
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

POLYNOMIAL-TIME

REFORMULATIONS OF

TEMPORALLY EXTENDED

PLANNING PROBLEMS INTO

CLASSICAL PLANNING PROBLEMS

JORGE ANDRÉS TORRES VILLARRUBIA

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

JORGE A. BAIER A.

Santiago de Chile, January 2016

c© MMXV, Jorge Torres

c© MMXV, Jorge Torres

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier

medio o procedimiento, incluyendo la cita bibliográfica que acredita al trabajo y a

su autor.

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

POLYNOMIAL-TIME

REFORMULATIONS OF

TEMPORALLY EXTENDED

PLANNING PROBLEMS INTO

CLASSICAL PLANNING PROBLEMS

JORGE ANDRÉS TORRES VILLARRUBIA

Members of the Committee:

JORGE A. BAIER A.

MARCELO A. ARENAS S.

JORGE PÉREZ R.

JUAN DE DIOS RIVERA

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, January 2016

c© MMXV, Jorge Torres

iv

To my family and friends.

ACKNOWLEDGEMENTS

First, I would like to thank my advisor Jorge Baier, for his kindness, patience,

for giving me the chance to attend the IJCAI conference at Buenos Aires and meet

great people there. I also thank Marcelo Arenas and Jorge Perez. With Baier, they

were the best teachers I ever had to study Theoretical Computer Science.

I would also like to thank my father Jorge, my sister Fernanda and my grandparents

Andres and Beatriz by encouraging me in this work. I specially thank my mother

Pilar by helping me day to day with her great and wise advices. I have learnt a lot

about life and how to understand the world thanks to her.

And many thanks to my Synopsys colleagues and friends for cheering me up in this

thesis and making me feel welcome and happy every day.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . x

RESUMEN . xi

1. INTRODUCTION . 1

1.1. Background . 1

1.1.1. Planning in Artificial Intelligence 1

1.1.2. Planning Technology . 2

1.1.3. Temporally extended goals . 3

1.1.4. Planning via Translation using Non deterministic finite automata 5

1.2. Contributions of this thesis . 6

1.2.1. Major Contributions . 6

1.2.2. Outline . 7

2. ARTICLE SUBMITTED TO JOURNAL OF ARTIFICIAL INTELLIGENCE

RESEARCH . 8

2.1. Introduction . 8

2.2. Preliminaries . 10

2.2.1. Propositional Logic Preliminaries 10

2.2.2. Deterministic Classical Planning 10

2.2.3. Alternating Automata . 11

2.2.4. Finite LTL . 13

2.2.5. Deterministic Planning with LTL goals 14

2.3. Alternating Automata and Finite LTL 17

vii

2.4. Compiling Away finite LTL Properties 20

2.4.1. Translating LTL via LTL Synchronization 21

2.4.2. Properties . 24

2.4.3. Towards More Efficient Translations 26

2.5. Optimizing the Translation . 30

2.5.1. Synchronizing action graphs (SAG) 31

2.5.2. Building a SAG . 32

2.5.3. Operations on a SAG . 34

2.5.4. Extracting Actions from a SAG 40

2.6. Empirical Evaluation . 41

2.7. Conclusions . 44

References . 48

viii

LIST OF TABLES

2.1 The synchronization actions for LTL goal G in NNF. Above `, αR β, αU β,

and α are assumed to be in the set of subformulas of G. In addition, ` is

assumed to be a literal. 23

2.2 The synchronization actions (OSA) for LTL goal G in NNF. Used to enforce

topological ordering. 28

2.3 The synchronization actions for LTL goal G = (p ∧ (q ∧ ¬r)). 31

2.4 The reduced synchronization actions for LTL goal G = (p ∧ (q ∧ ¬r)). 31

2.5 Experimental results for a variety of LTL planning tasks. 46

2.6 Comparison table of experimental results for a variety of LTL planning

tasks using and not using SAG. 47

ix

LIST OF FIGURES

2.1 An NFA for formula (p→ q) that expresses the fact that every time

p becomes true in a state, then q has to be true in the state after or in

the future. The input to the automaton is a (finite) sequence s0 . . . sn of

planning states. 14

2.2 A SAG for the LTL formula ϕ = (¬p ∨q) 34

2.3 A SAG for the LTL formula ϕ = (¬p ∨q), after merging literals . . . 36

2.4 An example for a splitting operation. A step of duplication and a step of

merging. 38

2.5 A SAG for the LTL formula ϕ = (¬p ∨q), after merging literals and

splitting . 38

2.6 A SAG for the LTL formula ϕ = (¬p ∨ q), after merging literals,

splitting and removing nodes . 40

x

ABSTRACT

Linear temporal logic (LTL) is an expressive language that allows specifying

temporally extended goals and preferences. A general approach to dealing with

general LTL properties in planning is by “compiling them away”; i.e., in a pre-

processing phase, all LTL formulas are converted into simple, non-temporal formulas

that can be evaluated in a planning state. This is accomplished by first generating a

finite-state automaton for the formula, and then by introducing new fluents that are

used to capture all possible runs of the automaton. Unfortunately, current translation

approaches are worst-case exponential on the size of the LTL formula.

In this thesis, we present a polynomial approach to compiling away LTL goals.

Our method relies on the exploitation of alternating automata. Since alternating

automata are different from non-deterministic automata, our translation technique

does not capture all possible runs in a planning state and thus is very different from

previous approaches. We prove that our translation is sound and complete. We

also show other variants of this translation that help to improve performance and

evaluate them empirically showing their strengths and weaknesses. Specifically, we

find classes of formulas in which our translation seems to outperform significantly

the current state of the art.

Keywords: Planning State, Alternating Automata, Linear Temporal Logic,

LTL formula, Planner, Planning problem, Temporally extended

goal

xi

RESUMEN

Lógica lineal temporal (LTL) es un lenguaje que permite especificar objetivos y

preferencias temporales. Un método general para tratar en general con propiedades

LTL en planificación es por “compilación”; por ejemplo, en una fase de preproce-

samiento, todas las fórmulas temporales son transformadas a fórmulas simples y

no temporales que pueden evaluarse en un estado de planificación. Esto se logra

primero generando un autómata finito no determinista para la fórmula, y luego

agregando fluentes nuevos que son usados para capturar todas las posibles ejecu-

ciones del autómata. Desafortunadamente, los métodos de traducción actuales son

exponenciales en el peor caso sobre el tamaño de la fórmula.

En esta tesis, presentamos un método polinomial para compilar objetivos tem-

porales. Nuestro método utiliza autómatas alternantes. Dado que los autómatas

alternantes son diferentes de los no deterministas, nuestra técnica de traducción no

captura todas las posibles ejecuciones en un estado de planificación, y por lo tanto,

es muy diferente de otros métodos. Nosotros demostramos que nuestra traducción es

correcta y completa. También mostramos otras variantes de nuestro método que ayu-

dan a mejorar el desempeño para algunos planificadores y evaluamos emṕıricamente

mostrando que tiene ventajas y desventajas. Espećıficamente encontramos clases de

fórmulas de las cuales nuestro método tiene mejor desempeño que el actual estado

del arte.

Palabras Claves: Estado de planificación, Autómata alternante, Lógica Lin-

eal Temporal, fórmula LTL, Planificador, Problema de plani-

ciación, Objetivo temporalmente extendido

xii

1. INTRODUCTION

1.1. Background

1.1.1. Planning in Artificial Intelligence

In Computer Science and Artificial Intelligence, there are problems that can be

formulated as planning tasks, in which the solution consists of finding a sequence of

actions or a plan that reaches a goal inside of a specific world. For example, finding

a plan to travel from workplace way back to home or prepare a meal, where the

cooking recipe has a “plan” to cook the meal. The world is represented or described

by a set of atomic facts or state variables. The actions are operations that change

the current state of the world, by making some facts true and other facts false. The

goal is a condition or property that once it is fulfilled, the problem is solved.

One of the well known Planning models is Classical Planning, where actions are

performed by a single agent. These actions are deterministic, meaning that executing

the same action on the same planning state always yields the same resulting planning

state. For example, a cubic dice can be described by 6 possible states, depending on

the number shown on its top. The action of rolling a dice is non-deterministic, since

rolling twice the dice with the same number on its top might give the same result

(both dices might have different resulting numbers). But, if we consider a switch

that has two possible states (on and off), then the action of toggling the switch is

deterministic, because if the switch was turned off, then toggling it will turn it on

and viceversa.

In this model of planning, the single agent also can fully observe the environment,

this means that the agent has full information of the state of the environment. For

example, the tic-tac-toe game is a fully observable environment, but a Blackjack

game in where some cards are put face down is not fully observable.

1

With this description, Planning can also be seen as finding a path on a graph,

in which the nodes correspond to the states of the world and the edges correspond

to the transitions made by the actions from one state to the other. The agent must

reach the goal, starting from an initial state. The goal can be seen as a single state

or a set of states.

As an example, we can model environments as the blocksworld domain. In this

world, there is a crane, a table and blocks stacked on the table. The main goal is to

build a specified target stack of blocks using the crane. The crane can move a single

block at a time and only if such a block is the topmost block of the stack. The crane

can put the block over another block (if this one doesn’t have another one on top of

it) or on the table. The states correspond to the different stacks that are built on

the table and the single action is move block.

Another example is a robot that must move through an office building and must

deliver coffee to certain office rooms. In the building, there are offices and kitchens.

Rooms can be entered through a door which is opened or closed. The robot can

open or close doors, prepare a cup of coffee in the kitchen, move from one room to

another if the door that connects them is opened and leave the cup of coffee in an

office room. The robot can only carry a single cup of coffee at a time. The state

can be described by which room is the robot located at, whether or not the robot

is carrying a cup of coffee, which office rooms have a cup of coffee served and which

doors are opened or closed.

1.1.2. Planning Technology

Nowadays there are many classical planners that can solve planning problems.

Planners usually receive as input the representation of a planning problem and give as

output or solution the plan that reaches or satisfies the planning goal. Most planners

work by representing the problem as a state-search problem, which is equivalent to

represent the problem using a directed graph and solve the reachability problem:

Given a starting state and a goal state, is it possible to find a path in the graph:

2

reach the goal state from the starting state by following the edges of the directed

graph? If so, how close to the optimal path is this found one? For the second

question, planners use what is called heuristic search (Bonet and Geffner). This is a

method that adds information to the search algorithm about an estimation of how

close the planner is to the goal based on the current state.

For example, suppose that the environment consists of a n × n grid where the

agent is in one cell of the grid and must reach a target cell inside the grid. The

agent can only move up, down, left or right and there are some cells that cannot be

stepped on. Each cell is specified by its position (x, y) on the grid, with position

(0, 0) representing the top-left corner, x increases as the agent moves down and

y increases as it moves right. A possible heuristic for this problem can be the

Manhattan distance, which consists of calculating the sums of the strictly horizontal

and vertical distances between the current cell that the agent is standing in and the

target cell that it must reach. This calculation assumes that the agent will not find

some blocking cells that will prevent the agent to keep moving. This assumption is

called a relaxation, and most planners calculate heuristics by relaxing the problem

first and then, solve the relaxed problem.

To represent a planning problem, the de-facto language standard is PDDL.

PDDL stands for Planning Domain Description Language, which is a standard en-

coding for Classical Planning problems. A planning problem that uses PDDL is

separated into two files: A Domain file and a Problem file. The Domain file con-

tains information about types of objects, predicates and actions that are specific

to represent the environment. The Problem file contains the information about the

instantiated objects, the initial planning state and the goal state.

1.1.3. Temporally extended goals

In Classical Planning, the goal is specified with a propositional boolean formula.

A state that satisfies this formula can be considered a goal state. For example,

consider one of the previous examples about the robot that must carry cups of

3

coffee to the office rooms and the predicate coffee at(x) indicates that a cup of

coffee has been served at office room x. If the formula coffee at(lobby room) ∧

coffee at(main room) ∧ ¬coffee at(office1) ∧ ¬coffee at(office2) is used as the goal

of the planning problem, it means that the robot must reach a state where the coffee

is served at the main room and at the lobby room, but neither it is served at office 1

nor at office 2. However, there’s no specification about which order should the robot

serve the cups of coffee, whether it should be served on the lobby room before the

main room or viceversa.

With the aforementioned example, Classical Planning can only define goals about

the final planning state, but not about the path that reaches it. There’s no guarantee

that the found path satisfies given desirable properties or constraints. For this,

we need to express the goals with another language. In this thesis, we consider

the language is Finite Linear Temporal Logic (f − LTL) and allows to model

planning problems with temporally extended goals using temporal formulae.

A temporal formula is a logic formula that uses propositional and temporal oper-

ators and instead of using a subset of propositional variables to verify if a formula is

satisfied, we use a finite sequence of subsets of propositional variables. The sequence

can be seen as a timeline where variables change their truth assignment in function

of the time or position of each subset in the sequence. Thus, if we want the robot

to serve the coffee at the lobby room before it is served at the main room, we can

write this formula:

coffee at(main room) ∧ (¬coffee at(main room)U coffee at(lobby room))

This formula means that eventually at some point of the time, the coffee will be served

at the main room and that the coffee cannot be served at the main room until it has

been served at the lobby room. This is a way to express that the coffee is served at

the lobby room before it is served at the main room. Finite Linear Temporal Logics

4

is very useful because it is a more expressive language than Propositional Logic and

it is a very natural language to express goals that are based on describing paths.

1.1.4. Planning via Translation using Non deterministic finite automata

In Computer Science, problems are classified by their required difficulty to solve

them: How much computational time is required to solve a problem? How much

memory is it needed? If I have an algorithm that solves one problem, can this

algorithm be used to solve another problem? This is what we call Computational

Complexity in an intuitive way. The different levels of difficulty are called Classes of

Complexity.

One of the most well known classes of complexity is PSPACE. Intuitively, a

problem is in PSPACE if the amount of memory required to solve an instance of

length n is polynomial on the size of n. A problem is PSPACE-complete if it is in

PSPACE and all other problems in PSPACE can be reduced to this one. A reduction

is a translation of instances of a problem to instances of another problem that takes

polynomial time on the size of the instance. In other words, if an algorithm to

solve instances of the PSPACE-complete problem is known, it is possible to solve

any problem in PSPACE by using the algorithm that translates the instance of this

problem to the instance of another problem that is PSPACE-complete, and use the

known algorithm to solve the translated one.

Bylander showed that the problem of finding a plan for Classical Planning is

PSPACE-complete ((Bylander, 1994)). In another related work, De Giacomo and

Vardi showed that finding a plan for Classical Planning with Temporally extended

goals is also PSPACE-complete ((De Giacomo & Vardi, 1999)). Since nowadays there

are very well known planners for Classical Planning with propositional goals, there’s

the intuition that there must be a polynomial-time translation from instances of

Classical Planning with temporally extended goal to Classical Planning with propo-

sitional goals.

