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ABSTRACT 

A major aim of biological research is to discover relevant genes for biological functions of 

interest. These functions may have different levels of complexity, from specific biological 

processes, to complex traits such as “Metabolic diseases” in humans or “Flowering time” in 

plants. Unfortunately, the large number of genes, and the many and intricate interactions 

among them, make difficult for biologist to discern which genes to study. 

This thesis present Discriminative Local Subspaces (DLS), a method that combines 

supervised machine learning and coexpression techniques to predict gene networks that can 

pinpoint new and key genes for specific biological functions of interest. It also presents 

GENIUS, a web server with a user-friendly interface for DLS that allows the scientific 

community to fully exploit its capabilities. Unlike traditional coexpression networks (CNs), 

DLS uses the knowledge available in Gene Ontology (GO) to generate informative training 

sets that guide the discovery of expression signatures: expression patterns that are 

discriminative for genes involved in the biological function of interest. By linking genes 

coexpressed with these signatures, DLS is able to construct a gene network that links both, 

known and new genes, for the biological function of interest.  

Our systematic evaluations demonstrate DLS can predict new genes with accuracies 

comparable to highly discriminative Support Vector Machine (SVM) methods, while 

maintaining the informative and useful representation of CNs. Moreover, they show that 

unlike SVMs and CNs, DLS can systematically improve its prediction performance as more 

experimental data becomes available. Remarkably, our evaluations in real research scenarios 

show that GENIUS can be effectively used to make novel discoveries. In particular, 

GENIUS predicted a novel and key gene to improve nitrogen use efficiency of plants, which 

was experimentally validated. Therefore, we believe GENIUS can aid biologists to generate 

concrete hypothesis from prior knowledge, make novel discoveries, and ultimately, improve 

our molecular understanding of biological systems. GENIUS currently supports eight mayor 

organisms and is freely available for public use at http://networks.bio.puc.cl/genius. 

Keywords: supervised machine learning, local gene networks, coexpression networks, gene 

function prediction, expression signatures, web application, bioinformatics. 
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RESUMEN 

Un objetivo importante en la investigación biológica es descubrir genes relevantes para 

funciones biológicas de interés. Estas funciones pueden tener distintos grados de 

complejidad, desde procesos biológicos específicos a características complejas como 

“enfermedades metabólicas” en humanos o “tiempo de  floración” en plantas.  

Esta tesis presenta “Discriminative Local Subspaces” (DLS), un método computacional que 

combina técnicas de aprendizaje de máquina supervisado y coexpresión para predecir redes 

de genes capaces de exponer nuevos genes y señalar cuáles son importantes para una función 

biológica de interés. Además presenta GENIUS, un servidor web que permite a la comunidad 

científica aprovechar las capacidades de DLS a través de una interfaz amistosa. En contraste 

con las redes de coexpresión tradicionales, DLS usa el conocimiento disponible en Gene 

Ontology (GO) para generar conjuntos de entrenamiento informativos y guiar la búsqueda 

de “firmas de expresión”: patrones de expresión distintivos para los genes que participan en 

una función biológica de interés. Luego, DLS une los genes que se coexpresan con estas 

firmas para formar una red génica que contiene tanto genes conocidos como nuevos, para la 

función biológica de interés. 

Nuestras evaluaciones sistemáticas demuestran que DLS puede predecir genes nuevos con 

precisiones comparables a los métodos altamente discriminativos “Support Vector 

Maquines” (SVM), pero manteniendo la representación intuitiva e informativa que proveen 

las redes de coexpresión. Más aún, nuestras evaluaciones muestran que, en contraste con 

estos métodos, DLS mejora su precisión sistemáticamente al aumentar la cantidad de datos 

experimentales disponibles. Además, nuestras evaluaciones en escenarios reales muestran 

que GENIUS puede realizar nuevos descubrimientos de manera efectiva. En particular, 

GENIUS predijo un nuevo gen, clave para mejorar la eficiencia del uso del nitrógeno en 

plantas, lo cual fue validado experimentalmente. Por lo tanto, creemos que GENIUS puede 

ayudar a generar hipótesis concretas a partir de conocimiento previo, realizar nuevos 

descubrimientos y, por lo tanto, mejorar nuestra comprensión molecular sobre los sistemas 

biológicos. GENIUS actualmente puede ser utilizado en ocho importantes organismos y es 

de libre acceso en http://networks.bio.puc.cl/genius.
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1. INTRODUCTION 

All living organisms have a genome; a library of genes that define the potential 

characteristics they can develop. All cells within an organism have access to an exact copy 

of their genome, which is contained in a large molecule called DNA. Making an analogy 

between a cell and a computer, genes can be thought as the source code of proteins, which 

in turn, are the programs that give a cell its unique traits. In the same way that source codes 

are compiled into programs by a compiler, which is yet another program, genes are converted 

into proteins by other proteins. This conversion occurs in a two steps process. First, a gene 

is transcribed from the DNA molecule to a temporal RNA molecule that contains the code 

of only this transcribed gene. Then, this RNA molecule is translated into a protein. The 

amount of RNA available of a given gene in a given moment is called the expression level 

of this gene, and it can be used as an approximation of the amount of protein available that 

is codified by that gene. Gene expression level can also be induced or repressed by other 

proteins, which are called transcription factors. In addition, there are proteins that can sense 

internal and external cell conditions, and communicate this information to transcription 

factors, which then adapt the expression level of genes in order to cope for the sensed 

environmental changes. Thus, although the genome defines the spectrum of potential genes 

that can be expressed in an organism, the internal and external conditions of a specific cell 

define the precise genes that are expressed in a given moment, and thus, the precise 

characteristics that it will display. 

In the last decade, the complete genomes of hundreds of organisms have been sequenced 

and thousands of genes have been identified. Despite these efforts, biology still faces the 

relevant challenge of discovering the biological functions and traits in which many of these 

genes are involved inside cells. For example, Arabidopsis thaliana, the model organism in 

plant molecular biology, has 16,319 (52%) genes that are not annotated in any biological 

process of the Gene Ontology (GO) project database (Ashburner et al., 2000). Moreover, the 

large number of genes, and the many and intricate interactions among them, makes difficult 

for biologist to discern which genes are most relevant for a specific biological function of 

interest. These functions may have different levels of complexity, from specific biological 
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processes such as “Response to heat”, to complex traits that involve several interacting 

processes such as “Metabolic diseases” in humans or “Flowering time” in plants. As a 

consequence, biologists use a mix of prior knowledge and intuition to choose which genes 

to focus and which to ignore for detailed experimental work (Moreau & Tranchevent, 2012). 

This often leads to high costs in both time and experimental research. Discovering which 

genes are important for a biological function of interest is key to understand the underlying 

molecular mechanisms that govern traits of interest, which can lead to important 

biotechnological applications.  

By using high-throughput technologies, such as microarrays, scientists have now the 

opportunity to obtain large amounts of genomic data in a single experiment. A single 

microarray experiment allows scientists to measure the expression level of almost the entire 

genome of an organism, providing a snapshot of its state under a given experimental 

condition. Moreover, many databases offer open access to the data of thousands of 

microarray experiments for many organism, which opens new opportunities to analyze the 

transcriptional and functional relationships among genes. However, manual analysis of these 

large datasets is not a viable solution. 

Given the problems stated above, the primary goal of this thesis is to develop a 

computational approach to enable biologist to extract feasible biological hypothesis from 

large-scale gene expression datasets. Consequently, this thesis has the following specific 

goals: 

1. Develop a novel algorithm to predict new and key genes related to biological 

functions of interest. 

2. Make a biological contribution by applying the developed algorithm to a real 

research scenario. 

3. Develop a user-friendly interface for the algorithm to allow the scientific community 

to fully exploit its capabilities. 

In order to achieve the goals presented above, this thesis presents a novel supervised machine 

learning method, called Discriminative Local Subspaces (DLS), designed specifically to 

analyze gene expression data and to extract relevant information that biologists can use to 
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guide research. Unlike other methods, DLS is designed to predict local and discriminative 

gene networks. DLS uses semantic information available in GO annotations and machine 

learning techniques to focus the inference of networks on “local subspaces” of the 

experimental data. These local subspaces are also “discriminative”, because they are defined 

by “expression signatures”: expression patterns found in particular genes and experimental 

conditions that are distinctive of the genes of the biological function of interest defined by 

the user. In addition, DLS uses a supervised-learning approach to infer gene associations, 

which allows it to predict new genes related to the biological function of interest with 

accuracies comparable to highly discriminative Support Vector Machine (SVM) methods 

(Puelma, Gutierrez, & Soto, 2012). Moreover, and unlike SVMs, DLS maintains the 

simplicity and intuitive representation of coexpression networks and systematically 

improves its prediction performance as more experimental conditions are added to a dataset 

(Puelma et al., 2012).  

In order to allow biologists to fully exploit the capabilities of DLS and guide their researches, 

this thesis also presents GENIUS (GEne Networks Inference Using Signatures), a web server 

with a user-friendly interface to DLS. GENIUS incorporates Gene Ontology annotations and 

thousands of microarrays experiments from Gene Expression Omnibus (GEO) for eight 

model organisms: Arabidopsis thaliana, Caenorhabditis elegans, Danio rerio, Drosophila 

melanogaster, Escherichia coli, Homo sapiens, Mus musculus, and Saccharomyces 

cerevisiae. In addition, GENIUS provides several tools to visualize and analyze the gene 

networks predicted by DLS, including integration with Cytoscape (Smoot, Ono, 

Ruscheinski, Wang, & Ideker, 2011), an advanced network analysis software platform. 

Finally, GENIUS offers simple scores and graph theory indicators to pinpoint key genes in 

the predicted networks, making it easy for biologist to prioritize genes for functional 

validation assays. These salient features make GENIUS a powerful tool to develop concrete 

hypothesis and to identify relevant genes for biological functions of interest. GENIUS is 

freely accessible at http://networks.bio.puc.cl/genius. 

The rest of this thesis is organized as follows. Chapter 2 reviews related state of the art 

methods and software, highlighting the contributions of DLS and GENIUS to overcome their 

limitations. Chapter 3 presents the theoretical bases behind DLS, describes the server 
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architecture of GENIUS, the datasets and supported organisms, and the scores and graph 

theory indicators incorporated for gene prioritization. Chapter 4 presents an extensive and 

systematic evaluation that compares the performance of DLS against Support Vector 

Machines (Brown et al., 2000) and Coexpression Networks (Vandepoele et al., 2009), using 

datasets from years 2008 and 2010. Then, it shows an updated evaluation using a bigger 

dataset from year 2015 for the eight organism currently supported by GENIUS. In addition, 

it presents three case studies that show the practical usefulness of GENIUS to guide research. 

Finally, chapter 5 summarizes the main conclusions of this thesis and presents some future 

avenues of research. 
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2. RELATED WORK 

Machine learning (Mitchell, 1997) has emerged as an important technology to support gene 

function discovery. In particular, many methods have been proposed to take advantage of 

the massive amounts of microarray expression data available (see Valafar, 2002; Zhao et al., 

2008 for reviews). However, as this chapter shows, these methods have not fully exploited 

the potential of both, machine learning and microarray data. Among these methods, we can 

identify three main groups that allow us to illustrate the main limitations of current 

techniques, as well as, to highlight the main advantages of the proposed DLS method. These 

three groups correspond to: i) supervised machine learning methods, ii) coexpression based 

methods, and iii) biclustering methods. This chapter starts reviewing each of these groups. 

Afterwards, it reviews relevant public web applications to infer gene networks and gene 

functions, comparing them with GENIUS. 

2.1. Supervised methods 

Supervised machine learning consists in programming computer methods to optimize 

predictive models by using training data or past experience (Larranaga et al., 2006). 

These models can be optimized to predict either discrete or continuous data. However, 

in this thesis we are interested in the discrete case, where methods are used to classify 

data samples in discrete classes or labels. These methods are composed by two main 

processes: training and classification. During training, they use a set of samples that have 

been labeled in different classes to learn patterns, or mathematical functions, that can 

then be used to predict the class label of new samples. In this thesis, a sample corresponds 

to the expression profile of a particular gene, i.e., a vector containing the expression level 

of a gene in different experimental conditions, and the labels, or categories, correspond 

to the biological function in which a given gene is involved. 

Most supervised machine learning methods that have been used successfully for gene 

function prediction are based on discriminative black-box schemes (Mitchell, 1997) and, 

in particular, maximum margin classifiers such as a Support Vector Machines (SVMs) 

(Cortes & Vapnik, 1995). Brown et al. (2000) were one of the first researchers to evaluate 
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the potential of supervised methods in expression data to predict gene function. They 

tested five methods for the classification of yeast genes in six functional classes and 

concluded that SVMs outperform the prediction results of other four commonly used 

machine learning algorithms: Fisher linear discriminant, Parzen windows, and two 

flavors of decision tree classifiers. Later, Mateos et al. (2002) compared the performance 

of Artificial Neural Networks (ANNs) with SVMs, using the same dataset reported by 

Brown et al. (2000). Their results indicated that ANNs perform comparably, but slightly 

worse than SVMs in terms of precision. Furthermore, they did a deeper evaluation using 

96 functional classes, showing that only 8 of them could be learned with recalls greater 

that 40%. Thus, among supervised machine learning techniques, SVMs have been one 

of the most successful approaches to predict gene function (Barutcuoglu, Schapire, & 

Troyanskaya, 2006; Brown et al., 2000; Mateos et al., 2002; Yang, 2004). However, the 

transparency and interpretability of a predictive model can be as important as their 

prediction accuracy (Larranaga et al., 2006). Despite the theoretical advantage of SVMs 

in terms of classification accuracy, in practice, they present the mayor inconvenience of 

operating as a black-box (Barakat & Bradley, 2010). Although additional techniques can 

be applied to extract comprehensible semantic information from SVM models, their 

application is not straightforward and is usually restricted to linear-SVM models (Fung, 

Sandilya, & Rao, 2005; Guyon, Weston, Barnhill, & Vapnik, 2002; Wang, Han, & Yan, 

2009). In the general case of non-linear SVMs, the transformation of the data to high-

dimensional spaces complicates any interpretation of the SVM solution. In our 

experience, this is a major limitation of SVMs for gene function discovery, as 

understanding the predictions is a key aspect to evaluate their biological soundness and 

to guide research. This aspect is even more critical considering the incomplete nature of 

gene functional annotations and the capability of genes to have multiple functions, which 

prevent to obtain an error-free gold standard, and thus to evaluate the absolute accuracy 

of the methods (false-negative problem) (Jansen & Gerstein, 2004; Mateos et al., 2002). 
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2.2. Semi-supervised methods 

In response to the limitations of black-box methods, a second group of more informative 

methods to predict gene functions have been proposed (Bassel et al., 2011; Eisen, 

Spellman, Brown, & Botstein, 1998; Horan et al., 2008; S. K. Kim et al., 2001; I. Lee, 

Ambaru, Thakkar, Marcotte, & Rhee, 2010; Stuart, Segal, Koller, & Kim, 2003; 

Vandepoele et al., 2009). These methods are based in semi-supervised approaches, 

which first group genes in an unsupervised manner, without using any functional 

information, and then a prediction is performed, usually by propagating the over-

represented functions among the genes of each group (‘guilt-by-association’ rule) 

(Walker, Volkmuth, Sprinzak, Hodgson, & Klingler, 1999). The basic assumption in 

these methods is that if a group of genes show synchronized (correlated) expression 

patterns along many experimental conditions, then there is a high chance for they to 

participate in a common biological function. Common techniques used to group genes 

are clustering (Alon et al., 1999; Eisen et al., 1998; Horan et al., 2008), biclustering 

(Madeira & Oliveira, 2004; Prelić et al., 2006; Tanay, Sharan, & Shamir, 2005), and 

coexpression networks (CNs) (Bassel et al., 2011; Stuart et al., 2003; Vandepoele et al., 

2009). In particular, CNs are one of the most extensively used tools in the Systems 

Biology field. This is mainly due to their rich representation, which usually provides 

biologically meaningful concepts that help scientists to obtain insights about the 

predictions. Briefly, a CN consists of a graph that is made by connecting genes whose 

expression patterns show a correlation greater than a given threshold. Then, a functional 

term is predicted for a gene if it is statistically overrepresented among its neighbors in 

the network (Vandepoele et al., 2009). 

