
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

BRIDGING THE VISUAL SEMANTIC GAP

IN VLN VIA SEMANTICALLY RICHER

INSTRUCTIONS

JOAQUÍN OSSANDÓN STANKE

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

ÁLVARO SOTO ARRIAZA

Santiago de Chile, July 2022

© MMXXII, JOAQUÍN OSSANDÓN STANKE

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

BRIDGING THE VISUAL SEMANTIC GAP

IN VLN VIA SEMANTICALLY RICHER

INSTRUCTIONS

JOAQUÍN OSSANDÓN STANKE

Members of the Committee:

ÁLVARO SOTO ARRIAZA

HANS LÖBEL DÍAZ

FELIPE BRAVO MÁRQUEZ

IGNACIO VARGAS CUCURELLA

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, July 2022

© MMXXII, JOAQUÍN OSSANDÓN STANKE

�������������������������
����
���
��������
	�	�
���

For my family and friends, who

patiently listened to all my ideas

over these two years

ACKNOWLEDGEMENTS

I want to start thanking my advisor Álvaro Soto for accepting me, trusting and support-

ing me throughout this journey. Thank you for believing in my abilities, my enthusiasm

and my desire to learn about this beautiful topic from the beginning.

The IA Lab group was essential to maintain motivation and learning from different

areas, sharing almost every week. Thank you Gabriel, Francisca, Jorge, Juan Pablo, Patri-

cio and Felipe for your good vibes. Special thanks to Benjamin, for so many ideas and

collaboration in this work.

Thanks to my parents, Pablo and Sylvia, for always supporting me with my decisions,

encouraging to always bring out the best in me. To my sisters, Consuelo and Natalia, for

bearing with me and always being there. To all my family. Thank you.

This journey would not have been the same without the people around me. Special

mention to Catalina, Camila, Sebastian, Felipe and Alejandro, who patiently listened to

all my ideas, cheering me up me whenever I was discouraged.

To all the people who were with me these two years, thank you. I was fortunate to get

to know all of you.

This is just the beginning!

This work received financial support from the Chilean National Agency for Research

and Development (ANID) through Beca de Magı́ster Nacional N° 22210030.
iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF FIGURES vii

LIST OF TABLES ix

ABSTRACT x

RESUMEN xi

1. INTRODUCTION 1

2. THE VISUAL AND LANGUAGE NAVIGATION TASK 6

2.1. Description . 6

2.2. Comparison metrics . 7

2.3. New problems . 7

3. RELATED WORK 10

3.1. Auxiliary tasks . 10

3.2. Navigation and exploration . 11

3.3. Curriculum learning, pre-training and data augmentation 11

3.4. Leaderboard . 12

4. RESEARCH QUESTIONS AND HYPOTHESES 14

5. TESTING THE RELEVANCE OF VISUAL INFORMATION IN VLN 15

5.1. Experiments in the visual area . 15

5.2. Experiments in the language area . 16

5.3. Ablation studies results . 18

6. SEMANTICALLY RICHER INSTRUCTIONS 19

6.1. Objects . 20

6.1.1. Metadata parser . 21
v

6.2. Objects instructions . 23

6.3. Crafted instructions . 25

7. RESULTS AND DISCUSSION 28

7.1. Qualitative analysis of generated instructions 28

7.2. Evaluation of the Regretful Agent pre-trained with generated instructions . 30

7.3. Assesment of human wayfinding . 35

7.3.1. Panoramic view . 36

7.3.2. Rotate . 36

7.3.3. Move to navigable node . 36

7.3.4. Stop and retrieve metrics . 37

7.3.5. Collected data . 40

8. CONCLUSIONS 42

9. FUTURE WORK 44

REFERENCES 45

APPENDIX 50

A. Matterport3DMetadata parser . 51

A.1. Regions . 51

A.2. Objects . 51

B. Crafted and Generated Instructions . 54

B.1. Crafted instructions . 54

B.2. Generated instruction from baseline module with auxiliary tasks 57

C. Pre-training the Regretful Agent with generated instructions 57

vi

LIST OF FIGURES

1.1 Examples of tasks involving visual and text modalities. 2

2.1 Objects and viewpoints visualization through 360-visualization scripts. 7

2.2 New problems based on the Visual-and-language Navigation Task. 9

5.1 Ablation studies setup. 15

6.1 Speaker language model architecture with the proposed auxiliary tasks: objects

auxiliary task and crafted auxiliary task. 20

6.2 Objects and nodes retrieved with 360-visualization for a specific node

on a path. 21

6.3 Scan Z6MFQCViBuw raw metadata information. 22

6.4 Sampled regions of scan Z6MFQCViBuw parsed from raw metadata. 22

6.5 Sampled objects of scan Z6MFQCViBuw parsed from raw metadata. 23

6.6 Reachable viewpoints information of a sampled viewpoint parsed from raw

metadata. 23

6.7 Visible objects information of a sampled viewpoint parsed from raw metadata. 24

6.8 Objects instruction generated for the path and the resulting negative log loss

applied to the generated instruction on training. 24

6.9 Agent orientation mapping on a 360 ° image. 25

6.10 Crafted instruction example. 26

6.11 Crafted instruction generated for the path and the resulting negative log loss

applied to generated instruction on training. 27
vii

7.1 Comparison of human instruction with instructions generated using the Speaker

base model, instructions generated using the Speaker with auxiliary tasks and

our crafted instructions. 29

7.2 Success rate of Regretful-Agent pre-trained with instructions generated with

Speaker trained with the two best configurations of � and � on unseen

environments. 33

7.3 Landing of the instruction follower platform. 36

7.4 Available actions on the instruction follower platform. 37

7.5 Sequence after rotating left on instruction follower platform 37

7.6 Sequence after moving to node “2” on instruction follower platform 38

7.7 Successful navigation on instruction follower platform. 38

7.8 JSON output sample after finishing route on instruction follower platform. . . 39

A.1 Environment descriptions used to map regions letter labels. 51

A.2 Objects names used to map objects labels indexes. 52

A.3 Distance between a node and an object calculated relative to the current node. 53

B.1 First crafted instructions example. 58

B.2 Second crafted instructions example. 59

B.3 Baseline module with auxiliary tasks output example. 60

C.1 Graph of success rate weighted by path length through epochs. 61

C.2 Graph of distance from goal through epochs. 61

viii

LIST OF TABLES

2.1 Description of metrics used in this work. 8

3.1 Comparison of the different models solving the Room-to-Room task, in unseen

test set using Single Run. 13

5.1 Visual ablation study on Self-Monitoring and Regretful-Agent, seen

environments with Single Run. 17

5.2 Visual ablation study on Self-Monitoring and Regretful-Agent, unseen

environments with Single Run. 17

5.3 Language ablation study on Self-Monitoring and Regretful-Agent, unseen

environments with Single Run. Best success rate is in bold. 17

7.1 Regretful-Agent pre-training with instructions generated from different

sources, evaluated on seen environments with Single Run and original human

instructions. Best success rate is in bold. 31

7.2 Regretful-Agent pre-training with instructions generated from different

sources, evaluated on unseen environments with Single Run and original

human instructions. Best success rate is in bold. 32

7.3 Summary table of the performance of the Regretful-Agent pre-trained

with instructions generated from different sources, evaluated on unseen

environments with Single Run and original human instructions. 34

7.4 Average metrics of the first 15 observations for each follower when navigating

in unseen environments. 40

ix

ABSTRACT

The Visual-and-Language Navigation (VLN) task requires understanding a textual in-

struction to navigate a natural indoor environment using only visual information. While

this is a trivial task for most humans, it is still an open problem for AI models. In this

work, we hypothesize that poor use of the visual information available is at the core of the

low performance of current models. To support this hypothesis, we provide experimental

evidence showing that state-of-art models are not severely affected when they receive just

limited or even no visual data, indicating a strong overfitting to the textual instructions.

To encourage a more suitable use of the visual information, we propose a new data

augmentation method that fosters the inclusion of more explicit visual information in the

generation of textual navigational instructions. Our main intuition is that current VLN

datasets include textual instructions that are intended to inform an expert navigator, such as

a human, but not a beginner visual navigational agent, such as a randomly initialized deep

learning model. Specifically, to bridge the visual semantic gap of current VLN datasets,

we take advantage of metadata available for the Matterport3D dataset that, among others,

includes information about object labels that are present in the scenes.

Training a state-of-the-art model with the new set of instructions increase its perfor-

mance by 8% in terms of success rate on unseen environments, while testing these new

instructions on humans outperforms available synthetic instructions, demonstrating the

advantages of the proposed data augmentation method.

Keywords: visual-and-language, navigation, VLN, vision, cognitive robotics.
x

RESUMEN

La tarea de Visual-and-Language Navigation (VLN) requiere entender complejas in-

strucciones de texto en lenguaje natural y navegar en un ambiente natural interior usando

únicamente información visual. Mientras es una tarea trivial para el humano, sigue siendo

un problema abierto para los modelos de inteligencia artificial. En este trabajo, planteamos

como hipótesis que el mal uso de la información visual disponible es la razón principal del

bajo rendimiento de los modelos actuales. Para apoyar esta hipótesis, presentamos eviden-

cia experimental mostrando que modelos del estado del arte no son totalmente afectados

cuando reciben limitada o incluso nula información visual, indicando un fuerte overfitting

al texto de las instrucciones.