5

The authors (Baier & McIlraith, 2006) showed a translation using Non Determin-

istic Finite Automata (NFA), where the Automata is used to validate the temporal

formula and the translated planning problem simulates the behavior of the automata

by using additional facts or fluents in the planning problem. The drawback with this

approach is that this translation has a worst-case exponential time for some formulae

like in this following example:

p1 ∧p2 ∧ . . . ∧pn

With formulae that generate a worst-case exponential time like this, they lead to

very poor performance on the planning task, since the generated NFA has at least

2n states. We need another approach that can deal with any temporal formula and

avoid the worst-case exponential time.

1.2. Contributions of this thesis

This thesis presents a new translation technique whose input is a Deterministic

Planning problem with Temporally extended goals and whose output is a classical

planning problem. This technique uses another kind of automata that deals with the

worst-case exponential time: Alternating automata. We show that our translation

is correct with formal mathematical proofs and we show that this translation is

polynomial-time on the size of the original planning problem. We also show how we

can optimize this translation for better performance.

We also compare our approach with Baier and McIlraith’s translation and we

show the pros and cons of both techniques. We show that our approach can handle

very well the temporal formulae that Baier and McIlraith’s approach, but this one

can still perform very well with simpler and easier classes of formulae.

1.2.1. Major Contributions

In this thesis, the major contributions are:

6

• We describe our translation approach that uses alternating automata.

• We prove that out translation approach is sound and complete.

• We prove that this translation is done in Polynomial time on the size of

the original planning problem.

• We present optimized variants of our translation that perform better in

practice (i.e. FastForward planner).

• We empirically show that our approach (and its variants) performs much

better than Baier and McIlraith’s translation for some classes of formulae.

1.2.2. Outline

In the following sections of this thesis, we will formalize the notion of Finite LTL

and Alternating Automata. We will show the details of our translation and prove

its soundness and correctness. The next section will have variants of our approach

and ways to optimize the translation. Next, we show our experimental result and

compare our approach with the state of the art and the final section shows the

conclusions of this thesis.

7

2. ARTICLE SUBMITTED TO JOURNAL OF ARTIFICIAL INTELLI-

GENCE RESEARCH

2.1. Introduction

Linear Temporal Logic (LTL) (Pnueli, 1977) is a compelling language for the

specification of goals in AI planning, because it allows defining constraints on state

trajectories which are more expressive than simple final-state goals, such as “deliver

priority packages before non-priority ones”, or “while moving from the office to the

kitchen, make sure door D becomes closed some time after it is opened”. It was first

proposed as the goal specification language of TLPlan system (Bacchus & Kabanza,

1998). Currently, a limited but compelling subset of LTL has been incorporated into

PDDL3 (Gerevini, Haslum, Long, Saetti, & Dimopoulos, 2009) for specifying hard

and soft goals.

While there are some systems that natively support the PDDL3 subset of LTL

[e.g., Coles and Coles, (2011)], when planning for general LTL goals, there are two

salient approaches: goal progression (Bacchus & Kabanza, 1998) and compilation

approaches (Rintanen, 2000; Cresswell & Coddington, 2004; Edelkamp, Jabbar, &

Naizih, 2006; Baier & McIlraith, 2006). Goal progression has been shown to be ex-

tremely effective when the goal formula encodes some domain-specific control knowl-

edge that prunes large portions of the search space (Bacchus & Kabanza, 2000). In

the absence of such expert knowledge, however, compilation approaches are more ef-

fective at planning for LTL goals since they produce an equivalent classical planning

problem, which can then be fed into optimized off-the-shelf planners.

State-of-the-art compilation approaches to planning for LTL goals exploit the

relationship between LTL and finite-state automata (FSA) (Edelkamp, 2006; Baier

& McIlraith, 2006). As a result, the size of the output is worst-case exponential in the

size of the LTL goal. Since deciding plan existence for both LTL and classical goals

is PSPACE-complete (Bylander, 1994; De Giacomo & Vardi, 1999), none of these

8

approaches is optimal with respect to computational complexity, since they rely on

a potentially exponential compilation. From a practical perspective, this worst case

is also problematic since the size of a planning instance has a direct influence on

planning runtime.

In this paper, we present a novel approach to compile away general LTL goals

into classical goals that runs in polynomial time on the size of the input that is thus

optimal with respect to computational complexity. Like existing FSA approaches,

our compilation exploits a relation between LTL and automata, but instead of FSA,

we exploit alternating automata (AA), a generalization of FSA that does not seem to

be efficiently compilable with techniques used in previous approaches. Specifically,

our compilation handles each non deterministic choice of the AA with a specific

action, hence leaving non-deterministic choices to be decided at planning time. This

differs substantially from both Edelkamp’s and Baier and McIlraith’s approaches,

which represent all runs of the automaton simultaneously in a single planning state.

We propose variants of our method that lead to performance improvements of

planning systems utilizing relaxed-plan heuristics. Finally, we evaluate our compi-

lation empirically, comparing it against Baier and McIlraith’s—who below we refer

to as B&M. We conclude that our translation has strengths and weaknesses: it out-

performs B&M’s for classes of formulas that require very large FSA, while B&M’s

seems stronger for shallower, simpler formulas.

Most of the material included in this paper appeared in a previous conference

publication (Torres & Baier, 2015). This paper extends the previous ones with

(i) a detailed description of two translation modes that have an important

impact in performance (OSA and PG),

(ii) a section (Section 2.5) describing a simple but significant optimization to

the translation presented previously.

In the rest of the paper, we outline the required background, we describe our

AA construction for finite LTL logic, and then show the details of our compilation

9

approaches, including different modes and optimizations. We continue describing

the details of our empirical evaluation. We finish with conclusions.

2.2. Preliminaries

The following sections describe the background necessary for the rest of the

paper.

2.2.1. Propositional Logic Preliminaries

Given a set of propositions F , the set of literals of F , Lit(F), is defined as

Lit(F) = F ∪ {¬p | p ∈ F}. The complement of a literal ` is denoted by `, and is

defined as ¬p if ` = p and as p if ` = ¬p, for some p ∈ F . L denotes {` | ` ∈ L}.

Given a Boolean value function π : P → {false, true}, and a Boolean formula ϕ

over P , π |= ϕ denotes that π satisfies ϕ, and we assume it defined in the standard

way. To simplify notation, we use s |= ϕ, for a set s of propositions, to abbreviate

πs |= ϕ, where πs = {p→ true | p ∈ s} ∪ {p→ false | p ∈ F \ s}. In addition, we say

that s |= R, when R is a set of Boolean formulas, iff s |= r, for every r ∈ R.

2.2.2. Deterministic Classical Planning

Deterministic classical planning attempts to model decision making of an agent

in a deterministic world. We use a standard planning language that allows so-

called negative preconditions and conditional effects. A planning problem is a tuple

〈F,O, I,G〉, where F is a set of propositions, O is a set of action operators, I ⊆ F

defines an initial state, and G ⊆ Lit(F) defines a goal condition.

Each action operator a is associated with the pair (prec(a), eff (a)), where prec(a) ⊆

Lit(F) is the precondition of a and eff (a) is a set of conditional effects, each of the

form C → `, where C ⊆ Lit(F) is a condition and literal ` is the effect. Sometimes

we write ` as a shorthand for the unconditional effect {} → `.

10

We say that an action a is applicable in a planning state s iff s |= prec(a). We

denote by ρ(s, a) the state that results from applying a in s. Formally,

ρ(s, a) =(s \ {p | C → ¬p ∈ eff (a), s |= C})∪

{p | C → p ∈ eff (a), s |= C}

if s ∈ F and a is applicable in s; otherwise, δ(a, s) is undefined. If α is a sequence

of actions and a is an action, we define ρ(s, αa) as ρ(δ(s, α), a) if ρ(s, α) is defined.

Furthermore, if α is the empty sequence, then ρ(s, α) = s.

An action sequence α is applicable in a state s iff ρ(s, α) is defined. If an action se-

quence α = a1a2 . . . an is applicable in s, it induces an execution trace σ = s1 . . . sn+1

in s, where si = ρ(I, a1 . . . ai−1), for every i ∈ {1, . . . , n+ 1}.

An action sequence is a plan for problem 〈F,O, I,G〉 if α is applicable in I and

ρ(I, α) |= G.

2.2.3. Alternating Automata

Alternating automata (AA) are a natural generalization of non-deterministic

finite-state automata (NFA). At a definitional level, the difference between an NFA

and an AA is the transition function. For example, if A is an NFA with transition

function δ, and we have that δ(q, a) = {p, r}, then this intuitively means that A may

end up in state p or in state r as a result of reading symbol a when A was previously

in state q. With an AA, transitions are defined as formulas. For example, if δ′ is

the transition function for an AA A′, then δ′(q, a) = p ∨ r means, as before, that A′

ends up in p or r after reading an a in state q. Nevertheless, formulas provide more

expressive power. For example δ′(q, b) = (s ∧ t) ∨ r can be intuitively understood

as A′ will end up in both s and t or (only) in r after reading a b in state q. In this

model, only positive Boolean formulas are allowed for defining δ.

11

Definition 1 (Positive Boolean Formula). The set of positive formulas over a

set of propositions P—denoted by B+(P)—is the set of all Boolean formulas over P

and constants ⊥ and > that do not use the connective “¬”.

The formal definition for AA that we use henceforth follows.

Definition 2 (Alternating Automata). An alternating automata (AA) over

words is a tuple A = (Q,Σ, δ, I,F), where Q is a finite set of states, Σ, the alphabet,

is a finite set of symbols, δ : Q × Σ → B+(Q) is the transition function, I ⊆ Q are

the initial states, and F ⊆ Q is a set of final states.

As suggested above, any NFA is also an AA. Indeed, given an NFA with tran-

sition function δ, we can generate an equivalent AA with transition function δ′ by

simply defining δ′(q, a) =
∨
p∈P p, when δ(q, a) = P . We observe that this means

δ′(q, a) = ⊥ when P is empty.

As with NFAs, an AA accepts a word w whenever there exists a run of the AA

over w that satisfies a certain property. Here is the most important (computational)

difference between AAs and NFAs: a run of an AA is a sequence of sets of states

rather than a sequence of states. Before defining runs formally, for notational con-

venience, we extend δ for any subset T of Q as δ(T, a) =
∧
q∈T δ(q, a) if T 6= ∅ and

δ(T, a) = > if T = ∅.

Definition 3 (Run of an AA over a Finite String). A run of an AA A =

(Q,Σ, δ, I,F) over word x1x2 . . . xn is a sequence Q0Q1 . . . Qn of subsets of Q, where

Q0 = I, and Qi |= δ(Qi−1, xi), for every i ∈ {1, . . . , n}.

Definition 4. A word w is accepted by an AA A iff there is a run Q0 . . . Qn of

A over w such that Qn ⊆ F .

For example, if the definition of an AA A is such that δ′(q, b) = (s ∧ t) ∨ r, and

I = {q}, then both {q}{s, t} and {q}{r} are runs of A over word b.

12

2.2.4. Finite LTL

The focus of this paper is planning with LTL interpreted over finite state se-

quences (Baier & McIlraith, 2006; De Giacomo & Vardi, 2013). At the syntax level,

the finite LTL we use in this paper is almost identical to regular LTL, except for the

addition of a “weak next” modality (). The definition follows.

Definition 5 (Finite LTL formulas). The set of finite LTL formulas over a set

of propositions P, fLTL(P), is inductively defined as follows:

• p is in fLTL(P), for every p ∈ P.

• If ϕ and ψ are in fLTL(P) then so are ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), ϕ, ϕ,

(ϕUψ), and (ϕRψ).

The truth value of a finite LTL formula is evaluated over a finite sequence of

states. Below we assume that those states are actually planning states.

Definition 6. Given a sequence of states σ = s0 . . . sn and a formula ϕ ∈

fLTL(P), we say that σ satisfies ϕ, denoted as σ |= ϕ, iff it holds that σ, 0 |= ϕ,

where, for every i ∈ {0, . . . , n}:

(i) σ, i |= p iff si |= p, when p ∈ P.

(ii) σ, i |= ¬ϕ iff σ, i 6|= ϕ

(iii) σ, i |= ψ ∧ χ iff σ, i |= ψ and σ, i |= χ

(iv) σ, i |= ψ ∨ χ iff σ, i |= ψ or σ, i |= χ

(v) σ, i |= ψ iff i < n and σ, (i+ 1) |= ψ

(vi) σ, i |= ψ iff i = n or σ, (i+ 1) |= ψ

(vii) σ, i |= ψ Uχ iff there exists k ∈ {i, ..., n} such that σ, k |= χ and for each

j ∈ {i, ..., k − 1}, it holds that σ, j |= ψ

(viii) σ, i |= ψ Rχ iff for each k ∈ {i, ..., n} it holds that σ, k |= χ or there exists

a j ∈ {i, ..., k − 1} such that σ, j |= ψ

13

q1start q2

¬p

p

true

q ∧ ¬p

Figure 2.1. An NFA for formula (p → q) that expresses the fact
that every time p becomes true in a state, then q has to be true in the state
after or in the future. The input to the automaton is a (finite) sequence
s0 . . . sn of planning states.

We sometimes use the macros true
def
= p ∨ ¬p, false

def
= ¬true, and ϕ → ψ as

¬ϕ∨ψ. Additionally, ϕ, pronounced as “eventually ϕ” is defined as true Uϕ, and

ϕ, pronounced as “always ϕ” is defined as ¬¬ϕ.

2.2.5. Deterministic Planning with LTL goals

A planning problem with a finite LTL goal is a tuple P = 〈F,O, I,G〉, where

F , O, and I are defined as in classical planning problems, but where G is a formula

in fLTL(F). An action sequence α is a plan for P if α is applicable in I, and the

execution trace σ induced by the execution of α in I is such that σ |= G.

There are two approaches to compiling away LTL via non-deterministic finite-

state automata (Edelkamp et al., 2006; Baier & McIlraith, 2006). We describe both

of them in detail below, since both are relevant to our work.

2.2.5.1. B&M’s Compilation

B&M’s approach compiles away LTL formulas exploiting the fact that for every

finite LTL formula ϕ it is possible to build an NFA that accepts the finite models of

ϕ. To illustrate this, Figure 2.1 shows an NFA for (p → q). B&M represent

the NFA within the planning domain using one fluent per automaton state. In the

example of Figure 2.1, this means that the new planning problem contains fluents

Eq1 and Eq2 . The translation is such that if α is a sequence of actions that induces

the execution trace σ = s1 . . . sn, then Eq is true in sn iff there is some run of the

automaton over σ that ends in state q.

