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Abstract

Background: Birds are important mobile link species that contribute to landscape-scale patterns by means of
pollination, seed dispersal, and predation. Birds are often associated with habitats modified by small mammal
ecosystem engineers. We investigated whether birds prefer to forage on degu (Octodon degus) runways by
comparing their foraging effort across sites with a range of runway densities, including sites without runways. We
measured granivory by granivorous and omnivorous birds at Rinconada de Maipu, central Chile. As a measure of
potential bird foraging on insects, we sampled invertebrate prey richness and abundance across the same sites. We
then quantified an index of plot-scale functional diversity due to avian foraging at the patch scale.

Results: We recorded that birds found food sources sooner and ate more at sites with higher densities of degu
runways, cururo mounds, trees, and fewer shrubs. These sites also had higher invertebrate prey richness but lower
invertebrate prey abundance. This implies that omnivorous birds, and possibly insectivorous birds, forage for
invertebrates in the same plots with high degu runway densities where granivory takes place. In an exploratory
analysis we also found that plot-scale functional diversity for four avian ecosystem functions were moderately to
weakly correllated to expected ecosystem function outcomes at the plot scale.

Conclusions: Degu ecosystem engineering affects the behavior of avian mobile link species and is thus correlated
with ecosystem functioning at relatively small spatial scales.
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Background

The relatively high mobility of birds at a landscape scale
gives them an important role in linking ecological pro-
cesses across space [1,2]. Through foraging activity, for
example, birds can act as pollinators, seed dispersal
agents, and controllers of prey populations [1]. How the
ecological processes that birds influence are linked
across the landscape depends in part on birds’ habitat
preferences, and the distribution of those habitats in the
landscape [3-7].

Bird species richness is often associated with habitats
altered by small mammal disturbances to the soil [8].
Some birds nest in cavities made by burrowing mam-
mals (e.g. [9,10]). Higher bird species richness is
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observed within prairie dog (Cynomys ludovicianus) col-
onies in summer, compared to surrounding areas with-
out these colonies [11,12]. Higher avian richness and
abundance is also observed in grasslands with plateau
pika (Ochotona curzoniae) burrows, compared to grass-
lands where they were eradicated [9,13]. Birds and small
mammals often play different ecological roles. An associ-
ation between birds and small mammals in habitats al-
tered by small mammal activity could result in a
coupling between different ecosystem processes at a
landscape scale [2,8,14,15]. Granivorous birds tend to
show different foraging site preferences and efficiencies,
and different seed preferences and efficiencies, compared
to small mammals [16-20]. Birds and mammals may also
be complementary in that birds frequently act as seed
dispersers [4,21,22], and small mammal disturbances to
the soil can create bare or sheltered soil patches which
enhance seedling establishment and recruitment [23,24].
Despite the many potential ecological interactions be-
tween birds and small mammals, we are not aware of
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studies that link small mammal ecosystem engineering
effects with quantified avian ecosystem functions. Here
we investigate how a small mammal’s disturbances affect
the habitat preferences of birds in a semi-arid habitat,
and the associated ecosystem-level effects.

The degu, Octodon degus, is a small semi-fossorial so-
cial mammal native to the Mediterranean habitat of cen-
tral Chile. Degus create colonies characterized by
clusters of burrows with multiple entrances, all of which
are connected by well-marked surface runways [25-27]
(Figure 1). Sites with higher densities of runways are as-
sociated with higher herbaceous richness and diversity,
forming a “lawn” of herbaceous plants in degu colonies
due to herbivory next to runways and other ecosystem
engineering effects [28]. Sites with high densities of degu
runways also have higher bird feces counts (unpublished
data, MR-B). Additional observations suggested that
more bird species forage on degu lawns than on adjacent
grasslands (pers. obs. M.R.-B.). Degu colonies alter the
habitat at small scales, near to runways, whereas many
birds have potentially landscape-scale ranges. We thus
chose to examine the small scale sites where birds
choose to forage within a landscape where a degu colony
is present.