Para fomentar un uso más adecuado de la información visual, proponemos un nuevo

método de aumento de datos que fomenta la inclusión de información visual más explı́cita

en la generación de instrucciones de navegación textuales. Nuestra intuición principal

es que los conjuntos de datos actuales incluyen instrucciones textuales que tienen como

objetivo informar a un navegante experto, como un ser humano, pero no a un agente de

navegación visual principiante, como un modelo de deep learning inicializado aleatoria-

mente. Especı́ficamente, para cerrar la brecha semántica visual de los conjuntos de datos

actuales, aprovechamos los metadatos disponibles para el conjunto de datos Matterport3D

que, entre otros, incluye información sobre etiquetas de objetos que están presentes en las

escenas.

Entrenando un modelo actual con el nuevo conjunto de instrucciones generado au-

menta su rendimiento en un 8% en cuanto a tasa de éxito en entornos desconocidos, mien-

tras que probar estas nuevas instrucciones en humanos supera a las instrucciones sintéticas

disponibles, lo que demuestra las ventajas de la propuesta de aumento de datos.

Palabras Clave: visión, lenguaje, navegación, VLN, robótica cognitiva.
xi

1

1. INTRODUCTION

Service robots have received increased attention in recent years, with broad applica-

tions in many fields, such as healthcare, education, entertainment, logistics or domestic

tasks (Garcı́a, Strüber, Brugali, Berger, & Pelliccione, 2020). A service robot is a “robot

that performs useful tasks for humans or equipment excluding industrial automation appli-

cations” (ISO, 2012). We are seeing service robots more and more frequently at home. In

fact, service robotics market was valued at USD $23577.1 million in 2020 and is expected

to grow at a compound annual rate of 44.9% by 2026 (MordorIntelligence, 2021).

The performance of domestic tasks is one of the major problems facing advanced so-

cieties today. The development of equipment capable of reducing the workload in home

has been going on for more than fifty years with the invasion of household appliances,

many of which are indispensable in every home. Among these appliances, there are au-

tonomous robots defined as intelligent machines capable of performing tasks in the world

by themselves, without explicit human control (Bekey, 2005).

Some of these autonomous robots involve vision and language, basing their operation

on two subareas of AI: Computer Vision and Natural Language Processing. Computer

Vision is about describing the world that we see in one or more images. This task is

used in a wide variety of real-world applications, such as Optical Character Recognition,

for recognizing text, Object or Face Detection or Image Transformation (Szeliski, 2011).

Natural Language Processing, on the other hand, is a technique that uses algorithms to

analyze or transform textual data, used for Question-Answering, Machine Translation,

Information Extraction, and more (Liddy, 2001).

Over these research subareas useful models had been developed, making substan-

tial advances, even sometimes surpassing human performance. However, there are com-

plex tasks that include both vision and language, where some of them have not yet been

achieved good performance. Examples are Visual-Question Answering, where the goal

is to answer a question having an image (Antol et al., 2015), Image captioning, where

2

(a) Visual Question Answering (VQA) (b) Image Captioning

(c) Text-to-Image generation (d) Visual-and-language navigation

Figure 1.1. Examples of tasks involving visual and text modalities.

agents generate descriptions of an image (Hossain, Sohel, Shiratuddin, & Laga, 2019),

Image generation, where models transform text into a visual representation, and Visual-

and-Language Navigation, where an agent is trained to navigate in real environments fol-

lowing natural language instructions (Anderson et al., 2018). Examples are shown on

Image 1.1.

We focus this work on the Vision-and-language Navigation (VLN) task, where a robot

receives an instruction in natural language and has to navigate to a goal position in known

and unknown environments using visual information. This has been a very attractive re-

search topic in recent years (Fried et al., 2018; Wang, Wang, Shu, Liang, & Shen, 2020;

Tan, Yu, & Bansal, 2019; Manterola, 2021; Zhu, Zhu, Chang, & Liang, 2020; Majumdar

et al., 2020). The Visual-and-Language Navigation (VLN) task proposes that an agent can

follow an instruction such as “Go up the stairs, turn right, and stop right at the left of

the table”, and use it to navigate a natural indoor environment from a starting to a goal

position using only visual information. In spite of current advances in AI, this task, that

3

results trivial for most humans, it still out of reach for autonomous robots. As an example,

under current benchmarks (Wu, Chang, & Li, 2021), state-of-the-art AI models based on

Deep Learning (DL) do not reach the intended goal position more than 65% of the time

(Liu et al., 2021).

There are several reasons that can help to explain the low performance of current

models to face the VLN task (Wu et al., 2021). Among them, we believe that lack of a

proper visual understanding of the environment is a key factor. In effect, humans actively

use relevant views of the environment to identify visual semantic information such as

navigational cues, objects, scenes, or other situations, however, current AI models focus

their operation on identifying relevant correlations between the textual instructions and

visual data present in the training set (Marcus, 2018). As a consequence, current VLN

models exhibit limited generalization capabilities, leading to a large drop in performance

when they are tested in unseen environments (Fried et al., 2018; Tan et al., 2019; Wu et

al., 2021).

There is abundant experimental evidence indicating that current DL based models op-

erate as associative memory engines triggered by superficial data correlations (Jo & Ben-

gio, 2017; Arpit et al., 2017; Belkin, Hsu, & Mitra, 2018), fostering the detection of direct

stimulus-response associations. Indeed, given enough parameters, DL models are able

to memorize arbitrary noisy data (Zhang, Bengio, Hardt, Recht, & Vinyals, 2017). In the

case of VLN, this problem leads to a poor use of the visual information. As a consequence,

instead of unveiling the richness of the visual world, DL models limit their operation to

memorize low level correlations between textual and visual data. Even worse, in sev-

eral cases, models ignore completely the visual information, learning a direct mapping

between the textual instructions and robot action.

To support the previous observation, as a first contribution of this work, we provide

experimental evidence indicating that current VLN models do not make a suitable use of

the visual information available about the environment. Specifically, we demonstrate that

when we provide to the model just limited or even no visual data, the model exhibits just

4

a slight drop in performance, showing that their operation is heavily biased to the use of

textual instructions.

The previous observation motivates our main research question: how can we contribute

to improve the use visual information in VLN models?. While the answer to this question

is manifold, in this work we focus our contribution on the generation of more suitable

training data. Specifically, we believe that a relevant problem of current VLN datasets is

that, during their generation, the humans providing the textual instructions assume that

they are intended for an expert navigator, as an example, another human. We believe that

this scheme leads to the generation of high level textual instructions, where it is hardly

complex to extract meaningful visual cues to inform a beginner visual navigational agent,

such as a randomly initialized DL model. As a consequence, we believe that the data

generation for a beginner should include a more detailed description of the visual world

around the agent.

To bridge the visual semantic gap of current VLN datasets, we present a new data

augmentation method that fosters the inclusion of more explicit visual information in

the generation of textual navigational instructions. To do this, we resort to object la-

bels present in the metadata available for the Matterport3D dataset1 that we refer here

as Matterport3DMeta. Using this data, we propose new semantically richer natural lan-

guage instructions for the Room-to-Room (R2R) dataset (Anderson et al., 2018) that are

generated with an improved version of the Speaker-Follower model (Fried et al., 2018).

Specifically, we use scene objects and crafted instructions created with a set of rules that

we encode to feed a set of auxiliary visual tasks. As a main finding, the resulting naviga-

tional instructions provide a significant boost in the performance of current VLN models

when they are tested in previously unseeing environments.

As a further contribution, we make available the semantically enriched dataset gener-

ated in this work as well as a set of software tools to generate further data. These tools in-

corporate modules to access scene nodes in the Matterport3D dataset (Chang et al., 2017)

1https://github.com/niessner/Matterport/tree/master/metadata

5

that include information about relevant objects, their position, size, distance, heading, and

elevation. We believe that this is a powerful starting point to use scene metadata to create

semantically richer visual navigational instructions.

This work is organized as follows. On Section 2 we describe the VLN task and pre-

senting the new problems that have arisen based on it. Section 3 reviews and categorize

relevant previous work. Section 5 presents an experimental setup to highlight the limita-

tions of current VLN models to use visual information. Afterwards, Section 6 describes

the objects retrieval and the construction of our visual semantically richer instructions for

the VLN task. Then, Section 7 present and discuss the results obtained from testing these

generated instructions on navigation agents and humans. Finally, Sections 8 and 9 present

our conclusions and future research avenues.

6

2. THE VISUAL AND LANGUAGE NAVIGATION TASK

During the last decade several studies have been related to the VLN task, however,

the visual aspect was discarded due to the lack of real images in the proposed problems

(Anderson et al., 2018). In 2017, the Matterport3D dataset (Chang et al., 2017) was in-

troduced, containing RGB-D building scale scenes of 90 different home environments.

Later that year, a new navigation problem is proposed: Room-to-Room (R2R) (Anderson

et al., 2018), the first dataset for the Visual-and-Language Navigation task (VLN) on real

3D environments, introducing a Matterport3D based simulator, which simulates its envi-

ronments with the possibility of navigate trough them. In R2R, 90 different environments

from Matterport3D have been divided into training and validation (seen and unseen) splits.

