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Abstract

The small South American marsupial, Dromiciops gliroides, known as the missing link

between the American and the Australian marsupials, is one of the few South Amer-

ican mammals known to hibernate. Expressing both daily torpor and seasonal hiber-

nation, this species may provide crucial information about the mechanisms and the

evolutionary origins of marsupial hibernation. Here, we compared torpid and active

individuals, applying high‐throughput sequencing technologies (RNA‐seq) to profile

gene expression in three D. gliroides tissues and determine whether hibernation

induces tissue‐specific differential gene expression. We found 566 transcripts that

were significantly up‐regulated during hibernation (369 in brain, 147 in liver and 50

in skeletal muscle) and 339 that were down‐regulated (225 in brain, 79 in liver and

35 in muscle). The proteins encoded by these differentially expressed genes orches-

trate multiple metabolic changes during hibernation, such as inhibition of angiogene-

sis, prevention of muscle disuse atrophy, fuel switch from carbohydrate to lipid

metabolism, protection against reactive oxygen species and repair of damaged DNA.

According to the global enrichment analysis, brain cells seem to differentially regu-

late a complex array of biological functions (e.g., cold sensitivity, circadian percep-

tion, stress response), whereas liver and muscle cells prioritize fuel switch and heat

production for rewarming. Interestingly, transcripts of thioredoxin‐interacting protein

(TXNIP), a potent antioxidant, were significantly over-expressed during torpor in all

three tissues. These results suggest that marsupial hibernation is a controlled pro-

cess where selected metabolic pathways show adaptive modulation that can help to

maintain homeostasis and enhance cytoprotection in the hypometabolic state.
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1 | INTRODUCTION

Endothermic animals (i.e., birds and mammals) produce metabolic

heat in their bodies in a way that allows them to maintain a near‐
constant body temperature at values that are typically well above

ambient temperature. This is an extravagant economy that requires

these animals to maintain elevated energy budgets and spend a large

part of their resources on basic maintenance. However, the benefits

are large and allow endotherms to remain active in cold environ-

ments or travel long distances due to their high aerobic capacity, the

only way to sustain long periods of activity (Koteja, 2004; Nespolo,

Bacigalupe, Figueroa, Koteja, & Opazo, 2011). An adaptive strategy

to ameliorate the high cost of endothermy is torpor, an energy‐sav-
ing mechanism used by many small mammal and bird species, that

involves a temporal interruption of endothermy that happens during

cold periods (Boyer & Barnes, 1999; Ruf & Geiser, 2015). During tor-

por episodes, which can occur daily or seasonally (seasonal torpor is

also known as hibernation, see reviews in Boyles et al., 2013; Ruf &

Geiser, 2015), most normal biological functions are suppressed for

periods ranging from overnight to several weeks. Animals show

strong suppression of metabolic rate (often to values just 1%–10%
of active levels; Ruf & Geiser, 2015), a decrease in body temperature

to near ambient values, and experience reductions in most physio-

logical processes (e.g., strongly reduced heartbeat and breathing

rates). In these hypometabolic states, energy is re‐allocated to some

pathways that maintain organ function, whereas other processes are

suppressed or interrupted. For instance, the brain, an organ that can-

not be shut down without serious damage, receives about 10% of

its normal perfusion during torpor but maintains neural activity,

especially in the hypothalamus (Schwartz, Hampton, & Andrews,

2013). The liver, the metabolic centre of the body, is also important

during torpor as this organ processes nutrients, detoxifies reactive

oxygen species (ROS) and disposes toxic products, and produces

multiple proteins and fuels for export to other tissues (Hadj‐Moussa

et al., 2016). Another important tissue, that shows reduced perfusion

during torpor, is skeletal muscle. This tissue cannot be damaged as it

is crucial for rewarming the body during arousal from hibernation

(Hindle, Karimpour‐Fard, Epperson, Hunter, & Martin, 2011).

The state of suspended animation characterizing torpor and

hibernation (i.e., the “hibernation phenotype,” Faherty, Villanueva‐
Canas, Klopfer, Alba, & Yoder, 2016) entails important risks for cells

and tissues. A wealth of knowledge obtained from placental mam-

mals has shown that torpor increases the risk of cardiac arrest and

since blood perfusion to peripheral organs can be reduced, tissues

can become hypoxic and ischaemic. This in turn increases the risk of

oxidative damage especially resulting from a massive production of

ROS during arousal (van Breukelen, Krumschnabel, & Podrabsky,

2010; Fons, Sender, Peters, & Jurgens, 1997; Rouble, Tessier, &

Storey, 2014; Schwartz et al., 2013). In the brain, a reversible loss of

synapses occurs during torpor, which reduces metabolic activity and

helps to avoid the risk of neuronal death (Andrews, 2004; Schwartz

et al., 2013). In skeletal muscle of the torpid animal, there are

adaptive mechanisms minimizing muscular disuse atrophy which

include differential regulation of genes related to protein biosynthe-

sis and focal adhesion, which in turn helps to maintain muscle integ-

rity and contractibility (Andres‐Mateos et al., 2012; Fedorov et al.,

2014; Hadj‐Moussa et al., 2016). Several detailed studies, all per-

formed in placental mammals (reviewed in Andrews, 2004; Carey,

Andrews, & Martin, 2003; Morin & Storey, 2009; Villanueva‐Canas,
Faherty, Yoder, & Alba, 2014), have revealed that these changes

