all abnormalities and NLP metrics are shown in the Appendix C.3.
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Table 5.6. Examples of reports in clinically controlled corpora. Words
marked in red indicate a positive finding, in orange an uncertainty, and
in green a healthy finding.

Ground truth report Generated report

Corpus 1: Pleural Effusion pos-neg

Small left pleural effusion is noted, sim-
ilar to previous examination.

There is no evidence of right pleural effu-
sion.

Bilateral pleural effusions, small on the
right, and trace on the left.

No pleural effusions are currently seen.

... ...

Corpus 2: Pneumonia neg-unc

There is no evidence of lower pneumo-
nia.

If clinical suspicion for pneumonia per-
sists, followup radiograph may be helpful.

The right lung is clear and there is no
evidence of acute pneumonia.

In the correct clinical setting, superim-
posed infection is not excluded.

... ...

In Figure 5.2, the diagonal of the matrix holds the corpora where the groups share

the same CheXpert output (e.g. neg-neg, unc-unc, etc), and thus are correct in a clinical

sense. On the other hand, the non-diagonal scores are corpora with incorrect samples

from all sorts, neg-pos, unc-none, none-pos, etc. Hence, if ROUGE-L (or any NLP metric

being analyzed) was correlated with clinical meaning in these corpora, we would expect

diagonals with higher values than non-diagonal values. In the Figure 5.2 example, the

higher values are in the corpora neg-neg, unc-unc and pos-pos; though the differences

with non-diagonal values are not so large in some cases, such as pos-pos with its neighbors

unc-pos and pos-unc, which indicates that positive sentences may be easily confused with

uncertain sentences.

The right side of Figure 5.2 shows two plots with score distributions across the samples

in some selected corpora, e.g. in the top plot, the blue histogram shows the distribution

from the neg-neg corpus and the orange from the neg-pos corpus. By comparing distribu-

tions from two corpora, we can analyze the discrimination capabilities of the NLP metric.
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Figure 5.2. ROUGE-L scores computed in clinically controlled corpora
from Lung Opacity, in the IU X-ray dataset. The matrix summarizes scores
for each corpus built, and the histograms show the distribution of four se-
lected corpora. The blue histograms are clinically correct corpora, while
the orange histograms are clinically incorrect.

For example, the top plot represents the following case: given a negative ground truth re-

garding Lung Opacity, discriminate between positive and negative generated sentences. If

ROUGE-L is able to discriminate such sentences, then we would expect that the distribu-

tions be highly separated. The top plot seems somewhat separated, while the bottom plot

seems much less separated. We show more distribution plots for other abnormalities, NLP

metrics and pair of corpora in the Appendix C.3, and we delve deeper into this separation

problem in the next steps.

Step 4: Reduce CheXpert to binary. When using the CheXpert labeler as a classi-

fication metric, the outputs are usually reduced from four to two: an abnormality labeled

as unmention is considered a negative case, and typically a label uncertain is considered a

positive case, as discussed in the Background section. Hence, we repeat the previous steps

merging the aforementioned outputs into a binary classification setting. Thus, we build

2× 2 matrices for each abnormality and each NLP metric, see Figure 5.3 with an example
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with BLEU-1 and Cardiomegaly, Figure 5.4 with examples for multiple abnormalities and

NLP metrics, and see Appendix C.3 for more matrices and histograms.
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Figure 5.3. BLEU-1 scores computed in corpora controlled with Car-
diomegaly in a binary setting. The matrix summarizes scores for each
corpus built, and the histograms show the distribution of the four corpora.
The blue histograms are clinically correct, while the orange histograms are
clinically incorrect.

The matrix in the left of Figure 5.3 shows the 2×2 matrix, where the diagonal holds the

neg-neg3 corpus (true negative samples) and pos-pos corpus (true positives) corpus, while

the non-diagonal cells hold the neg-pos (false positives) and pos-neg (false negatives) cor-

pora. Same as before, we would expect diagonal values to be higher than non-diagonal

values, if the metric is correlated with clinical meaning. From the matrix only, the corpus

that stands out with a higher value is the pos-pos; on the other hand, neg-neg has similar

scores to the clinically incorrect corpora.

The right of the Figure 5.3 plots the score distributions across samples in the four cor-

pora. If the BLEU-1 metric was good at discriminating correct from incorrect sentences

regarding Cardiomegaly, we would expect the histograms to be highly separated, but it

3We abuse notation by, from hereinafter, referring to the pos and neg groups as the merged classes (i.e.
positive plus uncertain and negative plus unmentioned, respectively).
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Figure 5.4. Matrices showing NLP metrics behavior with respect to CheX-
pert outputs in three abnormalities in the IU X-ray dataset. All matrices
show a similar pattern, the most different score is achieved by the pos-pos
corpus in the each case (bottom right cell in each matrix), while the rest of
the cells show more similar scores among them.

does not seem to be the case. Specifically, given a positive Cardiomegaly ground truth

(bottom histogram), BLEU-1 does not discriminate very well between a negative or posi-

tive generated texts; and given a negative Cardiomegaly ground truth (top histogram), the

separation is even worse.