Unfortunately, coexpression based methods have several inconveniences. In particular, 

the predictions of these methods are in general less accurate than the outputs of 

supervised methods, as we show in chapter 4 by comparing the performances of CNs, 

SVMs, and DLS. Furthermore, they typically need a suitable correlation threshold 

selected by the user to define coexpressed genes, which is often difficult and arbitrary 

(Vandepoele et al., 2009). In addition, a major drawback of both, CNs and clustering 
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methods, is that they rely on global coexpression patterns, meaning that genes need to 

be coexpressed in a large proportion of the data in order to be grouped together. Usually, 

this data involves thousands of microarray experiments, each measured under a wide 

range of conditions, such as different time points, tissues, environmental conditions, 

genetic backgrounds, and mutations. Based on general understanding of cellular 

processes, genes are usually coregulated, and thus coexpressed, only under certain 

experimental conditions. As a consequence, expecting for genes to be coexpressed in all 

the available conditions becomes a very strong imposition and limitation. 

The previous observation has motivated the development of biclustering methods. The 

main idea behind these methods is to find subsets of genes coexpressed in subsets of 

experimental conditions. After the seminal work by Cheng and Church (2000), an 

extensive list of biclustering approaches has been proposed (Madeira & Oliveira, 2004; 

Prelić et al., 2006; Tanay et al., 2005). However, besides their theoretical advantages, 

these approaches have not been extensively used in practice. Based on our own 

experience, a mayor limitation of these techniques is their unsupervised approach to 

search for local coexpression patterns, which means that they do not use the known labels 

or functions of genes to search these patterns. In particular, this blind search can lead to 

clusters where genes of a broad range of functions are coexpressed, thus, limiting their 

discriminative properties. This problem is even worse when considering the noisy nature 

of microarray data, which often leads to the discovery of small and meaningless 

biclusters that obscure the finding of relevant associations. Selecting datasets in a 

‘condition-dependent’ fashion should more precisely identify gene interactions relevant 

to a specific biological question at hand (Bassel et al., 2011). However, given the amount 

of expression data available today, manual selection of relevant experimental conditions 

is not a practical solution in most cases. 
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2.3. Our Approach: Discriminative Local Subspaces (DLS) 

DLS overcomes the state-of-the-art limitations exposed above by taking advantage of 

the discriminative nature of supervised machine learning methods, while at the same 

time, maintaining the expressiveness of coexpression networks approaches. 

Unlike semi-supervised coexpression-based approaches, like biclustering, DLS exploits 

the existing knowledge available in Gene Ontology to construct informative training sets 

and guide the search of suitable subsets of experimental conditions. These subsets of 

experimental conditions are searched in the form of expression signatures. An expression 

signature corresponds to a discriminative expression pattern with two key properties: i) 

it is defined by a particular gene and a subset of experimental conditions (i.e. it is relevant 

to a local subspace of the data) and (ii) it is highly discriminative, and therefore useful 

to identify positive genes associated to a particular biological function of interest (Figure 

3.1). The discriminative nature of expression signatures allows DLS to reveal novel 

coexpression associations for the selected biological function. As a further feature, and 

to tackle the inherent noise of negative training sets (genes not related to a biological 

process), DLS incorporates a procedure that iteratively predicts false-negative genes and 

refines the training set in order to improve its prediction performance. 

In contrast to discriminative black-box models, such as SVM, DLS exposes the predicted 

associations in the context of a discriminative coexpression network, giving the scientist 

the possibility to visualize, evaluate, and interpret them. However, unlike traditional CN, 

DLS does not rely on a predefined and fixed correlation threshold to infer the networks. 

Instead, DLS uses a Bayesian probabilistic approach that adaptively derives a confidence 

score for each predicted association. A network is then constructed based on a desired 

minimum confidence, which is translated into different correlation thresholds depending 

on the discriminative level of each signature. 

As shown in chapter 4, our results reveal that DLS attains superior average accuracy and 

similar predictive power than radial-basis SVM. Furthermore, they show a clear 

advantage to DLS over linear SVM and CN. Remarkably, they show that unlike SVM 
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and CN, DLS is able to systematically improve its predictive power when increasing the 

number of available experimental conditions. 

2.4 Online tools to predict gene networks and genes functions 

There are several tools available in the web to generate and analyze gene networks 

(Franceschini et al., 2013; Jupiter, Chen, & VanBuren, 2009; Kao & Gunsalus, 2008; 

Katari et al., 2010; Moreau & Tranchevent, 2012; Obayashi et al., 2013; Obayashi, 

Nishida, Kasahara, & Kinoshita, 2011; Zuberi et al., 2013). Despite the limitations of 

current coexpression based approaches, in practice, biologists prefer these more 

informative methods over black-box supervised methods. In particular, coexpression 

networks have become the most popular approach to analyze gene expression data and 

predict gene function. They provide an intuitive graphical representation and meaningful 

biological insights that help to understand and evaluate the quality of the predictions.  

For example, GeneMANIA (Zuberi et al., 2013) and STRING (Franceschini et al., 2013) 

are popular state-of-the-art web tools that include vast databases for several organisms. 

They are able to generate gene networks starting from a query list of genes of interest. 

These tools are powered by fast algorithms and are able to combine multiple kinds of 

interactions in a unique network representation. These interactions include gene 

coexpression, protein colocalization, genetic interactions, and shared protein domains. 

In particular, GeneMANIA uses a fast network weighting algorithm to generate a 

composite network, by combining many precomputed networks coming from these 

different sources. Then, it uses a label propagation algorithm to score each gene. Finally, 

it selects the subnetwork that contains the genes in the query list and 20 additional genes 

with the highest scores according to the label propagation algorithm (Zuberi et al., 2013). 

There are three key aspects that distinguish GENIUS from these state of the art tools. i) 

Users without bioinformatics skills can guide predictions using prior knowledge, starting 

from a set of Gene Ontology functional terms, besides a predefined set of genes. ii) 

Predictions are local and discriminative, which allows GENIUS to uncover relevant 

coexpression relationships that other tools would miss, while, at the same time, filtering 
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out relations that are trivial or not related to the biological function of interest. iii) 

GENIUS offers simple scores and graph theory indicators to pinpoint key genes in the 

predicted networks, making it easier for biologists to prioritize genes for functional 

validation assays.  

These salient features make GENIUS a powerful tool to develop concrete hypothesis and 

identify relevant genes for biological functions of interest, even for complex traits, which 

may involve several interacting biological processes and thousands of genes. 
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3. METHODS 

This chapter starts by giving an overview of the DLS method (Puelma et al., 2012). Then, 

the following sections explain in detail the DLS method and the GENIUS web server.  

The main goal of the DLS algorithm is to predict functional associations between genes for 

a given biological function of interest. DLS is a supervised machine learning method. 

Supervised methods have to be trained with a set of samples labeled in categories, which are 

used to learn patterns or mathematical functions that can distinguish, and then classify, new 

samples among the provided categories. DLS uses this strategy to learn gene expression 

patterns that are present specifically among genes of a biological function of interest. We 

call these patterns “expression signatures”, because they identify genes involved in this 

biological function and distinguish them from those that are not. For this, DLS uses a training 

set of genes labeled in one of three categories: positive, negative or unlabeled. Positive and 

negative genes correspond to genes that are involved and not involved in the biological 

function of interest, respectively (see Section 3.1 below for details), while unlabeled genes 

are those that cannot be categorized up front as positive or negative with enough confidence. 

These unlabeled genes can be incorporated in the inferred network if they are classified as 

positive genes by the prediction algorithm (Figure 3.1). 

Briefly, the core of the DLS training algorithm consists of searching an expression signature 

for each probe matching a positive gene (Section 3.2). For each of these positive probes, 

DLS searches for a subset of features (experimental conditions) containing a highly 

discriminative expression pattern (Figure 3.1). The discriminative level of each expression 

pattern is evaluated by the “expression signature score”, which favors expression patterns 

having high coexpression with positive probes and penalizes the ones having high 

coexpression with negative ones. Only the expression patterns that are discriminative enough 

are considered expression signatures (Figure 3.1). These signatures are then used by DLS to 

infer a network containing coexpression associations between positive genes and between 

positive and unlabeled genes (Figure 3.1). Thus, the unlabeled genes that appear in the 

inferred network correspond to genes that have been predicted by DLS as related to the 

biological function of interest.  
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The classification method of DLS uses each expression signature as an independent 

Bayesian classifier (Section 3.3). Each of this classifiers acts like an expert in identifying 

positive probes, evaluating its confidence about other probes being positive. The confidence 

of a signature probe about another probe being positive is based in how correlated (similar) 

their expression patterns are and how this correlation compares with the ones that the 

signature has with other positive and negative probes. Probes having a correlation value 

closer to the ones obtained by positive probes will have higher confidence than those closer 

to the ones obtained by negative probes. Then, an association (edge) from a signature gene 

!" towards a gene gj is made if and only if the confidence of !"	about gj being positive is 

higher than threshold t. 

 

Figure 3.1.  Mockup of a labeled training set illustrating the bases of DLS. Each colored square 

represents the expression level of a gene (row or sample) in an experimental condition (column or feature). 

DLS searches for expression signatures (ES) for each positive gene. ES are patterns defined by features 

where positive genes are coexpressed, but positive and negative genes are not (red area). These ES are 

then used to find genes associated to the positive class by searching genes coexpressed with an ES. Then, 

each association is represented by an edge in a network. 
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The rest of this chapter is organized as follows. Section 3.1 presents the methodology used 

to construct a labeled expression dataset. Sections 3.2 and 3.3 present the main details of the 

training and classification processes, respectively. Section 3.4 presents an incremental 

process used in DLS to predict potential false negatives, one of the main problems in using 

supervised learning to predict gene function. Finally, Section 3.5 describes the GENIUS web 

server and the features it provides over DLS. In particular, it presents the procedure used to 

map microarray probes to genes, the server architecture, the datasets and organism included, 

and the scores and graph theory indicators used for gene prioritization. 

3.1. Construction of a labeled expression dataset 

A key aspect to perform effective gene functional predictions using massive microarray 

gene expression data is to apply suitable pre-processing steps to extract informative 

features and to handle the noisy nature of raw expression data. Also, a key aspect for a 

supervised method like DLS is to obtain a labeled training set of samples, which we 

obtain by using the functional knowledge available in Gene Ontology (GO). On one side, 

the result of pre-processing the gene expression data is a dataset stored in the form of 

two matrices: one that stores quantitative differential expression values and another that 

stores the qualitative statistical significance of them. On the other side, the result of the 

labeling process corresponds to a training set containing a subset of genes labeled either 

as positive or negative for a particular biological function of interest. The genes known 

to be involved in this biological function are labeled as positive, whereas the genes not 

functionally related to the biological function are labeled as negative. The following two 

sub-sections describe in detail these preprocessing steps.  

3.1.1. Pre-processing of gene expression data 

Unless microarrays are appropriately normalized, comparing microarray samples 

from different experiments can lead to misleading results (Irizarry et al., 2003). To 

overcome this problem, we apply two widely used algorithms: RMA (Irizarry et al., 

2003) and RankProducts (Breitling, Armengaud, Amtmann, & Herzyk, 2004). On 

one hand, RMA uses quantile normalization to make the distribution of expressions 
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comparable among different microarray slides (Bolstad, Irizarry, Astrand, Speed, & 

Astrand, 2003; Irizarry et al., 2003). On the other hand, RankProducts provides a 

statistical methodology to find the significance level between expression changes of 

genes over two experimental conditions containing replicates (Breitling et al., 2004). 

In order to describe the pre-processing method, we consider a generic and typical 

case of public microarray databases, in which we have multiple microarray series or 

experiments, each coming from different sources, but all from a unique microarray 

platform. Each experiment corresponds to a series of microarray samples, measured 

in various, but related, experimental conditions. In addition, each experimental 

condition has two or more replicates to provide statistical significance to the results. 

Considering this scenario, we apply the following procedure to the samples of each 

experiment or series. Given a particular series, the procedure first uses the RMA 

algorithm over all of its samples to normalize their values. Then, it groups samples 

that are replicates of the same experimental condition and applies Rank Products to 

each possible pair of conditions within the series (Figure 3.2). For an experiment with 

MC different experimental conditions and coming from a platform with N genes, this 

procedure generates two matrices with MC(MC-1)/2 features in their columns and N 

genes in their rows. The first matrix (XLR) contains features that provide differential 

expression values between two experimental conditions. These values correspond to 

the logarithm of the fold change (log-ratio) of the genes expression levels between 

two particular experimental conditions. In addition, the second matrix (XFDR) 

provides the statistical significances of the differential expression values provided in 

XLR, which are given in the form of false discovery rates (FDRs). In few words, a 

small FDR value indicates that the corresponding change has a highly consistent rank 

among the replicates of the compared experiments and thus a low probability of being 

a false-positive detection (Breitling et al., 2004). The XFDR matrix is used by DLS to 

guide the search of discriminative expression patterns in XLR, by favoring the features 

with significant expression changes. Although this procedure might generate some 

biologically meaningless comparisons, they should not affect the performance of 

DLS because of its automatic selection of discriminative features, which should filter 
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out non-informative features. Moreover, some unexpected comparisons could still 

provide new biological insights about the predictions and the biological process of 

interest. 

 

Figure 3.2.  RankProducts normalization is used over control-test pairs of conditions to 

generate a log-ratio differential expression matrix. 

In order to minimize the redundancy that this procedure might generate, we only add 

a feature to the final dataset if it does not have a ‘high’ correlation with any of the 

features already added of the same experiment. In the datasets used in this work, we 

define as ‘high’ correlations greater that 0.9.  

The procedure described above can be independently applied to different platforms 

of the same organism, generating a row vector with an expression profile for each 

probe of each platform, which are then matched to genes using the metadata 

provided, as described in detail in Section 3.5.3. This allows for probes of two 

different platforms to be matched and grouped to a common gene. 

This procedure marks a departure from the pre-processing procedures used in many 

state-of-the-art methods (for example Alon et al., 1999; Barutcuoglu et al., 2006; 

Ben-Dor, Chor, Karp, & Yakhini, 2003; Brown et al., 2000; Y. Cheng & Church, 
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2000; Eisen et al., 1998; Horan et al., 2008; S. K. Kim et al., 2001; Kuramochi & 

Karypis, 2001; Lanckriet, Deng, Cristianini, Jordan, & Noble, 2004; I. Lee et al., 

2010; Mateos et al., 2002; Stuart et al., 2003; Vandepoele et al., 2009; Yang, 2004; 

Zhang et al., 2004; Zhao et al., 2008), which base their inferences on absolute gene 

expression data, as the one provided by RMA. The differential expression data 

provided by RankProducts allows us to filter out most of the artifactual expression 

patterns, leaving only patterns that show statistically significant changes. In addition, 

it diminishes the biases introduced in each series by comparing the amount of 

variation in gene expression, which allows us to combine features coming from 

different series. Finally, it allows to automatically pair experimental conditions to 

measure differential expression, which is a tedious task that is commonly done 

manually by an expert, but impractical for massive datasets containing hundreds or 

even thousands of experimental conditions (See Section 3.5.2 for a description of the 

datasets used for the GENIUS web server). 

3.1.2. Training set construction using Gene Ontology  

A critical aspect for a supervised prediction approach is the construction of a labeled 

training set. As a consequence, DLS needs a labeled training set of genes in order to 

search for discriminative expression patterns for a specific biological function of 

interest (BF). Each training gene must be labeled as positive or negative, depending 

on whether the gene participates or does not participate in BF, respectively.  