involve transcriptional (gene expression), post‐transcriptional (non‐
coding RNA), translational (protein synthesis) and post‐translational
(reversible protein modification) changes assisting these pro‐survival
measures. Here, we present a case of massive transcriptional

changes, many of them with adaptive significance, occurring in a

hibernating species of marsupial.

Marsupials shared a last common ancestor with placental mam-

mals approximately 160 million years ago (Graves & Renfree, 2013;

Renfree, 1981), and since then, they have diversified into a wide

range of ecological niches, especially after the colonization of Aus-

tralia in the late Cretaceous (Mitchell et al., 2014). Multiple small

marsupial species exhibit torpor, which represents an evolutionary

convergence with placental mammals (see Ruf & Geiser, 2015;

Turner, Warnecke, Kortner, & Geiser, 2012). However, the underly-

ing metabolic origins and patterns of marsupial hibernation are

unclear. We know of three published studies describing some func-

tional aspects of marsupial hibernation (Franco, Contreras, &

Nespolo, 2013; Hadj‐Moussa et al., 2016; Malan, 2010), which indi-

cate some similarities with placental mammals (e.g., immunity sup-

pression, mechanisms avoiding muscle atrophy, fuel switch to fat

metabolism) but also some differences (e.g., a thermogenic role of

the liver for rewarming and maintenance of the Akt metabolic path-

way during torpor in the liver; Hadj‐Moussa et al., 2016; Luu et al.,

2018a; Villarin, Schaeffer, Markle, & Lindstedt, 2003). In this study,

we used RNA‐seq to analyse genomic‐wide expression patterns of

central and peripheral organs in the South American marsupial

Dromiciops gliroides. This species is considered a “relict” mammal

(sensu Habel, Assman, Schmidtt, & Avise, 2010) as it belongs to

Microbiotheria, a formerly diverse group that diverged from Didel-

phimorphia (American marsupials) about 70 million years ago (MYA)

and gave rise to Australidelphia, the large clade of Australian marsu-

pials (Graves & Renfree, 2013; Mitchell et al., 2014). All Microbio-

therids are extinct, excepting for D. gliroides (Palma & Spotorno,

1999).

According to Bozinovic, Ruiz, and Rosenmann (2004), D. gliroides

is one of the few South American mammals that exhibit hibernation

(=seasonal torpor, see also Geiser & Martin, 2013), but it also exhi-

bits short torpor episodes during summer (i.e., daily torpor; Bozinovic

et al., 2004; Nespolo, Verdugo, Cortes, & Bacigalupe, 2010). By the

use of torpor, D. gliroides can save up to 60% of the energy that

would otherwise be needed during the cold period. Previous work

on D. gliroides suggested that torpor is associated with metabolic

rate reductions of about 90% (Nespolo et al., 2010). During torpor in

D. gliroides, a drastic redistribution of blood in the body induces
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anaemia, leukopenia, muscle atrophy and inflammation (Franco et al.,

2013).

The apparently random patterns of torpor that D. gliroides exhibit

were formerly interpreted as acute, uncontrolled responses to cold

(Nespolo et al., 2010). However, a number of recent discoveries

have changed this view. For instance, D. gliroides seems to anticipate

the cold season as a response to photoperiodic changes and thermal

acclimation (Franco, Contreras, Place, Bozinovic, & Nespolo, 2017).

In addition, several torpor‐regulation mechanisms were described in

this species, including differential expression microRNAs (Hadj‐
Moussa et al., 2016), implementation of the stress response through

MAPK signalling (Luu et al., 2018b; Wijenayake et al., 2018a), reor-

ganization of fuel use (Wijenayake et al., 2018b) and partial suppres-

sion of protein synthesis (Luu et al., 2018a). Here, we present a

comprehensive transcriptomic analysis of torpid D. gliroides, provid-

ing the first explicit description of differentially regulated metabolic

pathways of marsupial hibernation.

