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ABSTRACT

Rain-induced flash floods are common events in regions near the Andes mountain

range. Rapid urban development in this region, combined to the changing climate and

ENSO effects have resulted in an alarming proximity of flood-prone streams to densely

populated areas in the Andean foothills, increasing the risk for cities and infrastructure.

Simulations of rapid floods in these watersheds are particularly challenging, due to the

complex morphology, the insufficient hydrometeorological data, and the uncertainty posed

by the variability of sediment concentration. High concentrations produced by hillslope

erosion and rilling by the overland flow in areas with steep slopes and low vegetational

covering, can change significantly the dynamics of the flow as the flood propagates in

the channel. In this investigation, we develop a two-dimensional finite-volume numerical

model of the non-linear shallow water equations, coupled with the mass conservation of

sediment, considering the density effects and the changes on the rheology of the flow. We

carry out simulations to evaluate the effects of the sediment concentration on the floods in

the Quebrada de Ramón watershed, an Andean basin in central Chile. We simulate a con-

fluence and a total length of the channel of 10.4 km, with the same water hydrographs and

different combinations of sediment concentrations in the tributaries. Our results show that

the most important effects on the flood propagation are observed in the range of concen-

trations from 0% to 20%. By comparing simulations with clear-water and a concentration

of 60%, we find that the maximum flow depth at different locations along the channel in-

creases by 38%, and the total 2D flooded area is 75% larger in the latter case. Simulations

also show that variables such as the arrival time of the peak flow, and the shape of the hy-

drograph are not significantly affected by the sediment concentration, and depend mostly

on the steep channel morphology. Through this work we provide a framework for future

studies aimed at improving hazard assessment, urban planning, and early warning systems

in urban areas near mountain streams with limited data, and affected by rapid flood events.
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RESUMEN

Crecidas rápidas inducidas por precipitación son eventos comunes en regiones cer-

canas a la Cordillera de los Andes. El rápido desarrollo urbano en esta región, combinado

al cambio climático y los efectos de los eventos ENSO han resultado en una alarmante

proximidad de los cauces propensos a inundaciones, a áreas densamente pobladas en la

precordillera Andina, incrementando el riesgo de ciudades e infraestructura. Simulaciones

de crecidas rápidas en éstas cuencas son particularmente desafiantes, debido a la compleja

morfologı́a, la insuficiencia de datos hidrometeorológicos, y la incertidumbre generada

por la variabilidad en la concentración de sedimentos. Altas concentraciones produci-

das por la erosión de las laderas y el escurrimiento de flujos superficiales en áreas con

pendientes empinadas y baja cobertura vegetal, pueden cambiar la dinámica del flujo a

medida que la inundación se propaga en el canal. En ésta investigación, nosotros desar-

rollamos un modelo bidimensional en volúmenes finitos de las ecuaciones no lineares de

flujos someros, acopladas con la conservación de la masa de sedimentos, considerando los

efectos de la densidad y los cambios en la reologı́a del flujo. Nosotros llevamos a cabo

simulaciones para evaluar los efectos de la concentración de sedimentos en inundaciones

en la Quebrada de Ramón, una cuenca Andina en Chile central. Nosotros simulamos una

confluencia y un largo total del canal de 10.4 km, con el mismo hidrograma de agua clara y

diferentes concentraciones de sedimentos en los tributarios. Nuestros resultados muestran

que los efectos más importantes en la propagación de la inundación son observados en el

rango de concentraciones desde 0% a 20%. Comparando simulaciones con agua clara y

una concentración de 60%, nosotros encontramos que la máxima profundidad del flujo en

diferentes locaciones a lo largo del canal incrementa en un 38%, y el área total inundada

es un 75% más grande en el último caso. Simulaciones también muestran que variables

tales como el tiempo de arribo del caudal máximo, y la forma del hidrograma no son

significativamente afectados por la concentración de sedimentos, y depende mayoritaria-

mente de la empinada morfologı́a del canal. Mediante este trabajo nosotros proveemos un

xiv



marco de referencia para futuros estudios dirigidos a mejorar la evaluación del peligro, la

planificación urbana, y los sistemas de alerta temprana en áreas urbanas cercanas a rı́os de

montaña con datos limitados, y afectados por eventos de crecidas rápidas.

Palabras Claves: Inundaciones; ecuaciones de aguas someras; modelo numérico; cuenca

Andina; concentración de sedimento
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1. INTRODUCTION

Flash floods with high sediment concentrations are common natural events in mountain

rivers, which generate hazards in cities and other smaller human communities located near

river channels (European Environmental Agency (EEA), 2005; Wilby et al., 2008). In

spite of the continued efforts to provide structural and non-structural measures to control

flood hazards in general, economical losses have increased in recent decades (Slater et

al., 2015), and flood risks and vulnerability associated with various economic, political,

and social processes are also expected to increase in the future due to climate change and

urban growth (Blaikie et al., 2004; Pelling, 2003; Bankoff et al., 2004).

The spatial and temporal distribution of precipitation, the morphology of the drainage

basin, soil properties, and vegetation characteristics, naturally influence the magnitude and

frequency of floods and sediment transport. Anthropogenic factors also affect the volume

and peak discharges of floods in mountain rivers. Climate models predict a larger fre-

quency of intense precipitation events and cyclonic weather systems that will increase the

vulnerability in many mountainous regions in the future (Sanders, 2007; Arnell & Gosling,

2014; Boers et al., 2014). An amplification of the flood hazards is also expected due to the

continued expansion of cities located in floodplains (Hirabayashi et al., 2013; Jongman et

al., 2012), accelerated urbanization processes (Schubert et al., 2008), lack of urban plan-

ning (Rugiero & Wyndham, 2013), and changes in land-use and cover (Kundzewicz et al.,

2014).

The effectiveness to assess flood hazards and to design strategies aimed at reducing

potential damages caused by flooding are closely related to the understanding of the dy-

namics of the flow in real conditions. Physical models and experiments have provided

relevant insights on the flow physics of flash floods in extreme conditions (e.g. Testa et al.,

2007). Field-based and experimental research over complex topography, however, require

large facilities with advanced instrumentation to provide high-resolution measurements

that are also limited by the spatio-temporal scales at which rapid floods occur. Numerical
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models, on the other hand, have also become fundamental tools to advance our understand-

ing on the dynamics of floods, evaluating complex scenarios and predicting water depths

and flow velocities in arbitrary geometries (Siviglia & Crosato, 2016). Simulations yield

detailed information on the flood dynamics, which is sometimes experimentally inaccessi-

ble or cannot be directly measured in the field. They can also complement measurements,

becoming effective tools for urban planning and for designing early warning systems in

flood events (Mignot et al., 2006; Schubert & Sanders, 2012).

In most hydrodynamic models to simulate flood propagation, the nonlinear shallow

water equations (NSWE) or Saint Venant equations are employed to describe the dynam-

ics of the flow in homogeneous and incompressible fluids. They are obtained by vertically

averaging the three-dimensional Navier-Stokes equations, assuming a hydrostatic pressure

distribution, resulting in a set of horizontal two-dimensional (2D) hyperbolic conservation

laws that describe the evolution of the water depth and depth-averaged velocities in space

and time. In flows where discontinuities or rapid wet-dry interfaces develop, numerical

models employ Godunov-type of formulations, solving a Riemann problem at the inter-

faces of the elements of the discretization (Anastasiou & Chan, 1997; Toro, 2001).

The development of efficient and accurate numerical models to simulate flash floods,

however, is far from trivial, since multiple factors control the dynamics of the flow. Espe-

cially in mountainous regions, where rivers are characterized by three important features

that complicate their representation: (1) Complex bathymetries and steep slopes produce

rapid changes on velocities and water depths, formation of bores, and wet-dry interfaces;

(2) Large sediment concentrations affect directly the flow hydrodynamics by introducing

additional stresses that alter the momentum balance of the instantaneous flow; and (3)

Lack of accurate field data due to the difficulties on measuring hydrometeorological vari-

ables in high-altitude environments, with difficult access, and during episodes of severe

weather.

The Andes mountains in South America incorporate all these characteristics, and they

have been the scenario of many recent events with catastrophic consequences, leaving a

2



significant human toll and economic losses (Wilcox et al., 2016). The region is character-

ized by rapid floods with high concentrations of sediment, generally produced by hillslope

erosion and rilling by the overland flow in areas with steep slopes and low vegetational

covering. Additional factors, such as the storms caused by the South-American monsoon

(Zhou & Lau, 1998), and El Niño-Southern Oscillation (ENSO) can generate anomalous

heavy rainfall (Holton et al., 1989; Dı́az & Markgraf, 1992), producing great volume of

liquid precipitation and significant erosion and sediment transport in the flow.

High sediment concentrations during floods cause additional stresses produced by the

increase of the density and viscosity of the water-sediment mixture. In cases with homo-

geneous fluids and no significant sediment transport, numerical models only consider a

flow resistance term due to the bed shear stresses, represented by coefficients derived for

uniform flows, such as Manning, Chezy, and the Darcy-Weisbach friction factor. In hy-

perconcentrated flows, on the other hand, models need to account for the internal stresses

that emerge from the particle-flow and particle-particle interactions in the sediment-laden

flow. These stresses transform the rheological behavior of the mixture, represented by

additional terms of momentum transfer in the governing equations. A wide variety of rhe-

ological models have been proposed depending on the sediment properties and concen-

tration (see for instance Bingham, 1922; Bagnold, 1954; O’Brien & Julien, 1985, among

others). These models are based on empirical equations that have been estimated from

laboratory studies (Parsons et al., 2001), or back-calibrated from past events (Naef et al.,

2006).

Understanding and quantifying the dynamics of hyperconcentrated floods in moun-

tainous regions is thus critical to designing flood hazard mitigation strategies and control

measures. The main objective of this investigation is to gain fundamental insights on the

effects of high sediment concentrations on the propagation of floods in an Andean wa-

tershed. We develop a 2D finite-volume numerical model of the NSWE, building on the

work of Guerra et al. (2014), which incorporates the effects of the sediment load on the

3



dynamics of the flow over natural terrains and complex geometries. We carry out simu-

lations of flows with different sediment concentrations in the two main tributaries of the

Quebrada de Ramón watershed, located at the foothills of the Andes mountain range, to

the east of Santiago, Chile, where part of the city occupies the lower section of the river

basin. From the simulations we evaluate the effects of the sediment load on the evolution

of the flow depth and velocity, and we link the response of the river channel to the vari-

ations of sediment concentration. The analysis provides quantitative information of the

hyperconcentrated flood propagation, including the changes on the total flooded area and

momentum at cross-sections of the flow, reducing the uncertainty associated with flooding

in these mountain rivers.

The thesis is organized as follows: In section 2 we provide a brief description of

the characteristics of the Andes mountain range and the area of study, the Quebrada de

Ramón watershed in central Chile, where the confluence of two main channels is the most

important morphological feature of the rapid floods that reach the human settlements and

city infrastructure. The governing equations of the coupled flow and sediment transport

model, and the numerical methods employed in this investigation are explained in section

3. In section 4 we validate the model by comparing the numerical results with analytical

solutions and experiments of shallow-mudflows where spatial and temporal gradients of

sediment concentration are important. Section 5 contains the analysis of the simulations in

the Quebrada de Ramón watershed for a large flood, considering different concentrations

in each of the tributaries. We study the consequences of the hyperconcentration on the

dynamics of the flow, the total momentum in the cross-sections of the river, and local water

depths and velocities. Finally, in section 6 we summarize the findings of this investigation

and outline topics for future research.
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2. THE QUEBRADA DE RAMÓN WATERSHED

The Andean foothills are especially susceptible to flash floods with high sediment

loads. The complex morphology of the basins, the proximity to urban areas, and the lack of

monitoring are some of the factors that increase the flood hazards in the region. In addition,

storms that are influenced by ENSO cause significant rainfall with warm temperatures,

elevating the 0◦C isotherm. These warm conditions generate a large total contributing area

of the watershed that receives mostly liquid precipitation, increasing the runoff volume,

the peak discharges, and creating high flow velocities and sediment production. Similar

conditions are generated by rising local temperatures associated with urban heat island

effects due to the environmental degradation of the Andean foothills, and the decrease of

vegetation productivity, biomass, and soil moisture (Romero & Ordenes, 2004).

A series of floods produced by these factors have been recorded throughout history in

the Andes. Some of the most destructive events have been generated by landslides trig-

gered by rainfall, which have dammed rivers and later collapsed in catastrophic events,

such as the Mayunmarca in the Mantaro river in Perú in 1974, and the Paute river in

Ecuador in 1993 (Voight, 1978; Harden, 2001). High-intensity precipitation during warm

storms has also produced rapid hyperconcentrated floods with many fatalities and eco-

nomic losses in Medellı́n, Colombia, in 1987 (Aguilar et al., 2008), and in the Atacama

desert in northern Chile (Sepúlveda et al., 2006; Wilcox et al., 2016).