There are a total of 7,189 distinct paths (starting point, target point), with 3 distinct human

instructions for each, totaling 21,567 navigation instructions with an average of 29 words

(Anderson et al., 2018).

We construct over Matterport3DMeta a set of tools for getting objects and navigable

nodes for each view, as shown in Figure 2.1. We describe this set of tools on Section 6.1.

2.1. Description

The task of R2R for an agent is to follow natural language instructions from an ini-

tial position to a target position through navigation in a real environment, simulated by

Matterport3D Simulator (Anderson et al., 2018). At the beginning of each episode an

instruction x = hx1, x2, .., xLi is given, where L is the instruction length and xi a word

token. The agent observes an RGB image v0 depending on an initial 3D position, heading

 0 and elevation ✓0, resulting in a world state s0 = hv0, 0, ✓0i. The agent must execute

a sequence of actions hs0, a0, s1, a1, .., sT , aT i where each action at leads to a new state

st+1 = hvt+1, t+1, ✓t+1i and generates a new visual panoramic view vt+1. It is impor-

tant to note that actions are given by the simulator, which are limited according to the

node where the agent is located. The episode ends when the agent selects the <STOP>

7

Figure 2.1. Objects and viewpoints visualization through
360-visualization scripts.

action, and the task is successful if the agent arrives at a location near the target position,

recognizing it as the goal.

2.2. Comparison metrics

To compare the performance of presented configurations, we use path length (PL),

navigation error (NE) and success rate (SR), as proposed in R2R (Anderson et al., 2018).

We also use a new metric called success rate weighted by Path Length (SPL) (Majumdar

et al., 2020; Tan et al., 2019; Zhu et al., 2020; Ma, Lu, et al., 2019), that measures the

success rate normalized by path length. These metrics are described on Table 2.2.

2.3. New problems

The task proposed by R2R opens new doors to research in mobile robot navigation

in real environments. Although the navigation is an important element, it becomes just

another task within the wide possibilities that a robot has to interact with household tasks.

8

Table 2.1. Description of metrics used in this work.

Name Description

Path Length (PL) Total distance in meters of the path predicted by
the agent

Navigation Error (NE) Total distance in meters between the goal and
the node the agent stopped

Success Rate (SE)

Percentage of times where the agent success-
fully reach the goal of a path. This goal is repre-
sented as an area of three meters from the goal
point.

Success Rate weighted by Path Length (SPL)
Success Rate weighted by the normalized Path
Length. Measures the efficiency of predicted
paths.

Early 2019 brings a new task, called Embodied Visual referring Expression in Real 3D In-

door Environments (REVERIE) (Qi et al., 2020), where an agent must follow an instruc-

tion to locate an object in a certain environment, contributing a new dataset that includes

annotations and paths to both instructions and object locations (Figure 2.2a).

At the end of 2019, Action Learning From Realistic Environments and Directives

(ALFRED) (Shridhar et al., 2020) is proposed, a problem where an agent must man-

age to perform a sequence of actions at home (after navigating), such as Pick and Place,

Clean and Place, among others, proposing a new dataset that through the AI2-THOR 2.0

(Kolve et al., 2017) simulator allows performing more complex actions (Figure 2.2b).

While REVERIE and ALFRED are two tasks that lead an agent to perform actions

closer to a future scenario of robots interacting with humans, both rely on visual and

language navigation, which remains an open problem.

The authors of R2R have created the BringMeASpoon.org platform, which positions

the state-of-the-art models performance on a leaderboard. It is observed that the success

rate (SR) does not exceed 73% in unknown environments, but using Beam Search (BS)1,

generating a very high Path Length (PL), which is unrealistic. As we mentioned, under

1heuristic that explores a network by selecting the “most promising” node as the target node after knowing
all nodes (Ke et al., 2019)

https://bringmeaspoon.org/

9

(a) REVERIE task example (Qi et al., 2020)

(b) ALFRED task example (Shridhar et al., 2020)

Figure 2.2. New problems based on the Visual-and-language Navigation
Task.

realistic conditions, best performance achieves only 65% of success rate, which tells us

that there is still a long way to go in improving the models.

10

3. RELATED WORK

VLN task has been an active field in Computer Vision, producing surveys and reviews

(Wu et al., 2021; Hu et al., 2019) describing several techniques developed over the baseline

architecture proposed by R2R.

The main architecture of most models is an encoder-decoder. Having the image of

every step and the complete instruction, models have to encode the image along with the

instruction, and then feed an LSTM network to sequentially decide the next action.

We group the techniques built on this architecture into categories such as the inclusion

of auxiliary tasks (Ma, Lu, et al., 2019; Zhu et al., 2020; Qi et al., 2021; Manterola, 2021;

Tan & Bansal, 2019), the improvement of navigation and exploration (Ke et al., 2019; Ma,

Wu, AlRegib, Xiong, & Kira, 2019; Ma, Lu, et al., 2019; Wang, Wang, Liang, Xiong, &

Shen, 2021; Wang et al., 2020) and curriculum learning with data augmentation (Fried et

al., 2018; Majumdar et al., 2020; Tan et al., 2019), which are explained and referenced

below.

3.1. Auxiliary tasks

Auxiliary tasks are implemented to correct the models by modifying their loss func-

tion. For instance, a progress estimation task has been used by (Ma, Lu, et al., 2019;

Zhu et al., 2020; Qi et al., 2021), which estimates the agent’s progress in completing an

instruction. On each step, this estimation is compared against the real progress, adding a

new factor to the loss function. This allows the agent to train his own estimation and then,

on an unseen environment, know every time his progress.

Another auxiliary task is the direction prediction task. The agent estimates the angle

by which it will turn and it is compared with the exact angle. It has been implemented by

Zhu et al. (2020) and Qi et al. (2021). Also, a scene recognition task has been included (Qi

et al., 2021; Manterola, 2021), classifying the current step, next step and goal environment

11

category. Finally, Zhu et al. (2020) includes a trajectory retelling task and a cross-modal

matching task, similar to LXMERT (Tan & Bansal, 2019).

3.2. Navigation and exploration

Most of state-of-art algorithms require exploration of the environment which results in

a long path, and thus a poor SPL (Success weighted by Path Length).

Therefore, models have proposed to improve the exploration heuristics, such as the

technique of self-correction (Ke et al., 2019) algorithm, which improves the beam search

method with a back-tracking algorithm using local and global signals from the ecosystem,

as well as the Regretful-Agent (Ma, Wu, et al., 2019) algorithm, which uses a rollback

oscillation heuristic over the Self-Monitoring model (Ma, Lu, et al., 2019).

Also, the SSM model (Wang et al., 2021) maintains a memory of all seen nodes during

the navigation, allowing for a global action space instead of a local one.

Finally, an active exploration and information gathering method has been used to up-

date a node’s representation and resolve ambiguity during the navigation (Wang et al.,

2020).

3.3. Curriculum learning, pre-training and data augmentation

Commonly, models start training without knowing anything. They are randomly ini-

tialized deep learning models. Then, curriculum learning is crucial for models to learn to

navigate in complex environments.

Majumdar et al. (2020) proposes to execute curriculum learning with image-text pairs

from the web. In effect, the agent acquire knowledge beyond what has been seen in the

training of R2R environments, allowing to understand short descriptions of visual images

before entering the unknown world of sequenced navigation.

12

Given the variety of environments and possible navigation instructions, the more data

available to feed the neural networks, the better it will adapt to unknown environments.

Accordingly, several works focus on data augmentation. The Speaker-Follower mod-

ule (Fried et al., 2018), which consists of two models: one that follows instructions (fol-

lower) and other that performs data augmentation to feed the training of the follower

(speaker), also performing pragmatic reasoning. The speaker module has been used for

most state-of-art models in order to generate synthetic data and start with a pre-training

phase (Ma, Lu, et al., 2019; Ma, Wu, et al., 2019; Zhu et al., 2020).

Tan et al. (2019) proposes to generate new environments by eliminating objects from

the visual scenes, then using back-translation to generate instructions in these new envi-

ronments.

At last, VLN-BERT+REM (Liu et al., 2021) generates cross-connected house scenes

as augmented data via mixuping environment and then pre-train VLN-BERT (Majumdar

et al., 2020) with this data.

3.4. Leaderboard

State-of-art leaderboard is summarized in Table 3.1. VLN-BERT+REM (Liu et al.,

2021) has the highest success rate (SR), followed by SSM (Wang et al., 2021) and Active

Gathering (Wang et al., 2020). These models have high overhead costs due to the time and

resources required by their complex architectures. We demonstrate that focusing on text-

instructions augmentation, bridging the visual semantic gap, greatly benefits navigation

performance without making models even more complex.

13

Table 3.1. Comparison of the different models solving the Room-to-Room
task, in unseen test set using Single Run.

Model PL # NE # SPL " SR "
Speaker-Follower (Fried et al., 2018) 14.82 6.62 0.28 0.35
Tactical Rewind (Ke et al., 2019) 22.08 5.14 0.41 0.54
Self-Monitoring (Ma, Lu, et al., 2019) 17.11 5.99 0.32 0.43
Environmental Dropout (Tan et al., 2019) 11.70 - 0.47 0.51
Regretful-Agent (Ma, Wu, et al., 2019) 13.69 5.69 0.40 0.48
Active Gathering (Wang et al., 2020) 20.6 4.36 0.4 0.58
ORIST (Qi et al., 2021) 10.90 4.72 0.51 0.57
SSM (Wang et al., 2021) 20.7 4.32 0.45 0.62
VLN-BERT + REM (Liu et al., 2021) 13.11 3.87 0.59 0.65

14

4. RESEARCH QUESTIONS AND HYPOTHESES

Current VLN models exhibit limited generalization capabilities, leading to a large drop

in performance when they are tested in unseen environments. We believe that lack of a

proper visual understanding of the environment is a key factor, leading to our first research

question and hypothesis:

RQ1: Is the VLN performance problem due to poor use of visual information on

current state-of-art models?