Manually defining the gene set for training can be a difficult and tedious process. In 

particular, negative training genes are difficult to define, due to the almost total 

absence of negative annotations, our incomplete knowledge and the ability of genes 

to have multiple roles. However, DLS (and GENIUS) makes this process transparent 

for the user. In order to make a prediction, the user only has to define a query list 

with positive genes for the biological function of interest. In particular, the GENIUS 

web server provides two complementary options for this process. The first option is 

to submit a custom list of genes or probes identifiers. GENIUS will then search for 

all genes in its database that matches any of the provided identifiers (See Section 
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3.5.3 for details about the mapping of probes to genes). The second option to define 

the query list is to select one or more Gene Ontology (GO) biological processes 

related to the biological function of interest. GENIUS will then add to the query list 

all the genes annotated in any of the selected GO terms.  

Once the positive set is defined, DLS generates a plausible set of negative genes by 

using an adapted version of the Rocchio algorithm, which was originally developed 

for text classification (Rocchio, 1971), but adapted for negative protein function 

prediction (Youngs, Penfold-Brown, Bonneau, & Shasha, 2014). This method uses 

GO annotations to derive a score that measures the semantic distance of each gene to 

the positive set. Thus, the higher the score of a gene, the less related to the positive 

genes it is according to its annotations, and thus, to the biological function of interest. 

An inconvenience of this method is that it needs a score threshold to define which 

genes are considered negative. Based in our tests, we obtain a suitable number of 

negative genes for DLS by using the top 50% of genes that have a score greater than 

zero. Note that using this criterion, DLS is able to slightly improve its prediction 

performance as compared to the method incorporated in the former published DLS 

algorithm (Puelma et al., 2012). 

3.2. Training: searching expression signatures 

The core of the training process of DLS is to identify suitable expression signatures for 

the biological function of interest BF. Each expression signature is defined by a 

discriminative local subspace of the expression data matrix XLR described in Section 

3.1.1. The core of this scheme is based on four concepts about gene expression: 

i. Coexpression: genes exhibiting coexpression patterns are likely to be coregulated, 

and hence, they are likely to participate in a common biological function. 

Consequently, DLS uses the positive set of genes C1
BF to search for common 

coexpression patterns for genes involved in BF (Figure 3.3). 
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Figure 3.3.  Coexpressed genes usually participate in a common biological process. 

ii. Subspaces: genes participating in the same biological function are usually not 

coregulated under all the cellular conditions. Consequently, DLS searches for 

patterns under subsets of conditions that maximize coexpression among positive 

genes (Figure 3.4). 

 

Figure 3.4.  Genes are usually coexpressed under subsets of conditions (features). 

iii. Locality: genes participating in the same biological function may be regulated by 

different transcription factors and hence, they might be coexpressed under different 

experimental conditions. Consequently, DLS independently searches for a suitable 

subset of conditions for each positive gene in C1
BF (Figure 3.5). 

 

Figure 3.5. Genes can be coexpressed under different subsets of conditions. 

iv. Discrimination: genes participating in different biological functions may still 

coexpress under some experimental conditions. Consequently, DLS uses the 
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negative genes C0
BF to filter out non-discriminative subsets of conditions where 

positive and negative genes show coexpression patterns (Figure 3.6). 

 

Figure 3.6. Not all conditions are discriminative to the target biological process. 

In agreement with the previous concepts, the core of the training process consists of a 

feature selection algorithm that looks for a suitable expression signature for each gene 

!" Î C1
BF (Figure 3.7). We achieve this by selecting a subset of features where !"	shows 

a ‘strong’ coexpression with genes in C1
BF and a ‘weak’ coexpression with genes in C0

BF. 

This feature selection algorithm explores the space of possible subsets of features using 

the Expression Signature Score (ESS) presented in equation (3.1) below. This score 

evaluates the discriminative power of each potential subset (pattern). Once the feature 

selection scheme is finished, each positive gene !" Î C1
BF has an associated subset of 

features corresponding to the most discriminative expression pattern found by DLS. 

However, only expression patterns having an ESS > 0 are selected as valid expression 

signatures and used in the classification process. We describe next the details of the ESS 

score and then the main steps behind the operation of the feature selection scheme, which 

we refer to as signFS (Figure 3.8). 
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Figure 3.7.  Pseudocode of the training algorithm. 

 

Figure 3.8.  Pseudocode of the feature selection scheme (signFS). 

3.2.1. Expression signature score 

Let $%&'  be a selected subset of the total set of available features. Furthermore, let 

!"[$%&'] be the expression pattern of gene !"	considering only the features in $%&' (i.e. 

!" $%&' = 	+,-(/, $%&'))). The ESS of gene !"	for a subset of features $%&'	is defined 

as 

233 !" $%&' = 45 ⋅ 3789:5 !" $%&' − 4< ⋅ 3789:< !" $%&' ,	 	 (3.1)  
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where Score1(·) and Score0(·) are functions that quantify the coexpression level of 

gene !"	with respect to the set of genes in C1
BF and C0

BF, respectively, considering 

only features in $%&'. More precisely, 

3789:∗ !" $%&' = A!B 78:CD !" $%&' , !E $%&' ,E∈GHI
∗ 	 	 (3.2)	

where coexp(·,·) measures the coexpression between two patterns and sgd(·) 

corresponds to a sigmoidal function used to establish a continuous threshold to 

separate ‘strong’ from ‘weak’ coexpressions (Figure 3.9).  

 

Figure 3.9.  Sigmoidal function used to increase the difference between “weak” 

coexpressions (<0.6) and “strong” coexpressions (>0.8). 

The shape of this sigmoidal function (Figure 3.9) was tuned for best prediction 

performance using tests described in Section 4.1 and taking into account our 
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biological and mathematical knowledge as well. As a result, the function returns 

values between 0 and 1, being close to 0 for coexpression values below 0.6 (weak) 

and above 0.5 for coexpression values above 0.8 (strong) (Figure 3.9). 

To measure coexpression between the expression patterns of two genes !"  and !E 

considering features in $%&', we use the absolute value of the cosine correlation, which 

can be expressed as the dot product of two vectors, normalized by their respective 

magnitudes:  

78:CD !" $%&' , !E $%&' = KLA(78A_7899(!" $%&' , !E $%&' )) (3.3) 

78:CD !" $%&' , !E $%&' = KLA
!" $%&' ⋅ !E $%&'
!" $%&' !E $%&'

 

The cosine correlation (cos_corr) returns a continuous value between 1 and -1, taking 

a value of 1 if the two patterns are correlated, -1 if they are negatively correlated and 

0 if they change independently. We use the absolute value abs(·) to capture positive 

and negative correlations indistinctively among genes, which improves the 

prediction performance in our test. Despite its simplicity, we consider this measure 

more suited than the traditional Pearson correlation coefficient (PCC) to measure 

coexpression in log-ratio expression data, in which each feature is a comparison in 

itself between two conditions. This can be more clearly seen by the following 

example: consider the log-ratio expression patterns of genes !5 = 1,1,0,0  and !O =

0,0, −1,−1 . Analyzing these two patterns, we intuitively do not expect any relation 

between their corresponding genes because the expression of gene !5 is not affected 

at all when gene !O changes (i.e. !5 == 0 ↔ !O ≠ 0) and vice versa. This is very 

well expressed by the cosine correlation, which returns a value cos_corr(p1,p2) = 0. 

Contrarily, the PCC only considers the relative changes within the features of the 

patterns, which in this example are perfectly synchronized, thus returning a 

PCC(p1,p2) = 1, the opposite from what we expect. 

In equation (3.1), w1 and w0 weight the influence of Score1(·) and Score0(·), 

respectively, and are used to avoid overfitting the training samples; w1 is defined by 

a function that penalizes expression signatures with a small number of features, 
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whereas w0 is a predefined parameter that allows us to adjust the level of 

discrimination of the expression signatures. Specifically: 

45 $%&' = 1 − 45_Rℎ − $%&' ⋅ T45				/$				 $%&' < 45_Rℎ
1																																					8Rℎ:94/A:

	 ,  (3.4) 

where |$%&'| is the number of features in $%&'. Equation (3.4) penalizes the signatures 

with less than 45_Rℎ features by lowering the corresponding weight 45 by Δ45 for 

each eliminated feature below 45_Rℎ. The value of 45_Rℎ is adapted for each trained 

signature, depending on the number of features where the corresponding gene !" 

shows significant expression changes |$%"YZ|): 

45_Rℎ = 98[\B(|$%"YZ ⋅ 45_K ,   (3.5) 

where 45_K is a parameter corresponding to the fraction of significant features that 

will be used as threshold. Back into equation (3.4), Δ45 is derived as a linear function 

such that 45 $%&' == 1 if $%&' == 45_Rℎ (no penalization) and 45 $%&' ==

45_L if $%&' == min_feats (maximum penalization):  

T45 = (1 − 45_L)/(45_Rℎ − _/\_$:KRA),   (3.6) 

where 45_L and min_feats are parameters corresponding to the minimum 45 value 

(maximum penalization) reached when an expression pattern has a minimum number 

of features min_feats. 

3.2.2. Feature selection scheme  

The feature selection algorithm, signFS, uses the ESS score in equation (3.1) to find 

a suitable expression signature for each positive gene !"  Î C1
BF (Figure 3.8). An 

exhaustive search, however, is not possible because it requires the evaluation of 2M - 

1 possible subsets of features for each positive gene. Consequently, we use an 

iterative and fast exploration scheme, which uses suitable heuristics to efficiently 

search for discriminative expression signatures. 

Given a gene expression pattern !" = +,-(/, ∶), signFS obtains an initial set of 

features, $%&'(0), by selecting the features where gene i significantly changes its level 
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of expression. We define as significant, a change with a FDR value < 0.1 in +bc-(/, ∶

). Afterwards, signFS performs an iterative process (explained below) that, at each 

iteration t, adds and/or removes a suitable subset of features Ft, from $%&'(R). These 

changes must increase the expression pattern score ESS(·) (Equation 3.1). As a 

consequence, the new subset $%&'(R + 1)  should provide better discriminative 

properties for gene function prediction. This iterative process continues until 

consecutive modifications of $%&'(R) do not increase the respective score ESS(·). 

A key aspect of the previous iterative process is how to choose a suitable subset of 

features Ft to swap (add/remove) from $%&'(R), such that the resulting subset $%&'(R +

1) provides better discriminative properties for gene function prediction. The most 

straightforward option for this would be to apply a greedy stepwise feature selection 

(SFS) scheme, which adds/removes only the single feature that produces the highest 

increase in the expression signature score 233(!"[$%&'(R)]) (Equation 1). Modifying 

only one feature at each iteration, however, can lead to a slow convergence, 

particularly at early stages of the process, where the current subset $%&'(R) is likely to 

be far from an optimal situation. Furthermore, such local search is likely to be trapped 

by a local optimum.  

To tackle the problems exposed above, we evaluate swaps of more than one feature 

at each iteration. Each iteration starts by limiting the features available for swapping 

to the top e R  most significative features according to the +bc- matrix (i.e. with 

lower FDR value). e R  corresponds to the number of features selected at iteration t 

in $%&'(R), plus the 20% most significative features not currently selected in $%&'(R). 

This initial restriction allows DLS to foster the inclusion of features showing the most 

significative changes in expression. 

Unfortunately, for subsets of k simultaneous swaps among the e(R) features, the 

number of possible different patterns P that can be evaluated is given by f =

e(R)!/h! (e(R) − h)! . This has a computational complexity i(e(R)j), which is 

exponential in k. Thus, we apply a heuristic method that uses the ESS(·) score of the 

e(R) individual swaps (k = 1), to efficiently guide the selection of a good subset (k 
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≥ 1) of features Ft to swap. By good we mean that swapping the features in Ft 

increases the score of $%&'(R) at least as much as the greediest option (k = 1).  

The heuristic mentioned above first explores local changes by evaluating the ESS(·) 

score of the e(R) patterns formed by swapping the e(R) available features 

individually (k = 1). Then, to explore global changes, it evaluates 16 additional 

patterns, formed by swapping 16 subsets of k ≥ 1 features. These subsets are selected 

from the e(R)∗≤ e(R) features that increase the score in the previous evaluation with 

k = 1. Finally, from the e(R) + 16 resulting patterns, the one with the greatest 

increase in the ESS score is selected as the set $%&'(R + 1). If none of them obtains a 

score ESS(·) higher than the current set $%&'(R), then the iterative process ends and 

signFS returns the ESS(·) score and the current selected features. 

The heuristic explained above allows DLS to explore local and global changes by 

evaluating only 16 different subsets of swaps per iteration, whose features are 

selected by four different methods: delSwaps, addSwaps, allSwaps, and bestSwap. 

Let Finc be the subset of features that increases the ESS(·) score of $%&'(R) with a 

single swap (k = 1).  

i. delSwaps removes from $%&'(R) the p% of the features present in both, Finc and in 

$%&'(R), whose resulting subsets show the greatest increase in ESS(·) score. 

ii. addSwaps adds to $%&'(R) the p% of the features in Finc Ï $%&'(R), whose addition 

produces subsets with the greatest increase in ESS(·) score.  

iii. allSwaps(p) considers all the features in Finc, and from those, swaps the p% with 

greatest score.  

iv. bestSwap swaps only the feature from Finc with the greatest score.  

The first three methods are applied using 5 different percentages p = {20, 40, 60, 80, 

100}, which allows us to explore local and global changes (Figure 3.8).  

Consequently, the swaps defined by the four methods generate 5 + 5 + 5 + 1 = 16 

new potential expression patterns. These patterns are then evaluated and the one with 

greatest ESS score is selected as the set $%&'(R + 1). If none of them obtains a score 
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ESS(·) higher than the current set $%&'(R), then the iterative process ends and signFS 

returns the ESS(·) score and the current selected features (Figure 3.8).  

3.3. Classification: using expression signatures to predict gene associations 

The aim of the classification scheme used by DLS is to use the expression signatures 

found during training in order to predict functional gene associations for the biological 

function of interest BF. This section starts describing the details behind the classification 

algorithm to predict these associations. Then, it describes how DLS uses these predicted 

associations to form a gene network focused in the genes containing expression 

signatures and the genes predicted to be associated to them (Figure 3.10). 

 

Figure 3.10.  Pseudocode of the classification algorithm. 

3.3.1. Prediction of gene associations 

Expression signatures are trained to be discriminative. Thus, if a gene !" is highly 

coexpressed with the expression signature of a gene !E in C1
BF, then !" is likely to 

be involved in BF (i.e. there is a functional association between !" and !E). A relevant 

issue with respect to the previous classification scheme is that not all the expression 

signatures have the same potential to predict functional associations. In effect, this 

potential depends on several factors such as type of gene, type of biological function, 

biological complexity of interprocess co-regulations, and level of noise in the data. 

DLS overcomes these issues by using a Bayesian inference approach that allows it 
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to adaptively decide the minimum coexpression level needed by each signature to 

predict a gene with a given confidence (Figure 3.11). 

Consider a hypothesis h, representing that an unknown gene !E belongs to the 

positive class C1
BF. In addition, consider evidence e, indicating that gene !E has a 

coexpression level L, with respect to the expression signature of gene !", 23(!"). We 

can estimate the posterior probability f(ℎ|:) by using Bayes rule: 

f ℎ : = k : ℎ ×k(m)
k(&)

		 	 	 	 (3.7)	

where 

f : = f : ℎ f ℎ + f : ¬ℎ f(¬ℎ)   (3.8) 

Thus, we need to calculate basically two types of probabilities: the prior probabilities, 

f(ℎ) and f(¬ℎ), and the positive and negative likelihoods, f(:|ℎ) and f(:|¬ℎ), 

respectively. Prior probabilities can be estimated directly from training data by 

calculating the proportion of positive versus negative genes in the training set. 