Step 5: Measuring separation with ROC-AUC. It is clear from the plots that the

histograms are not to be easily separated, but we have not yet analyzed this quantitatively.

To this end, we pose the discrimination problem as a binary classification problem, split
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in two analogous tasks: given a fixed abnormality, an NLP metric outputs a score to dis-

criminate the correct classification, i.e.,

(i) Given a positive ground truth, discriminate between a generated sentence as

negative (incorrect) or positive (correct). As a probability, this is expressed as:

P (Gen = pos|GT = pos). Example in the bottom right plot in Figure 5.3.

(ii) Given a negative ground truth, discriminate between a generated sentence as

negative (correct) or positive (incorrect). As a probability, this is expressed as:

P (Gen = neg|GT = neg). Example in the top right plot in Figure 5.3

We then compute ROC-AUC to measure the goodness of the classification in each task,

without having to set a specific threshold for the score. If the ROC-AUC score achieved

is close to 1, the NLP metric is able to separate sentences closely to the CheXpert labeler;

on the other hand, if the ROC-AUC is close to 0.5, the discrimination is almost as bad as

random.

Tables 5.7 and 5.8 show ROC-AUC scores computed for all metrics and all abnormali-

ties in the IU X-ray and MIMIC-CXR datasets. The ROC-AUC scores are much higher for

the first task than the second, in most metrics, in most abnormalities and in both datasets,

indicating that the NLP metrics are much better at discriminating true positive than true

negative mentions. Nonetheless, the ROC-AUC scores are still relatively low in the first

task, and very low in the second task. In the former, the higher scores barely reach 0.7-0.8

scores, and in the latter they are around and even below 0.5 (a random classifier achieves

0.5). CIDEr-D seems to have the best discriminating power in the first task among all

metrics, which could be due to the IDF scores used in its calculation; but still has very low

performance in the second task.
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Table 5.7. NLP metrics capabilities to separate clinically correct from in-
correct samples, measured in ROC-AUC in binary classification tasks in
the IU X-ray dataset. Task 1: given a pos ground truth, separate pos from
neg generated reports; and Task 2: given a neg ground truth, separate neg
from pos generated reports. ROC-AUC equal to 0.5 indicates the metric
separates as good as a random classifier; ROC-AUC near 1 indicates per-
fect separation.

Task 1 Task 2
P (Gen = pos|GT = pos) P (Gen = neg|GT = neg)

Abnormality B-1 B-4 R-L C-D B-1 B-4 R-L C-D

Atelectasis 0.796 0.695 0.808 0.899 0.505 0.588 0.521 0.455
Cardiomegaly 0.645 0.633 0.690 0.694 0.518 0.500 0.521 0.517
Consolidation 0.717 0.623 0.727 0.778 0.484 0.538 0.497 0.455
Edema 0.729 0.703 0.784 0.813 0.567 0.566 0.582 0.541
Enlarged Cardiom. 0.650 0.577 0.672 0.715 0.511 0.547 0.524 0.495
Fracture 0.693 0.595 0.720 0.790 0.524 0.550 0.538 0.526
Lung Lesion 0.711 0.606 0.653 0.734 0.547 0.650 0.562 0.462
Lung Opacity 0.659 0.570 0.632 0.700 0.532 0.615 0.543 0.458
Pleural Effusion 0.754 0.660 0.782 0.769 0.514 0.566 0.525 0.468
Pleural Other 0.709 0.669 0.727 0.760 0.497 0.556 0.519 0.479
Pneumonia 0.691 0.624 0.652 0.756 0.565 0.637 0.584 0.493
Pneumothorax 0.726 0.594 0.764 0.767 0.508 0.549 0.529 0.481
Support Devices 0.622 0.540 0.614 0.638 0.521 0.576 0.524 0.490
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Table 5.8. NLP metrics capabilities to separate clinically correct from in-
correct samples, measured in ROC-AUC in binary classification tasks in
the MIMIC-CXR dataset. Task 1: given a pos ground truth, separate pos
from neg generated reports; and Task 2: given a neg ground truth, separate
neg from pos generated reports. ROC-AUC equal to 0.5 indicates the met-
ric separates as good as a random classifier; ROC-AUC near 1 indicates
perfect separation.