2 | METHODS

2.1 | Animal collection and laboratory treatment

Dromiciops gliroides is one of the four marsupial species of Chile; it is

an omnivorous, nocturnal, opossum‐like mammal with arboreal adap-

tations (i.e., opposable thumbs, prehensile tail and eyes in frontal

plane; Hershkovitz, 1999). This species is strongly associated with

the temperate rainforest, where temperatures fluctuate between 5

and 25°C (Franco et al., 2017). In this ecosystem, we captured thir-

teen adult D. gliroides (seven males; six females), particularly in the

southern part of Valdivia, Chile (39°48′S, 73°14′W; 9 m.a.s.l.), during

the austral summer (January–February) in 2014, using Tomahawk

traps located in trees 1 m above ground, baited with bananas and

yeast. Upon capture, individuals were immediately transported to

the laboratory where they were housed in plastic cages of

45 × 30 × 20 cm3 with 2 cm of bedding. All individuals were main-

tained in a climate controlled chamber (PiTec Instruments, Chile) at

20 ± 1°C and with a 12‐hr: 12‐hr photoperiod for 2 weeks. Animals

were fed a mix of mealworms, fruits and water ad libitum. After

2 weeks of acclimation, and after checking that each animal had

increased body mass, individuals were randomly assigned to two

groups: torpor (three males, four females) and active controls (three

males, three females). Active animals were sampled from the above

conditions. To induce torpor, and to avoid any injury, animals were

subjected to a gradual decrease of ambient temperature (−1°C every

20 min) until 10°C was reached (photoperiod was maintained as ini-

tially). To minimize animal disturbance during the experimental trials,

torpor incidence was verified by visual observation several times a

day between 09:00–17:00. In this species, torpor can be easily iden-

tified: animals are not responsive when the cage is gently moved

and breathing frequency is below three breaths per minute. After

declaring torpor for a given individual, the animal was continuously

monitored by visual inspection every 4 hr, during four consecutive

days to ensure that torpor was sustained; and individuals were then

euthanized. Euthanasia followed protocols approved by the Commit-

tee on the Ethics of Animal Experiments of the Universidad Austral

de Chile. Tissue samples were excised in less than a minute and

immediately frozen in liquid nitrogen. All animals capture, handling

and maintenance procedures followed the guidelines of the Ameri-

can Society of Mammalogists (Gannon, Sikes, & Comm, 2007) and

were authorized by the Chilean Agriculture and Livestock Bureau

(SAG: Servicio Agrícola y Ganadero de Chile, permit No. 1054/2014

and 1118/2015).

2.2 | RNA extraction, cDNA library construction
and sequencing

Total RNA was extracted from brain, liver and skeletal muscle from

the hind leg (thigh) of each animal using the NucleoSpin RNA II

Macherey Nagel kit (Bethlehem, PA, USA) and additional DNAase,

following manufacturer's instructions. The quality of the obtained

RNA was assessed by an Agilent 2100 Bioanalyzer. Only high‐quality
RNA with RNA integrity numbers (RINs over 7.5) was used (13 for

brain, six for liver and four for skeletal muscle; 1:1 ratio of torpor:

active organisms). RNA quantity was estimated using the Kit Quant‐
iTTM RiboGreen® RNA in a DQ300 Hoefer fluorometer. Individual

cDNA libraries (N = 23) were labelled with sample‐specific barcode

adaptors, normalized and randomly built using the TrueSeq RNA

Sample Preparation Kit v2 (Illumina; 0.5 μg of total RNA), following

manufacturer's recommendations. These cDNA libraries were then

pooled in equimolar ratios, with two or three randomly selected

samples per pool, and were sequenced (2 × 150 bp PE) in 11 sepa-

rated Illumina MiSeq runs at the AUSTRAL‐omics Core Facility,

Universidad Austral de Chile (www.australomics.cl). Randomization

of library preparation and sequencing is described as a way to avoid

confounding experimental factors with technical factors (Conesa et

al., 2005). Sequences were demultiplexed based on their sample‐spe-
cific barcode adaptors. Raw data from the sequencing runs were

deposited at the Sequence Read Archive (SRA) repository of the

National Center for Biotechnology Information (NCBI) under acces-

sion nos SRR6255590–SRR6255614 of the Bioproject

PRJNA416414.

2.3 | Bioinformatics

Following sequencing, quality control (filtering and trimming) of the

raw data was performed using the TRIMMOMATIC TOOL v.030 (Bolger,

Lohse, & Usadel, 2014) and we removed every read with a phred

quality score of 30 or less, which gives 99.9% in base accuracy. We

used this phred score to be conservative and avoid multiple map-

pings, which could produce isoforms as artefacts of incorrect mis-

matches (see a debate in Williams, Baccarella, Parrish, & Kim, 2016).