However, the estimation of the likelihood terms is not so straightforward as we need 

to estimate the probability density function (pdf) of the coexpressions with respect to 

23(!"). To overcome this, we estimate the likelihoods using a kernel-based density 

function estimation (Parzen, 1962), which can be thought as a continuous and 

smoothed version of a histogram estimation. Given a particular coexpression C" and 

a bandwidth s, we use a Gaussian kernel function p C = q(C", r), which measures 

the influence of sample C" in a location C of the input space. The bandwidth s  is a 

parameter that controls the smoothness of the pdf. Then, the total density in any 

location C can be estimated by summing the influences (kernel values) at location C 

of all the available samples C". In this particular case, the input space corresponds to 

the space of coexpression levels that training genes have with signature 23(!") 

(Figure 3.11A).  

The choice of bandwidth σ usually has a great impact in the resulting estimation, in 

a similar way to the effect of bin size in a histogram pdf estimation. On one hand, a 
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small σ could produce an under-smoothed pdf estimation containing spurious data 

artifacts. On the other hand, a large σ could produce an over-smoothed density that 

may obscure the underlying density shape. To tackle this problem, we use a kernel 

bandwidth optimization method (Shimazaki & Shinomoto, 2010) that automatically 

selects the optimal bandwidth σ for a given set of data samples and a kernel function. 

Our experiments have shown that the best results are obtained by restricting the 

selected bandwidth to the range [0.08, 0.1]. Thus, we use the bandwidth σ� given by 

r∗ = min	(max AAh:9\:x ⋅ , 0.08 , 0.1)   (3.9) 

where sskernel(·) function returns the bandwidth given by the optimization method, 

and max(·,·) and min(·,·) functions return the maximum and minimum values among 

the inputs, respectively.  

By applying the Bayes procedure described above, a gene !E is predicted as positive 

by an expression signature	23(!/) if the coexpression L between them results in a 

confidence f(ℎ|:) greater than a desired threshold (Figure 3.11D). Notice that 

although a fixed confidence threshold is needed, it is translated into a different 

coexpression threshold for each signature, depending on the evidence shown in the 

training set about its discriminative potential (Figure 3.11C-D).  

We encourage the reader to see the example in Figure 3.11 to get a better 

understanding of the classification process. The figure illustrates of the method used 

to determine the correlation threshold and the prediction confidences given by a 

signature. The signature in the example corresponds to the A. thaliana gene HVA22D 

(AT4G24960) of the response to abscisic acid stimulus (GO:0009737) biological 

process. In Figure 3.11A, the positive and negative likelihoods (f(:|[¬]ℎ)) are based 

on the density of the coexpressions of the positive and negative training genes with 

the signature. In this case, the likelihood for coexpressions greater than 18% are 

higher for positive than for negative genes, as expected for a discriminative pattern. 

In Figure 3.11B, the negative training set is much larger than the positive set (1917 

versus 208 genes), so there is a strong prior in favor of the negative class (f ¬ℎ =

0.9 and f ℎ = 0.1). Thus, after weighting by the respective priors, the positive class 
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becomes less likely. In Figure 3.11C, by zooming in, it can be seen that now the 

positive class is more likely than the negative class only for coexpressions greater 

than 64%. In Figure 3.11D the weighted likelihoods are then used to determine the 

posterior probability function (f(ℎ|:)), which gives the confidence to the predictions 

made by this signature. As a discriminative signature, it will provide higher 

prediction confidences to genes showing higher coexpressions with it. In particular, 

the minimum reasonable coexpression threshold for this signature is 64%, as genes 

with lower coexpressions would be more likely to be negative than positive, based 

on the training evidence. 
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Figure 3.11.  Example of the Bayesian inference approach used in DLS to determine the correlation 

threshold and the prediction confidences given by a signature. (A) Positive and negative likelihoods 

P(e/[¬]h) are based in the density of coexpressions of positive and negative training genes with the 

signature. In this case, the likelihood for coexpressions greater than 18% are higher for positive than for 

negative genes, as expected for a discriminative pattern. (B) The negative set is much larger than the 

positive set, so there is a strong prior in favor of the negative class (P(¬h) >> P(h)). Thus, after weighting 

by the respective priors, the positive class becomes less likely. (C) A zoom in shows that the positive 

class is still more likely than the negative one for coexpressions greater than 64%. (D) The weighted 

likelihoods are then used to determine the posterior probability function (P(h/e)) of this signature, which 

gives the confidence to the predictions made by this signature. As a discriminative signature, it gives 

higher prediction confidences to higher coexpressed genes. In particular, the minimum coexpression 

threshold for this signature should be 64%, as genes with lower coexpressions are more likely to be 

negative than positive. 
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In GENIUS, we set the confidence threshold t to be 0.66, so that the confidence of a 

predicted gene !E to be positive is at least twice of the confidence about it being 

negative (0.66 vs 0.33). However, DLS can lower or increase this threshold 

dynamically in order to obtain a reasonable number of genes in the final network. Let 

#positives be the number of positive genes in the training set and #predictions the 

number of genes with a confidence higher than t. Then, threshold t is lowered if 

(#D9:B/7R/8\A < (#D8A/R/|:A)/2)	&	(~ > 0.5) or increased if (#D9:B/7R/8\A >

2 ∗ #D8A/R/|:A)	&	(~ < 1.0). The restriction of t > 0.5 allows DLS to infer networks 

enriched and focused in genes that have a higher probability of being related to BF 

than not being involved in it. 

3.3.2. Gene network derivation 

One of the main features behind DLS is its ability to represent its predictions as a 

discriminative coexpression network (DCN), which provides additional insights 

about the predictions and the biological function of interest. Formally, a DCN for a 

biological function BF is defined by a graph GBF = < V, E >, where vertices in set V 

represent genes, and edges in set E represent predicted associations from expression 

signatures genes to other genes. More precisely, there is an edge from gene !" Î C1
BF 

to gene !E, if there is an expression signature 23(!") predicting that !E is related to 

BF with a confidence greater than a pre-defined threshold (Figure 3.11D). In order 

to construct a DCN that involves all the genes related to BF, DLS applies the 

classification algorithm to all the N genes available in matrix XLR, including the ones 

in CBF used for training. This not only allows DLS to display a network description 

of the relations between training genes and new predicted genes, but also to expose 

relevant relations among the positive genes, even if they are known to be involved in 

BF. A network description allows application of tools and concepts (Strogatz, 2001) 

developed in fields such as graph theory, physics and sociology that have dealt with 

network problems before (Alon, 2003). For example, GENIUS calculates the node 

degree and betweenness centrality of genes in the DCN, which provide relevant 

insights to discover central and highly coordinated genes in the biological function 
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of interest. Details about these indicators are found in Section 3.5.4. In addition, 

Section 4.4.2 shows a case study that demonstrate the usefulness of these indicators. 

There are various characteristics that distinguish DCNs from traditional coexpression 

networks (CNs). On one side, there is a semantic difference between the links of both 

networks. In CNs, a link between two genes is undirected and represents that both 

genes are coexpressed above some given and fixed correlation threshold. In contrast, 

in DCNs a link is directed and represents that a signature gene !" predicts gene !E 

with a confidence above some given and fixed confidence threshold. Defining the 

coexpression threshold is one of the main difficulties in constructing CNs. Different 

genes can show coexpression patterns in different subsets of conditions, thus varying 

the optimal global correlation threshold. In contrast, the Bayesian inference approach 

used by DLS allows it to select the coexpression threshold adaptively for each 

expression signature. On the other side, in CNs, coexpression is measured over all 

available experimental conditions. In contrast, in DCNs, it is measured over subsets 

of discriminative conditions, which are selected differently for each expression 

signatures, so that they are differentially expressed and have a high coexpression 

level with other genes involved in BF. This allows DCNs to show connections that 

are hidden among some specific conditions and to filter out noisy and irrelevant 

conditions. 

3.4. False-Negatives Discovery: overcoming the false negatives problem  

One of the most relevant issues of using supervised learning methods to predict gene 

function is the false negatives (FNs) problem. In Section 3.1.2 we show a method to 

obtain an informative negative training set C0
BF, containing genes that according to GO 

annotations have a low chance of being related to the positive class C1
BF. Unfortunately, 

due to the inherent complexity of gene behavior and the incompleteness of annotations, 

it is not possible to know with certainty which genes are not involved in a biological 

function. As a consequence, we expect for a proportion of the negative training genes to 

be mislabeled, which can damage the performance of the predictions. As FNs are actually 
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positive genes, they are likely to be coexpressed with other positive genes, masking the 

discriminative expression patterns.  

To tackle the previous problem, we add to our training algorithm the option of a bootstrap 

step, which is able to automatically identify, and temporarily discard from the set C0
BF, 

genes that are potential FNs and are obscuring the finding of discriminative patterns. 

More specifically, this strategy is applied at the start of each step t of the feature selection 

algorithm signFS, performed in the training of each positive gene !". The strategy 

discards a negative gene !E from iteration t if its coexpression with gene !", using the 

selected features in $%&'(R), satisfies two conditions: 

i. it is among the top pFN% most highly coexpressed negative genes and 

ii. it has a value of at least min_FN_coexp. 

Notice that these potential FN genes are not discarded permanently from the negative 

training set, but they are only not considered in the evaluations of the patterns generated 

during the step t. At the end of the training process, the method outputs the potential FNs 

detected by each expression signature.  

The bootstrap option explained above allows us to avoid overfitting problems due to the 

presence of FNs in the training set, however, it may affect the discriminative level of the 

signatures by ignoring some true negatives during the training process. Thus, we 

developed an iterative method, False-Negatives Discovery (FND), which takes 

advantage of this option in order to predict FN genes in a more precise and informative 

manner. Initially, the list GFN of potential FNs contains all negative genes in C0
BF (GFN 

= C0
BF). Then, each iteration of the method applies three consecutive steps, used to 

incrementally bound and refine the list GFN. In the first step, a complete model is trained 

using the bootstrap option explained in the previous paragraph. GFN is then bounded to 

the potential FN genes detected by at least one trained signature in these model. In the 

second step, the trained signatures are used to classify the genes in GFN, filtering out the 

ones not predicted as positive. Finally, in the third step, the training algorithm is used to 

search for a suitable expression signature for each gene in GFN. This algorithm is used 
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without the bootstrap option. Then, a gene !E in GFN is predicted as a FN if the method 

is able to find an expression signature 23(!E) that satisfies two conditions: 

i. ESS gÉ fÖÜá > 0 (Equation 3.1) and  

ii. Score5 gÉ fÖÜá  (Equation 3.2) is greater than the average Score5(∙) obtained among 

the valid expression signatures of the positive class C1
BF. 

The first condition imposes the predicted FNs to be discriminatively connected to other 

positive genes, whereas the second condition imposes them to be at least as connected 

as an average positive gene. 

The three steps described earlier are executed iteratively by the FND method, 

automatically moving the predicted FNs to the positive set of the next iteration. The 

method stops if no new FNs are predicted or if a maximum number of iterations are 

reached. After performing the FND method, the training set can be refined, either by 

eliminating the predicted FNs from the negative set or by moving them to the positive 

set. This refined set is then used to train a DLS model and obtain the final predictions. 

3.5. GENIUS: a user-friendly web interface for the DLS method 

GENIUS (GEne Networks Inference Using Signatures) is a web server with a user-

friendly interface to DLS that allows the scientific community to fully exploit its 

capabilities. GENIUS incorporates Gene Ontology annotations and thousands of 

microarrays experiments from Gene Expression Omnibus (GEO) for eight model 

organisms. In addition, GENIUS adds several tools to visualize and analyze gene 

networks, including integration with Cytoscape (Smoot et al., 2011), an advanced 

network analysis software platform. The following subsections describe GENIUS web 

server and its features in detail. 

3.5.1. Server architecture 

GENIUS web server is composed by three main layers: user interface (UI), web 

integration, and data processing (Figure 3.12). The UI layer presents the data in the 

client’s browser using Adobe Flash technology and was developed using the Adobe 
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Flex framework. The web integration layer composed by an Apache Tomcat server, 

a MySQL database, and the web application, which was developed using Java 1.6. 

The web application mediates the communication of the client with the database and 

the data processing layer. It also does some minor processing, like search queries, 

generation of output files, and system reports. Finally, the data processing layer is 

composed by a series of Java services that call the MATLAB processes that run the 

DLS algorithm and make the network inferences. These services communicate 

asynchronously with the web integration layer using Java Remote Method Invocation 

(RMI). With this approach, users do not require waiting online for the results. 

 
Figure 3.12.  GENIUS server architecture has three main layer: data processing, web integration, and 

user interface. Data processing is done mainly by the DLS algorithm implemented in MATLAB. Also, 

some minor tasks are performed using Java. The web integration layer mediates the communication of 

the client with the database and the data processing layer. Finally, the user interface layer provides the 

graphic interface and web application that users interact with. 

3.5.2. Datasets and supported organisms 

GENIUS incorporates microarray gene expression data from Gene Expression 

Omnibus (GEO) (Edgar, Domrachev, & Lash, 2002) and gene functional annotations 

from Gene Ontology (GO) (Ashburner et al., 2000) for eight model organisms: 

Arabidopsis thaliana, Caenorhabditis elegans, Danio rerio, Drosophila melanogaster, 

Escherichia coli, Homo sapiens, Mus musculus, and Saccharomyces cerevisiae. The 

GEO database organizes raw samples of gene expression data in series and platforms, 
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as described in Section 3.1. GENIUS includes a total of 133,343 samples of the 

Affymetrix microarray platform, coming from 7,073 series that cover a wide range 

of experimental conditions (Table 3.1). The table shows the accession of the GEO 

platforms (microarrays) included for each organism, as well as the number of series, 

samples, probes, genes, and features for each of them. In addition, the last column 

shows the percentage of genes mapped in the arrays that are annotated in the 

Biological Process (BP) branch of Gene Ontology (GO). We did not consider 

annotations with an IEA evidence to derive these statistics. Gene Ontology 

annotations for all supported organisms were downloaded from GO on February, 

2015. GENIUS contains annotations from the three branches of GO: biological 

process, molecular function, and cellular component. For reference, Table 3.1 shows 

the percentage of matched genes that have at least one annotation in the biological 

process branch of GO. This percentage excludes annotations in the root term 

(GO:0008150) and annotations with an IEA evidence code. By default, GENIUS 

does not include annotations with an IEA evidence code, because these have not been 

manually curated. However, the user can choose which evidence codes to include 

when adding GO terms to the query list in GENIUS (Figure 4.7B). 
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Table 3.1.  Statistics of the gene expression data included in GENIUS. 

 

3.5.3. Mapping Microarray Probes to Genes  

For simplicity, previous sections describe the DLS algorithm in terms of samples of gene 

expression profiles. However, internally, DLS works over expression data coming from 

probes of microarrays. Also, it is more practical for the inputs and outputs of GENIUS 

to be expressed in terms of genes and their identifiers, which are commonly used by 

biologists in contrast to probes identifiers. Thus, we map probes to genes using the 

metadata provided by Affymetrix. During this mapping process, we address two 

common design issues that can lead to biased expression signatures and artifact 

predictions as follows. The first issue relates to the existence of probes that match 
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multiple genes (1 to N relationship). The second issue relates to the existence of different 

probes that match a unique gene (N to 1 relationship). We include these probes by 

addressing three main problems:  

i. Probes that match the same gene (1 to N) are likely to show similar expression 

profiles and thus, to form (uninteresting) links between them. 

ii. Genes matched by multiple probes (N to 1) would have a greater overall weight when 

evaluating the Expression Signature Score (ESS) (Equation 3.1). 

iii. Genes matched by multiple probes (N to 1) would appear represented by multiple 

nodes in the predicted network, one for each probe containing an expression 

signature. 