To understand the effects of the sediment concentration on the flood hydrodynamics in

the Andes, in this investigation we select the Quebrada de Ramón watershed as the case

of study. This basin has a total area of 38.5 km2 and it is located in central Chile, to the

east of the city of Santiago as shown in Figure 2.1, with elevations that range from 800

to 3,400 m asl (Sepúlveda et al., 2006). The Quebrada de Ramón stream drains the north

section of the watershed, flowing in N-S direction in the headwaters, with a mean slope

around 20−30◦. In the middle zone, between 1,450 and 1,650 m asl, the flow is oriented

in E-W direction, with a mean slope of nearly 10◦. The confluence of the Quebrada de

5



Ramón with the Quillayes stream, which is oriented S-N with a mean slope of 20◦, is the

main morphological feature of the channel located at an elevation of about 1,200 m asl.

Downstream of the confluence the mean slope of the stream decreases to 5−10◦ (Lara,

2007).

Figure 2.1. Satellite image of the Andes in central Chile, next to the city of
Santiago. The Quebrada de Ramón watershed is highlighted in red (Google
Earth, 2016).

This watershed has many interesting features due to the proximity of the city and

growing urbanization. In the lower section, the natural channel has been covered by the

city, and the flow is now diverted into a concrete channel with a design discharge of 20

m3/s. The size of the basin and the range of elevations generate high velocities and hy-

perconcentrated flows during flood events, and the hydrological response of the catchment

is very sensitive to the location of the 0◦C isotherm elevation, which is usually located
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between 1,500 and 2,500 m asl. Small variations of the freezing level position originate

large differences in the contributing area.

The most recent and catastrophic flood in this watershed occurred on May 3, 1993.

A flood was produced by a warm storm associated to the ENSO phenomenon (Garreaud

& Rutllant, 2009), which generated heavy rainfall over the Andean foothills, reaching a

total of 30 mm in 16 h, which corresponds to a return period of 25 years of the precipita-

tion, with a maximum intensity of 9.8 mm/h. The temperature increment raised the 0◦C

isotherm from its average altitude to 4,000 m asl, which has a return period of 10 years

(Garreaud & Rutllant, 2009). As a result, a large debris flow reached the city in a few

minutes, leaving 26 people dead, 8 missing, and damaging residential areas with a total

cost that reached US$ 5 million (ONEMI, 1995).

In the following sections we describe and validate the numerical model that couples

the flow hydrodynamics with the sediment transport, to simulate a 50-year flood whose

peak flow exceeds considerably the capacity of the channelization in the city. The model

is tested with different sediment concentrations to evaluate the consequences of high sed-

iment loads on the inundation process and flood propagation.
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3. NUMERICAL MODEL FOR HYPERCONCENTRATED FLOWS

3.1. Governing Equations

Rapid floods over the complex topography of mountainous regions are commonly af-

fected by high sediment concentrations, which change the rheology of the flow. By as-

suming that the mixture preserves the Newtonian constitutive relation between stress and

rate of strain, the NSWE equations can be modified to account for the heterogeneous dis-

tribution of sediment in space (Loose et al., 2005; Michoski et al., 2013).

The NSWE model implemented in this investigation has the following assumptions: (i)

hydrostatic pressure distribution; (ii) negligible vertical velocities; (iii) vertically-averaged

horizontal velocities; (iv) horizontal heterogeneous fluid density; (v) homogeneous density

in the vertical direction; and (vi) fixed bed. The momentum sources and sinks consider

the gravity term, and the bed resistance and rheology of the mixture, including the yield

stress, Mohr-Coulomb, viscous stresses, and turbulent and dispersive stresses, as discussed

in section 3.2.

If we denote the dimensional variables of the flow with a hat (̂ ), the set of equations

can be written as follows,
∂ρ̂ĥ

∂t̂
+
∂ρ̂ĥû

∂x̂
+
∂ρ̂ĥv̂

∂ŷ
= 0 (3.1)

∂ρ̂ĥû

∂t̂
+

∂

∂x̂

(
ρ̂û2ĥ+

1

2
ρ̂gĥ2

)
+
∂ρ̂ûv̂ĥ

∂ŷ
= −ρ̂gĥ ∂ẑ

∂x̂
− τ̂x̂ (3.2)

∂ρ̂ĥv̂

∂t̂
+
∂ρ̂ûv̂ĥ

∂x̂
+

∂

∂ŷ

(
ρ̂v̂2ĥ+

1

2
ρ̂gĥ2

)
= −ρ̂gĥ∂ẑ

∂ŷ
− τ̂ŷ (3.3)

∂Cĥ

∂t̂
+
∂Cĥû

∂x̂
+
∂Cĥv̂

∂ŷ
= 0 (3.4)

where ĥ is the flow depth, and û and v̂ are the depth-averaged velocities in the cartesian

coordinate directions x̂ and ŷ, respectively. The bed elevation is denoted as ẑ, g is the ac-

celeration of gravity, t̂ represents the time, ρ̂ is the density of the water-sediment mixture,

C is the volumetric concentration of sediment, and τ̂x and τ̂y are the total stresses.
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To solve the system of equations with the conservative variables ĥ, ĥû, ĥv̂ and ĥC,

the density of the mixture ρ̂ is replaced by ρ̂ = Cρs + (1 − C)ρw, where ρw is the water

density and ρs the sediment density. Therefore, the conservative form of the equations can

be written as:

Q̂,t̂ + F̂ (Q̂),x̂ + Ĝ(Q̂),ŷ = ŜB(Q̂) + ŜS(Q̂) + ŜC(Q̂) (3.5)

where Q̂ is the vector that contains the conservative hydrodynamic variables, and F̂ and Ĝ

are the flux vectors in each coordinate direction. The term ŜB represents to the bed slope,

and ŜS correspond to the bed and internal stresses of the flow. The components of this

equation 3.5, are expressed as follows:

Q̂ =


ĥ

ĥû

ĥv̂

Cĥ

 , F̂ (Q̂) =


ĥû

û2ĥ+ 1
2
gĥ2

ûv̂ĥ

Cĥû

 , Ĝ(Q̂) =


ĥv̂

ûv̂ĥ

v̂2ĥ+ 1
2
gĥ2

Cĥv̂

 ,

ŜB(Q̂) =


0

−gĥ ∂ẑ
∂x̂

−gĥ∂ẑ
∂ŷ

0

 ŜS(Q̂) =


0

−Ŝx̂
−Ŝŷ

0

 ŜC(Q̂) =


0

−1
2
g
(
ρs−ρw
ρ̂

)
ĥ2 ∂C

∂x̂

−1
2
g
(
ρs−ρw
ρ̂

)
ĥ2 ∂C

∂ŷ

0



(3.6)

In the vector of source terms ŜC of the coupled model presented in equation 3.5, there is

a term that does not appear in the conventional NSWE, which incorporates the effects of

the spatial gradients of sediment concentration. This term is significant in rapid flows with

large concentration gradients, such as dam-break with sediment-laden debris flows (Cao et

al., 2004), and in cases with important interactions of clear water and hyperconcentrated

flows (i.e. lahars).

Here we follow the same procedure outlined in Guerra et al. (2014), expressing the

equations in non-dimensional form using a velocity scale U , a scale for the water depth

H, and a horizontal length scale of the flow L, which characterize the flow. In this case,
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two non-dimensional parameters appear in the equations, the relative density between the

sediment and water s = ρs/ρw, and the Froude number Fr = U/
√
gH. Therefore the set

of dimensionless equations can be written as follows,

Q,t + F (Q),x +G(Q),y = SB(Q) + SS(Q) + SC(Q) (3.7)

where the vectors correspond to the following expressions:

Q =


h

hu

hv

Ch

 , F (Q) =


hu

u2h+ 1
2Fr2

h2

uvh

uCh

 , G(Q) =


hv

uvh

v2h+ 1
2Fr2

h2

vCh

 ,

SB(Q) =


0

−h
Fr2

∂z
∂x

−h
Fr2

∂z
∂y

0

SS(Q) =


0

−Sx
−Sy

0

SC(Q) =


0

−h2
2Fr2

(
s−1

C(s−1)+1

)
∂C
∂x

−h2
2Fr2

(
s−1

C(s−1)+1

)
∂C
∂y

0



(3.8)

To adapt the computational domain to the complex arbitrary topography in mountain-

ous watersheds, we use a boundary fitted curvilinear coordinate system, denoted by the

coordinates (ξ, η). Through this transformation we can have a better resolution in zones

of interest and an accurate representation of the boundaries. We perform a partial transfor-

mation of the equations, maintaining the cartesian components in the vector Q, such that

the system of equations is written as follows,

∂Q

∂t
+ J

∂F

∂ξ
+ J

∂G

∂η
= Sb(Q) + SS(Q) + SC(Q) (3.9)

where the Jacobian of the coordinate transformation J is expressed in terms of the metrics

ξx, ξy, ηx and ηy, such that J = ξxηy − ξyηx (see Lackey & Sotiropoulos, 2005; Guerra et

10



al., 2014, for details). The fluxes F and G are expressed as follows,

F =
1

J


hU1

uhU1 + 1
2Fr2

h2ξx

vhU1 + 1
2Fr2

h2ξy

ChU1

 , G =
1

J


hU2

uhU2 + 1
2Fr2

h2ηx

vhU2 + 1
2Fr2

h2ηy

ChU2

 (3.10)

and source vectors associated to the bed slope, the shear stress and the spacial gradient of

the sediment concentration, respectively,

Sb(Q) =


0

−h(zξξx+zηηx)
Fr2

−h(zξξy+zηηy)
Fr2

0

SS(Q) =


0

−Sx
−Sy

0



SC(Q) =


0

−h2(Cξξx+Cηηx)
2Fr2

(
s−1

C(s−1)+1

)
−h2(Cξξy+Cηηy)

2Fr2

(
s−1

C(s−1)+1

)
0



(3.11)

where U1 y U2 represent the contravariant velocity components defined as U1 = uξx+vξy

and U2 = uηx + vηy, respectively.

3.2. Rheological Model

The classification of gravity-driven flows with higher concentrations usually depend

on the rheology of the mixture, sediment size distribution, and sediment composition. De-

pending on these characteristics, the flows can vary from nearly dry landslides to water

flow, with intermediate conditions such as debris flows, mudflows, and mud floods (see

Julien & León, 2000; Naef et al., 2006, for details). The rheological behavior that deter-

mines the magnitude of the momentum losses is incorporated in additional source terms of

the hydrodynamic model previously presented in equation 3.11. As summarized by Ancey
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(2007), gravity-driven flows can consider rheological models such as Bagnold, Bingham,

Voellmy, or Coulomb, depending on the assumptions of the effects of the particles on the

dynamics of the flow. In our numerical model we implement the quadratic shear stress

model developed by O’Brien and Julien (1985) (see also O’Brien et al., 1993), which

represents the total stress τ̂i in each coordinate direction i, as follows,

τ̂i = τ̂yield + µ̂m
∂ûi
∂ẑ

+ ζ̂

(
∂ûi
∂ẑ

)2

(3.12)

where τ̂yield represents the sum of the Mohr-Coulomb and yield stresses, the second term

is the viscous shear-stress that depends on the dynamic viscosity of the mixture µ̂m and

the vertical velocity gradient expressed as a function of the cartesian velocity components

ûi. The last term corresponds to the sum of the turbulent and dispersive stresses, which

depend quadratically of the velocity gradient and the inertial shear stress coefficient ζ̂ ,

defined by the following equation,

ζ̂ = ρ̂ l̂2m + cBd ρs λ
2 d2s (3.13)

where l̂m = 0.4 ĥ is the Prandtl mixing-length (see Julien & León, 2000, for details), cBd is

an empirical proportionality constant equal to 0.01 according to Bagnold (1954), ds is the

median sediment diameter, and λ is Bagnold’s linear concentration, which corresponds to

the ratio between the grain diameter and the mean free dispersion distance. The magnitude

of λ is related to the volumetric concentration of the mixture and the maximum volumetric

static concentration C∗, as defined by Bagnold (1954),

λ−1 =

[(
C∗

C

) 1
3

− 1

]
(3.14)

In the present numerical model we modify the quadratic model of O’Brien and Julien

(1985) to represent better the stresses for a wide range of sediment concentrations, express-

ing clearly the contribution of each physical mechanism as the combination of relations
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that account for the stresses, which have been obtained from experiments or physically-

based formulas. To determine the values of the source terms defined as Si = τi/ρ in

equation 3.11, the stresses are non-dimensionalized, depth-integrated, and added in the

source term vector for each coordinate direction, such that the total stresses are expressed

as:

Si = Syield + Svi + Stdi (3.15)

where Syield represents the sum of the yield and Mohr-Coulomb stress, Svi the viscous

stress and Stdi the sum of the dispersive and turbulent stresses. Each of these terms are

computed separately from empirical formulas.