H1: Altering visual features does not greatly variate the performance of navigation

models.

Experiments performed on Section 5 indicate that removing visual features, models do

not show a large drop in performance. Consequently, we pose a hypothesis and a reserach

question to address this problem:

RQ2: How can we contribute to improve the use of visual information in VLN models?

H2: Adding visual information of the environment to training navigation instructions

allow models to better understand the world and increase their navigation performance.

15

5. TESTING THE RELEVANCE OF VISUAL INFORMATION IN VLN

In order to demonstrate models deficits, we experiment in both visual and linguistic

modalities using state-of-art models, based on previous analysis (Hu et al., 2019). A

summary diagram is shown in Figure 5.1.

We test different schemes. In the visual area, visual features are replaced with zeros on training.
In the linguistic area, four experiments are performed: training with instructions without nouns,

without adjectives, without nouns+adjectives and also without any instruction.

Figure 5.1. Ablation studies setup.

5.1. Experiments in the visual area

To measure the effectiveness of the visual component of current VLN architectures, it

is necessary to evaluate the importance of visual information each time the agent decides

to execute a specific action.

16

For experimenting, we use Self-Monitoring (Ma, Lu, et al., 2019) and Regretful-Agent

(Ma, Wu, et al., 2019) because of their public codebase1 2 and competive performance.

Each of these architectures are trained under two different conditions. The first condition

is using the base model, where the visual features are obtained from a pre-trained ResNet-

152. The second condition is the replacement of visual features with zeros, i.e., the agent

is completely blind.

Because both models are built on top of the Speaker-Follower architecture, they also

offer an optional pre-training phase that includes training with synthetic data. This syn-

thetic data contains 178,300 sampled routes with associated instructions generated with

the Speaker module (Fried et al., 2018). Six experiments evaluated in known (seen) and

unknown (unseen) environments were performed. Results are shown in Tables 5.1 and

5.2.

5.2. Experiments in the language area

To measure the effect of the language component in current architectures, we evalu-

ate the importance of different features of the instructions. We use spaCy (Honnibal &

Montani, 2017), a NLP model used in the industry, to obtain text features and execute

part-of-speech tagging (POS tagging). Each word of each instruction is classified accord-

ing to the context as adjective, noun, or other. The Self-Monitoring and Regretful-Agent

models are trained by extracting words from the instructions: extracting all adjectives, all

nouns, all nouns+adjectives, and extracting the whole text (i.e. without linguistic features)

from each instruction. We train both models, executing 8 experiments for a total of 100

hours. Results are shown in Table 5.3.

1https://github.com/chihyaoma/selfmonitoring-agent/
2https://github.com/chihyaoma/Regretful-Agent
3Visual features replaced with zeros

https://github.com/chihyaoma/selfmonitoring-agent/
https://github.com/chihyaoma/Regretful-Agent

17

Table 5.1. Visual ablation study on Self-Monitoring and Regretful-Agent,
seen environments with Single Run.

Model PL # NE # SPL " SR "
Self-Monitoring + ResNet-152 13.34 4.02 0.62 0.62
Self-Monitoring + pre-training + ResNet-152 12.3 3.03 0.63 0.7
Self-Monitoring + blind3 15.64 7.1 0.23 0.32
Regretful-Agent + ResNet-152 12.66 4.18 0.51 0.59
Regretful-Agent + pre-training + ResNet-152 12.49 3.07 0.63 0.71
Regretful-Agent + blind3 19.05 7.6 0.14 0.27

Table 5.2. Visual ablation study on Self-Monitoring and Regretful-Agent,
unseen environments with Single Run.

Model PL # NE # SPL " SR "
Self-Monitoring + ResNet-152 15.88 6.47 0.27 0.39
Self-Monitoring + pre-training + ResNet-152 16.27 5.99 0.30 0.42
Self-Monitoring + blind3 15.86 6.6 0.24 0.35
Regretful-Agent + ResNet-152 16.09 5.99 0.30 0.43
Regretful-Agent + pre-training + ResNet-152 15.75 5.62 0.35 0.47
Regretful-Agent + blind3 18.8 6.62 0.19 0.36

Table 5.3. Language ablation study on Self-Monitoring and Regretful-
Agent, unseen environments with Single Run. Best success rate is in bold.

Model PL # SR "
Training with real data
Regretful-Agent baseline 16.1 0.43
Regretful-Agent w/ nouns 15.5 0.35
Regretful-Agent w/ adjectives 14.8 0.42
Regretful-Agent w/ nouns+adjectives 14.9 0.37
Regretful-Agent w/ all textual features 18.0 0.25

Training with real data + augmented data
Regretful-Agent baseline 15.8 0.47
Regretful-Agent w/ nouns 14.8 0.36
Regretful-Agent w/ adjectives 15.5 0.48
Regretful-Agent w/ nouns+adjectives 13.9 0.39
Regretful-Agent w/ all textual features 18.0 0.25

w/ = training with instructions without [nouns | adjectives | nouns+adjectives
| all textual features]

18

5.3. Ablation studies results

Our results indicate that, after removing all the visual features, the agents present a

completely different behavior when tested in seen or unseen environments. In seen envi-

ronments the difference in success rate is very large (Table 5.1): while the Self-Monitoring

and Regretful-Agent models achieve about 60% of success rate (SR) without pre-training,

removing the agent’s sight (+ blind) greatly reduces its performance (-30%).

In unknown environments the difference is much smaller. We observe that none of

the models without pre-training improve more than 7% SR over the blind model. This

demonstrates good memorization but lack of generalization, being visual information al-

most useless when testing on previously unknown scenes.

When experimenting in the linguistic area, we noticed that when we extract the whole

text passage, it only reaches a 25% SR. This means that 1 out of 4 random walks actually

reaches the goal, noting the biases of the R2R dataset, where agents can navigate correctly

to the goal position without any instruction.

If we extract the nouns or nouns+adjectives from the instruction, then the model re-

duces the SR moderately. This explains that many of the instructions are based on prompts

such as “turn right” or “walk straight to the bottom”, without necessarily reference the en-

vironment.

The removal of adjectives increases the SR, indicating that nouns descriptions are

actually interfering with the model performance. We believe the root cause is the high

level of abstraction of the instructions generated by humans when collecting the R2R data.

Following the previous observations, in this thesis we propose to create and train with

semantically richer instructions, in order to include more detailed description of the visual

environment and then force the agent to use all the available information, bridging the

visual semantic gap in VLN.

19

6. SEMANTICALLY RICHER INSTRUCTIONS

To bridge the visual semantic gap in visual and language navigation, we must first learn

to follow semantically meaningful instructions that foster the use of visual information.

We create simple instructions that use scene objects, referencing them in order to enrich

generic and non visual instructions like “go straight”.

As a base model, we use the Speaker module of the Speaker-Follower architecture

(Fried et al., 2018). Figure 6.1 shows our complete model. The original Speaker mod-

ule takes, for each path, the sequence of panoramic views and also the actions sequence

(RIGHT, <END>, FORWARD, etc.), and passes them across an encoder module. This en-

coder provides an encoded context ctx that is used for generating each word of the new

instruction through an LSTM, which uses also the previous cell and hidden states, as

shown in the figure.

R2R dataset has three instructions for each path. During training, the Speaker module

builds the loss function for each instruction as the Negative Log Loss (NLL) between the

corresponding word of the instruction and the generated word (Fried et al., 2018).

Instructions generated by the Speaker module are now being used for almost all state-

of-art models of VLN task on a pre-training phase. However, it has been shown that they

do not follow human syntax, they have orientation problems and do not include relevant

information, being incorrect in most cases (Zhao et al., 2021).

Using Matterport3DMeta, we propose to add relevant objects to generated instructions

feeding the Speaker language model with two loss auxiliary tasks, aiming the vision to be

mandatory for the agent to navigate (Figure 6.1):

• Objects auxiliary task: The first auxiliary task consists of comparing each word

of the generated instruction with the best candidate object according to the path

and the next action of the agent. Concatenating the best candidate objects we

generate a sentence that we name “objects instruction”.

20

• Crafted auxiliary task: The second auxiliary task consists of comparing the

generated instruction with a “crafted instruction”. This crafted instruction is

generated following a set of rules, according to every action in the path and the

objects that surround the agent.

We first explain how we retrieve objects of the environment. Then, the methods we

use to generate objects instructions and crafted instructions for a specific path, describing

in each one the way we feed the model with the respective auxiliary task.

Figure 6.1. Speaker language model architecture with the proposed auxil-
iary tasks: objects auxiliary task and crafted auxiliary task.

6.1. Objects

Object metadata is available on Matterport3DMeta, but it is raw and difficult to use.