Task 1 Task 2
P (Gen = pos|GT = pos) P (Gen = neg|GT = neg)

Abnormality B-1 B-4 R-L C-D B-1 B-4 R-L C-D

Atelectasis 0.704 0.614 0.703 0.736 0.497 0.493 0.508 0.450
Cardiomegaly 0.621 0.594 0.659 0.680 0.503 0.525 0.511 0.502
Consolidation 0.686 0.590 0.686 0.706 0.493 0.530 0.494 0.437
Edema 0.720 0.699 0.773 0.774 0.533 0.541 0.575 0.504
Enlarged Cardiom. 0.622 0.589 0.645 0.675 0.492 0.526 0.494 0.514
Fracture 0.707 0.663 0.760 0.814 0.551 0.537 0.564 0.545
Lung Lesion 0.613 0.577 0.593 0.601 0.520 0.564 0.534 0.507
Lung Opacity 0.635 0.579 0.611 0.664 0.460 0.509 0.510 0.441
Pleural Effusion 0.766 0.721 0.779 0.764 0.498 0.553 0.481 0.501
Pleural Other 0.671 0.683 0.694 0.704 0.501 0.555 0.531 0.464
Pneumonia 0.653 0.612 0.680 0.744 0.532 0.572 0.514 0.496
Pneumothorax 0.720 0.646 0.764 0.745 0.493 0.524 0.496 0.489
Support Devices 0.650 0.585 0.677 0.673 0.508 0.512 0.506 0.477
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6. DISCUSSION

6.1. Hyp 1: NLP metrics are not the most suitable for the report generation task

Following the current message on NLP metrics, we provided further evidence show-

ing that NLP metrics are not the most appropriate for the chest X-ray report generation

task. We showed their lack of robustness by proposing naive baselines that achieve NLP

performance comparable to the state-of-the-art in IU X-ray, and by improving the NLP

performance of our template model without affecting its clinical performance. Addition-

ally, we showed that NLP metrics poorly discriminate sentences with opposite meaning

regarding a given abnormality, while using the CheXpert labeler (Irvin et al., 2019) as the

gold standard. Given our results, we argue NLP metrics should not be used isolated to

evaluate the generated reports in this task.

Despite the general lack of robustness of NLP metrics, we also observed they are better

at detecting true positives than true negative sentences. This aspect could be leveraged

to use them as complementary metrics, or be further studied to design other evaluation

metrics. Furthermore, CIDEr-D seems to be the least fragile metric from our experiments,

as it is less vulnerable to the manipulations tried, and it is the best at discriminating true

positive sentences. It may be worth exploring if its TF-IDF design provides a robustness

that the others do not have.

Regarding clinical correctness metrics, we proposed a simple behavioral stress test

to contest them, inspired by the CheckList methodology (Ribeiro et al., 2020), by inter-

changing negative and unmentions of abnormalities in chest X-ray reports. We showed

the CheXpert labeler (Irvin et al., 2019) passes this minimal criterion, but MIRQI (Zhang

et al., 2020) does not, proving it to be vulnerable to gaming effects or adversarial inputs.

Furthermore, we believe more tests can be created by leveraging the examples shown
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in the Background subsection NLP vs Clinical Correctness, regarding detection of syn-

onyms, negations, gradation of errors and more. Thus, in the future, any metric can be

tested to pass minimal criteria (e.g. robustness in negative vs unmention, robustness with

synonyms, etc.), and to accomplish different goals (e.g. detect type I/II errors, etc.).

Lastly, we showed that specialized clinical metrics have more advantages than NLP

metrics by design. As discussed in the Background subsection NLP vs Clinical Correct-

ness and in the Clinically Controlled Corpora experiments, a metric like CheXpert gives

fine-grained results, as it can identify abnormalities in both ground truth and generated

sentences. On the contrary, an NLP metric only outputs a score indicating the similarity

of the ground truth and generated reports, without further context on abnormalities, error

type, or anything else. Hence, a carefully designed metric can be much more insightful

into what kind of errors are found.

In sum, regarding our first hypothesis, we conclude NLP metrics are not enough to

be used isolated in the report generation task, clinical metrics are more appropri-

ated to this end, and overall, both could be used in tandem to compensate for their

disadvantages. Additionally, CheXpert is currently the most appropriate clinical correct-

ness metric available for this task, since MIRQI proved to be vulnerable in certain cases.

In general, we believe our findings imply that making progress in the report generation

task in one medical sub-domain, like chest X-rays, does not guarantee progress for other

modalities or body parts, such as abdominal CTs, brain MRIs, etc., and authors should pay

special attention to their evaluations in each situation.