14

Assume a planning instance P = 〈F,O, I,G〉 in which p ∈ I and q 6∈ I, and in

which actions Ap, A¬p, and Aq, respectively, make p true, p false and q true uncondi-

tionally. Assume further that we want to compile away the temporally extended goal

G which corresponds to the formula of Figure 2.1. Then the B&M translation gener-

ates a problem P ′ = 〈F ′, O′, I ′, G′〉 such that F ′ = F ∪ {Eq1 , Eq2}. The initial state

I ′ is equal to I∪{Eq2}; this is because p is true in I. Actions Ap, A¬p, and Aq appear

in O′ with the all the effects they have in O but with additional ones for representing

the updates to Eq1 and Eq2 . Specifically, {Eq1} → Eq2 , and {Eq1} → ¬Eq1 are all

additional conditional affects added to Ap. The new effect of A¬p is {q∧Eq2} → Eq1 ,

and the new effect of Aq is {¬p ∧ Eq2} → Eq1 . Finally, G′ = {Eq1}.

Now consider the sequence of actions α = A¬pAq. In P , α induces an execution

trace σ = s0s1s2. The NFA of Figure 2.1 has two runs on σ, namely ρ1 = q1q2q2 and

ρ2 = q1q2q1. Reflecting the fact that there exist two runs, one that ends in q2 and

one that ends in q1, α induces an execution trace s′0s
′
1s
′
2 on P ′ such that s′2 |= Eq2

and s′2 |= Eq1 .

B&M’s translation has the following property, from which soundness and com-

pleteness results follow.

Theorem 1 (Follows from (Baier, 2010)). Let P be a classical planning problem

with an LTL goal ϕ. Let P ′ be the problem that results from applying the B&M

translation to P . Moreover, let α be a sequence of actions applicable in the initial

state of P , and let σ and σ′ be, respectively, the sequence of (planning) states induced

by the execution of α in P and P ′. Finally, let Aϕ be the NFA for ϕ. Then the

following are equivalent statements.

(i) There exists a run ρ of Aϕ over σ ending in q.

(ii) Eq is true in the last state of σ′.

15

As a corollary of the previous theorem, one obtains that satisfaction of finite LTL

formulas can be determined by checking whether or not the disjunction
∨
f∈F Ef

holds, where F denotes the set of final states of Aϕ.

Unfortunately, B&M’s translation is worst-case exponential (Baier, 2010); for

example, an NFA for ∧ni=1pi has 2n states. Baier (Baier, 2010) proposes a formula-

partitioning technique that allows the method to generate more compact translations

for certain formulas. For example, for the case of ∧ni=1pi it is possible to build a

single automaton for each pi formula, and check satisfaction by conjoining the

acceptance condition of the n resulting automata. The method, however, is not

applicable to any formula whose NFA would blow up.

2.2.5.2. Edelkamp’s Compilation

Edelkamp’s approach compilation approach is also automata-based, and like

B&M, it takes a planning instance P with an LTL goal as input and generates a

planning instance P ′ that only contains final-state goals. It is briefly described in a

short conference paper (Edelkamp, 2006). It relies on building a Büchi automaton

(BA)—rather than an NFA—for the LTL goal, which is then interpreted as if it were

an NFA. This last step is necessary because the BA are defined to accept infinite

sequences of states, rather than the finite sequences produced by classical plans.

Like in B&M’s approach, the automaton is encoded in P ′ by representing the

automaton states with fluents. The update of the automaton is handled, however,

in a very different way, by using a technique called synchronized update. The main

idea of synchronized update is that specific actions are used to update the state of

the automaton.

Our approach borrows the idea of synchronized update from Edelkamp’s com-

pilation but differs from it significantly because we need to update an AA rather

than a BA. Indeed, Edelkamp’s translation, like B&M’s, is able to represent all the

possible runs of the automaton in the same planning state, which, as we argue in

Section 2.4, does not seem applicable to the case of translating AA.

16

It is important to remark that the use of BA interpreted as NFA does not yield a

correct translation for any finite LTL, therefore Edelkamp’s compilation is not correct

for general LTL (De Giacomo, Masellis, & Montali, 2014). It is correct, however, for

the PDDL3 subset of LTL, for which it was originally proposed.

2.3. Alternating Automata and Finite LTL

A central part of our approach is the generation of an AA from an LTL formula.

To do this we modify Muller, Saoudi, and Schupp’s AA (Muller et al., 1988) for

infinite LTL formulas. We prove below that our AA is correct, from where it follows

that is equivalent to a recent proposal by De Giacomo et al. (De Giacomo et al.,

2014), developed independently. The main difference between our construction and

De Giacomo et al.’s is that we do not assume a distinguished proposition becomes

true only in the final state. On the other hand, we require a special state (qF) that

indicates the sequence should finish. The use of such a state is the main difference

between our AA for finite LTL and Muller et al.’s AA for infinite LTL.

We require the LTL input formula to be written in negation normal form (NNF);

i.e., a form in which negations can be applied only to atomic formula. This trans-

formation can be done in linear time (Gerth, Peled, Vardi, & Wolper, 1995).

17

Let ϕ be in fLTL(S) and sub(ϕ) be the set of the subformulas of ϕ, including ϕ.

We define Aϕ = (Q, 2S, δ, qϕ, {qF}), where Q = {qα | α ∈ sub(ϕ)} ∪ {qF} and:

δ(q`, s) =

>, if ` ∈ Lit(F) and s |= `

⊥, if ` ∈ Lit(F) and s 6|= `

δ(qF , s) = ⊥

δ(qα∨β, s) = δ(qα, s) ∨ δ(qβ, s)

δ(qα∧β, s) = δ(qα, s) ∧ δ(qβ, s)

δ(qα, s) = qα

δ(qα, s) = qF ∨ qα

δ(qαUβ, s) = δ(qβ, s) ∨ (δ(qα, s) ∧ qαUβ)

δ(qαRβ, s) = δ(qβ, s) ∧ (qF ∨ δ(qα, s) ∨ qαRβ)

Theorem 2. Given an LTL formula ϕ and a finite sequence of states σ, Aϕ

accepts σ iff σ |= ϕ.

Proof: Suppose that σ = x1x2 . . . xn ∈ Σ∗, where Σ = 2S. The proof of the theorem

is straightforward from the following lemma: ϕ: σ, i |= ϕ if and only if there exists

a sequence r = Qi−1Qi . . . Qn, such that: (1) Qi−1 = {qϕ}, (2) Qn ⊆ {qF}, (3) For

each subset Qj in the sequence r it holds that Qj ⊆ sub(ϕ) ∪ {qF} and (4) For each

j ∈ {i, i+ 1, . . . , n} it holds that Qj |= δ(Qj−1, xj). The proof for the lemma follows.

It is inductive on the construction of ϕ.

⇒) Suppose that σ, i |= ϕ. To prove this direction, it suffices to provide a sequence

r = Qi−1Qi . . . Qn satisfying the aforementioned properties. Below we show each

sequence. We do not show that they satisfy the four properties; we leave this as an

exercise to the reader.

• ϕ = `, for any literal `. Then r = ({q`}, ∅, . . . , ∅).

18

Suppose that the lemma holds for any ϕ with less than m operators and that

for any α and β with less than m operators, their respective sequences are r′ =

Q′i−1Q
′
iQ
′′
i+1 . . . Q

′
n and r′′ = Q′′i−1Q

′′
iQ
′′
i+1 . . . Q

′′
n. Now, let ϕ be a formula with m

operators:

• ϕ = α ∨ β. Then σ, i |= α or σ, i |= β. Without loss of generality, suppose

that σ, i |= α. Then r = ({qϕ}, Q′i, Q′i+1, . . . , Q
′
n).

• ϕ = α ∧ β. Then r = ({qϕ}, (Q′i ∪Q′′i), (Q′i+1 ∪Q′′i+1), . . . , (Q
′
n ∪Q′′n).

• ϕ = α. Then σ, (i + 1) |= α. In this case, the sequence for α is r′ =

Q′iQ
′′
i+1 . . . Q

′
n.

With this, the sequence r for α is r = ({qϕ}, {qα}, Q′′i+1, . . . , Q
′
n).

• ϕ = α. Then i = n or σ, (i + 1) |= α. If i = n, the sequence r =

(Qn−1, Qn) = ({qϕ}, {qF}). If i < n, consider the same sequence r for the

case α.

• ϕ = αU β. Then, there exists k ≥ i such that σ, k |= β and for every

j ∈ {i, . . . , k − 1} it holds that σ, j |= α. For β, assume its sequence is

rk = (Qk
k−1, Q

k
k, . . . , Q

k
n) and for each α that is satisfied by σ, j, assume its

sequence is rj = (Qj
j−1, Q

j
j, . . . , Q

j
n). The sequence r = Qi−1Qi . . . Qn is

given by:

Qj =

{qαUβ}, if j = i− 1

{qαUβ} ∪
⋃j
x=iQ

x
j , if i− 1 < j < k⋃k

x=iQ
x
j , if j ≥ k

• ϕ = αR β. Then, for each k ∈ {i, . . . , n} it holds that σ, k |= β or there

exists a j ∈ {i, . . . , k − 1} such that σ, j |= α. If there is no such j,

then σ, k |= β for every k ∈ {i, . . . , n} and for each one of them, assume

their sequence will correspond to rk = (Qk
k−1, Q

k
k, . . . , Q

k
n). The sequence

19

r = Qi−1Qi . . . Qn is given by:

Qk =

{qαRβ}, if k = i− 1

{qαRβ} ∪
⋃k
x=iQ

x
k, if i− 1 < k < n

{qF}, if k = n

If there is a j ∈ {i, . . . , k − 1} such that σ, j |= α, consider the min-

imum such j and assume its sequence is r′ = (Aj−1, Aj, . . . , An). For

k ∈ {i, . . . , j}, the sequences for β will be rk = (Bk
k−1, B

k
k , . . . , B

k
n). The

sequence r = Qi−1Qi . . . Qn is given by:

Qk =

{qαRβ}, if k = i− 1

{qαRβ} ∪
⋃k
x=iB

x
k , if i− 1 < k < j

Ak ∪
⋃j
x=iB

x
k , if k ≥ j

⇐) Suppose that there exists a sequence r = Qi−1Qi . . . Qn for ϕ that satisfies the

four properties. To prove that σ, i |= ϕ, it should be straightforward for ϕ = `. For

the inductive steps, where α is a direct subformula of ϕ, the sequence r must be used

to create a new sequence r′ for α (ensuring that r′ satisfies the four properties) and

use the implication of σ, i |= α. This finishes the proof for the theorem. �

2.4. Compiling Away finite LTL Properties

Now we propose an approach to compiling away finite LTL properties using the

AA construction described above.

First, we argue that the idea underlying both Edelkamp’s and B&M’s trans-

lations would not yield an efficient translation if applied to AA. Recall in both

approaches if Eq1 , . . . , Eqn are true in a planning state s, then there are n runs of

the automaton, each of which ends in q1, . . . , qn (Theorem 1). In other words, the

planning state keeps track of all of the runs of the automaton. To apply the same

principle to AA, we would need to introduce one fluent for each subset of states

20

of the AA, therefore generating a number of fluents exponential on the size of the

original formula. This is because runs of AA are sequences of sets of states, so we

would require states of the form ER, where R is a set of states.

To produce an efficient translation, we renounce the idea of representing all runs

of the automaton in a single planning state. Our translation will then only keep

track of a single run.

2.4.1. Translating LTL via LTL Synchronization

Our compilation approach takes as input an LTL planning problem P and pro-

duces a new planning problem P ′, which is is like P but contains additional fluents

and actions. Like previous compilations, AG is represented in P ′ with additional

fluents, one for each state of the automaton for G. Like in Edelkamp’s compilation

P ′ contains specific actions—below referred to as synchronization actions—whose

only purpose is to update the truth values of those additional fluents. A plan for P ′

alternates one action from the original problem P with a number of synchronization

actions. Unlike any other previous compilation, P ′ does not represent all possible

runs of the automaton in a single planning state.

Synchronization actions update the state of the automaton following the def-

inition of the δ function. The most notable characteristic that distinguishes our

synchronization from the Edelkamp’ s translation is that non-determinism inher-

ent to the AA is modeled using alternative actions, each of which represents the

different non-deterministic options of the AA. As such, if there are n possible non-

deterministic choices, via the applications of synchronization actions there will be n

reachable planning states, each representing a single run.

Given a planning problem P = 〈F,O, I,G〉, our translation generates a problem

P ′ in which there is one (new) fluent q for each state q of the AA AG. The com-

pilation is such that the following property holds: if α = a1a2 . . . an is applicable

in the initial state of P , then there exists a set Aα of action sequences of the form

21

α0a1α1a2α2 . . . anαn, where each αi is a sequence of synchronization actions whose

sole objective is to update the fluents representing AG’s state.

Our theoretical result below says that our compilation can represent any run,

but each planning state may keep track of only one run. Specifically, each of the

sequences of Aα corresponds to some run of AG over the state sequence induced by

α over P . Moreover, if α′ ∈ Aα, Eq is true in the state resulting from performing

sequence α′ in P ′ iff q is contained in the last element of a run that corresponds to

α′.

Now we are ready to define P ′. Assume the AA for G has the form AG =

(Q,Σ, δ, q0, {qf}).

Fluents P ′ has the same fluents as P plus fluents for the representation of the

states of the automaton (Q), flags for controlling the different modes (copy, sync,

world), and a special fluent ok, which becomes false if the goal has been falsi-

fied. Finally, it includes the set QS = {qS | q ∈ Q} which are “copies” of the

automata fluents, which we describe in detail below. Formally, F ′ = F ∪ Q ∪ QS ∪

{copy, sync,world,ok}.

The set of operators O′ is the union of the sets Ow and Os.

World Mode Set Ow contains the same actions in O, but preconditions are modi-

fied to allow execution only in “world mode”. Effects, on the other hand are modified

to allow the execution of the copy action, which initiates the synchronization phase,

and which is described below. Formally, Ow = {a′ | a ∈ O}, and for all a′ in Ow:

prec(a′) = prec(a) ∪ {ok,world},

eff (a′) = eff (a) ∪ {copy,¬world}.

Synchronization Mode The synchronization mode can be divided in three con-

secutive phases. In the first phase, we execute the copy action which in the successor

states adds a copy qS for each fluent q that is currently true, deleting q. Intuitively,

22

Table 2.1. The synchronization actions for LTL goal G in NNF. Above `,
αRβ, αUβ, and α are assumed to be in the set of subformulas of G. In
addition, ` is assumed to be a literal.