Still, some isoforms were produced which we interpret according to

the involved biological function. The quality trimmed reads were

assembled using Trinity 2.0.4 (Grabherr et al., 2011) with the stan-

dard Inchworm, Chrysalis and Butterfly pipeline and a minimum con-

tig length of 200 nt (De Wit et al., 2012). These setting parameters

NESPOLO ET AL. | 3

http://www.australomics.cl


have been optimized for de novo assemblies of non‐model species

with Trinity (Grabherr et al., 2011). Duplicate sequences were then

removed manually. The quality and completeness of the assembly

were analysed using the software QUAST for assembly statistics (Gure-

vich, Saveliev, Vyahhi, & Tesler, 2013) and by mean of the Bench-

marking Universal Single‐Copy Orthologs (BUSCO v.3) approach

(Simao, Waterhouse, Ioannidis, Kriventseva, & Zdobnov, 2015). For

BUSCO, our analyses were based on a subset of 233 (Core Vertebrate

Genes, CVG) and 4104 (Mammalia) orthologs, which in eukaryotes

are widely conserved core genes that generally lack paralogs (Simao

et al., 2015).

Processed high‐quality reads were mapped to the assembled

contigs using the BOWTIE (version 2.0) read aligner (Langmead & Salz-

berg, 2012). To improve isoform counts, we used the RNA‐Seq by

Expectation Maximization (RSEM, version 1.0) software (Li & Dewey,

2011) that assesses transcript abundance in the assembled transcrip-

tome. Then, a sample‐based clustering analysis (heatmap of Eucli-

dean distances) was performed in order to identify the distribution

of the samples according to the experimental conditions using the R

function dist and the function heatmap.2 from the GPLOTS package.

Our de novo assembled transcriptome was blasted against the Uni-

Prot (Swiss‐Prot and TrEMBL), KOBAS and NCBI RefSeq (nr) protein

databases using the BLASTX algorithm with an e‐value cut‐off of

1e−5 (Altschul, Gish, Miller, Myers, & Lipman, 1990). With this proce-

dure, the annotation was performed against a database containing

several million proteins. Annotated unigenes (consensus, non‐redun-
dant sequences) were further searched for Gene Ontology (GO)

terms using BLAST2GO software (www.blast2go.com; Conesa et al.,

2005) according to the main categories of Gene Ontology (GO;

molecular functions, biological processes and cellular components;

Ashburner et al., 2000). Complementary annotations were done with

the INTERPROSCAN v.5 software (Jones et al., 2014), which provides

functional analysis of proteins by classifying them into families and

predicting domains and important sites. The annotation results were

further fine‐tuned with the Annex and GO slim functions of the BLAS-

T2GO software in order to improve and summarize the functional

information of the transcriptome data set. Additionally, proteins

were finally annotated using the Kyoto Encyclopedia of Genes and

Genomes (KEGG) and its automated assignment server (KAAS; Mor-

iya, Itoh, Okuda, Yoshizawa, & Kanehisa, 2007).

2.4 | Differential gene expression analysis

Differentially expressed genes (DEGs) were identified using the R/BIO-

CONDUCTOR package DESEQ2 v.1.10 (Love, Huber, & Anders, 2014) with

raw read counts. The estimated counts were normalized against the

size of the transcriptome and the total number of readings that were

mapped per sample, using the regularized logarithm (rlog) method in

DESEQ2 and expressed in a log2 scale. Basically, DESEQ2 normalizes the

counts by dividing each column of the count table (samples) by the

size factor of this column. The size factor is then calculated by divid-

ing the samples by the geometric means of the genes, which brings

the count values to a common scale suitable for comparison (Love et

al., 2014). p‐Values for differential expression were calculated using

a negative binomial test for differences between the base means of

the control and torpor conditions. The p‐values were adjusted for

multiple test correction using Ward's method with the Benjamini–
Hochberg procedure (Ferreira & Zwinderman, 2006). Significant

DEGs were defined as those genes with an adjusted p‐value (false

discovery rate, FDR) ≤ 0.05 and log2 (fold change) ≥ 1. Differentially

expressed genes across samples were visualized using standard vol-

cano plots, where log2 fold change was plotted against log10 (FDR

adjusted p‐value). Furthermore, heatmaps were produced to visualize

gene expression across samples and tissues using z‐scores (based on

normalized counts) and plotted with the HEATMAPPER software (Babicki

et al., 2016).

Enrichment of GO and KEGG pathways in genes up‐ and down‐
regulated during torpor was analysed using BLAST2GO (Fisher's exact

test) and the GOSEQ R package (Young, Wakefield, Smyth, & Oshlack,

2010), with a threshold false discovery rate of 0.001. The reference

used was the whole transcripts with GO slim annotation. Chord dia-

grams to visualize enriched pathways were drawn using Circos (Krzy-

winski et al., 2009).