We investigate whether birds prefer to forage on and
near degu runways, comparing their foraging effort
across sites with a range of runway densities, including
sites without runways. We measured granivory by gran-
ivorous and omnivorous birds. Because direct observa-
tion and quantification of naturally occurring bird
foraging is excessively challenging and time consuming,
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we measure foraging effort by following the approach
used in studies of granivory and giving up densities, of
measuring amount eaten at feeding stations representing
novel food sources in target habitat types [16,19,20]. We
were able to exclude or discount non-avian granivores
(see Methods). We were not able to directly measure
foraging effort of insectivorous birds using the same
technique, due to the high abundances of several non-
avian diurnal and noctural carnivorous or insectivorous
species at our study site (e.g. sigmodontid rodents, foxes,
lizards, snakes), which we could not exclude or discount.
As an alternative, since the majority of insectivores by
abundance are omnivores at our site, we measure where
foraging might be most diversified in terms of prey niche
and nutritional content, by sampling invertebrate prey
species richness across the same sites. Available evidence
shows that omnivores direct foraging site selection to
maximize access to immobile plants, opportunistically
switching to mobile prey when encountered [29,30], see
also [31]. Patches with complementary invertebrate and
grain food sources provide more-efficient foraging
opportunites to omnivores, and other things being equal,
should be prefered [32-34]. Since we measure micro-
habitat/ substrate variables, and the larger ominivore
present (the culpeo fox, Lycalopex culpeaus) is not ob-
served to eat the bait used in this study, we account for
or can ignore factors known to lead to prefences against
these optimal foraging sites by omnivores [31,34]. For
omnivores, this suggests that patterns of granivory over
the landscape should correspond well to where insectiv-
ory takes place.

Figure 1 Four images of degu runways. Runways are marked with a dashed white line on the lower edge. (a) New runway, with plants
trampled or pushed aside. (b) Established runway with bare earth in runway. (c) Winter, moss growing along established runways. (d) Early spring
in a grassland, herbs growing along a runway which was likely formed the previous year. Photos (c) MR-B.
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Invertebrate species richness and invertebrate abun-
dances are expected to show opposite responses to avian
predation on degu colonies. Invertebrates show higher
richness near the disturbances made by many small
mammals [35-37]. This can be a result of disturbance-
related non-trophic interactions [38] or trophic interac-
tions in which predation on a dominant competitor or
intermediate predator allows more prey species to coex-
ist [39]. Although improved habitat due to disturbance
effects may lead to increased species abundances [38],
the threat of predation by omnivores also attracted to
the habitat can lead prey species to avoid these improved
habitats [39]. In addition, widely foraging omnivores
(such as birds) are expected to contribute to suppression
of a common herbivore prey, such as herbivorous inver-
tebrates [29]. Thus direct trophic interactions by birds
are expected to reduce invertebrate abundances, through
predation reducing population sizes, creating population
sink areas, or forming a landscape of fear [40-42]. Over-
all then, we expect combined trophic and non-trophic
effects on or near degu runways to increase species rich-
ness while decreasing species abundances. Classical opti-
mal foraging theory predicts that foragers should
optimize their site visitation rate to compensate for (and
avoid causing) differences in prey abundance. Once
modified to take into account the stoichiometric con-
straints and differences in prey handling costs relevant
to omnivores, optimal foraging models become much
more complex and may show mutliple equilibria [43-45].
Fitting such a model to our system is beyond the scope
of this paper, and so we have not explicitly tested an op-
timal foraging hypothesis here.

In order to understand whether runway structure af-
fects avian foraging, within each plot we compared for-
aging effort at an on-runway micro-site with an off-
runway micro-site. We predicted that birds should show
greater foraging effort, and invertebrate prey should be
more diverse but less abundant, in plots with high run-
way density. We also expected to see greater foraging ef-
fort and more diversity but less abundance of
invertebrates on runways, compared to off runways. Fi-
nally, we sought to relate some likely outcomes of com-
mon bird ecological functions to their foraging effort at
the plot scale. The ecological functions and outcomes
we examined included soil fertilization resulting from
excrement deposition, shrub seed dispersal, and pest in-
vertebrate population control, which correspond to sup-
porting ecosystem services [1,22,46-48].

To our knowledge, this study represents the first time
that avian activity and its outcomes on small mammal
disturbance sites is quantified. This represents an ad-
vance in the resolution with which we can understand
avian- small mammal non-trophic interactions, com-
pared to simple measures of avian diversity. We show
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that avian foraging for grains and invertebrates was
higher in plots where degu runways have higher density,
and that this correlates with expected avian ecosystem
service outcomes at the plot scale.

Methods

Research site

The study took place at the Estacion Experimental Rin-
conada de Maipu (33°23" S, 70°31" W, altitude 495 m), a
field station of Universidad de Chile, Santiago, central
Chile. Our study site encompassed espinal (Acacia caven
savanna) subject to anthropogenic fire and grazing by
cattle and sheep, open grasslands, and denser matorral
(evergreen shrubland), dominated by sclerophyllous
shrubs and perennial herbs. Eighteen plots of 10 m x
10 m marked with flags were set up along the southeast,
south-west and south facing slopes across thirteen small
valleys in the folds of an inland extension of the coastal
range (altitude 495 m), with variable degu runway dens-
ities. Most small valleys had at least one dry ravine div-
iding them down the middle, and each plot was
separated from other plots by the ridge of a hill on one
side and by a ravine or hill ridge on the other side. Two
additional plots were placed in the lowland surrounding
the hills, one in the east and one in the west, separated
by a north—south dirt access road, for a total of 20 plots.
The research site includes an area where another re-
search group baits degu traps with oats, which attracts a
large number of birds. Baiting continues six days a week
throughout the winter and spring. None of our plots
were within the area where baiting was taking place, and
all plots were at least 100 m from the nearest baited
area.