Sync Action Precondition Effect
trans(qS`) {sync,ok, qS` , `} {¬qS` }
trans(qSF) {sync,ok, qSF} {¬qSF ,¬ok}
trans(qSα∧β) {sync,ok, qSα∧β} {qSα , qSβ ,¬qSα∧β}
trans1(q

S
α∨β) {sync,ok, qSα∨β} {qSα ,¬qSα∨β}

trans2(q
S
α∨β) {sync,ok, qSα∨β} {qSβ ,¬qSα∨β}

trans(qSα) {sync,ok, qSα} {qα,¬qSα}
trans1(q

S
α) {sync,ok, qSα} {qF ,¬qSα}

trans2(q
S
α) {sync,ok, qSα} {qα,¬qSα}

trans1(q
S
αUβ) {sync,ok, qSαUβ} {qSβ ,¬qSαUβ}

trans2(q
S
αUβ) {sync,ok, qSαUβ} {qSα , qαUβ,¬qSαUβ}

trans1(q
S
αRβ) {sync,ok, qSαRβ} {qSβ , qF ,¬qSαRβ}

trans2(q
S
αRβ) {sync,ok, qSαRβ} {qSβ , qSα ,¬qSαRβ}

trans3(q
S
αRβ) {sync,ok, qSαRβ} {qSβ , qαRβ,¬qSαRβ}

during synchronization, each qS defines the state of the automaton prior to synchro-

nization. The precondition of copy is simply {copy,ok}, while its effect is defined

by:

eff (copy) = {q → qS, q → ¬q | q ∈ Q} ∪ {sync,¬copy}

As soon as the sync fluent becomes true, the second phase of synchronization

begins. Here the only executable actions are those that update the state of the

automaton, which are defined in Table 2.1. Note that one of the actions deletes the

ok fluent. This can happen, for example while synchronizing a formula that actually

expresses the fact that the action sequence has to conclude now.

When no more synchronization actions are possible, we enter the third phase

of synchronization. Here only action world is executable; its only objective is to

reestablish world mode. The precondition of world is {sync,ok}∪QS, and its effect

is {world,¬sync}.

The set Os is defined as the one containing actions copy, world, and all actions

defined in Table 2.1.

23

New Initial State The initial state of the original problem P intuitively needs

to be “processed” by AG before starting to plan. Therefore, we define I ′ as I ∪

{qG, copy,ok}.

New Goal Finally, the goal of the problem is to reach a state in which no state

fluent in Q is true, except for qf , which may be true. Therefore, we define G′ =

{world,ok} ∪ (Q \ {qF}).

2.4.2. Properties

There are two important properties that can be proven about our translation.

First, our translation is correct.

Theorem 3 (Correctness). Let P = 〈F,O, I,G〉 be a planning problem with an

LTL goal and P ′ = 〈F ′, O′, I ′, G′〉 be the translated instance. Then P has a plan

a1a2 . . . an iff P ′ has a plan α0a1α1a2α2 . . . anαn, in which for each i ∈ {0, . . . , n}, αi
is a sequence of actions in Os.

Proof: We show each sequence of actions αi simulates the behavior of the automata,

i.e., whenever t is a planning state whose next action must be copy and qβ ∈ t, then

ρ(t, αi) satisfies δ(qβ, t).

For this, let’s define tS as the subset of all the automata fluents QS that are added

during the execution of the sequence of actions αi. We will prove the following lemma

by induction on the construction of ϕ: If qSϕ ∈ tS, then ρ(t, αi) |= δ(qϕ, t):

Observe that if qSϕ ∈ tS, then there must be an action trans(qSϕ) that was executed

in αi. This is because ρ(t, αi) ∩ QS = ∅ and only trans(qSϕ) can delete qSϕ from the

current state. The second observation is: If some action trans adds qSα , then qSα ∈ tS.

This is by definition of tS. If the action adds qψ, then qψ ∈ ρ(t, αi), because the only

action that deletes fluents in Q is copy.

• ϕ = `. Assume ` is positive literal. Then there is a planning state s in

which trans(qS`) was executed. Since the precondition requires ` ∈ s and

` can only be added by an action from Ow, then ` ∈ t. By definition,

24

δ(q`, t) = >, and it is clear that ρ(t, αi) |= δ(qϕ, t). The argument is

analogous for a negative literal `.

We will not consider the case for qF . It is never desirable to synchronize that state,

because the special fluent ok is removed, leading to a dead end. Now, assume that

qSϕ ∈ tS implies ρ(t, αi) |= δ(qϕ, t) for every ϕ with less than m operators. The proof

sketch for each case can be verified by the reader as follows:

• For each ϕ, it is clear that a version of trans(qSϕ) is executed due to the

first observation.

• If qψ is added by trans, then qψ ∈ ρ(t, αi) due to the second observation.

This implies that ρ(t, αi) |= qψ.

• If qSα is added by trans, then qSα ∈ tS. By induction hypothesis, ρ(t, αi) |=

δ(qα, t), because α is a strict subformula of ϕ and has less than m operators.

• Finally, using entailment (for positive boolean formulae) and the definition

of the transitions for the alternating automata Aϕ, it can be verified that

ρ(t, αi) |= δ(qϕ, t).

• The argument is similar for the other versions of trans.

To conclude our theorem, note that if t is a planning state, qβ ∈ t and the next action

to execute is copy, then qSβ ∈ tS. Using the lemma, this implies ρ(t, αi) |= δ(qϕ, t). �

Second, the size of the plan for P ′ is linear on the size of the plan for P .

Theorem 4 (Bounded synchronizations). If T is a reachable planning state

from I ′ and T ∩ QS 6= ∅, then there is a sequence of trans actions σ such that

δ(T, copy · σ) ∩QS = ∅ and |σ| ∈ O(|G|).

Proof: Note that T is a state in world mode getting ready to go into synchronization

mode after the copy action has been executed. The main idea of the proof is to choose

the order of the subformulae to be synchronized, where the first one corresponds to

the largest subformula of the current state, the second one corresponds to the second

largest subformula and so on. Note that when an action trans(qSα) is executed, it

25

always happens that at most two fluents qSβ and qSγ are added, and the formulae

β and γ are strict subformulae of α. This means that a subformula will never

get synchronized twice in a single synchronization phase σ. Since the number of

subformulae is linear on |G|, this means that the length of σ must be O(|G|). �

2.4.3. Towards More Efficient Translations

The translation we have presented above can be modified slightly for obtaining

improved performance. The following are modifications that we have considered.

2.4.3.1. An Order for Synchronization Actions (OSA)

Consider the goal formula is α ∧ β and that currently both qα and qβ are true.

The planner has two equivalent ways of completing the synchronization: by executing

first trans(qα) and then trans(qβ), or by inverting such a sequence. By enforcing

an order between these synchronizations, we can reduce the branching factor of the

synchronization phase.

The synchronization order is simple to enforce by modifying preconditions and

effects of synchronization actions so that states are synchronized following a topolog-

ical order of the parse tree of G. To formalize this, consider the alternating automata

AG = (Q,Σ, δ, qG, {qF}) for the temporal formula G and the following sets:

• QS = {qS | q ∈ Q} the synchonizing states of Q.

• QT = {qT | q ∈ Q} the token states of Q.

• F S = {copy, sync,world,ok} the special fluents.

Fluents from QT are used as tokens, to indicate the state that must be checked

for synchronization. As such, if qT ∈ QT is true, then state q must be checked

for synchronization. Consider the function succ : QT → QT where succ(qT) is

the successor state of qT in the topological ordering. Also, consider first(QT) and

last(QT) respectively as the first and last state of QT according to the topological

ordering. Note that succ(last(QT)) is never defined. Actually, as a convention, the

state qF is always considered as last(QT).

26

P ′ is built as follows:

• F ′ = F ∪Q ∪QS ∪QT ∪ {copy, sync,world,ok}

• I ′ = I ∪ {qG, copy,ok}

• G′ = {world,ok} ∪ (Q \ {qF})

• O′ = Os ∪Ow

The actions from Ow = {a′ | a ∈ O} are the same as before. For all a′ in Ow:

prec(a′) = prec(a) ∪ {ok,world},

eff (a′) = eff (a) ∪ {copy,¬world}.

The precondition of the copy action, like before, is {copy,ok}, the effect, how-

ever, is different:

eff (copy) = {q → qS, q → ¬q | q ∈ Q} ∪ {sync,¬copy, first(QT)}

Note that in this mode, the action copy “activates” the first token to trigger

the synchronization in topological order. Table 2.2 shows the synchronization for

each subformula in Os. Note that the action trans(qSF) immediately returns to world

mode, since qF is the last state of the topological ordering. Unlike the first table that

shows the synchronizing actions, the effects here are conditional. If the respective

synchronizing fluent qS is true during action trans(qS), then its effects are applied.

2.4.3.2. Positive Goals (PG)

The goal condition of the translated instance requires being in and every q ∈ Q

to be false, except for qF . On the other hand, action copy, which has to be performed

after each world action, has precisely the effect of making every q ∈ Q false. This

may significantly hurt performance if search relies on heuristics that relax negative

effects of actions, like the FF heuristic (Hoffmann & Nebel, 2001), which is key to

the performance of state-of-the-art planning systems (see e.g., (Richter & Helmert,

2009)).

27

Table 2.2. The synchronization actions (OSA) for LTL goal G in NNF.
Used to enforce topological ordering.

Sync Action Precondition Effect
trans(qS`) {sync,ok, qT` } {¬qT` , succ(qT`), qS` → ¬qS` , (qS` ∧ ¯̀)→ ¬ok}
trans(qSF) {sync,ok, qTF} {¬qTF , qSF → ¬qSF , qSF → ¬ok,world,¬sync}∪

{qS → q,¬qS | qS ∈ QS ∧ q ∈ Q}
trans(qSα∧β) {sync,ok, qTα∧β} {¬qTα∧β, succ(qTα∧β), qSα∧β → {qSα , qSβ ,¬qSα∧β}}
trans1(q

S
α∨β) {sync,ok, qTα∨β} {¬qTα∨β, succ(qTα∨β), qSα∨β → {qSα ,¬qSα∨β}}

trans2(q
S
α∨β) {sync,ok, qTα∨β} {¬qTα∨β, succ(qTα∨β), qSα∨β → {qSβ ,¬qSα∨β}}

trans(qSα) {sync,ok, qTα} {¬qTα, succ(qTα), qSα → {qα,¬qSα}}
trans1(q

S
α) {sync,ok, qTα} {¬qTα, succ(qTα), qSα → {qF ,¬qSα}}

trans2(q
S
α) {sync,ok, qTα} {¬qTα, succ(qTα), qSα → {qα,¬qSα}}

trans1(q
S
αUβ) {sync,ok, qTαUβ} {¬qTαUβ, succ(q

T
αUβ), qSαUβ → {qSβ ,¬qSαUβ}}

trans2(q
S
αUβ) {sync,ok, qTαUβ} {¬qTαUβ, succ(q

T
αUβ), qSαUβ → {qSα , qαUβ,¬qSαUβ}}

trans1(q
S
αRβ) {sync,ok, qTαRβ} {¬qTαRβ, succ(q

T
αRβ), qSαRβ → {qSβ , qF ,¬qSαRβ}}

trans2(q
S
αRβ) {sync,ok, qTαRβ} {¬qTαRβ, succ(q

T
αRβ), qSαRβ → {qSβ , qSα ,¬qSαRβ}}

trans3(q
S
αRβ) {sync,ok, qTαRβ} {¬qTαRβ, succ(q

T
αRβ), qSαRβ → {qSβ , qαRβ,¬qSαRβ}}

To improve heuristic guidance, we define a new goal condition which does not

require or use literals that are deleted by the copy action. For this, we define a new

set of fluents:

QD = {qD | q ∈ Q}

Fluent qD will represent that state q is totally synchronized. We say that a state

qα is totally synchronized if and only if formula α is totally synchronized. In turn,

a formula α will be considered as totally synchronized if once its respective action

trans(qSα) is executed, it can be guaranteed that trans(qSα) cannot be executed in

the future. In other words, a state qα is totally synchronized in the execution if there

is no executable action trans that adds qα as a positive effect.

For example, suppose that (p∧q) = G is the objective goal of the planning

problem. According to Table 2.1, where (p ∧q) is equivalent to >U(p ∧q)),

this formula has two trans actions. If trans1(q
S
G)—which intuitively happens when

p∧q has become true at some point of the plan’s execution—, then the formula G

28

will never need to be synchronized ever again. Nevertheless, if trans2(q
S
G) is executed

then G will need to be synchronized again in the next iteration.

An important observation is that if α is a subformula of the goal formula, its

synchronization depends on its superformulae, because the superformulae split into

their subformulae whenever an action trans is executed over them. In our example,

the subformula q of G, can become totally synchronized only if its superformulae

are totally synchronized. This is because if G or other superformula is synchronized

again, it will eventually split itself into q.

To define the dynamics of the fluents in QD we only need to add extra effects to

the trans actions. Specifically, for each trans(qSα) action that does not add qα, we

include the conditional effect {qDβ | β ∈ super(α)} → qDα , where super(α) is the set

of subformulae of G that are proper superformulae of α. If super(α), which is the

case of G = α, then the effect is unconditional and qDα is added right away.

Now we define the new goal. This is essential to provide guidance to the heuristic.

Recall that in the previous translation the objective was have no states of the form

qα in the goal state. Observe that in this new translation, every time a state of

the form qSα is deleted from the state, its corresponding qDα is added. The new

goal now establishes that a particular set of subformulae of the goal formula G are

synchronized.

• If ϕ = p and p ∈ Lit(F), then f(p) = qDp .

• If ϕ = α ∧ β, then f(ϕ) = f(α) ∧ f(β)

• If ϕ = α ∨ β, then f(ϕ) = f(α) ∨ f(β)

• If ϕ = β, then f(ϕ) = f(β)

• If ϕ = β, then f(ϕ) = f(β) ∨ qF
• If ϕ = α ? β, where ? ∈ {U,R}, then f(ϕ) = f(β)

In case the goal is a literal or ϕ = β, it is straightforward than the formula

and their subformulae are totally synchronized when then the goal is achieved. For

29

ϕ = α ∧ β, both subformulae must be totally synchronized, but in the case of

ϕ = α∨β, only one of them needs to be, because it is enough to satisfy one of them.

The case for ϕ = β is also a choice: β must be totally synchronized or qF must be

the final state.

The definition for the case ϕ = α ? β, where ? ∈ {U,R}, is less obvious. For

the U operator, a necessary condition to satisfy the formula αU β is that β must be

eventually satisfied. However, α doesn’t need to be totally synchronized, because

if so then it would force α to be satisfied at the same point when β is satisfied. If

in the current point in time, β is not satisfied, the trans actions will ensure that α

is synchronized accordingly, this is due to the lemma for the Correctness Theorem.

The sequence of trans actions will correctly simulate the behavior of the Alternating

Automata to satisfy α. A similar argument goes for the R operator, we only care to

totally synchronize β and α is not needed. If the planning stops in a state where we

know that β was totally synchronized, then we know that this state must be final

(qF).