3 | RESULTS

In this study, a total of 414 million of reads were generated from 23

libraries derived from brain (13), liver (6) and skeletal muscle (4) of

active and hibernating D. gliroides (mean = 8.6 million of reads per

sample; see Supporting Information Table S1). After a stringent filter-

ing process, ~94% high‐quality, adapter‐free and non‐redundant
reads were retained for further downstream analyses. Our de novo

assembly generated 507,815 contiguous sequences (putative tran-

scripts, contigs) with a mean sequence length of 718 bp, an N50 of

1,387 bp and an L50 of 60,430. The longest sequence contains

68,683 bp, and 16% of the sequences were over 1k bp. The assess-

ment of transcriptome completeness using the Benchmarking

Universal Single‐Copy Orthologs (BUSCO) approach identified a high

representation of Core Vertebrate Genes (CVG), with 94.4% marked

as complete and 98.1% as complete + partial. Only 1.29% of the

CVG were missing. Similarly, our BUSCO analysis revealed 3,577

(87%) complete and 3,929 (95.74%) complete + partial Mammalian

Core Genes (MCG). From this reference gene set, 175 (4.26%) MCG

were missing in our de novo assembly. In terms of the functional

association of the putative transcripts in the de novo assembled

transcriptome of D. gliroides, our analysis produced 31,438 contigs

that were blasted to known proteins in the public databases NCBI

(nr), KOBAS and UniProt (Swiss‐Prot and TrEMBL) was linked to GO

classifications (average 4.55 GOs per contig). Hypothetical or pre-

dicted proteins in these databases were excluded by discarding

matches associated with “hypothetical,” “predicted,” “unknown” and

“putative” categories. Most of the annotated contigs (93%) hit

against the koala (Phascolarctos cinereus), the grey short‐tailed opos-

sum (Monodelphis domestica) and the Tasmanian devil (Sarcophilus

harrisii) genomes, in this order.
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Our transcriptomic survey of hibernating D. gliroides identified

73,125 mRNA transcripts in the brain, of which 594 exhibited dif-

ferential regulation during torpor; 225 of them were down‐regu-
lated and 369 up‐regulated (Figure 1a). Some of the very highly

differentially expressed genes are named on the figure. In the liver,

we identified 36,865 transcripts with 226 showing differential regu-

lation during torpor: 79 down‐regulated and 147 up‐regulated (Fig-

ure 1b). In skeletal muscle, these numbers were 13,038 total

transcripts with 85 differentially regulated during torpor: 35 down‐
regulated and 50 up‐regulated (Figure 1c). We found 317 tran-

scripts that were exclusively up‐regulated in the brain, 131 tran-

scripts that were exclusively up‐regulated in the liver, and 44

transcripts exclusively up‐regulated in muscle (Figure 1d; upper

panel). Oppositely, 191 transcripts were exclusively down‐regulated
in the brain, 73 in the liver and 46 in muscle (Figure 1d; lower

panel). A few transcripts were up‐regulated or down‐regulated in

common among two or all three of the organs; these are named in

Figure 1d; and more details about their functions are given in Sup-

porting Information Tables S2–S7. For example, SETDB1, SCL25A18

and ACADVL were up‐regulated in both brain and liver whereas

EIF2AK1 was up‐regulated in both brain and muscle. Only one tran-

script, encoding thioredoxin‐interacting protein (TXNIP; Figure 1),

was up‐regulated in common in all three tissues and also fell within

the top 10 up-regulated genes in each of these organs (see Sup-

porting Information Tables S1–S7). This gene is described as encod-

ing potent antioxidant protein associated with a number of human

diseases (see Discussion).

Functions such as protection against reactive oxygen species

(gene: TXNIP; over-expressed in all three organs of hibernators: Fig-

ures 1a–c and 2a), inhibition of transcription (genes: HIST2H2A;

SRSF5; Figures 1a and 2), fuel switch to fat metabolism (genes:

ZNF638, ATG3; Figures 1d,f and 2) and inhibition of angiogenesis

(ANGPTL4; Figure 1c), appeared as the most important changes in

the brain (Figure 1; Supporting Information Tables S2 and S3). In the

liver, the greatest changes in gene expression characterizing torpor

seemed to be associated with the fuel switch from carbohydrate to

lipid catabolism, since four genes involved in promoting fat catabo-

lism enzymes were among the top five differentially expressed ones

(PDP2, CYB5R3, over-expressed; NR1H4, ND4, under‐expressed, Sup-
porting Information Tables S4 and S5). In muscle, a similar interpre-

tation indicated that mechanisms for avoiding muscle atrophy

(over‐expressed genes: PVALB, EIF3D, GADPH, Supporting Informa-

tion Figure S4; Supporting Information Tables S4 and S5) may be

the most important functions being exacerbated during torpor.