The yield and Mohr-Coulomb stresses Syield is calculated from the following expres-

sion:

Syield =
L
H

[
τyield
ρ

]
(3.16)

in which the yield shear stress and the density of the mixture are non-dimensionalized

with the scale of the inertia ρwU2, and the water density ρw, respectively. The yield stress

is isotropic and calculated using the following empirical relation given in SI units:

τ̂yield = a 10bC (3.17)

where for typical soils, the experimental coefficients a and b are equal to 0.005 and 7.5,

respectively (Julien, 2010).

The viscous term Svi is computed from the bed stress in each cartesian direction

τx = ρ Cf u
√
u2 + v2 and τy = ρ Cf v

√
u2 + v2, using the laminar friction coeffi-

cient defined as Cf = k/Re, where k is the viscous resistance parameter equal to 64 in

open-channel flows (Sturm, 2001). The Reynolds number is defined as Re = ρ
√
u2+v2h
µm

,

where the dynamic viscosity of the mixture is non-dimensionalized as µm = µ̂m
ρwUH . Thus,

the expression used to represent the viscous losses is written as:

Svi =
L
H

[
k µm ui

8ρh

]
(3.18)
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To estimate µ̂m we use the formula proposed by Eyring (1964) and Thomas (1965). This

relation is a function of the volumetric sediment concentration in the mixture and the

dynamic viscosity of water µw in SI Units:

µ̂m
µw

= 1 + 2.5C + 10.05C2 + 0.00273 exp (16.6C) (3.19)

To compute the last term in equation 3.15, Std, a Manning or Chézy coefficient is used

to represent the friction factor Cf in the bed stress formula, resulting in the following

expression for each cartesian coordinate direction:

Stdi =

 Manning: L
H

[
n2
td ui

√
u2+v2

Fr2 h1/3

]
Chézy: L

H

[
ui
√
u2+v2

Fr2 C2
ztd

] (3.20)

Since Std represents the sum of friction, turbulence and dispersive stresses, we use ei-

ther a modified Manning ntd or Chézy Cztd coefficients. To estimate their value we add

two Darcy-Weisbach friction factors, denoted as ft and fd, representing the turbulent and

dispersive effects respectively. To compute ft, we use Colebrook’s equation:

1√
ft

= −2 log

(
k̂s

3.7Hh
+

2.51

Re
√
ft

)
(3.21)

The value of ft is calculated as a function of the depth of the mixture h, the Reynolds

number, and the bed specific roughness k̂s, which is estimated as follows (Bathurst, 1978),

k̂s = 6.8ds [SI Units] (3.22)

To account for the dispersive effects, fd is calculated using the relation proposed by

Takahashi (2007): √
8

fd
=

2Hh
5ds

{
1

0.02

[
C + (1− C)

ρw
ρs

]} 1
2

λ−1 (3.23)

where ρs and ρw are the sediment and water densities, respectively, and λ is Bagnold’s

linear concentration defined previously in equation 3.14. In general, numerical simulations

show that the turbulent friction coefficient ft is significantly smaller than the dispersive
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factor fd (D’Aniello et al., 2015). Dispersive effects, however, become important for low

values of relative roughness ( h
ds
< 50), as discussed in detail by Julien and Paris (2010).

To obtain the terms Stdi , we use the following relation proposed by Julien (2010), to

transform the combined Darcy-Weisbach friction coefficient ftd = ft+fd in an equivalent

Manning o Chézy coefficient: √
8

ftd
= CztdFr =

h1/6Fr

ntd
(3.24)

3.3. Numerical Method

The numerical solution of the system of equations 3.9 is based on the method devel-

oped by Guerra et al. (2014) to solve the NSWE, which has shown great efficiency and

precision to simulate extreme flows and rapid flooding over natural terrains and complex

geometries. This is a finite-volume formulation that is implemented in two steps: First,

in the so-called hyperbolic step, the Riemann problem is solved at each element of the

discretization without considering momentum sinks. The flow is reconstructed hydro-

statically from the bed slope source-term, adding the effects of the spatial concentration

gradients. In the second step we incorporate the shear stress source terms by means of

a semi-implicit scheme, correcting the predicted values of the hydrodynamic variables

obtained in the previous step.

The initial hyperbolic step consists of solving numerically the following equation:

∂Q

∂t
+ J

∂F

∂ξ
+ J

∂G

∂η
= SB(Q) + SC(Q) (3.25)

in which a semi-discrete finite-volume formulation in generalized curvilinear coordinates

can be written as follows,

∂ Qi,j

∂t
+
Ji,j
∆ξ

(
Fi+ 1

2
,j − Fi− 1

2
,j

)
+
Ji,j
∆η

(
Gi,j+ 1

2
−Gi,j− 1

2

)
= SBi,j + SCi,j (3.26)

where Qi,j and Ji,j represent the vector of hydrodynamic variables and the Jacobian of

the coordinate transformation at the center of the discrete elements of the grid (i, j). The
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vectors Fi± 1
2
,j and Gi,j± 1

2
are the numerical fluxes through each of the cell interfaces. The

terms ∆ξ and ∆η correspond to the size of the discretization, and SBi,j and SCi,j are the

discrete source terms of the bed slope and concentration gradients, respectively.

To compute the numerical fluxes we implement the VFRoe-ncv method (Gallouët et

al., 2003; Marche, 2006) to solve equation 3.25, through a non-conservative change of

variables, linearizing the Riemann problem (Guerra et al., 2014). The vector of hydro-

dynamic variables Qi,j is extrapolated to the boundaries of the each cell to ensure the

non-negativity of the intermediate states and flow depths, preserving the dry zones of the

terrain. The Monotonic Upwind Scheme for Conservation Laws method (MUSCL), devel-

oped by Van Leer (1979), is used to perform the extrapolation with second order accuracy.

Finally, the methology developed by Masella et al. (1999) is used to avoid unphysical

solutions due to the lack of dissipation to capture shock waves.

The bed-slope source term SBi,j is computed following the well-balanced methodol-

ogy developed by Audusse et al. (2004) and adapted to generalized curvilinear coordinates

by Guerra et al. (2014). This method reconstructs hydrostatically the free surface by per-

forming a balance between the topographic variations of the domain and the hydrostatic

pressure. The hydrodynamic variables and bed elevations are extrapolated to the bound-

aries of the cells using the MUSCL method, preserving locally and globally the dry zones

and stationary steady-states. To ensure the non-negativity of the flow depth and to avoid

spurious oscillations, the minmod limiter is implemented during the hydrostatic recon-

struction of the fluid depth; such that realistic values of the spatial gradients of depth are

reached in the shock waves (LeVeque, 2002; Bohorquez & Fernandez-Feria, 2008).

The concentration gradient term SCi,j is discretized using the following scheme:

SCi,j =
−h2i,j
2Fr2

(
s− 1

Ci,j(s− 1) + 1

)(
Ci+ 1

2
,j − Ci− 1

2
,j

∆ξ
ξx +

Ci,j+ 1
2
− Ci,j− 1

2

∆η
ηx

)
(3.27)
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where, hi,j and Ci,j are the centered-cell flow depth and sediment concentration, respec-

tively, Ci± 1
2
,j and Ci,j± 1

2
are the sediment concentrations at the interfaces of the each cell,

obtained from a first order upwind scheme.

In the second step of the numerical solution, we incorporate the momentum source

terms in vector SS(Q), solving the following system of equations,

∂hu

∂t
= −Sx;

∂hv

∂t
= −Sy (3.28)

We use a splitting semi-implicit method (Liang & Marche, 2009), employing a second or-

der Taylor expansion. The limiters developed by Burguete et al. (2007) are implemented

to avoid numerical instabilities at the wet/dry interfaces, where the flow depths are shal-

lower. These limiters are designed to prevent unphysical effects, such as reversed flows

due to high shear stresses.

Finally, the temporal integration of equation 3.25 is carried out by using a fourth-order

Runge-Kutta numerical scheme. The condition for numerical stability of the model is

based on the Courant-Friedrichs-Lewy criterion CFL.

The boundary conditions are handled by creating two rows of “ghost-cells” outside of

the computational domain (Sanders, 2002). We implement three types of boundaries: (1)

Open or transmissive boundary at the outlets; (2) Closed reflective boundary for the solid

walls; and (3) Inflow boundary to introduce a hydrograph or a controlled discharge toward

the computational domain.
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4. VALIDATION

A comprehensive validation study of the numerical model was performed by Guerra

et al. (2014), considering clear-water flow, and demonstrating the accuracy of our method

by qualitative and quantitative comparisons against analytical solutions containing sharp

gradients of velocity and water depths, and experimental data of rapid flood propagation

(the reader is referred to Guerra et al., 2014, for details). Here we validate the capabilities

of the model related to the variable density and the rheology of the flow.

4.1. Quiescent equilibrium in a tank

This benchmark test is developed to demonstrate the capacity of the model to preserve

the hydrostatic state with density differences. An analytical solution is obtained from the

procedure developed by Leighton et al. (2009), in which the original system of equations

3.1 to 3.4 is simplified by considering steady flow (∂(·)
∂t̂

= 0) and a stationary initial state

(û = v̂ = 0) in inviscid flow with zero stresses (τ̂x̂ = τ̂ŷ = 0). Therefore, the equations

are reduced to:
∂

∂x̂

(
1

2
ρ̂gĥ2

)
= −ρ̂gĥ ∂ẑ

∂x̂
(4.1)

which can be written as follows:

ĥ

ρ̂

∂ρ̂

∂x̂
+ 2

∂ĥ

∂x̂
= −2

∂ẑ

∂x̂
(4.2)

Hence, for a rectangular tank of length L and width A, with a constant initial flow depth

ĥ(x̂) = h0, and a bed described by a cosine function:

ẑ(x̂) = A

[
1− cos

(
2πx̂

L

)]
(4.3)

the analytical solution of equation 4.2 becomes:

ρ̂(x̂) = ρ0 exp

[
2A

h0
cos

(
2πx̂

L

)]
(4.4)

where ρ0 is the initial reference value of the fluid density.
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The dimensions and initial conditions of this test are presented in the Figure 4.1, where

the reference density ρ0 was set to 1,000 kg/m3. The 1D computational domain was dis-

cretized in a grid of 1, 001 cells on the longitudinal direction, with a reflective solid wall

boundary condition at each wall of the tank. The total simulated time was 100 s and the

CFL number was set to 0.2.

Figure 4.1. Dimensions and initial conditions of the rectangular tank used
to the quiescent equilibrium test (Leighton et al., 2009).

Results show that there is an excellent agreement between the analytical and numer-

ical solution for the free surface, as shown in Fig. 4.2(a), and the density profile in Fig.

4.2(b). The maximum error of water depth is equal to 10−7 m, and the model is capable

of maintaining the steady-state of the flow.

4.2. Density dam-break with two initial discontinuities

To test the model in unsteady conditions, we simulate a density-driven dam-break to

evaluate the evolution of the hydrodynamic variables in space and time. The numerical
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(a)

(b)

Figure 4.2. Quiescent equilibrium test. Comparison between theoretical
and numerical profiles of hydrodynamic variables. (a) Free surface; and
(b) Fluid density.

experiment is based in the work developed by Leighton et al. (2009), which consists of a

horizontal rectangular tank of 100 m long, with two fluids of different densities ρ1 and ρ2,

as shown in Figure 4.3. The acceleration of gravity is considered equal to 1 m/s2, and the

shear stresses are neglected.

Two different simulations are performed for ρ2 = 0.1 kg/m3 and ρ2 = 10 kg/m3, while

ρ1 is kept constant and equal to 1 kg/m3. Both simulations are implemented on a regular

grid with a resolution of 0.005 m during 30 s, using a CFL = 0.2 and reflective boundary

conditions at solid walls.

In Figure 4.4 we show the instantaneous flow depth and velocity profiles at 2 and 30

s, from the start of the first simulation (ρ2 = 0.1 kg/m3). A good agreement is found with
20



Figure 4.3. Initial state of the density-driven dam-break (Leighton et al., 2009).

respect to the solution provided by Leighton et al. (2009), as we capture the propagation

of the free surface and velocity magnitudes that are generated by the initial imbalance of

the hydrostatic pressure at the interface of the fluids. The amplitudes of the main shock are

slightly smaller due to the second-order accuracy of the numerical model. Similar results

are obtained for ρ2 = 10 kg/m3 as shown in Figures 4.5 and 4.6.