2.5. Optimizing the Translation

Recall that each resulting plan in the translated planning problem is of the form

α0a1α1a2α2 . . . anαn, where αi is a sequence of synchronization actions. Thus the

size of each αi is an important factor in the final length of the plan. Since search

algorithms are ultimately used to find these plans, intuitively it seems important

to aim at optimizing plan length; this is because the running time of the search

algorithms depend on solution depth.

Table 2.1 shows the actions needed to synchronize a generic goal G. This table

is instantiated when translating a specific formula. When looking at the instantiated

table it is not hard to see that it is usually possible to reduce the number of synchro-

nization actions. Table 2.3 shows the instantiation for goal G = (p ∧ (q ∧ ¬r)).

Note there is a total of 7 actions, one for each subformulae. In addition, note that to

30

Table 2.3. The synchronization actions for LTL goal G = (p ∧ (q ∧ ¬r)).

Sync Action Precondition Effect
trans(qSp) {sync,ok, qSp , p} {¬qSp }
trans(qSq) {sync,ok, qSq , q} {¬qSq }
trans(qS¬r) {sync,ok, qS¬r,¬r} {¬qS¬r}
trans(qSp∧(q∧¬r)) {sync,ok, qSp∧(q∧¬r)} {qSp , qSq∧¬r,¬qSp∧(q∧¬r)}
trans(qSq∧¬r) {sync,ok, qSq∧¬r} {qSq , qS¬r,¬qSq∧¬r}
trans1(q

S
(p∧(q∧¬r))) {sync,ok, qS(p∧(q∧¬r))} {qS(p∧(q∧¬r)),¬qS(p∧(q∧¬r))}

trans2(q
S
(p∧(q∧¬r))) {sync,ok, qS(p∧(q∧¬r))} {q(p∧(q∧¬r)),¬qS(p∧(q∧¬r))}

Table 2.4. The reduced synchronization actions for LTL goal G = (p∧
(q ∧ ¬r)).

Sync Action Precondition Effect
trans1(q

S
(p∧(q∧¬r))) {sync,ok, qS(p∧(q∧¬r)), p, q,¬r} {¬qS(p∧(q∧¬r))}

trans2(q
S
(p∧(q∧¬r))) {sync,ok, qS(p∧(q∧¬r))} {q(p∧(q∧¬r)),¬qS(p∧(q∧¬r))}

finish the synchronization of G there are two options: (1) to verify that the current

planning state satisfies the literals p, q, and ¬r or (2) delay this verification for a fu-

ture state. Intuitively this suggests that only 2 actions are actually needed. Indeed,

Table 2.4 shows one way of synchronizing the same goal with only two actions.

The objective of this section is to propose a method to obtain these simplifica-

tions automatically. As we see in Section 2.6, these simplifications do have a positive

impact on search performance.

2.5.1. Synchronizing action graphs (SAG)

The previous example suggests that we need to merge actions when possible.

Indeed, the actions that synchronize (p ∧ (q ∧ ¬r), (q ∧ ¬r), q, p, and ¬r do not

require to be different: it can all be done with a single action. This merge process

indeed corresponds to generating a single macro action (e.g., (Botea, Enzenberger,

Müller, & Schaeffer, 2005)) from a set of simple actions.

To implement these simplifications, we use a data structure over which we define

two operations: merge and split. Intuitively a merge is an operation that creates

31

macro actions, while a split is an operation that will facilitate the creation of a

macro action. Below a formal definition of our graphs.

Definition 7 (Synchronizing Action Graph). Given a LTL formula ϕ, a syn-

chronizing action graph (SAG) is a directed graph represented by a tuple G =

(V,E, F, P, S, L) where:

• V is the set of nodes

• F : V → sub(ϕ) is a function that associates a subformula of ϕ with each

node u ∈ V .

• P : V → 2Lit(V ar(ϕ)) is a function that indicates which set of literals will

be assigned to each node u. Here V ar(ϕ) denotes the set of propositional

variables in ϕ. Intuitively P corresponds to the precondition of the action

that this node will represent respectively.

• S : V → 2sub(ϕ) is a function that indicates which synchronizing state

fluents are added when the respective action represented by this node is

executed.

• L : V → 2sub(ϕ) is a function that indicates which automata state fluents

are added when the respective action represented by this node is executed.

• E ⊆ V × V is the set of edges of the graph, where (u, v) ∈ E if and only if

F (v) ∈ S(u).

Intuitively, each node of the graph corresponds to a synchronizing action trans.

There is an arc between a node u and a node v if as a result of executing the action

that corresponds to u, the action that corresponds to v can now execute.

2.5.2. Building a SAG

Given an LTL formula ϕ in NNF we carry out two steps prior to building a

SAG. First carry out a standard conversion of subsequent applications of the binary

Boolean operator ∧ (respectively, ∨) into a single, multiary ∧ (respectively, ∨).

32

Then, we modify the trans actions of Table 2.1, for the conjunction and disjunction,

in the following way:

• If ϕ =
∨n
i=1 αi, then there are n actions transi(q

S
ϕ) (i ∈ {1, . . . , n}), with

precondition {sync,ok, qSϕ} and effect {¬qSϕ , qSαi
}.

• If ϕ =
∧n
i=1 αi, then action trans(qSϕ) has precondition {sync,ok, qSϕ} and

effect {¬qSϕ} ∪ {qSαi
| i ∈ {1, . . . , n}}.

To create an SAG from ϕ, for each ψ in the set of subformulae of ϕ we perform

the two following steps:

(i) If ψ is a literal `, create a node u with the following attributes:

• F (u) = `

• P (u) = {`}

• S(u) = L(u) = ∅

(ii) Otherwise, if ψ is not a literal ϕ, then we refer to Table 2.1, and define

eff (ϕ) as the effect of action trans(qSϕ). Then:

• F (u) = ϕ

• P (u) = ∅

• S(u) = {χ | qSχ ∈ eff (ψ)}

• L(u) = {χ | qχ ∈ eff (ψ)}

As a last step, we create edges between two nodes according to its definition; i.e., we

add an edge between u and v if F (v) ∈ S(u).

Note that building a SAG this way guarantees that the directed graph will be

acyclic.

2.5.2.1. An Example SAG

Figure 2.2 shows the SAG for ϕ = (¬p ∨ q). A node is built for every

single synchronizing action needed for the translation. For example, consider the

subformula q. Since there are two possible actions to synchronize this subformula,

33

Node 1:
F = (¬p ∨q)
P = ∅
S = {¬p ∨q}
L = {qF }

Node 2:
F = (¬p ∨q)
P = ∅
S = {¬p ∨q}
L = {(¬p ∨q)}

Node 3:
F = ¬p ∨q

P = ∅
S = {¬p}
L = ∅

Node 4:
F = ¬p ∨q

P = ∅
S = {q}
L = ∅

Node 5:
F = ¬p
P = {¬p}
S = ∅
L = ∅

Node 6:
F = q
P = ∅
S = {q}
L = ∅

Node 7:
F = q

P = ∅
S = ∅
L = {q}

Node 8:
F = q

P = {q}
S = ∅
L = ∅

Figure 2.2. A SAG for the LTL formula ϕ = (¬p ∨q)

then two nodes are created. The edges here represent a dependency between the

involved nodes. To illustrate this, let V denote Node 6 in the figure. Since the

action represented by V cannot be executed until the action represented by Node 4

is executed there is an arc between Node 4 and Node 6.

2.5.3. Operations on a SAG

The two operations that allows us to generate a simplified set of synchronizing

actions are merge and split. Now we define formally what these operations do.

34

2.5.3.1. Merge

As we mentioned above, intuitively merge builds a macro action from two nodes

in the graph. In our example of Figure 2.2, it is not hard to see that the actions

for Nodes 6 and 8 can be converted into a macro action that would have q in its

precondition and S = L = ∅. The merge operation applies to two connected nodes

but it is not always applicable. Consider for example Nodes 1 and 3. Although

they are connected, it would not be correct to eliminate Node 3 because there is an

associated dependency between Nodes 2 and 3.

We say that a merge operation between nodes u and v is applicable if the fol-

lowing two conditions hold:

(i) u is a predecessor of v

(ii) either F (v) is a literal or v is a sink node and the only successor of u

Note that this definition implies that a node corresponding to a literal can always

be merged even if it has multiple predecessors.

The if a merge is applicable to nodes u and v, then a new node u′ is created on

the SAG, and the following operations are carried out:

(i) F (u′) = F (u)

(ii) P (u′) = P (u) ∪ P (v)

(iii) S(u′) = S(u) \ F (v)

(iv) L(u′) = L(u) ∪ L(v)

(v) The edge (u, v) is deleted from the SAG.

(vi) Replace u by u′.

Note that v is not eliminated from the SAG, since it could be needed for other

merging operations.

Continuing with our example, Figure 2.3 shows the result of execution all ap-

plicable merges to the SAG of Figure 2.2. In particular, a merge between Nodes

6 and 8 has been performed, resulting in the addition of Node 7.1. Note that the

35

Node 1:
F = (¬p ∨q)
P = ∅
S = {¬p ∨q}
L = {qF }

Node 2:
F = (¬p ∨q)
P = ∅
S = {¬p ∨q}
L = {(¬p ∨q)}

Node 3.1:
F = ¬p ∨q

P = {¬p}
S = ∅
L = ∅

Node 4:
F = ¬p ∨q

P = ∅
S = {q}
L = ∅

Node 5:
F = ¬p
P = {¬p}
S = ∅
L = ∅

Node 7.1:
F = q
P = {q}
S = ∅
L = ∅

Node 7:
F = q

P = ∅
S = ∅
L = {q}

Node 8:
F = q

P = {q}
S = ∅
L = ∅

Figure 2.3. A SAG for the LTL formula ϕ = (¬p ∨q), after merging literals

precondition for Node 8 is “transferred” to Node 7.1. Node 8 is not removed from

the SAG. Thus, if Node 8 had had another incoming edge the merge would still allow

the action for Node 8 synchronize other subformulae.

2.5.3.2. Split

Splitting consists of copying a node with n successors n times, assigning each of

its successors to a single copy. A split is only applied to nodes that have the potential

of facilitating a subsequent merge operation because our ultimate objective is to

reduce the final number of synchronization actions. To see why a split may become

36

necessary, observe Node 4 of Figure 2.3. None of its successors can be merged into

Node 4 because it has two successors.

A split of a node u is applicable if the following conditions hold:

(i) the top-level Boolean operator in F (u) is neither an ∧ nor an R,

(ii) u has at least one successor, and

(iii) every successor of u is a sink.

The first condition may not seem obvious at first sight, but it is desirable. Indeed, if

the top-level operation for a node u is ∧ or R, then it is likely that S(u) contains more

than one formula (cf. Table 2.1). Since we need to maintain the property of an edge

in a SAG—that is, (u, v) ∈ E if and only if F (v) ∈ S(u)—by splitting such a node

we would require the addition of more nodes and edges, which is counter-productive.

Seeing why the second condition is necessary is straightforward. A split operation

does not make sense if the node u is a sink, because it will not allow a subsequent

merge. The third condition is necessary to avoid breaking the internal structure of

a SAG when the node u is duplicated (dependencies).

Applying a split over a node u whose set of successors is {v1, . . . , vn} results in

the generation of a set of n new nodes {u1, . . . , un}, such that:

• F (ui) = F (u), P (ui) = P (u), S(ui) = S(u), and L(ui) = L(u), and

• a new arc (ui, vi) is added to the SAG,

for every i ∈ {1, . . . , n}. In addition, u is removed from the SAG.

Figure 2.4 shows the application of a split operation over Node 4 followed by a

merge operation. The resulting SAG is shown in Figure 2.5.

2.5.3.3. The Simplification Algorithm

The simplification algorithm for a SAG is straightforward and consists of the

following steps:

(i) While there are two nodes u and v for which a merge applicable, apply a

merge between u and v.

37

Node 4:
F = ¬p ∨q

P = ∅
S = {q}
L = ∅

Node 7.1:
F = q
P = {q}
S = ∅
L = ∅

Node 7:
F = q

P = ∅
S = ∅
L = {q}

Node 4a:
F = ¬p ∨q

P = ∅
S = {q}
L = ∅

Node 7.1:
F = q
P = {q}
S = ∅
L = ∅

Node 4b:
F = ¬p ∨q

P = ∅
S = {q}
L = ∅

Node 7:
F = q

P = ∅
S = ∅
L = {q}

Node 4a.1:
F = ¬p ∨q

P = {q}
S = ∅
L = ∅

Node 7.1:
F = q

P = {q}
S = ∅
L = ∅

Node 4b.1:
F = ¬p ∨q
P = ∅
S = ∅
L = {q}

Node 7:
F = q

P = ∅
S = ∅
L = {q}

Figure 2.4. An example for a splitting operation. A step of duplication
and a step of merging.

Node 1:
F = (¬p ∨q)

P = ∅
S = {¬p ∨q}
L = {qF }

Node 2:
F = (¬p ∨q)

P = ∅
S = {¬p ∨q}
L = {(¬p ∨q)}

Node 3.1:
F = ¬p ∨q
P = {¬p}
S = ∅
L = ∅

Node 4a.1:
F = ¬p ∨q
P = {q}
S = ∅
L = ∅

Node 4b.1:
F = ¬p ∨q

P = ∅
S = ∅
L = {q}

Node 5:
F = ¬p
P = {¬p}
S = ∅
L = ∅

Node 7.1:
F = q

P = {q}
S = ∅
L = ∅

Node 7:
F = q

P = ∅
S = ∅
L = {q}

Node 8:
F = q

P = {q}
S = ∅
L = ∅

Figure 2.5. A SAG for the LTL formula ϕ = (¬p ∨q), after merging
literals and splitting

38

(ii) If u is a node that can be split, apply the split operation to u.

(iii) Stop if after executing both previous steps no operation has been applied.

Otherwise go back to Step 1.

Once the algorithm has finished its execution, further simplification is carried

out, eliminating some nodes in the graph. Specifically, we remove three types of

nodes:

• Nodes that lead to dead ends. These nodes require the plan to finish in

a certain state, but at the same time require a temporal formula to be

checked in the future of such a state same. Specifically, u leads to a dead

end iff L(u) contains two elements or more, among which it is qF .

• Nodes with inconsistent preconditions. The merge process could generate

a node u such that both a literal and its complement are in P (u). We say

such nodes have inconsistent preconditions.

• Unreachable nodes. Intuitively these nodes could be generated by a merge

between nodes u and v, which does not eliminate v. Reachable nodes can

be inductively defined as follows.

(i) If u is such that F (u) = ϕ, where ϕ is the LTL goal formula, then u

is reachable.

(ii) If u is reachable and (u, v) is an arc in the SAG, then v is reachable.

(iii) Finally, if u is reachable and node v is such that F (v) ∈ L(u), then v

is reachable.

Note that the last condition may declare a node v as reachable from u even

though (u, v) is not an arc in the graph. This is actually correct because

when F (v) ∈ L(u) the action represented by u is enabling the execution

of v in the next round of synchronization.