A functional enrichment analysis based on the gene ontology

database (GO) suggested that several metabolic pathways were

enriched (both under‐expressed and over‐expressed) in the brain

during torpor, compared with the other two organs, that only

showed overexpression of a few biological functions (Figure 2a). This

is also appreciated in the expression profiles of each organ (i.e., the

“heatmaps,” see Supporting Information Figure S4). The analysis aris-

ing from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

showed a myriad of functions that were differentially regulated in

the brain, such as cold sensitivity, circadian perception, mRNA

surveillance and stress response (Figure 2b). The liver and muscle

profile, by contrast, indicated that the most important modified func-

tions were orientated to the maintenance of organ function (e.g.,

biosynthesis of amino acids) and to fuel switch to lipid metabolism

(e.g., fatty acid degradation, metabolic pathways; Figure 2c,d).

4 | DISCUSSION

Today, comparative physiologists have a broad repertoire of techno-

logical tools that can be used to identify functional changes associ-

ated with a given physiological condition; from simple (and often

inexpensive) measures of whole‐animal metabolic fluxes (e.g.,

respirometry, blood biochemistry and haematology, tissue‐specific
enzymes and metabolites; see recent examples in Franco et al.,

2013; Il'ina et al., 2017; Rouble & Storey, 2015) to the powerful

characterization of exacerbated/enriched metabolic pathways that

high‐throughput sequencing methods provide. To the best of our

knowledge, this is the first RNA‐seq analysis of hibernation in a mar-

supial, which provided a wealth of detailed information. In order to

avoid being “lost in the map” (sensu Travisano & Shaw, 2013), we

focus on some particularly important metabolic functions with rele-

vance for torpor, provided by our de novo assembly. This procedure

showed high completeness as evidenced for the percentage of cov-

erage of Core Vertebrate Genes (CVG) and Mammalian Core Genes

(MCG). The overall statistics of our assembly (N50, L50, contig

length, number of contigs >1k) were similar to the results docu-

mented in de novo assembled transcriptomes of other mammals,

such as the beaver (Castor fiber L.; testis; Bogacka et al., 2017), and

the Nile grass rat (Arvicanthis ansorgei; retina; Liu et al., 2017). How-

ever, we had higher values compared with marsupials such as the

long‐nosed bandicoot (Perameles nasuta; heart, liver, spleen and kid-

ney; Morris et al., 2018) and the Virginia opossum Didelphis virgini-

ana; kidney; Eshbach et al., 2017).

F IGURE 1 (a–c) Volcano plots showing differentially regulated genes at the p = 0.05 level (green, horizontal line) in three tissues of torpid
Dromiciops gliroides as compared with active animals. Significantly down‐regulated genes are indicated as negative fold change (blue), and
up‐regulated genes are indicated as positive values (red). The grey zone indicates the number of transcripts that do not show significant
differential expression. (a) brain; (b) liver; (c) skeletal muscle. (d) commonly up‐regulated genes among organs (upper panel) and commonly
down‐regulated genes (bottom panel). The numbers represent the numbers of transcripts that were differentially regulated exclusively for each
organ (e.g., 44 transcripts were exclusively and significantly up‐regulated in muscle). Most differentially regulated genes are written in yellow
and white font on the diagrams. Descriptions of the top 10 significantly regulated genes are provided in Supporting Information Tables S2–S7).
Several isoforms of the TXNIP gene were found among the up-regulated genes in brain, which are denoted by the red ellipse (a)
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4.1 | Thioredoxin‐interacting protein and oxidative
damage

The most notable finding of our analysis was the overexpression in all

three organs of TXNIP, the gene encoding thioredoxin‐interacting pro-

tein. The TXNIP was first identified as an endogenous negative regula-

tor of thioredoxin, a ubiquitous redox protein in cells that is

particularly involved in the reduction of oxidized cysteine residues and

cleavage of disulphide bonds (Nishiyama et al., 1999). TXNIP has been

linked, not just with an antioxidant/redox role (e.g., to minimize

ischaemia–reperfusion damage), but with the broader regulation of

mitochondrial function to help suppress oxidative metabolism when

oxygen is limiting, and shift metabolism to anaerobic glucose catabo-

lism by mediating inhibition of pyruvate dehydrogenase (Chong et al.,

2014; Spindel, World, & Berk, 2012; Yoshioka & Lee, 2014). Several

diseases are associated with disruptions of the thioredoxin system,

such as cataract formation, ischaemic heart diseases, several cancers,

diabetes complication and hypertension (Maulik & Das, 2008). TXNIP

is also involved in inhibiting unnecessary glucose influx into cells while

also promoting fatty acid oxidation (Hand et al., 2013); both of these
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F IGURE 2 Functional enrichment analysis of genes that appeared over‐represented during torpor using the gene ontology database (a). The
size of the circles represents the number of differentially expressed genes over the total number of genes, associated with a given GO term,
whereas the colour indicates the level of significance. Also, a functional enrichment analysis using the Kyoto Encyclopedia of Genes and
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are central features of a hibernating phenotype. Indeed, recent

research has shown that the TXNIP gene was over-expressed in brain

(hypothalamus), liver and white and brown adipose during induced‐
torpor experiments in mice as well as in natural torpor in Siberian

hamsters (Phodopus sungorus; DeBalsi et al., 2014; Hand et al., 2013;

Jastroch et al., 2016). Our current identification of a multi‐organ
strong up-regulation of TXNIP in D. gliroides (including multiple gene

variants in brain) adds further support for the proposal that TXNIP has

a central role in the metabolic control of torpor.