6.2. Hyp 2: Template-based model outperforms state-of-the-art measured by CheX-

pert

We proposed a template-based model that is simpler and achieves higher clinical per-

formance than SOTA in the report generation task from chest X-rays. First, the model



66

is much simpler than the state-of-the-art methods, as is a smaller deep learning model

than the common end-to-end LSTM-based or Transformer-based approaches, and it uses

fewer templates and a more straightforward retrieval process than other Retrieval-based

approaches. Second, we test the model thoroughly in the IU X-ray and MIMIC-CXR

datasets, using CheXpert as the clinical correctness metric, which we argue is currently

the most appropriate to this end. The template-based model is able to achieve higher

clinical performance than SOTA models measured by CheXpert, even though its NLP

performance is lower.

We believe authors should be more cautious when measuring improvements by pro-

posed deep learning models, given our findings while contesting the metrics in this topic,

and since traditional NLP metrics are even challenged in the general domain (Kilickaya et

al., 2017; Reiter, 2018; Mathur et al., 2020; van Miltenburg et al., 2021). In practice, we

recommend comparing the model with simple baselines, such as our template-based

model, a 1-NN, which showed very strong performance, and even naive models if possi-

ble.

An advantage of our template-based model is that the language generation process is

more inherently interpretable than other models, as defined by Rudin (2019). Rudin

(2019) describes inherently interpretable models as systems structured or constrained by

domain knowledge so they are useful and transparent for humans to understand; con-

trary to explainable models, which are typically too complex for a human to comprehend,

and need post-hoc methods to be explained, methods that have proven to be unreliable

(Adebayo et al., 2018; Ghassemi et al., 2021). Consider Figure 6.1, contrasting an end-to-

end model (top) where the full process is opaque, to our template-based model (bottom)

that performs abnormality detection inside a black box, but the text generation process is

fully transparent and interpretable. This aspect allows, for example, modifying the tem-

plates easily, either by radiologists or developers.
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CNN LSTM / Transformer

Frontal and lateral images.
Heart size is unchanged. 
Comparison to XXXX, right
lower lobe opacities most
suggestive of atelectasis. ...

CNN

Heart size is normal

The heart is enlarged

No pneumothorax is seen

There is pneumothorax

Heart size is normal.
There is pneumothorax.
The mediastinal contour
is normal. ...

(a)

(b)

...

Figure 6.1. Interpretability comparison between: (a) end-to-end model as
many from the literature, and (b) our template-based model. The former
is completely opaque, while the latter performs text generation as a fully
transparent process.

6.3. Are current evaluations sufficient for clinical deployment?

Beyond our hypotheses and metrics analyzed in this thesis, we argue that most evalua-

tions applied in the report generation task are still insufficient to assess the readiness

of AI models in a clinical workflow, as it even occurs in other image-based tasks applied

in the medical domain, such as classification, regression or segmentation. For example,

Roberts et al. (2021) reviewed over 400 pre-printed and published works in 2020 address-

ing diagnosis or prognosis of COVID-19 from radiology images using machine learn-

ing, and concluded that none of the models was potentially usable for clinical practice;

one of the main reasons was insufficient or non-existent external evaluation of the mod-

els. Other authors have also observed poor generalization in deep learning models using

chest X-rays, mainly due to domain shift issues, for example in abnormality classification

(Pooch, Ballester, & Barros, 2020), and in COVID-19 lesion segmentation (Gonzalez et

al., 2021). Additionally, multiple authors have found potential bias/fairness issues in chest

X-ray AI applications, which could deepen racial disparities in medical practices. Seyyed-

Kalantari, Zhang, McDermott, Chen, and Ghassemi (2021) showed that deep learning

models achieved less performance, particularly less recall (sensitivity), on subgroups by
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sex, age, race and more. I. Banerjee et al. (2021) showed deep learning models trained

for clinical tasks were able to detect race of the patient from radiology images with high

performance (over 0.9 AUC).

Even so, we also remark some works addressing the abnormality classification from

chest X-rays task that perform more extensive evaluations. Seah et al. (2021) tackled the

task of classifying 127 clinical findings, assessed the performance of radiologists with

and without assistance of their automated DL-based system, and used data from three

continents, including inpatient, outpatient and emergency settings. G. Wang et al. (2021)

proposed a pipeline to classify viral, non-viral and COVID-19 pneumonia. They proved

their model generalized well across multiple centers and multiple countries, and compared

its performance against senior and junior radiologists.

Overall, automated systems proposed in the report generation task may have a high

potential impact in the clinical domain, but we believe that the evaluation methods

used are still insufficient. We argue that authors in this research field should aim to (1)

perform more rigorous internal and external evaluations, (2) evaluate with expert physi-

cians, (3) carry out further error analyses of the models, such as robustness and sensitivity,

(4) address problems regarding fairness or demographic bias issues, and more. We believe

our contribution of analyzing existing metrics and proposing a simple model is a first step

towards this goal in the chest X-ray report generation task.