Figure 2.6 shows SAG of our example after node removal.

39

Node 1:
F = (¬p ∨q)
P = ∅
S = {¬p ∨q}
L = {qF }

Node 2:
F = (¬p ∨q)
P = ∅
S = {¬p ∨q}
L = {(¬p ∨q)}

Node 3.1:
F = ¬p ∨q

P = {¬p}
S = ∅
L = ∅

Node 4a.1:
F = ¬p ∨q

P = {q}
S = ∅
L = ∅

Node 4b.1:
F = ¬p ∨q

P = ∅
S = ∅
L = {q}

Node 7.1:
F = q
P = {q}
S = ∅
L = ∅

Node 7:
F = q

P = ∅
S = ∅
L = {q}

Figure 2.6. A SAG for the LTL formula ϕ = (¬p ∨q), after merging
literals, splitting and removing nodes

2.5.4. Extracting Actions from a SAG

Obtaining synchronization actions from a SAG is straightforward. For each node

u we generate action Au such that:

prec(Au) = {sync,ok, qSF (u)} ∪ P (u),

eff (Au) = {¬qSF (u)} ∪ {qSα | α ∈ S(u)} ∪ {qα | α ∈ L(u)}.

We can also incorporate the ideas in the OSA mode (Section 2.4.3.1) here too. Recall

that in that mode there we computed a topological order of the parse tree of the

goal formula, and that the set QT represented token states. Here, we compute a

topological order of the graph, and if u and v are successors in the topological order

we say define succ(qTF (u)) = qTF (v). Following the same idea presented earlier, the

precondition and effect of every action Au associated to node u is:

40

prec(Au) = {sync,ok, qTF (u)}

eff (Au) = {¬qTF (u),Γ→ ¬qSF (u), succ(q
T
F (u))} ∪ {Γ→ qSα | α ∈ S(u)} ∪

{Γ→ qα | α ∈ L(u)},

where Γ = {qSF (u)} ∪ P (u).

The main difference between this version and that of Section 2.4.3.1 is that before

qF was always the last state of the topological order. Here, instead, the node for qF

might have been merged into another node. If succ(qTF (u)) is not defined (because

F (u) is the last subformula in the topological order), then succ(qTF (u)) will be replaced

by endturn, a new special fluent. We define a new action endturn, which is similar

to the previous world action), its precondition and effect will be:

prec(endturn) = {sync,ok, endturn}

eff(endturn) = QS ∪ {¬sync,¬endturn,world} ∪ {qS → q | q ∈ Q}

It is also possible to use the PG described in Section 2.4.3.2. For each node u

and its respective action Au, if F (u) /∈ L(u) then we add eff(a):(
{qDβ | β ∈ super(F (u))} ∪ P (u)

)
→ qDF (u),

where super(F (u)) is the set of superformulae that are still in the SAG.

2.6. Empirical Evaluation

The objective of our evaluation was to compare our approach with existing trans-

lation approaches, over a range of general LTL goals, to understand when it is con-

venient to use one or other approach. We chose to compare to B&M’s rather than

Edelkamp’s because the former seems to yield better performance (Baier, Bacchus,

& McIlraith, 2009). We do not compare against other existing systems that handle

41

PDDL3 natively, such as LPRPG-P (Coles & Coles, 2011), because efficient trans-

lations for the (restricted) subset of LTL of PDDL3 into NFA are known (Gerevini

et al., 2009).

We considered both LAMA (Richter, Helmert, & Westphal, 2008) and FFX

(Thiébaux, Hoffmann, & Nebel, 2005), because both are modern planners supporting

derived predicates (required by B&M). We observed that LAMA’s preprocessing

times where high and thus decided to report results we obtained with FFX . We used

an 800MHz-CPU machine running Linux. Processes were limited to 1 GB of RAM

and 15 min. runtime.

There are no planning benchmarks with general LTL goals, so we chose two of the

domains (rovers and openstacks) of the 2006 International Planning Competition,

which included LTL preferences (but not goals), and generated our own problems,

with some of our goals inspired by the preferences. In addition, we considered the

blocksworld domain.

Our translator was implemented in SWI-Prolog. It takes a domain and a problem

in PDDL with an LTL goal as input and generates PDDL domain and problem

files. It also receives an additional parameter specifying the translation mode which

can be any of the following: simple, OSA, PG, and OSA+PG, where simple is

the translation of Section 2.4, and OSA, PG are the optimizations described in

Section 2.4.3. OSA+PG is the combination of OSA and PG.

Table 2.5 shows a representative selection of the results we obtained. It shows

translation time (TT), plan length (PL), planning time (PT), the number of planning

states that were evaluated before the goal was reached (PS). Times are displayed in

seconds. For our translators we also include the length of the plan without synchro-

nization actions (WPL). NR means the planner/translator did not return a plan.

For each problem, a special name of the form x0n was assigned, where x corresponds

to a specific family of formula and n it’s parameter (i.e. For the problem a04, the

goal formula α ∪
∧n
i=1 βi was used, with n = 4).

42

Each family of formulae corresponds to: a: α ∪
∧n
i=1 βi, b:

∨n
i=1pi Uq, c:

(α ∧
∧n
i=1 βi), d:

∧n
i=1(αU βi), e: (

∧n
i=1βi), f :

∧n
i=1pi, g:

∧3
i=1pi ∧∧n−3

i=1 qi U ri, i: (
∨n
i=1βi), j: (

∨n
i=1 βi) and k:

∨n
i=1(αU(pi ∧ qi)).

We observe mixed results. B&M yields superior results on some problems; e.g.,

f03 and f05 of openstacks (of the form
∧n
i=1pi). The performance gap is probably

due to the fact that (1) the B&M problem requires fewer actions in the plan and (2)

B&M’s output for these goals is quite compact on the size of the formula. On the

other hand, there are other goal formulas in which our approach outperforms B&M.

For example, problems of the form a0n in openstacks and blocksworld, and of the

form b0n in blocksworld. In those cases, the B&M translator is forced to generate

the whole automaton, because it has to deal with nested subformulae in which the

distributive property does not hold. As a consequence, B&M generates an output

exponential in n, which results in higher translation time and eventually in the the

planner running out of memory.

By observing the rest of the data, we conclude that B&M returns an output

that is significantly larger than our approaches for the following classes of formulas:

αU(
∧n
i=1 βi), αU(

∧n
i=1 βi U γi), (

∨n
i=1αi)U β, and (

∨n
i=1 αi R βi)U β, with n ≥ 4,

yielding finally an “NR”. Being polynomial, our translation handles these formulas

reasonably well: low translation times, and a compact output. In many cases, this

allows the planner to return a solution.

For the case of the class formula k, we observe that the first translator handles

this formula pretty well, since the ∧ operator can distribute over the U operator. We

see that when n is increased, the time needed to translate the planning problem is

linear. This also happens with our approach. This shows that it is still possible to

use the old approach to handle some classes of formulae.

The use of positive goals has an important influence in performance possibly

because the heuristic is more accurate, leading to fewer expansions. OSA, on the

other hand, seems to negatively affect planning performance in FFX . The reason

43

is the following: FFX will frequently choose the wrong synchronization action and

therefore its enforced hill climbing algorithm will often fail. This behavior may not

be observed in planners that use complete search algorithms.

For the experiments with SAG, we did not consider using OSA, since the results

in Table 2.5 show that using OSA usually doesn’t impact too much the performance

of the planner or worsens it, because it needs to evaluate more planning states.

If SAG is used to optimize the translation, we see that for most scenarios the time

needed to translate a problem has a slight overhead. This is expected due to the extra

operations that are added in this process (graph construction and optimization). We

also see that in many cases, the planning is decreased, due to the number of actions

that were reduced during the translation using SAG. This is also seen in the number

of planning states that were evaluated when SAG is used. Looking at Table 2.6,

we see that if the formula used is simple, then B&M outperforms our approach.

However, if B&M is not capable to translate the problem, due to the exponential

blow up, then our approach (PG + NonOSA + SAG) performs better than our other

variants in most cases.

2.7. Conclusions

We proposed polynomial-time translations of LTL into final-state goals, which,

unlike existing translations are optimal with respect to computational complexity.

The main difference between our approach and state-of-the-art NFA-based transla-

tions is that we use AA, and represent a single run of the AA in the planning state.

We conclude from our experimental data that it seems more convenient to use an our

AA translation precisely when the output generated by the NFA-based translation

is exponentially large in the size of the formula. Otherwise, it seems that NFA-based

translations are more efficient because they do not require synchronization actions,

which require longer plans, and possibly higher planning times. Obviously, a combi-

nation of both translation approaches into one single translator should be possible.

Investigating such a combination is left for future work.

44

An interesting observation is our approach is not limited to goal formulae. For

example, it can be adapted for the case of LTL preferences (Baier, Bacchus, &

McIlraith, 2007). Indeed, since in this case LTL preferences would be reduced to

simple non-temporal subgoals, approaches like that of Keyder and Geffner (Keyder

& Geffner, 2009) would be applicable to reduce the problem to one solvable by

standard cost-optimizing deterministic planner.

Finally, it is possible to adapt our approach to other languages for which there

exists an alternating automaton. Indeed, (Triantafillou, Baier, & McIlraith, 2015)

have already adapted the approach presented in this paper for the case of planning

with goals represented in Linear Dynamic Logic (De Giacomo & Vardi, 2013). Our

approach has also the potential to be applied in scenarios in which actions are non-

deterministic and thus has applicability to the well-known LTL synthesis problem

(De Giacomo & Vardi, 2015).

45

Table 2.5. Experimental results for a variety of LTL planning tasks.