To address issues 1 and 2 above we add an overall weight to the coexpression of each 

training probe. More specifically, when training a specific probe p that matches a gene 

!", the weight of any additional probe matching !" is set to 0 (issue 1). Also, if a gene 

!E ¹ !" is matched by N different probes, then the weight of each of these N probes is 

set to 1/N (issue 2). In other words, the weights of probes matching a common gene sums 

1 if !E ¹ !", and 0 otherwise. To tackle issue 3, all probes matching the same gene in the 

output network are merged into a unique node containing all their associations. More 

precisely, let P(!") be the set of probes that match gene !". Then, an edge :"E from the 

node of !" to the node of !E is inserted if and only if there exists a probe in P(!") that 

predicts a probe in P(!E). Then, the attributes of the edge :"E, like the confidence of the 

prediction or the coexpression level between !" and !E are extracted from the probe in 

P(!") that predicts a probe in P(!E) with the highest confidence. 

The original version of DLS simply discarded these problematic probes, and thus, only 

the ones having a 1 to 1 relationship with genes where considered (Puelma et al., 2012). 

However, the current implementation offers a better solution as it solves this problem 

for microarray designs that include a much larger number of problematic probes without 

losing valuable data. 
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3.5.4. Scores and graph theory indicators for gene prioritization 

Gene networks, as most biological networks, usually have a hierarchical and scale-

free topology, where most nodes have a small number of connections and only a few 

nodes are highly connected (hubs) (Barabási & Oltvai, 2004). Most networks 

predicted by GENIUS also show this kind of topology. This allows us to take 

advantage of network theory and use centrality indicators to pinpoint relevant genes 

for the biological function of interest (Azuaje, 2014). GENIUS allows users to easily 

do this from the “Genes” tab in the results screen. This tab contains a table that 

displays all the genes in the network and several properties that can be used to rank 

them. By default, GENIUS displays genes ranked by their overall centrality (OC), a 

custom score obtained by calculating the mean of the normalized values of the degree 

centrality (DC) and the betweenness centrality (BC) of nodes: 

iç" =
cGé/èêë	(cG)íìGé/èêë	(ìG)

O
   (3.10) 

The degree DCñ measures the total number of nodes connected to a node i. Thus, this 

indicator is useful to highlight genes that are coexpressed with many other genes, 

acting as central hubs (Yu, Kim, Sprecher, Trifonov, & Gerstein, 2007). In contrast, 

the betweenness centrality BCñ measures the proportion of shortest paths between all 

pairs of nodes that pass through a node i. Thus, this indicator is useful to highlight 

genes that act as bottlenecks, making them essential for the flow of information and 

the overall connectivity of the network (Yu et al., 2007). Section 4.4.2 shows the 

usefulness of these centrality indicators to find key genes for drought tolerance in 

plants, which is a complex trait involving several biological processes. 

In addition to the graph theory indicators explained above, GENIUS also provides 

various scores and properties, which serve as evidence to evaluate and prioritize the 

predicted genes according to how likely it is for them to be involved in the biological 

function of interest. More specifically, the “Predictions” tab of the results screen 

shows a summary of the coexpressions, confidences and a global score of each 

predicted gene, as well as the in-degree of their respective nodes (Figure 4.8). In 

GENIUS, all edges are directed and each edge represents a prediction. More 
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precisely, an edge from a node A to a node C, with weight w, represents that a 

positive gene A predicts a gene C as positive, with confidence w (Details in Section 

3.3.2). Consequently, the in-degree of a node C represents the number of positive 

genes that predict gene C as positive. In addition, the prediction score for gene C 

corresponds to the sum of all the confidences given to gene C. By default, GENIUS 

displays the predicted genes in this tab ranked by their prediction score. Finally, the 

table shows the coexpression and confidence for a predicted gene C, which 

correspond to the maximum values obtained among all genes predicting gene C. 

In addition to display the results tables in the web application, GENIUS allows users 

to download them in excel format, so that they can make further analyses of the 

scores and indicators obtained in their prediction. Also, GENIUS allows users to 

export the resulting network to Cytoscape (Smoot et al., 2011), where power-users 

can make additional network analyses. 
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4. RESULTS AND DISCUSSION 

This chapter shows and discusses the results of several evaluations of the DLS algorithm, as 

well as several applications of it, through the GENIUS web server, to research case studies. 

Section 4.1 presents the evaluation performed in the original publication of the DLS 

algorithm (Puelma et al., 2012). Section 4.2 presents a real research scenario in which DLS 

is successfully used to make a novel discovery that was later experimentally validated. Since 

the original publication of DLS, the algorithm has received some changes to further improve 

its performance. Section 4.3 presents an updated evaluation of the current DLS algorithm, 

which is described in detail in Chapter 3, and used in the GENIUS web server. These updated 

evaluations show an improvement in the prediction performance over the original DLS 

algorithm and thus, the insights and conclusions presented in Section 4.1 should hold for the 

implementation presented in this thesis. Finally, Section 4.4 presents evaluations and 

applications of the GENIUS web server through two representative case studies. 

4.1. Evaluation of DLS using A. thaliana datasets from 2008-2010 

In our original work where we presented DLS (Puelma et al., 2012), we performed several 

systematic evaluations in order to measure five aspects of the DLS algorithm:  

i. Impact of selecting pairs of control-test conditions automatically. 

ii. Impact of the number of experimental conditions available.  

iii. Usefulness of the False-Negatives Discovery procedure.  

iv. Performance comparison with state-of-the-art methods. 

v. Ability to predict new annotations from GO.  

In our tests, we use two expression datasets for the A. thaliana organism: one defined by 

an expert with 643 features (expert-dataset) and another defined by our automatic 

procedure described in Section 3.1.1 with 3911 features (automated-dataset). Also, we 

measured the impact of the number of experimental conditions available by extracting 

two additional smaller datasets from the automated-dataset, defined by a random selection 

1000 and 2000 features, respectively. In addition, we measure the usefulness of the False-

Negatives Discovery (FND) procedure described in Section 3.4 by using two 
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configurations of DLS: one using the FND procedure (FND-DLS), and another without 

using it (DLS). Finally, we measure the ability of DLS to predict new genes by comparing 

its performance against two widely used state-of-the-art algorithms: SVMs (Brown et al., 

2000) and CNs (Vandepoele et al., 2009). We measured the prediction performance of 

the different configurations over 101 biological processes from GO. For this, we first 

perform cross-validation tests using annotations from year 2008. Then, we measure the 

ability of the algorithms to predict new annotations from year 2010 using an enrichment 

analysis.  

The rest of this section starts explaining the details of the experimental setup used for 

these evaluations.  Then, it discusses the results obtained and the insights we extract from 

them. 

4.1.1. Experimental setup 

Gene expression datasets 

In our tests we used two gene expression datasets. In the first dataset, pairs were 

manually defined by an expert, starting from a total of 2017 Arabidopsis thaliana 

ATH1 microarray slides (including replicates). Of these 2017 slides, 1907 were 

obtained from Nottingham Arabidopsis Stock Centre (NASC) 

(www.affymetrix.arabidopsis.info), 26 from Gene Expression Omnibus (GEO) 

repository (http://www.ncbi.nlm.nih.gov/geo/), and 84 from experiments done in our 

laboratory. This process produced a dataset with e = 643 features, which we refer 

to as the “expert-dataset”. In the second dataset, pairs were derived by the automatic 

procedure described in Section 3.1.1, starting from an updated raw dataset containing 

3352 microarray samples. The additional samples were extracted later from NASC. 

This process produced a data matrix with e = 3911 features which we refer to as 

the “automated-dataset”. 

Gene Ontology annotations 

The evaluations consider the selection of 101 representative GO-terms from the 

3500+ GO-terms available for A. thaliana in the biological process ontology. This 
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selection was performed using the annotations available in GO on May 8, 2008. First, 

we filtered out all the annotations with IEA evidence code (Inferred from Electronic 

Annotation), as they are not reviewed by a curator and thus, are not reliable. Then, 

we selected representative functional GO-terms using a depth-first strategy, 

searching for the first GO-term of each branch containing between 30 and 500 

annotated genes. The lower bound of 30 genes ensures for the positive sets to have a 

significant number of samples. The upper bound of 500 genes removes the GO-terms 

that are too broad and biologically less interesting. Nevertheless, this selection is 

representative of the space of possible biological processes in the sense that all the 

branches of the GO DAG are represented by at least one GO-term in our selection. 

In other words, all the GO-terms that were filtered out are either subcategories 

(descendants) or broader categories (ancestors) of at least one of the selected GO-

terms. The selected GO-terms are Levels 2–6 in the GO hierarchy and cover a wide 

range of biological processes, such as responses to different stimulus and various 

metabolic and developmental processes. Also, we extracted new annotations 

available on GO on September 7, 2010 for each of the 101 selected GO-terms, in 

order to perform enrichment analyses for each method (Section 4.1.2). 

Training sets 

We derived a labeled training set for each of the 101 selected GO-term, as described 

in Section 3.1.2. However, the evaluations shown in section 4.1 use the method 

incorporated in the original published DLS algorithm (Puelma et al., 2012) to derive 

negative sets, in contrast to the Rocchio algorithm used in the latest implementation 

of DLS for GENIUS, and used in evaluations of sections 4.2 and 4.3 (Youngs et al., 

2014). The number of positive genes in the 101 training sets varies from 30 to 474, 

with an average of 162 genes. The number of negative genes varies from 1011 to 

4112, with an average of 3105 genes. Thus, in average, negative training sets contains 

19.2 times more genes than the positive ones, which is expected, because most genes 

are not involved in a particular biological process. 
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Testing methods and metrics used to evaluate prediction performances 

10-fold cross-validation tests were performed over each selected GO-term. Briefly, 

a 10-fold cross-validation consists of 10 trials done over 10 equally sized partitions 

(folds) of the training data. In each trial, a model is first trained using 9 of the 10 

folds (90% of the samples are used as training set). Then, this model is used to 

classify the samples in the remaining fold (10% of the samples are used as testing 

sets). Thus, at the end of the 10 trials, each training sample has been classified once 

by an independently trained model. Then, the performance of a method can be 

evaluated by comparing the predicted labels with the known labels of the samples. 

In particular, in these tests we used the following metrics to evaluate performance: 

f9:7/A/8\ = |òk|
òk í|bk|

,      
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where |©f|, |õf| and |õq| correspond to the number of true positives, false positives 

and false negatives, respectively. Precision measures the proportion of positive 

predictions that are correct. For example, a precision of 0.5 means that for every two 

positive predictions one is correct. Recall measures the proportion of positive genes 

that are predicted as positive. For example, a recall of 0.5 means that from the total 

number of positive genes half are predicted as positive. In other words, precision is 

as a measure of exactness or fidelity, whereas recall is a measure of completeness. 

Ideally, a method should obtain a high precision and a high recall, however, in 

practice there is generally a trade-off between these evaluation metrics. For this, we 

use the õú − A789:, which provides a joint evaluation of both precision and recall by 

calculating their harmonic mean. It ranges between 0 and 1, being close to 1 when 

both, precision and recall, take values near 1, but close to 0 when any of these two 

metrics is close to 0. The b parameter controls the weight given to precision with 
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respect to recall. In our tests, we used β = 2 (õO − A789:), in order to favor accurate 

models over models with high recalls but large false positive rates. 

An inconvenience of the cross-validation analysis is its sensibility to the presence of 

false negatives, this is, when positive genes are incorrectly labeled as negatives, 

which can affect both precision and recall metrics. On one side, false negatives 

present in the testing sets can make some positive predictions to be incorrectly 

interpreted as erroneous predictions (false positives), which will increase the actual 

false positives rate and, in consequence, will lower the real precision of the algorithm. 

On the other side, false negatives present in the training sets can diminish the ability 

of the algorithm to find discriminative patterns, decreasing the number of positive 

predictions (i.e. ©f + |õq|) and, in consequence, lowering the recall of the 

algorithm. 

In order to reduce the prejudicial effects of false negatives in the results and to 

perform a more realistic evaluation, we used an enrichment analysis of new 

annotations. Briefly, the analysis consisted in training the methods using the 

annotations from year 2008 and then analyze the positive predictions to test how 

enriched they were in new annotations that became available in September 7, 2010 

(Figure 4.1). The enrichments were tested using a hypergeometric distribution and a 

P-value threshold of 0.1 to consider enrichment. Given a set of NT total samples, of 

which NP are positive, this distribution measures the probability (P-value) of drawing 

MP positive samples by chance, when drawing a total of MT samples. Then, if the P-

value is lower than a predefined threshold, the subset of MT samples is said to be 

enriched in positive samples. In our evaluation, NT corresponds to the total number 

of unlabeled genes (i.e. the genes that will be classified), according to the training 

sets derived from year 2008 annotations. NP corresponds to the number of unlabeled 

genes that are actually positive according to the new annotations from year 2010. MT 

corresponds to the number of genes predicted as positives. Finally, MP correspond to 

the number of genes correctly predicted as positives. 
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In order to facilitate the analysis of the results, we summarized them using three 

criteria. The first criterion consists of counting the number of GO-terms in which 

each method attains useful predictions. In the case of cross-validations, we consider 

as useful the predictions in GO-terms with precisions greater than 0.33 (i.e. at least 

one of three predictions must be correct) (Figure 4.1A). In the case of the enrichment 

analyses, we consider as useful the predictions for GO-terms that obtain a P-value 

lower than 0.1 (i.e. enriched predictions) (Figure 4.2A). The second criterion consists 

of evaluating the average performances of the methods considering all the 101 tested 

GO-terms. In cross-validations, we include precision, recall and F2-score averages 

(Figures 4.2B–D). In the case of enrichment analyses, we include P-value averages 

(Figure 4.3). Finally, the third criterion consists of a pairwise comparison of the 

performances of the methods over each GO-term. Given two methods, A and B, we 

counted the number of useful GO-terms in which A outperforms B and vice versa. 

We used the F2-scores and P-values as performance measures for cross-validations 

(Figure 4.2E) and enrichment analyses (Figure 4.3C and Figure 4.4), respectively. 

Workflow used for evaluations 

First, we performed cross-validation and enrichment analyses using the expert-

dataset as described in the text above. The automated-dataset is evidently more prone 

to both useless and redundant features, as some of them may be defined using 

biologically meaningless comparisons. Thus, the expert-dataset was used in order to 

ensure quality control–test condition pairs for the evaluations. In addition, we 

performed enrichment analyses using the automated-dataset with two specific aims: 

(i) test the potential of the automated-dataset for function prediction and (ii) test the 

performance of the methods in datasets with an increasing number of conditions 

(features). Thus, we performed enrichment analyses in two additional smaller 

datasets, defined by a random selection of 1000 and 2000 features from the 

automated-dataset. 
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Figure 4.1.  Strategy to optimize and test the prediction performance of methods. 

Evaluated methods and configurations 

In terms of the evaluated methods, we used the configuration and parameters 

providing the highest average F2-score in the cross-validation analysis (Figure 4.1).  

For DLS, we used two alternative configurations, one using the False Negative 

Discovery method (FND-DLS), described in Section 3.4 and other without using it 

(DLS). 

To select the final parameters for DLS (Table 4.1), we first fixed some of them and 

then optimized the remaining ones. In the training phase, we fixed the minimum 

number of features of signatures (min_feats) to five. This parameter should not be 

relevant, because the automatic penalization in the feature selection algorithm should 

prevent finding small signatures. Also, during the classification phase, we fixed the 

minimum confidence (conf_th) to a conservative threshold of 0.5. Using this 

threshold, a gene is predicted as positive whenever the method has more confidence 

about the gene being positive than negative. Although better performances could be 

obtained by optimizing this parameter, we used this criterion to be fair in the 

comparison with SVMs, which uses this criterion to classify the samples. As for the 

optimized parameters, we obtained the best results by giving a weight equal to three 

to negative genes (w0 = 3 in Equation 3.1), which allows the method to search for 

subsets of conditions that are highly discriminative. Also, we obtained the best results 
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by activating the option to discard the top 0.05% most coexpressed negative genes 

(pFN) during the training process. This allows the method to prevent overfitting the 

false negatives in the training set. Although this option slightly reduced the precision, 

it helped to improve the recall in a greater extent, resulting in an overall higher F2-

score. 