That’s why we created 360-visualization1, a script for fetching and visualizing

objects and navigable viewpoints on each node, for each heading and elevation. These

objects are the main component for creating objects instructions and crafted instructions.

Figure 6.2 shows sampled objects visualized with 360-visualization.

1https://github.com/cacosandon/360-visualization

21

Figure 6.2. Objects and nodes retrieved with 360-visualization for
a specific node on a path.

6.1.1. Metadata parser

We create from the Matterport3DMeta scripts that parse the raw metadata and trans-

form it to clean dataframes. This metadata include all levels, regions, surfaces, vertexes,

images, categories, objects, and segments present in a house (Figure 6.3). Most useful

dataframes used in this work are described below.

Regions: All regions inside a Scan (house). The resulting dataframe is shown in Figure

6.4. These regions include the center position, the height, and a letter as a label which is

mapped to an environment description. This mapping is described in Appendix A.1.

Objects: All objects inside a house. The table in Figure 6.5 shows the dataframe

head. These objects include an oriented bounding box, a position, a category index and

a region index. The oriented bounding box is used for describing visual boxes, their area

and position on the 360 ° image. Fetch of labels, bounding boxes, distance, elevation and

heading of objects are described in Appendix A.2.

We also create useful functions to retrieve information directly from these dataframes.

22

Figure 6.3. Scan Z6MFQCViBuw raw metadata information.

Figure 6.4. Sampled regions of scan Z6MFQCViBuw parsed from raw
metadata.

Reachable viewpoints: Standing on a specific viewpoint node inside a house, we can

retrieve all reachable viewpoints where the agent can move to. Example information about

these viewpoints is shown in Figure 6.6.

Visible objects: Standing on a specific viewpoint node inside a house, we can retrieve

all objects present in the scene. Example information about these objects is shown in

Figure 6.7.

23

Figure 6.5. Sampled objects of scan Z6MFQCViBuw parsed from raw
metadata.

Figure 6.6. Reachable viewpoints information of a sampled viewpoint
parsed from raw metadata.

6.2. Objects instructions

For each node of a path sequence, we fetch all objects with 360-visualization

and filter them by distance, area, uniqueness and usability (excluding outlier objects, for

example, “floor” that has a large area).

We assign the best N objects to each word of the instructions of that path, matching

the word index with the closer node index. For instance, in Figure 6.8 we recommend the

model to use “painting” (N = 1) for the first words of the generated instruction.

24

Figure 6.7. Visible objects information of a sampled viewpoint parsed
from raw metadata.

Figure 6.8. Objects instruction generated for the path and the resulting neg-
ative log loss applied to the generated instruction on training.

As shown in the figure, the objects auxiliary task consists on adding Negative Log Loss

between the generated word and the N recommended objects to the final loss. The sum of

these losses are weighted by �, a modifiable parameter. The final loss when training the

Speaker with the objects auxiliary task is shown in Equation 6.1.

25

wordLoss =
3X

i=1

NLL (log(logit), woriginali) + �

NX

i=0

NLL (log(logit), wobjecti) (6.1)

6.3. Crafted instructions

We create crafted instructions in order to feed the Speaker module with the crafted

auxiliary task and also to use them directly as the set of instructions for training naviga-

tion agents. For a specific path, we generate an atomic instruction for each node on the

sequence. Having the current 360 ° visual image we can create a short instruction based

on the orientation of the next node (Figure 6.9) and objects present in the path (Figure

6.2), following a set of rules. These rules and the way we generate crafted instructions

are explained in more detail in Appendix B.1. For instance, in Figure 6.10 we start with

a big painting at the right of the next node, generating the first atomic instruction: “Turn

left, walk straight down the left of the painting”. Then, we concatenate all this atomic

instructions, generating a new crafted instruction for the selected path.

Figure 6.9. Agent orientation mapping on a 360 ° image.

26

Panoramic views sequence at top and human instructions + crafted instruction at bottom. Images

are sequenced through the arrows. Presented objects and scenes names are sampled using

360-visualization.

Figure 6.10. Crafted instruction example.

As an auxiliary task, we add a Negative Log Loss between the generated instruction

and the crafted instruction, word by word. An illustration is shown in Figure 6.11. The

sum of these losses are weighted by �, another modifiable parameter. The final loss for

each generated word is shown in Equation 6.2.

27

Figure 6.11. Crafted instruction generated for the path and the resulting
negative log loss applied to generated instruction on training.

wordLoss =
3X

i=1

NLL (log(logit), woriginali) + � ·NLL (log(logit), wcrafted) (6.2)

28

7. RESULTS AND DISCUSSION

The synthetic data generated with the original Speaker is constructed based on 178,300

sampled paths (Fried et al., 2018). We use the same paths to generate new instructions in

several ways:

• Speaker trained with Objects Auxiliary Task: Based on Equation 6.1, we feed

the Speaker model training with objects auxiliary task, with different values of

�. Once the Speaker is trained, we generate an instruction for each sampled

path.

• Speaker trained with Crafted Auxiliary Task: Based on Equation 6.2, we feed

the Speaker model training with objects auxiliary task, with different values of

�. Once the Speaker is trained, we generate an instruction for each sampled

path.

• Crafted instructions directly: We use our crafted instruction generator to build

an instruction for every sampled path, without using the Speaker model.

It is important to mention that we train with separated auxiliary tasks, because it is

redundant information. Crafted instructions used in the crafted auxiliary task are built

with the same objects as the ones we pass directly on the objects auxiliary task.

We demonstrate the quality of the different sets of generated instructions through three

modalities: qualitative analysis, evaluation of the Regretful Agent pre-trained with these

instructions and assessment of human wayfinding.

7.1. Qualitative analysis of generated instructions

We generate semantically richer instructions, having several advantages. First, as

shown in Figure 7.1, it corrects the Speaker module in the orientation, since we help

the model by indicating which objects to reference in the instruction. For instance, in the

29

figure’s sequence it is clear that the agent must turn right, while the Speaker generates an

instruction that wrongly says the opposite.

Panoramic views sequence above and human instruction + speaker follower instructions + speaker follower with
objects auxiliary task + speaker follower with crafted instructions auxiliary task + crafted instruction below. Images are

sequenced through the arrows.
Our generated instructions correct the orientation of the Speaker base. For instance, the Speaker base generates an

instruction that says “turn left”, which is wrong. Instruction from Speaker with objects auxiliary task includes multiple
relevant and unused objects, while the instruction from Speaker with crafted auxiliary task imitates the rules used for

generating crafted instructions, being simple and with a low level of abstraction.

Figure 7.1. Comparison of human instruction with instructions generated
using the Speaker base model, instructions generated using the Speaker
with auxiliary tasks and our crafted instructions.

Second, compared to human instructions we realize that a longer instruction is not

entirely necessary, since with a short one we can reach the goal. Humans describe a

route in great detail, which makes it even more complicated for the agents. In the VLN

task where there is so much information, the agent should first learn basic and feasible

30

navigation with simple instructions, and then incorporate more and more information. A

good starting point is to begin training with our model generated instructions.

Finally, our generated instructions reference relevant objects that are in the environ-

ment and are not referenced by human instructions, as it does with the word “toilet” at

the end of the instruction. The model learned to use objects even though it has never seen

them before, being able to detect objects in unknown environments.

7.2. Evaluation of the Regretful Agent pre-trained with generated instructions

In order to compare the quality of the different sets of generated instructions, we train

the Regretful Agent (Ma, Wu, et al., 2019), a state-of-art navigation model, using the

generated synthetic data as pre-training, ranking its navigation performance in unseen

environments.

The complete training consists on, as a first step, pre-train the agent with synthetic

instructions, which are generated using the Speaker base, the Speaker with the proposed

auxiliary tasks or the crafted instructions generator. After pre-training, we perform a train-

ing phase using the original R2R instructions. Results for seen and unseen environments

are shown in Tables 7.1 and 7.2.

31

Table 7.1. Regretful-Agent pre-training with instructions generated from
different sources, evaluated on seen environments with Single Run and
original human instructions. Best success rate is in bold.

Regretful-Agent + PL # NE # SPL " SR "

Without pre-training 12.66 4.18 0.51 0.59

PWIF Speaker base 12.49 3.07 0.63 0.71

PWIF Speaker + Objects AT � = 0.3, N = 2 12.97 3.10 0.62 0.71

PWIF Speaker + Objects AT � = 0.5, N = 1 11.65 3.38 0.61 0.67

PWIF Speaker + Objects AT � = 0.5, N = 2 12.09 2.93 0.65 0.72

PWIF Speaker + Objects AT � = 0.5, N = 3 12.80 3.48 0.58 0.67

PWIF Speaker + Objects AT � = 0.6, N = 2 12.07 3.09 0.63 0.70

PWIF Speaker + Crafted AT � = 0.1 12.41 3.16 0.62 0.70

PWIF Speaker + Crafted AT � = 0.2 11.83 3.29 0.62 0.68

PWIF Speaker + Crafted AT � = 0.3 12.24 2.86 0.63 0.72

PWIF Speaker + Crafted AT � = 0.4 12.16 3.08 0.62 0.70

PWIF Crafted directly 12.50 3.32 0.59 0.67

PWIF = Pre-training with instructions from, AT = Auxiliary Task.

32

Table 7.2. Regretful-Agent pre-training with instructions generated from
different sources, evaluated on unseen environments with Single Run and
original human instructions. Best success rate is in bold.