Each plot was surveyed to collect habitat data on 4
September 2011. In each plot we counted the abundance
(number) of degu burrow entrances, abundance of degu
runways, mean degu runway spacing, abundance of
mounds made by the fossorial rodent the cururo (Spala-
copus cyanus), tree abundance, shrub abundance, and
percent estimated woody cover of each plot from shrubs
and trees at 1 and 2 m from the ground. These data
were used to categorize habitat type and characteristics.
We expected these variables to influence where birds
forage (e.g. degu burrows and runways, cururo mounds),
or where they take cover and perch (woody plants).
Degu runways can be counted individually as each is a
distinct linear feature with clear beginning and end
points, almost always connecting degu burrow en-
trances. Degu runway spacing in each plot was estimated
by tossing a plastic frame in a semi-random (non-di-
rected) manner ten times, each time measuring the dis-
tance to the nearest runway. We calculated the mean
runway distance from these semi-random points for
each plot, such that the resulting measure of mean
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runway spacing is an inverse measure of runway density
or clustering. We had previously (2010) collected data
on the slope and slope aspect of each site.

Bird surveys

We surveyed bird species abundance and richness along
twelve 100 m transects set up between the plots. We
used the line transect technique, and used binoculars
with a laser range finder (Bushnell Yardage Pro) to
measure distances from the transect to sighted birds
[49,50]. We did not record birds flying overhead. Each
transect was characterized by habitat type, and the num-
ber of degu runways crossing the transect line was
counted for each transect. Each transect was sampled
twice, once in early September 2011 (late winter) and
once in late October 2011 (mid spring), between dawn
and 11:00, by one observer (M.R.-B.). For analysis, we
used the DISTANCE program to calculate the abun-
dance of birds [50] using habitat type and number of
degu runways crossing the transect as strata [51]. We
also used ANOVA to assess a linear model relating spe-
cies richness to habitat type and number of crossing
degu runways.

Invertebrate prey richness and abundance

Invertebrates were collected in pitfall traps left open for
12 days between 16-28 October. Pitfall traps consisted
of two 200 ml disposable plastic coffee cups, one placed
inside the other, half covered with a flap of card [52].
The traps were placed in small pits, with the lip at
ground level, and left open for one week to control for
digging-in effects, as recommended [53,54]. Any animals
(invertebrates or lizards) in the traps were released, and
the traps were then filled with a 50:50 ethanol:glycerine
mixture [55,56]. Two pitfall traps were placed in each
plot, one at the edge of a degu runway (on-runway) and
one at least 1 m from any runway (off-runway). Where a
runway could not be found in the plot (in two plots), a
runway within 2 m of the plot was used. In three plots
we recovered a sample from only one pitfall trap. We
excluded these three samples from our analyses of inver-
tebrate abundances, but not from our analyses of species
richness.

Invertebrates were collected, washed in water and al-
cohol, and stored in small plastic jars in 60:30 ethanol:
water for identification. Identification was based on
[57-59].

We sought to explain invertebrate taxon richness and
total abundances using ANOVAs. Taxon richness (i.e.
number of taxa at the order or family level) and total
abundance (i.e. number of individuals summed across
taxa) of each plot were considered independent mea-
sures. Our independent variables were abundance (num-
ber) of degu burrow entrances, abundance of degu
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runways, mean degu runway spacing, abundance of cur-
uro mounds, tree abundance, shrub abundance, and per-
cent woody cover of each plot from shrubs and trees at
1 and 2 m from the ground. We expected these variables
to provide invertebrates with shelter (burrows, shrubs,
trees), food (shrubs, trees), or general microhabitat het-
erogeneity with consequent access to different resources
including high plant diversities [28] (runways, shrubs,
trees, burrows). In order to understand how insectivore
foraging patterns might relate to observed granivore for-
aging patterns, we also compared invertebrate abundances
and species richness to our two measures of granivory ef-
fort in each plot (see below), using correlations.