6.4. Limitations

We identify six main limitations in our work. First, we mostly report the results pre-

sented in the original articles, thus the benchmark could be improved. The evaluation

protocols from each work may vary, specifically, the reports pre-processing steps, the

train-test splits used, and the metric implementations. Also, many works do not provide
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clinical correctness metrics, specially in the IU X-ray dataset, and most do not provide

results disaggregated by CheXpert labels.

Second, our problem definition narrows the scope of the reports considerably, by re-

moving clinical information as additional input, and denoting information in the output

reports as out of reach (e.g. references to past exams). Thus, our experiments could be

complemented by a more comprehensive analysis of the report inputs and outputs.

Third, our template model and the CheXpert labeler are limited to detect presence or

absence of a specific set of abnormalities, disregarding (a) other abnormalities and (b) their

visual characteristics, such as location, severity, or more. Furthermore, since the template-

based model is especially tailored for the CheXpert labels, it has an inherent advantage

over other models when measuring with the CheXpert metric.

Fourth, our templates are specific to our chest X-ray datasets and are not directly gen-

eralizable to other datasets. Hence, in order to use the template-based method with other

image modalities or body parts, we would have to manually curate a set of templates cov-

ering relevant abnormalities, gather relevant labels, and train a classifier model.

Fifth, the ground truth reports and labels might be somewhat noisy, which could reduce

the overall quality of fully-supervised models and of evaluations based in this data. There

are two main causes for this noise. On the one hand, we use the CheXpert labeler as

extraction tool, since is the most commonly used in the chest X-ray report generation

literature (Messina et al., 2020), but it is yet to be proven to be a gold standard. On

the other hand, we have ignored the intrinsic ambiguity observed in the medical domain,

which exists because physicians may be uncertain of their diagnostics or disagree in some

cases (Cabitza et al., 2017). Both these facts introduce noise in the ground truth reports

and labels; for example, Oakden-Rayner (2020) found severe discrepancies between the

ground truth labels and the abnormalities seen in the images in the ChestX-ray14 dataset

(X. Wang et al., 2017), due to these problems.
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Sixth, we argue the set of abnormalities used in the CheXpert (Irvin et al., 2019)

or ChestX-ray14 (X. Wang et al., 2017) datasets may not be the most appropriate, even

though they are the most used in the report generation literature (Messina et al., 2020).

On the one hand, some abnormalities are not fully ascertainable on the images, since they

cannot be distinguished without additional clinical information, and should at most be

suggested by the radiologist (Lukaszewicz et al., 2016). For instance, in chest X-rays,

Consolidation, Pneumonia and Infiltration are very hard to distinguish without additional

clinical information (Oakden-Rayner, 2020). On the other hand, there may be cases of

hidden stratification, i.e. within the same label, there are finer-grained abnormalities of

clinical importance that are not accounted for, and are critical to deploy such a system to a

medical scenario (Oakden-Rayner et al., 2020). For example, Oakden-Rayner (2020) in-

spected Pneumothorax positive cases in the ChestX-ray14 dataset (X. Wang et al., 2017),

finding a majority of them were successfully treated patients, with the image showing a

chest drain and no collapse of the lung; however, other cases were not treated, showing

a collapsed lung, and thus were potentially lethal. Hence, the latter sub-category was far

more important to detect due to the clinical relevance, but a machine learning model could

much more easily learn to predict only the former sub-category due to the amount of data.

In sum, it may be necessary to curate the set of target abnormalities more carefully, to con-

sider clinically relevant labels and so the model does not attempt to generate information

that is out of reach, i.e. that is not able to predict from the available input.

6.5. Future work

As future work, first, we will replicate implementations from some papers to evaluate

and compare their performance under the same experimental conditions. Thus, we should

be able to have more details on the performance differences.

Second, we will further study the clinical correctness evaluation problem by validating

metrics with expert radiologists, and by inspecting essential characteristics of the reports
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Object
detection

Heart size is normal

The heart is mildly enlarged

No airspace opacities

There is an upper left opacity

Heart size is mildly
enlarged.  There is an
upper left opacity. ...

(a)

...

Case-based
NN

Heart size is normal

The heart is enlarged

No airspace opacities

There is an opacity

Comparing with
previous image from
the patient, heart size
is enlarged.  Compared
with healthy image,
there is an opacity. ...

(b)

...

Comparing with X,

Comparing with Y,

Figure 6.2. Possible model improvements. (a) Replacing the CNN with an
Object detection model, to enhance the reports with visual characteristics,
such as abnormality severity, location, shape, etc. (b) Replacing the CNN
with a neural network that classifies with case-based reasoning (e.g. Bar-
nett et al., 2021), to provide a comparison in the reports and present a more
transparent reasoning.

that we argue should be considered in the design of the evaluation methods. For example,

we want to focus on covering the abnormalities that are ascertainable on the images, since

some diseases mentioned in the reports may require clinical history or additional infor-

mation to diagnose them (Lukaszewicz et al., 2016; Oakden-Rayner, 2020). In addition,

we want to address the uncertainty and inter-radiologist disagreement often observed in

the reports, which is due to the intrinsic ambiguity in the medical domain (Cabitza et al.,

2017), since this aspect is not very studied in the report generation task from a model or

evaluation perspective (Messina et al., 2020).