4.2 | Metabolic switch

In the brain, ANGPTL4 secretion (which we found strongly up‐regu-
lated) is of central importance in regulating the switch to a lipid‐
based fuel economy during torpor, facilitating lipid release from adi-

pose and uptake by other tissues. Indeed, recent studies have

reported significant up-regulation of ANGPTL4 transcripts in ground

squirrel heart during torpor and interbout arousal stages of hiberna-

tion as compared with pre‐ or post‐hibernation months (Vermillion,

Anderson, Hampton, & Andrews, 2015) as well as during torpor in a

ground squirrel bone marrow transcriptome when compared with

summer animals (intermediate transcript levels were seen during

interbout arousal; Cooper et al., 2016). In the same vein, a powerful

indicator of the suppression of carbohydrate fuel use within the

brain during torpor is pyruvate dehydrogenase kinase 4 (PDK4),

whose transcripts were strongly elevated in the brain. Phosphoryla-

tion of pyruvate dehydrogenase (PDH) at S232, S293 or S300 by

any of four PDK isozymes inhibits its activity (Harris, Bowker‐Kinley,
Huang, & Wu, 2002) and is crucial for blocking the oxidation of

pyruvate as a substrate, especially when carbohydrate reserves must

be conserved. Indeed, strong suppression of PDH activity during

hibernation has been widely reported in multiple tissues of eutherian

hibernators (summarized in Wijenayake, Tessier, & Storey, 2017).

Strong increases in PDH phosphorylation at 1, 2 or all 3 serine sites

were also reported for six tissues (including brain, liver and skeletal

muscle) of D. gliroides (Wijenayake et al., 2017) and the up-regula-

tion of PDK4 in brain (predictably elevating PDK4 protein) would

support PDH inhibition and presumably help to direct brain to make

greater use of ketones as substrates during hibernation.

4.3 | Marsupial nonshivering thermogenesis

Uniquely in marsupials, liver appears to be the main site of nonshiv-

ering thermogenesis since brown adipose tissue is not present (Jas-

troch, Wuertz, Kloas, & Klingenspor, 2005; Rose, West, Ye,

McCormack, & Colquhoun, 1999) and, hence, modulation of multiple

controls on lipid metabolism is probably needed to regulate this

novel liver function (Hadj‐Moussa et al., 2016). Among down‐regu-
lated genes we found in liver, three deserve particular mention for

their potential roles in the hibernating marsupial: ND4, NR1H4 and

TCAF2 (see Supporting Information Table S5). Transcript levels of

the mitochondria‐encoded NADH dehydrogenase subunit 4 (ND4)

gene were strongly reduced in D. gliroides liver during hibernation.

By contrast, strong increases in ND4 expression were reported in

brown adipose tissue of the bat, Myotis lucifugus during hibernation

(Eddy, Morin, & Storey, 2006) and ND2 transcripts (also mitochon-

dria‐encoded) were elevated during hibernation in heart and skeletal

muscle of 13‐lined ground squirrels, Spermophilus tridecemlineatus

(Fahlman, Storey, & Storey, 2000). Compared with D. gliroides, this

suggests that there may be either tissue‐specific (liver vs. muscle/

BAT) or marsupial versus eutherian differences in the reorganization

of mitochondrial oxidative metabolism in the torpid state. On the

other hand, NR1H4 encodes the NR1H4 protein (nuclear receptor

subfamily 1, group H, member 4) that is also known as the bile acid

receptor (BAR) or the farnesoid X receptor (FXR). This receptor is a

master regulator of hepatic triglyceride, cholesterol and bile acid

metabolism. Active FXR exerts controls that suppress de novo lipo-

genesis and promote FFA oxidation. FXR gene expression was also

reduced in liver of hibernating ground squirrels compared with sum-

mer animals (Nelson, Otis, & Carey, 2009) and also occurs in non‐
alcoholic fatty liver disease in humans. FXR‐deficient mice not only

exhibited marked hepatosteatosis (fatty liver) and hypertriglyceri-

daemia (Jiao, Lu, & Li, 2015; Wollam & Antebi, 2011) but showed an

accelerated fasting‐induced entry into torpor and markedly greater

cold intolerance as compared with controls (Cariou et al., 2007).