Note that when ρ2/ρ1 < 1, the flow velocities are directed toward the middle of the

tank, where the fluid is less dense, which increases the flow depth in that zone. Conversely,

when ρ2/ρ1 > 1, the fluids move to reach hydrostatic equilibrium, balancing the pressure

in the entire domain, which produces higher depths at the sidewalls.

4.3. Large-scale experimental dam-break

To test the rheological model, we simulate the large-scale dam-break experiment with

high sediment concentration performed by Iverson et al. (2010). We compare the numer-

ical results with the measurements of flow depth and the arrival time of the wave front. It

is important to note that the simulation of this experiment is a very challenging computa-

tional test for the numerical model. The slope of the channel, the sediment concentration,

and the flow phenomena as the wave advances generates a complex dynamic that is diffi-

cult to measure and reproduce with a high resolution numerical model.
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(a)

(b)

Figure 4.4. Density driven dam break. Case ρ2 = 0.1 kg/m3: Comparison
of the flow depth (on the left) and velocity profiles (on the right) at (a) t̂ = 2
s; and (b) t̂ = 30 s from the beginning of the simulation.

Figure 4.5. Density driven dam break. Case ρ2 = 10 kg/m3: Comparison
of the flow depth at t̂ = 1 s, 4 s, 12 s, and 30 s from the beginning of the
simulation.

The experiment consists of the sudden release of a large volume of a sediment-water

mixture on a 95 m long rectangular channel, with a cross section of 2 m wide by 1.2 m

deep. The channel is very steep, with an inclination of 31◦ on the first 75 m downstream
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Figure 4.6. Density driven dam break. Case ρ2 = 10 kg/m3: Comparison
of velocity profiles at t̂ = 1 s, 4 s, 12 s, and 30 s from the beginning of the
simulation.

from the gate, and 2.5◦ on the downstream section. The total volumen released in the

dam-break experiment is 6 m3, with an initial depth of 2 m and a volumetric sediment

concentration of 64.7%. The bed roughness changes along the channel, with a represen-

tative roughness height of 1 mm on the first 6 m of the channel measured from the gate,

and a roughness of 15 mm in the rest of the channel, downstream. The sediment density

considered in this case is ρs = 2, 700 kg/m3.

The unsteady inflow condition is the debris flow at a distance of 2 m downstream from

the gate, which is shown in Figure 4.7. This was obtained from the simulation of the dam

break delayed 1 s, to consider the delay on the opening of the gate, as reported by Iverson

et al. (2010). We simulate a total time of 25 s, using a 2D spatial discretization with a

uniform resolution of 0.1 m, and a CFL number equal to 0.1.

In Figure 4.8 we compare the flow thickness between the simulation and the exper-

iment at two locations, corresponding to 32 and 66 m downstream of the gate. The ex-

perimental data was collected by Iverson et al. (2010) at a frequency of 100 Hz. In our

simulation, the grid is fine enough to resolve the well-known roll waves that appear at

high Froude numbers in steep channels (Bohorquez & Fernandez-Feria, 2006). This phe-

nomenon has also been recently observed in the simulations of the same experiment by

Bohorquez (2011). In this case we capture roll waves with an amplitude close to 0.5 m, as

shown by the red line in Figure 4.8.
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Figure 4.7. Unsteady inflow boundary condition corresponds to the cross-
section flow measured at a location of 2 m downstream of the gate (Iverson
et al., 2010).

To compare the numerical results directly with data provided by the experiments, we

apply the same moving-average filter used to smooth the experimental data (black line in

Figure 4.8). The model reproduces with good agreement the arrival time of the wave front

in both gauges, with delays smaller than 0.2 s. The maximum flow depth computed at the

location of 32 m and 66 m downstream from the gate is over- and underestimated by just

1.78 cm and 1.6 cm respectively.

The simulated and observed wave-front position in time are very similar (Figure 4.9)

with values of the mean square error and the coefficient of determination of the fit being

1.98 m and R2 = 99.28%, respectively. The sudden discontinuity in the computed front

velocity at 7.6 s is due to a roll wave advancing through the front, which briefly slows

down the flow. Due to the resolution of the experimental results, we cannot compare

directly this phenomenon captured in the simulation.
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(a) (b)

Figure 4.8. Comparison of the flow thickness measured in the experiment
of Iverson et al. (2010), and computed with our model. Flow thickness at
two locations: (a) 32 m; and (b) 66 m downslope from the gate.

Overall, the validation study shows that the numerical model in these extreme cases is

very robust and it is able to reproduce many of the phenomena of interest that appear in

hyperconcentrated flash floods.

(a) (b)

Figure 4.9. Comparison of the position of the flow front as a function of
time: (a) The position of the flow front over the time (b) Comparison of
the experimental and simulated flow front position. The dashed line is the
perfect fit with slope equal to 1.
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5. FLOOD PROPAGATION IN THE QUEBRADA DE RAMÓN

To study the effects of sediment concentration on flash floods in mountain rivers, we

selected the Quebrada de Ramón watershed in the Andes of central Chile to evaluate dif-

ferent scenarios regarding the sediment load. We not only characterize locally the depths

and velocities of the flow as the flood propagates, but we also evaluate the extension of

flooded area and the momentum of the flow in the lower section of the watershed, within

the city of Santiago.

As described in section 2, there are two major tributaries draining the north and south

sections of the watershed. We define the computational domain shown in Figure 5.1,

which comprises a total distance of 10.4 km along the main channel. The highest part

of the computational domain is located at an elevation of 2,212 m asl, with the Quebrada

de Ramón stream (QR) and the Quillayes stream (Qui) approaching from the north and

south respectively. The upstream boundary of the domain is located 3 km upstream of the

confluence (Figure 5.2c). The channel downstream the confluence continues to the flood

zone, with a single main river channel shown in Figure 5.2b, and ends at an elevation of

652 m asl, where the stream has been channelized in the city, as shown in Figure 5.2a. A

curvilinear boundary-fitted grid is used to perform the simulations, consisting of a total of

10, 070 × 218 grid nodes. The grid resolution varies progressively in the flow direction

from 0.5 m upstream and near the confluence, to 2 m of resolution within the flooding

zone. On the cross-stream direction, the mean resolution of the grid close to the channels

is approximately 1 m. To construct the grid, we use a 1m resolution LIDAR of the area

around the channels. The LIDAR data is coupled to a 30 m resolution digital elevation

model (DEM) from satellite images for the rest of the watershed.

The bed roughness is represented by a mean sediment grain diameter ds. Field mea-

surements are used to interpolate the values of ds in the entire computational domain using

the nearest neighbor method. The mean sediment grain size distribution is shown in Figure

5.3, along with the 7 points where we report the dynamics of the flow depth, which include
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Figure 5.1. Satellite image of the Quebrada de Ramón watershed and the
computational domain. The area enclosed by the black line is defined from
the LIDAR topography, and incorporates the section of the city around the
river channel.

Figure 5.2. Three photos along the Quebrada de Ramón stream from
downstream to upstream: a) The channelized section, b) The floodplain,
and c) The confluence of the Quebrada de Ramón and the Quillayes stream.
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locations at the highest elevation of the domain (denoted as QR-U and Qui-U), upstream

of the confluence (QR-D and Qui-D), downstream of the confluence (QR-C), the flooding

zone (QR-F), and at the outlet (QR-E).

Figure 5.3. Distribution of the mean sediment size in millimeters. White
circles denote the measurement sites where we report the propagation of
the flood.

The hydrographs of the events studied in this investigation for the two main rivers

that correspond to the tributaries of the confluence are shown in Figure 5.4. The return

period of these hydrographs have been is estimated in 50 years, and they were obtained

from a continuous semi-distributed hydrological model built in HEC-HMS, for the 1971

- 2010 period (Rı́os, 2016). This case is selected since the peak flow at the outlet is

expected to exceed significantly the capacity of the channelized section in the city. The

river beds downstream are considered dry at the beginning of the simulation, to avoid the

any additional uncertainty associated to the sediment concentration of the initial flow.

We perform the simulations for a total physical time of 1 day, using a simulation

time step defined by the stability criterion with a CFL = 0.9. The inflow boundary
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Figure 5.4. 50-year return period hydrographs in both streams obtained
from a hydrological model of the catchment (Rı́os, 2016). This conditions
in the Quebrada de Ramón and at the Quillayes stream can potentially pro-
duce a large-scale flood in the watershed.

condition in Figure 5.4 is used at the eastward boundaries, and open boundary conditions

are considered at all the other boundaries of the computational domain.

5.1. Simulations of hyperconcentrated flows

The actual sediment concentration during flash floods in Andean watersheds is un-

known in most cases. In addition to the lack of information in these rivers, landslides due

to erosion produced by soil saturation in the steep slopes of the mountains are common.

These conditions can increase considerably the sediment supply to the streams during
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flood events. To reduce the uncertainty regarding the effects of the sediment concentra-

tion, we study the dynamics of a flood for different scenarios by carrying out a series of

simulations to compare and understand the flood hazards and effects of hyperconcentration

on the two main streams of the Quebrada de Ramón watershed.

We simulate four different scenarios considering different concentrations of 0%, 20%,

40% and 60% equal in both streams. Two another cases are simulated, with concentrations

of 20% in the Quebrada de Ramón stream and 60% in the Quillayes stream, and viceversa.

To evaluate the impacts of these concentrations on the flood dynamics, in the following

sections we analyze the flow hydrodynamics including: (1) the position and velocity of

the flood wave front; (2) the peak flow and arrival time, (3) the flooded areas; (4) the effect

of the sediment concentration on the depth and flow velocity; and (5) the momentum of

the flow in the urban zone.

5.1.1. Position and mean velocity of the wave front

To quantify the propagation of the flood along the channels and the arrival time of the

flood to the city, we compute the mean velocity of the wave front by tracking its position

in time. Table 5.1 shows the mean velocity in the section upstream of the confluence,

for the Quebrada de Ramón and Quillayes stream. As it can be anticipated, the velocity

of the wave front decreases with the concentration, as interparticle collisions and internal

stresses reduce the momentum of the flow, increasing the flow resistance. Note that the

flood propagation velocity is very sensitive to variations of concentration in more dilute

conditions. Overall, the velocity for a concentration of 20% is 60% slower than that of

clear water. On the other hand, when the concentration increases from 40% to 60%, the

velocity is reduced by only 10%. The mean wave front propagation velocity seems to be

decreasing exponentially with the concentration in this case.

Figure 5.5 shows the location of the wave front vs time for both streams upstream of

the confluence. The inverse slopes of these curves represent the instantaneous velocity of

the front for each sediment concentration we have simulated.
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Table 5.1. Mean velocity of the front for different sediment concentrations

Volumetric Mean velocity of the wave front [km/h]
concentration [−] Quebrada de Ramón stream Quillayes stream

0% 2.88 4.99
20% 1.88 3.10
40% 1.64 1.27
60% 1.54 1.12

The numerical results show that the sediment concentration produces a significant

change on the evolution of the flood, as it is the only factor that we modify in these sim-

ulations. The local variations in these velocities are produced by the gradual change of

bed roughness and the slope of the river channels, which is approximately constant in

large portions of the reaches. The Quillayes stream exhibits higher propagation velocities,

which are also consistent with the steeper slopes and finer sediment diameters on the bed.

Figure 5.5 shows that the flood propagation has deceleration stages of the front, seen as

steps in the location of the front in time. Two clear steps are observed in the Quebrada de

Ramón stream. The first is located at 800 m from the inflow boundary of the computational

domain, which is produced by a local widening of the channel. The second deceleration,

at 4,500 m, is generated by a narrowing of the river that accumulates a large volume

and reduces the velocity of the flow, increasing the depth upstream of this section due

to backwater effects. In the Quillayes stream, we observe three deceleration stages at

400, 800, and 2,800 m, which are also caused by local widening of the channel. These

detailed dynamic features of the flood are modulated by the sediment concentration, as the

hyperconcentrated cases show a more uniform propagation of the front.

Downstream of the confluence, the flood exhibits a similar dynamics. Figure 5.6 shows

the distance traveled by the flood from the confluence to the outlet of the watershed. The

origin in this case is defined at the junction of the the tributaries, and the time starts running

when the flood from the Quillayes stream reaches the confluence.
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(a)

(b)

Figure 5.5. Location of the wave front in time for both streams, consid-
ering four different sediment concentrations, to characterize the advance
of the flood in the river: (a) Quebrada de Ramón; and (b) The Quillayes
stream.
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Figure 5.6. Location of the wave front in time for the Quebrada de Ramón
downstream of the confluence considering four sediment concentrations in
both streams.

The velocities in the four cases show that the dynamics of the flow changes along the

channel, as a function of the concentration. The clear-water flow is faster at the beginning

but decelerates along the channel, while hyperconcentrated flows accelerate for all the

sediment concentrations. The flow in this second section of the river channel is affected

by the different arrival times of the flood to the confluence from each of the tributaries.