Regretful-Agent + PL # NE # SPL " SR "

Without pre-training 16.09 5.99 0.30 0.43

PWIF Speaker base 15.75 5.62 0.35 0.47

PWIF Speaker + Objects AT � = 0.3, N = 2 15.27 5.39 0.36 0.49

PWIF Speaker + Objects AT � = 0.5, N = 1 14.66 5.80 0.35 0.46

PWIF Speaker + Objects AT � = 0.5, N = 2 14.61 5.29 0.39 0.51

PWIF Speaker + Objects AT � = 0.5, N = 3 15.24 5.77 0.34 0.47

PWIF Speaker + Objects AT � = 0.6, N = 2 15.82 5.46 0.34 0.48

PWIF Speaker + Crafted AT � = 0.1 14.90 5.75 0.35 0.47

PWIF Speaker + Crafted AT � = 0.2 14.37 5.58 0.38 0.48

PWIF Speaker + Crafted AT � = 0.3 15.42 5.52 0.37 0.50

PWIF Speaker + Crafted AT � = 0.4 15.44 5.43 0.36 0.47

PWIF Crafted directly 15.97 6.03 0.33 0.46

PWIF = Pre-training with instructions from, AT = Auxiliary Task.

As shown in the result tables and according to Equations 6.1 and 6.2, we train the

Speaker base model with different values for � and �, varying the weight of the auxiliary

task on the loss function for each training configuration. For the objects auxiliary task, we

also test with different values of N , the number of objects suggested for each word. For

each configuration, we generate a new set of synthetic instructions, which is used in the

pre-training phase of the Regretful Agent. Best results are achieved by:

• Pre-training with generated instructions from the Speaker module including ob-

jects auxiliary task weighted by � = 0.5 and with N = 2 (objects per word).

33

• Pre-training with generated instructions from the Speaker module including crafted

auxiliary task weighted by � = 0.3.

We increase the success rate (SR) up to 72% on seen environments and up to 51%

on unseen environments by pre-training with our generated instructions. On the other

hand, we increase the success rate weighted by the path length (SPL) up to 65% on seen

environments and up to 39% on unseen environments. Figure 7.2 shows the values of

the SR by testing on unseen environments during the pre-training (leftmost curves) and

training (rightmost curves) using the best two sets of synthetic data generated with the

best two configurations described above.

Leftmost curves (light blue & pink) represent pre-training with the generated instructions

(synthetic data) and rightmost curves (blue & green) represent training with original R2R data

(human instructions).

Figure 7.2. Success rate of Regretful-Agent pre-trained with instructions
generated with Speaker trained with the two best configurations of � and �
on unseen environments.

Table 7.3 summaries the comparative performance of the Regretful Agent trained with

different sets of instructions. The agent trained with the instructions generated from the

34

Speaker module with the best objects auxiliary task configuration (� = 0.5, N = 2)

reaches 51% on SR, and 39% on SPL when testing on unseen environments. This is an

increment of 8% and 9%, respectively, doubling the increment of the original synthetic

data from the Speaker base (4% on SR and 5% on SPL).

Table 7.3. Summary table of the performance of the Regretful-Agent pre-
trained with instructions generated from different sources, evaluated on un-
seen environments with Single Run and original human instructions.

Regretful-Agent + SPL " SR "

Without pre-training 0.30 0.43

PWIF Speaker base 0.35 (+5%) 0.47 (+4%)

PWIF Speaker + Objects AT � = 0.5, N = 2 0.39 (+9%) 0.51 (+8%)

PWIF Speaker + Crafted AT � = 0.3 0.37 (+7%) 0.50 (+7%)

PWIF Crafted directly 0.33 (+3%) 0.46 (+3%)

PWIF = Pre-training with instructions from, AT = Auxiliary Task.

Emphasising that the Speaker follower introduces a pre-training phase with 178,300

instructions, increasing the original number of 4,675 human instructions by 173,625, re-

sults demonstrate that the SR increment using original synthetic data from Speaker base

is not mainly based on the quality of the Speaker’s instructions, but rather on the quantity,

which is the main contributor for achieving a better performance.

As we mention, using the same 178,300 sampled paths, we create totally new crafted

instructions without needing human instructions or the Speaker module, and use them also

when pre-training the Regretful Agent. On Tables 7.1, 7.2 and 7.3 it is shown as “PWIF

Crafted Directly”. We almost reach the same success rate as pre-training with orig-

inal synthetic instructions and we exceed base training by 4%. We then demonstrate that

35

the Speaker module as a language model does not contribute more than instructions gen-

erated based on rules, unless we add the proposed auxiliary tasks, where the performance

difference is remarkable.

Our artificially generated navigational instructions provide a significant boost in per-

formance when training the Regretful Agent. They also reduce the visual semantic gap

between seen and unseen environments, demonstrating the contribution to the use of vi-

sual information when navigating in unknown environments.

7.3. Assesment of human wayfinding

We build a page where humans can navigate in different environments in the same

way that a robot would (Figure 7.3), using instructions from multiple sources. For a ran-

dom path of an unseen environment, we randomly select one instruction of the follow-

ing sources: Human, Crafted (ours), Speaker (Fried et al., 2018), Speaker +

Objects Auxiliary Task (ours) and Speaker + Crafted Auxiliary

Task (ours) and ask a human to follow it through executing actions.

This web page is written in the Python language, specifically in the Flask frame-

work. The 360 ° panoramic views with all the necessary information are obtained through

360-visualization, our script developed for this work. Code of the platform is

available on Github 1.

The platform allows the execution of any action that an agent could execute in an

R2R navigation (Figure 7.4): rotate, move and stop. We describe the main features of the

platform below.

1https://github.com/cacosandon/instructions-follower

36

Figure 7.3. Landing of the instruction follower platform.

7.3.1. Panoramic view

We use panoramic (360 °) images, simulating the same conditions of navigation agents.

As shown in Figure 7.4, angles are specified on the horizontal axis. -90 ° means left, 90 °

means right and (-)180 ° means behind.

7.3.2. Rotate

Humans using the platform can rotate left, right or turn around. On Figure 7.5 we see

how the bed moved from being on the left of the image (-90 °) to the center after turning

left.

7.3.3. Move to navigable node

In order to navigate to the goal, platform allows humans to move through nodes. In

Figure 7.6 we show the sequence when human select to move to node “2”.

37

Figure 7.4. Available actions on the instruction follower platform.

Figure 7.5. Sequence after rotating left on instruction follower platform

7.3.4. Stop and retrieve metrics

After navigating, followers can select the stop option. This triggers the computation of

metrics and the success flag. For instance, in Figure 7.7 the human stopped at the correct

38

Figure 7.6. Sequence after moving to node “2” on instruction follower
platform

node, with a trajectory length of 15.67 meters and a navigation error of 0 meters (stopped

in the exact goal node).

Figure 7.7. Successful navigation on instruction follower platform.

39

The collected data is saved for post processing. In Figure 7.8 we show a sample of

the JSON output. We save the instruction, the source model, the path ID with the scan

(house), the owner (name of the human that followed the instruction), the success flag,

the path length (TL), the navigation error (NE), the success rate weighted by path length

(SPL) and the path containing actions, the accumulated distance, the next node name and

the heading.

Figure 7.8. JSON output sample after finishing route on instruction fol-
lower platform.

40

7.3.5. Collected data

We collected a total of NFP = 200 followed paths, with a total of 9 people who

participated, who we call “followers”. They are asked to enter the platform and follow the

instructions, without knowing the source of them. Paths are obtained from the validation

unseen dataset of R2R, in order to retrieve instructions generated with models trained with

other environments.

Because there are limited environments, we calculate the average metrics with the first

15 observations of each follower. After 15 followed paths we realized that the environ-

ments became familiar for the followers, biasing the decisions on each node. For example,

after several samples, followers start to reach rooms that were specified in the instruction,

but not seen in the image. Average metrics are shown in Table 7.4.

Table 7.4. Average metrics of the first 15 observations for each follower
when navigating in unseen environments.

Instructions sources + PL # NE # SPL " SR "

Human 14.90 4.26 0.59 0.70

Speaker base 14.10 6.00 0.30 0.30

Crafted 11.66 2.47 0.70 0.78

Speaker + Objects AT � = 0.5, N = 2 14.63 4.15 0.36 0.47

Speaker + Crafted instructions AT � = 0.3 9.39 4.07 0.51 0.61

AT means Auxiliary Task.

The highest success rate is reached using our crafted instructions, even performing

better than using human instructions. By construction, our crafted instructions are meant

to be followed by humans, which is reflected in the results. The same happens when

we add crafted auxiliary task to the Speaker module, having a considerable success rate

difference (+30%) compared to the instructions from the Speaker base.

41

Although the instructions generated by all our models lead to better human naviga-

tion performance than the instructions from the base Speaker module, the Speaker with

objects auxiliary task is the worst of our instruction generation models for orientating hu-

mans. However, as we show on the previous section, pre-training the Regretful Agent with

instructions from this model allows the agent to achieve the best success rate. This indi-

cates that these synthetic instructions are optimized for beginner navigation agents, such

as the Regretful Agent, since they are DL models initialized with random values. In other

words, instructions from language models (Speaker) are generated for guiding DL naviga-

tion agents (Regretful Agent) without necessarily being useful for human navigation. On

the other hand, human instructions are optimized for expert navigators, because of their

high level of abstraction and complexity, being hardly complex for a DL model to follow.