Granivorous foraging effort

To measure foraging effort by granivorous birds, we
placed small metal dishes 11 c¢m in diameter in each
plot, one on the edge of a degu runway (on-runway),
and one at least one meter from any runway (off-run-
way). When it was not possible to find a runway within
the plot, the on-runway dish was placed on a runway ad-
jacent to the plot. Dishes were filled with approximately
25 g of rolled oats mixed with chili pepper to repel
degus and other mammals, which unlike birds are sensi-
tive to capsaisin [60] (1 kg oats: 200 g ground chili pep-
per). During five hours of preliminary observations we
did not observe degus foraging on the spicy oats. Dishes
were checked, weighed with an electronic weight (Accu-
lab GS-200), and refilled if necessary each morning, at
intervals of 24 hours, during four days between 20-24
August 2011. The amount of oats eaten was calculated
as the difference between the weight of oats with which
the dish was filled the previous day, and the current
weight. In some cases the dishes of oats gained up to 2 g
of water from dew. The net weight of moisture gained
varied substantially between micro-sites and we were
not able to find an effective way to set up a control for
each dish that could be protected from consumption
without affecting dew formation and evaporation rates.
The recorded amount eaten may thus sometimes be an
underestimate of < 2 g. Because the amount recorded is
thus a conservative estimate of amount eaten, it should
reduce rather than inflate the likelihood of detecting the
effects predicted for this measure. Missing oats due to
occasional spillages were not treated as eaten.

In addition to measuring the amount eaten each day,
we measured the number of days until each dish was
first eaten from. We expect birds to forage more fre-
quently at sites with greater prey abundances and/or
greater ease of searching for prey [61]. Since birds are
likely to continue to return regularly to check an area
once a regular new food source is discovered there [62],
long data sets on amount eaten at baited sites are not
likely to reflect natural frequencies of site visitation. We



Root-Bernstein et al. BMIC Research Notes 2013, 6:549
http://www.biomedcentral.com/1756-0500/6/549

assume that, since all sites were treated the same, dishes
that are found and fed from first are in sites that are vis-
ited more frequently, on average, to search for food. We
therefore continued the experiment only until a day
passed when no new sites showed evidence of feeding.
Some dishes were never eaten from, and for statistical
analyses were treated as having been eaten from on the
day after the experiment ended (e.g. five days until first
forage). This gives a conservative measure of how often
such sites are visited to forage.

Amount eaten and days to first forage for on-runway
and off-runway dishes were compared with paired t-
tests. We used linear models evaluated with ANOVA to
determine the relationship beween days to first forage,
degu runway density, and other habitat variables chara-
terizing the plots (see above), and also to determine the
relationship between amount eaten and degu runway
density and other habitat variables. Best models were se-
lected based on the number of significant variables and
the overall r value (the effect size) for the model.

Avian functional traits

For the three identified ecosystem functions potentially
carried out by birds at our study site (woody species
seed dispersal, N and P deposition from feces, and inver-
tebrate consumption), we identified a measure of ecosys-
tem functioning outcome. Since the burrows and
runways in degu colonies remain stable at our site over
multiple years [63], we assume that ecosystem function-
ing outcomes will accumulate on degu colonies and that
we can use measures of ecosystem functioning outcomes
for avian behavior that would have accumulated over
one or more years starting in the past. We predict that
higher avian seed dispersal in plots should result in more
small (young) shrubs, or a lower average percent cover
per shrub at 1 m. We predict that where avian feces de-
position increases in space, P and NO3 concentrations in
soil should also increase in each plot [47]. Soil samples
were taken in 2010 and the methods of sampling are de-
scribed in [28] and Root-Bernstein et al. (submitted). It
is unlikely that soil [P] and [NOg3] vary significantly be-
tween two sequential years [64]. Finally, to measure in-
vertebrate consumption outcome, we classified our
invertebrate data set into potential agricultural pest
(phytophagous) and non-pest taxa, and calculated the
percent by abundance (i.e. percent of total number of in-
dividuals) of pests in each site. We predict that as avian
pest invertebrate consumption increases in each plot,
percent pest abundance will decrease.

To quantify these three ecosystem functions (woody
species seed dispersal, N and P deposition from feces,
and phytophage insect population control), we devel-
oped an index of the functional trait impact (FTI) at the
plot scale. The FTI approximates how often birds
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actually visit each plot, carrying out ecosytem functions
(see Additional file 1). To determine which bird species
at our site had which functional traits (Additional file 1),
we consulted standard literature on these species traits
and habits [65]. We used correlations to relate the FTI
at each plot to the measures of ecosystem function out-
come. Since our predictions are directional we report
one-tailed p values, accepting p<0.05. We anticipate
only a weak correlation due to lack of precise data on
the activities of each species in each plot over the past
year, and also due to the small spatial scale relative to
the processes studied. This part of the research is thus
exploratory.

For all statistical tests except the tests in DISTANCE,
statistics were run in R, and p values were calculated
with Graphpad Software (www.graphpad.com). For all
tests except the analysis in DISTANCE, we used an
ANOVA approach, prefering models with the largest effect
sizes (overall model r) and the largest number of signifi-
cant variables. DISTANCE reports only AIC values.