The time lapse between the arrivals of the flood from each tributary to the confluence is

larger for flows with lower concentrations. This difference is equal to 3 hours in clear-

water flow, but only 1 hour for a concentration of 60%, which changes the hydrodynamics

of the wave-front when it arrives to the lower section of the channel, in the urban area.
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5.1.2. Peak flow and its arrival time

By comparing the hydrographs computed using different sediment concentrations in

the four points monitored upstream of the confluence, we observe that the most impor-

tant difference is the magnitude of the peak flow for different concentrations. The relative

difference between the peak discharge simulated with clear-water flow compared to a sed-

iment concentration of 60% is 44% at QR-U, and 67% at QR-D. To remove the effects of

the additional volume that are produced by the sediment concentration in each stream, in

Figures 5.7 and 5.8 we show the normalized hydrographs, which are obtained by divid-

ing the discharge by the total volume of the mixture that we obtain at each gauged point

defined in Figure 5.3. We can observe that the difference in the peak flows for different

concentrations is only produced by the bulking effect of the sediments.

In both streams, the time to the peak of the hydrograph, however, is not significantly

affected by the different concentrations. This seems to be related to the shape of the inflow

hydrograph, and to the location of the gauged points. The time to reach the peak discharge

is around of 7 h from the start of the simulation at QR-U, and 10 min later the maximum

discharge reaches QR-D. At the Quillayes stream, the peak flow reaches Qui-U after 8 h

from the start of the simulation, and Qui-D 13 min later.

When we analyze the hydrographs downstream of the confluence we observe similar

results, as shown in Figure 5.8. Due to the progressive reduction of the bed roughness, the

peak flows increase in sections closer to the outlet of the watershed. The maximum peak

flow is reached at the station QR-F, since the city park located at the north side of the main

channel, and between QR-F and QR-E, is flooded and attenuates the peak flow near the

outlet.

5.1.3. Total flooded area

The total area in the watershed that is inundated for different sediment concentrations

is depicted in Figure 5.9. No significant differences are noticed for most of the length of
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Figure 5.7. Normalized hydrographs at the gauged points upstream of the
confluence. In the right panel, we show the upper and lower zones in the
Quebrada de Ramón stream, and in the left panel, the points at a similar
elevation in the Quillayes stream.

the river channel. Both streams have steep slopes in confined canyons, and the maximum

increments of flow depth, reaching up to 3 m, do not alter significantly the horizontal

extension of the 2D area affected by the flood.

Major differences, however, appear in regions with milder slopes, around the con-

fluence and in the city, near the outlet of the watershed. At the confluence, simulations

with higher concentrations of 40% and 60% overflow the natural channels, due to the fast

arrival of a large volume of the mixture to this region. In the city, near the outlet of the do-

main, all the flows inundate the urban park located at the north bank of the main channel,
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Figure 5.8. Normalized hydrographs at the gauged points downstream of
the confluence. In the left panel we depict the point closest to the conflu-
ence; in the middle the flooding zone; and in the right panel the outlet of
the computational domain.

downstream of a large extension of an urbanized area. In this section, the most impor-

tant increment of the total flooded area occurred when we increase the concentration from

clear water to 20%, where the total flooded area increases by 36%. For larger concentra-

tions the affected area grows gradually compared to the clear-water flooding case, as the

fluid is more concentrated. Increments of the total area of 46% and 75% are observed for

concentrations 40% and 60%, respectively.

Figure 5.9. Contours of the flooded area for different sediment concentrations.
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5.1.4. Maximum flow depth and mean velocity

Figure 5.10 shows the maximum depth registered at each gauged point along the chan-

nels for the different sediment concentrations we simulate. The numerical results show

that the depth increases with concentration, and the largest differences are obtained be-

tween the clear-water case and 20% concentratiom, in 6 of the measurement points we

analyze. In QR-C for instance, the first increment of the sediment concentration, from

clear-water to 20%, produces a maximum depth that is 24.1% larger, whereas increasing

the concentration from 20% to 40%, and then to 60%, the flow depth increases in only

7.5% and 5.1%.

Figure 5.10. Maximum depth computed in every gauged point depending
of the sediment concentration.
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By comparing the flow depths in the simulations, we note that the deepest flow is

always located downstream of the confluence (QR-C). In this location, a difference of 0.80

m is measured between the clear-water and the flow with the maximum concentration of

60%. In the urban areas (points QR-F and QR-E), depths larger than 2 m are observed.

Here, it is important to have a precise solution for different sediment concentrations, since

there is a difference of 0.5 m between clear-water and the maximum concentration, which

can have significant impacts on the design of flood control measures.

Additionally, in Figure 5.11 we show the mean velocity at each measurement point

for the range of sediment concentrations. In this case, we cannot observe a clear trend of

velocity changes as a function of the concentration. For this flow variable, it seems that the

local topographic conditions affect considerably the averages of the flow hydrodynamics.

In Figure 5.12 we relate the magnitude of the hydrodynamic variables, velocity vs

depth, computed at each time step at QR-U on the left panel, and Qui-U on the right panel.

These plots are similar to a stage-velocity relation that links the flow depth and the total

velocity at the same instant in time. The plots are constructed using data every 30 s, for a

total time of 24 hours.

Even though a direct relation is not observed between mean velocity and sediment

concentration in points QR-U and Qui-U (Figure 5.11), the depth-velocity plots in Fig-

ure 5.12 confirm the relation of large depths and lower velocities as the concentration

increases. This is closely related to the changes on the flow resistance. Larger concen-

trations increase the yield stress, the fluid viscosity, and the dispersive effects, producing

additional momentum losses, which reduce the flow velocity. The stage-velocity relation

is different for clear-water flow as compared to the sediment laden cases. For hypercon-

centrated flows, the relationship between the depth and velocity is fitted to a quadratic

regression that always increases. In clear water the relation is linear in shallow flows un-

der 0.05 m deep, where the Froude number is larger than 1, reaching 1.43 and 1.53 in

the QR-U and Qui-U respectively. Then, a transition zone with depths between 0.05 m
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Figure 5.11. Mean velocity computed in each gauged point depending on
the sediment concentration.

and 0.2 m, and almost critical Froude number is observed. Above 0.2 m depth, the veloc-

ity increases quadratically as seen in the flows with sediments. In this zone, the flow is

dominated by gravity with subcritical Froude numbers of around 0.25.

5.1.5. Flow momentum in the urban area

To evaluate the potential damage to the infrastructure generated by floods, we can com-

pute the flow momentum at each cross section of the flooded area. In this case we compare

the maximum force produced by the flow in the urban area of the watershed, considering

flows with different sediment concentrations coming from the Quebrada de Ramón and

the Quillayes stream. Figure 5.13 shows contours of maximum cross-section momentum
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Figure 5.12. Stage-velocity relation between the computed flow depths and
velocities for different sediment concentrations. The data at the point QR-
U is shown on the left, and Qui-U on the right.

along the river. The top figure shows the momentum for a sediment concentration of 20%

in the Quebrada de Ramón and 60% in the Quillayes stream. The opposite case, 60% in

the Quebrada de Ramón and 20% in the Quillayes stream, is depicted in the lower image.

The approaching flow has an approximate force of 700 kN in both simulations. For

these two cases, the areas with highest momentum correspond to: (1) The confined zone

on the right of the image; and (2) At the outlet of the basin in the urban area. However, the

force is on average 14.5% higher in the second case, which could be related to the higher

flow density of the flow that is obtained downstream of the confluence.

Since the density in these simulations is different in both streams upstream the conflu-

ence, the density of the fluid in the main channel varies in time and space, both along and

across the flow. The mean concentration in the main channel, downstream the confluence,

is around 30% and 44% considering a sediment concentration of 20% in the Quebrada

de Ramón and 60% in the Quillayes stream and viceversa, respectively. These values are

consistent with the theoretical concentrations computed from the fully mixed conditions.
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Figure 5.13. Maximum momentum of the flow in the urban area. The pic-
ture above shows results for a concentration of 20% coming from the Que-
brada de Ramón and 60% from the Quillayes stream. The image below
corresponds to the opposite case, 60% from the Quebrada de Ramón and
20% from the Quillayes stream.
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6. CONCLUSIONS AND FUTURE RESEARCH

The primary emphasis of this work is to examine the effects of the sediment concen-

tration on the flood dynamics in an Andean watershed. To simulate different scenarios,

we developed a finite-volume numerical model that solves the hydrodynamics of hyper-

concentrated fluids in complex natural topographies. The model is based on the work of

Guerra et al. (2014), and it is employed to solve the non-linear shallow water equations

coupled to a transport equation for the sediment in generalized curvilinear coordinates.

To consider the effects of the sediment concentration, we implement a new version of the

quadratic rheological model (O’Brien et al., 1993) to calculate the stresses produced by

high concentrations, separating the turbulent and dispersive effects of the sediment con-

centration.

The numerical method considers the semi-implicit splitting scheme developed by Liang

and Marche (2009) for the treatment of the source terms in the governing equations. The

model is well-balanced to incorporate the source term associated to gravity and slope

(Audusse et al., 2004), and the VFRoe-ncv methodology (Gallouët et al., 2003; Marche,

2006) is used to solve the numerical fluxes. We test and validate the model by compar-

ing the results against analytical solutions (Leighton et al., 2009) and observations from a

hyperconcentrated dam-break flow on a steep slope experiment (Iverson et al., 2010).

To investigate the effects of the sediment concentration in floods that occur in mountain

rivers, we perform simulations in the Quebrada de Ramón watershed, an Andean catch-

ment located in central Chile. We analyze the changes on hydrodynamic variables such

as peak discharge, arrival time of the flood wave, cross-section momentum, flow depth,

mean velocity, and total flooded area. Most the these results are compared and analyzed

in seven points along the channel.

The most important effects on the flood propagation are observed for the increments of

sediment concentration just above the clear-water flow, in the range of concentrations from

0% to 20%. Even though the channel slope is the most important morphological feature
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that controls the dynamics of the flow, local factors such as channel widening can change

significantly the propagation of the flood wave. High sediment concentrations modulate

these morphodynamic effects, producing larger flow depths and slower velocities overall.

Major momentum loss produced by the increment of the total shear stress as the

fluid becomes hyperconcentrated, cause larger flow depths as the concentration increases.

The differences in depth between no-sediment conditions and a concentration of 60%, is

around 38% in one of the monitored point indentified as QR-C, where the largest value

of flow depth was computed, and 22.5% in the point QR-E, which is located in the urban

area. A clear relationship between velocity and sediment-load was not observed.

Some of the hydrodynamic variables analyzed were more sensitive to changes in sed-

iment concentration. We observed significant effects on the total flooded area and mo-

mentum of the flow as the flood arrives to the urban area. While the extension of the 2D

flooded area in the entire basin remains more or less constant for different concentrations,

the largest difference is observed in the city, where the slopes are milder. The simulations

show a difference of 76% in the total 2D flooded area when we compare the clear-water

conditions with the 60% concentration. Regarding the cross-section momentum as the

flood advances in the urban zone, we show that the maximum momentum of the flow in-

creases 14% on average for a 20% concentration in the Quebrada de Ramón, and 60%

concentration in the Quillayes stream.

We also observe that the arrival time of the peak discharge at different locations of

the basin, and the shape of the hydrograph, are not modified significantly with the mag-

nitude of the sediment concentration, but they are associated to the local morphological

conditions.

Future developments of the model will incorporate the erosion and sedimentation of

the channel by coupling the flow to a sediment transport and a morphodynamic model
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represented by the Exner equation. This analysis will require to address questions regard-

ing the applicability of empirically derived bedload transport formulas to unsteady non-

equilibrium conditions, which can add more uncertainty to the flood simulation in realistic

conditions. To improve the flow description in some cases, we will consider the effects

of the non-hydrostatic pressure generated in shallow-water flow over rugged or very steep

terrain (Denlinger & O’Connell, 2008). The efficiency and accuracy of the model open

new possibilities to study additional phenomena, in which the influence of density and in-

ternal stresses are relevant to the flow hydrodynamics. Some examples could include the

study of lahars and their interaction with natural water bodies, saline intrusion processes

in estuaries, and contamination processes in natural environments.