42

8. CONCLUSIONS

In this thesis, we use different methodologies to improve scene understanding, in order

to achieve a better performance in navigation with human interaction. State-of-art models

focus mainly on model architecture, leaving aside the base of the task: the dataset. As we

present, navigation agents do not use available visual information as much as they should

for making a decision. By removing visual features on training, when testing in seen envi-

ronments the success rate decreases around 30%, while testing in unseen environments it

generates a slight drop of only 7%, evidencing that DL based navigation agents memorize

low level correlations between textual and visual data.

In addition, these same instructions are too complex and high level, confusing agents

that start as beginners on navigation. To bridge this visual semantic gap, we create new

semantically richer instructions. For this purpose, we use scene objects and crafted in-

structions to feed a set of auxiliary tasks: objects auxiliary task and crafted auxiliary task.

As we present, the resulting model generates new instructions that help to correct the

errors existing in the original instructions. Using them in the pre-training process of a

state-of-art model, we increase the success rate from 43% to 51% (+8%) in unseen envi-

ronments, which doubles the increase of pre-training with instructions from the original

Speaker (+4%).

We also test generated and crafted instructions through a web platform, where humans

are asked to reach a target point by following an instruction through a simple interface.

Results indicate that, by construction, our crafted instructions perform better than any

language-model generated instruction when tested in humans, while instructions generated

with the Speaker and our variants perform better in deep-learning-based navigation agents.

This is, better performance is achieved when humans follow instructions generated by

humans (or with human logic rules, i.e. crafted instructions) and when deep-learning

navigation models follow artificially instructions generated with language models.

43

Through this thesis and its results, we demonstrate that the creation of semantically

richer instructions that include explicit and detailed visual information allows navigation

agents to better learn to navigate when using them for training, bridging the visual seman-

tic gap in the visual and language navigation task.

44

9. FUTURE WORK

In order to follow this same line to improve robot navigation, we propose different

branches for further research:

Add Object detection: In this work we construct our auxiliary task based on available

metadata of different environments (Matterport3DMeta). If we want to expand to new

environments where this metadata is not available, we must detect objects on our own.

Indoor object detection is an unresolved task, which can be improved directly using the

same scene objects that we retrieve from raw data.

3-phase Curriculum Learning: We pre-train our model with our semantically richer

instructions, and then finetune with the original instructions, which are complex and high

level. Starting with an easier task will allow the agent to use environment information

progressively. Standing in a random node, we have the 360 ° image, different possible

navigation nodes and an atomic instruction. The agent has to decide which node to move

to. The agent will learn simpler and shorter instructions that refer to the environment, the

basics for starting to execute this tasks on sequence.

45

REFERENCES

Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Sünderhauf, N., . . . van den

Hengel, A. (2018). Vision-and-language navigation: Interpreting visually-grounded navi-

gation instructions in real environments. 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., & Parikh, D. (2015).

VQA: Visual Question Answering. In Proceedings of the IEEE/CVF International Con-

ference on Computer Vision (ICCV).

Arpit, D., Jastrzundefinedbski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M. S., . . .

Lacoste-Julien, S. (2017). A closer look at memorization in deep networks. In Proceedings

of the 34th International Conference on Machine Learning.

Bekey, G. A. (2005). Autonomous robots: From biological inspiration to implementation

and control. MIT Press.

Belkin, M., Hsu, D. J., & Mitra, P. (2018). Overfitting or perfect fitting? risk bounds

for classification and regression rules that interpolate. In Advances in neural information

processing systems.

Chang, A., Dai, A., Funkhouser, T., Halber, M., Niessner, M., Savva, M., . . . Zhang, Y.

(2017). Matterport3d: Learning from RGB-D data in indoor environments. International

Conference on 3D Vision (3DV).

Fried, D., Hu, R., Cirik, V., Rohrbach, A., Andreas, J., Morency, L.-P., . . . Darrell, T.

(2018). Speaker-Follower Models for Vision-and-Language Navigation. In Neural Infor-

mation Processing Systems (NeurIPS).

Garcı́a, S., Strüber, D., Brugali, D., Berger, T., & Pelliccione, P. (2020). Robotics software

46

engineering: A perspective from the service robotics domain. In Proceedings of the 28th

acm joint meeting on european software engineering conference and symposium on the

foundations of software engineering.

Honnibal, M., & Montani, I. (2017). spaCy 2: Natural language understanding with

Bloom embeddings, convolutional neural networks and incremental parsing.

Hossain, M. Z., Sohel, F., Shiratuddin, M. F., & Laga, H. (2019). A Comprehensive

Survey of Deep Learning for Image Captioning. Association for Computing Machinery.

Hu, R., Fried, D., Rohrbach, A., Klein, D., Darrell, T., & Saenko, K. (2019). Are you look-

ing? grounding to multiple modalities in vision-and-language navigation. In Proceedings

of the 57th Annual Meeting of the Association for Computational Linguistics.

ISO. (2012). Robots and robotic devices (Tech. Rep.). International Organization for

Standardization.

Jo, J., & Bengio, Y. (2017). Measuring the tendency of CNNs to learn surface statistical

regularities. ArXiv.

Ke, L., Li, X., Bisk, Y., Holtzman, A., Gan, Z., Liu, J., . . . Srinivasa, S. (2019). Tactical

rewind: Self-correction via backtracking in vision-and-language navigation. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L., Herrasti, A., . . . Farhadi, A.

(2017). AI2-THOR: An Interactive 3D Environment for Visual AI. arXiv.

Liddy, E. D. (2001). Natural language processing.

Liu, C., Zhu, F., Chang, X., Liang, X., Ge, Z., & Shen, Y.-D. (2021). Vision-language

navigation with random environmental mixup. In Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision (ICCV).

47

Ma, C.-Y., Lu, J., Wu, Z., AlRegib, G., Kira, Z., Socher, R., & Xiong, C. (2019). Self-

monitoring navigation agent via auxiliary progress estimation. In Proceedings of the In-

ternational Conference on Learning Representations (ICLR).

Ma, C.-Y., Wu, Z., AlRegib, G., Xiong, C., & Kira, Z. (2019). The regretful agent:

Heuristic-aided navigation through progress estimation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR).

Majumdar, A., Shrivastava, A., Lee, S., Anderson, P., Parikh, D., & Batra, D. (2020).

Improving vision-and-language navigation with image-text pairs from the web. In Pro-

ceedings of the European Conference on Computer Vision (ECCV).

Manterola, R. (2021). Enhanced vision-language navigation by using scene recognition

auxiliary task.

Marcus, G. (2018). Deep learning: A critical appraisal. ArXiv.

MordorIntelligence. (2021). Global Service Robotics Market - Growth, Trends, COVID-19

Impact, and Forecasts (2022 - 2027) (Tech. Rep.).

Qi, Y., Pan, Z., Hong, Y., Yang, M., van den Hengel, A., & Wu, Q. (2021). The road

to know-where: An object-and-room informed sequential bert for indoor vision-language

navigation. In Proceedings of the IEEE/CVF International Conference on Computer Vi-

sion (ICCV).

Qi, Y., Wu, Q., Anderson, P., Wang, X., Wang, W. Y., Shen, C., & van den Hengel,

A. (2020). REVERIE: Remote Embodied Visual Referring Expression in Real Indoor

Environments. arXiv.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W., Mottaghi, R., . . . Fox, D.

(2020). ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday

Tasks. arXiv.

48

Szeliski, R. (2011). Computer vision algorithms and applications.

Tan, H., & Bansal, M. (2019). Lxmert: Learning cross-modality encoder representations

from transformers. In Proceedings of the 2019 conference on empirical methods in natural

language processing.

Tan, H., Yu, L., & Bansal, M. (2019). Learning to navigate unseen environments: Back

translation with environmental dropout. In Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies.

Wang, H., Wang, W., Liang, W., Xiong, C., & Shen, J. (2021). Structured scene memory

for vision-language navigation. Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR).

Wang, H., Wang, W., Shu, T., Liang, W., & Shen, J. (2020). Active visual information

gathering for vision-language navigation. In Proceedings of the European Conference on

Computer Vision (ECCV).

Wu, W., Chang, T., & Li, X. (2021). Visual-and-language navigation: A survey and

taxonomy. ArXiv.

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2017). Understanding deep

learning requires rethinking generalization. In Proceedings of the International Confer-

ence on Learning Representations (ICLR).

Zhao, M., Anderson, P., Jain, V., Wang, S., Ku, A., Baldridge, J., & Ie, E. (2021). On

the evaluation of vision-and-language navigation instructions. In Proceedings of the 16th

Conference of the European Chapter of the Association for Computational Linguistics:

Main Volume.

Zhu, F., Zhu, Y., Chang, X., & Liang, X. (2020). Vision-language navigation with self-

supervised auxiliary reasoning tasks. In Proceedings of the IEEE Conference on Computer

49

Vision and Pattern Recognition (CVPR).

50

APPENDIX

51

A. MATTERPORT3DMETADATA PARSER

A.1. Regions

We map region labels represented with a letter through the dictionary shown in Figure

A.1

Figure A.1. Environment descriptions used to map regions letter labels.