Results

Avian abundance and richness

In total there were 202 observations of birds along the
transects, with an effort of 370 minutes. The best fit
model of abundance in DISTANCE assumed a common
detection function across habitat type and number of
degu runways (AIC: 1793.4). The calculated density of
birds was 0.009 birds per m* (nearly one bird per hec-
tare), with a detection radius of 44.72 m and a mean
cluster size of 1.69 birds. Of 19 bird species observed,
one (5%) is a carnivore, seven (37%) are insectivores, six
(32%) are granivores, and five (26%) are omnivores.
Average avian richness on transects across September
and October samples was not explained by the number
of degu runways crossing the transect, nor by habitat
type (Table 1). By abundance, 8% of the observed avian
population (averaged across samples) were insectivores,
25% were omnivores, 57% were granivores and 10% were
carnivores.

Invertebrate prey abundance and richness

In total we trapped 1040 individual invertebrates repre-
senting 54 taxa from 15 orders (Table 2). Across plots,
invertebrate abundance increased with invertebrate
taxon richness (r=0.798, df =16, p <0.0001). The best

Table 1 ANOVA of average avian richness on transects

Variables df Sum sq. F p
Number of degu runways 1 79 436 0.075
Habitat type 3 6.9 1.26 0.36
Residuals 7 12.7

Overall model r=0.66.
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Table 2 Invertebrate taxa observed and characteristics
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Taxa Total abundance Saprophyte or other decomposer Pollinator Predator Phytophage
Coleoptera: Melyridae 156 + + (larva)

Coleoptera: Bostrichidae 101 +

Coleoptera: Anobidae 1 +

Coleoptera: Ptinidae 1 +

Coleoptera: Tenebrionidae 35 +

Coleoptera: Tenebrionidae (larva) 7 + (larva) +
Coleoptera: Elateridae 1 + + (larva)
Coleoptera: Carabidae 19 +

Coleoptera: Glaphyridae 22 + + (larva)
Coleoptera: Staphylinidae 4 + +

Coleoptera: Lathridiidae 2 + + +

Coleoptera: Coccinellidae (larva) 15 +

Coleoptera: Coccinellidae 3 +

Coleoptera: Chrysomelidae 2 +
Coleoptera: Curculionidae 3 +
Coleoptera: Mordellidae 2 + (larva) + + (larva)
Hymenoptera: Sphecidae 2 + +

Hymenoptera: Pompilidae 1 + +

Hymenoptera: Calcidoidea, Fam? 14 + +

Hymenoptera: Apoidea, Fam? 13 +

Hymenoptera: Calcidae 0 +

Hymenoptera: Mutillidae 2 +

Hymenoptera: Chrysididae 2 + +

Hymenoptera: Fam? 0

Hymenoptera: Formicidae 91 +

Lepidoptera: Tortricidae 13 + + (larva)
Lepidoptera: Noctuidae (larva) 9 + + (larva)
Lepidoptera: Fam? 1 + +
Diptera: Fam? 2

Diptera: Ascilidae 2 +

Diptera: Bombyliidae 0 + +

Diptera: Mycetophilidae 6 +

Diptera: Phoridae 2 + +

Diptera: Tephritidae 1 + +
Diptera: Calliphoridae 1 + +

Diptera: Sciaridae 12 +

Diptera: Muscidae 1 + +

Diptera: Drosophilidae 0 +

Diptera: Agromyzidae 1 +
Hemiptera: Lygaeidae 64 + +
Hemiptera: Miridae 18 + +
Hemiptera: Aphididae 6 +
Hemiptera: Fam? 2

Hemiptera: Cicadellidae 65 +
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Table 2 Invertebrate taxa observed and characteristics (Continued)

Orthoptera: Fam? 6
Orthoptera: Tettigoniidae (nymph) 16
Orthoptera: Acridiidae 10
Orthoptera: Acridiidae (nymph) 2
Orthoptera: Gryllidae 1
Psocoptera 1
Thysanoptera 2
Thysanura 84
Collembola 21
Isopoda 5
Opilionida 22
Arachnida: Araneae 31
Arachnida: Solifugae 2
Acaridida 131

Pseudoescorpionida 1

T
+
n
+
+
+ +
+
+
+
+ +
+
+
+
+ +
¥

List of all invertebrate taxa observed, their total abundance across plots, and whether species in each taxonomical group present important functional traits. Fam?

indicates that the taxa could not be identified at the family level.

model for taxon richness across plots included the inter-
action between mean degu runway spacing and woody
cover at 2 m from the ground, and the number of shrubs
(overall r = 0.63, Table 3). The best model for total inver-
tebrate abundance across plots included the variables
mean degu runway spacing, valley, and the interaction
between number of runways and slope aspect, with more
runways and lower invertebrate abundances on SE facing
slopes and vice versa on SW facing slopes (overall r =
0.99, Table 3).