In future research we will also use the simulations to develop real-time automated

systems of flood hazard prediction. Taking a probabilistic framework based on the numer-

ical results, and coupling the hazard to the assessment of vulnerability, we will develop

surrogate models for rapid evaluation of the flood risk.
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Universidad de Chile, 46, 57–78.
49

http://dx.doi.org/10.1016/j.jhydrol.2005.11.026
http://dx.doi.org/10.5194/nhess-6-155-2006
http://dx.doi.org/10.1086/320798
http://dx.doi.org/10.1016/j.habitatint.2003.08.001
http://dx.doi.org/10.1659/0276-4741(2004)024[0197:EUITSA]2.0.CO;2
http://dx.doi.org/10.1659/0276-4741(2004)024[0197:EUITSA]2.0.CO;2


Sanders, B. (2002). Non-reflecting boundary flux function for finite volume shallow-

water models. Advances in Water Resources, 25(2), 195–202. doi: 10.1016/S0309-

1708(01)00055-0

Sanders, B. (2007). Evaluation of on-line DEMs for flood inundation modeling. Advances

in Water Resources, 30(8), 1831–1843. doi: 10.1016/j.advwatres.2007.02.005

Schubert, J., & Sanders, B. (2012). Building treatments for urban flood inundation models

and implications for predictive skill and modeling efficiency. Advances in Water

Resources, 41(6), 49–64. doi: 10.1016/j.advwatres.2012.02.012

Schubert, J., Sanders, B., Smith, M., & Wright, N. (2008). Unstructured mesh

generation and landcover-based resistance for hydrodynamic modeling of ur-

ban flooding. Advances in Water Resources, 31(12), 1603–1621. doi:

10.1016/j.advwatres.2008.07.012
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A. NON-LINEAR SHALLOW EQUATIONS FOR FLUIDS WITH VARIABLE DEN-

SITY

A.1. The original version of the non-linear equations for shallow flows with variable

density

Since the model solves the non–shallow water equations coupled to the sediment trans-

port equation; here, the mass and momentum conservation law are presented in cartesian

coordinates.

A.1.1. Continuity equation

Firstly, the continuity law is applied to the mixture of water and sediment, which looks

as:
∂ρ̂ĥ

∂t̂
+
∂ρ̂ĥû

∂x̂
+
∂ρ̂ĥv̂

∂ŷ
= 0 (A.1)

where ĥ, û, v̂ and ρ̂ represent the depth, velocity in the x̂ and ŷ direction, and density of

the flow respectively.

A.1.2. Momentum equations

In the x̂ direction, the momentum law applied to the mixture is:

∂ρ̂ĥû

∂t̂
+

∂

∂x̂

(
ρ̂û2ĥ+

1

2
gρ̂ĥ2

)
+
∂ρ̂ûv̂ĥ

∂ŷ
= −ρ̂gĥ ∂ẑ

∂x̂
− τ̂x̂ (A.2)

And, respectively in the ŷ direction:

∂ρ̂ĥv̂

∂t̂
+
∂ρ̂ûv̂ĥ

∂x̂
+

∂

∂ŷ

(
ρ̂v̂2ĥ+

1

2
gρ̂ĥ2

)
= −ρ̂gĥ∂ẑ

∂ŷ
− τ̂ŷ (A.3)

Here, the terms τ̂x̂ and τ̂ŷ groups the stresses associated to the friction and hypercon-

centration of the sediment, i.e. the high concentration of sediment in a fluid change the

hydrodynamic of the fluid since additional shear stresses occurred. In this model, the
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stresses considered are the yield, Mohr-Coulomb, viscous, turbulent and dispersive shear

stresses, by means the rheological model that is described below.

A.1.3. Advection-Diffusion Equation

The mass conservation law applied to the solid phase is written as:

∂Cĥ

∂t̂
+
∂ûCĥ

∂x̂
+
∂v̂Cĥ

∂ŷ
= ĥ

∂

∂x̂

(
D̂x̂

∂C

∂x̂

)
+ ĥ

∂

∂ŷ

(
D̂ŷ

∂C

∂ŷ

)
(A.4)

where C represents the volumetric sediment concentration in the mixture, and D̂x̂ and D̂ŷ

are the molecular diffusion coefficient in the x̂ and ŷ direction respectively.

A.1.4. Matrix form

The set of equations can be written in the matrix form as:

Q̂,t̂ + F̂ (Q̂),x̂ + Ĝ(Q̂),ŷ = Ŝ(Q̂) (A.5)

where Q̂ contains the hydrodynamic variables, which is temporally derivatived, and F̂ (Q̂)

and Ĝ(Q̂) are the mass and momentum fluxes partially derivatived respect to the x̂ and ŷ

coordinate respectively. To continuation, each vector is shown in detail:

Q̂ =


ρ̂ĥ

ρ̂ĥû

ρ̂ĥv̂

Cĥ

 , F̂ (Q̂) =


ρ̂ĥû

ρ̂û2ĥ+ 1
2
gρ̂ĥ2

ρ̂ûv̂ĥ

ûCĥ

 , Ĝ(Q̂) =


ρ̂ĥv̂

ρ̂ûv̂ĥ

ρ̂v̂2ĥ+ 1
2
gρ̂ĥ2

v̂Cĥ

 ,

Ŝ(Q̂) =


0

−ρ̂gĥ ∂ẑ
∂x̂
− τ̂x̂

−ρ̂gĥ∂ẑ
∂ŷ
− τ̂ŷ

ĥ ∂
∂x̂

(
D̂x̂

∂C
∂x̂

)
+ ĥ ∂

∂ŷ

(
D̂ŷ

∂C
∂ŷ

)
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A.2. Modified non-linear equations for shallow flows with variable density

In order to express every equation in terms of C, the mixture density ρ̂ has been re-

placed by the expression ρ̂ = ρs+(1−C)ρw. Where, ρs and ρw represent the sediment and

clear water density, respectively. Thus, the set of equations has been modified following

the next procedure.

A.2.1. Continuity equation

The expression for mixture density has been replaced in equation A.1:

∂(ρs + (1− C)ρw)ĥ

∂t̂
+
∂(ρs + (1− C)ρw)ĥû

∂x̂
+
∂(ρs + (1− C)ρw)ĥv̂

∂ŷ
= 0 (A.6)

Regrouping terms:

ρw

[
∂ĥ

∂t̂
+
∂ûĥ

∂x̂
+
∂v̂ĥ

∂ŷ

]
= (ρw − ρs)

[
∂ĥC

∂t̂
+
∂ûĥC

∂x̂
+
∂v̂ĥC

∂ŷ

]
(A.7)

Simplifing, the mixture mass conservation law looks as:[
∂ĥ

∂t̂
+
∂ûĥ

∂x̂
+
∂v̂ĥ

∂ŷ

]
= ĥ

(
ρw − ρs
ρw

)[
∂

∂x̂

(
D̂x̂

∂C

∂x̂

)
+

∂

∂ŷ

(
D̂ŷ

∂C

∂ŷ

)]
(A.8)

A.2.2. Momentum equations

In the same way, the fluid density is replaced by the volumetric concentration in both

momentum equations A.2 and A.3:

(ρs − ρw)

[
∂ûĥC

∂t̂
+

∂

∂x̂

(
û2ĥC +

1

2
gĥ2C

)
+
∂ûv̂ĥC

∂ŷ

]
+

ρw

[
∂ûĥ

∂t̂
+

∂

∂x̂

(
û2ĥ+

1

2
gĥ2
)

+
∂ûv̂ĥ

∂ŷ

]
= −ρ̂gĥ ∂ẑ

∂x̂
− Ŝx̂

(A.9)
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ρ̂

[
∂ûĥ

∂t̂
+

∂

∂x̂

(
û2ĥ+

1

2
gĥ2
)

+
∂ûv̂ĥ

∂ŷ

]
+

1

2
g (ρs − ρw) ĥ2

∂C

∂x̂
=

−ρ̂gĥ ∂ẑ
∂x̂
− Ŝx̂ + (ρw − ρs) ĥû

[
∂C

∂t̂
+ û

∂C

∂x̂
+ v̂

∂C

∂ŷ

] (A.10)

Thus, the modified momentum law in the x̂ and ŷ directions can be written respectively

as:

∂ûĥ

∂t̂
+

∂

∂x̂

(
û2ĥ+

1

2
gĥ2
)

+
∂ûv̂ĥ

∂ŷ
= −gĥ∂ẑ

∂x̂
− Ŝx̂ −

1

2
g

(
ρs − ρw

ρ̂

)
ĥ2
∂C

∂x̂

−
(
ρs − ρw
ρw

)
ĥû

[
∂

∂x̂

(
D̂x̂

∂C

∂x̂

)
+ ĥ

∂

∂ŷ

(
D̂ŷ

∂C

∂ŷ

)] (A.11)

∂v̂ĥ

∂t̂
+
∂ûv̂ĥ

∂x̂
+

∂

∂ŷ

(
v̂2ĥ+

1

2
gĥ2
)

= −gĥ∂ẑ
∂ŷ
− Ŝŷ −

1

2
g

(
ρs − ρw

ρ̂

)
ĥ2
∂C

∂ŷ

−
(
ρs − ρw
ρw

)
ĥv̂

[
∂

∂x̂

(
D̂x̂

∂C

∂x̂

)
+ ĥ

∂

∂ŷ

(
D̂ŷ

∂C

∂ŷ

)] (A.12)

A.2.3. Advection-Diffusion Equation

Since, the original version of the advection-diffusion equation is presented with the

volumetric concentration in the equation A.13, this does not change.

∂Cĥ

∂t̂
+
∂ûCĥ

∂x̂
+
∂v̂Cĥ

∂ŷ
= ĥ

∂

∂x̂

(
D̂x̂

∂C

∂x̂

)
+ ĥ

∂

∂ŷ

(
D̂ŷ

∂C

∂ŷ

)
(A.13)

A.2.4. Matrix form

Q̂,t̂ + F̂ (Q̂),x̂ + Ĝ(Q̂),ŷ = Ŝ(Q̂) (A.14)
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Q̂ =


ĥ

ĥû

ĥv̂

Cĥ

 , F̂ (Q̂) =


ĥû

û2ĥ+ 1
2
gĥ2

ûv̂ĥ

ûCĥ

 , Ĝ(Q̂) =


ĥv̂

ûv̂ĥ

v̂2ĥ+ 1
2
gĥ2

v̂Cĥ

 ,

Ŝ(Q̂) =



(
ρw−ρs
ρw

)
ĥ
[
∂
∂x̂

(
D̂x̂

∂C
∂x̂

)
+ ∂

∂ŷ

(
D̂ŷ

∂C
∂ŷ

)]
−gĥ ∂ẑ

∂x̂
− Ŝx̂ − 1

2
g
(
ρs−ρw
ρ̂

)
ĥ2 ∂C

∂x̂
−
(
ρs−ρw
ρw

)
ĥû
[
∂
∂x̂

(
D̂x̂

∂C
∂x̂

)
+ ∂

∂ŷ

(
D̂ŷ

∂C
∂ŷ

)]
−gĥ∂ẑ

∂ŷ
− Ŝŷ − 1

2
g
(
ρs−ρw
ρ̂

)
ĥ2 ∂C

∂ŷ
−
(
ρs−ρw
ρw

)
ĥv̂
[
∂
∂x̂

(
D̂x̂

∂C
∂x̂

)
+ ∂

∂ŷ

(
D̂ŷ

∂C
∂ŷ

)]
ĥ
[
∂
∂x̂

(
D̂x̂

∂C
∂x̂

)
+ ∂

∂ŷ

(
D̂ŷ

∂C
∂ŷ

)]


Assuming molecular diffusivity is neglected:

Q̂,̂t + F̂(Q̂),x̂ + Ĝ(Q̂),ŷ = Ŝ(Q̂) (A.15)

Q̂ =


ĥ

ĥû

ĥv̂

Cĥ

 , F̂ (Q̂) =


ĥû

û2ĥ+ 1
2
gĥ2

ûv̂ĥ

ûCĥ

 , Ĝ(Q̂) =


ĥv̂

ûv̂ĥ

v̂2ĥ+ 1
2
gĥ2

v̂Cĥ

 ,

Ŝ(Q̂) =


0

−gĥ ∂ẑ
∂x̂
− Ŝx̂ − 1

2
g
(
ρs−ρw
ρ̂

)
ĥ2 ∂C

∂x̂

−gĥ∂ẑ
∂ŷ
− Ŝŷ − 1

2
g
(
ρs−ρw
ρ̂

)
ĥ2 ∂C

∂ŷ

0
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B. DIMENSIONLESS EQUATIONS

Firstly, dimensional scales are defined:

Horizontal: L

Vertical: H

Velocity: U

Froud Number: Fr = U√
gH −→ g = U2

Fr2H

Relative density: s = ρs
ρw
−→ ρs = sρw

−→ ρ̂
ρw

= (s+ 1− C) = ρ

Then, the transformed variables are:

x̂ −→ Lx

ŷ −→ Ly

ẑ −→ Hz

ĥ −→ Hh

û −→ Uu

v̂ −→ Uv

t̂ −→ L
U t

B.1. Continuity equation

Starting from the continuity equation for variable density flow presented in A.8:
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HU
L
∂h

∂t
+HU 1

L
∂hu

∂x
+HU 1

L
∂hv

∂y
= 0 (B.1)