A.2. Objects

We map object names represented with an index though the table provided by Matter-

port 1. Sampled rows are shown in Figure A.2.

1https://github.com/niessner/Matterport/blob/master/metadata/category
mapping.tsv

https://github.com/niessner/Matterport/blob/master/metadata/category_mapping.tsv
https://github.com/niessner/Matterport/blob/master/metadata/category_mapping.tsv

52

Figure A.2. Objects names used to map objects labels indexes.

We parse metadata columns and generate others that are easier to use for ranking

objects importance and then for creating crafted instructions.

Distance: Objects metadata includes px, px, pz positions. We then calculate dis-

tance to the object through equation A.1.

distance =
p
px

2 + py
2 (A.1)

Elevation: We calculate where in the vertical view the object is located through equa-

tion A.2.

elevation = arctan(pz, distance) (A.2)

Heading: We calculate heading where the object is located through equation A.3.

53

heading =
⇡

2
� arctan(px, py) (A.3)

Distance between node and object: We calculate the distance between nodes and

objects in order to rank the best objects for describing the path to a target node. Having

the node and object position and heading relative to the current node, we use equation A.4.

Distances are illustrated in Figure A.4.

distance between
2 = object distance

2 + viewpoint distance
2

� 2 · object distance · viewpoint distance

· cos (current heading � object heading) (A.4)

Figure A.3. Distance between a node and an object calculated relative to
the current node.

54

Bounding box: For visualizing, we calculate the x, y positions of the box and then the

width and height. We use the object heading, elevation and oriented bounding box. M is

an adjustable constant.

bboxVx =

✓
object heading

2⇡
+ 0.5

◆
· IMG WIDTH � r1 ·M (A.5)

bboxVy =

✓
0.5� object elevation

⇡

◆
· IMG HEIGHT � r0 ·M (A.6)

bboxWidth = r1 · 2M (A.7)

bboxHeight = r0 · 2M (A.8)

B. CRAFTED AND GENERATED INSTRUCTIONS

B.1. Crafted instructions

We generate crafted instructions using objects retrieved from 360-visualization

our script based on Matterport metadata. Several steps are performed for generating,

which are described below. Firstly, we filter the retrieved objects for each view, in or-

der to use them for generating atomic instructions. We aim to concatenate these atomic

instructions and generate the crafted instruction.

For filtering, we evaluate the objects and their information in different conditions:

• Vision cone: We keep the objects that are within the cone of vision towards the

next node, this is, (-⇡/2, +⇡/2). This way, we only reference objects that help

us describe the next action.

• Distance: We only use objects that are closer than the target node. Most of the

detected objects on the metadata are far away and are not useful as a reference

for describing the path to the next node.

55

• Elevation: We filter all objects that are up to 0.6 on elevation, because we don’t

want to include roof objects, like lamps, lights, among others.

• Vocabulary: We filter objects that are not on the original dictionary.

• Noisy objects: We filter objects like roof, window, floor, and other names that

are present on all environments.

Secondly, we rank all objects, considering different metrics:

• Size: We have the object dimensions, so we rank their importance on the scene

by their size. We weigh the size by their distance.

• Uniqueness: More repeated objects have lower ranking that more unique ob-

jects.

Having the best object for each view, we can use them for creating atomic instructions.

These are based on rules, which are described below.

With the next node within the vision range (�⇡/2, ⇡/2)

• Move to the same room with object: If the next node is in the same room

as the current one, and at least one object is detected. We get the orientation

of the object respect to the path and choose randomly one of the next atomic

instructions:

– Go straight with the {OBJECT NAME} on your {OBJECT ORIENTATION}

– Walk straight down the {opposite direction(OBJECT ORIENTATION)}

side of the {OBJECT NAME}

• Move to the same room without object: If the next node is in the same room

as the current one, but there are no objects detected. We get the orientation of

the next node and select randomly one of the next atomic instructions:

– Turn a little to the {NEXT NODE ORIENTATION} and walk forward.

– Walk straight a little to the {NEXT NODE ORIENTATION}.

– Walk straight slightly to the {NEXT NODE ORIENTATION}.

56

– Turn slightly to the {NEXT NODE ORIENTATION} and walk forward.

• Move to other room with object: If the next node is in other room and at least

one object is detected. We get the current room name, the next room name, the

object name and the object orientation. We randomly choose one of the next

atomic instructions:

– Exit the {CURRENT REGION} to the {NEXT REGION} walking by the

{opposite orientation(OBJECT ORIENTATION)} side of the {OBJECT NAME}.

– Go out of {CURRENT REGION} into the {NEXT REGION} walking with

the {(OBJECT NAME)} on your {OBJECT ORIENTATION}.

• Move to other room without object: If the next node is in other room and no

objects are detected. We get the current room name and the next room name.

We use the next atomic instruction:

– Exit the {CURRENT REGION} to the {NEXT REGION}.

With the next node out of the vision range (�⇡/2, ⇡/2)

We first need to rotate, in order to have the next node inside the vision cone. We

randomly choose one of below instructions:

• Turn {HARD ROTATION ORIENTATION}

• Make a {HARD ROTATION ORIENTATION}

• Take a {HARD ROTATION ORIENTATION}

with the exception of “turn around” that we use separately. Turned to the vision cone in-

side (�⇡/2, ⇡/2), we then concatenate this instruction with the string obtained with above

conditions, generating only one instruction for each action.

We also add an stop phrase at the end, for orientating the agent where to stop. Having

the last node, we find the closer object on the scene. With this object we apply the rules

presented below:

57

• Object is on front of the target node: We randomly choose one of these:

– Stop in front of the {OBJECT NAME}

– Wait just in the front of {OBJECT NAME}

• Object is on behind the target node: We randomly choose one of these:

– Wait with the {OBJECT NAME} on your back

– Stop passing by the {OBJECT NAME} behind you

• Object is left or right: We randomly choose one of these:

– Wait at the {opposite orientation(OBJECT ORIENTATION)} of

the {OBJECT NAME}

– Stop on the {opposite orientation(OBJECT ORIENTATION)} of

the {OBJECT NAME}

For each node, we create an atomic instruction referencing the next action. We then

concatenate all these atomic instructions with the final (stop) atomic instruction and create

our crafted instruction. Extra examples are shown on Figures B.1 and B.2

B.2. Generated instruction from baseline module with auxiliary tasks

Generated instructions from baseline model including auxiliary tasks: objects auxil-

iary task and crafted instructions auxiliary task. Example is shown on B.3

C. PRE-TRAINING THE REGRETFUL AGENT WITH GENERATED INSTRUC-

TIONS

We pre-train the Regretful-Agent with instructions generated from the Speaker module

trained with auxiliary tasks. The best two configurations of these auxiliary tasks were

� = 0.5 or � = 0.3. Graphs of Success Rate weighted by Path Length (SPL) and Distance

from Goal are shown in Figures C.1 and C.2.

58

Panoramic views sequence above and human instructions + crafted instruction below. Images are
sequenced through the arrows.

Figure B.1. First crafted instructions example.

59

Panoramic views sequence above and human instructions + crafted instruction below. Images are
sequenced through the arrows.

Figure B.2. Second crafted instructions example.

60

Panoramic views sequence above and human instruction + speaker follower instructions + speaker
follower with objects auxiliary task + speaker follower with crafted instructions auxiliary task

below. Images are sequenced through the arrows.

Figure B.3. Baseline module with auxiliary tasks output example.

61

300 epochs of pre-training with generated instructions and 200 epochs for finetuning with human
instructions.

Figure C.1. Graph of success rate weighted by path length through epochs.

300 epochs of pre-training with generated instructions and 200 epochs for finetuning with human
instructions.

Figure C.2. Graph of distance from goal through epochs.

	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	RESUMEN
	1. INTRODUCTION
	2. THE VISUAL AND LANGUAGE NAVIGATION TASK
	2.1. Description
	2.2. Comparison metrics
	2.3. New problems

	3. RELATED WORK
	3.1. Auxiliary tasks
	3.2. Navigation and exploration
	3.3. Curriculum learning, pre-training and data augmentation
	3.4. Leaderboard

	4. RESEARCH QUESTIONS AND HYPOTHESES
	5. TESTING THE RELEVANCE OF VISUAL INFORMATION IN VLN
	5.1. Experiments in the visual area
	5.2. Experiments in the language area
	5.3. Ablation studies results

	6. SEMANTICALLY RICHER INSTRUCTIONS
	6.1. Objects
	6.1.1. Metadata parser

	6.2. Objects instructions
	6.3. Crafted instructions

	7. RESULTS AND DISCUSSION
	7.1. Qualitative analysis of generated instructions
	7.2. Evaluation of the Regretful Agent pre-trained with generated instructions
	7.3. Assesment of human wayfinding
	7.3.1. Panoramic view
	7.3.2. Rotate
	7.3.3. Move to navigable node
	7.3.4. Stop and retrieve metrics
	7.3.5. Collected data

	8. CONCLUSIONS
	9. FUTURE WORK
	REFERENCES
	APPENDIX
	A. Matterport3DMetadata parser
	A.1. Regions
	A.2. Objects

	B. Crafted and Generated Instructions
	B.1. Crafted instructions
	B.2. Generated instruction from baseline module with auxiliary tasks

	C. Pre-training the Regretful Agent with generated instructions