Avian foraging effort

In 17 of the 20 plots, on-runway and off-runway dishes
were first foraged from on the same day. We therefore
modeled only time to find the on-runway dish. The best
model explaining the number of days until the first for-
aging was detected from the on-runway dish in each plot
included the number of cururo mounds, mean degu

Table 3 Invertebrate taxon richness and total abundances

runway spacing, the interaction between arboreal cover
at 2 m and the slope, and a variable identifying the val-
leys in which plots are located (Table 4). Time to dis-
cover the on-runway dish decreased as cururo mounds,
degu runway density, and arboreal cover increased, and
as slope decreased. The valley variable indicates that
some of the variance in time to discover the dishes was
not explained by habitat variables but may be attributed
to spatial autocorrelation among adjacent valleys affect-
ing avian foraging patterns. The model was not im-
proved by including the valley variable explicitly as an
error term.

The total amount eaten over the course of the experi-
ment did not differ between on-runway and off-runway
dishes (t=1.45, df=19, p=0.16, paired t-test). We
summed the amount eaten on and off runway for each
plot and modeled the amount eaten as a function of
habitat variables. The best model included mean degu

Invertebrate taxon richness

Invertebrate total abundances

Variables df Sum sq. F p Variables df Sum sq. F p
Mean degu runway spacing 1 519 217 0.16 mean degu runway spacing 1 556 2845.08 0.012
Woody cover at 2 m 1 36 0.15 0.70 Runway abundance 1 107 548.42 0.03
Shrub abundance 1 04 0.02 0.90 Slope aspect 1 1862 9525.09 0.007
Runway spacing x 1 180.4 7.55 0.01 Valley 11 33274 15471.41 0.006
Woody cover Runway spacing x aspect 1 436 2231.66 0.01
Residuals 15 3586 Residuals 1 0

r=063 r=0.99

ANOVAs for invertebrate taxon richness across plots (left) and invertebrate total abundances (number of individuals of all taxa) across plots (right). Significant

variables are shown in bold.
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Table 4 ANOVA of the number of days to forage from the
on-runway dish

Variables df Sum sq. F P

Cururo mounds 1 6.2 3.9 en31 2.2 eN-16
Degu runway density 1 6.5 4.07 en31 2.2 eN-16
tree cover, 2 m 1 0.9 5.6 en30 2.7 eN-16
Slope 1 4.8 3.0 en31 2.2 eN-16
Valley 13 448 2.2 eA31 e.e eN-16
Tree cover, 2 m x slope 1 0 0.51
Tesiduals 1 0

Significant variables are in bold. Overall model r=1.0.

runway spacing and an interaction between the number
of shrubs and a variable identifying the valleys where
plots are located (Table 5). The amount eaten in each
plot increased with degu runway density and decreased
with shrub cover. The variable “valley” suggests some
spatial autocorrelation, since the valleys were numbered
sequentially from west to east. Thus, an effect of valley
is an effect of spatial contiguity in the landscape.

To understand how insectivore foraging patterns
might be related to granivore foraging, we compared the
abundances and taxon richness of invertebrates at each
site to the granivorous foraging effort at each site. By
abundance, invertebrate-eating birds (insectivores plus
omnivores) were 75% omnivores, suggesting that there
should be significant overlap between locations for gran-
ivory and insectivory. Invertebrate abundance was not
significantly lower in plots where more oats were eaten
(r=-0.377, df = 16, p =0.12). Invertebrate abundance in
plots increased significantly with time to first forage
from oat dishes (r=0.613, df =16, p = 0.0068). By con-
trast, invertebrate taxon richness was not related to either
the amount of oats eaten or to the number of days to first
forage at the plot (amount eaten: r = —0.064, df = 19, p=0.78;
days to first forage: r = 0.079, df = 19, p = 0.73).

Avian functional traits

Three sets of functional traits recorded for the birds on
the transects are shown in the Additional file 1. These
functional traits correspond to the three common avian
ecosystem functions that we measured (woody species

Table 5 ANOVA of the total amount eaten summing
on-runway and off-runway dishes

Variables df Sum sq. F p
Degu runway spacing 1 7695 51.74 0.006
Shrub abundance 1 106 0.71 046
Valley 13 48798 25.24 0.01
Shrub abundance x valley 1 1278 859 0.06
Residuals 3 446