Third, we want to enhance the reports from the template-based model by detecting

more abnormalities and their visual characteristics, such as location, severity, and more.

To this end, the CNN may be replaced by an object detection model (top of Figure 6.2),

and we can leverage recently published datasets with enriched data, such as RadGraph

(Jain, Saahil et al., 2021) and Chest ImaGenome (J. Wu et al., 2021) that add scene graphs
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to the MIMIC-CXR dataset (A. E. W. Johnson et al., 2019) indicating relations between

anatomic landmarks and abnormalities in the images; or other datasets that contain lo-

calization labeling on multiple abnormalities, such as Pneumothorax, Cardiomegaly, or

Pleural Effusion (Feng et al., 2021; Zhou et al., 2021).

Fourth, and closely related to the previous one, we want to improve the template-

based model by replacing the CNN with a more inherently interpretable model, which

would allow enriching the report with extra information for the radiologists. For example,

we could use a network that performs case-based reasoning for the diagnosis (Barnett et

al., 2021), to provide more details on the specific reasoning on the network to the users

(bottom of Figure 6.2). Another example is using the novel ENNs that emulate reasoning

by concepts (Blazek & Lin, 2021).

Fifth, we want to expand our problem definition to resemble more a real clinical sce-

nario. For example, include more patient information as input (e.g. indication section,

comparison exams, etc.), since this information may be critical to make some diagnoses

(Oakden-Rayner, 2020; Summers, 2021). Also, include as output the recommendation

of follow-up exams, which is an important step in the communication with the referring

physician (Lukaszewicz et al., 2016). Furthermore, we want to add prognosis-like in-

formation in the output reports, i.e. predict a patient condition in the future, which is

typically much harder than diagnosis-like tasks (Reyes et al., 2020). All these improve-

ments are challenging from several aspects, such as the data scarcity regarding additional

inputs or outputs; the inherent difficulty in building a system addressing these tasks; and

the design and use of appropriate evaluation methods.

Lastly, we want to expand our template-based proposal to other image modalities, body

parts and languages beyond chest X-rays and English, which are less studied in the report

generation literature (Messina et al., 2020). On the one hand, there are not many image-

report datasets available in other sub-domains, and the existing ones usually contain less
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images (Messina et al., 2020), since other image modalities are less common than chest

X-rays in clinical practice (Jones et al., 2021). Thus, a suitable dataset may need to be

procured, and a small dataset size may be an additional challenge for machine learning

based systems. On the other hand, the template curation process could be generalized from

our proposal to other sub-domains, by leveraging approaches in the literature that extract

entities from medical reports. For example, using reports from chest CTs (Sugimoto et

al., 2021), abdominopelvic from multiple modalities (Steinkamp et al., 2019), abdominal

ultrasounds in Spanish (Cotik et al., 2017), or others (e.g. Báez et al., 2020). Covering

other image modalities may be important in a clinical scenario, since some abnormalities

cannot be properly detected using only one image type (e.g. chest X-rays) and require

an additional imaging study (e.g. chest CT scans) (Hansell et al., 2008; Ginsberg, 2010).

Moreover, addressing this task with different languages and different patient populations

(e.g. patients from Latin America) could reveal and help solve issues with unintended

biases toward protected communities, which have already been detected in similar medical

imaging applications (Seyyed-Kalantari et al., 2021; I. Banerjee et al., 2021).
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7. CONCLUSIONS

We address the task of automatically generating a text report from chest X-rays, by

challenging the traditional NLP metrics used in the literature and favoring medical cor-

rectness metrics instead, and by proposing a template-based model much simpler than the

state-of-the-art.

As experiments, we first benchmark the template-based model against naive baselines,

encoder-decoder deep learning models and the SOTA in the IU X-ray and MIMIC-CXR

datasets, using CheXpert to measure clinical correctness and using traditional NLP met-

rics, namely BLEU, ROUGE-L and CIDEr-D. The template-based model achieved the

highest clinical performance, though lower NLP performance than SOTA. NLP metrics

were unreliable in multiple cases, as (1) we were able to manipulate reports to improve

the NLP performance of the template-based models without changing their clinical mean-

ing, and (2) naive models were able to achieve comparable NLP scores to the SOTA.