Simplifying:
∂h

∂t
+
∂hu

∂x
+
∂hv

∂y
= 0 (B.2)

B.2. Momentum equations

From the momentum equation in the x direction A.11:

HUU
L
∂hu

∂t
+ U2H 1

L
∂

∂x

(
u2h
)

+
U2

Fr2H
H2 1

L
∂

∂x

(
1

2
h2
)

+ U2H 1

L
∂uvh

∂y
=

− U2

Fr2H
HH
L
h
∂z

∂x
− Sx −

1

2

(
s− 1

C(s− 1) + 1

)
U2

Fr2H
H2

L
h2
∂C

∂x

(B.3)

Simplifying:

∂hu

∂t
+

∂

∂x

(
u2h+

h2

2Fr2

)
+
∂uvh

∂y
=

− h

Fr2
∂z

∂x
− Sx −

h2

2Fr2

(
s− 1

C(s− 1) + 1

)
∂C

∂x

(B.4)

Similarly, for the y direction, from equation A.12:

∂hv

∂t
+
∂uvh

∂x
+

∂

∂y

(
v2h+

h2

2Fr2

)
=

− h

Fr2
∂z

∂y
− Sy −

h2

2Fr2

(
s− 1

C(s− 1) + 1

)
∂C

∂y

(B.5)

B.3. Advection-Diffusion Equation

The advection-diffusion equation is exhibited in A.13. To write in terms of dimensionless

variables:

HU
L
∂Ch

∂t
+ UH 1

L
∂uCh

∂x
+ UH 1

L
∂vCh

∂y
= 0 (B.6)
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Simplifying:
∂Ch

∂t
+
∂uCh

∂x
+
∂vCh

∂y
= 0 (B.7)

B.4. Matrix form

Q,t + F(Q),x + G(Q),y = SB(Q) + SS(Q) + SC(Q) (B.8)

Q =


h

hu

hv

Ch

 , F (Q) =


hu

u2h+ 1
2Fr2

h2

uvh

uCh

 , G(Q) =


hv

uvh

v2h+ 1
2Fr2

h2

vCh

 ,

SB(Q) =


0

− 1
Fr2

h ∂z
∂x

− 1
Fr2

h∂z
∂y

0

 , SS(Q) =


0

−Sx
−Sy

0

 , SC(Q) =


0

− h2

2Fr2

(
s−1

C(s−1)+1

)
∂C
∂x

− h2

2Fr2

(
s−1

C(s−1)+1

)
∂C
∂y

0
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C. TRANSFORMATION TO CURVILINEAR COORDINATES

In this section, a detailed description of the coordinate transformation from cartesian

coordinates to a generalized, boundary fitted, curvilinear coordinate is given. The new

coordinate system changes the (x, y) cartesian directions to the curvilinear system (ξ, η).

Since the model considers a partial transformation of coordinates, the hydrodynamic

variables h, u, v and C remain referenced to the cartesian coordinates. In consequence,

just the derivates respect to the x and y must to be modified to the new system coordinate.

C.1. Continuity

Applying the chain rule to modify the partial derivates of the mass fluxes:

∂h

∂t
+
∂uh

∂ξ

∂ξ

∂x
+
∂uh

∂η

∂η

∂x
+
∂vh

∂ξ

∂ξ

∂y
+
∂vh

∂η

∂η

∂y
= 0 (C.1)

Besides, to rewrite the equation to a conservative form, the equation is multiplied and

divided by the Jacobian J . This is defined as J = ξxηy + ξyηx, in which each term

represents the metrics of the transformation (i.e. the variation of the ξ and η respect to x

and y respectively).

∂h

∂t
+ J

(
∂uh

∂ξ

∂ξ

∂x

1

J
+
∂uh

∂η

∂η

∂x

1

J
+
∂vh

∂ξ

∂ξ

∂y

1

J
+
∂vh

∂η

∂η

∂y

1

J

)
= 0 (C.2)

Regrouping terms:

∂h

∂t
+ J

[
∂

∂ξ

(
h(uξx + vξy)

J

)
+

∂

∂η

(
h(uηx + vηy)

J

)]
= 0 (C.3)

Defining the contravariant velocity components as U1 = uξx + vξy and U2 = uηx + vηy

respectively, the continuity equation can be written as:

∂h

∂t
+ J

[
∂

∂ξ

(
hU1

J

)
+

∂

∂η

(
hU2

J

)]
= 0 (C.4)
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C.2. Momentum equations

Following the same procedure with the momentum equation in the x direction, the chain

rule is applied to the equation B.4:

∂hu

∂t
+ ξx

∂

∂ξ

(
u2h+

1

2Fr2
h2
)

+ ηx
∂

∂η

(
u2h+

1

2Fr2
h2
)

+ ξy
∂uvh

∂ξ

+ηy
∂uvh

∂η
=
−h
Fr2

(zξξx + zηηx)− Sx −
h2 (Cξξx + Cηηx)

2Fr2

(
s− 1

C(s− 1) + 1

) (C.5)

Note that the shear stress term Sx is not modify since it does not includes spatial

derivates.

Multiplying and dividing the equation by the Jacobian:

∂hu

∂t
+ J

[
ξx
J

∂

∂ξ

(
u2h+

1

2Fr2
h2
)

+
ηx
J

∂

∂η

(
u2h+

1

2Fr2
h2
)

+
ξy
J

∂uvh

∂ξ

+
ηy
J

∂uvh

∂η

]
=
−h
Fr2

(zξξx + zηηx)− Sx −
h2 (Cξξx + Cηηx)

2Fr2

(
s− 1

C(s− 1) + 1

)
(C.6)

Regrouping terms and considering the conservations relations ∂
∂ξ

(
ξx
J

)
+ ∂

∂η

(
ηx
J

)
= 0 and

∂
∂ξ

(
ξy
J

)
+ ∂

∂η

(ηy
J

)
= 0 valide to generalized curvilinear coordinates, the equation is

simplified as:

∂hu

∂t
+ J

[
∂

∂ξ

(
uh(uξx + vξy)

J

)
+

∂

∂η

(
uh(uηx + vηy)

J

)]
+

1

2Fr2

[
∂

∂ξ

(
h2ξx
J

)
+

∂

∂η

(
h2ηx
J

)]
=
−h
Fr2

(zξξx + zηηx)− Sx

−h
2 (Cξξx + Cηηx)

2Fr2

(
s− 1

C(s− 1) + 1

) (C.7)

Finally, replacing by the contravariant velocity components:

∂hu

∂t
+ J

[
∂

∂ξ

(
uhU1 + 1

2Fr2
h2ξx

J

)
+

∂

∂η

(
uhU2 + h2

2Fr2
ηx

J

)]
=

−h
Fr2

(zξξx + zηηx)− Sx −
h2 (Cξξx + Cηηx)

2Fr2

(
s− 1

C(s− 1) + 1

) (C.8)
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Following the same procedure, the momentum equation in the direction y is transformed

to:

∂hv

∂t
+ J

[
∂

∂ξ

(
vhU1 + 1

2Fr2
h2ξy

J

)
+

∂

∂η

(
vhU2 + 1

2Fr2
h2ηy

J

)]
=

−h
Fr2

(zξξy + zηηy)− Sy −
h2 (Cξξy + Cηηy)

2Fr2

(
s− 1

C(s− 1) + 1

) (C.9)

C.3. Advection-Diffusion Equation

To transform the sediment transport equation, the same procedure followed with the

continuity equation is adopted. Applying the chain rule to the equation B.7:

∂Ch

∂t
+
∂uCh

∂ξ

∂ξ

∂x
+
∂uCh

∂η

∂η

∂x
+
∂vCh

∂ξ

∂ξ

∂y
+
∂vCh

∂η

∂η

∂y
= 0 (C.10)

Multiplying and dividing by the Jacobian J :

∂Ch

∂t
+ J

(
∂uCh

∂ξ

∂ξ

∂x

1

J
+
∂uCh

∂η

∂η

∂x

1

J
+
∂vCh

∂ξ

∂ξ

∂y

1

J
+
∂vCh

∂η

∂η

∂y

1

J

)
= 0 (C.11)

Regrouping terms:

∂Ch

∂t
+ J

[
∂

∂ξ

(
Ch(uξx + vξy)

J

)
+

∂

∂η

(
Ch(uηx + vηy)

J

)]
= 0 (C.12)

And replacing by the contravariant velocity components, the advection-diffusion

equation is written as:

∂Ch

∂t
+ J

[
∂

∂ξ

(
ChU1

J

)
+

∂

∂η

(
ChU2

J

)]
= 0 (C.13)

C.4. Matrix form

Thus, the set of equation transformed to curvilinear coordinates in matrix form is written

as follows:

Q,t + JF,ξ + JG,η = SB(Q) + SS(Q) + SC(Q) (C.14)
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Q =


h

hu

hv

Ch

 , F =
1

J


hU1

uhU1 + 1
2Fr2

h2ξx

vhU1 + 1
2Fr2

h2ξy

ChU1

 , G =
1

J


hU2

uhU2 + 1
2Fr2

h2ηx

vhU2 + 1
2Fr2

h2ηy

ChU2

 ,

SB =


0

−h
Fr2

(zξξx + zηηx)

−h
Fr2

(zξξy + zηηy)

0

 , SS(Q) =


0

−Sx
−Sy

0

 ,

SC(Q) =


0

− h2

2Fr2

(
s−1

C(s−1)+1

)
(Cξξx + Cηηx)

− h2

2Fr2

(
s−1

C(s−1)+1

)
(Cξξy + Cηηy)

0
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D. NON-CONSERVATIVE FORM OF THE EQUATIONS

D.1. Continuity equation

Replacing the terms U1 and U2 in the equation C.4 and expanding the derivatives, it is

possible to consider the conservation relations described in the previous section to

simplify the following terms:

∂h

∂t
+ J

[
��

�
��

��

hu
∂

∂ξ

(
ξx
J

)
+
ξx
J

∂(hu)

∂ξ
+
�
��

�
��
�

hu
∂

∂η

(ηx
J

)
+
ηx
J

∂(hu)

∂η

]
+

J

[
��

��
�
��

hv
∂

∂ξ

(
ξy
J

)
+
ξy
J

∂(hv)

∂ξ
+
��

��
��

hv
∂

∂η

(ηy
J

)
+
ηy
J

∂(hv)

∂η

]
= 0

(D.1)

Since the Jacobians are preserved just outside the derivatives, they can be simplified:

∂h

∂t
+ ��J

[
ξx

��J

∂(hu)

∂ξ
+
ξy

��J

∂(hv)

∂ξ
+
ηx

��J

∂(hu)

∂η
+
ηy

��J

∂(hv)

∂η

]
= 0 (D.2)

Thus, the non-conservative form of the continuity equation looks as:

∂h

∂t
+ ξx

∂(hu)

∂ξ
+ ξy

∂(hv)

∂ξ
+ ηx

∂(hu)

∂η
+ ηy

∂(hv)

∂η
= 0 (D.3)

D.2. Momentum equations

To simplify the description of the procedure carried out to write the momentum equations

in a non-conservative form, just the left-hand side of the equation will be explained. The

right-hand side remains unchanged.