As for the parameters of the FND method in DLS-FND, we used a maximum of 10 

iterations (max_iters), and a pFN equal to 0.5% instead of 0.05%, in order to increase 

the number of potential false negatives that it can find during its training phase. Also, 

we used the option to move the predicted FNs from the negative to the positive 

training set after each iteration. Thus, after the execution of the FND method, DLS 

performs the final prediction over a training set with a larger number of positive 

genes and a lower number of negative genes than the original training set. 

Table 4.1.  Optimized parameter values for DLS and FND. 
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For SVM, we used the C-SVC implementation of SVM from the LIBSVM library 

(Chang & Lin, 2001) available for MATALB®. In order to select the kernels, we 

evaluated four types of kernels: radial basis (RBF), linear, and two polynomial 

kernels with degrees equal to two and three, respectively. In line with results 

previously reported (Brown et al., 2000), RBF-SVM shows the best performance. 

However, as linear-SVM has the advantage of being more easily interpreted, it 

provides a good alternative and reference point to compare the performance of our 

method. Consequently, we report the results of both, RBF-SVM and linear-SVM. In 

terms of the selection of relevant parameters for the different SVM models, we tested 

different configurations following the default values suggested by the LIBSVM 

library and the optimization methods proposed by Brown et al., 2000. The linear and 

polynomial kernels follow the function: 

p [, | = !K__K ∗ [™ ∗ | + 78:$0 ´&Y¨&&  (4.2) 

with parameter values specified in Table 4.2. 

Table 4.2.  Linear and Polynomial SVM parameters. 

 

M corresponds to the number of features in the dataset. The value of coef0 was 

selected according to what is reported by Brown et al., 2000. In addition, the RBF 

kernel follows the function: 

p [, | = :CD(−!K__K ∗ [ − | O)   (4.2) 

We used the default value provided by the library for gamma (1/M) in all kernels. 

Also, we used equal weights for positive and negative samples. 

For CN, we constructed the networks using the cosine correlation metric to define 

coexpression associations. Predictions were performed using a guilt-by-association 



 

 

51 

criterion over the neighbors of each gene, using the hypergeometric distribution and 

Bonferroni correction for multiple tests, as described by Vandepoele et al., 2009. We 

tested networks with five different correlation thresholds: 0.5, 0.6, 0.7, 0.8 and 0.9. 

In addition, we tested three P-value thresholds for the hypergeometric distribution: 

0.1, 0.05 and 0.01. Here, we report the results of the CN model using a correlation 

and P-value thresholds of 0.6 and 0.1, respectively, which provided the highest 

average F2-score in the cross-validation analyses. 

4.1.2. Results and discussion 

The results of the cross-validation and enrichment analysis using the expert-matrix 

are summarized in Figures 4.2 and 4.3, respectively. The results of the enrichment 

analysis using the automated-matrix are summarized in Figure 4.4. 
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Figure 4.2.  Results of the 10-fold cross-validation analyses. 



 

 

53 

 

Figure 4.3.  Pairwise comparison of the results of the enrichment analyses. 
 

 

Figure 4.4.  Results of the enrichment analyses performed over datasets with increasing 

number of features. 
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FND-DLS shows the best overall prediction performance 

Our results show that FND-DLS outperforms all competing methods, whereas RBF-

SVM consistently attains the second best performance. In the case of cross- 

validation analyses, FND-DLS attains useful predictions (precision > 0.33) in 96% 

of the considered GO-terms, corresponding to 15% more GO-terms than RBF-SVM, 

24% more than DLS, 33% more than linear-SVM and 49% more than CN (Figure 

4.2A). In addition, it attains an average F2-score of 0.44, whereas RBF-SVM, DLS, 

linear-SVM and CN attain averages equal to 0.29, 0.22, 0.20 and 0.15, respectively 

(Figure 4.2B). Although FND-DLS attains better average precisions than the other 

methods (Figure 4.2C), its supremacy in terms of the F2-score is mostly explained 

by its higher recalls. FND-DLS attains an average recall of 0.29, whereas RBF-SVM, 

DLS, linear-SVM and CN attain average recalls equal to 0.11, 0.11, 0.08 and 0.10, 

respectively (Figure 4.2D). 

The overall small recall levels obtained by the methods may be explained by four 

main factors:  

i. Some genes may be regulated under experimental conditions not available in the 

expression dataset.  

ii. Some genes are not regulated at a transcriptional level and thus, may not have 

(common) expression patterns.  

iii. Due to missing functional labels, some genes may be regulated by (or regulate) 

genes that are not present in the positive training, which makes impossible for the 

methods to discriminate them.  

iv. Genes with false negative labels may share and mask some discriminative 

patterns present among positive genes.  

The higher recall levels achieved by FND-DLS over the other methods remark the 

importance of the last two factors described above. 

The higher precisions obtained by FND-DLS supports the effectiveness of the FND 

process. The FND process iteratively moves the predicted FNs to the positive set. 
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Thus, if FND predicted FNs incorrectly, these genes would become false positive 

genes which, in turn, would decrease the precision of FND-DLS. 

Cross-validation is useful to assess the relative performance of the methods, 

however, its results must be considered with caution (Varma & Simon, 2006). To 

tackle this, we use an enrichment analysis over a completely new set of labeled genes 

(i.e. new annotations from year 2010) to assess the performance of our method in an 

alternative and more realistic scenario (details in Section 4.1.1). 

Remarkably, the results of the enrichment analysis confirm the supremacy of FND-

DLS over RBF-SVM, although its overall advantage is smaller than in the cross-

validation test (Figure 4.3). FND-DLS attains enriched predictions in 53% of the GO-

terms, whereas RBF-SVM attains enriched predictions in 53% of them, DLS in 44%, 

linear-SVM in 43% and CN in 39% of them (Figure 4.3). Note that some GO-terms 

have few or no new genes annotated on year 2010 with respect to year 2008 and thus, 

it is very difficult or even impossible for the predictions to be enriched. In addition, 

the enrichment performance is affected by the same four factors exposed above for 

cross-validation. In terms of enrichment P-value (lower P-value represent higher 

enrichments), FND-DLS attains an average of 0.39, whereas RBF-SVM attains an 

average of 0.40, DLS of 0.46, linear-SVM of 0.54, and CN of 0.55 (Figure 4.3B). 

Discriminative methods, DLS and SVM, provide more accurate gene function 

predictions than CNs 

According to our experiments, both versions of DLS and SVM outperform CN. 

Although CN obtains similar average recall levels than SVMs and DLS (without 

FND), it fails in providing predictions as precisely as them (Figure 4.2C and D). 

These results show the advantages of using discriminative training techniques in 

contrast to semi-supervised techniques in attaining accurate gene functional 

predictions. This assertion is further supported by the results of the enrichment 

analysis. 
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There is no method to rule them all 

Although FND-DLS and RBF-SVM show the best overall performances, when 

comparing the performance at a term-by-term scale, we can only conclude that there 

is no method able to attain the best performance through all GO-terms (Figures 4.2E 

and 4.3C). There are many factors that can bias the predictability of genes of a 

biological process toward one method or another. For example, in GO-terms related 

to responses, we see a bias in the predictability toward DLS in expense of CN, as the 

responses are usually expressed under specific environmental or physiological 

conditions, which DLS is able to detect due to its local search for discriminative 

features. 

The discriminative and local expression patterns of DLS provide effective and 

meaningful predictions 

According to the FDR matrix XFDR, 96.2% of the expression changes in the log-ratio 

matrix XLR are not significant in the expert-dataset (considering an FDR<0.1 for 

significance). This means that on average, genes show differential expression in only 

24 (3.8%) of the 643 features. This sparseness emphasizes the importance of 

selecting relevant features to achieve effective predictions. SVM perform 

transformations to higher dimensions, which can also be interpreted as an implicit 

selection of relevant features. However, in the case of non-linear SVMs, these 

transformations complicate the interpretation of the predictions and the extraction of 

further knowledge. Consequently, besides the prediction power of DLS, a key 

advantage over non-linear SVMs and other discriminative state of the art prediction 

methods is its ability to provide biologically meaningful and interpretable 

predictions, while maintaining highly accurate predictions. Unlike SVMs, DLS is 

able to visually expose its predictions in the form of a network. This network delivers 

a much richer interpretability to the user than SVMs, providing key information 

about the regulatory linkages that may exist between the genes of the biological 

function of interest. Finally, unlike both SVMs and CNs, DLS is able to explicitly 

reveal the experimental conditions and genes that are relevant for each prediction, by 

exposing the features and genes that define each expression signature. 
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DLS systematically improves its performance as more experimental conditions 

are added to the dataset 

As stated above, the lack of informative features is one of the factors that may affect 

the prediction potential of the methods. In this sense, the increasing amount and 

variety of gene expression experiments represent both an opportunity and a 

challenge. If the number of available experiments increases, chances for it to have 

more informative features increase. However, the amount of uninformative and 

redundant features should also increase, adding extra noise that must be correctly 

handled by the prediction methods. 

The results of the enrichment analyses performed using the automated-dataset 

support our previous hypothesis and one of the most remarkable features of DLS 

(Figure 4.4). When using the expert-dataset, containing 643 features, DLS achieves 

an overall P-value of 0.46. Interestingly, when using the automated-datasets, 

containing 1000, 2000 and 3911 features, its average P-value improves to 0.42, 0.34 

and 0.32, respectively. In contrast, RBF-SVM is not able to improve its performance, 

linear-SVM shows little improvement, and even more, the performance of CN 

worsens. Notice that when using the automated-dataset, DLS achieves the highest 

overall performance in terms of enrichment, even without using the FND procedure 

(Figure 4.4). 

These results show that DLS is able to overcome the underlying noise added by the 

automated-dataset by effectively extracting relevant and informative features. In 

addition, they support the usefulness of our automatic procedure to generate log-ratio 

expression datasets from poorly annotated experiments. But, most remarkably, they 

suggest that DLS should be the most benefited method as, in the future, more 

microarray experimental data becomes available. As the dataset becomes larger, the 

ratio of noisy vs useful features increases, which also increases the complexity of 

finding useful, discriminative patterns. This effect negatively impacts the 

performance of SVMs, especially linear-SVMs, and CNs. In contrast, the local 

modelling of DLS through the local search of expression signatures provides a more 
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scalable approach to tackle the added noise while exploiting the added informative 

features. 

4.2. Application of DLS to search key genes regulating nitrogen use efficiency of 

plants 

In the previous section, we showed the capabilities of DLS to predict new genes 

participating in a biological function of interest by performing a systematic evaluation. 

In this section, we show the capabilities of DLS to predict informative and biologically 

coherent gene networks that can pinpoint key genes modulating complex biological 

functions or traits of interest. In order to show these capabilities, we show how DLS was 

used in a real research scenario to find key genes modulating nitrogen use efficiency 

(NUE) in plants (Araus et al., 2016). 

Improving nitrogen use efficiency of plants is key to tackle serious problems in today’s 

agriculture, food production and ecology. Nitrogen (N) is an essential macronutrient and 

a key element controlling plant growth, development and productivity. Use of N-based 

fertilizers has increased more than 8 fold in the last 50 years to cope with increasing 

demands of agriculture and food production (Dawson & Hilton, 2011). Intensive use of 

N-fertilizers is causing major detrimental impact on the ecosystem, including 

eutrophication of waters and increase of gaseous emissions of toxic N oxides and 

ammonia to the atmosphere (Ju et al., 2009; Lassaletta et al., 2014; Robertson & 

Vitousek, 2009). Moreover, excessive use of fertilizers is a major cost for farmers, which 

in turn affects the commercial price of vegetables and fruits. In this context, it is of 

paramount importance to design strategies to improve NUE for increased plant 

productivity in sustainable and environmentally responsible ways (Gutierrez, 2012). 

Many efforts have been devoted towards defining target genes for generating crops with 

enhanced NUE (Crawford & Forde, 2002). However, NUE is a complex genetic trait, 

encompassing multiple metabolic, physiological, and developmental processes in plants 

exposed to a changing environment. Due to this complexity, it is very difficult for 

biologist to know which of the hundred genes involved in these processes can be good 
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candidates to impact NUE. In addition, experimentally testing NUE is a time-consuming 

process, which involves growing plants under different nitrate concentrations and then 

measuring the total seed amount produced per plant. Thus, it is crucial to identify sound 

candidate genes in which to focus experimental tests, for which we used DLS.  

One of the most useful DLS outputs is a discriminative gene network (Section 3.3.2), 

which can be analyzed using standard network topology statistics and tools to pinpoint 

key genes for the regulation of a biological function of interest (Azuaje, 2014) (Section 

3.5.4). Given that NUE is a complex process that integrates various biological processes, 

we defined a positive set by including the genes annotated in 12 biological processes that 

are known to impact or control NUE in plants. Six of these processes are associated with 

N metabolism (nitrate assimilation GO:0042128, nitrate transport GO:0015706, 

ammonium transport GO:0015696, ammonium response GO:0060359, nitrogen 

response GO:0019740, nitrate response GO:0010167), while the other six are associated 

with plant development (regulation of seed development GO:0080050, organ senescence 

GO:0010260, endosperm development GO:0009960, vegetative to reproductive phase 

transition of meristem GO:0010228, vegetative phase change GO:0010050, seed 

maturation GO:0010431). The union of all these GO-terms resulted in a positive set with 

220 genes. In order to do the prediction, we used the DLS configuration showing the best 

prediction performance in the enrichment evaluation presented in Section 4.1 (Figures 

4.3 and 4.4). This configuration corresponds to FND-DLS, using GO annotations from 

September 7, 2010 and the automated-dataset containing 3,911 features for Arabidopsis 

thaliana. 

Using this configuration, DLS predicted a network containing 350 genes. We analyzed 

this network using Cytoscape (Lopes C et al, 2010). First, we used the “Network 

Analyzer” plugin to calculate the degree and betweenness centrality of each node, two 

metrics that are commonly used to define nodes that are important for network structure 

(Azuaje, 2014).  Then, we generated a network view in which nodes have sizes 

proportional to their degrees and colors according to their betweenness centrality (BC) 

values. For practical reasons, we extracted a subnetwork containing the 50 nodes with 

greatest degree (Figure 4.5). This network clearly highlights BT2 as the most important 
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gene for the overall network structure and topology. BT2 is the node with the highest 

degree and betweenness centrality, making it the best candidate for experimental 

validation of its role in controlling NUE. 

 

Figure 4.5.  Network predicted by GENIUS for nitrogen use efficiency. BT2 is the node 

with greatest degree (the biggest) and betweenness centrality (the reddest). 

In addition to BT2, we also tested its homolog BT1. BT2 belongs to a family of BTB and 

TAZ DOMAIN proteins composed of five members (Robert, Quint, Brand, Vivian-

Smith, & Offringa, 2009) with BT1 (At5g63160) being the closest homolog with 80% 

sequence identity (L. Du & Poovaiah, 2004). Previous studies demonstrated BT1 and 

BT2 have functional redundancy and reciprocal transcriptional control during 

gametophyte development (Robert et al., 2009). Therefore, both BT1 and BT2 were 

selected for experimental validation. 
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The experiments performed in our lab found that under low nitrate conditions, NUE 

decreases in BT2 overexpressing Arabidopsis plants and increases in bt1/bt2 double 

mutant Arabidopsis plants, as compared to control wild-type plants (Araus et al., 2016). 

Moreover, mutating the BT1/BT2 ortholog gene in rice, OsBT1, increases NUE by 20% 

as compared to wild-type rice plants (Araus et al., 2016). 

These results show the power of DLS to predict networks that highlight key genes for 

complex traits, a difficult and relevant challenge for many biological researches. They 

also show that the degree and the betweenness centrality are useful indicators to rank 

genes in the predicted networks and to pinpoint key genes modulating a biological 

function of interest. Based on these results, and in order to make it easier for biologist to 

perform this kind of analysis, we developed the GENIUS web server and included these 

indicators as part of its prediction results. 