Second, we proposed a simple stress test to check the validity of clinical correctness

metrics, and we suggested more ways to create robustness tests. We tested CheXpert and

MIRQI metrics, and found only the former passes the test, while the latter has important

vulnerabilities to gaming effects or adversarial inputs.

Third, we contrasted traditional NLP metrics against corpora with controlled clini-

cal meanings, showing NLP metrics poorly discriminate sentences with opposite clini-

cal meaning regarding CheXpert abnormalities. Specifically, NLP metrics are not very

good at discriminating true positive sentences (ROC-AUC values between 0.61 − 0.81 in

MIMIC), and are worse for true negative sentences (ROC-AUC values 0.50−0.57). From

all experiments, CIDEr-D is the least fragile NLP metric.



75

Overall, our experiments indicate NLP metrics are not enough to be used isolated in

the report generation task, since they are not clinically reliable in multiple cases. In par-

ticular, the reports can be manipulated to resemble more the ground truth and achieve

better performance, without changing their underlying clinical meaning, or without pre-

senting useful clinical information. Additionally, our proposed template-based model is

much simpler and more inherently interpretable than the state-of-the-art, and surpasses its

contestants in clinical performance, measured by the CheXpert labeler metric.

In conclusion, we argue medical correctness metrics are more appropriate to be used

as primary evaluations in this field, to focus on assessing the clinically relevant content

of the reports, and traditional NLP metrics can be used in complement or secondarily.

Furthermore, evaluation methods in general in this topic need to be more extensive, to

advance towards deploying CAD systems in a clinical setting in the near future.
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A. OTHER MODALITIES DATASETS

Table A.1 shows the detail on multiple publicly available datasets from the literature

(Messina et al., 2020) that contain images from other modalities and body parts than chest

X-rays.

Table A.1. Datasets with other image modalities and body parts. Number
of pairs indicate image-report pairs.

Dataset Image Type # Samples

ImageCLEF Caption 2017
(Eickhoff et al., 2017)

Biomedical: extracted from PubMed
Central papers and automatically filtered
non-clinical images

Pairs:
184,614

ImageCLEF Caption 2018
(Garcı́a Seco de Herrera et al.,
2018)

Biomedical: same process as 2017, im-
proved filtering

Pairs:
232,305

ROCO (Pelka et al., 2018) Multiple radiology: CT, Ultrasound, X-
Ray, Fluoroscopy, PET, Mammography,
MRI, Angiography and PET-CT

Pairs: 81,825

ImageCLEF Caption 2021
(Pelka et al., 2021)

Multiple radiology modalities and body
parts

Pairs: 3,700

PEIR Gross (Jing et al., 2018) Gross lesions Pairs: 7,442

INBreast (Moreira et al.,
2012), in Portuguese

Mammography X-ray Images: 410
Reports: 115
Patients: 115

STARE (Hoover, 1975) Retinal fundus Pairs: 400
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Table B.1. Sentences in the grouped template sets. If all abnormalities
are absent, the template is used; and repeat this step until all groups are
consumed. Lastly, fill with individual sentences for abnormalities that have
not been covered.

Abnormalities Template

IU
X

-r
ay Cardiomegaly, Enlarged Cardiom. The heart size and mediastinal sil-

houette are within normal limits.

Lung Lesion, Lung Opacity, Edema,
Consolidation, Pneumonia, Atelectasis,
Pneumothorax, Pleural Effusion, Pleural
Other

The lungs are clear.

Pneumothorax, Pleural Effusion, Lung
Opacity

There is no pneumothorax or pleu-
ral effusion. No focal airspace dis-
ease.

M
IM

IC
-C

X
R Lung Lesion, Lung Opacity, Edema,

Consolidation, Pneumonia, Atelectasis
The lungs are clear.

Consolidation, Pleural Effusion,
Pneumothorax

There is no focal consolidation,
pleural effusion, or pneumothorax.

Pleural Effusion, Pneumothorax There is no pleural effusion or pneu-
mothorax.

Consolidation, Pneumothorax There is no focal consolidation or
pneumothorax.

B. MATERIALS

Table B.1 shows the sentences in the grouped set of templates, Table B.2 shows the

fallback individual sentences used for the grouped model in the MIMIC-CXR dataset.
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Table B.2. Individual sentences to fallback in the Template grouped model
in MIMIC-CXR. Manually curated using common sentences or words from
the MIMIC-CXR training set.