Considering the conservation relations to curvilinear coordinates, the momentum

equation in the x direction (Eq. C.8) is simplified as:

∂hu

∂t
+ J

 ∂

∂ξ

(
uhU1

J

)
+

h2

2Fr2
�
�
�
�
��>

0
∂

∂ξ

(
ξx
J

)
+

h

Fr2
ξx
J

∂h

∂ξ

+
∂

∂η

(
uhU2

J

)
+

h2

2Fr2��
��

��*0
∂

∂η

(ηx
J

)
+

h

Fr2
ηx
J

∂h

∂η

]
= SB + SS + SC (D.4)
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Expanding the derivates:

∂hu

∂t
+ J

[
U1

J

∂uh

∂ξ
+ uh

∂

∂ξ

(
U1

J

)
+

h

Fr2
ξx
J

∂h

∂ξ

+
U2

J

∂uh

∂η
+ uh

∂

∂η

(
U2

J

)
+

h

Fr2
ηx
J

∂h

∂η

]
= SB + SS + SC (D.5)

And rearranging terms:

∂hu

∂t
+
hξxhξ
Fr2

+ U1∂uh

∂ξ
+
hηxhη
Fr2

+ U2∂uh

∂η
+

J

[
∂

∂ξ

(
uhU1

J

)
− U1

J

∂uh

∂ξ
+

∂

∂η

(
uhU2

J

)
− U2

J

∂uh

∂η

]
= SB + SS + SC

(D.6)

Applying the product rule for derivatives to separate the u variable:

∂hu

∂t
+
hξx
Fr2

∂h

∂ξ
+ U1∂uh

∂ξ
+
hηx
Fr2

∂h

∂η
+ U2∂uh

∂η
+

J

[
u
∂

∂ξ

(
hU1

J

)
− uU1

J

∂h

∂ξ
+ u

∂

∂η

(
hU2

J

)
− uU2

J

∂h

∂η

]
= SB + SS + SC

(D.7)

And regrouping terms:

∂hu

∂t
+

(
hξx
Fr2
− uU1

)
∂h

∂ξ
+ U1∂uh

∂ξ
+ Ju

∂

∂ξ

(
hU1

J

)
+
∂h

∂η

(
hηx
Fr2
− uU2

)
+U2∂uh

∂η
+ Ju

∂

∂η

(
hU2

J

)
= SB + SS + SC

(D.8)

Expanding the contravariant velocity components U1 and U2:

∂hu

∂t
+

(
hξx
Fr2
− uU1

)
∂h

∂ξ
+
(
U1 + uξx

) ∂hu
∂ξ

+ uξy
∂hv

∂ξ
+(

hηx
Fr2
− uU2

)
∂h

∂η
+
(
U2 + uηx

) ∂hu
∂η

+ uηy
∂hv

∂η
= SB + SS + SC

(D.9)
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Rearranging, the non-conservative form of the x direction of the momentum equations is

written as follow:

∂hu

∂t
+

(
hξx
Fr2
− uU1

)
∂h

∂ξ
+
(
U1 + uξx

) ∂hu
∂ξ

+ uξy
∂hv

∂ξ
+(

hηx
Fr2
− uU2

)
∂h

∂η
+
(
U2 + uηx

) ∂hu
∂η

+ uηy
∂hv

∂η
=

−h
Fr2

(zξξx + zηηx)− Sx −
h2

2Fr2

(
s− 1

C(s− 1) + 1

)
(Cξξx + Cηηx)

(D.10)

And similarly in the y direction:

∂hv

∂t
+

(
hξy
Fr2
− vU1

)
∂h

∂ξ
+ vξx

∂hu

∂ξ
+
(
U1 + vξy

) ∂hv
∂ξ

+(
hηy
Fr2
− vU2

)
∂h

∂η
+ vηx

∂hu

∂η
+
(
U2 + vηy

) ∂hv
∂η

=

−h
Fr2

(zξξy + zηηy)− Sy −
h2

2Fr2

(
s− 1

C(s− 1) + 1

)
(Cξξy + Cηηy)

(D.11)

D.3. Advection-Diffusion Equation

Expanding the derivatives in the equation C.13, and considering the conservation

relations to curvilinear coordinates:

∂Ch

∂t
+ J

[
�
��

�
��

��

uCh
∂

∂ξ

(
ξx
J

)
+
ξx
J

∂(uCh)

∂ξ
+
��

���
���

uCh
∂

∂η

(ηx
J

)
+
ηx
J

∂(uCh)

∂η

]
+

J

[
��

��
�
��
�

vCh
∂

∂ξ

(
ξy
J

)
+
ξy
J

∂(vCh)

∂ξ
+
��

��
�
��

vCh
∂

∂η

(ηy
J

)
+
ηy
J

∂(vCh)

∂η

]
= 0

(D.12)

Simplifying the Jacobian out side of the derivatives:

∂Ch

∂t
+ ξx

∂(uCh)

∂ξ
+ ξy

∂(vCh)

∂ξ
+ ηx

∂(uCh)

∂η
+ ηy

∂(vCh)

∂η
= 0 (D.13)
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Expanding the derivatives:

∂Ch

∂t
− C (uξx + vξy)

∂h

∂ξ
+ Cξx

∂hu

∂ξ
+ Cξy

∂hv

∂ξ
+ (uξx + vξy)

∂Ch

∂ξ

−C (uηx + vηy)
∂h

∂η
+ Cηx

∂hu

∂η
+ Cηy

∂hv

∂η
+ (uηx + vηy)

∂Ch

∂η
= 0

(D.14)

And replacing by the expression for U1 and U2, the non-conservative form of the

advection-diffusion equation is written as:

∂Ch

∂t
− CU1∂h

∂ξ
+ Cξx

∂hu

∂ξ
+ Cξy

∂hv

∂ξ
+ U1∂Ch

∂ξ

−CU2∂h

∂η
+ Cηx

∂hu

∂η
+ Cηy

∂hv

∂η
+ U2∂Ch

∂η
= 0

(D.15)

D.4. Matrix Form

U,t + A1Q,ξ + A2Q,η = SB + SS + SC (D.16)

68



Where,

U =


h

hu

hv

Ch

 ,

A1 =


0 ξx ξy 0

hξx
Fr2
− uU1 U1 + uξx uξy 0

hξy
Fr2
− vU1 vξx U1 + vξy 0

−CU1 Cξx Cξy U1

 ,

A2 =


0 ηx ηy 0

hηx
Fr2
− uU2 U2 + uηx uηy 0

hηy
Fr2
− vU2 vηx U2 + vηy 0

−CU2 Cηx Cηy U2

 ,

SB =


0

−h
Fr2

(zξξx + zηηx)

−h
Fr2

(zξξy + zηηy)

0

 , SS =


0

−Sx
−Sy

0

 ,

SC =


0

− h2

2Fr2

(
s−1

C(s−1)+1

)
(Cξξx + Cηηx)

− h2

2Fr2

(
s−1

C(s−1)+1

)
(Cξξy + Cηηy)

0


D.5. Eigenvalues of Jacobian matrices

Considering:

U1 = uξx + vξy U2 = uηx + vηy (D.17)
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The eigenvalues are:

λ11 = U1 −
√
h(ξ2x + ξ2y)

Fr2
, λ12 = U1, λ13 = U1, λ14 = U1 +

√
h(ξ2x + ξ2y)

Fr2
(D.18)

λ21 = U2 −
√
h(η2x + η2y)

Fr2
, λ22 = U2, λ23 = U2, λ24 = U2 +

√
h(η2x + η2y)

Fr2
(D.19)
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E. SOURCE TERMS TREATMENT

E.1. Concentration’s Source

The source term SC is represented in ξ and η coordinates respectively as follows:

SCξ =
h2

2Fr2

(
s− 1

C(s− 1) + 1

)
(Cξξx + Cηηx) (E.1)

SCη =
h2

2Fr2

(
s− 1

C(s− 1) + 1

)
(Cξξy + Cηηy) (E.2)

Discretising each term:

SCξ(n+1,i)
=
h2(n,i)
2Fr2

(
s− 1

C(n,i)(s− 1) + 1

)(C̃ξ(n,i+ 1
2
) − C̃ξ(n,i− 1

2
)

∆ξ
ξx+

C̃η(n,i+ 1
2
) − C̃η(n,i− 1

2
)

∆η
ηx

)
(E.3)

SCη(n+1,i)
=
h2(n,i)
2Fr2

(
s− 1

C(n,i)(s− 1) + 1

)(C̃ξ(n,i+ 1
2
) − C̃ξ(n,i− 1

2
)

∆ξ
ξy+

C̃η(n,i+ 1
2
) − C̃η(n,i− 1

2
)

∆η
ηy

)
(E.4)

Where C̃ξ and C̃η represents the value of C in the position i± 1
2

in the direction ξ and η

respectively. They are computed using a first order upwind method.

E.2. Shear Stress

To solve the shear stress source term, we solve the equations E.5 on the x and y direction,

by means a splitting semi-implicit method (Liang & Marche, 2009).

∂ĥû

∂t̂
= −Ŝx̂;

∂ĥv̂

∂t̂
= −Ŝŷ (E.5)

Here, Ŝx and Ŝy are the source term representing the total shear stress on the x̂ and ŷ

directions respectively. The rheological model implemented considers total shear stress
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considers the linear sum of the three terms: (i) the yield and Mohr-Coulomb Ŝyield, (ii)

viscous Ŝvi , and (iii) dispersive and turbulent stresses Ŝtdi:

Ŝi = Ŝyield + Ŝvi + Ŝtdi (E.6)

On the other hand, the generic source term can be related to the shear stress by means:

Ŝi =
τ̂i
ρ̂

(E.7)

where, ρ̂ represents the mixture density and τ̂i the bed shear stress, which can be

calculated as follow,

τ̂i = ρ̂Cf ûi
√
û2 + v̂2 (E.8)

Here, Cf represents the non-dimensional friction coefficient, which will be computed

depending on the physic effect that it is representing. In the following sections, the

derivation of the expressions to compute each term in the equation E.6 are described.

E.2.1. Yield and Mohr-Coulomb term

The model considers that the yield stress is isotropic in both flow directions. Thus, the

source term Ŝyield can be expressed as:

Ŝyield =
τ̂yield
ρ̂

(E.9)

Besides, considering the yield stress as a function exclusively of the sediment

concentration in the fluid (Julien, 2010):

τ̂yield = a 10bC (E.10)

Here a and b are experimental coefficients equal to 0.005 and 7.5 for typical soils (Julien,

2010). The source term representing the yield and Mohr-Coulomb stresses can be

expressed as:

Ŝyield =
a 10bC

ρ̂
(E.11)
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E.2.2. Viscous term

To compute the viscous effects, we considered the definition of the bed shear stress in the

equation E.8, and used the laminar friction coefficient to represent the non-dimensional

friction coefficient Cf :

Cf =
k

Re
(E.12)

where k is the viscous resistance parameter equal to 64 in open-channel flows (Sturm,

2001), and Re the Reynold number defined as:

Re =
ρ̂
√
û2 + v̂2ĥ

µ̂m
(E.13)

Here, µ̂m is the dynamic viscosity of the mixture, which can be computed depending on

the sediment concentration, by means (Eyring, 1964; Thomas, 1965):

µ̂m
µw

= 1 + 2.5C + 10.05C2 + 0.00273 exp (16.6C) (E.14)

Thus, replacing the laminar friction coefficient (equation E.12), in the equation E.8, we

obtained the expression to the source term representing the viscous stress:

Ŝvi =
k µ̂m ûi

8ρ̂ĥ
(E.15)

E.2.3. Dispersive and turbulent term

In this case, the source term Ŝtdi represent the sum of the dispersive and turbulent effects.

Thus, we used the expression E.8 to compute the bed shear stress, however, the friction

coefficient Cf is considered as the sum of two Darcy-Weisbach, the coefficient

representing the turbulent losses ft and the dispersive losses fd:

Cf =
ftd
8

=
ft + fd

8
(E.16)

To compute ft we used Colebrook’s equation:

1√
ft

= −2 log

(
k̂s

3.7Hh
+

2.51

Re
√
ft

)
(E.17)

73



in which, k̂s is the specific roughness, which is estimated from the mean sediment

diameter ds, as follow (Bathurst, 1978):

k̂s = 6.8ds (E.18)

On the other hand, fd is computed using the following equation (Takahashi, 2007):√
8

fd
=

2Hh
5ds

{
1

0.02

[
C + (1− C)

ρw
ρs

]} 1
2

λ−1 (E.19)

Here, λ is Bagnold’s linear concentration defined as (Bagnold, 1954):

λ−1 =

[(
C∗

C

) 1
3

− 1

]
(E.20)

Finally, we use the following relation to transform the turbulent-dispersive

Darcy-Weisbach friction coefficient in an equivanlent Manning o Chézy coefficient

(Julien, 2010): √
8

ftd
= CztdFr =

h1/6Fr

ntd
(E.21)

The source term representing the added effect of the turbulence and dispersion Ŝtdi is

computed replacing the friction coefficient Cf (equation E.16) in the equation E.8. Thus,

the expression considering the Manning coefficient looks as:

Ŝtdi =
n̂2
td ûi

√
û2 + v̂2g

ĥ1/3
(E.22)

and the Chézy coefficient:

Ŝtdi =
ûi
√
û2 + v̂2g

C2
ztd

(E.23)

E.2.4. Dimensionless version

To obtain the non-dimensional version of the equation E.5, we consider the dimensional

scales L ,H and U , the definition of the Froude Number and the non-dimensional version

of the hydrodynamic variables, described in section B.
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Besides, we defined the non-dimensional transformation of τ̂yield and µ̂m in equations

E.24 and E.25:

τyield =
τ̂yield
ρwU2

(E.24)

µw =
µ̂m

ρwUH
(E.25)

We transform the equation E.5 in its non-dimensional version:

HUU
L
dhui
dt

= U2Si (E.26)

Finally, simplifying and replacing the values of Si by the sum of the equations E.11, E.15

and E.22 or E.23, according equation E.6, we obtained the expression to compute the

total shear stress in the numerical model.

dhui
dt

=
L
H
Si =

L
H

(
τyield
ρ

+
kµmui
8hρ

+
n2
td ui

√
u2 + v2

Fr2 h1/3
or

ui
√
u2 + v2

Fr2 C2
ztd

)
(E.27)
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