Hence, the strong suppression of NR1H4 transcript levels (implying

suppressed FXR protein levels) in liver of hibernating D. gliroides sug-

gests a role for this receptor in the management and/or restructuring

of liver lipid metabolism during hibernation when fatty acid oxidation

is the primary mode of ATP production. This, together with previous

results in D. gliroides and also in Monodelphis domestica (Hadj‐Moussa

et al., 2016; Villarin et al., 2003), provides an intriguing role between

FXR (BAR) function, lipid metabolism and NST in the liver metabo-

lism of hibernating marsupials.

4.4 | KEGG integrated analysis

The analysis based on the Kyoto Encyclopedia of Genes and Genomes

(KEGG, see Figure 2b) showed, in torpid animals, overexpression of

multiple genes contributing to the mTOR signalling pathway (genes

SEH1L, SGK1), circadian rhythm pathways (genes CUL1, CRY2), notch

signalling pathway (genes NCOR2, DTX3, EP300), and ubiquitin‐
mediated proteolysis (genes CUL1, UBE20, CDC34, UBA3, HUWE1).

Seh1 (known as SEH1L in mammals) is a subunit of the GATOR2 com-

plex that is an essential activator of mTORC1 kinase. Seh1 is also a

subunit of the Nup107 complex (the nucleoporin Y‐complex) that

plays a major role in formation of the nuclear pore complex in inter-

phase and associates with kinetochores in mitosis (Platani, Samejima,

Samejima, Kanemaki, & Earnshaw, 2018). SGK1, on the other hand, is

one of many downstream targets of the mTOR C2 kinase, represent-

ing one arm of the mTORC2 signalling pathway (Garcia‐Martinez &

Alessi, 2008). Cry2 is one of the main circadian rhythm proteins, and it

is known that this protein is up-regulated during hibernation in ham-

sters and ground squirrels (Crawford et al., 2007).

The high level of transcriptional activity detected in the brain

contrasts with the few enriched pathways of liver and muscle

8 | NESPOLO ET AL.



(Figure 2c,d). This, however, could be a consequence of the low sam-

ple size we had for those two organs (especially for muscle), which

makes our conclusions regarding these organs, preliminary. Both for

liver and muscle we found a strong differential regulation (up‐ and

down‐regulation) of metabolic pathways sensu lato, which is proba-

bly due to the physiological switch from carbohydrate to lipid‐based
metabolism also described in other hibernators (Boyer & Barnes,

1999; Storey & Storey, 2010; Villanueva‐Canas et al., 2014), and in

D. gliroides (Wijenayake et al., 2018b). This is confirmed here, as we

found strong overexpression of pathways related to fatty acid degra-

dation (genes ACSL5, ACADVL) and regulation of autophagy (genes

ULK1, ULK2, GABARAPL1) in the liver (see Figure 2c). Hibernators all

increase their content of unsaturated FAs so that lipid depots can

remain fluid at low Tb (Contreras, Franco, Place, & Nespolo, 2014;

Rose, Epperson, Carey, & Martin, 2011). Our findings support this

view, since differential up‐regulation of ACSL5 (the protein acyl‐CoA
synthetase long‐chain 5) is used both in fatty acid synthesis and

beta‐oxidation. By contrast, in muscle we found overexpression of

the longevity‐regulating pathway, which indicates that differentially

expressed genes in the muscle are directed towards the maintenance

of organ function, which in marsupials (in addition to the liver, as

discussed before) is crucial for rewarming (Hadj‐Moussa et al., 2016;

Opazo, Nespolo, & Bozinovic, 1999).

5 | SUMMARY AND CONCLUSIONS

In this paper, we have shown that the hibernating marsupial D. glir-

oides express adaptive physiological mechanisms to deal with the

consequences of hypometabolism and cold during torpor. These

mechanisms are tissue‐specific and involve: (a) protection against

reactive oxygen species, ROS (i.e., oxidative damage) by overexpress-

ing the TXNIP gene among others, (b) metabolic switch from carbo-

hydrate to fat‐based metabolism in liver and muscle, (c) nonshivering

thermogenesis in the liver, (d) transcriptional suppression of non‐
essential functions, (e) overexpression of proteins controlling circa-

dian rhythm in the brain, and (f) overexpression of longevity‐regu-
lated pathways that maintain organ function in muscle. In terms of

survival and fitness, these physiological changes generate the net

consequence of making this metabolic depression, reversible and

safe. Several of these mechanisms are conserved, previously

described in placental mammals, but also described in D. gliroides.

Some of them are apparently unique to marsupials (e.g., role of liver

in rewarming), but still only described in a few species. Given that

Microbiotherids are considered the ancestors of Australian marsupi-

als (Mitchell et al., 2014), further studies in other marsupial species

would be crucial to determine the generality of our findings.
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