Abnormality Absence template Presence template

Cardiomegaly Heart size is normal Moderate cardiomegaly is stable
Enlarged Cardiomed. The cardiomediastinal sil-

houette is normal
Cardiomediastinal silhouette is sta-
ble

Consolidation The lungs are clear with-
out focal consolidation

Underlying consolidation cannot be
excluded

Lung Opacity No parenchymal opacities There is a persistent left retrocar-
diac opacity

Atelectasis No atelectasis There is bibasilar atelectasis
Pleural Effusion No pleural effusions There are small bilateral pleural ef-

fusions
Pleural Other There is no evidence of fi-

brosis
There is biapical pleural thickening

Pneumonia No pneumonia In the appropriate clinical setting,
superimposed pneumonia could be
considered

Pneumothorax There is no pneumothorax There is a small left apical pneu-
mothorax

Edema There is no pulmonary
edema

There is mild pulmonary vascular
congestion

Lung Lesion No lung nodules or masses Multiple bilateral lung nodules are
again demonstrated

Fracture No displaced fracture is
seen

Multiple bilateral rib fractures are
again noted

Support Devices – Tube in standard placement

C. CLINICALLY CONTROLLED CORPORA RESULTS

C.1. Sentences statistics

Table C.1 shows the amount of sentences per classification of CheXpert in each dataset.
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Table C.1. Number of sentences labeled by CheXpert output in each dataset.

IU X-ray (6,435 total) MIMIC-CXR (361,440 total)
Abnormality None Neg Unc Pos None Neg Unc Pos

Enlarged Cardiom. 5,905 320 99 111 351,495 1,305 2,832 5,808
Cardiomegaly 5,888 263 29 255 333,551 3,243 2,709 21,937
Lung Lesion 6,186 72 15 162 352,679 702 1,287 6,772
Lung Opacity 5,380 291 59 705 299,540 2,715 3,256 55,929
Edema 6,296 75 37 27 319,724 9,027 10,573 22,116
Consolidation 6,117 279 8 31 343,118 3,523 3,440 11,359
Pneumonia 6,336 43 22 34 322,119 7,626 17,595 14,100
Atelectasis 6,142 5 91 197 308,840 1,547 10,528 40,525
Pneumothorax 6,034 365 11 25 343,141 8,308 1,052 8,939
Pleural Effusion 5,796 486 40 113 300,997 7,726 5,508 47,209
Pleural Other 6,374 7 13 41 358,538 119 725 2,058
Fracture 6,262 49 12 112 356,119 621 621 4,079
Support Devices 6,175 24 0 236 297,284 4,137 383 59,636

C.2. Sampling strategy to create a corpus

Given two sets of sentences, Sgt and Sgen, to be used as ground truth and generated

sentences, respectively, the sampling strategy goes as follows. Sample N random sen-

tences from Sgt (without replacement) to be used as ground truth. Then, for each ground

truth sentence sample k sentences from Sgen (without replacement), and form all possible

pairs. End up with N × k pairs of sentences.

C.3. All score matrices

Figures C.1, C.2, C.3 and C.4 present 4×4 and 2×2 score matrices for all abnormalities

with all NLP metrics in both datasets.

C.4. Score distributions

Figures C.5 and C.6 show 4×4 matrices and NLP score distributions for Cardiomegaly

in MIMIC-CXR and Fracture in IU X-ray. Distributions are shown in box plots for easier
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Matrices for multiple abnormalities and NLP metrics (IU X-ray dataset)

Figure C.1. 4 × 4 matrices with scores for all abnormalities and all NLP
metrics in the IU X-ray dataset.

visualization. In most cases, NLP metrics do not discriminate well sentences with different

meanings. The rest of abnormalities and metrics are omitted for brevity (these plots were

randomly picked, not cherry picked).

Figures C.7 and C.8 show 2 × 2 matrices and NLP scores distributions for some ab-

normalities in both datasets. In most cases, histograms for the positive ground truth cases

are separated somewhat better than for the negative ground truth.
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Matrices for multiple abnormalities and NLP metrics (MIMIC-CXR dataset)

Figure C.2. 4 × 4 matrices with scores for all abnormalities and all NLP
metrics in the MIMIC-CXR dataset.
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Figure C.3. 2 × 2 matrices with scores for all abnormalities and all NLP
metrics in the IU X-ray dataset.
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Figure C.4. 2 × 2 matrices with scores for all abnormalities and all NLP
metrics in the MIMIC-CXR dataset.
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Figure C.5. 4× 4 matrices and NLP scores distributions for Cardiomegaly
in the MIMIC-CXR dataset. BLEU-4 and CIDEr-D histograms are shown
in log-scale.
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Figure C.6. 4 × 4 matrices and NLP scores distributions for Fracture in
the IU X-ray dataset. BLEU-4 and CIDEr-D histograms are shown in log-
scale.
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Figure C.7. 2 × 2 matrices and NLP scores distributions for some abnor-
malities in the IU X-ray dataset. BLEU-4 and CIDEr-D histograms are
shown in log-scale.
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Figure C.8. 2 × 2 matrices and NLP scores distributions for some abnor-
malities in the MIMIC-CXR dataset. BLEU-4 and CIDEr-D histograms
are shown in log-scale.
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