O
p
e
n
s
t
a
c
k
s

D
o
m

a
in

B
&
M

’s
tr
a
n
sl
a
to

r
N
o
n
-P

G
+

N
o
n
-O

S
A

N
o
n
-P

G
+

O
S
A

P
G

+
N
o
n
-O

S
A

P
G

+
O
S
A

T
T

P
L

P
T

P
S

T
T

P
L

W
P
L

P
T

P
S

T
T

P
L

W
P
L

P
T

P
S

T
T

P
L

W
P
L

P
T

P
S

T
T

P
L

W
P
L

P
T

P
S

a
0
3

0
.3
7
3

2
3

0
.1
0

3
4

0
.4
6
3

1
3
6

2
1

6
.4
4

2
2
2
2
4
5

0
.4
8
6

3
0
9

2
1

1
0
.8
6

2
0
3
4
6
1

0
.4
7
5

1
6
7

2
3

0
.0
5

1
4
1
3

0
.5
0
1

3
1
9

2
2

0
.2
5

3
4
2
1

a
0
4

1
.5
9
4

0
N
R

N
R

0
.4
7
0

1
5
6

2
2

2
2
.4
9

5
9
2
0
8
1

0
.5
0
4

3
9
2

2
2

2
4
.0
4

4
1
7
5
8
5

0
.4
9
6

1
9
2

2
4

0
.1
0

2
7
6
3

0
.5
2
7

4
0
5

2
3

0
.5
2

6
5
7
3

a
0
5

2
1
.8
5
2

0
N
R

N
R

0
.4
8
2

1
7
9

2
3

1
0
3
.3
0

1
5
7
3
4
3
3

0
.5
2
3

4
8
1

2
3

5
4
.0
7

8
7
2
4
4
6

0
.5
2
5

2
1
3

2
4

0
.2
3

5
9
0
6

0
.5
6
4

4
9
7

2
4

1
.1
7

1
3
0
7
4

e
0
3

0
.3
7
7

2
3

0
.1
0

3
4

0
.4
5
9

1
1
7

2
1

9
.0
8

2
9
4
0
9
7

0
.4
8
1

2
8
7

2
1

1
0
.5
7

2
0
2
8
7
3

0
.4
6
9

1
6
7

2
3

0
.0
5

1
4
1
3

0
.4
9
1

2
9
7

2
2

0
.2
3

3
2
1
7

e
0
4

1
.5
9
9

0
N
R

N
R

0
.4
7
2

1
2
5

2
2

3
1
.9
3

7
5
5
5
3
9

0
.4
9
8

3
6
9

2
2

2
3
.4
1

4
1
8
2
4
0

0
.4
8
9

1
9
2

2
4

0
.1
0

2
7
6
3

0
.5
1
7

3
8
2

2
3

0
.4
8

6
1
7
6

e
0
5

2
2
.3
9
0

0
N
R

N
R

0
.4
7
8

1
3
3

2
3

1
4
9
.8
8

1
9
5
8
2
6
1

0
.5
1
8

4
5
7

2
3

5
3
.2
7

8
7
6
8
1
6

0
.5
1
3

2
1
3

2
4

0
.2
2

5
9
0
6

0
.5
4
8

4
7
3

2
4

1
.0
5

1
2
2
9
2

f0
3

0
.2
4
6

2
3

0
.0
2

3
4

0
.4
5
5

1
4
2

2
1

5
.4
1

1
9
6
9
3
8

0
.4
7
4

2
6
5

2
1

8
.7
8

1
7
9
1
5
7

0
.4
6
2

1
6
6

2
3

0
.0
5

1
4
1
2

0
.4
8
3

2
7
4

2
2

0
.2
1

3
1
0
0

f0
5

0
.2
6
8

2
5

0
.0
2

3
6

0
.4
7
7

1
9
9

2
3

7
8
.7
1

1
3
6
4
6
3
8

0
.5
0
3

4
3
3

2
3

4
8
.6
2

8
3
4
7
8
3

0
.5
0
4

2
1
2

2
4

0
.2
2

5
9
0
5

0
.5
3
6

4
4
8

2
4

1
.0
1

1
2
1
7
2

g
0
2

0
.2
5
6

2
4

0
.1
0

2
1
4

0
.4
6
6

1
6
6

2
1

2
0
.1
5

5
3
3
7
5
3

0
.4
9
1

3
3
1

2
1

1
8
.4
4

3
4
1
9
9
8

0
.4
8
4

1
9
7

2
2

0
.4
1

1
0
4
3
9

0
.5
0
9

3
4
2

2
2

0
.4
8

6
4
9
8

g
0
3

0
.2
6
6

2
4

0
.1
3

2
2
4

0
.4
7
4

2
1
5

2
2

1
3
8
.1
1

1
8
9
2
7
5
0

0
.5
1
0

4
1
5

2
2

3
5
.8
4

6
3
5
7
1
5

0
.5
0
6

2
3
1

2
2

1
.5
3

3
5
1
1
7

0
.5
4
2

4
1
0

2
2

1
.0
7

1
3
3
6
4

R
o
v
e
r
s

D
o
m

a
in

e
0
3

0
.4
0
7

1
0

0
.0
5

1
6

0
.4
8
1

6
2

1
0

6
8
.3
9

1
1
7
3
2
2
7

0
.5
0
7

1
4
4

1
0

4
6
.0
4

5
4
4
0
3
4

0
.4
9
8

6
7

1
0

0
.0
2

4
5
3

0
.5
1
7

1
4
0

1
0

0
.0
2

4
4
8

e
0
4

1
.6
3
9

0
N
R

N
R

0
.4
9
4

0
0

N
R

N
R

0
.5
3
9

1
0

N
R

N
R

0
.5
1
7

1
0
6

1
5

0
.0
5

1
3
2
4

0
.5
4
5

2
5
2

1
5

0
.0
7

1
2
0
1

f0
1

0
.2
4
2

4
0
.0
0

5
0
.4
6
0

2
5

4
0
.0
3

1
7
5
7

0
.4
7
1

3
1

4
0
.0
4

1
3
5
3

0
.4
6
2

2
2

4
0
.0
0

6
4

0
.4
6
9

2
8

4
0
.0
0

6
2

f0
2

0
.2
5
5

7
0
.0
0

1
0

0
.4
6
8

4
5

7
0
.5
5

2
5
4
9
0

0
.4
8
7

7
3

7
1
.8
4

4
4
0
0
2

0
.4
7
5

4
2

7
0
.0
1

3
1
6

0
.4
8
9

6
9

7
0
.0
1

1
8
1

f0
3

0
.2
7
0

1
0

0
.0
1

1
5

0
.4
8
1

6
8

1
0

7
.6
7

2
6
4
5
6
8

0
.5
0
1

1
3
3

1
0

4
1
.7
8

5
2
2
4
3
2

0
.4
9
0

6
6

1
0

0
.0
2

4
5
2

0
.5
0
5

1
2
9

1
0

0
.0
3

4
2
5

i0
4

0
.2
9
9

3
0
.0
1

4
0
.4
9
9

1
9

2
0
.0
4

1
5
2
2

0
.5
2
8

4
9

2
0
.0
4

8
4
7

0
.5
2
5

1
7

3
0
.0
0

4
3

0
.5
4
8

4
7

3
0
.0
2

3
0
1

j0
4

0
.3
0
1

3
0
.0
1

4
0
.5
0
1

1
9

2
0
.0
3

1
2
9
0

0
.5
3
7

4
9

2
0
.0
5

9
6
2

0
.5
2
2

2
6

5
0
.0
1

1
4
8

0
.5
5
4

7
8

5
0
.2
0

3
4
9
4

B
lo

c
k
s
w
o
r
ld

D
o
m

a
in

a
0
3

1
.6
2
7

2
0
.0
2

3
0
.4
4
8

2
2

2
0
.1
2

4
1
1
5

0
.4
7
2

4
6

2
0
.0
4

7
9
2

0
.4
6
4

1
9

2
0
.0
0

3
2

0
.4
9
0

4
1

2
0
.0
1

1
4
6

a
0
4

2
2
.2
2
0

0
N
R

N
R

0
.4
5
8

2
5

2
1
.9
4

4
5
1
1
3

0
.4
9
2

5
5

2
0
.3
1

4
6
9
2

0
.4
8
6

2
2

2
0
.0
0

5
0

0
.5
2
3

5
0

2
0
.0
1

2
2
8

a
0
5

4
7
1
.5
7
4

0
N
R

N
R

0
.4
7
1

2
8

2
3
8
.9
9

4
7
4
9
0
6

0
.5
1
4

6
4

2
2
.5
2

2
4
7
6
1

0
.5
2
2

2
5

2
0
.0
1

7
7

0
.5
5
9

5
9

2
0
.0
4

3
3
0

b
0
3

9
.8
0
1

1
0
.0
0

2
0
.4
4
6

1
1

1
0
.0
0

8
8

0
.4
7
3

3
1

1
0
.0
1

1
2
2

0
.4
6
4

8
1

0
.0
0

1
2

0
.4
9
4

2
5

1
0
.0
0

8
5

b
0
4

4
2
3
.3
2
7

1
0
.0
0

2
0
.4
6
3

1
1

1
0
.0
1

1
7
2

0
.4
9
4

3
7

1
0
.0
2

2
4
8

0
.4
9
0

8
1

0
.0
0

1
6

0
.5
2
3

3
1

1
0
.0
1

1
4
7

b
0
5

N
R

N
R

N
R

N
R

0
.4
7
3

1
1

1
0
.0
2

2
8
5

0
.5
1
9

4
3

1
0
.0
5

4
9
2

0
.5
2
7

8
1

0
.0
0

2
2

0
.5
6
6

3
7

1
0
.0
2

2
6
9

c
0
3

0
.3
8
3

2
0
.5
8

4
0
.4
4
3

2
4

2
0
.0
9

3
6
0
7

0
.4
7
0

4
6

2
0
.0
1

3
5
7

0
.4
6
5

2
2

2
0
.0
0

1
0
1

0
.4
8
9

4
1

2
0
.0
1

9
7

c
0
4

1
.8
0
9

0
N
R

N
R

0
.4
5
6

2
7

2
1
.8
0

4
4
6
6
6

0
.4
9
0

5
5

2
0
.0
6

1
0
6
7

0
.4
8
7

2
5

2
0
.0
0

1
9
4

0
.5
1
9

5
0

2
0
.0
2

1
6
2

c
0
5

2
5
.6
5
5

0
N
R

N
R

0
.4
7
0

3
0

2
4
8
.3
0

6
1
0
0
4
9

0
.5
0
9

6
4

2
0
.3
1

3
3
2
5

0
.5
2
0

2
8

2
0
.0
4

5
1
4

0
.5
5
8

5
9

2
0
.0
4

2
8
7

d
0
3

0
.2
3
4

2
0
.0
0

3
0
.4
5
2

2
4

2
0
.1
1

3
4
5
1

0
.4
8
1

4
9

2
0
.0
7

1
6
1
2

0
.4
7
0

2
1

2
0
.0
0

3
4

0
.5
0
2

4
3

2
0
.0
0

1
0
6

d
0
4

0
.2
4
3

2
0
.0
1

3
0
.4
6
7

2
8

2
2
.6
6

4
8
4
3
6

0
.5
0
8

6
1

2
1
.0
8

1
4
1
1
8

0
.5
1
3

2
5

2
0
.0
0

5
3

0
.5
5
0

5
5

2
0
.0
2

1
7
2

d
0
5

0
.2
5
1

2
0
.0
1

3
0
.4
8
6

3
2

2
8
4
.4
0

6
3
7
1
7
8

0
.5
3
5

7
3

2
1
7
.9
9

1
0
4
3
9
8

0
.5
6
6

2
9

2
0
.0
1

8
1

0
.6
0
9

6
7

2
0
.0
4

2
5
6

e
0
3

3
.8
1
3

0
N
R

N
R

0
.4
5
7

2
5

2
0
.1
6

5
6
8
0

0
.4
8
9

5
2

2
0
.0
9

1
7
0
0

0
.4
8
3

2
2

2
0
.0
0

3
5

0
.5
1
7

4
6

2
0
.0
0

1
5
0

e
0
4

1
8
2
.1
8
1

0
N
R

N
R

0
.4
7
6

2
9

2
6
.1
6

1
2
2
2
3
3

0
.5
1
7

6
4

2
1
.1
5

1
4
5
7
6

0
.5
3
2

2
6

2
0
.0
1

5
4

0
.5
6
7

5
8

2
0
.0
3

2
5
7

e
0
5

N
R

N
R

N
R

N
R

0
.4
9
5

0
0

N
R

N
R

0
.5
4
7

7
6

2
1
9
.1
3

1
0
6
7
2
9

0
.5
8
4

3
0

2
0
.0
1

8
2

0
.6
3
8

7
0

2
0
.0
6

3
9
6

k
0
3

0
.2
9
9

4
0
.0
2

8
0
.4
7
5

2
7

3
1
.2
1

2
6
8
1
1

0
.5
1
5

8
5

3
4
.2
1

4
0
6
2
8

0
.5
2
7

1
0

0
.0
0

1
0

0
.5
6
8

8
2

4
0
.1
4

1
2
2
6

k
0
4

0
.3
2
6

4
0
.0
4

8
0
.5
0
9

2
7

3
1
.7
3

3
5
1
7
0

0
.5
5
3

1
0
5

3
6
.2
5

5
5
2
2
3

0
.5
9
9

1
0

0
.0
0

1
0

0
.6
6
2

1
0
2

4
0
.3
3

2
5
4
9

k
0
5

0
.3
5
3

4
0
.0
6

8
0
.5
2
0

2
7

3
2
.0
8

3
8
8
5
3

0
.5
9
2

1
2
5

3
8
.9
6

7
2
6
7
0

0
.7
0
7

1
0

0
.0
0

1
0

0
.7
7
3

1
2
2

4
0
.6
4

4
6
6
5

46

Table 2.6. Comparison table of experimental results for a variety of LTL
planning tasks using and not using SAG.