4.3. Evaluation of GENIUS-DLS predictions in an updated dataset from 2015 

This section presents an evaluation of the current (2015) version of the DLS algorithm, 

annotations, datasets, and organisms included in the GENIUS web server 

(http://networks.bio.puc.cl/genius). In order to evaluate the prediction capabilities of 

GENIUS in all supported organisms and in a broad functional space, we performed an 

enrichment analysis over sets of representative GO-terms for each organism.  

This evaluation is similar to the one performed for the former DLS implementation 

(Section 4.1, Figures 4.3 and 4.4), but differs in how we obtain the two sets of annotations 

needed to test enrichment. In our former evaluation (Section 4.1) we used an older 

annotation set (from year 2008) to obtain representative GO-terms and make predictions 

for each of them. Then, we used a newer annotation set (from year 2010) to test the 

enrichment of correct predictions. In contrast, in this evaluation we use a holdout strategy 

to obtain both annotation sets from annotations from year 2015, which are the ones 

included in GENIUS (Section 3.5.2). The holdout strategy consists of hiding (holding 

out) a random 30% of the genes annotated in each GO-term. In other words, this process 

produces an annotation set that artificially simulates an older annotation set having 30% 
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less annotations than the original set. Then, we use these two annotations sets to perform 

enrichment analyses in an analogous way as we did in our original evaluation (Section 

4.1). In order to reduce the bias that can be produced by the random selection, we 

repeated the analysis over three independent, randomly generated holdout sets, 

registering the geometric mean of the enrichment P-value obtained over the three 

iterations for each representative GO-term. Analogously to our previous analysis, the 

enrichment P-value represents the probability of predicting a certain proportion of true 

positive samples by chance, given the total proportion of positive samples in the holdout 

set. Then, we consider GENIUS predictions for a GO-term to be enriched in correct 

predictions (true positives) if the final averaged P-value is lower than 0.1. 

The holdout strategy used here has several advantages over the rollback strategy used in 

our former evaluation. In the rollback strategy, some GO-terms had many new 

annotations, while other had few or no new annotations at all, biasing the results over 

some GO-terms and making difficult or even impossible to obtain enriched annotations 

in other GO-terms. This bias would be even worst in the current scenario, where we have 

different organisms with different number of annotations. The current strategy 

diminishes this bias by ensuring that all tested GO-terms will have a 30% of “new” (held 

out) annotations to test enrichment. In addition, this strategy better covers the whole 

space of annotations by doing three analyses over independent holdout sets. Finally, it 

has the advantage of using the current annotation set instead of an older one, which 

allows it to better represent the current prediction performance. 
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Figure 4.6.  Prediction performance in supported organisms. 

In order to summarize the results, for each organism we show the proportion of 

representative GO-terms in which GENIUS obtains predictions enriched in true positive 

genes (Figure 4.6). These results indicate that GENIUS can make high quality 

predictions in most GO-terms for the eight supported organisms. The best results are 

achieved for A. thaliana (94%), M. musculus (88%), D. melanogaster (85%), and H. 

sapiens (77%), while the worst results are obtained for S. cerevisiae (64%), C. elegans 

(63%), E. coli (59%) and D. rerio (54%) (Figure 4.6). Interestingly, these results 

correlate with the number of features (correlation of 0.59), as well as with the percentage 

of genes with GO annotation in the biological process branch (correlation of 0.62), 

available for each organism (Table 3.1). The correlation is even higher when considering 

both factors together (correlation of 0.71). The high correlation with the number of 

features is consistent with our previous results (Figure 4.4), which indicate that 

predictions should improve as more expression data becomes available (Section 4.1.2) 

(Puelma et al., 2012). The more expression data available, the higher the possibilities for 

DLS to find discriminative experimental conditions for each biological process and thus, 

to make more precise predictions. In addition, the high correlation with the number of 

annotations suggest that predictions should also improve as more annotations become 

available. Sparse annotations prevent the construction of informative training sets, 
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increasing the number of false negative genes and lowering the number of true positive 

genes in them. 

Clearly, this evaluation and the former evaluation are not completely comparable, 

because the strategies, datasets and implementations used are different in each of them. 

Nevertheless, there is a remarkable difference in the percentage of enriched GO-terms 

for A. thaliana in the current and former evaluations (94% (Figure 4.6) and 53% (Figure 

4.3A) respectively), which suggest that GENIUS, with its updated DLS implementation 

and datasets, should provide a better prediction performance than the original version of 

DLS. 

4.4. Applications of GENIUS web server to representative case studies. 

This section shows how GENIUS can be successfully used to guide research by showing 

two representative case studies. On both cases, we evaluate the predictions of GENIUS 

by searching the literature and by comparing them with state-of-the art application 

GeneMANIA (Mostafavi et al., 2008; Zuberi et al., 2013). 

4.4.1. Predicting new genes for a biological function of interest 

This section illustrates the use of GENIUS to predict new genes related to a biological 

function of interest (BF). For the purpose of this demonstration, we study the “nitrate 

response” in Arabidopsis thaliana. Nitrogen is a key macronutrient, essential 

component of amino acids, nucleic acids, pigments, hormones and many other 

biomolecules, and a major factor limiting plant growth and development. Nitrate is 

the main source of nitrogen for plants, and a signal that regulates global gene 

expression, physiology, and many growth and developmental processes (Gutierrez, 

2012). Despite the fact that several transcriptome studies characterizing nitrate 

response are published (Vidal, Álvarez, Moyano, & Gutiérrez, 2015), there is still 

limited understanding about the regulatory factors and molecular mechanisms 

implicated in nitrate responses (Canales, Moyano, Villarroel, & Gutierrez, 2014).  
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Defining the query list and starting a new prediction 

The first step to predict new genes involved in BF is to define a query list containing 

genes that are known to be involved in BF. For this, GENIUS offers users two 

complementing possibilities. The first is to directly add a list of gene identifiers.  The 

second is to select a list of GO-terms related to the biological function of interest 

(Figure 4.7A). In the latter case, GENIUS adds to the query list all the genes 

annotated in these selected GO-terms.  

 

Figure 4.7.  Starting a prediction with GENIUS. 

In our case study, we define the query list by selecting GO-terms related to nitrate 

response. For this, we search for GO terms with the “nitrate” keyword in the provided 

search box (Figure 4.7A). From the list of matched GO terms, we select three 

biological processes that are closely related to the overall nitrate response: “nitrate 

transport” (GO:0015706), “nitrate assimilation” (GO:0042128), and “response to 

nitrate” (GO:0010167). Clicking the “View query list” button opens a window that 

displays the GO-terms and genes that have been added to the query list, which in our 

case correspond to 231 genes (Figure 4.7C).  
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In some cases, GO-terms can contain unreliable annotations that can add noise to the 

predictions. To overcome this, GENIUS allows users to select which GO evidence 

codes wants to use when importing GO annotations. This can be done by clicking the 

“Filter GO annotations” button (Figure 4.7A), which opens a window where users 

can select the evidences to use (Figure 4.7B). By default, GENIUS includes all 

evidences except “inferred from electronic annotation” (IEA). In this example, we 

also discard annotations with RCA evidence (inferred from reviewed computational 

analysis), which add a lot of unreliable annotations for these particular GO-terms. By 

doing this, we obtain a query list with 38 genes. 

Once the query list is defined, clicking “Next” in the main screen (Figure 4.7A) opens 

a new window that allows the user to introduce a name to identify the prediction and 

to select the stringency level of the prediction (Figure 4.7D). In most cases, users 

should use the normal (default) setting. However, users can also run predictions using 

relaxed or stringent settings to obtain a more exploratory or focused network 

prediction, respectively. For the purpose of this demonstration, we select the normal 

setting and start the prediction by clicking “Next”. 

Due to the high computational complexity of searching expression signatures among 

thousands of genes and features, the prediction process can take minutes to several 

hours, depending on the number of genes in the query list and the size of the 

expression data available for the selected organism. To alleviate this problem, users 

can register their email in the start screen, so that GENIUS can send them a 

notification and a link to the results when the analysis is finished. 

Analyzing the results to obtain candidate genes 

The results screen provides a network graph view and several tables, organized in 

tabs, where users can extract relevant information from the predicted network (Figure 

4.7).  

i. Genes tab: provides details about each gene/node of the network, including 

centrality indicators to rank them according to their relevance.  
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ii. Associations tab: provides details about each association/edge of the network, 

including their confidence and coexpression level.  

iii. Predictions tab: since each gene can be predicted by various other genes, this tab 

provides summarized details about each gene predicted in the network, including 

a score to rank them according to their overall (total) confidence.  

iv. Signatures: provides details about the expression signatures used to make the 

predictions, including the experimental conditions selected and a score to rank 

them according to how good they can discriminate positive from negative genes.  

v. Positive, Negative and Unlabeled Genes tabs: provide details about the positive 

and negative genes used to train the algorithm, as well as the unlabeled genes that 

were not used for it. 

 

Figure 4.8.  Results view of GENIUS, showing the details of the predicted genes in the 

network. 

In this case study we focus our attention in the “Predictions” tab, which shows 

properties like coexpression, confidence and score for each predicted gene, as well 

as the in-degree of their respective nodes (Figure 4.8). Details about these properties 
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can be seen in Section 3.5.4. By clicking the headers of these properties users can 

easily rank the predicted genes and prioritize them for functional assays. By default, 

GENIUS shows the new predictions (unlabeled genes) first, sorted by their prediction 

score. Unlabeled genes are genes that were not included in the query list, and thus, 

the predicted ones represent new candidate genes to be involved in BF. 

In our case study, the results show a network containing 63 genes. 31 out of the 63 

genes are from the positive set (genes in the query list) and 32 are genes from the 

unlabeled set (new predicted genes). Interestingly, searching the literature we found 

that 11 of these 32 predicted genes are true positives. We consider as true positives 

the predicted genes coming from the unlabeled set that have experimental evidence 

in the literature directly linking them to nitrate responses (Table 4.3, round 1).  

Table 4.3.  Genes predicted by GENIUS and GeneMANIA (GM) for nitrate response in 

Arabispsis thaliana that are validated by published literature. 

 

In particular, UPM1, G6PD2, G6PD3, LBD37, LBD38 and TGA4 stand out as 

important genes for this process. UPM1 encodes an enzyme involved in siroheme 

biosynthesis (Leustek et al., 1997), an essential cofactor for NIR1 (Tripathy, 
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Sherameti, & Oelmuller, 2010). NIR1, which appears as one of the top scored positive 

genes of the network, encodes an enzyme that catalyzes the reduction of nitrite to 

ammonium, a second and critical step in the nitrate reduction pathway (Crawford & 

Forde, 2002). G6PD2 and G6PD3 are related enzymes that may provide reducing 

power required for nitrate reduction and ammonia assimilation (Esposito, Massaro, 

Vona, Di Martino Rigano, & Carfagna, 2003; Wright, Huppe, & Turpin, 1997). In 

addition, both NIR1 and GOGAT are under the control of LBD37/38 transcription 

factors (Rubin, Tohge, Matsuda, Saito, & Scheible, 2009). These transcription factors 

are important regulators of the nitrate response in Arabidopsis since they are able to 

repress the expression of genes related to nitrate transport and assimilation (Rubin et 

al., 2009). In fact, LBD37 or LBD38 overexpressing plants display reduced nitrate 

content, amino acids and growth (Rubin et al., 2009). Finally, our laboratory recently 

demonstrated that TGA4, and the closely related TGA1, are important regulatory 

factors of the root response to nitrate treatments in Arabidopsis thaliana (Alvarez et 

al., 2014). 

Using an iterative workflow to refine predictions 

In order to facilitate knowledge discovery, GENIUS allows users to incorporate 

newly predicted genes into the query list and start a new prediction directly from the 

results view. To do this, users can select the rows of the desired predicted genes in 

the “Predictions” table and then press the ‘Move to Positives’ button (Figure 4.8). 

Then, users can start a new prediction by pressing the ‘Rerun prediction with current 

set’ button (Figure 4.8). This process can be repeated iteratively until there are no 

new true positive genes. 

In our case, we move the 11 true positive genes and then start a new prediction. The 

inclusion of these new genes allows GENIUS to predict 9 additional true positive 

genes in the new prediction (Table 4.3, round 2). For example, LBD39 and TGA1 are 

predicted thanks to the added genes LBD37/38 and TGA4, respectively. This means 

that GENIUS found expression signatures for LBD37/38 and TGA4 during its 

training process, which then predicted LBD39 and TGA1, respectively. The details 

about the associations predicted between these and other genes can be seen in the 
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“Associations” tab or as edges in the network view. By applying this process 

iteratively GENIUS is able to predict a total of 25 true positive genes in 3 rounds of 

predictions (Table 4.3). The network predicted in the fourth round does not show any 

additional genes known to participate in the nitrate response. However, it is the one 

predicted with the most complete query list, and thus, the one that should be used for 

further analyses. 

Comparing GENIUS and GeneMANIA predictions 

In order to put GENIUS results in perspective, we compare its results with similar 

results obtained using GeneMANIA (Zuberi et al., 2013). GeneMANIA does not 

allow users to directly add GO-terms to its query list. Therefore, we use the genes of 

the query list generated by GENIUS, which can be exported as an Excel file from the 

“Query List” window (Figure 4.7A). Surprisingly, using the default settings of 

GeneMANIA, we are able to predict only 3 true positive genes in the first round of 

predictions and no additional true positive genes in a second round. In order to try to 

improve this result, we customized the settings of GeneMANIA by adding all the 

expression data sets it has available and increasing the number of new genes 

(predictions) to include in the network from 20 to 50. These settings allow 

GeneMANIA to find 11 true positive genes in the first round and a total of 25 true 

positives in 7 rounds (Table 4.3).  

Comparing the predictions of both tools reveals that they share 16 true positive genes, 

while 9 are exclusive to GENIUS and 9 to GeneMANIA (Table 4.3). For 

GeneMANIA, these 9 genes are related to nitrate transport and metabolism. GENIUS 

also predicts genes related to nitrogen transport (AHA2 , SIAR1 (Ladwig et al., 2012)) 

and metabolism (MDH (Selinski & Scheibe, 2014)), but it additionally includes 

genes related to transcriptional regulation (LBD38 (Rubin et al., 2009), HHO1 

(Medici et al., 2015)) and hormone biosynthesis (TAR2 (Ma et al., 2014), IPT3 (Takei 

et al., 2004)). Among GENIUS predictions, HHO1 stands out as a key transcription 

factor in the early nitrate response (Medici et al., 2015). This transcription factor and 

its closely related homolog HRS1, control primary root growth depending on the 

availability of nitrate and phosphate (Medici et al., 2015). Another interesting 
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example is IPT3, an enzyme that catalyzes the initial step in the biosynthesis of 

cytokinin, a phytohormone that regulates a variety of processes in plant growth and 

development. Cytokinin concentration in plants is closely related to nitrogen 

availability (Kamada-Nobusada, Makita, Kojima, & Sakakibara, 2013), IPT3 

expression is specifically regulated by nitrate and a loss-of-function ipt3 mutation 

severely diminished the nitrate-dependent accumulation of cytokinin (Takei et al., 

2004).  

These results show that GENIUS is a powerful tool to predict new genes involved in 

a biological function of interest and to aid biologists to prioritize genes for functional 

assays. Our example shows that GENIUS is able to correctly predict the same number 

of genes than GeneMANIA, but in less iterations and without needing any 

customization. Also, it exposes one of the main advantages of GENIUS over other 

tools like GeneMANIA, in which the user needs to select the experimental data and 

the number of new predicted genes to include in the networks. In contrast, GENIUS 

automatically selects them based on the genes that the user includes in the query list. 

Extracting additional insights from expression signatures 

A key aspect of GENIUS is its ability to automatically select genes and experimental 

conditions containing discriminative expression patterns or “expression signatures”. 

Examining the discovered signatures can be useful to identify key genes for the 

biological function of interest, as well as experimental conditions under which these 

genes may be experimentally verified. This information can be accessed from the 

“Signatures” tab, which shows a table with the positive genes containing an 

expression signature, sorted by their expression signature score (ESS) (Equation 3.1). 