Significant variables are in bold. Overall model r=0.99.
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seed dispersal, N and P deposition from feces, and pest
invertebrate consumption). FTT indexes for each ecosys-
tem function are also shown in the Additional file 1. The
seed dispersal FTI index showed a moderate significant
negative correlation to average shrub percent cover at
1 m, after a shrub-cover outlier was removed (Grubb’s
test to remove an outlier, Z=2.71, p<0.05; r = -0.389,
df =18, p=0.041). Thus, the average size of shrubs de-
creased with increased FTI. The feces deposition FTI
index showed a moderate significant positive correlation
to NOj3 concentration in the soil, after an [NO3] outlier
was removed (Grubb’s test to remove an outlier, Z =
2.71, p<0.05; r =0.380, df = 18, p =0.049), but not to P
concentration in the soil (r=0.135, df=19, p=0.280).
The insect control FTT index showed no correlation to the
herbivorous insect percent abundance in plots (r = -0.175,
df=19, p=0.224). However, we noticed that the plots
where the FTI index was zero (N = 7) appeared to show a
discontinuous pattern of distribution from plots where
FTI was nonzero. Where the FTI was zero (i.e. birds do
not visit), abundances were uniformly low. In all other
plots, abundances were abruptly high for low foraging,
and then declined with the foraging index. Looking only
at plots were FTI was non-zero (ie. plots where birds
visit), we found that the insect control FTI was signifi-
cantly negatively correlated to herbivorous insect percent
abundance (r = -0.515, df = 12, p = 0.03).

Discussion

Our results support the hypothesis that birds choose
degu colony areas with high runway densities as pre-
ferred foraging sites within a heterogeneous landscape in
central Chile. Birds found novel food sources faster, and
ate more, at plots with higher densities of degu runways.
They also preferred to forage on flatter plots with trees
and cururo mounds, but tended to forage less on plots
dominated by shrubs. Our interpretation is that plots
that birds visited first are in habitat patches generally
visited more often. This is because during a random
time interval, a site that is visited more frequently on
average has a higher probability of being visited more
frequently during the interval, and earlier in the interval,
than a site that is visited less frequently on average. After
foraging at a plot was recorded, this activity was almost
always recorded through all subsequent days. Thus birds
appear to return to these preferred experimental
patches. This implies that the longer a plot remained un-
visited, the less frequently it yields foraging rewards
under non-manipulated circumstances. The inclusion of
the valley variable in the best ANOVA model suggests
that birds forage at plots near to where they were
already foraging, influenced by the topography of the re-
search site. Seven plots (or 35%) where not used for for-
aging, and these plots were interspersed geographically
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with contiguous areas where foraging did take place. This
is consistent with birds regularly visiting prefered locations,
and skipping other locations, due to their habitat charac-
teristics [9,11-13]. Birds failed to forage in some plots with
relatively high degu runway density, showing that all the
significant explanatory variables (degu runways, trees, cur-
uro mounds, flat terrain and contiguity) contributed to
avian foraging patterns across the landscape. Amount
eaten in visited plots was controlled primarily by degu run-
way density and also by lack of shrub cover.

We observed that birds are not more abundant in spe-
cific habitat types or degu runway densities within the
landscape. When observed on transects, birds were per-
forming a range of activities in addition to foraging, such
as singing, vigilance, or resting. This suggests that birds
move to areas with higher densities of degu runways,
and/or trees and cururo mounds to forage. Degu run-
ways provide a network of small edges and linear clear-
ings in the herbaceous substrate, which could affect
foraging efficiency by making seeds and invertebrates
more visible at runway edges and clearings. In addition,
degu lawns in areas of high runway density typically
consist of very short herbs (pers. obs. MR-B) probably
due to herbivory [66]. This could improve foraging effi-
ciency by providing reduced physical or visual obstruc-
tion, which simultaneously may aid both prey detection
and predator detection [67-69]. However, there was no
evidence that avian foraging activity was influenced by
the small-scale structure of runways, as they did not for-
age more or earlier at dishes on runways compared to
off runways. Thus, when foraging, birds were sensitive
to habitat differences at the plot scale (100 m?) but not
at the scale of degu runways (< 1 m?).

Avian foragers appear to be attracted to the disturbances
of another small mammal present at the site, cururos.
Cururo mounds are ephemeral, lasting less than a year, are
about 400 cm? and occur in clusters of between half a
dozen to hundreds which may appear throughout spring
and summer (pers. obs. MR-B, [70]). The role of these
mounds in attracting foragers deserves further attention,
as does their effect on ecological processes, which is likely
to be different from that of degu runways due to their dif-
ferent shapes, sizes, permanence times, and effects on the
soil [38]. Cururo mounds and degu runways may be linked
ecologically, as new degu burrows often appear to be
modified cururo tunnels (pers. obs. MR-B).