O
p
e
n
s
t
a
c
k
s

D
o
m

a
in

B
&
M

’s
tr
a
n
sl
a
to

r
N
o
n
-P

G
+

N
o
n
-O

S
A

+
N
o
n
-S

A
G

P
G

+
N
o
n
-O

S
A

+
N
o
n
-S

A
G

N
o
n
-P

G
+

N
o
n
-O

S
A

+
S
A
G

P
G

+
N
o
n
-O

S
A

+
S
A
G

T
T

P
L

P
T

P
S

T
T

P
L

W
P
L

P
T

P
S

T
T

P
L

W
P
L

P
T

P
S

T
T

P
L

W
P
L

P
T

P
S

T
T

P
L

W
P
L

P
T

P
S

a
0
3

0
.3
7
3

2
3

0
.1
0

3
4

0
.4
6
3

1
3
6

2
1

6
.4
4

2
2
2
2
4
5

0
.4
7
5

1
6
7

2
3

0
.0
5

1
4
1
3

0
.5
4
4

1
1
2

2
2

1
.3
9

2
9
5
3
0

0
.5
5
2

1
3
4

2
3

0
.0
4

7
4
7

a
0
4

1
.5
9
4

0
N
R

N
R

0
.4
7
0

1
5
6

2
2

2
2
.4
9

5
9
2
0
8
1

0
.4
9
6

1
9
2

2
4

0
.1
0

2
7
6
3

0
.5
5
4

1
2
1

2
2

2
.6
8

4
7
9
2
9

0
.5
6
1

1
6
4

2
4

0
.0
8

1
4
6
0

a
0
5

2
1
.8
5
2

0
N
R

N
R

0
.4
8
2

1
7
9

2
3

1
0
3
.3
0

1
5
7
3
4
3
3

0
.5
2
5

2
1
3

2
4

0
.2
3

5
9
0
6

0
.5
6
5

1
4
1

2
3

4
.6
6

8
6
1
3
6

0
.5
7
5

1
9
0

2
5

0
.1
4

2
6
5
3

e
0
3

0
.3
7
7

2
3

0
.1
0

3
4

0
.4
5
9

1
1
7

2
1

9
.0
8

2
9
4
0
9
7

0
.4
6
9

1
6
7

2
3

0
.0
5

1
4
1
3

0
.5
4
5

9
2

2
1

5
.4
5

3
9
4
9
6

0
.5
5
0

1
3
4

2
3

0
.0
4

7
4
7

e
0
4

1
.5
9
9

0
N
R

N
R

0
.4
7
2

1
2
5

2
2

3
1
.9
3

7
5
5
5
3
9

0
.4
8
9

1
9
2

2
4

0
.1
0

2
7
6
3

0
.5
6
5

1
0
1

2
2

5
.9
8

4
2
6
5
0

0
.5
5
7

1
6
4

2
4

0
.0
7

1
4
6
0

e
0
5

2
2
.3
9
0

0
N
R

N
R

0
.4
7
8

1
3
3

2
3

1
4
9
.8
8

1
9
5
8
2
6
1

0
.5
1
3

2
1
3

2
4

0
.2
2

5
9
0
6

0
.5
5
6

1
1
3

2
3

1
2
.1
9

4
6
0
6
8

0
.5
6
6

1
9
0

2
5

0
.1
4

2
6
5
3

f0
3

0
.2
4
6

2
3

0
.0
2

3
4

0
.4
5
5

1
4
2

2
1

5
.4
1

1
9
6
9
3
8

0
.4
6
2

1
6
6

2
3

0
.0
5

1
4
1
2

0
.5
4
1

1
2
5

2
2

0
.5
6

1
4
4
6
5

0
.5
4
1

1
3
3

2
3

0
.0
4

7
4
5

f0
5

0
.2
6
8

2
5

0
.0
2

3
6

0
.4
7
7

1
9
9

2
3

7
8
.7
1

1
3
6
4
6
3
8

0
.5
0
4

2
1
2

2
4

0
.2
2

5
9
0
5

0
.5
4
8

1
6
8

2
3

2
.0
2

4
3
1
2
1

0
.5
5
8

1
8
9

2
5

0
.1
4

2
6
5
1

g
0
2

0
.2
5
6

2
4

0
.1
0

2
1
4

0
.4
6
6

1
6
6

2
1

2
0
.1
5

5
3
3
7
5
3

0
.4
8
4

1
9
7

2
2

0
.4
1

1
0
4
3
9

0
.5
4
4

1
2
9

2
1

1
.0
6

2
3
4
8
0

0
.5
4
9

1
4
8

2
3

0
.0
6

1
2
3
8

g
0
3

0
.2
6
6

2
4

0
.1
3

2
2
4

0
.4
7
4

2
1
5

2
2

1
3
8
.1
1

1
8
9
2
7
5
0

0
.5
0
6

2
3
1

2
2

1
.5
3

3
5
1
1
7

0
.5
4
9

1
5
7

2
2

2
.1
4

4
3
9
5
5

0
.5
6
0

1
6
9

2
3

0
.1
4

2
3
9
4

R
o
v
e
r
s

D
o
m

a
in

e
0
3

0
.4
0
7

1
0

0
.0
5

1
6

0
.4
8
1

6
2

1
0

6
8
.3
9

1
1
7
3
2
2
7

0
.4
9
8

6
7

1
0

0
.0
2

4
5
3

0
.5
7
2

0
0

N
R

N
R

0
.5
7
7

6
4

1
2

0
.0
2

5
1
1

e
0
4

1
.6
3
9

0
N
R

N
R

0
.4
9
4

0
0

N
R

N
R

0
.5
1
7

1
0
6

1
5

0
.0
5

1
3
2
4

0
.5
8
1

0
0

N
R

N
R

0
.5
8
4

1
0
0

1
7

0
.0
4

1
1
9
0

f0
1

0
.2
4
2

4
0
.0
0

5
0
.4
6
0

2
5

4
0
.0
3

1
7
5
7

0
.4
6
2

2
2

4
0
.0
0

6
4

0
.5
4
7

2
0

4
0
.0
2

7
4
4

0
.5
5
2

1
8

4
0
.0
0

2
6

f0
2

0
.2
5
5

7
0
.0
0

1
0

0
.4
6
8

4
5

7
0
.5
5

2
5
4
9
0

0
.4
7
5

4
2

7
0
.0
1

3
1
6

0
.5
5
8

3
6

7
0
.0
2

9
9
3

0
.5
6
1

4
4

9
0
.0
1

4
0
3

f0
3

0
.2
7
0

1
0

0
.0
1

1
5

0
.4
8
1

6
8

1
0

7
.6
7

2
6
4
5
6
8

0
.4
9
0

6
6

1
0

0
.0
2

4
5
2

0
.5
6
6

5
4

1
0

0
.0
2

1
0
0
1

0
.5
6
9

6
3

1
2

0
.0
2

5
0
9

i0
4

0
.2
9
9

3
0
.0
1

4
0
.4
9
9

1
9

2
0
.0
4

1
5
2
2

0
.5
2
5

1
7

3
0
.0
0

4
3

0
.5
5
9

1
3

2
0
.0
0

8
0

0
.5
6
6

1
1

2
0
.0
0

2
4

j0
4

0
.3
0
1

3
0
.0
1

4
0
.5
0
1

1
9

2
0
.0
3

1
2
9
0

0
.5
2
2

2
6

5
0
.0
1

1
4
8

0
.6
1
1

1
7

2
0
.0
2

9
8
1

0
.6
2
8

0
0

N
R

N
R

B
lo

c
k
s
w
o
r
ld

D
o
m

a
in

a
0
3

1
.6
2
7

2
0
.0
2

3
0
.4
4
8

2
2

2
0
.1
2

4
1
1
5

0
.4
6
4

1
9

2
0
.0
0

3
2

0
.5
3
5

1
6

2
0
.0
0

7
0

0
.5
3
5

1
4

2
0
.0
0

3
0

a
0
4

2
2
.2
2
0

0
N
R

N
R

0
.4
5
8

2
5

2
1
.9
4

4
5
1
1
3

0
.4
8
6

2
2

2
0
.0
0

5
0

0
.5
3
7

1
7

2
0
.3
2

7
3
8
6

0
.5
4
8

1
5

2
0
.0
0

3
4

a
0
5

4
7
1
.5
7
4

0
N
R

N
R

0
.4
7
1

2
8

2
3
8
.9
9

4
7
4
9
0
6

0
.5
2
2

2
5

2
0
.0
1

7
7

0
.5
4
6

1
8

2
1
4
.6
2

5
8
2
0
2

0
.5
5
8

1
6

2
0
.0
0

4
8

b
0
3

9
.8
0
1

1
0
.0
0

2
0
.4
4
6

1
1

1
0
.0
0

8
8

0
.4
6
4

8
1

0
.0
0

1
2

0
.5
2
2

9
1

0
.0
0

1
8

0
.5
2
8

7
1

0
.0
0

1
5

b
0
4

4
2
3
.3
2
7

1
0
.0
0

2
0
.4
6
3

1
1

1
0
.0
1

1
7
2

0
.4
9
0

8
1

0
.0
0

1
6

0
.5
2
7

9
1

0
.0
0

2
8

0
.5
3
5

7
1

0
.0
0

1
9

b
0
5

N
R

N
R

N
R

N
R

0
.4
7
3

1
1

1
0
.0
2

2
8
5

0
.5
2
7

8
1

0
.0
0

2
2

0
.5
3
1

9
1

0
.0
0

4
4

0
.5
4
3

7
1

0
.0
0

2
5

c
0
3

0
.3
8
3

2
0
.5
8

4
0
.4
4
3

2
4

2
0
.0
9

3
6
0
7

0
.4
6
5

2
2

2
0
.0
0

1
0
1

0
.5
2
5

1
6

2
0
.0
1

4
3
3

0
.5
3
2

1
4

2
0
.0
0

3
1

c
0
4

1
.8
0
9

0
N
R

N
R

0
.4
5
6

2
7

2
1
.8
0

4
4
6
6
6

0
.4
8
7

2
5

2
0
.0
0

1
9
4

0
.5
3
2

1
7

2
0
.0
8

2
7
6
8

0
.5
4
1

1
5

2
0
.0
0

4
9

c
0
5

2
5
.6
5
5

0
N
R

N
R

0
.4
7
0

3
0

2
4
8
.3
0

6
1
0
0
4
9

0
.5
2
0

2
8

2
0
.0
4

5
1
4

0
.5
4
2

1
8

2
1
.0
9

2
1
8
8
1

0
.5
5
1

1
6

2
0
.0
0

7
4

d
0
3

0
.2
3
4

2
0
.0
0

3
0
.4
5
2

2
4

2
0
.1
1

3
4
5
1

0
.4
7
0

2
1

2
0
.0
0

3
4

0
.5
3
6

1
8

2
0
.0
0

3
1
1

0
.5
4
6

1
6

2
0
.0
0

4
2

d
0
4

0
.2
4
3

2
0
.0
1

3
0
.4
6
7

2
8

2
2
.6
6

4
8
4
3
6

0
.5
1
3

2
5

2
0
.0
0

5
3

0
.5
5
1

2
0

2
0
.0
6

1
2
5
5

0
.5
6
4

1
8

2
0
.0
0

5
7

d
0
5

0
.2
5
1

2
0
.0
1

3
0
.4
8
6

3
2

2
8
4
.4
0

6
3
7
1
7
8

0
.5
6
6

2
9

2
0
.0
1

8
1

0
.5
6
7

2
2

2
0
.4
0

5
6
6
5

0
.5
8
6

2
0

2
0
.0
0

8
3

e
0
3

3
.8
1
3

0
N
R

N
R

0
.4
5
7

2
5

2
0
.1
6

5
6
8
0

0
.4
8
3

2
2

2
0
.0
0

3
5

0
.5
4
7

1
9

2
0
.0
0

5
5
2

0
.5
6
1

1
7

2
0
.0
0

4
4

e
0
4

1
8
2
.1
8
1

0
N
R

N
R

0
.4
7
6

2
9

2
6
.1
6

1
2
2
2
3
3

0
.5
3
2

2
6

2
0
.0
1

5
4

0
.5
6
3

2
1

2
0
.1
4

3
5
3
4

0
.5
8
4

1
9

2
0
.0
0

5
9

e
0
5

N
R

N
R

N
R

N
R

0
.4
9
5

0
0

N
R

N
R

0
.5
8
4

3
0

2
0
.0
1

8
2

0
.5
8
3

2
3

2
5
.7
5

2
8
4
6
4

0
.6
1
0

2
1

2
0
.0
1

8
5

k
0
3

0
.2
9
9

4
0
.0
2

8
0
.4
7
5

2
7

3
1
.2
1

2
6
8
1
1

0
.5
2
7

1
0

0
.0
0

1
0

0
.5
5
2

2
0

3
0
.2
0

4
2
1
9

0
.5
7
5

5
1

0
.0
0

6
k
0
4

0
.3
2
6

4
0
.0
4

8
0
.5
0
9

2
7

3
1
.7
3

3
5
1
7
0

0
.5
9
9

1
0

0
.0
0

1
0

0
.5
7
4

2
0

3
0
.2
8

5
2
5
6

0
.6
0
5

5
1

0
.0
0

6
k
0
5

0
.3
5
3

4
0
.0
6

8
0
.5
2
0

2
7

3
2
.0
8

3
8
8
5
3

0
.7
0
7

1
0

0
.0
0

1
0

0
.5
9
4

2
0

3
0
.3
5

6
2
4
6

0
.6
3
9

5
1

0
.0
0

6

47

References

Bacchus, F., & Kabanza, F. (1998). Planning for temporally extended goals.

Annals of Mathematics and Artificial Intelligence, 22 (1-2), 5-27.

Bacchus, F., & Kabanza, F. (2000). Using temporal logics to express search

control knowledge for planning. Artificial Intelligence, 116 (1-2), 123-191.

Baier, J. A. (2010). Effective search techniques for non-classical planning via

reformulation (Ph.D. in Computer Science). University of Toronto.

Baier, J. A., Bacchus, F., & McIlraith, S. A. (2007, January). A heuristic search

approach to planning with temporally extended preferences. In Proceedings of

the 20th International joint Conference on Artificial Intelligence (p. 1808-1815).

Hyderabad, India.

Baier, J. A., Bacchus, F., & McIlraith, S. A. (2009). A heuristic search approach

to planning with temporally extended preferences. Artificial Intelligence, 173 (5-

6), 593-618.

Baier, J. A., & McIlraith, S. A. (2006). Planning with first-order temporally

extended goals using heuristic search. In Proceedings of the 21st national Con-

ference on Artificial Intelligence (p. 788-795). Boston, MA.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelli-

gence, 129 (1-2), 5-33.

Botea, A., Enzenberger, M., Müller, M., & Schaeffer, J. (2005). Macro-FF:

Improving AI planning with automatically learned macro-operators. Journal of

Artificial Intelligence Research, 24 , 581-621.

Bylander, T. (1994). The computational complexity of propositional STRIPS

planning. Artificial Intelligence, 69 (1-2), 165-204.

48

Coles, A. J., & Coles, A. (2011). LPRPG-P: relaxed plan heuristics for plan-

ning with preferences. In Proceedings of the 21th International Conference on

automated planning and Scheduling.

Cresswell, S., & Coddington, A. M. (2004, August). Compilation of LTL goal

formulas into PDDL. In R. L. de Mántaras & L. Saitta (Eds.), Proceedings of

the 16th european Conference on Artificial Intelligence (p. 985-986). Valencia,

Spain: IOS Press.

De Giacomo, G., & Vardi, M. Y. (2015). Synthesis for LTL and LDL on finite

traces. In Proceedings of the 24th International joint Conference on Artificial

Intelligence (pp. 1558–1564). Retrieved from http://ijcai.org/papers15/

Abstracts/IJCAI15-223.html

De Giacomo, G., Masellis, R. D., & Montali, M. (2014). Reasoning on LTL

on finite traces: Insensitivity to infiniteness. In Proceedings of the 28th aaai

Conference on Artificial Intelligence (pp. 1027–1033).

De Giacomo, G., & Vardi, M. Y. (1999, September). Automata-theoretic ap-

proach to planning for temporally extended goals. In S. Biundo & M. Fox (Eds.),

Ecp (Vol. 1809, p. 226-238). Durham, UK: Springer.

De Giacomo, G., & Vardi, M. Y. (2013). Linear temporal logic and linear

dynamic logic on finite traces. In Proceedings of the 23rd International joint

Conference on Artificial Intelligence. Beijing, China. Retrieved from http://

www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997

Edelkamp, S. (2006). On the compilation of plan constraints and preferences.

In Proceedings of the 16th International Conference on automated planning and

scheduling.

Edelkamp, S., Jabbar, S., & Naizih, M. (2006, July). Large-scale optimal PDDL3

planning with MIPS-XXL. In 5th International Planning Competition Booklet

(p. 28-30). Lake District, England.

49

http://ijcai.org/papers15/Abstracts/IJCAI15-223.html
http://ijcai.org/papers15/Abstracts/IJCAI15-223.html
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997

Gerevini, A., Haslum, P., Long, D., Saetti, A., & Dimopoulos, Y. (2009). De-

terministic planning in the fifth international planning competition: PDDL3

and experimental evaluation of the planners. Artificial Intelligence, 173 (5-6),

619-668.

Gerth, R., Peled, D., Vardi, M. Y., & Wolper, P. (1995, July). Simple on-

the-fly automatic verification of linear temporal logic. In Proceedings of the

15th International symposium on protocol specification, testing and verification

(p. 3-18). Warsaw, Poland.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation

through heuristic search. Journal of Artificial Intelligence Research, 14 , 253-

302.

Keyder, E., & Geffner, H. (2009). Soft goals can be compiled away. Journal of

Artificial Intelligence Research, 36 , 547–556. Retrieved from http://dx.doi

.org/10.1613/jair.2857

Muller, D. E., Saoudi, A., & Schupp, P. E. (1988). Weak Alternating Automata

Give a Simple Explanation of Why Most Temporal and Dynamic Logics are

Decidable in Exponential Time. In Proceedings of the 3rd annual symposium on

logic in computer science (pp. 422–427).

Pnueli, A. (1977). The temporal logic of programs. In Proceedings of the 18th

ieee symposium on foundations of computer science (pp. 46–57).

Richter, S., & Helmert, M. (2009). Preferred operators and deferred evaluation

in satisficing planning. In Proceedings of the 19th International Conference on

automated planning and Scheduling.

Richter, S., Helmert, M., & Westphal, M. (2008). Landmarks revisited. In Pro-

ceedings of the 23rd aaai Conference on Artificial Intelligence (p. 975-982).

Chicago, IL.

50

http://dx.doi.org/10.1613/jair.2857
http://dx.doi.org/10.1613/jair.2857

Rintanen, J. (2000, August). Incorporation of temporal logic control into plan

operators. In W. Horn (Ed.), Proceedings of the 14th european Conference on

Artificial Intelligence (p. 526-530). Berlin, Germany: IOS Press.

Thiébaux, S., Hoffmann, J., & Nebel, B. (2005). In defense of PDDL axioms.

Artificial Intelligence, 168 (1-2), 38-69.

Torres, J., & Baier, J. A. (2015). Polynomial-time reformulations of LTL tem-

porally extended goals into final-state goals. In Proceedings of the 24th Interna-

tional joint Conference on Artificial Intelligence (pp. 1696–1703).

Triantafillou, E., Baier, J. A., & McIlraith, S. (2015). A unifying framework

for planning with LTL and regular expressions. In Icaps workshop on model-

checking and automated planning.

51

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	RESUMEN
	1. INTRODUCTION
	1.1. Background
	1.1.1. Planning in Artificial Intelligence
	1.1.2. Planning Technology
	1.1.3. Temporally extended goals
	1.1.4. Planning via Translation using Non deterministic finite automata

	1.2. Contributions of this thesis
	1.2.1. Major Contributions
	1.2.2. Outline

	2. ARTICLE SUBMITTED TO JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
	2.1. Introduction
	2.2. Preliminaries
	2.2.1. Propositional Logic Preliminaries
	2.2.2. Deterministic Classical Planning
	2.2.3. Alternating Automata
	2.2.4. Finite LTL
	2.2.5. Deterministic Planning with LTL goals

	2.3. Alternating Automata and Finite LTL
	2.4. Compiling Away finite LTL Properties
	2.4.1. Translating LTL via LTL Synchronization
	2.4.2. Properties
	2.4.3. Towards More Efficient Translations

	2.5. Optimizing the Translation
	2.5.1. Synchronizing action graphs (SAG)
	2.5.2. Building a SAG
	2.5.3. Operations on a SAG
	2.5.4. Extracting Actions from a SAG

	2.6. Empirical Evaluation
	2.7. Conclusions

	References