This score measures the capability of an expression signature to discriminate positive 

genes from negative ones, and thus, it can highlight relevant genes for the biological 

function of interest. In addition, users can see detailed information about the 

experimental conditions that define each expression signature by clicking on the 

magnifying glass icon on the left side of each row of the grid.  
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In our example, the results of the final prediction show that G6PD3 and NIA1 have 

the expression signatures with the highest scores. NIA1 is a central gene of the nitrate 

response, as it is involved in the first step of nitrate reduction (Crawford & Forde, 

2002). Also, both G6PD3 and NIA1 are among the top 15 most consistent nitrate-

responsive genes reported in a recent meta-analysis (Canales et al., 2014). In fact, 

these genes are considered prototypical nitrate responsive genes (Krouk, Mirowski, 

LeCun, Shasha, & Coruzzi, 2010; Ruffel et al., 2011). Consistent with this 

observation, examination of the experimental conditions selected for the G6PD3 

expression signature shows that the experiments with highest relevance score 

correspond to nitrate treated root cells. This shows that GENIUS is able to 

automatically choose genes and experimental conditions that are relevant for the 

predicted process, relying solely in the query list of genes the provided by the user 

as input. 

4.4.2. Finding key regulators for complex traits 

Biologists often pursue the difficult task of finding key genes to modulate complex 

traits of interest (e.g. disease, growth, yield, plant nitrogen-use efficiency, water-use 

efficiency). In Section 4.2, we showed that the former DLS algorithm (Puelma et al., 

2012) was able to correctly predict a key gene to modulate nitrogen use efficiency of 

plants, which is a complex trait involving several biological processes. Here, we 

illustrate how GENIUS can be successfully used for this purpose by applying it to 

drought tolerance in A. thaliana and comparing its results with the ones of 

GeneMANIA.  

We start the analysis by defining a query list with 11 biological processes that, based 

in our current knowledge, are involved in drought tolerance. The included GO-terms 

are: water transport (GO:0006833), response to osmotic stress (GO:0006970), 

response to water deprivation (GO:0009414), response to water (GO:0009415), 

plasmodesma organization (GO:0009663), cellular water homeostasis 

(GO:0009992), guard cell differentiation (GO:0010052), stomatal movement 

(GO:0010118), response to desiccation (GO:0009269), response to salt stress 
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(GO:0009651), and abscisic acid transport (GO:0080168). Using these GO-terms, 

GENIUS generates a query list containing 1,043 genes. Given the large number of 

query genes, in this case we use the stringent setting to reduce the size of the predicted 

network and focus it on the most reliable associations.  

We also perform a similar analysis using GeneMANIA, using its default settings (it 

does not allow adjusting stringency), and the list of 1,043 query genes generated by 

GENIUS as input. Notice that the web version of GeneMANIA does not allow users 

to make predictions with a query list of this size. Thus, in this case we use the 

Cytoscape plugin of GeneMANIA, which allows to perform more advanced analyses 

and supports query lists of any size.  

Analyzing the results obtained with both tools, we can see that the network predicted 

by GENIUS has a hierarchical scale-free network topology, which is not the case for 

the network predicted by GeneMANIA (Figure 4.9). Gene networks, as most 

biological networks, usually have a hierarchical and scale-free topology, where most 

nodes have a small number of connections (degree) and only a few nodes are highly 

connected (hubs) (Barabási & Oltvai, 2004). GENIUS predicts a network containing 

15,763 associations among 2,125 genes (~7.41 associations per gene in average), 

showing a degree distribution that resembles the ones of scale-free networks (Figure 

4.8). Of its genes, 735 are from the positive set (query list) and 1,390 are from the 

unlabeled set (new predictions). In contrast, GeneMANIA predicts a highly 

connected network, containing more than 650,000 associations among 1,060 genes 

(~613 associations per gene), with a degree distribution that greatly differs from 

scale-free networks. The advantage of obtaining a network with a scale-free topology 

is that users can take advantage of network theory and use centrality indicators to 

pinpoint relevant genes. This can be done easily in the “Genes” tab displayed in the 

results screen, which shows all the genes in the network and several properties that 

can be used to rank them and highlight relevant genes (See Section 3.5.4 for details 

of these properties). These properties include three centrality indicators: degree 

centrality (DC), betweenness centrality (BC), and overall centrality (OC). By default, 

GENIUS displays genes ranked by their overall centrality (OC), a custom indicator 
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that GENIUS derives by calculating the geometric mean of the degree and 

betweenness centralities (Section 3.5.4). 

 

Figure 4.9.  Topology of the networks predicted for drought tolerance in A. thaliana. 

To show the usefulness of the three centrality indicators, we selected the top 5 ranked 

genes according to each of them and then searched the literature for experimental 

evidence linking them to drought tolerance (Table 4.4). By doing this, we obtain a 

table with 12 genes. Of these, 4 are known to modulate plant drought tolerance: ERF-

1 (3rd DC), STZ (4th DC), RDUF2 (5th DC), and NAC019 (5th OC) (M.-C. Cheng, 

Liao, Kuo, & Lin, 2013; S. J. Kim, Ryu, & Kim, 2012; M et al., 2010; Sakamoto et 

al., 2004; Schmidt et al., 2013). Available evidence shows that these genes participate 

in a large number of drought related processes, which coincides with their high 

centrality in the predicted network. For example, it has been shown that NAC019 

overexpressing plants have a significantly increased drought tolerance (Tran et al., 

2004). In addition, this gene is induced by drought, high salinity, and abscisic acid, 

and has been identified as a positive regulator of abscisic acid (ABA) signaling, 
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conferring ABA hypersensitivity when ectopically expressed in plants (M et al., 

2010). All these are important processes during drought.  

For comparison purposes, we also performed this literature search over the top 12 

genes predicted by GeneMANIA, based in the score that it provides. Of these, 2 genes 

are known to modulate drought tolerance: NPX1 and DRIP1 (M. J. Kim, Shin, & 

Schachtman, 2009; Qin et al., 2008). 

Table 4.4.  Central genes in the network predicted by GENIUS for drought tolerance in 

Arabidopsis thaliana. 

 

There are other genes in the rankings of both tools that, although have not been 

demonstrated to affect drought tolerance directly, are known to be regulated by 

different stress conditions that are present during drought, which makes them 

interesting candidates. In the case of GeneMANIA, we found 4 genes meeting this 

criterion (TUA2, AT1G61220, PLDP1, and EDL3) (Bargmann et al., 2009; E 

Stecker, Minkoff, & Sussman, 2014; Jha, Shirley, Tester, & Roy, 2010; Koops et al., 

2011; J.-H. Lee, Terzaghi, & Deng, 2011; Seo et al., 2014), while in the case of 

GENIUS we found 5 genes (JAZ1, CORI3, WRKY33, NAC072, and DR4) (Gosti, 

Bertauche, Vartanian, & Giraudat, 1995; Hahn et al., 2013; Jiang & Deyholos, 2009; 

Sadhukhan et al., 2014; Tran et al., 2004). Among these five genes, there is another 
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gene of the NAC transcription factors family, NAC072 (5th BC), which is induced 

in response to drought, high salinity, ABA, and JA treatments (Tran et al., 2004). 

More importantly, it has been shown that NAC072-overexpressing transgenic plants 

are hypersensitive to ABA and that ABA- and stress-inducible genes are up 

regulated, while the opposite effect is displayed in NAC072-overexpressing 

transgenic plants (Tran et al., 2004). This evidence suggests that NAC072 is an 

attractive candidate to improve drought tolerance. 

In addition to the genes discussed above, the ranking of GENIUS includes 3 genes 

for which we could not find any evidence linking them to drought tolerance (JR1, 

MSS1, and BT4). Nevertheless, their high centrality in the network makes them 

interesting candidates for future experimental validation. 

In order to extract additional insights about the trait or biological function of interest, 

GENIUS allows users to export its inferred networks to Cytoscape. As an example, 

in this case study we use the ClusterMaker (Morris et al., 2011) and BiNGO (Maere, 

Heymans, & Kuiper, 2005) Cytoscape plugins, which allow us to find clusters in the 

network and GO biological process enriched in each of them, respectively. As we 

show below, we find biologically meaningful clusters of genes thanks to the 

hierarchical and scale-free topology of the predicted network. These clusters can help 

scientist to better understand the biological context in which central genes were 

predicted as well as the biological processes involved in the trait or biological 

function of interest.  

Our analysis reveals five main clusters in the network (Figure 4.10), enriched in 

several biological processes that are relevant for drought tolerance, as detailed below. 

The light blue and yellow clusters are enriched in response to carbohydrate stimulus 

(GO:0099743) and photosynthesis (GO:0015979) genes, respectively. The green 

cluster is enriched in response to abscisic acid stimulus (GO:0009737) and response 

to water deprivation (GO: 0009414), and the blue cluster is enriched in response to 

jasmonic acid (GO:0009753), sulfur metabolic process (GO:0006790), and 

glucosinolate metabolic process (GO:0019760). All these processes are known to be 



 

 

77 

relevant during drought tolerance. Water deficits perceived by roots induce de novo 

ABA biosynthesis (Sauter, 2001), which in turn triggers stomatal closure (Boursiac 

et al., 2013). In a drought scenario, the plant closes the stomata to decrease their 

evapotranspiration, which, as a consequence, decreases its photosynthetic and carbon 

reduction cycle activity (M. Ashraf & Harris, 2013; Reddy, Chaitanya, & 

Vivekanandan, 2004). Jasmonic acid (JA) has a protecting role under hydric stress 

condition (de Ollas, Hernando, Arbona, & Gómez-Cadenas, 2013) and its early 

accumulation is necessary for the subsequent ABA increase in roots (H. Du, Liu, & 

Xiong, 2013). Sulfur has also been associated to the regulation of ABA and an 

important role under abiotic stresses in general (Wilkinson & Davies, 2002). Sulfur 

participates in glutathione synthesis, which maintains the cellular redox balance and 

mitigates damage caused by reactive oxygen species (Gallardo, Courty, Le Signor, 

Wipf, & Vernoud, 2014). Also, it has been shown that drought conditions induce the 

synthesis and accumulation of different glucosinolates as part of the plant responses 

to stress, through a process called osmotic adjustment (Del Carmen Martínez-

Ballesta, Moreno, & Carvajal, 2013). During this process, plants accumulate a variety 

of organic and inorganic substances (sugars, polyols, amino acids, alkaloids and 

inorganic ions) to reduce osmotic potential and improve cell water retention (Rhodes 

& Samaras, 1994). Indeed, keeping the cell homeostasis and coping the osmolite 

changes concomitant with water deficiency is one of the main challenges for plants 

during drought. In fact, this process is represented in the pink cluster (Figure 4.10), 

which is enriched in genes from response to osmotic stress (GO:0006970), and 

response to salt stress (GO:0009651). In addition, salt stress and drought conditions 

are intricately related, because the decrease in water potential in both abiotic stresses 

results in a reduced growth of the cell, root, and shoot. Also, reduced water potential 

causes inhibition of cell expansion and reduction in cell wall synthesis. Both stresses 

affect metabolism of the cell, such as carbon-reduction cycle, light reactions, energy 

charge, and proton pumping, as well as the production of toxic molecules. A salinity 

environment reduces the ability of plants to take up water, and this quickly causes 

reductions in growth rate, along with a range of metabolic changes comparable to 
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those caused by water stress (Agarwal, Shukla, Gupta, & Jha, 2013; Muhammad 

Ashraf & Akram, 2009; Flowers, 2004; Hasegawa, Bressan, Zhu, & Bohnert, 2000; 

Munns, 2005).  

 

Figure 4.10.  Clusters in the network inferred by GENIUS for drought tolerance in 

Arabidopsis thaliana. 

Remarkably, several of the biological processes mentioned above were not directly 

added to the query list. Nevertheless, the inferred network exposes them as important 

processes for drought tolerance by organizing them in clusters, which shows the kind 

of insights (or hypotheses) that can be derived from analyzing the networks predicted 

by GENIUS. 

GENIUS allows users to export its inferred networks to Cytoscape for more advanced 

analyses. In this case we used ClusterMaker and BINGO Cytoscape plugins to find 

clusters, displayed in different colors, and GO biological processes enriched in them. 
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This analysis revealed five main clusters, enriched in various biological processes 

related to drought tolerance: light blue – “response to carbohydrate stimulus” 

(GO:0099743); yellow – “photosynthesis” (GO:0015979); green – “response to 

abscisic acid stimulus” (GO:0009737) and “response to water deprivation” (GO: 

0009414); pink – “response to osmotic stress” (GO:0006970) and “response to salt 

stress” (GO:0009651); blue – “response to jasmonic acid stimulus” (GO:0009753). 

Interestingly, some of these processes were not included in the gene list used for 

training but were predicted by GENIUS. 

Therefore, this case study shows that GENIUS can successfully aid biologists to 

discover relevant genes for complex traits of interest, which may involve many 

biological processes and thousands of genes. It also shows the usefulness of the three 

centrality indicators provided by GENIUS to pinpoint relevant genes in the inferred 

network: degree, betweenness, and overall centralities. Finally, they show how 

GENIUS output can seamlessly integrate with Cytoscape to perform more advanced 

analysis over the predicted networks, which may reveal additional insights about the 

trait and its underlying biological processes. 
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5. CONCLUSIONS 

In this thesis, we presented DLS, a novel method that combines supervised machine learning 

and coexpression approaches to effectively predict gene networks and new genes for a 

biological function of interest. In addition, we presented GENIUS, a web server and user-

friendly tool to allow biologist to use DLS on their own researches. 

We developed four key concepts that allow DLS (and GENIUS) to effectively predict gene 

function: 

i. the discovery of false negatives to derive informative training sets,  

ii. the supervised search of discriminative expression patterns in subsets of genes and 

experimental conditions (expression signatures),  

iii. a Bayesian probabilistic approach to derive the confidence for each prediction, and  

iv. the construction of a discriminative coexpression network to represent predictions. 

Our systematic evaluations show that DLS is able to provide gene functional predictions 

with accuracies comparable to the highly discriminative SVMs, while maintaining the 

expressiveness of coexpression networks. They also show the effectiveness of our automatic 

procedure to choose control-test pairs of conditions and derive large expression datasets. 

Remarkably, they show that, unlike SVMs and coexpression networks, DLS systematically 

improves its prediction performance as more experimental conditions are added to the 

dataset generated by our procedure. In addition, they indicate that supervised approaches can 

predict gene function more effectively than semi-supervised approaches, if informative 

negative sets can be derived. As a consequence, they emphasize the importance and 

usefulness of our approach to discover false negatives and refine the training set. Finally, 

they show that DLS can make high quality predictions in most GO-terms for the eight 

organisms supported by GENIUS. 

Our evaluations in real research scenarios show that GENIUS can be effectively used to 

make novel discoveries. More specifically, from these evaluations we can extract the 

following four conclusions.  
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i. GENIUS can be successfully used to study biological functions ranging from specific 

biological processes to complex traits of interest, which may involve several biological 

processes and thousands of genes.  

ii. GENIUS can be successfully used to predict new genes for a biological function of 

interest, including genes that other state-of-the art tool are not able to find. 

iii. Expression signatures contain experimental conditions that are biologically coherent and 

relevant for the biological function of interest, which can further guide biologists to 

understand the biological context of the predictions and design sound functional assays. 

iv. GENIUS can be used to successfully pinpoint key genes to modulate biological functions 

and complex traits. Remarkably, it pinpointed a novel gene to improve nitrogen use 

efficiency of plants, which was later validated experimentally. For this, an important 

aspect is its use of graph theory statistics over the predicted network, in order to rank and 

prioritize genes for experimental validation. 

Hence, we believe the presented method, DLS, and its web interface, GENIUS, can help 

biologists to generate and explore new hypothesis, make novel discoveries, and ultimately, 

improve our molecular understanding of biological systems. 
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