Although we were not able to directly measure insect-
ivorous foraging effort, we were able to measure inverte-
brate prey taxon richness and total abundances in the
same plots where we measured granivory. Like herb-
aceous plant richness, invertebrate prey richness in-
creases with increasing degu runway density, on
southwest facing slopes and with greater woody cover
[28]. Herbivorous and nectarivorous invertebrates may
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be attracted to degu runways due to the increased herb-
aceous plant richness associated with runways [28,71].
This would explain the abundance of Melyridae, whose
adults are polinophagous [72] and visit a wide range of
herbaceous and woody species common in steppes of
semiarid Chile [73]. Saprophytes and other detritivores
(e.g. Tenebrionidae) could be attracted to feces or shrub
litter that accumulates near burrows ([74], pers. obs.
MR-B). The high abundance of Bostrichidae, whose lar-
vae and adults are strict saproxylic consumers of dead
wood in the early stages of decomposition [75] supports
the association between degu runway densities, woody
vegetation, and invertebrate species richness (see also
below). In turn, invertebrate predators and parasitoids
could be attracted to prey and favorable hunting habitat
[71,72]. Generally, invertebrate niches should be affected
by the microhabitat heterogeneity provided by the small-
scale edge structures of runways [76-78].

Invertebrate taxon richness was strongly correlated
with total invertebrate abundances across plots. We
found that avian granivorous foraging effort, measured
either as days to find the food dish, or amount of oats
eaten, was not related to the invertebrate prey taxon
richness. As expected however, plots that were visited
sooner by birds during granivory trials showed signifi-
cantly lower invertebrate prey abundances. Consistent
with research on omnivorous foraging, we interpret this
pattern as resulting from omnivorous birds foraging
opportunistically for both grains and invertebrates in the
same habitat patches, which in turn depress invertebrate
abundance at the most frequently visited foraging sites
[30,41]. However, the observed depression in inverte-
brate abundances must be due to non-avian as well as
avian insectivory. This suggests either that birds are the
main insectivores in this community, or that other insec-
tivores have similar foraging site preferences. Among
strictly insectivorous species, Sturnella loyca tend to for-
age off degu colonies in grassland habitats, while Lep-
tasthanura aegithaloides, Mimus tenca and Troglodytes
musculus forage in trees, which was a significant factor for
granivorous foraging as well. Vanellus chilensis are often
observed on degu lawns, and Pteroptochos megapodium
and Scelorchilus albicolus may nest in degu burrows, all of
which are then likely to forage on degu colonies. Although
we could not obtain direct evidence of where avian insect-
ivorous foraging effort is focused, our data indirectly sug-
gest that degus influence insectivorous foraging as well as
granivorous foraging, through non-trophic ecosystem en-
gineering effects on the plant community [28] and conse-
quent provision of favorable invertebrate habitat.

Previous studies have not linked habitat preferences of
vertebrate consumers while performing their ecosystem
functions to how those functions are distributed at such a
fine scale (compare [7,80]). The ability to quantify plot-
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scale functional diversity at very small scales could be a
useful tool to communicate to land managers and farmers
how changes in habitat structure impact local benefits
from ecosystem services [7,79,80]. We found that for all
three ecosystem functions measured, we could detect a
possible patch-scale signature of ecosystem function.
Smaller shrubs were more frequent where seed eating
birds forage more, which could be a result of previous
shrub seed dispersal by birds. NO3 concentration in-
creased where ground-foraging birds forage more, which
could be the result of defecation onto the ground. As in-
sectivore foraging increased, phytophagous invertebrates
became proportionately less abundant. While a causal in-
ference is supported by many studies showing that birds
have such effects [1], we cannot rule out that these corre-
lations could be the result of habitat selection by birds for
small shrubs, NOj3 rich soils, and low phytophagous inver-
tebrate abundances, rather than feedback from avian eco-
system functions. The FTT also makes several assumptions
that may reduce its accuracy. One is the assumption that
foraging activity, as measured by the oat-baited dishes,
represents foraging in equal proportion by all birds
present in the landscape. A second simplifying assumption
is that birds visit the plots only during foraging activity.
Futher development of small-scale measures of functional
diversity outcomes could yield data with higher resolution.

Conclusions

We quantified the foraging activities of both invertebrate-
eating and granivorous birds, finding that they forage
more in plots where degu runways have higher density, in
flat areas with trees and cururo mounds. This foraging ac-
tivity on plots with degu runways was in turn correlated to
expected outcomes of avian ecosystem services, represent-
ing an advance in our ability to measure ecosystem service
outcomes at small spatial scales. We predict that this ap-
proach can be developed to contribute to detecting other
small-scale signatures of ecosystem functioning, and to
understanding the impact of ecosystem engineers on key
long-distance linkage species, whose movements across
the landscape contribute to mobile-agent-based ecosytem
service (MABES) dynamics over larger areas [2,7].
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